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Abstract

Renewable energy (RE) applications are becoming a popular means of power generation

within our society. Microbial fuel cells (MFCs) represent a new form of renewable energy

by converting organic matter into electricity by using bacteria already present in wastewater

while simultaneously treating the wastewater. Increase in MFC power density by oxygen

sparging can be accomplished by aerating the MFC chamber to assure sufficient reaction rates

at the cathode. This study’s numerical analysis includes the development and verification

of FORTRAN computer code necessary to solve a one dimensional Diffusion Equation to

model oxygen in a single chamber MFC. A rigorous verification of the effects of spatial and

temporal discretization of the simulation model coupled to the LSO using a Modular In-

Core Nonlinear Optimization System (MINOS) FORTRAN computer code was performed.

Implicit Finite Difference numerical methods were found to require a substantialy larger

nodal value to that of the Galerkin Finite Element approximation nodal value discretization

to obtain a similar amount of error of 0.005 from the analytical solution. The cost of oxygen

sparging was found to decreased substantially by a nodal discretization of 20 to 80 nodes.

A realistic oxygen sparging schedules was developed by the use of 70 to 80 nodal values in

a FE linear numerical method utilizing the LSO methodology.



Advanced Numerical Methods Zielke ii

Contents

1 Introduction 1

2 Problem Formulation 1

3 Literature Review 2

3.1 MFC Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1.1 Biological Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1.2 Design Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 Fick’s Second Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.3 Implicit Finite Difference Methodology . . . . . . . . . . . . . . . . . . . . . 5

3.4 Galerkin Finite Element Methodology . . . . . . . . . . . . . . . . . . . . . . 5

3.5 Linked Simulation Optimization Methodology . . . . . . . . . . . . . . . . . 5

4 Model Formulation and Development 6

4.1 Fick’s Second Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.2 Implicit Finite Difference Methodology . . . . . . . . . . . . . . . . . . . . . 7

4.3 Galerkin Finite Element Methodology . . . . . . . . . . . . . . . . . . . . . . 8

4.4 Optimization Model and Linked Simulation Optimization . . . . . . . . . . . 10

4.5 Oxygen Sparging and the Diffusion Equation . . . . . . . . . . . . . . . . . . 12

5 Model Application 13



Advanced Numerical Methods Zielke iii

5.1 System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.2 Spacial and Temporal Discretizations . . . . . . . . . . . . . . . . . . . . . . 15

6 Model Results 15

6.1 Numerical Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6.2 Spacial Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6.2.1 Effect on Optimization results . . . . . . . . . . . . . . . . . . . . . . 20

6.3 Temporal Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.4 Trade-Offs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7 Conclusions 24

8 Further Research 24

9 References 26

10 Appendix 28

10.1 Appendix A - FD source code . . . . . . . . . . . . . . . . . . . . . . . . . . 28

10.2 Appendix B - FE - Linear source code . . . . . . . . . . . . . . . . . . . . . 29

10.3 Appendix C - FE - Quadratic source code . . . . . . . . . . . . . . . . . . . 30

10.4 Appendix D - FE - Cubic source code . . . . . . . . . . . . . . . . . . . . . . 31

10.5 Appendix E - FE - LSO - Linear source code . . . . . . . . . . . . . . . . . . 32

10.6 Appendix F - FE - LSO - Quadratic source code . . . . . . . . . . . . . . . . 33



Advanced Numerical Methods Zielke iv

10.7 Appendix G - MINOS output - Spatial Discretization . . . . . . . . . . . . . 34

10.8 Appendix H - MINOS output - Temperal Discretization . . . . . . . . . . . . 35



Advanced Numerical Methods Zielke v

List of Tables

1 Table of Linear, Quadratic, and Cubic Basis Functions with Associated Deriva-

tive Values (Segerlind, 1976) . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Spatial and Temporal Discretization Application . . . . . . . . . . . . . . . 15



Advanced Numerical Methods Zielke vi

List of Figures

1 Representation of Anaerobic (anode portion) and Aerobic (cathode portion)

Biological Degradation Simultaneous to Electricity Generation in a single

chamber Microbial Fuel Cell (Zielke 2006) . . . . . . . . . . . . . . . . . . . 3

2 Representation of a single chamber Microbial Fuel Cell designed at Penn.

State University (Lui and Logan 2004) . . . . . . . . . . . . . . . . . . . . . 4

