
Game Engines features and Possibilities by Bendik Stang – IMM DTU 2003 Page 1 of 31

Institute of Informatics and Mathematical Modeling @ The Technical University of Denmark

Game Engines
Features and possibilities

By Bendik Stang 2003

Game Engines features and Possibilities by Bendik Stang – IMM DTU 2003 Page 2 of 31

Institute of Informatics and Mathematical Modeling @ The Technical University of Denmark

Abstract

This is a project in two parts and was made at the institute of Informatics and Mathematical Modeling at the
Technical University of Denmark.

The first part demonstrates that a game engine is a great tool to make a virtual reality presentation. It is
argued herein that a game engine is better, cheaper and easier to use than most virtual reality tools available
when the project was started.

To demonstrate this a presentation of the new student building, ‘Oticon salen’ is visualized, based on the
information given by the architects and combined with a mockup of the existing building 101 at the Technical
University of Denmark. The building was actually built between the time the visualization was made and the
time the report was handed in.

The second part of the project shows that the selected game engine can be modified. The argument for
using scientific virtual reality tools over a game engine is that the user can implement any changes and or
modifications that are required for a certain presentation. In short, virtual reality tools are extremely flexible
and since the game engines have been made with one purpose only, they are often deemed less flexible.
Given the full source code that is available from the chosen game engine the user is free to implement any
changes he/she seems fit.

In the second part I demonstrate how to improve the game engine with some new features. To modify the
game engine a new grass impostor system was developed. The grass is fully integrated in the in-game editor
and allows for real time customization. The result is a virtual reality environment with a visual grass quality
that is higher than anything I have seen on the marked today.

Game Engines features and Possibilities by Bendik Stang – IMM DTU 2003 Page 3 of 31

Institute of Informatics and Mathematical Modeling @ The Technical University of Denmark

Index
Abstract .. 2
Preface ... 4
1 Introduction.. 6
2 What is a game engine? .. 7

2.1 Isometric engines .. 7
2.2 3D FPS engines .. 7
2.3 MMOG Engines... 8

3 Alternative Game Engine uses... 8
3.1 VR engine vs. Game Engine ... 8
3.2 Cost vs. Benefit ... 9

4 Choosing an engine... 10
4.1 Define needs ... 10
4.2 Overview over engines: ... 11
4.2 Overview over engines: ... 11
5.1 Documentation .. 12
5.2 Scripting .. 12
5.3 Ingame Editor .. 12

6 Creating a visualization.. 14
6.1 Acquiring the model data... 14
6.2 Acquiring the relevant textures .. 15
6.3 Textures .. 16

7 Using WorldCraft 3.3.. 18
7.1 Modeling in WorldCraft .. 18
7.2 Creating Building 101 .. 18
7.3 Creating the new S-house. .. 19

8 Improving the Game Engine .. 20
8.1 Game engine use for educational purposes. ... 20
8.2 Getting to know the structure... 21
8.3 Using online resources.. 21

9 Creating fxGrassReplicator.. 22
9.1 Previous work on visualizing grass.. 22
9.2 My approach ... 22

9.2.1 Even grass distribution.. 24
9.2.2 Alpha blending problems .. 26
9.2.3 Vertex coloring for flexible effects. .. 27
9.2.4 Culling algorithm used .. 27
9.2.5 Animation of vertices and lights .. 27
9.2.6 Collision tests.. 27
9.2.7 LOD and popping.. 28
9.2.9 Conclusion .. 29

9 Conclusion... 30
10 Reference .. 31

Game Engines features and Possibilities by Bendik Stang – IMM DTU 2003 Page 4 of 31

Institute of Informatics and Mathematical Modeling @ The Technical University of Denmark

Preface
After having studied Virtual Reality and computer graphics for a few
years, I began looking into Game Engines as an alternative to make
Virtual Reality presentations, and later on Game Engines to make
games.

Virtual Reality has been the standard term for graphical computer
representations in 3D in the science and architecture for a long time.
It has been associated with very high cost and required a higher
educational level in informatics. The equipment used has primarily
been SGI super computers; needless to say the equipment has been
very expensive.

In the academic world there is often a certain level of snobbery, and
computer games have been considered unserious by many.

Figure 1: “The future of computer games is
not about reinventing the wheel; it's about

improving the engine.” – Tim Sweeney, Epic
Games, technical mastermind behind the

Unreal engine.

Figure 2: Will you need to spend over US$ 1million?

Figure 3: Will less then US$1000 suffice?

.

In recent years the commercial game engines have become
so advanced that they in most cases outperform the virtual
reality engines in all aspects except stereo vision and 3D
tracking. Still, I have not yet seen anyone use a Game
Engine to create a good Virtual Reality presentation to this
day.

As a student, I am trying to learn what I think is useful for my
future career. With the current trends on the marked today,
getting jobs within any industry is not going to be easy. With
this in mind, I am focusing on options that would be ideal for
start up or low cost projects. Part of what I am trying to look
at in this report is how to get the most out of your investment
if you are going to work with some kind of interactive 3D
graphics.

I mostly enjoy learning, and sometimes reinventing the
wheel is very educational, other times it turns out to be a
waste of time and dangerous for motivation. When is it worth
it, and when is it better to learn from others, and move on?
This question becomes even more important when there are
investors that are waiting for results.

I believe there are various applications for a game engine,
both for science, visualization, education and entertainment.
What tools or engines are available and what would be the
best choice to the given task?

What is available at the marked today, how do I find it, and
how do I get it?

Once an engine is found, what to do? How much work will
be needed? What skills are needed?

While this report has been created several new game
engines are under production with even more advanced
rendering techniques and physics than the ones mentioned
herein. This only strengthens my argument about game
engines vs. virtual reality engines.

Game Engines features and Possibilities by Bendik Stang – IMM DTU 2003 Page 5 of 31

Institute of Informatics and Mathematical Modeling @ The Technical University of Denmark

I began this project with the intent to create an Architectural
VR presentation of a new building that was to be built at my
university. The work was to be done at the Virtual Reality
Center at the Technical University of Denmark. As many fellow
students I know, my group began to create our own VR
engine, using C++ OpenGL and Performer.

After a while the ‘VR-engine’ programmers found the work too
difficult and tedious. I was mainly focusing on the VR concept
and on the 3D graphics at the time, and was lost without them.
For a over a year I thought I would have to abandon the
project, and get on with something else, but other things
brought my attention to the features of game engines, and I
began to investigate.

The original project was partly about building a virtual reality
system from scratch. Since this path was abandoned the
project became a bit shallow and so by improving the chosen
game engine I hope to compensate for that.

I will now try to show that I have learned something during this
process.

I would like to thank Bent Dalgaard Larsen and Andreas
Bærentzen at IMM@DTU who has been most patient and
helpful through this project.

I would also like to thank Melvyn May who made the first
attempt to create foliage in Torque game engine and whom
has answered all of my emails.

I would like to thank the people at Garage Games for releasing
a quality game engine like Torque at such a price that
independent game developers and poor students like me can
afford it.

This project has been carried out under the supervision of
Associated professor Niels Jørgen Christensen at IMM at the
Technical University of Denmark.

-Bendik Stang Sept 2003

Figure 4: New Student Union @ The Technical

University of Denmark

Figure 5 Original project model. Was barely

implemented in OpenGL - performer before the project
was abandoned

…"A game engine is a very broad thing," says Tim
Sweeney, co-founder of Epic Games. "You want to have
the world's best rendering, but you also need to have
physics, collisions … everything that a game needs."

But the exponential growth of computing power is giving
developers more options than ever before, and it's
allowing games to expand in new directions. As we
examine the future of game engines, we'll see how
graphics aren't the only area where computing resources
will impact game development. More powerful hardware
means more realistic environments, more interactive
environments, better opponent AI, and physics that
accurately simulate the real world. Technology that'll
make today's simple, static game environments look
primitive!

