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Notations

The notations in this report are based on [24], that attempts to provide a
unified notation for the data assimilation field. The following is a summary.
The meaning of the variables is explained as they are presented in the report.

Vectors (bold lower case Roman)

d Innovation vector
x State vector
δx Incremental state vector
yo Observations
y Estimated observation values calculated from the state vector

x
η Model error
ε Observational error

Operators (upper-case Italic)

H Observation operator
J Cost function
M Model operator

Matrix(bold upper-case Roman)

H Linearized observation operator
I Identity matrix
K Gain matrix
M Model operator
P Forecast error covariance
Q Model error covariance
R Observational error covariance
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Superscripts

(·)−1 Inverse
(·)T Transpose
(·)a Analysis
(·)b Background
(·)f Forecast
(·)o Observed
(·)t True

Subscripts

(·)i Discrete time index i or space index on a finite-difference grid
(·)(i) Refers to the ith column in a covariance matrix
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Chapter 1

Introduction

Data assimilation stems from the need to improve the output of our models.
With the evolution of sciences, the discovery of Quantum mechanics and
the uncertainty principle of Heisenberg, it became obvious that it would
be impossible to create models that would reproduce to the perfection the
behaviour of nature.

Even though the computers become everyday more powerful, they cannot
cope with the complexity of the world, and especially our inability to capture
all the details of the system we want to model. As a user of the models, we
have to deal with those imperfections and try to correct them as efficiently
as possible. In the simplest cases, a review of the conceptualization of the
system to be modeled, combined with a thorough calibration of the model
lead to results that are acceptable.

In the most complex cases, there is a need for real life data to correct the
model behaviour. This is what data assimilation is about: combining model
predictions and real world data to make a better estimate of the state of the
system we want to model.

The Kalman filter [30] is the most well known sequential data assimilation
scheme. It has been developed in the sixties by R. E. Kalman to try to solve
the Wiener problem in a generally easier way. The filter has the advantage
to be sequential. It needs only the system variables of the previous time
step and the forcing terms and observations of the current time step.

This report reviews the main theoretical aspects of the Kalman filter: its
derivation for linear systems, the extension to non-linear systems, the devel-
opment of suboptimal schemes that have lower computational demands and
the adaptation of the filter to systems that are biased. The last chapter is
dedicated to the application of Kalman filtering to hydrological processes.
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Chapter 2

A brief introduction to
estimation theory

2.1 Probabilistic Estimation

The goal of this section is to review some of the approaches to estimate a
n-vector x representing a given system, given p-vector yo of observations
of the system. The estimate is referred to as x̂ and the estimation error
as η = x̂ − x. Because of the imperfection of the observations, they are
represented as random variables. The state vector is also considered as one
realization of a random variable.

Different approaches can be taken to derive the estimate [44]. They are
described in the following sections.

2.1.1 Bayesian approach

The Bayesian approach to estimation theory is based on the minimization
of a function J , that represents the risk involved in the estimation of the
state x. It is defined as the mean of a cost function J .

J (x̂) =
∫ +∞

−∞

∫ +∞

−∞
J(η)pxyo(x,yo)dxdyo (2.1)

pxyo is the joint probability density of the random variables x and yo. The
different way of solving this problem are based on the choice of the cost
function.

In most cases, one wants the estimate to be unbiased, i.e. its expected value
is equal to the expected value of the state.

E {x̂} = E {x} (2.2)
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2.1.2 Minimum variance estimate

The minimum variance estimate minimizes the risk function based on the
cost function:

J(η) = ηTΣη (2.3)

where the n× n matrix Σ is symmetric, non-negative.

The minimum of the risk function J is found for the value of x̂MV (see [44]
for the derivation of the solution):

x̂MV = E {x |yo} (2.4)

One can prove that this estimate is unbiased.

2.1.3 Maximum a posteriori probability estimation

The maximum a posteriori probability estimate is based on uniform cost
function, described in any meaningful norm as:

J(η) =
{

0, ‖η‖ < ζ
1/2ζ, ‖η‖ ≥ ζ

ζ > 0 (2.5)

The minimization of the risk function is equivalent (c.f. [44]) to maximizing
the a posteriori probability distribution of x, i.e. solving for x:

∂px |yo

∂x
(x |yo) = 0 (2.6)

After taking the natural logarithm and using Bayes’ theorem, it is equivalent
to solve:

∂
[
ln(pyo |x(yo |x)) + ln(px(x))

]
∂x

= 0 (2.7)

In general, the estimate is not necessarily unbiased.