3 Representation of the LSO methodology to minimum oxygen sparging costs

for oxygen sparging using a Galerkin FE numerical method simulation model. 12

4 Representation of a single chamber Microbial Fuel Cell modeled in one spacial

dimension with oxygen concentration as the state variable and the length of

the chamber equal to 310 cm. . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Representation of a the FD and FE Numerical Approximations of the Diffusion

Equation. The parameters selected are a diffusion value of D=20 (10E-6

mol/cm3) and 30 nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Close-up representation of a the FD and FE Numerical Approximations of

the Diffusion Equation illustrating a large difference in the FD Numerical

Approximation. The parameters selected are a diffusion value of D=20 (10E-

6 mol/cm3) and 30 nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 Close-up representation of a the FD and FE Numerical Approximations of

the Diffusion Equation illustrating the difference in the FE Numerical Ap-

proximations. The parameters selected are a diffusion value of D=20 (10E-6

mol/cm3) and 30 nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

8 Linear FE error residual analysis indicating a nodal value of 80 to obtain an

error value of 0.005 . The parameters selected are a diffusion value of D=20

(10E-6 mol/cm3) and a time step of 0.05 seconds for a time span of 50 seconds 18

9 Quadratic FE error residual analysis indicating a nodal value of 10 to obtain

an error value of 0.005. The parameters selected are a diffusion value of D=20

(10E-6 mol/cm3) and a time step of 0.05 seconds for a time span of 50 seconds. 18



Advanced Numerical Methods Zielke vii

10 Cubic FE error residual analysis indicating a nodal value of 25 to obtain an

error value of 0.005. The parameters selected are a diffusion value of D=20

(10E-6 mol/cm3) and a time step of 0.05 seconds for a time span of 50 seconds. 19

11 Implicit FD error residual analysis indicating a nodal value of over 2000 to

obtain an error value of 0.005. The parameters chosen are a diffusion value of

D=20 (10E-6 mol/cm3) and a time step of 0.05 seconds for a time span of 50

seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

12 Representation of the oxygen sparging schedule for a nodal value of 20 and

80. The parameters selected are a diffusion value of D=86.4 (10E-6 mol/cm3)

and 30 nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

13 Representation of the cost of oxygen sparging in relation to nodal values se-

lected in the discretization. The parameters chosen are a diffusion value of

D=86.4 (10E-6 mol/cm3) and a time step of 0.05 seconds for a time span of

50 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

14 Representation of the cost of oxygen sparging in relation to time steps selected

in the discretization for a time span of 50 seconds. The parameters chosen

are a diffusion value of D=86.4 (10E-6 mol/cm3) and 30 nodes . . . . . . . . 22

15 Representation of a the FE Linear Basis Function Numerical Approximation of

the Diffusion Equation with a zero Neumann boundary condition approach-

ing a steady state condition from a time span of 50 to 2000 seconds. The

parameters chosen are a diffusion value of D=86.4 and 30 nodes . . . . . . . 23



Advanced Numerical Methods Zielke viii

Table of Nomenclature

c = mol
cm3

L = cm

[O2] = mol
cm3

t = s

D = cm2

s

x = cm

Q = cm3

s

C = [US$ mol
t

]



Advanced Numerical Methods Zielke 1

1 Introduction

Renewable energy (RE) applications are becoming a popular means of power generation

within our society. Microbial fuel cells (MFCs) represent a new form of renewable energy

by converting organic matter into electricity by using bacteria already present in wastewater

while simultaneously treating the wastewater. According to the Logan Group of Pennsylva-

nia State University (PSU), this technology can use bacterium already present in wastewater

as catalysts to generating electricity while simultaneously treating wastewater (Lui et al.,

2004; Min and Logan, 2004). Most of the research performed on MFCs is concerned with

increasing the power density of the system with respect to the peripheral anode surface

area. Increase in power density by oxygen sparging can be accomplished by aerating the

MFC chamber to assure sufficient reaction rates at the cathode (Lui et al., 2004). Oxygen

diffusion through pure water and domestic wastewater is modeled using Fick’s Second Law,

or simply, the Diffusion Equation by both a Implicit Finite Difference (FD) and Galerkin

Finite Element (FE) numerical analysis (Bear, 1972). The FE and FD numerical schemes of

a one dimensional Diffusion Equation can utilize the Linked Simulation Optimization (LSO)

methodology by generating the state variables in response to a set of oxygen concentration

values (Willis and Finney, 2004).

This study’s numerical analysis will include development and verification of FORTRAN

computer code necessary to solve a one dimensional Diffusion Equation to model oxygen in

a single chamber MFC. This study will apply a rigorous verification of the effects of spatial

and temporal discretization of the simulation model coupled to the LSO using a Modular

In-Core Nonlinear Optimization System (MINOS) FORTRAN computer code.

