
Extreme Markup Languages 2006® Montréal, Québec
August 7-11, 2006

Higher-Order Functional Programming with
XSLT 2.0 and FXSL

Dimitre Novatchev
Microsoft

Abstract
This article describes the added support in FXSL 2.0 for writing higher-order functions in
XSLT 2.0 based on new fundamental XPath 2.0/XSLT 2.0 features such as the sequence
datatype, strong typing and writing functions natively in XSLT. FXSL 2.0 makes nearly all
standard XPath 2.0/XSLT 2.0 functions and operators higher-order by providing in the
FXSL namespace the definition of their identically named higher-order wrappers and
partial applications. The author argues that in effect, this makes XSLT 2.0 + FXSL a
higher-order strongly-typed functional programming system.

This paper demonstrates how based on the even higher degree of abstraction and code
reuse many challenging problems have now more compact or even one-line solutions.

Higher-Order Functional Programming with XSLT 2.0 and
FXSL
Table of Contents
1 Introduction ..1

1.1 Basic definitions...1
1.1.1 Imperative programming ...1
1.1.2 Declarative programming ...1
1.1.3 Functional programming ...1
1.1.4 Basic Haskell notation ..2

1.2 HOF [Higher-Order Functions]..2
2 Higher Order Functions and XSLT ...3

2.1 Higher-Order Functions in XSLT 1.0 ..3
2.2 Template References..3
2.3 Higher-Order Functions in XSLT 2.0 ...4
2.4 Standard Higher Order XPath 2.0 Functions ...7
2.5 Standard Higher Order XPath 2.0 Operators ..8
2.6 Higher Order XPath 2.0 Constructors ...8
2.7 Higher Order Foreign Functions ...9

3 Representing lists in XSLT ...10
4 FP Design Patterns ...10

4.1 Recursion patterns ..10
4.1.1 Iteration..10
4.1.2 Recursion over a list (folding)...11

4.2 Mapping of a list ...12
4.3 Functional composition and currying (partial application) ...13

4.3.1 Functional composition...13
4.3.2 Curried functions...14
4.3.3 Partial applications...14

4.4 Implementation of functional composition in XSLT 2.0 ...15
4.5 Implementation of currying and partial application in XSLT 2.0 ..16
4.6 Limitations of wrapping non-higher order functions..19

4.6.1 Functions with unknown number of arguments ...19
4.6.2 Functions with zero number of arguments ..19
4.6.3 Functions having overloads ...20
4.6.4 Type detection for arguments of user-defined type ..20

5 FXSL 2.0 ...20
6 Conclusion ..21
7 Appendix..21
Bibliography...26
The Author..27

Higher-Order Functional Programming with
XSLT 2.0 and FXSL
Dimitre Novatchev

§ 1 Introduction
XSLT has turned out to be very different from the typical programming languages in use today. One
question that’s being asked frequently is: What kind of programming language is actually XSLT? Until
recently, the authoritative answer from some of the best specialists was that XSLT is a declarative (as
opposed to imperative), but still not a FP [functional programming], language. Michael Kay notes in his
article “What kind of language is XSLT” [Kay]:

Although XSLT is based on functional programming ideas, it is not as yet a full functional
programming language, as it lacks the ability to treat functions as a first-class data type.

My Extreme 2003 paper “Functional Programming in XSLT using the FXSL Library” [Nova5] described
a way to implement higher-order functions in XSLT 1.0 and demonstrated the XSLT implementation of
some of the most general FP design patterns.

This article goes further. It shows how the new features of XSLT 2.0 and XPath 2.0 make it even easier
to write higher-order native xsl:functions that are compact and type-aware, and how otherwise
complex processing tasks can now be implemented as one-liner XPath 2.0 expressions. What is more,
even the standard XPath 2.0/XSLT 2.0 functions and operators [F & O], [XSLT2.0] have been turned into
their higher-order-function equivalents.

1.1 Basic definitions
For readers not familiar with the basic functional programming concepts, some definitions and brief
descriptions are provided below.

1.1.1 Imperative programming
The imperative style of programming describes a system as evolving from an initial state through a series
of state changes to a set of desired final states. A program consists of commands that change the state of
the system. For example,

y = y - 2
will bring the system into a new state, in which the variable y has a new value, which has been obtained
by subtracting 2 from the value of y in the previous state of the system.

1.1.2 Declarative programming
The declarative programming style specifies relationships between different variables, e.g., the equation

z = y - 2
declares z to have a value of two less than the value of y.

Variables, once declared, cannot change their value. Typically, there is no concept of state, order of
execution, memory, ..., etc.

In XSLT [XSLT1.0], [XSLT2.0] the declarative approach is used, e.g.,

<xsl:variable name="z" select= "$y - 2" />
is the XSLT version of the mathematical equation above.

1.1.3 Functional programming
A function is a relationship between a set of inputs and an output. It can also be regarded as an operation,
which when passed specific values as input produces a specific output.

A functional program is made up of a series of definitions of functions and other values [ThompSJ].

Dimitre Novatchev, 2006

Higher-Order Functional Programming with XSLT 2.0 and FXSL

Extreme Markup Languages 2006® page 1

The functional programming style builds upon the declarative programming style by adding the ability to
treat functions as first-class objects — that means, among other things, that functions can be passed as
arguments to other functions. A function can also return another function as its result.

1.1.4 Basic Haskell notation
In the rest of this article, the following notations are borrowed from the programming language Haskell
[ThompSJ], [JonesSP] and are used to show an abbreviated version of the XSLT code.

Function definition

f :: Int -> Int -> Int -> Int
f x y z = x + y + z

is the definition of a function f having arguments x, y, and z and producing their sum. The first line in
the definition is an optional declaration of the type of the function. It says that f is a function, which takes
three arguments of type Int and produces a result of type Int. The type of f itself is:

Int -> Int -> Int -> Int

Function application

f x y z
is the application of the function f to the arguments x, y, and z

Lists

[a1, a2, a3]
is the list of elements a1, a2, a3.

[]
is the empty list.

xs
by convention should be a variable, which is a list of elements of type x

x:xs
is an operation which pre-pends an element x in front of a list xs
In a list x:xs the symbol x denotes the head and xs denotes the tail of the list. Operating on the head
and tail is useful in defining list-processing functions recursively.

1.2 HOF [Higher-Order Functions]
A function is higher order if it takes a function as an argument or returns a function as a result, or both
[ThompSJ].

Examples.

A classical example is the map function, which can be defined in Haskell in the following two ways:
map f xs = [f x | x <- xs] (1)

or
 map f [] = []
 (2)
 map f (x:xs) = f x : map f xs

In this definition | means "such that" and <- means "belongs to". : is the cons operator — this prepends
an element at the start of a list.

The map function takes two arguments — another function f and a list xs. The result is a list, every element
of which is the result of applying f to the corresponding element of the list xs.

Novatchev

page 2 Extreme Markup Languages 2006®

If we define f as:
 f x = x + 5

and xs as
 [1, 2, 3]

Then the value of
 map f xs

is
 [6, 7, 8]

Another example – fold
fold f z0 [] = z0
fold f z0 x:xs = fold f (f z0 x) xs
sum xs = fold (+) 0 xs
product xs = fold (*) 1 xs

The last two examples show how easy and convenient it is to produce new functions from a more
general higher order function, simply by feeding it with different function-arguments.

Whenever XSLT programmers try to do without higher order programming, then they repeatedly have to
write similar recursive processing code (e.g. calculating product, maximum, minimum, etc.); this wastes
programming effort each time an instance of such code is written, and means whenever a change is made,
it has to be replicated in many locations — this is very error-prone and often becomes a maintenance
nightmare.

§ 2 Higher Order Functions and XSLT
A simple analysis shows that there’s nothing like higher-order functions in XSLT. In XSLT 1.0 even the
notion of writing one own’s function is not supported natively.

XSLT 2.0 provides the xsl:function instruction; now programmers can write their functions natively
in XSLT. However, it is still not possible to pass an xsl:function as a parameter to another callable
component and then invoke it dynamically.

Therefore, as a start, we have to define what is to be considered a higher order function in XSLT. Then,
we will describe a mechanism that allows “handles” or “references” to such functions to be passed to other
functions, or returned by functions. Finally, we show how to write an xsl:function so that it can be
passed as a parameter in a most convenient and intuitive way.

2.1 Higher-Order Functions in XSLT 1.0
XSLT 1.0 templates come closest to the definition of functions. Templates accept parameters and produce
what can be regarded as a single result. Not all types of templates, however, can have references that are
intuitive and easily represented. An example is a named template without a "match" attribute. The
following is illegal in XSLT:

<xsl:call-template name="$varName"/> WRONG!

A template name should be a QName and so is the value of the "name" attribute of xsl:call-template
[XSLT1.0]. A QName is static and must be completely specified — it cannot be dynamically produced
by the contents of a variable. An XSLT processor produces a compile-time error.

2.2 Template References
Another way to instantiate a template dynamically has been known for quite some time [HainesC], but
there was no evidence of using it in a systematic manner before 2002. Let's have a template, which matches
only a single node belonging to a unique namespace. We'll call such nodes “nodes having a unique
type“ or “template references”:

File: example1.xsl

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version = "1.0" >
 <xsl:template match=
 "*[namespace-uri()='f:8B9C63F4-F4AB5D11-994A0001-B4CD626F']">

Higher-Order Functional Programming with XSLT 2.0 and FXSL

Extreme Markup Languages 2006® page 3

 <xsl:param name = "pX" />
 <xsl:value-of select = "$pX + $pX" />
 </xsl:template>
 <xsl:template match=
 "*[namespace-uri()='f:AB02AC1C-1C65B3FF-77C5FFFE-4B329DA1']">
 <xsl:param name = "pX" />
 <xsl:value-of select = "5 * $pX" />
 </xsl:template>
</xsl:stylesheet>

We have defined two templates, each matching only a node of a unique type. The first template produces
twice the value of its input parameter pX. The second template produces the value of its input
parameter pX multiplied by 5.

