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Laser Beams and Resonators: The 1960s
A. E. Siegman

Abstract—This paper looks back at how the basic concepts
of optical resonators and lensguides emerged during the first
decade of the laser era. A subsequent paper will review
the continuing developments during the three decades since
then.
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I. Introduction

CLASSICAL optics [1, 2] is rich in distinguished names
and associated concepts: the Airy disk, Brewster’s an-

gle, Fraunhofer and Fresnel zones, Huygens’ integral, New-
ton’s rings, the Sagnac interferometer, and Snell’s law, not
to mention more exotic examples like the Spot of Arago [3],
the Gouy phase shift [4-6], assorted Liouville theorems, the
Talbot effect [7], and that mysterious French theorist Jean-
Claude Étendue. Operation of the first laser in 1960 [8]
brought renewed importance to these older concepts and
stimulated the development of new concepts by creative
people working in this new field.

This paper looks back at how the fundamental concepts
associated with the resonant modes of laser oscillators and
the paraxial propagation of laser beams emerged during
the first decade of the laser era. A subsequent paper will
describe how these concepts have evolved in many further
directions in the following three decades. Lasers have of
course also had enormous impacts in spectroscopy, nonlin-
ear optics, and the massive advances in fiber optics that are
revolutionizing telecommunications today, but these topics
are beyond the scope of this review.

In preparing these reviews I have tried to cite impor-
tant early papers associated with the topics I discuss. I
can only hope for partial success in this, however, and
must apologize in advance to contributors whom I may
have overlooked. I have included every reference dealing
with resonator modes known to me in the English literature
through 1965, and made special efforts to cite Russian lit-
erature and contributions from outside the U.S. Anan’ev’s
1992 book [9] is an additional source for such references.

Many earlier reviews are available [10-25], notably the
personal reminiscences concerning the earliest optical res-
onator developments by Kompfner [26]. More details on
the technical aspects of optical beams and resonators can
be found in the author’s lasers text [22]. An updated list
of references for both of these papers will also be placed
online [27] to permit automated searching.
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II. Laser Resonators: The Early 1960s

A. Prehistory

The most important advance in optical resonators came
in 1960 with the initial demonstration that open-sided op-
tical resonators really could have distinct transverse as
well as axial modes—unique eigenmodes similar though not
identical to the microwave waveguide modes that were ex-
tensively studied before and during World War II. The ex-
istence of such low-loss modes, and the basic idea of using
unusually narrow, unusually long optical interferometers
with flat or curved mirrors as resonant feedback structures,
had precursors during the late 1950s, arising out of interest
in beam waveguides for millimeter-wave propagation and
growing interest in laser action itself.

Early publications include a laser proposal by Prokhorov
[28], early laser and lensguide patents by Dicke [29] and
Goubau [30], and the important early laser proposal by
Schawlow and Townes [31]. (The Dicke patent, by the
way, also gives a clear explanation of something very close
to modern laser Q-switching.) Goubau has also noted in
a later round-table discussion [32] that parallel-plate res-
onators were investigated at microwave frequencies in 1954
by Scheiber, King, and Tatsuguchi under a Signal Corp
contract at the University of Wisconsin.

(Note added in proof: Patent decisions in recent years
have also brought increased visibility to an early conception
and description of the open-sided laser resonator recorded
(along with the concept of Brewster windows for laser
tubes) by Gordon Gould in a notebook prepared in Novem-
ber 1957. This notebook has since become the foundation
for several extensively litigated and eventually validated
U.S. patents. A recent narrative of these events is given by
Nick Taylor in LASER: The Inventor, the Nobel Laureate,
and the Thirty Year Patent War, Simon & Schuster, 2000.)

B. “Fox and Li”

The modern understanding of optical resonators first
emerged, however, in a truly pioneering 1961 paper by
Gardner Fox and Tingye Li [33, 34]. Given that Gard-
ner Fox also served for many years as editor of the IEEE
Journal of Quantum Electronics, dedicating this review to
him seems only appropriate. The best way to summarize
the new understanding contributed by this paper may be
to simply reproduce its Abstract:
“A theoretical investigation has been undertaken to study