2 Problem Formulation

The objective of this study is to analyze the effects of spatial and temporal discretizations of

a one dimensional Diffusion Equation by using both a FE and FD numerical analysis. The

development of the FORTRAN computer codes for the Diffusion Equation will include: the

Implicit FD Scheme utilizing the Thomas Algorithm, the Galerkin FE scheme with linear

basis functions utilizing the Thomas Algorithm, the Galerkin FE scheme with quadratic

basis functions and cubic basis functions both utilizing the Guass Siedel Algorithm. The

Diffusion Equation will be used to simulate oxygen concentration values spaced from the

cathode portion of the MFC to the anode portion by use of a Dirichlet initial boundary
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condition and a zero Neumann final boundary condition. An optimization model used to

minimize the total oxygen sparging cost (i.e. pumping cost as an oxygen source) will be

developed and used in a MINOS optimization FORTRAN computer program package. The

effects of total air sparging costs due to spatial and temporal discretizations will be validated

by a study using the LSO methodology pertaining to a pumping policy developed for a

confined groundwater aquifer (Willis and Finney, 2004).

3 Literature Review

The purpose of this literature review is to organize relevant information to use as a refer-

ence when applying principles of research and experimentation to MFC technology. This

section contains an overview of MFC technology, Fick’s Second Law, the Finite Difference

Methodology, the Finite Element Methodology, and an overview of the LSO methodology

3.1 MFC Technology

This subsection illustrates a brief introduction to the biological and technical design charac-

teristics pertaining to MFC technology.

3.1.1 Biological Mechanism

The basics of microbial catabolism consist of an oxidation/reduction process between a sub-

strate and an enzyme (Bennetto 1990). This normal oxidation/reduction process consists of

an electron transfer that can be harnessed in a MFC due to the characteristics of certain

bacteria or microbes (Bond et al. 2002). The bacteria identified in MFCs are known as She-

wanella putrefaciens, Geobacter sulfurreducens, Geobacter metallireducens and Rhodoferax

ferrireducens and are commonly identified anywhere from marine sediments to domestic

wastewater (Bond et al. 2003; Bond et al. 2002; Lui et al. 2004). Some research sug-

gest that these bacteria will directly transfer an electron to any type of conductive material

(Bond et al. 2003, Min 2004). In the case of a MFC, this conductive material is known as

the anodic electrode and the cathodic electrode.

A simple representation of the biological mechanism is shown within a single chamber
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Figure 1: Representation of Anaerobic (anode portion) and Aerobic (cathode portion) Bi-
ological Degradation Simultaneous to Electricity Generation in a single chamber Microbial
Fuel Cell (Zielke 2006)

MFC (Figure 1). The anode portion consists of an oxidation/reduction process which pro-

duces a hydrogen gradient and allows hydrogen protons to diffuse to the cathode portion

to balance out the pH of the organic matter or wastewater originally introduced to the bi-

ological organisms in a MFC. The cathode portion also consists of this oxidation/reduction

process; however, since the cathode allows oxygen to diffuse from the air to the inside portion

of the single chamber MFC, water can be formed without a formation of a hydrogen proton

gradient. The energy available from the proton gradient due to the anode can be harnessed

by connecting a circuit from the anode to the cathode to allow the electron, oxygen and the

hydrogen protons to catalytically form water via a platinum catalyst (Bond and Lovely 2003,

Bond et al. 2002, Lui et al. 2004). Note that the mechanism of MFC technology is still

in research stages and many possible reasons for electricity generation cannot be answered

without a better understanding of the characteristics of the electricity generating bacteria

in MFCs (Min 2004).
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Figure 2: Representation of a single chamber Microbial Fuel Cell designed at Penn. State
University (Lui and Logan 2004)

3.1.2 Design Structure

Typical MFCs consists of two separate chambers which can be inoculated with any type of

carbon source liquid (i.e. biological oxygen demand (BOD) contributing liquid). These two

chambers consist of an anode chamber and a cathode chamber and are generally separated

by a PEM (Oh and Logan 2004). PEM fuel cell researchers know that PEMs are designed

to allow oxygen from the air to react at the cathode (Lui and Logan 2004). The Logan

Group suggest that this same principle can be used to design a single chamber MFC. A

single chamber MFC is where the anode chamber is separated from the cathode chamber by

a gas diffusion layer (GDL) or gas diffusion membrane (GDM) allowing for a passive oxygen

diffusion to the cathode (Figure 2).