-Engines And Engineering
By Steven L. Kent @ GameSpy.com| Oct. 31, 2002

Game Engines features and Possibilities by Bendik Stang – IMM DTU 2003 Page 6 of 31

Institute of Informatics and Mathematical Modeling @ The Technical University of Denmark

1 Introduction

Choosing an engine
First we will look at Virtual Reality Engines and Computer Game Engines, and compare them in terms of
technology, features and price. This work was a bit obscured by the fact that some producers of both game
engines and virtual reality engines would not tell me the price of their product to be quoted in this report.

However after doing some extensive searching on the internet and contacting several of the leading game
developers in the industry, a decent set of data was acquired that allows for an interesting comparison. From
these data a game engine can be chosen and used to create a presentation.

Using the engine
Once a game engine has been selected, a demonstration of the game engine features will be presented
showing how to manipulate the virtual reality environment within the system. The game engine features will
only be briefly demonstrated in this project.

Next the implementation of the Oticon building will be shown step by step. The process includes the creation
of the 3D model, creation of the needed textures, then combining them and placing it all into the virtual world.

Improving the Engine
At the end of the report I will look at the implementation of some openGL code in the chosen Game Engine.
Torque from Garage Games will be used as the example engine in which I do the actual implementation.

The use of billboard impostors is well known. The method is quite effective when used on symmetric objects
seen at a distance, but the suspension of disbelief is broken the minute the billboards get close to the
camera. In the chosen game engine there was no grass but the texture of the terrain as seen on figure 7.
After the implementation of the fxGrassReplicator code the landscape is very different (see figure 8).

Figure 6: There is no vegetation code in the original Torque

engine.

Figure 7: The grass is made of a replication system for billboards

(flowers) and grass elements.

The resulting grassy environment is of a more detailed quality than anything seen in another game engine on
the marked…..At least for now.

Game Engines features and Possibilities by Bendik Stang – IMM DTU 2003 Page 7 of 31

Institute of Informatics and Mathematical Modeling @ The Technical University of Denmark

2 What is a game engine?
A game engine is an integrated collection of
various computer code objects that together run
the video game. These modules include:

• A graphics module for 2D or 3D
• A physics module
• A collision detection module
• An input/output module
• A sound module
• An artificial intelligence module
• A network module
• A database module
• A Graphical User Interface module (GUI)

Different games will have some or all of the above
modules. The code that makes up the various
modules can be very complex. Creating an
industry leading game engine is a huge task,
which requires large amounts of time and
resources.

Many of the modules contain highly advanced
algorithms that in some cases have been
developed for military applications, science,
medicine or special effects for the film industry. So
far the contributing industries have been slow to
use the game industry in return.

2.1 Isometric engines
These engines used to be 2D engines. They are
currently in a transition face where they are partly
2D and partly 3D and very soon they will be fully
3D. The reason for using fully 3D is that it enables
some rather stunning lighting & shadow effects
over the 2D sprites. With the new 3D hardware
higher visual performance can be obtained with
3D.

Figure 8: DiabloII isometric game engine. (by Blizzard
Entertainment.)

These engines are commonly used in strategy
games, and were common in the role play games
(RPG) genre. There are still relatively new titles
on the marked that are based on this kind of
engines.

Figure 9: Baldur’s Gate 2 isometric engine (by BioWare)

Typical Isometric games include: Baldur’s Gate 2,
Diablo 2 and Warlords Battle Cry 2.

Isometric engines are not a good alternative
for VR.

2.2 3D FPS engines
(First Person Shooter)

This is probably the biggest genre in the gaming
industry, and they all have one ting in common;
they push the 3D engines to their limits.

Figure 10: Old Doom1 FPS engine (December 10, 1993 by ID

software)

Game Engines features and Possibilities by Bendik Stang – IMM DTU 2003 Page 8 of 31

Institute of Informatics and Mathematical Modeling @ The Technical University of Denmark

Figure 11: New Doom3 FPS engine (not yet released – by ID

Software)

As illustrated the quality of the game engines
have been improved rather dramatically over the
last decade. This is a logical evolution as there
are so much money in the gaming industry, and
the customers tend to buy the best looking
games.

FPS games are always amongst the most sold
games.

Typical FPS games include: Doom, Quake, Half
Life, Counter Strike, Unreal, Duke Nuke’m,
DeusEx, Halo, Wolfenstein, Medal of Honor,
Serious Sam, Spec Ops, Dessert Storm and
Hitman to mention a few.

The FPS engine can make a great alternative
to a VR engine.

It will normally include tools to provide a smooth
and easy workflow to create the art and
interaction elements. Most of the common 3D
modeling applications such as 3DSMax, Maya
and Softimage all have exporters that work with
the most common of these engines.
This will be explained and demonstrated later in
this report.

The state of the art 3D engine today includes
features like pixel shaders, bump mapping, cubic
environment mapping, full 3d animations with
animation blending, physics simulation, particle
simulation, cloth simulation, liquid simulation, rag
doll simulation and many other things hardly ever
seen in a 2D engine.

2.3 MMOG Engines
The difference in a regular game engine and a
Massive Multiplayer Online Game Engine (mmog)
is based on the network code, and data
management. The mmog's normally include large
databases, and have a distributed network of

servers to handle the huge amount of users active
at the same time. Since bandwidth is quite
expensive network traffic optimization is one of
the most important parts of a good mmog engine.
Compression and careful selection of the data
transmitted over the internet can save huge
amounts of money.

All of the new mmog engines are fully integrated
with a state of the art 3D engine comparable with
the FPS type engine. So if the application needs a
very large amount of simultaneous users, a
mmog engines could be useful for specific
types of VR presentations. A virtual art gallery is
one thing that comes to mind, where people could
meet and show each other their work.

Ultima Online, Ever Quest, Asheron’s Call and
Anarchy Online are examples of massive
multiplayer online games.

3 Alternative Game Engine uses
This is what initially led me into looking at game
engines. In order to make an architectural VR-
presentation I began to study game engine
features in comparison to expensive VR tools.
The conclusion was that I would be able to sit on
my own home PC and develop and test the
presentation. Where I was used to fight with other
students and faculty to get some time on the
supercomputer, I now had the tools to work on
this where, and when I wanted, and best of all;
The results would be available to most people
with a PC, where my previous work was only
available to the privileged few with access to a
SGI supercomputer.

In my previous work with Virtual Reality
presentations I had the experience of working with
the Danish Design School (University of Design)
on a very artistic virtual reality application. During
this process it became obvious that Virtual Reality
has a great potential as a new medium for the
future Arts. Much is yet there to be discovered.

There are hardcore demo groups that makes
fantastic 3D demos where they do all the
programming work them selves. This could be the
emergence of the new art form. Not yet
appreciated by most people.

So in my opinion Game Engines could be used for
science, education, entertainment and art.

3.1 VR engine vs. Game Engine
If we look at the development of the game
engines and compare that to the development of

Game Engines features and Possibilities by Bendik Stang – IMM DTU 2003 Page 9 of 31

Institute of Informatics and Mathematical Modeling @ The Technical University of Denmark

the VR-engines there is one major difference. The
game engine has and will be created for
mainstream personal computers and console
platforms, where as the VR engine up till now has
been created for a high end system like a SGI
super computer. Until right after the turn of the
century, the high-end VR-systems outperformed
the game systems by being capable of handling
several orders of magnitude more polygons,
textures and fill rates. The VR input system was
and still is, quite a bit more advanced than the
average home computer. 3D tracking devices and
advanced audio video input are very expensive
and fragile, and probably will be for some time.
Still, it was almost disturbing to see the
supercomputers immense power fade in
comparison to the mainstream graphics cards
during 2000 – 2002. Within those two years a
US$ 1 million system was outperformed by a
US$ 200.- graphics card in many ways. Of course
the supercomputer still had other valuable
features, like lots of RAM and multiple CPUs, but
their days of superior graphics were gone.

The way the graphics processors develop makes
it unwise to invest huge amounts of money on
high-end graphics processors as a new and much
better will make the investment obsolete in less
than nine months.

So where does all this lead in relation to the
difference between a VR engine and a Game
Engine?
The gaming marked is always craving the best
visual effects and computer art. This has caused
the gaming industry to develop game engines that
gets the very maximum out of the available
hardware. The competition has been tight, and
optimization and quality has been vital for the
sales. Huge amount of development money have
been put into the development of the various
game engines available today.