diffraction of electromagnetic waves in Fabry-Perot inter-
ferometers when they are used as resonators in optical
masers. An electronic digital computer was programmed
to compute the electromagnetic field across the mirrors of
the interferometer where [when?] an initial launched wave
is reflected back and forth between the mirrors.”
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“It was found that after many reflections a state is reached
in which the relative field distribution does not vary from
transit to transit and the amplitude of the field decays at an
exponential rate. This steady-state field distribution is re-
garded as a normal mode of the interferometer. Many such
normal modes are possible depending upon the initial wave
distribution. The lowest-order mode, which has the lowest
diffraction loss, has a high intensity at the middle of the
mirror and rather low intensities at the edges. Therefore,
the diffraction loss is much lower than would be predicted
for a uniform plane wave. Curves for field distribution and
diffraction loss are given for different mirror geometries
and different modes.”
“Since each mode has a characteristic loss and phase shift
per transit, a uniform plane wave which can be resolved
into many modes cannot, properly speaking, be resonated
in an interferometer. In the usual optical interferometers,
the resolution is too poor to resolve the individual mode
resonances and the uniform plane wave distribution may
be maintained approximately. However, in an oscillating
maser, the lowest-order mode should dominate if the mirror
spacing is correct for resonance.”
“A confocal system has also been investigated and the

losses are shown to be orders of magnitude less than for
plane mirrors.”

Figure 1, taken from Fig. 5 of this paper, shows the
steady-state or self-reproducing amplitude and phase pro-
files of the lowest-order mode in a typical one-transverse-
dimensional or strip resonator some 25 wavelengths wide
and 100 wavelengths long. Note how the amplitude profile
of this mode drops down to a low value near the mirror
edges, and the steady-state phase profile rolls off indicat-
ing diffractive spreading in this outer region. Note also
the strong diffraction ripples caused by the finite resonator
edges in the first transit, and the weaker residual ripples in
the final mode profile.

Figure 2, reproduced from the same paper, shows how
the wave amplitude at one point on the mirror oscillates on
successive round trips as the iterative calculation process
nears convergence. The periodic ringing represents inter-
ference or transverse mode beating caused by the different
round-trip phase shifts or phase velocities of the two lowest-
loss modes, while the exponential decay shows how the next
higher-loss mode dies out relative to the lowest-loss mode.
A hundred or more round trips are required to reach this
point in the case at hand, because the losses for still higher-
order modes are also small and so the higher-order modes
are only slowly stripped out of the computation.

Fox and Li were not sure at the time they initiated this
investigation that open-sided resonators would have modes
such as these [35], and some of their Bell Labs colleagues
are said to have argued that no such modes would exist
[26]. But as they state in the final section of their first
paper:
“Diffraction calculations carried out on the IBM computer
have led to the following conclusions:”
“1. Fabry-Perot interferometers, whether of the plane or

concave mirror type, are characterized by a discrete set of

Fig. 1. Transverse amplitude and phase profiles for the lowest-loss
mode of a strip resonator with planar mirrors (from Fox and Li,
1961).

normal modes which can be defined on an iterative basis.
The dominant mode has a field intensity which falls to low
values at the edges of the mirrors, thereby causing the power
loss due to diffractive spillover to be much lower than would
be predicted on the assumption of uniform plane wave ex-
citation.”
[There is an interesting slip of the pen in this paragraph
as well as in the Abstract, since Fox and Li note elsewhere
that their modes are not orthogonal and hence not “normal
modes” in the usual sense of that term.]

Fox and Li’s numerical approach provides a procedure
for finding the resonator eigenmodes that is equivalent to
the so-called power method for finding the largest eigen-
value of a complex matrix. Other methods for finding res-
onator eigenmodes have since been developed, but the Fox
and Li method remains widely used even today, although
more modern Fast Fourier Transform methods are usually
employed for the round-trip propagation. Their approach
draws much of its strength from how closely it mimics what
really happens in an oscillating laser—that is, buildup of
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Fig. 2. Convergence of a typical Fox and Li iterative calculation to
steady state, showing how the next higher-order mode slowly dies
out after many round trips.

the lowest-loss transverse mode or modes, accompanied by
the stripping out of higher-order modes as the laser radia-
tion travels around repeatedly within the laser cavity. The
fact that many Fox and Li calculations are started from
random initial values for the wavefront amplitude at each
transverse point even mimics to some extent the fact that
real lasers in many cases build up from random sponta-
neous emission noise.

C. The Emergence of Gaussian Mode Theory

The period immediately following the first Fox and Li pa-
pers was a time of immensely rapid progress in the under-
standing of optical resonators. Fox and Li considered both
planar and confocal resonators, and pointed out that the
modes inside an optical resonator were formally equivalent
to the propagation modes of a periodically iterated lens-
guide or beam waveguide. During the same period Goubau
and coworkers were also examining the modal properties
of periodic lensguides using rather complex mathematical
techniques [36], although these workers do not seem to have
discussed their application to resonators.