Now we'll define in another stylesheet a template (let’s think of it as the apply-and-sum-two-
functions template) that accepts as parameters references to two other templates (template
references), instantiates the two templates that are referenced by the template-reference parameters,
passing as parameter to each instantiation its pX parameter, then as result it produces the sum of the outputs
of these instantiated templates.

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0"
 xmlns:f1="f:8B9C63F4-F4AB5D11-994A0001-B4CD626F"
 xmlns:f2="f:AB02AC1C-1C65B3FF-77C5FFFE-4B329DA1" >
 <xsl:import href = "example1.xsl" />
 <xsl:output method = "text" />
 <f1:f1/>
 <f2:f2/>
 <xsl:template match = "/" >
 <xsl:variable name = "vFun1" select = "document('')/*/f1:*[1]" />
 <xsl:variable name = "vFun2" select = "document('')/*/f2:*[1]" />
 <xsl:call-template name = "sum2Functions" >
 <xsl:with-param name = "pX" select = "3" />
 <xsl:with-param name = "pFun1" select = "$vFun1" />
 <xsl:with-param name = "pFun2" select = "$vFun2" />
 </xsl:call-template>
 </xsl:template>
 <xsl:template name = "sum2Functions" >
 <xsl:param name = "pX" />
 <xsl:param name = "pFun1" select = "/.." />
 <xsl:param name = "pFun2" select = "/.." />
 <xsl:variable name = "vFx_1" >
 <xsl:apply-templates select = "$pFun1" >
 <xsl:with-param name = "pX" select = "$pX" />
 </xsl:apply-templates>
 </xsl:variable>
 <xsl:variable name = "vFx_2" >
 <xsl:apply-templates select = "$pFun2" >
 <xsl:with-param name = "pX" select = "$pX" />
 </xsl:apply-templates>
 </xsl:variable>
 <xsl:value-of select = "$vFx_1 + $vFx_2" />
 </xsl:template>
</xsl:stylesheet>

The result produced when this last stylesheet is applied on any (ignored) xml source document, is: 21
What we have effectively done is we called the template named "sum2Functions", passing to it two
references to templates, that accept a pX parameter and produce something out of it. The
"sum2Functions" template successfully instantiates (applies) the templates that are uniquely identified by
the template reference parameters, then finally produces the sum of their results. What guarantees that the
XSLT processor will select exactly the necessary templates is the unique namespace-uri of the nodes they
are matching. The most important property of a template reference is that it guarantees the unique matching
of the template that it is referencing.

2.3 Higher-Order Functions in XSLT 2.0
In XSLT 2.0 the programmer can define functions written natively in XSLT using the new
xsl:function instruction. Functions defined in this way can declare their return type and the types of

Novatchev

page 4 Extreme Markup Languages 2006®

the parameters they accept. It is legal to have different overloads (xsl:function s defined with the
same name) as long as they have different number of parameters.

However, there’s no obvious way to pass an xsl:function as a parameter. The following XPath 2.0
expression is illegal:

$varFunc($params) (: WRONG! :)

According to the latest XSLT 2.0 Candidate Recommendation [XSLT2.0] the value of the name attribute
of xsl:function must be a QName – static and completely specified at compile time – it cannot be
dynamically produced by the contents of a variable. An XSLT 2.0 processor produces a static (compile-
time) error.

someFunction(funcName(), otherParams) (: Not what we wish! :)

In the call of someFunction() above the first parameter is not the function funcName() itself, but
the value of a function funcName() that is defined to have zero arguments.

Once again template references come to help.

We can write an XSLT 2.0 xsl:function that accepts as a parameter a template reference. The most
important such function is f:apply(). It invokes its first argument via templates application, passing
all its remaining arguments as parameters:

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:f="http://fxsl.sf.net/"
 exclude-result-prefixes="f">
 <xsl:function name="f:apply">
 <xsl:param name="pFunc" as="element()"/>
 <xsl:param name="arg1"/>
 <xsl:apply-templates select="$pFunc" mode="f:FXSL">
 <xsl:with-param name="arg1" select="$arg1"/>
 </xsl:apply-templates>
 </xsl:function>
 <xsl:function name="f:apply">
 <xsl:param name="pFunc" as="element()"/>
 <xsl:param name="arg1"/>
 <xsl:param name="arg2"/>
 <xsl:apply-templates select="$pFunc" mode="f:FXSL">
 <xsl:with-param name="arg1" select="$arg1"/>
 <xsl:with-param name="arg2" select="$arg2"/>
 </xsl:apply-templates>
</xsl:function>
<!-- More overloads for fns with 3,4,5,6,7,8,9,10 etc. parameters -->
</xsl:stylesheet>

Now, it is easy to write an xsl:function producing the same result as the apply-and-sum-two-
functions template:

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:f="http://fxsl.sf.net/"
 exclude-result-prefixes="f">
 <xsl:import href="../f/func-apply.xsl"/>
 <xsl:output omit-xml-declaration="yes" indent="yes"/>
 <xsl:template match="/">
 <xsl:sequence select=
 "f:applyAndSum($vfunTwice, $vfunFiveTimes, 3)"/>
 </xsl:template>
 <xsl:function name="f:applyAndSum">
 <xsl:param name="arg1" as="element()"/>
 <xsl:param name="arg2" as="element()"/>
 <xsl:param name="arg3"/>
 <xsl:sequence select=
 "f:apply($arg1,$arg3) + f:apply($arg2,$arg3)"/>
 </xsl:function>
 <xsl:variable name="vfunTwice" as="element()">
 <f:funTwice/>
 </xsl:variable>
 <xsl:variable name="vfunFiveTimes" as="element()">

Higher-Order Functional Programming with XSLT 2.0 and FXSL

Extreme Markup Languages 2006® page 5

 <f:funFiveTimes/>
 </xsl:variable>
 <xsl:template match="f:funTwice" mode="f:FXSL">
 <xsl:param name="arg1"/>
 <xsl:sequence select ="2*$arg1"/>
 </xsl:template>
 <xsl:template match="f:funFiveTimes" mode="f:FXSL">
 <xsl:param name="arg1"/>
 <xsl:sequence select ="5*$arg1"/>
 </xsl:template>
</xsl:stylesheet>

What have we achieved so far? We managed to replace a clumsy – looking 5-line xsl:call-
template used in the XSLT 1.0 version with a simple one-line XPath expression:

f:applyAndSum($vfunTwice, $vfunFiveTimes, 3)

However, we are still passing explicit template references as parameters – could we do better? Could we
write xsl:function s (not templates!) that do the Twice and FiveTimes processing and then pass
“something similar to” these xsl:function s’ names as parameters to the called function?

Ideally, we wish to be able to invoke f:applyAndSum() in the following way:
f:applyAndSum(f:funTwice(), f:funFiveTimes(), 3)

where funTwice() and funFiveTimes() are xsl:function s (not templates) of one argument.

It turns out that this can be done. We write funTwice() and funFiveTimes() in the usual way:

 <xsl:function name="f:funTwice">
 <xsl:param name="arg1"/>
 <xsl:sequence select="2*$arg1"/>
 </xsl:function>
 <xsl:function name="f:funFiveTimes()">
 <xsl:param name="arg1"/>
 <xsl:sequence select="5*$arg1"/>
 </xsl:function>

But now the question is how to be able to dynamically refer to these functions? And still use their names
as the reference?

The solution is to write for each of these two functions an additional overload taking zero arguments and
producing a template reference to a template that invokes the function:

 <xsl:function name="f:funTwice" as="element()">
 <f:funTwice/>
 </xsl:function>
 <xsl:function name="f:funFiveTimes" as="element()">
 <f:funFiveTimes/>
 </xsl:function>

The templates that are invoked on the template references returned by f:funTwice() and
f:funFiveTimes() are now really simple – they simply pass-through to the corresponding
xsl:function:

 <xsl:template match="f:funTwice" mode="f:FXSL">
 <xsl:param name="arg1"/>
 <xsl:sequence select ="f:funTwice($arg1)"/>
 </xsl:template>
 <xsl:template match="f:funFiveTimes" mode="f:FXSL">
 <xsl:param name="arg1"/>
 <xsl:sequence select ="f:funFiveTimes($arg1)"/>

Novatchev

page 6 Extreme Markup Languages 2006®

 </xsl:template>

Now, in the calling code we invoke f:applyAndSum() exactly in the way we wanted:

 f:applyAndSum(f:funTwice(), f:funFiveTimes(), 3)

Here’s the complete code for our XSLT 2.0 implementation of these higher-order xsl:function s:

 <xsl:import href="../f/func-apply.xsl"/>
 <xsl:template match="/">
 <xsl:sequence select=
 "f:applyAndSum(f:funTwice(), f:funFiveTimes(), 3)"/>
 </xsl:template>
 <xsl:function name="f:applyAndSum">
 <xsl:param name="arg1" as="element()"/>
 <xsl:param name="arg2" as="element()"/>
 <xsl:param name="arg3"/>
 <xsl:sequence select=
 "f:apply($arg1,$arg3) + f:apply($arg2,$arg3)"/>
 </xsl:function>
 <xsl:function name="f:funTwice" as="element()">
 <f:funTwice/>
 </xsl:function>
 <xsl:function name="f:funFiveTimes" as="element()">
 <f:funFiveTimes/>
 </xsl:function>
 <xsl:template match="f:funTwice" mode="f:FXSL">
 <xsl:param name="arg1"/>
 <xsl:sequence select ="f:funTwice($arg1)"/>
 </xsl:template>
 <xsl:template match="f:funFiveTimes" mode="f:FXSL">
 <xsl:param name="arg1"/>
 <xsl:sequence select ="f:funFiveTimes($arg1)"/>
 </xsl:template>
 <xsl:function name="f:funTwice">
 <xsl:param name="arg1"/>
 <xsl:sequence select="2*$arg1"/>
 </xsl:function>
 <xsl:function name="f:funFiveTimes">
 <xsl:param name="arg1"/>
 <xsl:sequence select="5*$arg1"/>
 </xsl:function>

Note the use of the mode attribute: mode="f:FXSL" In case our template references were not in a specific
mode (either no mode was specified or mode="#default" was used, and the <xsl:apply-
templates> instruction to select them also didn't specify a particular mode, then it would be very easy
for the template-reference-nodes to be processed by completely unexpected templates selected for
processing simply because of their generality and higher import precedence, such as <xsl:template
match="node()">.