3.2 Fick’s Second Law

Fick’s Second Law, also known as the Diffusion Equation, is a case of non-steady state

diffusion and is typically used in transport processes of one dimension (Plamboeck and El-

Safadi, 2003). This analytical solution can be denoted as (Plamboeck and El-Safadi, 2003),

c = c0

(
erfc

x√
2Dt

)
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Noting that the boundary values of this solution are,

c(0, t) = co

dc

dx

∣∣∣∣
x=L

= 0

According to Plamboeck, Ficks Second Law states, that the change of concentration in time

is fast where the concentration difference across the distance is large (Plamboeck and El-

Safadi, 2003).

3.3 Implicit Finite Difference Methodology

Implicit FD numerical methods are prefered over the explicit FD methods due to instability

problems associated with the Explicit method (Chapra and Canale, 2002). For this reason,

the Explicit method requires the Corrant condition (Chapra and Canale, 2002). The main

difference between the Explicit and Implicit method is how the spatial and temporal terms

are evaluated. For example, the Implict method uses an advanced time level to evaluate the

spatial term (Chapra and Canale, 2002).

3.4 Galerkin Finite Element Methodology

The FE method originated from the structural analysis problems encountered in the field

of civil engineering (Segerlind, 1976). The Galerkin FE method is sufficient for model-

ing parabolic equations such as that of the Diffusion Equation (Pinder and Gray, 1978).

Although the Diffusion Equation does not include the convective term intrinsic to the

convection-dispersion equation, the effect of the convective term still exists which contributes

to the common oscillation, overshoot, undershoot and other undesired effects when attemp-

ing to effectively model a function of environmental systems (Pinder and Gray, 1978).

3.5 Linked Simulation Optimization Methodology

Many environmental systems are described by systems of nonlinear, coupled partial differ-

ential equations that are generally solved by FD and FE numerical methods (Willis and
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Finney, 2002). These numerical methods can be used to simulate models of environmental

systems; however, are generally large scaled (Willis and Finney, 2002). The linked simulation

optimization methodology accomplishes optimization of large scale simulation models which

would otherwise be very difficult to optimize (Willis and Finney, 2002).

4 Model Formulation and Development

This section contains Fick’s Second Law, the development of the implicit FD and FE nu-

merical approximations, the optimization model used in the MINOS optimization package

coupled to the LSO methodology, and the model used for this particular study of oxygen

diffusion coupled with oxygen sparging in a MFC.

4.1 Fick’s Second Law

Fick’s Second Law is derived from mass conservation of a species in a fluid continuum and

can be expressed as (Bear, 1972),

∂[O2]

∂t
= D

∂2[O2]

∂x2

where
[O2] = Oxygen concentration

t = time

D = Diffusion coefficient

x = length

with boundary conditions,

[O2](0, t) = [O2]o

d[O2]

dx

∣∣∣∣
x=L

= 0
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4.2 Implicit Finite Difference Methodology

The Implicit FD methodology evaluates first order derivative terms by use of a back-

ward finite-divided difference formula derived from the Taylor series expansion (Chapra and

Canale, 2002). This formula can be expressed as,

df

dx

∣∣∣∣
x

=
f(x)− f(x−4x)

4x

The backward difference formula contains a truncation error order of one. Second order

derivative terms are evaluated by use of a centered finite-divided difference formula derived

from the Taylor series expansion containing a truncation error order of two, i.e. less error

then that of the backward difference (Chapra and Canale, 2002). This formula is generally

expressed as,
d2f

dx2

∣∣∣∣
x

=
f(x +4x)− 2f(x) + f(x−4x)

4x2

After a discretization nodal scheme has been established, a general finite difference equation

can be expressed as,

D

{
[O2]i+1 − 2[O2]i + [O2]i−1

4x2

}
=

[O2]i
dt

This general equation can then written for every node. Noting that the boundary conditions

will be placed in the f bar, vector notation for a three internal nodal system can be expressed

as, 
− 2D
4x2

D
4x2 0 0

D
4x2 − 2D

4x2
D
4x2 0

0 D
4x2 − 2D

4x2
D
4x2

0 0 D
4x2 − 2D

4x2




[O2]1

[O2]2

[O2]3

[O2]4

 +


D
4x2 [O2]0(t)

0

0
D
4x2 [O2]5(t)

 =


[Ȯ2]1

[Ȯ2]2

[Ȯ2]3

[Ȯ2]4


Now the equation can be solved for implicitly as follows,

A
[O2]

t − [O2]
t−4t

dt
+ B[O2]

t + f t = 0

rearranging to the form Ax=b,{
A

4t
+ B

}
[O2]

t =
A

4t
[O2]

t−1 − f t

Since the coefficient matrix is tridiagonal and sparse, the solution of these linear Odinary

Differential Equations (ODEs) can be solved using a Thomas Algorithm. A formulation of
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the FORTRAN computer source code can be found in Appendix A.