A second very significant early paper on optical res-
onators by Gary Boyd and James P. Gordon [37] appeared
in same March 1961 issue of the Bell System Technical
Journal as the Fox and Li paper. In this paper Boyd and
Gordon showed that the exact eigenmodes of a confocal
resonator with square mirrors are prolate spheroidal wave-
functions whose mathematical properties had previously
been considered by their Bell Labs colleagues Slepian and
Pollack [38]. The exactly confocal case with square mir-
rors is in fact one of the few common optical resonators for
which an exact solution, including losses and mode profiles,
can be given in closed form.

Boyd and Gordon then showed that these prolate
spheroidal eigensolutions became Hermite-gaussian modes
in the practical limit of vanishingly small losses or large
enough mirrors. They introduced the notations of w for
the gaussian spot size and b for the confocal parameter (al-

though this parameter is now more commonly replaced by
the Rayleigh range zR = b/2 [39-41] and described how
the spot size w(z) and wavefront curvature R(z) of the
Hermite-gaussian beams varied with distance inside and
outside the resonator. They also extended their analysis
to symmetric concave spherical reflectors separated by any
distance up to twice their common radius of curvature and
derived the spot sizes, resonant frequencies, and mode de-
generacy properties for what they labelled as the TEMnmq

modes in these resonators.
(Many of the same results are also given in a contempo-

raneous analysis of optical lensguides by another Bell Labs
colleague John R. Pierce [42] who in turn references similar
work by Goubau and Schwering [36].)

This approach was extended the following year by Boyd
and Herwig Kogelnik [43] who considered gaussian modes
in resonators with unequal radii of curvature and arbitrary
mirror spacings, and interpreted their results using what
we now call the resonator stability diagram (which they at-
tributed to Fox and Li). They also described the Laguerre-
gaussian modes appropriate to mirrors with circular cross
section. These two papers together put forth most of the
now well-known basic properties of gaussian modes in sta-
ble two-mirror resonators.

III. Laser Resonators: The Mid 1960s

A. Additional Resonator Mode Analyses

With these conceptual foundations firmly in place, Fox
and Li and many others continued the exploration of res-
onator properties, extending their results to tilted mirrors
[44-46], other mirror shapes [47], hole coupling [48], and
the effects of gain saturation and mode deformation [49-51].
Streiffer showed that the Fox and Li formulation could also
be efficiently solved by matrix diagonalization methods [52-
55], and Heurtley showed that the exact prolate spheroidal
solutions for square confocal mirrors could be extended to
hyperspheroidal solutions for confocal circular-mirror res-
onators [56].

Despite the simplicity of the approximate gaussian solu-
tions, the exact mathematical properties of the modes of
open-sided optical resonators are complex (and remain so
to this day). The operator that describes the eigenmodes
of such resonators is not hermitian, and the resulting eigen-
modes are in general not orthogonal, i.e. are not a set of
“normal modes” in the usual sense. In fact the existence
of a complete set of eigenmodes is not even guaranteed,
as discussed by a number of authors [57, 58]. Variational
and Schmidt approaches to the eigenmode problem were
attempted by a number of authors [52, 54, 59-62], but crit-
icized on fundamental grounds by Morgan [63].

A very different and apparently mathematically solid ap-
proach based on a sophisticated waveguide analysis was in-
troduced by Vainshtein (or Weinstein) [64, 65] and nicely
summarized by Toraldo di Francia in a 1964 round-table
discussion [66], although it does not seem to have found
much practical application since then. A perturbation
method valid for small mirrors or large cavity losses was
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also put forth by Bergstein and Schachter [67-69]. Addi-
tional Russian and other resonator calculations are pre-
sented in the following references [47, 70-74].

B. Other Early Ideas and Experiments

This theoretical ferment was of course accompanied by
rapid development of practical laser devices and structures
which I will not attempt to review here, except to cite
a few early observations of higher-order Hermite-gaussian
and Laguerre-gaussian modes [75-80] and transverse mode
beats and mode degeneracies in oscillating lasers [79, 81].
Transverse mode discrimination and the suppression of
higher-order and parasitic modes was studied theoretically
by Li [82, 83] and explored experimentally by many work-
ers, especially on high-gain ruby lasers [84-87].