2.4 Standard Higher Order XPath 2.0 Functions
The result so far is very useful – from now on we can write all our xsl:function s as higher-order
functions in the way described above.

However, there are many functions we didn’t write – the most useful ones being the standard XPath 2.0
Functions and Operators [F & O] and the standard XSLT 2.0 functions [XSLT2.0]. We could benefit
greatly from being able to treat these functions as first class objects of the language in solving many real-
world problems.

Higher-Order Functional Programming with XSLT 2.0 and FXSL

Extreme Markup Languages 2006® page 7

Fortunately, exactly the same approach can be used to create a higher-order function with the same name
(but in another namespace) as any given function. The code below shows how this has been done with the
avg() function.

 <xsl:template match="f:avg" mode="f:FXSL">
 <xsl:param name="arg1" as="xdt:anyAtomicType*"/>
 <xsl:sequence select="f:avg($arg1)"/>
 </xsl:template>
 <xsl:function name="f:avg" as="element()">
 <f:avg/>
 </xsl:function>
 <xsl:function name="f:avg" as="xdt:anyAtomicType?">
 <xsl:param name="arg1" as="xdt:anyAtomicType*"/>
 <xsl:sequence select="avg($arg1)"/>
 </xsl:function>

2.5 Standard Higher Order XPath 2.0 Operators
Using exactly the same approach we can make higher-order any standard XPath 2.0 Functions and
Operators[F & O] operator. The code below shows how this has been done with the op:numeric-
multiply() — the "*" operator.

 <xsl:template match="f:multiply" mode="f:FXSL">
 <xsl:param name="arg1"/>
 <xsl:param name="arg2"/>
 <xsl:sequence select="f:mult($arg1, $arg2)"/>
 </xsl:template>
 <xsl:function name="f:mult" as="element()">
 <f:multiply/>
 </xsl:function>
 <xsl:function name="f:mult" as="item()">
 <xsl:param name="arg1" as="item()"/>
 <xsl:param name="arg2" as="item()"/>
 <xsl:sequence select="$arg1 * $arg2"/>
 </xsl:function>

Now we can easily define as a one-line XPath expression many useful functions:

f:foldl(f:add(), 0, $vSeq) (: Sum :)
f:foldl(f:mult(), 1, $vSeq) (: Product :)
f:foldl(f:or(), false(),$vSeq) (: Some true :)
f:foldl(f:and(), true(),$vSeq) (: All true :)
f:someTrue(f:map(P(),$vSeq)) (: For some P is true :)
f:allTrue(f:map(P(),$vSeq)) (: For all P is true :)
f:sum(f:zipWith(f:mult(), $vect1, $vect2)) (: Scalar product of
 two vectors :)
f:allTrue(f:zipWith(f:eq(),$vect1, $vect2)) (: Vec/tpl equality :)
f:zipWith(f:add(),$vect1, $vect2) (: Sum of two vectors :)
f:zipWith(f:subtr(),$vect1, $vect2) (: Diff. of 2 vectors :)

and this code is as compact as the equivalent Haskell code!

2.6 Higher Order XPath 2.0 Constructors
Using exactly the same approach we can make higher-order any XPath 2.0 constructor function. The code
below shows how this has been done with the xs:decimal() constructor.

<xsl:template match="f:decimal" mode="f:FXSL">
 <xsl:param name="arg1" as="xdt:anyAtomicType?"/>

Novatchev

page 8 Extreme Markup Languages 2006®

 <xsl:sequence select="f:decimal($arg1)"/>
</xsl:template>
<xsl:function name="f:decimal" as="element()">
 <f:decimal/>
</xsl:function>
<xsl:function name="f:decimal" as="xs:decimal?">
 <xsl:param name="arg1" as="xdt:anyAtomicType?"/>
 <xsl:sequence select="xs:decimal($arg1)"/>
</xsl:function>

Because of the strict type-checking in XPath 2.0 many situations arise, when in order to avoid a type error
we must explicitly convert the arguments of a function to instances of the mandated type. In other cases,
in order to preserve a desired degree of accuracy we may prefer to use a more strict argument type rather
than the more general default type accepted by a function. For example, in many cases evaluating the
following expression:

sum(/*/claim/claim_line/reimbursement_amount)

may produce more inaccurate results (because all items in the argument-sequence of sum() are cast to
xs:double) than evaluating the corresponding expression where the elements to be summed are first
converted to xs:decimal:

sum(f:map(f:decimal(),
 /*/claim/claim_line/reimbursement_amount)
)

If the above two expressions were evaluated against the following xml document, with a given XSLT 2.0
processor such as Saxon 8.7.1, they would produce, correspondingly, 343.24999999999992 and
343.25

<claim_file>
 <claim>
 <claim_line>
 <reimbursement_amount>45.00</reimbursement_amount>
 </claim_line>
 <claim_line>
 <reimbursement_amount>23.95</reimbursement_amount>
 </claim_line>
 <claim_line>
 <reimbursement_amount>56.36</reimbursement_amount>
 </claim_line>
 </claim>
 <claim>
 <claim_line>
 <reimbursement_amount>45.00</reimbursement_amount>
 </claim_line>
 <claim_line>
 <reimbursement_amount>23.95</reimbursement_amount>
 </claim_line>
 <claim_line>
 <reimbursement_amount>37.04</reimbursement_amount>
 </claim_line>
 </claim>
 <claim>
 <claim_line>
 <reimbursement_amount>45.00</reimbursement_amount>
 </claim_line>
 <claim_line>
 <reimbursement_amount>23.95</reimbursement_amount>
 </claim_line>
 <claim_line>
 <reimbursement_amount>43.00</reimbursement_amount>
 </claim_line>
 </claim>
</claim_file>

2.7 Higher Order Foreign Functions
The attentive reader may already have observed that the approach used to represent a non-higher order
function by using an identically named higher-order wrapper can seamlessly be extended to functions
defined and implemented outside the scope of XPath2.0/XSLT2.0, such as any extension function of
interest.

Higher-Order Functional Programming with XSLT 2.0 and FXSL

Extreme Markup Languages 2006® page 9

§ 3 Representing lists in XSLT
Many functional programming design patterns involve operations on lists. Therefore, we have to choose
a representation of a list in XSLT.

We represent in XSLT 1.0 a list of N elements [x1, x2, …, xN] as the following tree:

<list>
 <el>x1</el>
 <el>x2</el>
.
 <el>xN</el>
</list>

where any names may be chosen for “list” and “el”.

As a special case, when xi are lists themselves we get the following representation of a list of lists:

<list>
 <x1>
 <el>x11</el>
 <el>x12</el>

 <el>x1N1</el>
 </x1>
 <x2>
 <el>x21</el>
 <el>x22</el>

 <el>x2N2</el>
 </x2>

 <xM>
 <el>xM1</el>
 <el>xM2</el>

 <el>xMNM</el>
 </xM>
</list>

A list of characters is most naturally represented as a string. Therefore, for each design pattern, which
operates on lists there will be two implementations – one for lists represented as node-sets and one for
lists of characters represented as strings.

The XPath 2.0 Data Model [XPath2] used in XSLT 2.0 provides a new data type — the sequence. The
sequence data type makes it possible to represent any type of list, not only list of nodes — it is the natural
way of representing lists in XSLT 2.0. However, the sequence type is flat, meaning that an item of a
sequence cannot be a sequence itself. Therefore, the way to represent a list of lists is still the one described
for XSLT 1.0 above.

§ 4 FP Design Patterns
Based on the XSLT1.0/2.0 implementation of HOF, described above, we describe now the XSLT
implementation of some of the most general FP design patterns [RalfL].

4.1 Recursion patterns
Recursion design patterns capture some of the most general and frequent uses of recursion.

4.1.1 Iteration
The iter function implements this design pattern. It is briefly defined in Haskell like this:

iter n f
 | n > 0 = f . iter (n-1) f
 | n == 0 = id
 | otherwise = error "[iter]: Negative argument!"

The iter function is defined using guards — boolean expressions used to express various cases in the
definition of a function. Here the "." operator denotes functional composition:

(f.g) x = f(g x)
The id function is the identity — id x = x.

Novatchev

page 10 Extreme Markup Languages 2006®

As defined, iter takes a non-negative integer n and a function f and returns another function, which is
the composition of f with itself n-1 times. Functional composition is another FP design pattern to be
discussed later.