The VR industry being focused on high-end
systems have had a much smaller marked. In
many ways a more lucrative marked. When the
computer system cost more than a million dollars,
the software was possible to sell for tens of
thousands of dollars, and there was hardly any
competition. This has changed, and prices on
relevant software have dropped so rapidly that it is
hard to fathom. Examples like Maya Unlimited 4.0
went from approximately USD$ 15,000.- to less
than 4,000.- in one month. Same happened to
Softimage and other 3D modeling and animation
applications.

Such overpricing and lack of competition as well
as the enormous computer capabilities may have

caused the development of the Virtual Reality
Tools to fall behind the accelerating development
of competitive commercial game engines for the
main stream computers.

Still this is all good news for those that have not
invested in the high end systems and software.
We are now able to buy better and cheaper tools
and hardware and it is even becoming easier to
use.

For the low cost development of a VR
presentation or computer game, there are some
public license engines that are being developed.
One would be Crystal Space. The earlier versions
of the Quake and Unreal engines are also
available for non-commercial uses.

Close to this is a commercial engine that has
proven its worth with the game Tribes. The engine
was produced by Sierra and sold to Garage
Games in 2001. The engine is available at $100.-
per developer license. Since the engine is so
cheap improvements are being worked on by
many independent developers, thus it resembles
the development style of an open source
environment.

The more expensive engines are available from
between $10,000.- to $250,000.- and more and
better engines are on their way that will probably
come at even higher prices; Doom3 and HalfLife2
to mention two.

The Virtual Reality tools like MultiGen Creator,
cost $100.000 little over a year a go.

Price: (These prices were quoted in January
1998.) A Vega Multi-Process development license
costs $12,117.16, with $2,154.29 for annual
support and $2,420.20 for a run-time license.

3.2 Cost vs. Benefit
In my experience there is little doubt. The multi
million dollars worth of VR hardware and software
cannot compete with some of the alternative
game engines. So when it comes to price vs.
Performance, Game Engines win by far. When it
comes to ease of implementation – as in getting
your idea visualized and presentable, Game
Engines win by far.

Considering both production time and cost of
software it becomes very clear to me.

Game Engines features and Possibilities by Bendik Stang – IMM DTU 2003 Page 10 of 31

Institute of Informatics and Mathematical Modeling @ The Technical University of Denmark

4 Choosing an engine
Let’s say you have a 3D presentation you would
like to make and you would like to do so using a
game engine to speed up the process. Which
game engine is the most appropriate?

 This is a very complex question, and one that I
cannot answer fully. However, I have spent a lot
of time trying to find an appropriate engine and in
doing so I found something that fit my needs.

4.1 Define needs
First, before anything else one has to define the
uses for this engine. In my case I was looking for
something that I could use at my university to
make VR presentations. But since I was going to
spend a substantial amount of time familiarizing
myself with the chosen engine, I might as well
choose one that I would be able to use once I
graduated.

For my project I needed an engine and support
tools that would enable me to:

• Create a model of a building and apply
textures.

• Export the model and textures to the
game engine.

• Create a Graphical User Interface that
would allow others to easily figure out how
to get through my presentation.

• Import an avatar into the project that could
be used as a demonstration model and
allow the user to use the avatar as a
reference for a human.

• Allow me to make the presentation look
good and professional.

• Include easy to use shadows and
lightmaps. No extra programming
necessary would be optimal.

• Allow me to create interactive objects with
relative ease.

• A forum or support group that could
answer questions and provide help when
necessary.

• Allow me to add new code to the engine
using C++ and openGL.

• Support sound elements in the 3D
structure.

• Preferably run on Windows, Linux, Unix
and Macintosh.

Due to time restriction and the extreme prices,
any VR system was completely out of the
question. If there were no limits to the budget, I

might have looked at VEGA from MultiGen but
this is not a viable tool in my opinion if I am to use
my experience after I graduate.

I spent some time asking around at the various
game developer sites on the internet.
The International Game Developers Association –
IGDA.org was one of the first places that I went
and got a lot of helpful information, as well as
Gamasutra.com.

Here are the game engines I have looked at;
some more in depth than others.

• Unreal - $10,000
• Quake2 - $10,000
• Quake3 - $250,000
• Torque - $100
• 3D Game Studio – $80
• Genesis - $10,000
• Lithtech - $75,000
• Crystal Space - Free
• Power Render - 5,500

After filtering out the most expensive, and those
that were buggy and lacking features I was left
with Torque and 3d Game Studio. I chose Torque
as I found it the most viable solution for future
commercial uses. At $100, or the free student
license Torque had all the features needed to
make a good solid virtual reality presentation.
It had export tools for several 3D modeling
applications, and most importantly, a very easy
learning curve.

There are a few other engines that I have not
looked into. These are:

• OpenSceneGraph
• Xengine
• NeoEngine
• OpenApp

As new game engines keeps appearing I had to
stop the game engine research at one point,
choose an engine and move on. I was first aware
of the four above mentioned engines at the end of
this project and so they have not been compared
with the others.

Game Engines features and Possibilities by Bendik Stang – IMM DTU 2003 Page 11 of 31

Institute of Informatics and Mathematical Modeling @ The Technical University of Denmark

4.2 Overview over engines:

The Halflife engine was not for sale and I was not
able to obtain a price on Nebula and Vulpine.

Game
Engines

Dark
Basic
Pro

Quake
1

Unreal Halflife Genesis Nebula Quake
2

Game
Studio

Quake
3

Lichtech
2

Vulpine Torque Crystal
Space

Power
Rende

r
Culling
system

BSP BSP BSP BSP BSP - BSP BSP BSP Portal Portal BSP BSP Yes

Mipmap Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
LOD - - Discr. - Discr. Discr. Discr. Discr. Cont. Cont. Discr. - Cont.
Environment
map

Cubic Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Lightmaps Yes Yes Yes Yes Yes - Yes Yes Yes Yes Yes Yes Yes Yes
Dynamic
shadows

Yes - Yes - Yes - - Yes - Yes Yes Yes Yes Yes

Mesh
interpolation

- - Yes - - Yes Yes Yes Yes Yes Yes Yes - Yes

Terrain Yes - Yes - - Yes - Yes - Yes Yes Deform. Yes Defor
m.

Particle
system

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes - Yes

Mirrors Yes - Yes - Yes - Yes Dev Yes Yes Yes Dev Yes Yes
Curved
surfaces

- - Yes - - - - - Yes Yes Yes - Yes Yes

Shaders Yes - - - - Yes - - Yes Yes Yes Dev - Yes
Bone
animation

Yes - Yes Yes Yes Yes - - - Yes Yes Yes - Yes

Multiplayer Yes Yes Yes Yes - Yes Yes Yes Yes Yes Yes Yes - Yes
Multisession - - Yes - - - Yes Dev Yes Yes Yes Yes - Yes
Pysics
 Engine

- - - - - - - - - Yes Yes Dev - ?

Scripting
language

- Basic C Basic C C TLC C++ Java C++ C/pyth. phyton C++

Price $100 GPL $10,000 ? $10,000 $10,000 $80 $250,000 $75,000 $100 GNU $5,500

Game Engines features and Possibilities by Bendik Stang – IMM DTU 2003 Page 12 of 31

Institute of Informatics and Mathematical Modeling @ The Technical University of Denmark

5 The Torque Engine

After having considered various engines the
choice fell on Torque from GarageGames. The
engine had all the features needed. It was cheap
and even free for me as a student. The developer
community was very alive and most helpful
answering all my questions. All this left me
comfortable with my choice.

I’m now going to look at the different parts of the
Torque game engine and shortly comment the
different features, and how they can be used to
make an interactive presentation.

Figure 12: Torque ingame editing tools

5.1 Documentation
At the Garage Games webpage there are three
main sections that can be used for reference:

1. The Torque Documentation pages.
Here you will find information on all the
features of the engine and how to install
the SDK, make it compile, create
contents, scripts etc. An over view is in
the Appendix B.

2. The Torque Resource library. This

contains lots of good tutorials, new export
tools, and other helpful tips to get you
started.