The “Collins chart” for describing gaussian beam prop-
agation in a graphical fashion was developed by Stuart
Collins and extended by others during this period [88-92].
The concept of gaussian mode matching also emerged [93,
94] and Gordon and Kogelnik developed generalized equiv-
alence relations among stable gaussian resonators [95, 96].
Robert Pole and H. Wieder demonstrated a particularly
clever and interesting conjugate-concentric resonator with
concentric spherical end surfaces on the internal laser rod
[97].

This era also saw the invention of the confocal scan-
ning interferometer [98], a modern implementation of the
Connes interferometer [99-101], which has since become
of great importance as a tunable filter and optical spec-
trum analyzer. A small flurry of interest in passive multi-
bounce stable resonators as optical delay lines and long-
path-length spectroscopic absorption cells also led to some
particularly clever experiments [102, 103].

C. The Unstable Resonator

In 1965 I introduced the so-called unstable optical res-
onator which has very different physical and mathematical
properties as compared to gaussian stable resonators [104].
Earlier papers by Fox and Li [44, 45] had calculated a few
unstable resonator cases as an aside, without recognizing
their quite different basic character, and there had been a
predecessors to this idea in the form of “diffraction cou-
pling” from Fabry-Perot resonators [105, 106].

My initial paper on this topic led to a number of ad-
ditional calculations [107-116]. The concept of the equiv-
alent Fresnel number Neq for the unstable resonator was
introduced by Ray Arrathoon [114], and the importance of
the confocal unstable resonator, shown in Fig. 3, and the
distinction between positive-branch and negative-branch
unstable resonators emerged from important early experi-
ments by William Krupke and Walt Sooy [117].

Significant work in the Soviet Union by Anan’ev and
coworkers [73, 118-121] included introduction of the astig-
matic stable-unstable resonator, and the important concept
of edge tapering of the output coupler in order to reduce
or eliminate mode-crossing effects characteristic of hard-
edged unstable resonators. A very different and powerful
asymptotic analysis of unstable resonators was developed

Fig. 3. Schematic drawing of a confocal hard-edged unstable res-
onator (from Krupke and Sooy, 1969).

in 1973 by Horwitz [122] and later given a physical inter-
pretation in terms of scattering of the magnified mode pat-
tern on each round trip into Keller edge waves [123-126] at
the hard edges of the output coupler. This has led to the
so-called virtual source approach [127-131] which greatly
simplifies accurate calculation of the complicated unstable
resonator mode profiles [132]. The special mathematical
difficlties associated with the unstable resonator were also
explored in the 1970s by Landau [133, 134].

Much of this initial development is summarized in re-
views by Anan’ev [15] and Siegman [17, 135]. Geometri-
cally unstable resonators, particularly when supplemented
by variable reflectivity mirror (VRM) concepts, have since
become of some importance for obtaining high power or
high energy outputs with good beam quality from large-
volume laser media. Most recently a group in Leiden has
made the interesting discovery that the mode profiles of un-
stable resonators appear in fact to be fractal in character
[136, 137].

D. Hole-Coupled and Roof Resonators

During the first decade of the laser era there was also
considerable interest in roof resonators with end mirrors
consisting of prisms or of flat surfaces intersecting at di-
hedral angles. These reflectors were easy to fabricate, and
offered a certain degree of alignment insensitivity in Q-
switched lasers employing a spinning end mirror. Despite
the considerable literature that developed during the early
1960s (cf., e.g., [138]), these resonators seem to have been
a technological dead end and do not seem to have led to
any particularly interesting new concepts.

Hole coupling through a small central hole in stable cav-
ity resonators [48, 139] was also considered during this pe-
riod. The idea of hole coupling seems to arise periodically
in the laser field—although it is almost always a fundamen-
tally bad idea.
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E. Distributed Feedback Lasers

The concept of distributed feedback, in which the laser
mirrors are replaced by distributed feedback from some
form of Bragg grating distributed continuously along the
length of a laser medium, was introduced in the early 1970s
by Kogelnik and Shank [140-142] and has become of some
practical importance for semiconductor lasers. I have not
reviewed the extensive literature on this subject because
the interesting questions focus on the longitudinal coupled-
wave and laser feedback aspects rather than on transverse
mode or beam propagation aspects.