Here’s the corresponding XSLT 2.0 implementation (note that it is based on a DVC (Divide and Conquer)
approach in order to avoid stack overflow with some XSLT 2.0 processors that may not optimize tail-
recursion well):

<!--
 Function: iter($pTimes, $pFun, $pX)
 Purpose: Iterate (compose a function with itself) N times
 Parameters:-
 $pTimes - number of times to iterate
 $pFun - a template reference to the function that's to be
 iterated
 $pX - an initial argument to the function
 === -->
 <xsl:function name="f:iter">
 <xsl:param name="pTimes" as="xs:integer"/>
 <xsl:param name="pFun" as="element()"/>
 <xsl:param name="pX" />
 <xsl:sequence select=
 "if($pTimes = 0)
 then
 $pX
 else
 if($pTimes = 1)
 then
 f:apply($pFun, $pX)
 else
 if($pTimes > 1)
 then
 for $vHalfTimes in $pTimes idiv 2 return
 f:iter($pTimes - $vHalfTimes,
 $pFun,
 f:iter($vHalfTimes, $pFun, $pX)
)
 else
 error((),'[iter]Error: the $pTimes argument must be
 a positive integer or 0.')"/>
 </xsl:function>

We’ll show f:iter() in an example later in this paper, when we discuss and demonstrate currying and
partial application.

4.1.2 Recursion over a list (folding)
The function sum that computes the sum of the elements of a list can be defined as follows:

sum [] = 0
sum (n:ns) = n + sum ns

The function product that computes the product of the elements of a list can be defined as follows:

product [] = 1
product (n:ns) = n * product ns

There is something common and general in the above two function definitions — they define the same
general operation over a list, but provide different arguments to this operation. The arguments to the general
list operation are displayed in bold above.

They are a function f (+ and * in the described cases) that takes two arguments and an initial value (0 and
1 in the described cases) to use as a second argument when applying this function to the first element of
the list. Therefore, we can define this general operation on lists as a higher-order function:

foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

foldl processes a list from left to right. Its dual function, which processes a list from right to left is foldr:
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

Higher-Order Functional Programming with XSLT 2.0 and FXSL

Extreme Markup Languages 2006® page 11

We can define many functions just by feeding foldl (or foldr) with appropriate functions and null
elements:

sum = foldl add 0
product = foldl multiply 1
sometrue = foldl or false
alltrue = foldl and true
maximum = foldl1 max
minimum = foldl1 min

where foldl1 is defined as foldl, which operates on non-empty lists, and min(a1, a2) is the lesser,
while max(a1, a2) is the bigger of a pair of values.

append as bs = foldr (:) bs as
map f = foldr ((:).f) []

where (:) is the function, which adds an element to the front of a list.

Here’s the corresponding XSLT 2.0 implementation of foldl and some of its useful applications:

 <xsl:function name="f:foldl">
 <xsl:param name="pFunc" as="element()"/>
 <xsl:param name="pA0" as="item()*"/>
 <xsl:param name="pList" as="item()*"/>
 <xsl:sequence select=
 "if (empty($pList))
 then
 $pA0
 else
 f:foldl($pFunc,
 f:apply($pFunc, $pA0, $pList[1]),
 $pList[position() > 1]
)"/>
 </xsl:function>

There are many useful functions that can be defined in just a one-line XPath expression using f:foldl
(). Here are some examples:

f:foldl(f:add(), 0, $vSeq) (: Sum :)
f:foldl(f:mult(), 1, $vSeq) (: Product :)
f:foldl(f:or(), false(),$vSeq) (: Some true :)
f:foldl(f:and(), true(),$vSeq) (: All true :)

4.2 Mapping of a list
Another fundamental FP design pattern is the mapping of a list. The map function may be defined like
this in Haskell:

map f xs = [f x | x <- xs]

In this definition, | means “ "such that" and <- means "belongs to".

The map functions has two arguments — another function f and a list xs
The result of applying map on f and xs is a list ys, for which y i = f x i.

The XSLT implementation is straightforward because the XPath 2.0 for expression can be used instead
of recursion to iterate over the list.

 <xsl:function name="f:map" as="item()*">
 <xsl:param name="pFun" as="element()"/>
 <xsl:param name="pList" as="item()*"/>
 <xsl:sequence select=
 "for $this in $pList
 return f:apply($pFun, $this)"/>
 </xsl:function>

As an example, the following expression:
f:map(f:log2(), 1 to 10)

Novatchev

page 12 Extreme Markup Languages 2006®

produces the list of 2-based logarithms of the list of numbers 1 to 10:

0
1
1.584962493378093
1.9999999939549516
2.321928090518739
2.58496249071745
2.807354909651913
2.9999999868509242
3.169924988315051
3.3219280785926497

As another example let’s have a list of lists of numbers. We want to find the sum of the products of these
lists.

The source xml document is:

 <sales>
 <sale>
 <price>3.5</price>
 <quantity>2</quantity>
 <Discount>0.75</Discount>
 <Discount>0.80</Discount>
 <Discount>0.90</Discount>
 </sale>
 <sale>
 <price>3.5</price>
 <quantity>2</quantity>
 <Discount>0.75</Discount>
 <Discount>0.80</Discount>
 <Discount>0.90</Discount>
 </sale>
</sales>

On each <sale> element we need to perform two actions: get a list of all its children, get the product of
these children. Finally, we must sum all results obtained this way on any <sale> element. We calculate
the sum of products with the following XPath expression:

sum(f:map(f:compose(f:product(), f:childElements()),
 /*/sale
)
)

In this case the result is: 7.56

The function f:compose() is the functional composition function – it is defined later in this article. It
takes two functions as arguments and produces a new function, which is their functional composition.

We must note that XPath 2.0 provides a kind of mapping construct that can be applied on the last location-
step of an XPath expression. The above expression could be re-written in a more compact form as:

sum(/*/*/f:product(*))

Unfortunately, XPath 2.0 does not provide a mapping construction for any other kind of a sequence, for
example the following is illegal:

(1 to 10)/f:square() (: Illegal! :)

In all such cases one has to use the f:map() function.

4.3 Functional composition and currying (partial application)
Some of the most important FP design patterns deal with producing new functions from existing ones.

Here we’ll define functional composition and partial application.

4.3.1 Functional composition
The definition of functional composition is as follows:

Given two functions:

Higher-Order Functional Programming with XSLT 2.0 and FXSL

Extreme Markup Languages 2006® page 13

g :: a -> b and f :: b -> c

Their functional composition is defined as:
(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x = f (g x)

This means that given two functions f and g, (.) glues them together by applying f on the result of
applying g.

(.) is completely polymorphic, the only constraint on the types of f and g being that the type of the result
of g must be the same as the type of the argument of f.

Functional composition is one of the most often used ways of producing a new function by applying two
other functions in a successive pipe-like manner.

4.3.2 Curried functions
There are two ways of looking at a function that has more than one argument. For example, we could
have:

f(x, y) = x * y (1)

or
f x y = x * y (2)

The first expression above defines a function that takes a pair of arguments and produces their product.

In contrast, the second definition allows the function f to take its arguments one at a time. It is perfectly
legal to have the expression:

f x

Not providing the second argument in this concrete case results in a new function g (g = f x) of one
argument y, defined below:

g y = x * y

Defining a function as in (2) has the following advantages:

• A uniform style for expressing function application over one or many arguments - we write:
f x, f x y, f x y z, ... etc.

• The ability to easily produce partial functions, resulting from applying a function only on the first
several of its arguments. For example, we can also define the function g above as (x *) — a partial
application of multiplication, in which the first argument has been bound to the value x.

A function as defined in (2) can be regarded as having just one argument x, and returning a function of
y.

Functions defined as in (2) are called curried functions after Haskell Curry, who was one of the developers
of the lambda calculus [ChurchA], and after whom the Haskell programming language was named.

Functions defined as in (1) are called uncurried. Uncurried functions can be turned into curried ones by
the curry function, and curried functions can be turned into uncurried ones by the uncurry function.
Here's how curry and uncurry are defined in the Haskell Prelude:

curry f x y = f(x,y)
uncurry f (x, y) = f x y

4.3.3 Partial applications
A partial application is a function returned by any application of a curried function on the first several,
but not all of its arguments. For example:

incr = (1 +)
double = (2 *)

As defined above, incr is a function that adds one to its argument, and double is a function that multiplies
its argument by 2.

Novatchev

page 14 Extreme Markup Languages 2006®

Partial application in the special case when the function is an operator is called an operator section. (1
+) and (2 *) above are examples of operator sections.

Using partial applications it is possible to simplify considerably many function definitions, which results
in shorter, simpler, more understandable and maintainable code. For example, instead of defining sum
and product as:

sum xs = foldl (+) 0 xs
product xs = foldl (*) 1 xs

it is possible to define them in an equivalent and much simpler way by omitting the last identically-named
argument(s) from both sides of the definition:

sum = foldl (+) 0
product = foldl (*) 1

Producing partial applications is one of the most flexible and powerful ways of creating new functions
dynamically.

4.4 Implementation of functional composition in XSLT 2.0
Below is the XSLT 2.0 implementation of functional composition.

 <xsl:function name="f:compose">
 <xsl:param name="pFun1" as="element()"/>
 <xsl:param name="pFun2" as="element()"/>
 <xsl:param name="arg1"/>
 <xsl:sequence select=
 "f:apply($pFun1, f:apply($pFun2, $arg1))"/>
 </xsl:function>

The xsl:function f:compose() has three parameters, two of which are the functions to be composed
— pFun1 and pFun2 — and the third is the argument arg1, on which pFun2 will be applied.