3. The Torque Developer Forum. When all

other fails, this is the place to go. Unless
the question is rude or plain out silly it will
normally get answered in a few hours
sometime in only a few minutes.

5.2 Scripting
This is a feature that I have not yet looked at
much. It is based on a C++ like syntax and allows
you to access almost all game logic. This would
be the tool to use to create interactive features in
the presentation. Things like doors, triggers,
switches, interactive objects, animations, light
effects, particles and more can be created or
modified using the scripting language. More
information on this is available at the garage
games website.

5.3 Ingame Editor
Once the SDK has compiled, you can open the
demo application. This will put you in control of an
avatar in a basic test world with some test objects.

By hitting F1 you can learn how to access the
three in-game editors and their tools:

GUI Editor

Figure 13: Adding a new clock to the HUD

This editor will allow you to modify or create your
own Graphical User Interface (GUI). You can
easily include things like a Head up Display (HUD)
with compass, target crosshairs, satellite view or
other goodies.

You can also create dialog windows that will
display text and other information. Like a help
menu, login menu, etc.

Game Engines features and Possibilities by Bendik Stang – IMM DTU 2003 Page 13 of 31

Institute of Informatics and Mathematical Modeling @ The Technical University of Denmark

Mission Editor
The mission editor enables realtime manipulation
of most objects in the game. It allows you to add
new models such as buildings, trees and plants.
You can control the light settings, sky textures, fog
thickness and color and much more.

Figure 14: Adding new buildings to the scene.

As you add the new buildings that you have
created in e.g. WorldCraft, they appear unlit. That
is, their lightmaps has not been yet generated.

You can move the objects around in the scene
and rotate and scale them as you like. Duplication
of objects is done like in a word processor by the
copy paste functions that is used in most
programs today.

Once the buildings are in the desired position you
can regenerate all lightmaps both on the terrain
and on the buildings.

The buildings will cast shadow on each other and
on the terrain.

Figure 15: Lightmaps are regenerated (a building is scaled
down)

Terrain Editor
This is another useful feature that allows realtime
manipulation of the terrain height map.
There are several brushes that can be used for
the manipulation, such as excavate, add dirt,
adjust height, smooth and flatten. You can set the
brush size to many sizes from 1 to 25 terrain-
texels in diameter. The Brush can be both smooth
and hard for all the features. On the illustration
below the mountain was ‘pulled up’ using an
‘’adjust height’ tool.

Figure 16: The terraform tool will allow realtime manipulation of
the height map.

Once the desired manipulations have been done,
a new lightmap must be generated before the
mountain casts shadow on the terrain.

Another important tool is the terrain paint tool that
will enable you to use the terrain bock as a
canvas. You can load six textures, which you can
either manually paint on the terrain, or use some
of the many filters. The filters can apply textures
depending on the height or slope of the terrain.
Other random filters are also available.

Figure 17: The terrain paint tool will allow realtime texturing of
the terrain.

Game Engines features and Possibilities by Bendik Stang – IMM DTU 2003 Page 14 of 31

Institute of Informatics and Mathematical Modeling @ The Technical University of Denmark

6 Creating a visualization
There are two types of objects supported by the
Torque engine.

- DTS (Dynamic shapes and items without
shadow)

- DIF (Static shapes and interior objects
with light maps.)

The DTS objects can be made in 3D studio Max,
or LightWave, and can then be exported to the
Torque engine. Models created in any other
application can be saved as VRML and imported
in 3D studio Max.

The DIF objects can be created using LightWave,
WorldCraft or Quark. The programs can create a
model in the MAP format, which is the old Quake2
format. The MAP format can then be converted to
DIF by using the “map2dif” application.

In this project I will only use the DIF format. This is
mainly because all my models will need a light
map, and I would like to show that this
presentation can be made using cheap tools or
freeware. WorldCraft is freeware.

As mentioned in the preface, I began this project a
intending to use a VR system to create a VR
presentation. The project crashed as the other
students in the project group gave up.

In this chapter I will demonstrate how to make the
feature model, and get it into the game engine.

Figure 18: This is a rendered preview of the model that was to
be used in the project the scene is rendered in Maya 2001.

Figure 19: This is a realtime snapshot of the scene from the
final presentation 2002.

6.1 Acquiring the model data
When the project was started, the building was
not yet built. So we acquired the architectural
blueprints from the architect office.

A very important notice here is that the
constructional accuracy given on blue prints
contains an accuracy that is relevant for the
construction engineers, and not relevant for the
graphical presentation. Do not waste time with
details that cannot be seen with the bare eye on a
monitor!

The new building was to be connected to building
101 at the campus. I could not get hold of the
blueprints for this building and was forced to do
my own inaccurate measurements. This was
mostly done by estimation or counting footsteps
along the side of the building.

One experience that I learned from this project is
that one should always take a lot of photographs
of the relevant site and its surroundings. I am sure
this is obvious to architects. The images will serve
great for model reference, but also give great
inspiration and material when making the relevant
textures.

Game Engines features and Possibilities by Bendik Stang – IMM DTU 2003 Page 15 of 31

Institute of Informatics and Mathematical Modeling @ The Technical University of Denmark

6.2 Acquiring the relevant textures
To create virtual reality presentation that looks
realistic, textures are of vital importance. Good
texture work will make the model look just as good
as if it was built by several orders of magnitude
more polygons. Reducing the number of polygons
will also increase the performance.

The existing facades were photographed and
processed for texturing. The process consists of
cleaning the image, cropping it and making it
tileable. I would recommend doing this on a
clouded day and not to use flash.

In order to make the images tileable an image
manipulation program such as Photoshop is very
useful. Other cheaper alternative image
manipulation programs could be Gimp or
Photoshop Pro. The image can then be offset so
that all the borders of the image appear in the
middle of the image. By using the ‘stamp’ tool one
can then smoothly copy parts of the picture to
overlap other non tileable areas. Below is and
example of a before and after the tileable process.

Figure 20: An unprocessed picture of a brick wall is used as a
texture. The six instances of the texture becomes quite visible.

Figure 21: After processing the image so it becomes tileable.

Several tutorials on the exact method can be
found on the internet. Here is one example:
http://www.computerarts.co.uk/tutorials/type/tutori
al.asp?id=28122

If you are using a camera to take images for
textures, there are a few things you should keep
in mind. First you should try to do it on a cloudy
day. Direct sunlight causes a lot of secular light on
the image that will look bad on a texture. Try also
to get far away from the source before
photographing if there is a zoom - use it. Next, it is
important to position the camera along the normal
of the face that you are photographing. This will
make the work in Photoshop a lot easier, as the
perspective distortion will be minimal.

Work with high resolution images and scale them
down to the desired texture size after all the
processing has been done.

To avoid repetitive patterns a high pass filter can
be applied.

Figure 22: Example of tillable textures before high pass filter.
(Picture courtesy of www.gamasutra.com)

Figure 23: Example of tillable textures after high pass filter.
(Picture courtesy of www.gamasutra.com)

Game Engines features and Possibilities by Bendik Stang – IMM DTU 2003 Page 16 of 31

Institute of Informatics and Mathematical Modeling @ The Technical University of Denmark

Other textures can be found on the internet.
Places like 3Dcafe.com have some for free. In
general it is a good idea to keep ones textures in
a size that is of factor 2. e.g. 32x32 32x64
128x256 etc. Most new graphics cards and game
engines will handle 512x512 textures. Going
above this is ok if you are sure that your system
supports it. Using textures other that by a factor of
2 could cause lower performance.

6.3 Textures
Using photographs as texture material or making
the texture from scratch?

In the original 3D model, I used a processed
image of the original façade as a texture. This
looked flat and fake. It was a simple way to make
the building 101 with very simple geometry.

Looking over my old material as I was about to
make the new model for the Torque visualization,
it became clear that there had to be a better way
to make the texture.

Figure 24: The original 101 façade texture

In order to make a good set of textures from this
image, one has to look for tileable elements. The
window is one such element. It repeats again and
again. Looking at the concrete pieces of the wall,
one can see that this also tiles, but that there is a
variation of the dirt from tile to tile, and the tiles on
top of the building are less dirty than the one in
the story below.