4.3 Galerkin Finite Element Methodology

One FE formulation scheme is known as the method of weighted residuals where the desired

function [O2] is replaced by a finite series approximation ˆ[O2] which is generally expressed

as (Lapidus and Pinder, 1982),

[O2] ≈ ˆ[O2] =
n∑

i=1

Ni(x)[̃O2]i(t)

where
Ni = Interpolating functions

[̃O2]i = Undetermined coefficients

The Galerkin method is a special case of the the method of weighted residuals when the

weighting function is chosen to be the basis function and expressed as (Lapidus and Pinder,

1982), ∫ ∫ ∫
Ni

L{ ˆ[O2]} = 0, ∀i

The above function implies that there exists N equations requiring N basis functions that

need to be solved for simultaneously. The finite elementization of Fick’s Second Law can be

expressed as, ∫ L

0

Ni

{
D

∂2N [O2]

∂x2
−

(N [O2])

∂t

}
dx = 0, ∀i

Note that the next objective requires reducing the above equation into a form of,

A ˙[O2] + B[O2] + f = 0

By using integration by parts, the Diffusion term can be evaluated in the B elemental matrix.

For linear basis functions, the 2 × 2 elemental matrix expression is,

−D

[ ∫
Le

∂Ni

∂x
∂Ni

∂x
dx

∫
Le

∂Ni

∂x

∂Nj

∂x
dx∫

Le

∂Nj

∂x
∂Ni

∂x
dx

∫
Le

∂Nj

∂x

∂Nj

∂x
dx

] [
[O2]i

[O2]j

]
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The temporal term can be evaluated in the A elemental matrix for linear basis function as,[ ∫
Le

NiNidx
∫

Le
NiNjdx∫

Le
NjNidx

∫
Le

NjNjdx

] [
[Ȯ2]i

[Ȯ2]j

]

The Dirichlet initial boundary condition and zero-Neumann boundary condition placed at

the end of the model length are eveluated in the f bar vector for the global system of

equations. This can be expressed as,

−D ∂[O2]
∂x

∣∣∣
z=0

·
·

−D ∂[O2]
∂x

∣∣∣
z=L


For a simple four nodal or three elemental system assuming a Dirichlet initial boundary

condition and zero-Nuemann boundary condition placed at the maximum length of the

system, the formation of converting the elemental matrixes to the global matrix can be

expressed as, Ia IIa IIa

IIa IIa IIIa IIIa

IIIa IIIa


 [Ȯ2]2

[Ȯ2]3
[Ȯ2]4

+

 Ib IIb IIb

IIb IIb IIIb IIIb

IIIb IIIb


 [O2]2

[O2]3
[O2]4

+

 [O2]0 × Ib(2, 1)

0

0

 = 0

Note that quadratic basis functions will yield a 3 × 3 elemental matrix and cubic basis

functions will yield a 4× 4 elemental matix. The values of these basis functions are commonly

expressed in literature in which each associated derivative value can be computed with a

graphing calculator (Table 1).
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Table 1: Table of Linear, Quadratic, and Cubic Basis Functions with Associated Derivative
Values (Segerlind, 1976)

Basis Function Derivative of Basis Function

Linear Ni = 1− x
Le

dNi

dx
= − 1

Le

Nj = x
Le

dNj

dx
= 1

Le

Quadratic Ni =
(
1− 2x

Le

) (
1− x

Le

)
dNi

dx
= 4x

(Le)2
− 3

Le

Nj = 4x
Le

(
1− x

Le

)
dNj

dx
= 4

Le
− 8x

(Le)2

Nk = − x
Le

(
1− 2x

Le

)
dNk

dx
= 4x

(Le)2
− 1

Le

Cubic Ni =
(
1− 3x

Le

) (
1− 3x

2Le

) (
1− x

Le

)
dNi

dx
= − 11

2Le
+ 18x

(Le)2
− 27x2

2(Le)2

Nj = 9x
Le

(
1− 3x

2Le

) (
1− x

Le

)
dNj

dx
= 9

Le
− 45x

(Le)2
+ 81x2

2(Le)3

Nk = − 9x
2Le

(
1− 3x

Le

) (
1− x

Le

)
dNk

dx
= − 9

2Le
+ 36x

(Le)2
− 81x2

2(Le)3

Nl = x
Le

(
1− 3x

Le

) (
1− 3x

2Le

)
dNl

dx
= 1

Le
− 9x

(Le)2
+ 27x2

2(Le)3

Using the values for the basis functions, values for the integrals of the linear, quadratic, and

cubic elemental matrixes can be seen in the FORTRAN source code (Appendix B; C; and

D).