In many cases, there are more than two functions that should be successively applied, each using as its
argument the result returned from the previous function. In any such case, it would be inconvenient or
even impossible (e.g., the number of functions to be composed is not known in advance) to compose the
functions two at a time.

Therefore, we also provide the definition of a function, which takes two arguments: a list of functions and
an argument on which the last function in the list is to be applied. This function produces the result of the
functional composition of all functions in the list, using the provided initial argument:

multiCompose x [f] = f x
multiCompose x [f:fs] = f (multiCompose x fs)

Using the foldr function and the function application operator $ (f $ x = f x), we can define the
multiCompose function as follows:

multiCompose y fs = foldr ($) y fs

or even simpler:
multiCompose y = foldr ($) y

The XSLT 2.0 implementation is once again very simple:

 <xsl:function name="f:compose-flist">
 <xsl:param name="arg1" as="element()*"/> <!-- fn list -->
 <xsl:param name="arg2"/> <!-- starting argument -->
 <xsl:sequence select=
 "if(empty($arg1))
 then $arg2
 else
 f:apply($arg1[1],
 f:compose-flist($arg1[position() > 1], $arg2))"/>
 </xsl:function>

Here’s a test of f:compose() and f:compose-flist():

Higher-Order Functional Programming with XSLT 2.0 and FXSL

Extreme Markup Languages 2006® page 15

 <xsl:template name="initial" match="/">
 Compose:
 (*3).(*2) 3 =
 <xsl:value-of select="f:compose(f:mult(3), f:mult(2), 3)"/>
 Multi Compose:
 (*3).(*2).(*3) 2 =
 <xsl:value-of select=
 "f:compose-flist((f:mult(3), f:mult(2), f:mult(3)), 2)"/>
 </xsl:template>

And the result is:

 Compose:
 (*3).(*2) 3 = 18
 Multi Compose:
 (*3).(*2).(*3) 2 = 36

The expressions f:mult(3) and f:mult(2) are partial applications of the multiplication operator
f:mult(). Essentially, they are functions of one argument, which return their argument multiplied,
respectively, by 3 or by 2. We will describe the XSLT 2.0 implementation of currying and partial
applications in the next section.

4.5 Implementation of currying and partial application in XSLT 2.0
The examples in the previous section demonstrated the importance of being able to use partial applications
of functions. Below, we provide an XSLT implementation of currying and partial application. Let’s recall
the definition of curry:

curry f x y = f(x,y)

This means that curry f returns a (curried) function of two arguments, and curry f x returns a
function of one argument.

We have implemented a more generalised version of curry, which accepts a function of N (two or more)
arguments and allows the first k (k < N) arguments to be specified, so that the result will be a partial
application of the function passed as the first argument.

Our XSLT implementation of curry should, therefore, do the following:

1. Keep a reference to the function f. This will be needed if all arguments are passed and the value of
f (as opposed to a partial application function) must be calculated.

2. Keep a record of the number of arguments of f. This is necessary, to know when all arguments for
the function have been specified so that the function will be evaluated.

3. Provide a reference to an internal generic f-curry function that will record and accumulate the
passed arguments and, in case all arguments have been provided, will apply (the function being
curried) f on them and return the result. In case not all arguments’ values have yet been provided,
then f-curry will return a variant of itself, that knows about all the arguments’ values accumulated
so far.

The XSLT 2.0 implementation of f:curry and partial application is presented in the Appendix.

The f:curry function takes a function (a template reference) and a second argument, which is the number
of the arguments of this function. It also takes up to ten optional arguments on which the provided function
(the first argument to f:curry) is to be partially applied.

It then builds its internal f-curry function to produce the result as a partial application.

The internal f-curry function accepts up to ten arguments.

All specified arguments are appended to an internal structure, containing elements with names "arg" and
values — the value specified for the "arg" argument. For example, if f has 6 arguments and only the first
3 of them were specified, the f-curry’s internal store could look like this:

Novatchev

page 16 Extreme Markup Languages 2006®

 <f-curry:f-curry xmlns:f-curry="http://fxsl.sf.net/curry">
 <fun><f:userFun xmlns:f="http://fxsl.sf.net/"/></fun>
 <cnArgs>6</cnArgs>
 <arg t=”xs:integer”>10</arg>
 <arg s=””>
 <e t=”xs:decimal”>3.1415</e>
 <e t=”xs:string”>Hello World</e>
 <e t=”xs:integer”>15</e>
 </arg>
 <arg t=”xs:double”>2.718e0</arg>
 </f-curry:f-curry>

Notice that not only the values of the specified arguments are recorded, but also their types have been
determined and for a sequence-argument this is done on all items of the sequence. A new FXSL function:
f:type() is used to determine the type of any argument or (in the case of a sequence-argument) the type
of its items.

Below is the most essential code that produces the result of f:curry() when not all arguments have
been specified:

 <-- Some code ommitted -->
 <f-curry:f-curry>
 <fun><xsl:sequence select="$pFun"/></fun>
 <cnArgs><xsl:value-of select="$pNargs"/></cnArgs>
 <xsl:sequence select="int:makeArg($arg1)"/>
 <xsl:sequence select="int:makeArg($arg2)"/>
 <xsl:sequence select="int:makeArg($arg3)"/>
 <xsl:sequence select="int:makeArg($arg4)"/>
 <xsl:sequence select="int:makeArg($arg5)"/>
 <xsl:sequence select="int:makeArg($arg6)"/>
 <xsl:sequence select="int:makeArg($arg7)"/>
 <xsl:sequence select="int:makeArg($arg8)"/>
 <xsl:sequence select="int:makeArg($arg9)"/>
 </f-curry:f-curry>
 </xsl:function>

 <xsl:function name="int:makeArg" as="element()">
 <xsl:param name="arg1"/>
 <arg>
 <xsl:choose>
 <xsl:when test="exists($arg1[2])">
 <xsl:attribute name="s"/>

 <xsl:for-each select="$arg1">
 <e t="{f:type(.)}"><xsl:sequence select="."/></e>
 </xsl:for-each>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute name="t" select="f:type($arg1)"/>
 <xsl:sequence select="$arg1"/>
 </xsl:otherwise>
 </xsl:choose>
 </arg>
 </xsl:function>

Whenever values for all arguments are provided, the implementation instantiates the template that
implements the fun function (the function being curried) — the template reference to it is stored in the
<fun> element.

Then the argument values are constructed in their proper type by using the stored raw values and the type
information for every argument or item of an argument-sequence. A companion function of f:type()
– f:Constructor() is used in this process.

The code of the internal function int:getArg() that reconstructs an argument is listed below:

 <xsl:function name="int:getArg">
 <xsl:param name="pargNode" as="element()*"/>

 <xsl:sequence select=
 "if(not($pargNode/@s))
 then
 if(not($pargNode/@t) or $pargNode/@t = 'xml:node')
 then $pargNode/node()
 else
 f:apply(f:Constructor($pargNode/@t),$pargNode/node())
 else
 for $varg in $pargNode/e/node()
 return
 if(not($varg/../@t) or $varg/../@t = 'xml:node')

Higher-Order Functional Programming with XSLT 2.0 and FXSL

Extreme Markup Languages 2006® page 17

 then $varg
 else
 f:apply(f:Constructor($varg/../@t), $varg)"/>
 </xsl:function>

Let’s see how f:curry can be used. In the next example, we curry the f:mult() multiplication operator
(introduced earlier in this paper) specifying one argument’s value – 3. The result is a function of one
argument that multiplies it by 3.

So, this expression:

f:apply(f:curry(f:mult(),2,3), 5)

produces the wanted result: 15.

As useful as this is, we’d like to hide the use of f:curry() and to achieve a more elegant and compact
way of expressing partial applications.

This can be elegantly accomplished by defining a new overload of f:mult(), which takes one argument
and returns the partial application, in the following way:

 <xsl:function name="f:mult" as="element()">
 <xsl:param name="arg1" as="item()"/>

 <xsl:sequence select="f:curry(f:mult(), 2, $arg1)"/>
 </xsl:function>

Now we can simply write:
f:apply(f:mult(3), 5)

and obtain the same correct result.

In FXSL 2.0 the definition of all possible partial applications has been specified for all standard XPath
2.0 functions and operators, with some very few exceptions. Listed below are some examples of the power
of using higher-order functions and their partial applications:

f:add(1) (: Increment :)
f:mult(2) (: Double :)
f:map(f:add($offset), $vSeq) (: Translation of a vector :)
f:map(f:mult($scaleFactor), $vSeq) (: Scaling a vector :)

f:iter($N, f:mult($k), 1) (: Exponentiation: $k ^ $N :)
f:iterUntil(f:le(100), f:mult(2), 1) (: The first 2^N above 100 :)

We’ll finish this section with examples of one-liner mathematical computations, something for which
XSLT has never been considered strong:

Table 1: One-liner Math Calculations
Expression Result
f:pow(2,5) 32.000000498873237
f:flip(f:pow(), 2, 5) 25.000000210097641
f:map(f:flip(f:pow(),
2), 1 to 10) 1

4.00000002487061
8.999999997225032
16.0000000654391
25.000000210097641
36.00000008032039
49.00000001473974
64.00000003117357
81.00000012870524
99.99999981533682

f:map(f:flip(f:pow(),
10), 1 to 10) 1

Novatchev

page 18 Extreme Markup Languages 2006®

1024.000031977348
59048.99991721205
1.0485760215547919E6
9.765625412399698E6
6.046617668837886E7
2.8247524947463E8
1.0737418267311203E9
3.486784428898773E9
9.999999907930431E9

sum(f:map(f:flip(f:pow
(),10), 1 to 10))

1.4914341865157238E10

f:pow(
 sum(f:map(f:flip(f:pow(),10), 1 to 10)),
 0.1
)

10.407835264401298

f:log(2,4) 0.5000000015112621
f:flip(f:log(), 2, 4) 1.9999999939549516
f:map(f:flip(f:log(),
2), 2 to 10) 1

1.584962493378093
1.9999999939549516
2.321928090518739
2.58496249071745
2.807354909651913
2.9999999868509242
3.169924988315051
3.3219280785926497

f:map(
 f:round-half-to-even(f:sqrt(2, 0.000001)), 0 to 13
)

1
1.4
1.41
1.414
1.4142
1.41421
1.414214
1.4142136
1.41421356
1.414213562
1.4142135624
1.41421356237
1.414213562375
1.4142135623747

4.6 Limitations of wrapping non-higher order functions
There are just a very few limitations to the powerful approach of wrapping an existing function by an
identically named higher-order wrapper:

4.6.1 Functions with unknown number of arguments
The standard XPath function concat() accepts any number of arguments. Passing a reference to this
function is not useful for any practical purposes.