To create a texture of the concrete tiles, I used the
following concrete texture.

Figure 25: 256x256 Jpeg concrete texture. (High passed and

tileable.)

Using this alone would give a very clean look as if
the building was brand new. Obviously some dirt
needs to be applied.

This is what I did to the image in Photoshop:

• Added and mixed another texture. (see
below)

• Adjust hue/saturation until the color
matched that of the lightest elements of
the façade.

• Applied a new layer with a cloud filter* on.
This creates a black and white random
cloud pattern.

• Used the filter ‘liquefy’ on the cloud layer
to create the dirt patterns.

• Applied the ‘dirt’ pattern as a ‘hard light’ to
the other images.

Here is how the dirt texture was made.

*The cloud filter

The cloud filter after the
‘liquefy’ process.

Game Engines features and Possibilities by Bendik Stang – IMM DTU 2003 Page 17 of 31

Institute of Informatics and Mathematical Modeling @ The Technical University of Denmark

Here is how the final texture was created.

One tileable concrete

texture

+

Mixed with another texture

at 50%

 +

Adding the ‘dirt’ as ‘dark
light’

 =

Resulting Texture

By creating a few different ‘dirt’ textures in
different strengths of black and white I created
three light textures and three dark ones for the
upper and lower stories.

Example of the upper(L) and lower(R) story texture

And finally a picture of the resulting façade:

Figure 26: Corner of building 101 - snapshot from realtime
environment

Game Engines features and Possibilities by Bendik Stang – IMM DTU 2003 Page 18 of 31

Institute of Informatics and Mathematical Modeling @ The Technical University of Denmark

7 Using WorldCraft 3.3
First I will need a freeware application called
WorldCraft or Hammer. The program is commonly
used as a level editor tool in for most of the
popular game engines on the marked. It is very
simple, but more than adequate for constructing
buildings and other non organic models.

In appendix B all the Documentation for WC is
available as well as some simple tutorials to get
started.

7.1 Modeling in WorldCraft
In the original project, when the real Student
Union was not yet built, making a VR presentation
had a genuine purpose. As the project has been
severely delayed this purpose is some what lost. I
have chosen to create the original concept to
demonstrate the ease in which I can do this. It is
still a time consuming job, but in less time I’ll get
better results.

To better understand the process of making
models in WorldCraft for a game engine a few
useful pieces of information is worth keeping in
mind during the modeling work.

• Limited texture memory. The amount of
available texture memory depends on the
hardware. A good general rule is to keep the
textures at a maximum of 512x512. In this
report all textures are 256x256 or smaller.

• Limited geometry capabilities. If you have a
very complex or large shape, it will have to be
divided into several smaller pieces, and then
assembled in the game engine.

• Level of detail. Depending on the amount of
models in your scene, this is often the key
factor to getting a good frame rate.

• Effects of the shadow maps. This is maybe
one of the more interesting things to keep in
mind. A flat surface will have the same shadow
map all over. If the surface has some elements
that stick out or in, then these elements will
cause a shadow effect on the other surface.
The shadow map makes a huge difference in
visual appearance. Make the models so they
take advantage of this!

7.2 Creating Building 101
Without the real blueprints over the building,
creating a VR duplicate is hard. Looking at the
purpose of this VR presentation, there is no need
for any high accuracy, as the building 101 is there
as a reference to the new S-house. Therefore the
models herein were created based on data from
images, and from memory.

Since building 101 is such a large building, it had
to be divided into several smaller pieces. By
finding parts of the building that are repetitive it is
possible to copy-paste elements of the building to
create the full building.

For simplicity I split the building up into

1. Façade 2 story
2. Façade 3 story
3. Façade 2 story with entrance south
4. Façade 2 story with entrance north
5. Roof
6. Façade corner 3 story
7. Façade corner 2 story
8. Façade corner 1 story
9. Façade 1 story for roof.

Figure 27: Façade 2 story element in WorldCraft

Figure 28: Façade 2 story with entrance south

Game Engines features and Possibilities by Bendik Stang – IMM DTU 2003 Page 19 of 31

Institute of Informatics and Mathematical Modeling @ The Technical University of Denmark

Adding the parts together in Torque is easily
done, but the accuracy can be a bit tricky. In the
Torque editor preferences it is possible to set the
accuracy of movement. This will allow you to
move the next piece so that it fits exactly next to
the other. By copying the coordinates of one
building element and pasting them into a newly
inserted element, you only need to adjust the
alignment along one axis.

Figure 29: Front façade of 101 after each piece has been
added to the scene.

7.3 Creating the new S-house.
Since the object of this presentation has been
somewhat changed, I have chosen to simplify the
work on this part of the visualization a bit. There is
no basement in the model, and some of the
interior rooms have been left out. No furniture or
other interior decoration has been added.

I used WorldCraft just as when making building
101. Where I split 101 up into several pieces, I
only split the new S-house into two pieces. This
was to minimize the artifacts of the interior lights.
One piece contains the glass corridor linking the
S-house with building 101, and the other is the
entire S-house.

Adding extra features - transparency
In order to get transparency on the windows I had
to implement a new piece of code. Unfortunately
at writing time, there is a bug in this, causing the
alpha blending to do mysterious things some
times. I have kept in the demo as I expect there to
be a fix to this problem very soon, and it does
illustrate the feature of transparent windows.

I am not going to show how this was implemented
in code. The method is the same as I will show in
the chapter about implementing code, where I use
the example of adding the new grass elements.

Every week new features are added to the game
engine by the people using it. Each added feature
comes with an instruction on how to install it.

Adding extra features – environment map
While adding transparency I also enabled the
environment map effect on the windows of
building 101. As shown on this illustration the
windows have become more window-like than in
the previous illustration on page 13.

This is done by opening the script file:
/fps/data/init.cs

By adding the line:
addMaterialMapping("windowUp","environment:
fps/data/skies/day_0002 0.5");

The texture “windowUp.png” will get the static
spherical environment texture “day_0002.png”
applied with the blending factor of 50%.

Figure 30: Spherical environment map has been added to the
windows.

By creating light nodes in WorldCraft the inside of
the S-house easily gets a ‘nice’ look from the
variation in the lightmaps.

Figure 31: Interior lights. Avatars for size reference – by Realm
Wars

Game Engines features and Possibilities by Bendik Stang – IMM DTU 2003 Page 20 of 31

Institute of Informatics and Mathematical Modeling @ The Technical University of Denmark

8 Improving the Game Engine
This turned out to be a lot larger task than first
imagined. One ting is to create a piece of openGL
code, and another thing is to get familiar with 200
000 lines of source code and implement ones own
code in it. The time it took to get familiar with
Torque source code is in my opinion worth it. With
this experience I can now use the game engine to
present any kind of openGL code that I might
make in the future.

Part of the original plan was to allow the VR user
to test out various interior decorations. The
students were to be able to use the VR
presentation as a kind of doll house to figure out
how they wanted the new Student Union to be
decorated internally.

This interior decoration presentation would only
require me to do some additional 3D artwork. This
is something that I enjoy, but it would not be very
educational for me. Instead I have chosen to
demonstrate how it is possible to create new
features or special graphics/effects using C++,
OpenGL and the Torque Game Engine (TGE)

8.1 Game engine use for educational
purposes.

Performer
Many students working with computer graphics
know how to create 3D graphics using openGL
and C++, but due to time limits, they hardly ever
get a chance to use these skills in a project where
they can put the resulting 3D graphics into an
appropriate scene. The following demonstration is
meant to show how this can be done.

Examples of projects where time restrains prohibit
the result to be put into context:

Create a terrain optimization algorithm.
Standard result would be a terrain triangle mesh
in wire frame and maybe even textured polygons.
Optimal results: Terrain implemented in VR world,
multiple terrain textures, shadows, world content
such as plants, trees, buildings and people.
Demonstrating the generated terrain put in actual
use. To show the performance of the terrain all
the other elements could be toggled off.

Create soft shadows for realtime use.
The result would be a special scene where there
was some limited objects demonstrating the
effects of the used algorithms. The optimal result
would be a full VR world where the algorithms

were implemented to demonstrate not only that
they work, but how this would work with a full
realtime system and the impact of the
improvements in visual quality.