4.4 Optimization Model and Linked Simulation Optimization

The optimization model used in this study minimizes the total costs for oxygen sparging

in a MFC. The model is simply a modification of total cost minimization of groundwater

extraction (Willis and Finney, 2002),

min z =
n∑

i=1

10Qi(50− [O2]i)
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the oxygen demand constraint is,
n∑

i=1

Qi = 350

and the non-negativity associated with the control variables,

Qi ≥ 0, ∀i

This model assumes oxygen sparging (i.e. pumping) cost for placement i to equal (Willis

and Finney, 2002),

Ci = 10Qi(50− [O2]i)

where
Ci = the cost [US$ mol

t
]

10 = cost of oxygen sparging/pumping [US$]

Qi = oxygen sparging/pumping at sitei [L3

t
]

50 = maximum amount of oxygen concentration [mol
L3 ]

[O2] = oxygen concentration at site i [mol
L3 ]

The optimization model is transfered to a FORTRAN computer code subroutine called

funobj to be used by the simulation FORTRAN subroutine using the Galerkin FE simu-

lation model. The process of this study’s LSO problem begins with MINOS sending the

decision variable of the oxygen sparging/pumping rate to funobj. Funobj then supplies the

decision variables to the Galerkin FE simulation model. The simulation model generates the

state variable of oxygen concentration to funobj to evaluate the objective value. The objec-

tive value is then passed to MINOS to start the process over again until an optimal solution

is found. A schematic of the LSO for this program is shown in Figure 3. A formulation

of the subroutines using a Galerkin FE simulation model with linear basis functions and a

Galerkin FE simulation model using quadratic basis functions can be seen in Appendix E

and Appendix F.
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LSO (case 2 – state variable only in constraint) 

 

Scenario: 

 

A research facility at Penn. State University has received grant money to 

investigate the reduction of BOD concentration in a microbial fuel cell at or 

below a BOD standard allowed at the local wastewater treatment facility.  

The objective is to do this with a minimum cost of fuel cell components in 

mind and is accounted for in the function of BOD removal.  A mathematical 

model exists that provides the concentration of contaminant when given the 

decision variables. 
 

min z = f (!) 

c \le c^* 

c _{min} \le c \ge c _{max} 
 

 

Where:                       !   =  BOD removal (D.V.s) 

                                  c  =  concentration of contaminate (S.V.s) 

                                  c^* =  max. concentration    
 

 

 

 

 

                  Q  
  

  z  

 

 

   

     Q           [O2] 

Minos 
Optimization Package 

Funobj Funcon 

FE – Linear 
Simulation Model 

Figure 3: Representation of the LSO methodology to minimum oxygen sparging costs for
oxygen sparging using a Galerkin FE numerical method simulation model.

4.5 Oxygen Sparging and the Diffusion Equation

Considering a non-steady state diffusion such as dictated by Fick’s Second Law, a mathe-

matical model of the MFC system can be expressed as,

D
∂2[O2]

∂x2
− ∂[O2]

∂t
+

∑
i

Qiδ(x− xi) = 0



Advanced Numerical Methods Zielke 13

where
[O2] = Oxygen concentration

t = time

D = Diffusion coefficient

x = length

Qi = oxygen sparging rate

δ = Dirac delta function

with boundary conditions,

[O2](0, t) = [O2]o

d[O2]

dx

∣∣∣∣
x=L

= 0

The Dirac delta function is used to define the location of the oxygen sparging throughout

the MFC system. Oxygen sparging in this model is replicated upon hydraulic pumping as

a source in contrast to more common hydraulic pumping schemes modeled as a sink (Willis

and Finney, 2002).

5 Model Application

This section details the application of Fick’s Second Law to a system configuration with

relevant parameters. This section will also detail the process of both spacial and temporal

discretization techniques performed on the FD and FE numerical methods and the LSO.