4.6.2 Functions with zero number of arguments
Functions with zero number of arguments cannot be curried. Also,

f:zeroArgsFun()

should not be confused with
zeroArgsFun()

While the first evaluates only to a reference to the function, the second evaluates to the result of the original
non-higher order function.

This can actually be useful when we want to accomplish delayed (lazy) function evaluation, for example,
to prepare a list of functions to be evaluated by another function.

Higher-Order Functional Programming with XSLT 2.0 and FXSL

Extreme Markup Languages 2006® page 19

4.6.3 Functions having overloads
When an xsl:function has overloads, a wrapper can be provided only for one of this non-higher order
function. If two overloads are:

F(arg1, arg2, ..., argN)

and
F(arg1, arg2, ..., argK)

where N > K
and we have created a wrapper f:F() for the first overload (having N arguments), then the expression

f:F(arg1, arg2, ..., argK)

should not be confused with evaluating the second overload via the wrapper. In fact, this expression denotes
the partial application of the first wrapped overload on its first K arguments.

It is still possible to provide a wrapper for the second (or any other existing) overload, but the name of
every wrapper must be different (at least by namespace).

4.6.4 Type detection for arguments of user-defined type
The argument type-detection that f:curry() uses has been implemented only for the builtin XML
Schema datatypes. It will not recognize the user-defined type of an argument, which can be created by an
user of a Schema-Aware (SA) XSLT 2.0 processor.

§ 5 FXSL 2.0
This article is only a brief reflection of the work accomplished in the development of the FXSL 2.0 — a
functional programming library for XSLT 2.0 [FXSL].

While it incorporates the existing FXSL 1.X library for functional programming with XSLT 1.0, FXSL
2.0 provides a new and strong support for such fundamental XPath 2.0/XSLT 2.0 features as the sequence
datatype, strong typing, writing functions natively in XSLT. FXSL 2.0 makes nearly all standard XPath
2.0/XSLT 2.0 functions and operators higher-order by providing in the "http://fxsl.sf.net/"
namespace the definition of their identically named higher-order wrappers and partial applications.

In effect, this makes XSLT 2.0 + FXSL a higher-order strongly-typed functional programming system.

Additionally, FXSL 1.X, which is incorporated in FXSL 2.0, provides an XSLT implementation of all the
major FP design patterns described in this paper and, based on them, goes further to provide more specific
functionality. The home site of FXSL contains materials, describing the implementation of:

• Fundamental functions on lists and trees as well as some numerical methods [Nova1].
• Functional composition, partial application and curryng, dynamic creation of new functions

[Nova2].
• Generation of random numbers within a given range and with a specified distribution [Nova3].
• Trigonometric, hyperbolic-trigonometric, exponential and logarithmic functions, inverse

trigonometric functions, finding the roots of continuous functions with one real variable [Nova4].

The next table summarizes the main functionality implemented in or with FXSL.

Table 2: Main Functionality Implemented in or with FXSL

• Higher-order functions
• Functional composition
• Partial application,

currying
• Dynamic creation of

functions

• Generic iteration
• Generic recursion over lists
• Generic recursion over

trees
• Mapping, zipping,

splitting, filtering of lists
• Generic binary search in

Ordered
• Generic sort in Ordered

• Generic recursion over the
characters of a string

• Mapping, zipping, splitting,
filtering of lists of
characters (strings)

• String tokenisation,
trimming and reversal

• Text justification

Novatchev

page 20 Extreme Markup Languages 2006®

• Spelling checking and
generation of correct close
words

• Concordance of text corpora

• Numerical differentiation
• Numerical integration
• Limits of sequences
• Trigonometric functions,

hyperbolic trigonometric
functions

• Logarithmic and
exponentiation functions

• Inverse trigonometric
functions

• Roots of a continuous
function with one real
variable

• Random numbers
• Random numbers with

specified distribution
• Randomisation of lists/

node-sets

• Implementation of lazy
evaluation

• Implementation of a
mechanism (closely
matching the "Monad
someType" class) for using
reliably functions with side
effects

§ 6 Conclusion
More than three years ago FXSL 1.0 challenged our understanding about XSLT programming by providing
the definition and implementation of basic FP design patterns and making it much easier to solve a large
class of problems that until then had been considered very difficult or not appropriate for XSLT.

The next generation of FXSL adds support for new fundamental XPath 2.0/XSLT 2.0 features such as the
sequence datatype, strong typing and writing functions natively in XSLT. FXSL 2.0 makes nearly all
standard XPath 2.0/XSLT 2.0 functions and operators higher-order by providing in the "http://
fxsl.sf.net/" namespace the definition of their identically named higher-order wrappers and partial
applications.

In effect, this makes XSLT 2.0 + FXSL a higher-order strongly-typed functional programming system.

Based on the even higher degree of abstraction and code reuse many challenging problems have now more
compact or even one-line solutions.

§ 7 Appendix
This appendix contains the code for f:curry() and the auxiliary functions it uses: f:type() and
f:Constructor().

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:f="http://fxsl.sf.net/"
 xmlns:int="http://fxsl.sf.net/internal/curry"
 xmlns:f-curry="http://fxsl.sf.net/curry"
 exclude-result-prefixes="xs f f-curry int">
 <xsl:import href="../f/func-type.xsl"/>
 <xsl:function name="f:curry">
 <xsl:param name="pFun" as="node()"/>
 <xsl:param name="pNargs" as="xs:integer"/>
 <xsl:param name="arg1"/>

 <xsl:if test="$pNargs < 2 or $pNargs > 10">
 <xsl:message terminate="yes">
 [curry]Error: pNargs (number of arguments) of a fn to be
 curried must be between 2 and 10 inclusive
 </xsl:message>
 </xsl:if>
 <!-- else -->
 <f-curry:f-curry>
 <fun><xsl:sequence select="$pFun"/></fun>
 <cnArgs><xsl:value-of select="$pNargs"/></cnArgs>
 <xsl:sequence select="int:makeArg($arg1)"/>
 </f-curry:f-curry>
 </xsl:function>

Higher-Order Functional Programming with XSLT 2.0 and FXSL

Extreme Markup Languages 2006® page 21

 <xsl:function name="f:curry">
 <xsl:param name="pFun" as="node()"/>
 <xsl:param name="pNargs" as="xs:integer"/>
 <xsl:param name="arg1"/>
 <xsl:param name="arg2"/>

 <xsl:if test="$pNargs < 2 or $pNargs > 10">
 <xsl:message terminate="yes">
 [curry]Error: pNargs (number of arguments) of a fn to be
 curried must be between 2 and 10 inclusive
 </xsl:message>
 </xsl:if>
 <xsl:if test="$pNargs < 3">
 <xsl:message terminate="yes">
 [curry]Error: pNargs (number of arguments) of a fn to be
 curried must be greater than the number of
 partial applications.
 </xsl:message>
 </xsl:if>
 <!-- else -->
 <f-curry:f-curry>
 <fun><xsl:sequence select="$pFun"/></fun>
 <cnArgs><xsl:value-of select="$pNargs"/></cnArgs>
 <xsl:sequence select="int:makeArg($arg1)"/>
 <xsl:sequence select="int:makeArg($arg2)"/>
 </f-curry:f-curry>
 </xsl:function>

 <xsl:function name="f:curry">
 <xsl:param name="pFun" as="node()"/>
 <xsl:param name="pNargs" as="xs:integer"/>
 <xsl:param name="arg1"/>
 <xsl:param name="arg2"/>
 <xsl:param name="arg3"/>

 <xsl:if test="$pNargs < 2 or $pNargs > 10">
 <xsl:message terminate="yes">
 [curry]Error: pNargs (number of arguments) of a fn to be
 curried must be between 2 and 10 inclusive
 </xsl:message>
 </xsl:if>
 <xsl:if test="$pNargs < 4">
 <xsl:message terminate="yes">
 [curry]Error: pNargs (number of arguments) of a fn to be
 curried must be greater than the number of
 partial applications.
 </xsl:message>
 </xsl:if>
 <!-- else -->
 <f-curry:f-curry>
 <fun><xsl:sequence select="$pFun"/></fun>
 <cnArgs><xsl:value-of select="$pNargs"/></cnArgs>
 <xsl:sequence select="int:makeArg($arg1)"/>
 <xsl:sequence select="int:makeArg($arg2)"/>
 <xsl:sequence select="int:makeArg($arg3)"/>
 </f-curry:f-curry>
 </xsl:function>