Create a new radiosity rendering method for
realtime.
Typical result would be the standard Cornell box,
where the rendering algorithms were used in
realtime.

Optimal result would be to get this into a full word
where all lightmaps were created using this
method. A cornell box should only be one room in
this world.

My point here is that by using a game engine in
the first place, the resulting presentation could be
so much more, without putting much more than a
fraction extra work into it. And each project that
was completed this way would add quality to the
engine that could be used either commercially or
submitted as open source for a lot of people to
enjoy.

Counter arguments to this would be that the game
engine would impose restrictions to how the
algorithms would have to be made. However
since all the code would be in C++ and open GL it
would be a rather easy job to take it out of the
engine and make it run in a separate application.

However writing the code in a separate
application first and then later integrating it with a
game engine would cause double work, as the
original code was not structured to work with the
engine. In perspective most students that
complete their education and continue to work
with computer graphics will most likely be in a
work environment where they have to create code
that will have to work with an already existing
code. Thus writing code for a game engine as an
educational process will not only give the students
the extra, and almost free, insight in a game
engine, but it will also teach them something
about writing source code that is part of a larger
program. So the students would get more
experience out of almost the same amount of
work. The university on the other hand could
encourage the students to commit the results as
open source, and so the game engine would
increase its quality. This would ensure that future
students would find the game engine attractive
and enjoy working on improving it or using it for
other scientific/educational uses.

In order to create any object in the TGE engine
certain basic setup code is needed. After getting
the TGE SDK I was worried that I would have to

Game Engines features and Possibilities by Bendik Stang – IMM DTU 2003 Page 21 of 31

Institute of Informatics and Mathematical Modeling @ The Technical University of Denmark

spend a lot of time getting to know the code
before I could begin to produce anything useful.

I wrote a post on the TGE forum asking for
assistance on this subject, and within a few days
Melvyn May had made me a code snippet that
would allow me to begin working right away.

The code snippet was very well documented and
can be used as part of an educational exercise
where the students could perform an otherwise
regular openGL exercise in C++. It would surely
make the exercise a lot more fun!

8.2 Getting to know the structure
I would suggest starting with some simple
exercises using only openGL. Creating a rotating
cube, applying vertex colors and textures would
be a good start. Get the Melvin May’s fxObject
from the resources at GarageGames. Implement it
and read the documentation carefully. This will
teach you how to write openGL code that works
with the Torque Game Engine (TGE)

There are a lot of other resources at Garage
Games that can teach you more about things like
scripting, rendering effects, pixel shaders etc.

More detailed knowledge of the structures of the
game engine is also available in the TGE
documentation.

8.3 Using online resources
There is always the GarageGames forum, where
most questions are answered quickly. If you have
a chat client like mIRC you can always login to the
GarageGames chat and talk to the others in the
community.

Game Engines features and Possibilities by Bendik Stang – IMM DTU 2003 Page 22 of 31

Institute of Informatics and Mathematical Modeling @ The Technical University of Denmark

9 Creating fxGrassReplicator
I have spent a lot of time modeling plants and
foliage in 3D modeling applications. The work is
tedious and implementing the resulting objects in
a VR world is a big job that very often gives a
repetitive results.

Creating billboards is a well known method in VR
for generation of forests and foliage in nature
scenes. For the demonstration purpose in this
project I will try to improve the visual quality of the
grass.

9.1 Previous work on visualizing grass
One of the latest action games uses the billboard
impostors to create grass. As mentioned it looks
good from afar and terrible when the billboards
rotate around your feet as you walk through the
grass. The result is even worse as they tend to
use mostly one texture for grass in any given
scene.

Figure 32: Soldier of Fortune by Double Helix 2002. Note how

the grass all look the same. It becomes very obvious when
seen in realtime.

Another approach used by Acherons Call 2 a new
massive multiplayer online roleplaying game
(MMORPG) is to use quads with a texture and an
alpha map, but not to allow them to rotate to face
the camera.

The game only uses grass in enclosed areas or in
patches if placed in the open. I presume the grass
is quite demanding on the hardware. I do not
know if the use any kind of level of detail.

Figure 33: Asherons Call 2 by Microsoft Game Studios. The
grass elements consists of one textured quad that is placed at
a 90 degree angle on the terrain. The grass does not rotate to
face the camera.

The method used in Asherons Call looks decent
from a low perspective. However once you move
the camera up a little higher and look down, the
quads with the grass texture become almost
invisible. This gives the illusion that the grass
directly under you suddenly disappears. (See
Figure 36)

9.2 My approach
When you move around in a world full of
billboards the illusion of being in a real world will
quickly break as you see all the plants rotate
around their Z-axis to face you/ the camera. In
order to avoid this it is imperative that the
billboards are far away from the camera, and
replaced with something else when viewed up
close.

The distance check is not very time consuming,
but if you were to create billboards with grass on,
the amount of elements to apply a distance check
would be substantial. It is probably in the order of
200 000 or more. Some optimization could be
done, but what kind of replacement for the
billboards would be used up front?

After looking at various methods for drawing grass
in some of the newer games on the marked, I
decided to give it a try.

I first got Melvin May’s code for the
fxFoliageReplicator. The code enabled the
placement of several alpha textured billboards
and was created to allow the placement of trees
and bushes.

Used for grass, the result looked reasonable from
a low perspective, but moving the camera up and

Game Engines features and Possibilities by Bendik Stang – IMM DTU 2003 Page 23 of 31

Institute of Informatics and Mathematical Modeling @ The Technical University of Denmark

looking down the polygon faces were very
obvious. (See figure 33-34)

Figure 34: Typical 'billboarded' grass. All the grass elements
face the camera. This works ok for still images, but once you
begin to move around it becomes obvious that the grass
elements are rotating.

Figure 35: Looking at the same scene from above. The grass
elements are all aligned.

Tilting the polygons a little (20-30 degrees) made
it look a lot better from above, but now the grass
polygons became rather obvious when walking in
the grass. (See illustration below)

Figure 36: The grass disappearing from a high perspective.

Since it is not mandatory that the grass elements
only consist of one polygon, I tested grass
elements consist of two quads placed in a V-
shape.

Figure 37: Here the grass is still visible at a high perspective.

The two faced grass elements looked fine from
the lower angles. Tilting the camera down, one of
the two faces could get aligned with the direction
of view, but the sister polygon would always be in
an angle, thus keeping up the appearance of
grass.

Figure 38: Double quads in a v-shape textured with the same
texture, added vertex coloring and removed the billboard effect
of aligning the faces to the camera.

Now the grass began to look reasonable from
both a high perspective and a low perspective.

Figure 39: The high angle visual quality is not as good as the
lower angle, but I found this result a lot better than the original
method.

From a high
angle the two
faced grass
elements give
a better quality
than the one
faced.

From a low angle
the two faced
grass elements
look good

From a high
angle the
edges of the
polygons
becomes
obvious,

From a low angle
the one faced
grass elements
look good

Game Engines features and Possibilities by Bendik Stang – IMM DTU 2003 Page 24 of 31

Institute of Informatics and Mathematical Modeling @ The Technical University of Denmark

9.2.1 Even grass distribution

Circular placement area
Once I had made the code for the actual grass
elements, I began looking into a way to distribute
the grass evenly over a given area.

In the original code the grass was distributed by
random in a given circular area. Position is given
by polar coordinates R and ω where both are
generated as random numbers.

Distributing the grass elements by using polar
coordinates where the position is given by (R,ω)
result in a higher density in the center of the circle
and a lower density at the edge of the circle when
R is a random number ∈[0,OuterRadius] (see
Figure 37).

More even distribution.
By dividing the circle into several circle-rings, like
a dart board, the distribution could be applied
more evenly. The total density of the circle was
calculated, and then each ring was assigned the
appropriate amount of elements. By dividing the
circle into ten rings, the distribution was better but
not good enough(see Figure 38). Finally at 100
subdivisions the distribution was good (Fig. 39).

Figure 40 Position(R,ω) the
original distribution algorithm.