5.1 System Configuration

This study will analyze the diffusion of oxygen in relation to time and one-dimensional space

through a MFC. A simple representation of the configuration is given in Figure 4. A time-

span of 50 seconds is a desirable length of time to investigate due to the microbial activity

that would begin to take place after any amount of time after 50 seconds. After 50 seconds,

the oxidation/reduction process is assumed to take place between oxygen and the microbes

present in the MFC and thus, affect the diffusion of oxygen in a way that this particular

model would not be able to represent. Studies have reported values of 18.7 × 10−6 cm2

s

to 26 × 10−6 cm2

s
as values for oxygen diffusion through pure water (Yapar et. al., 2000).

This study selected a value of 20 × 10−6 for oxygen diffusion. For the data acquired by the
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Figure 4: Representation of a single chamber Microbial Fuel Cell modeled in one spacial
dimension with oxygen concentration as the state variable and the length of the chamber
equal to 310 cm.

LSO output, a value of 86.4 × 10−6 cm2

s
was used as an oxygen diffusion value pertaining

to the maximum possible value of oxygen diffusion through water (Yapar et. al., 2000).

The system assumes 40 × 10−3 mol
cm3 oxygen concentration as the initial Dirichlet boundary

condition and a zero Neumann condition placed at the anode 310 cm at length from the

cathode. The rational for a zero Neumann condition placed at the anode is based upon

the construction and physical characteristics of a MFC. As illustrated in Figure 1, there is

no possibility of oxygen diffusion through the anode since the anode is not exposed to air

in contrast to the cathode which is exposed to air. However, there is no knowledge of the

actual concentration of oxygen present at the anode location in which this study used to

justify why a zero Neumann boundary condition is a more accurate then a zero Dirichlet

boundary condition. Note there is no data available to quantify how accurate these boundary

conditions are in relation to what would take place in a MFC; however, this study is not

concerned with how accurate this model relates to what would take place in a MFC, but

rather the effects of spacial and temporal discretizations in the numerical methods used to

model oxygen diffusion and oxygen sparging and how these discretizations effect the output

of the model.
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5.2 Spacial and Temporal Discretizations

Spacial discretizations were performed for each FD and FE numerical method program de-

veloped except for the the FE program utilizing quadratic basis functions implemented in

the LSO due to undesired 30-60 minute run-times required for each discretization. Temporal

discretizations were not investigated for every program due to lack of noticable variation of

the state variable with respect to the given time step and a time span of 50 seconds. Every

program was ran to a steady steady state solution by increasing the time span to a large

magnitude of 2000 seconds or roughly one half hour.

Table 2: Spatial and Temporal Discretization Application

Implicit FD FE - Linear FE - Quadratic FE - Cubic
Spacial (nodes) 10 - 2000+ 20 - 200 8 - 30 3 - 50
Spacial in LSO (nodes) no code 10 - 80 30 no code
Temporal (time step) N/A* 0.05 - 50 N/A* N/A*
Temporal in LSO (time step) no code 0.05 - 50 N/A* no code
*code is available

6 Model Results

This section provides a thorough illustration and discussion of the model results correspond-

ing to the application. More emphasis is given to spacial discretization than that of temporal

discretization.

6.1 Numerical Variation

There exists numerical variations of oxygen concentration values throughout all four numer-

ical schemes developed for this study (Figure 5). A closer look at the difference between

the numerical approximations indicate a large difference between the FD numerical approx-

imation to that of the FE numerical approximation (Figure 6). Further visual investigation

indicate an actual piece-wise approximation difference between the FE schemes utilizing

linear, quadratic and cubic basis function (Figure 7).
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Figure 5: Representation of a the FD and FE Numerical Approximations of the Diffusion
Equation. The parameters selected are a diffusion value of D=20 (10E-6 mol/cm3) and 30
nodes

6.2 Spacial Discretization

The results of spacial discretization indicate large variations of oxygen concentration in

relation to the number of nodes or elements selected in the discretization. Values of the

sumation of squared residuals for each of the four computer programs indicated that the

Implicit FD numerical approximation is highly dependent on large nodal values to fall within

an error value of 0.005 in comparison to the values of oxygen concentration obtained from