<!—Equivalent code for overloads of f:curry with up to 9 args

 -->

 <xsl:function name="int:makeArg" as="element()">
 <xsl:param name="arg1"/>
 <arg>
 <xsl:choose>
 <xsl:when test="exists($arg1[2])">
 <xsl:attribute name="s"/>

 <xsl:for-each select="$arg1">
 <e t="{f:type(.)}"><xsl:sequence select="."/></e>
 </xsl:for-each>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute name="t" select="f:type($arg1)"/>
 <xsl:sequence select="$arg1"/>
 </xsl:otherwise>
 </xsl:choose>
 </arg>
 </xsl:function>

 <xsl:function name="int:getArg">
 <xsl:param name="pargNode" as="element()*"/>

 <xsl:sequence select=
 "if(not($pargNode/@s))
 then
 if(not($pargNode/@t) or $pargNode/@t = 'xml:node')

Novatchev

page 22 Extreme Markup Languages 2006®

 then $pargNode/node()
 else
 f:apply(f:Constructor($pargNode/@t),
 $pargNode/node())
 else
 for $varg in $pargNode/e/node()
 return
 if(not($varg/../@t) or $varg/../@t = 'xml:node')
 then $varg
 else
 f:apply(f:Constructor($varg/../@t), $varg)"/>
 </xsl:function>
 <xsl:template match="f-curry:*" mode="f:FXSL">
 <xsl:param name="arg1" select="()"/>
 <xsl:param name="arg2" select="()"/>
 <xsl:param name="arg3" select="()"/>
 <xsl:param name="arg4" select="()"/>
 <xsl:param name="arg5" select="()"/>
 <xsl:param name="arg6" select="()"/>
 <xsl:param name="arg7" select="()"/>
 <xsl:param name="arg8" select="()"/>
 <xsl:param name="arg9" select="()"/>

 <xsl:variable name="vLastArg" as="xs:integer"
 select="if(exists($arg9)) then 9
 else if(exists($arg8)) then 8
 else if(exists($arg7)) then 7
 else if(exists($arg6)) then 6
 else if(exists($arg5)) then 5
 else if(exists($arg4)) then 4
 else if(exists($arg3)) then 3
 else if(exists($arg2)) then 2
 else if(exists($arg1)) then 1
 else
 error((),
 '[Error]Currying: At least one non-empty argument must be provided to a curried
 function.')"/>

 <xsl:variable name="vTotalArgs" as="xs:integer"
 select="$vLastArg + count(arg)"/>

 <xsl:choose>
 <xsl:when test="$vTotalArgs > 10">
 <xsl:sequence select=
 "error((), '[Error]Currying: More than 10 arguments provided')"/>
 </xsl:when>

 <xsl:otherwise>
 <xsl:variable name="vCurried" as="element()">
 <f-curry:f-curry>
 <xsl:copy-of select="*"/>
 <xsl:for-each select="1 to $vLastArg">
 <xsl:sequence select=
 "int:makeArg(if(. eq 1)then $arg1
 else if(. eq 2) then $arg2
 else if(. eq 3) then $arg3
 else if(. eq 4) then $arg4
 else if(. eq 5) then $arg5
 else if(. eq 6) then $arg6
 else if(. eq 7) then $arg7
 else if(. eq 8) then $arg8
 else if(. eq 9) then $arg9
 else(error((),'[Error]Currying: Must not happen 1')))"/>
 </xsl:for-each>
 </f-curry:f-curry>
 </xsl:variable>

 <xsl:choose>
 <xsl:when test="$vTotalArgs eq xs:integer(cnArgs)">
 <xsl:apply-templates select="fun/*[1]" mode="f:FXSL">
 <xsl:with-param name="arg1"
 select="int:getArg($vCurried/arg[1])"/>
 <xsl:with-param name="arg2"
 select="int:getArg($vCurried/arg[2])"/>
 <xsl:with-param name="arg3"
 select="int:getArg($vCurried/arg[3])"/>
 <xsl:with-param name="arg4"
 select="int:getArg($vCurried/arg[4])"/>
 <xsl:with-param name="arg5"
 select="int:getArg($vCurried/arg[5])"/>
 <xsl:with-param name="arg6"
 select="int:getArg($vCurried/arg[6])"/>
 <xsl:with-param name="arg7"
 select="int:getArg($vCurried/arg[7])"/>
 <xsl:with-param name="arg8"
 select="int:getArg($vCurried/arg[8])"/>
 <xsl:with-param name="arg9"
 select="int:getArg($vCurried/arg[9])"/>
 <xsl:with-param name="arg10"

Higher-Order Functional Programming with XSLT 2.0 and FXSL

Extreme Markup Languages 2006® page 23

 select="int:getArg($vCurried/arg[10])"/>
 </xsl:apply-templates>
 </xsl:when>
 <xsl:otherwise>
 <xsl:sequence select="$vCurried"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>

</xsl:stylesheet>

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xdt="http://www.w3.org/2005/04/xpath-datatypes"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:f="http://fxsl.sf.net/"
 exclude-result-prefixes="f xs xdt">
 <xsl:import href="../f/func-XpathConstructors.xsl"/>
 <xsl:output omit-xml-declaration="yes"/>

 <xsl:key name="kConstructor" match="*" use="@t"/>

 <xsl:variable name="f:vTypeConstructors">
 <f:unsignedByte t="xs:unsignedByte"/>
 <f:unsignedShort t="xs:unsignedShort"/>
 <f:unsignedInt t="xs:unsignedInt"/>
 <f:unsignedLong t="xs:unsignedLong"/>
 <f:positiveInteger t="xs:positiveInteger"/>
 <f:nonNegativeInteger t="xs:nonNegativeInteger"/>
 <f:nonPositiveInteger t="xs:nonPositiveInteger"/>
 <f:byte t="xs:byte"/>
 <f:short t="xs:short"/>
 <f:int t="xs:int"/>
 <f:long t="xs:long"/>
 <f:integer t="xs:integer"/>
 <f:decimal t="xs:decimal"/>
 <f:double t="xs:double"/>
 <f:float t="xs:float"/>
 <f:NMTOKEN t="xs:NMTOKEN"/>
 <f:NMTOKENS t="xs:NMTOKENS"/>
 <f:ENTITIES t="xs:ENTITIES"/>
 <f:ENTITY t="xs:ENTITY"/>
 <f:IDREF t="xs:IDREF"/>
 <f:IDREFS t="xs:IDREFS"/>
 <f:ID t="xs:ID"/>
 <f:NCName t="xs:NCName"/>
 <f:Name t="xs:Name"/>
 <f:language t="xs:language"/>
 <f:token t="xs:token"/>
 <f:normalizedString t="xs:normalizedString"/>
 <f:boolean t="xs:boolean"/>
 <f:duration t="xs:duration"/>
 <f:dateTime t="xs:dateTime"/>
 <f:time t="xs:time"/>
 <f:date t="xs:date"/>
 <f:gYearMonth t="xs:gYearMonth"/>
 <f:gYear t="xs:gYear"/>
 <f:gMonthDay t="xs:gMonthDay"/>
 <f:gDay t="xs:gDay"/>
 <f:gMonth t="xs:gMonth"/>
 <f:base64Binary t="xs:base64Binary"/>
 <f:hexBinary t="xs:hexBinary"/>
 <f:anyURI t="xs:anyURI"/>
 <f:QName t="xs:QName"/>
 <f:NOTATION t="xs:NOTATION"/>
 <f:string t="xs:string"/>
 <f:yearMonthDuration t="xdt:yearMonthDuration"/>
 <f:dayTimeDuration t="xdt:dayTimeDuration"/>
 </xsl:variable>

 <xsl:function name="f:Constructor" as="element()">
 <xsl:param name="pTypename" as="xs:string"/>
 <xsl:sequence select="key('kConstructor', $pTypename,$f:vTypeConstructors)"/>
 </xsl:function>

 <xsl:function name="f:typeConstructor" as="element()">
 <xsl:param name="pThis"/>
 <xsl:sequence select="key('kConstructor', f:type($pThis),$f:vTypeConstructors)"/>
 </xsl:function>

 <xsl:function name="f:type" as="xs:string">
 <xsl:param name="pThis"/>

Novatchev

page 24 Extreme Markup Languages 2006®

 <xsl:choose>
 <xsl:when test="$pThis instance of xs:decimal">
 <xsl:choose>
 <xsl:when use-when="system-property('xsl:is-schema-aware')='yes'" test="true()">
 <xsl:choose>
<!-- Not supported by a Basic XSLT Processor -->
 <xsl:when test="$pThis instance of xs:unsignedByte">xs:unsignedByte</xsl:when>
 <xsl:when test="$pThis instance of xs:unsignedShort">xs:unsignedShort</xsl:when>
 <xsl:when test="$pThis instance of xs:unsignedInt">xs:unsignedInt</xsl:when>
 <xsl:when test="$pThis instance of xs:unsignedLong">xs:unsignedLong</xsl:when>

 <xsl:when test="$pThis instance of xs:positiveInteger">xs:positiveInteger</xsl:when>
 <xsl:when test="$pThis instance of xs:nonNegativeInteger">xs:nonNegativeInteger
 </xsl:when>

 <xsl:when test="$pThis instance of xs:negativeInteger">xs:negativeInteger</xsl:when>
 <xsl:when test="$pThis instance of xs:nonPositiveInteger">xs:nonPositiveInteger
 </xsl:when>