Figure 41 Position(R,ω)
where the circle is subdivided
in 10 rings and distribution by

density.

Figure 42 Position (R,ω)
where the subdivision is set to
100

Figure 43 Position (R,ω)
where R is the square root
of a random number
between 0 and 1.

Figure 39 and 40 have a slight difference in the hue. This is
due to a difference in the alpha blending which is irrelevant in
the distribution evaluation.

However I soon became aware of a much more
elegant way to distribute the elements over the
circular area. Instead of subdividing the circle into
100 rings a similar result could be obtained by
merely using the square root of a number
between 0 and 1 and then multiplying this with the
desired radius in the circle.

To sum up the methods:
In all four examples ω is a random number
between 0 and 2π, and where r is a random
number between 0 and the desired radius and R
is the outer radius of the circle.

Figure 37:
Position X = r * R * cos(ω)
Position Y = r * R * sin(ω)

Figure 38:
The total density of the total area πR2 is
calculated. The circle πR2 is then divided into 10
rings. The elements are divided into the 10 rings
based on the density and the area of the ring, and
then distributed into each ring according to:
Position X = r * R * cos(ω)
Position Y = r * R * sin(ω)

Figure 39: Exactly the same as in Figure 38 only
distributed over 100 rings instead of 10.

Figure 40:
Position X = (√r) * R * cos(ω)
Position Y = (√r) * R * sin(ω)

The visual result of the algorithms used in both
figure 39 and 40 looks identical. But since the
algorithm used in figure 40 is both quicker and
more elegant I have removed the other.

Game Engines features and Possibilities by Bendik Stang – IMM DTU 2003 Page 25 of 31

Institute of Informatics and Mathematical Modeling @ The Technical University of Denmark

Squared placement area

Making squared placement areas required the
given area to be sub-divided into smaller cells.

To allow for a high level of customization two
variables from the editor were reused as they
were only useful in case of a circular placement
area.

For the square placement area the two variables
were reused to define the number of rows in both
x axis and y axis.

Since the placement algorithm uses a loop to go
through all the elements, a modulus for each row
was used. See sample code below.

Now it is only to go through each subdivision and
place a grass element until all elements have
been placed. If all the grass elements were
oriented the same way, the result would look
much like a wheat field with rows.
(See figure 44-45)

 if (!mFieldData.mIsSquare){
 // Calculate a random offset for the CIRCULAR distribution system.

 float radius = RandomGen.randF();
 Angle = RandomGen.randF(0, M_2PI);

 // Calcualte the new position.
 GrassPosition.x += mFieldData.mOuterRadiusY * sqrt(radius) * mCos(Angle);
 GrassPosition.y += mFieldData.mOuterRadiusX * sqrt(radius) * mSin(Angle);
 }
 else{
 // Calculate a random offset for the SQUARE distribution system.
 float dX, dY, mX, mY;
 int n, N, mXn, mYn;

 //n = mCurrentGrassCount + (101 - RelocationRetry); // current iteration
 n = idx; // Iterator
 mX = (float)mFieldData.mOuterRadiusX; // lenght of X
 mY = (float)mFieldData.mOuterRadiusY; //length of Y
 mXn = mFieldData.mInnerRadiusX; // number of divisions along X
 mYn = mFieldData.mInnerRadiusY; // number of divisions along Y
 dX = (float)mX/(float)mXn; // distance between the X divisions
 dY = (float)mY/(float)mYn; // distance between the Y divisions

 if (mFieldData.mIsRandom)
 {
 GrassPosition.x += RandomGen.randF(-mX, mX);
 GrassPosition.y += RandomGen.randF(-mY, mY);
 }
 else
 {
 // The position of the area center plus…(-1.0f * mX/2) is the offset
 // to allow the center of the placement area to be the center of the group object.
 // (1 + n%mXn) will go from 1 to the number of rows in the X direction
 // (1 + n/mXn)%nYm will go from 1 to the number of rows in the Y direction
 GrassPosition.x += (-1.0f * mX/2) + ((float)(1 + n%mXn)) * dX;
 GrassPosition.y += (-1.0f * mY/2) + ((float)(1 + (n/mXn)%mYn)) * dY;
 }
 }
 if (mFieldData.mIsRandom)
 {
 GrassDirection.x = GrassPosition.x + mFieldData.mMaxWidth * mCos(Angle2);
 GrassDirection.y = GrassPosition.y + mFieldData.mMaxWidth * mSin(Angle2);
 }
 else
 {
 GrassDirection.x = GrassPosition.x+mFieldData.mMaxWidth*mCos(mFieldData.mRotateAngle);
 GrassDirection.y = GrassPosition.y+mFieldData.mMaxWidth*mSin(mFieldData.mRotateAngle);
 }
 }

Game Engines features and Possibilities by Bendik Stang – IMM DTU 2003 Page 26 of 31

Institute of Informatics and Mathematical Modeling @ The Technical University of Denmark

In order to make the grass placement more
random two more things were done.

First the orientation was set to a random direction.
Secondly instead of placing the grass element in
the exact grid point, the grass element would be
placed randomly within a radius of the given grid
point. (See figure 46)

Figure 44 Square placement area with a given direction of

each element.

Figure 45 Rotation of each element can easily be set while the

presentation is running..

Figure 46 Square placement area with a random direction of

each element.

9.2.2 Alpha blending problems

Due to the amount of grass elements back to front
sorting is not a viable solution. If a sorting
algorithm was used all the elements would have
to be resorted every frame. With e.g. 200 000
grass elements this would quickly lower the frame
rate.

With out any sorting the best solution is normally
the (GL_ALPHA_TEST) where the alpha value is
a binary value given by the texture.

This would result in elements looking like this:

Figure 47: No sorting and GL_ALPHA_TEST enabled.

The upside to this method is that the blending
works nice with the avatars running through. The
downside is that the edge between the ground
and the textured polygon becomes quite sharp.

The alternative where the edge between the
ground and the polygon becomes less obvious is
when the two lower vertices in the polygon
becomes partly transparent. But in order to get
this feature to work properly, GL_ALPHA_TEST
must be disabled and the result looks like this.

Figure 48: No sorting and GL_ALPHA_TEST disabled

Game Engines features and Possibilities by Bendik Stang – IMM DTU 2003 Page 27 of 31

Institute of Informatics and Mathematical Modeling @ The Technical University of Denmark

9.2.3 Vertex coloring for flexible
effects.

Vertex coloring is a cheap and easy way to get
more variation in the output graphics.

By enabling vertex coloring a grayscale texture
can be used instead of a colored texture. This
gives a nice flexibility to the grass elements.
By manipulating the vertex colors, the grass can
change color from light green in the spring to dark
gray in the winter.

So instead of making several textures for the
various seasons’ one texture can be used.
If there are multiple colors on the texture vertex
coloring might not be a good option, so objects
like flowers would not use this feature.

By assigning different colors to the top and bottom
of the polygon, a nice effect is created. Normally a
darker color would be appropriate at the bottom
and a lighter one on the top.
Here is an exaggerated example.

Figure 49: Vertex color example. different colors at the top and

bottom.

9.2.4 Culling algorithm used
The culling mechanism was done by Melvin May.
It encapsulates the entire area of the grass with a
quad tree. The quad tree is made up of boxes that
can be checked for culling. The smallest set of
boxes will have a set of grass elements attached.

More information on this is given in the source
code.

9.2.5 Animation of vertices and lights
This is a very simple animation where the two top
vertices of each grass element will follow a sinus

function. A time element is included to decide the
speed of the animation and a variable is set to
control the magnitude of the animation.

Upon drawing the polygon a light value is
multiplied with the vertex colors, giving the illusion
of variances of shade over time. This effect tries
to copy the effects of the variance of light due to
the movement of the grass in the wind.

9.2.6 Collision tests
The original code created the billboards by doing
one collision test with the terrain, and then
drawing the billboard in that point.

With the wide grass elements this method gave
some ugly artifacts. In curved terrain the grass
polygons would stick out, and the illusion of grass
was quickly lost.

The first attempt to fix this was done by rotating
the grass around the terrain normal. This worked
fine in some instances where the grass was
placed horizontal in a hill, but was not aligned with
the curvature of the hill.