the Galerkin FE numerical approximations (Figure 8; 9; 10; 11).
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parameters selected are a diffusion value of D=20 (10E-6 mol/cm3) and 30 nodes
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Figure 8: Linear FE error residual analysis indicating a nodal value of 80 to obtain an error
value of 0.005 . The parameters selected are a diffusion value of D=20 (10E-6 mol/cm3) and
a time step of 0.05 seconds for a time span of 50 seconds
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Figure 9: Quadratic FE error residual analysis indicating a nodal value of 10 to obtain an
error value of 0.005. The parameters selected are a diffusion value of D=20 (10E-6 mol/cm3)
and a time step of 0.05 seconds for a time span of 50 seconds.
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Figure 10: Cubic FE error residual analysis indicating a nodal value of 25 to obtain an error
value of 0.005. The parameters selected are a diffusion value of D=20 (10E-6 mol/cm3) and
a time step of 0.05 seconds for a time span of 50 seconds.
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Figure 11: Implicit FD error residual analysis indicating a nodal value of over 2000 to
obtain an error value of 0.005. The parameters chosen are a diffusion value of D=20 (10E-6
mol/cm3) and a time step of 0.05 seconds for a time span of 50 seconds.
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6.2.1 Effect on Optimization results

Spacial discretization effects the oxygen sparging values (Figure 12). At a nodal value of

20, the optimization scheme suggests pumping values that would indicate negative oxygen

concentrations which is not physically possible. Only until a nodal value of 70 or 80 is

selected are more realistic results obtained (Figure 12; Appendix 6).
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Figure 12: Representation of the oxygen sparging schedule for a nodal value of 20 and 80.
The parameters selected are a diffusion value of D=86.4 (10E-6 mol/cm3) and 30 nodes

The effect of spacial discretization affects the optimal cost of oxygen sparging (Figure 13).

This graph shows a substantial decrease in cost due to nodal discretization.
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Figure 13: Representation of the cost of oxygen sparging in relation to nodal values selected in
the discretization. The parameters chosen are a diffusion value of D=86.4 (10E-6 mol/cm3)
and a time step of 0.05 seconds for a time span of 50 seconds.



Advanced Numerical Methods Zielke 22

6.3 Temporal Discretization

This particular study did not investigate temporal discretization to the extent of spacial

discretization due to a lack of noticable significance in the variation of oxygen concentration

values with respect to the discretization. However, an investigation of the optimal cost was

recorded with respect to the temporal discretization (Figure 14). The values of cost are not

nearly as significant to that of spacial discretization.
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Figure 14: Representation of the cost of oxygen sparging in relation to time steps selected
in the discretization for a time span of 50 seconds. The parameters chosen are a diffusion
value of D=86.4 (10E-6 mol/cm3) and 30 nodes
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Figure 15: Representation of a the FE Linear Basis Function Numerical Approximation of
the Diffusion Equation with a zero Neumann boundary condition approaching a steady state
condition from a time span of 50 to 2000 seconds. The parameters chosen are a diffusion
value of D=86.4 and 30 nodes
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6.4 Trade-Offs

The most common trade-off associated with numerical methods involve selecting either a FD

or FE approach in environmental systems (Chapra and Canale, 2002). FD approximations

are perhaps more intuitive and thus easier to program; however, when an environmental

system involves non-uniform and heterogenoues conditions, FE approximations are superior

to that of FD (Chapra and Canale, 2002). The trade-off is the computation time and effort

required by that of the FE numerical method.

7 Conclusions

The results of this study indicate that the type of numerical method chosen and discretiza-

tion selected will dictate the value of the state variable associated with a model used in

environmental systems. Specifically, the investigation shows the following:

• Implicit Finite Difference numerical methods require a substantialy larger nodal value

to that of the Galerkin Finite Element approximation nodal value discretization to obtain a

similar amount of error from the analytical solution.

• Temporal discretizations have little effect to the approximation values and optimization

values in comparison to the spatial discretizations.

• The trade-off of a FD numerical scheme to that of a FE scheme is accuracy to computa-

tional time and effort.

• The cost of oxygen sparging is decreased substantially by a proper nodal discretization of

20 to 80 nodes

• Realistic oxygen sparging schedules can be developed by the use of 70 to 80 nodal values

in a FE linear numerical method utilizing the LSO methodology.

8 Further Research

This study was preliminary in development for a optimization scheme to be used in a linked

simulation optimization methodology in conjunction with a partial differential equation.

Further investigation would be desireable to develop an optimization scheme that would
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take into quantitative account the potential benefits obtained from oxygen sparging in a

MFC.
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10 Appendix

10.1 Appendix A - FD source code
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10.2 Appendix B - FE - Linear source code
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10.3 Appendix C - FE - Quadratic source code
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10.4 Appendix D - FE - Cubic source code
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10.5 Appendix E - FE - LSO - Linear source code
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10.6 Appendix F - FE - LSO - Quadratic source code
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10.7 Appendix G - MINOS output - Spatial Discretization
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10.8 Appendix H - MINOS output - Temperal Discretization