 <xsl:when test="$pThis instance of xs:byte">xs:byte</xsl:when>
 <xsl:when test="$pThis instance of xs:short">xs:short</xsl:when>
 <xsl:when test="$pThis instance of xs:int">xs:int</xsl:when>
 <xsl:when test="$pThis instance of xs:long">xs:long</xsl:when>
 </xsl:choose>
<!-- End of SA only types -->
 </xsl:when>
 <xsl:when test="$pThis instance of xs:integer">xs:integer</xsl:when>

 <xsl:otherwise>xs:decimal</xsl:otherwise>

 </xsl:choose>
 </xsl:when>
 <xsl:when test="$pThis instance of xs:double">xs:double</xsl:when>
 <xsl:when test="$pThis instance of xs:float">xs:float</xsl:when>
 <xsl:when test="$pThis instance of xs:string">
 <xsl:choose>
 <xsl:when use-when="system-property('xsl:is-schema-aware')='yes'" test="true()">
<!-- Not supported by a Basic XSLT Processor -->
 <xsl:choose>
 <xsl:when test="$pThis instance of xs:NMTOKEN">xs:NMTOKEN</xsl:when>
 <xsl:when test="$pThis instance of xs:ENTITY">xs:ENTITY</xsl:when>
 <xsl:when test="$pThis instance of xs:IDREF">xs:IDREF</xsl:when>
 <!-- TODO: What to do with list simple types?
 <xsl:when test="$pThis instance of xs:NMTOKEN+">xs:NMTOKENS</xsl:when>
 <xsl:when test="$pThis instance of xs:ENTITY+">xs:ENTITIES</xsl:when>
 <xsl:when test="$pThis instance of xs:IDREF+">xs:IDREFS</xsl:when>
 -->
 <xsl:when test="$pThis instance of xs:ID">xs:ID</xsl:when>
 <xsl:when test="$pThis instance of xs:NCName">xs:NCName</xsl:when>
 <xsl:when test="$pThis instance of xs:Name">xs:Name</xsl:when>
 <xsl:when test="$pThis instance of xs:language">xs:language</xsl:when>
 <xsl:when test="$pThis instance of xs:token">xs:token</xsl:when>
 <xsl:when test="$pThis instance of xs:normalizedString">xs:normalizedString
 </xsl:when>
 <xsl:otherwise>xs:string</xsl:otherwise>
 </xsl:choose>
 </xsl:when>
 <xsl:when test="true()">xs:string</xsl:when>
 </xsl:choose>
 </xsl:when>

 <xsl:when test="$pThis instance of xs:boolean">xs:boolean</xsl:when>
 <xsl:when test="$pThis instance of xs:duration">xs:duration</xsl:when>
 <xsl:when test="$pThis instance of xs:dateTime">xs:dateTime</xsl:when>
 <xsl:when test="$pThis instance of xs:time">xs:time</xsl:when>
 <xsl:when test="$pThis instance of xs:date">xs:date</xsl:when>
 <xsl:when test="$pThis instance of xs:gYearMonth">xs:gYearMonth</xsl:when>
 <xsl:when test="$pThis instance of xs:gYear">xs:gYear</xsl:when>
 <xsl:when test="$pThis instance of xs:gMonthDay">xs:gMonthDay</xsl:when>
 <xsl:when test="$pThis instance of xs:gDay">xs:gDay</xsl:when>
 <xsl:when test="$pThis instance of xs:gMonth">xs:gMonth</xsl:when>

 <xsl:when test="$pThis instance of xdt:yearMonthDuration">xdt:yearMonthDuration</xsl:when>

 <xsl:when test="$pThis instance of xdt:dayTimeDuration">xdt:dayTimeDuration</xsl:when>

Higher-Order Functional Programming with XSLT 2.0 and FXSL

Extreme Markup Languages 2006® page 25

 <xsl:when test="$pThis instance of xs:base64Binary">xs:base64Binary</xsl:when>
 <xsl:when test="$pThis instance of xs:hexBinary">xs:hexBinary</xsl:when>
 <xsl:when test="$pThis instance of xs:anyURI">xs:anyURI</xsl:when>
 <xsl:when test="$pThis instance of xs:QName">xs:QName</xsl:when>
 <xsl:when use-when="system-property('xsl:is-schema-aware')='yes'"
 test="$pThis instance of xs:NOTATION">xs:NOTATION</xsl:when>
<!--
 <xsl:when test="$pThis instance of xdt:untypedAtomic">xdt:untypedAtomic</xsl:when>
 <xsl:otherwise>Unknown xdt:untypedAtomic</xsl:otherwise>
-->
 <xsl:when test="$pThis[1] instance of node()">xml:node</xsl:when>
 <xsl:otherwise>xs:string</xsl:otherwise>
 </xsl:choose>
 </xsl:function>
</xsl:stylesheet>

Bibliography
[ChurchA] Church, A., The Calculi of Lambda Conversion , Princeton, NJ: Princeton University Press,

1941

[F & O] XQuery 1.0 and XPath 2.0 Functions and Operators, Ashok Malhotra, Jim Melton, and Norman
Walsh, Editors. World Wide Web Consortium, 3 Nov 2005, At http://www.w3.org/TR/xpath-functions/.

[FXSL] The FXSL Functional Programming Library for XSLT , At http://fxsl.sourceforge.net/

[HainesC] Haines, Correy, Personal Communication on Template Referencing , 2000

[JonesSP] Jones, Simon P., Haskell 98 Language and Libraries – The Revised Report , Cambridge
University Press 2001

[Kay] Kay, Michael H., What Kind of Language is XSLT, At http://www-106.ibm.com/developerworks/
xml/library/x-xslt.

[Nova1] Novatchev, Dimitre, The Functional Programming Language XSLT - A proof through examples , At
http://fxsl.sourceforge.net/articles/FuncProg/Functional%20Programming.html

[Nova2] Novatchev, Dimitre, Dynamic Functions using FXSL: Composition, Partial Applications and
Lambda Expressions , At http://fxsl.sourceforge.net/articles/PartialApps/Partial%20Applications.html

[Nova3] Novatchev, Dimitre, Casting the Dice with FXSL: Random Number Generation Functions in
XSLT , At http://fxsl.sourceforge.net/articles/Random/Casting%20the%20Dice%20with%20FXSL-
htm.htm

[Nova4] Novatchev, Dimitre, An XSL Calculator: The Math Modules of FXSL , At http://
fxsl.sourceforge.net/articles/xslCalculator/The%20FXSL%20Calculator.html

[Nova5] Novatchev, Dimitre, Functional programming in XSLT using the FXSL library, In Proc. Of the
Extreme Markup Languages Conference 2003, At http://www.mulberrytech.com/Extreme/Proceedings/
html/2003/Novatchev01/EML2003Novatchev01.html.

[RalfL] Ralf Lämmel and Joost Visser, Design Patterns for Functional Strategic Programming , In Proc.
of Third ACM SIGPLAN Workshop on Rule-Based Programming RULE'02, http://www.cwi.nl/~ralf/
dp-sf.pdf

[ThompSJ] Thompson, Simon J., Haskell, The Craft of Functional Programming, Second Edition ,
Addison-Wesley, 1999

[XPath2] XML Path Language (XPath) 2.0, Don Chamberlin , Anders Berglund, Scott Boag, et. al.,
Editors. World Wide Web Consortium, 3 Nov 2005. At http://www.w3.org/TR/xpath20/.

[XSLT1.0] XSL Transformations (XSLT) Version 1.0, James Clark, Editor. World Wide Web Consortium,
16 Nov 1999. At http://www.w3.org/TR/xslt.

[XSLT2.0] W3C (Draft), XSL Transformations (XSLT) Version 2.0, Michael Kay, Editor, W3C Candidate
Recommendation, 3 November 2005, At http://www.w3.org/TR/xpath-functions/.

Novatchev

page 26 Extreme Markup Languages 2006®

http://www.w3.org/TR/xpath-functions/
http://fxsl.sourceforge.net/
http://www-106.ibm.com/developerworks/xml/library/x-xslt
http://www-106.ibm.com/developerworks/xml/library/x-xslt
http://fxsl.sourceforge.net/articles/FuncProg/Functional%20Programming.html
http://fxsl.sourceforge.net/articles/PartialApps/Partial%20Applications.html
http://fxsl.sourceforge.net/articles/Random/Casting%20the%20Dice%20with%20FXSL-htm.htm
http://fxsl.sourceforge.net/articles/Random/Casting%20the%20Dice%20with%20FXSL-htm.htm
http://fxsl.sourceforge.net/articles/xslCalculator/The%20FXSL%20Calculator.html
http://fxsl.sourceforge.net/articles/xslCalculator/The%20FXSL%20Calculator.html
http://www.mulberrytech.com/Extreme/Proceedings/html/2003/Novatchev01/EML2003Novatchev01.html
http://www.mulberrytech.com/Extreme/Proceedings/html/2003/Novatchev01/EML2003Novatchev01.html
http://www.cwi.nl/~ralf/dp-sf.pdf
http://www.cwi.nl/~ralf/dp-sf.pdf
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath-functions/

The Author
Dimitre Novatchev
Microsoft

Dimitre Novatchev is known as the developer of the FXSL functional programming library for XSLT,
the popular XPath Visualizer tool and EXSLT for MSXML4. He works in the Data Programmability
team at Microsoft.

Extreme Markup Languages 2006®
Montréal, Québec, August 7-11, 2006

This paper was formatted from XML source via XSL
by Mulberry Technologies, Inc.

Higher-Order Functional Programming with XSLT 2.0 and FXSL

Extreme Markup Languages 2006® page 27