The solution was only partly successful, as the
problem remained where there was a change in
the terrain curvature. The solution also removed
the random element in the rotation of the
polygons. Now they would all follow the height
curves of the terrain.

One viable solution was to make one collision test
at each corner of the polygon. This way the
random rotation of the polygons was preserved.
There would still be problems where the curvature
of the terrain changed greatly.

Figure 50: One and two collision tests per grass element

The remaining problems were dealt with by only
allowing the grass to grow at a given maximum
angle of curvature.

Game Engines features and Possibilities by Bendik Stang – IMM DTU 2003 Page 28 of 31

Institute of Informatics and Mathematical Modeling @ The Technical University of Denmark

The chosen solution was not perfect. It gave a lot
better visual quality, but as seen on fig. 39 it
eliminated polygons sticking out into the open.

By testing what kind of object the collision is done
with, it is possible to allow the grass to only grow
on terrain, water, interior objects or static objects,
or any combination of these.

Uses for this could be to make crass covered
roofs or flower beds and water plants.

9.2.7 LOD and popping
To increase performance I implemented a LOD
system. The system could remove every other,
second or third grass element, as the distance
increased. This would have worked nicely if it was
possible to blend the alpha value of each grass
element in and out.

As stated in 8.3.2 the alpha check was done by
GL_ALPHA_TEST, and results in a binary value
of the alpha of the grass. So either the grass is
visible or it is not.

Without this feature it was impossible to avoid
severe popping, after several tests the LOD was
removed from the system until I came up with the
idea of letting the grass element polygons grow up
from the ground instead of fade in.

Two variables define the distance from the
camera to where the grass elements are visible.
This test is done whether LOD is implemented or
not. By using grow up/down instead of alpha
blend in/out in combination with max/min viewing
distance; LOD could now effectively be integrated.

Instead of using a LOD system within the
fxGrassReplicator object, e.g. 4 instances of
fxGrassReplicator could be used to create 4 levels
of detail. By leaving the level of detail out of the

Figure 51: Level of detail visualized.

Game Engines features and Possibilities by Bendik Stang – IMM DTU 2003 Page 29 of 31

Institute of Informatics and Mathematical Modeling @ The Technical University of Denmark

actual code, but enabling the use of each instance
as one set of detail, great optimization was
possible.

Figure 51 is a blend between two screen shots. It
shows the grass displayed as grass and the
colored elements shows how the level of detail
works in this scene. The lowest level of detail
(pink) has twice as large grass elements as the
closest level of detail.

9.2.9 Conclusion
Using camera aligned impostors optimizes the
display of each billboard element. However it does
not look well when the camera is moving through
a scene since the rotations of the billboards are
very obvious.

With the amount of grass needed to create large
green fields it puts a heavy strain on the computer
hardware. With my hardware from late 2001 it
runs at around 10-15 frames per second.

Comparing the results with what I have seen
elsewhere on the marked today, I’m surprised that
the visual quality of my grass is so high in
comparison. I’m most pleased with the result, and
believe that with a little further adjustment of the
level of detail as well as a little better computer
hardware, my code could be used in virtual reality
presentations and games when grassy fields are
needed.

The grass is not perfect like I dreamed of but,
while testing various ways of making grass I came
to understand that you must accept some kind of
compromise due to hardware restrictions. It is
optimal if one has a limited control over the
camera. This way the grass can be tweaked to
either look perfect from a low or a high angle.

With this code I believe I have improved the game
engine a bit.

Game Engines features and Possibilities by Bendik Stang – IMM DTU 2003 Page 30 of 31

Institute of Informatics and Mathematical Modeling @ The Technical University of Denmark

9 Conclusion

Game engines vs. Virtual Reality engines.
I started out looking for a good way to make a
virtual reality presentation. In my opinion I have
found one.

Comparing a game engine to a vr-engine I found
little conceptual differences. The game engines
seem to have more visual effects and an easier
workflow than the vr-engines. The game engines
are also generally speaking cheaper.

Since the marked of Game Engines change so
rapidly, today’s best engine might not be
tomorrow’s best engine. The Torque engine
might not be the best engine for all uses, but it
has a lot of people working on improvements. This
indicates a chance that Torque will be up-to-date
for some time to come. With the very low cost of
use, I still feel it was a great choice for this project.

Further more I believe that the days of Virtual
Reality tools are over. The quality and usability of
game engines exceeds that of the best Virtual
Reality tools. During the time I have spent on this
project new and even better game engines have
appeared on the marked. But, the Virtual Reality
marked has not died, and so the Game Engines
will take over for the Virtual Reality engines.

With game optimized multiplayer code it is now
possible to create a presentation, and host a
server online. Many people can then log on, and
experience not only the e.g. architectural
presentation of a new building, but also the
interaction of lots of people within this world.

As the game engines and their tools mature, it is
becoming easier and easier to make
presentations. Still, making the models and the
textures for the presentation requires a fair
amount of work, and I cannot see how this could
be done a lot easier. Better modeling tools can
only help the work process, but in the end the
model must be built.
If the architects that design the building do so in a
format that can be converted to one that goes
right into the game engine, lots of work can be
saved.

Looking at the models I made myself in this
project, the work process, and the implementation
the result far surpasses that of the original project
that was abandoned. Of course I have gained

valuable skills in between, and so a direct
comparison is not completely fair.

Comparing the work process and the expenses of
the equipment and software, I see little doubt.
Using a Game Engine is both quicker, better and
far cheaper.

Implementing new code to a Game engine
The second part of this project was about
implementing new code to improve the chosen
game engine. I found this part of the project very
educating and fun.

I successfully created fxGrassReplicator to allow
lifelike swaying grass to be easily placed over a
desired area.

The code improved the existing method by
removing the rotation of the billboards to face the
camera. This was a vital improvement in an
environment where the camera is moving close to
the ground. By using two collision checks to place
the billboards it was possible to place the grass in
an uneven terrain without any visual. And using
two billboards instead of one allowed for
variances in the camera pitch and still keeping the
visual quality reasonable.

Obtaining the relevant information needed to
complete this task was mostly easy. At the
Garage Games forum I often found quicker
service than that of a teacher at the University, as
people would answer posts around the clock.

Writing a 3D computer graphics program can be a
huge task. Getting a good looking result is often a
tedious and time consuming process. Doing all
this within one university project is normally not
possible due to time restrictions. Compared to
what is on the marked today I think the results of
the grass code that I have implemented far
surpasses what I have seen anywhere else.
Unfortunately it is still demanding a lot of CPU
time and will have to be tweaked and optimized
further or one can wait half a year and get a better
computer.

Game Engines features and Possibilities by Bendik Stang – IMM DTU 2003 Page 31 of 31

Institute of Informatics and Mathematical Modeling @ The Technical University of Denmark

10 Reference
Sherman Chin Lit Kong – 3D Binary Space
Partitioning (Game Engine Focus) - University Of
Portsmouth.

Microsoft OpenGL Reference pages.
http://msdn.microsoft.com/library/default.asp?url=/
library/en-us/opengl/glfunc01_9u3y.asp

fxFoliageReplicator by Melvyn May
http://www.garagegames.com/index.php?sec=mg
&mod=resource&page=view&qid=3057

fxRenderObject by Melvyn May
http://www.garagegames.com/index.php?sec=mg
&mod=resource&page=view&qid=3217

3D Game engine list
http://cg.cs.tu-berlin.de/~ki/engines.html

SIGGRAPH - Commercial Game Engines
http://www.siggraph.org/cgi-
bin/cgi/idCatResults.html&CategoryID=23
and
http://www.siggraph.org/cgi-
bin/cgi/idECatResults.html&CategoryID=23

Engines And Engineering
What to expect in the future of PC games.
By Steven L. Kent | Oct. 31, 2002
http://www.gamespy.com/futureofgaming/engines/

International Game Developers Association
Game Engines listing
http://www.reanimation-
studios.com/igda/gd_engine.shtml

Gobal Illumination Compendium by Philip Dutré.
http://www.cs.kuleuven.ac.be/~phil/GI/TotalComp
endium.pdf