F. Twisted Mode Resonators and Axial Mode Selection

Spatial hole burning associated with the axial nulls in a
conventional standing-wave laser cavity favors laser oper-
ation in two or more axial modes, especially in wide-line
solid-state lasers. One early and effective method for ob-
taining single-axial mode operation was the unidirectional
ring laser [143]. Another early solution was the “twisted
mode resonator” [144] in which quarter-wave plates at each
end of the resonator produce axial modes in the form of
twisted ribbons with constant intensity along the cavity
length. This concept has subsequently found a number of
other applications [145-149].

Other ingenious methods for obtaining single axial mode
oscillation in wide-line lasers were developed during the
first decade of the laser era, including multiple-mirror cav-
ities, vernier-Michelson interferometers, Fox-Smith inter-
ferometers, White interferometers, Sagnac interferometers,
and intracavity etalons. An excellent review of transverse
and axial mode selection technology as of 1972 is given by
Smith [150]

IV. Also During the 1960s: Optical Lensguides

A. Lensguides for Information Transmission

Fox and Li’s initial paper noted that the transverse
modes of laser resonators were equivalent to the modes
of periodic focusing systems or optical lensguides. The
concepts of stable and unstable rays in periodic focusing
systems had been developed some time earlier in connec-
tion with the focusing of electron beams [151]; and the
transverse modes of beam waveguides for millimeter-wave
or optical wavelengths had been the subject of consider-
able research along a parallel but almost independent track
in the late 1950s and early 1960s because of their poten-
tial for high-capacity telecommunications through under-
ground pipes, sometimes referred to as “optical pipelines”
[152].

Early references on beam waveguides include the pio-
neering work of Goubau and others [30, 36, 42, 152-157].
Experimental tests of kilometer-long optical waveguides in
the mid-1960s are described by Goubau [158] and Gloge
[159, 160], and reviews of this technology as of 1968 are
given by Goubau [161, 162]. The emerging promise of op-
tical fibers beginning around 1966 as pointed out by Kao
in Britain [163] followed by the first demonstration of truly
low-loss fibers at Corning in the early 1970s [164, 165],

however led to the rapid demise of beam waveguides as a
communications medium.

B. Gas Lenses

There is, however, one intriguing even if dead-end tech-
nology from the beam waveguide era that seems worth
mentioning. To eliminate the unacceptable losses associ-
ated with glass lenses and their imperfect optical coatings,
researchers at Bell Laboratories developed “gas lenses”
consisting of meter long, centimeter diameter heated pipes
or other more complex structures with cold gas flowing ax-
ially thorough the center, as shown in Figs. 4 and 5 [166-
171].

Fig. 4. Schematic drawing of a flowing gas lens (from Berreman,
1965).

The radially varying refractive index produced by colder
gas on axis with heated gas surrounding it created a weak
but very low loss lens which could be employed in an op-
tical waveguide. The need to supply electrical power (or
hot water) to heat the surrounding structure led to the
intriguing figure of merit for these lenses of “diopters per
kilowatt”.

Fig. 5. Helical convective gas lens (also from Berreman, 1965).
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V. Summary

All the basic concepts associated with real stable res-
onators and real gaussian beams were in place by the mid-
dle 1960s, as documented in Kogelnik and Li’s classic re-
view [10] and in the revised (1965) edition of Ramo, Whin-
nery and van Duzer’s classic text [172]. Real ray matrices,
already known in standard optics texts [173], had been ap-
plied to optical resonators [70, 174-179] and converted to
the now standard ABCD notation [102, 180-182]. Kogel-
nik in particular [180] had identified the bilinear transfor-
mation of the complex q̃ parameter through any parax-
ial optical system using the ABCD matrix. The historical
connection between the differential phase shifts of gaussian
modes and the Gouy phase shift of the 19th century [4-6,
183, 184] was recognized; and Baues [185, 186] and Collins
[187] made the important observation that Huygens’ inte-
gral through a cascaded sequence of paraxial optical ele-
ments could be written as a single integral involving only
the cascaded ABCD matrix of the system.

Development of new concepts and still further knowl-
edge in optical resonators and paraxial beam propagation
nonetheless continued at a rapid pace during the following
decades and continues even today. These advances have
been motivated by new types of lasers, by requirements
for more complex and multielement laser resonators, by
advances in laser beam propagation for practical applica-
tions, and by a desire for increased basic understanding of
optical beams and resonators. The most notable of the fur-
ther developments in these areas occurring after the mid to
late 1960s are described in an immediately following paper
[188].
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