2.1.4 Maximum likelihood estimation

If there is no prior information about the random variable, then its variance
is infinite and therefore the following equation is valid for any x:

∂ ln px(x)
∂x

= 0 (2.8)
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It simplifies the equation 2.7 to:

∂pyo |x(yo |x)
∂x

= 0 (2.9)

Both the maximum likelihood and the maximum a-posteriori estimates are
mode estimates. It is therefore important to know which distribution is
maximized. Moreover it implies that the estimate is not necessarily unbi-
ased.

2.2 Least squares estimation

The least squares estimation method has the advantage not to rely on any
statistical assumption. It just tries to get the best least squares fit among
the data.

In the linear case, we can define a relation between the measurements and
the state of the system for one experiment:

yo
i = Hix + εi (2.10)

By collecting the information on k experiments, it is possible to write the
set of equations in a compact form. Assuming that yo

i is a qi vector, then
we can define the q̃ vector ỹo, with q̃ =

∑k
i=1 qi:

ỹo = H̃x + ε̃ (2.11)

where

ỹo ≡
[
yoT

1 · · ·yoT
k

]T
(2.12)

ε̃ is also a q̃-vector

ε̃ ≡
[
εT
1 · · · εT

k

]T
(2.13)

and H̃ is q̃ × n matrix:

H̃ ≡
[
HT

1 · · ·HT
k

]T
(2.14)

The goal of least squares estimation is to find an estimate x̂ of x that
minimizes the cost function:

J (x) =
1
2

(
ỹo − H̃x

)T
Õ−1

(
ỹo − H̃x

)
(2.15)
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The weighting matrix Õ−1 is symmetric positive definite and represents the
confidence in each experiment.

It leads (c.f. [44]) to the following estimate:

x̂ = PH̃TÕ−1yo (2.16)

with

P =
(
H̃TÕ−1H̃

)−1
(2.17)

It is assumed that the inverse exists.

The least squares estimate is equivalent to the minimum variance estimate
when one chooses O = R, where R is the observational error covariance,
the covariance of the random variable ε.
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Chapter 3

The linear Kalman filter

The Kalman filter is a minimum variance estimation in the special case
where the system is a linear stochastic dynamical system. The system will
be described by the coupled equations:{

xk+1 = Mkxk + Bkuk + ηk

yo
k = Hkxk + εk

(3.1)

Let n be the dimension of the state vector x and q the dimension of the
observation vector yo. It is assumed that the number of observations is
constant through time.

uk is the forcing term. In the rest of the chapter, Bk is set to zero to simplify
the notation, as the influence of the forcing term is purely deterministic and
does not affect the estimation process.

This chapter is based on the classical assumptions of the linear Kalman
filter. ηk and εk are independant sequences of zero-mean white noise, with
cov{ηk} = Qk and cov{εk} = Rk. The noise sequences are also independent
of the initial conditions x0.

It is possible to derive the Kalman filter using two methods mentioned in
the previous chapter, the minimum variance estimation and the maximum
a-posteriori estimation.

3.1 Minimum variance estimate

3.1.1 Orthogonal projection and minimum variance

In this section, we will show that the minimum variance estimate of xk+1

given the set of observations {yo
0, ...,y

o
k+1} is the orthogonal projection of

xk+1 onto the space defined by a linear combination of the observations. It
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is demonstrated by Kalman in [30] for q = n. Chui and Chen in [6] try to
extend it to any value of q but do not project properly the observation space
onto the state space. The way they define the linear span of the observations
(p. 34) leads to the definition of the whole state space, whatever the number
of non-zero observations.

We introduce here the Moore-Penrose pseudo-inverse of the observation ma-
trix H⊕ that projects the observations onto the state space, i.e. H⊕yo is a
n-vector. The results of section 2.1.2 mean also that the minimum variance
estimate x̂ of x is a linear combination of the observation, it is an element
of the ensemble Y defined by:

Y = {y : y =
r∑

i=0

βiH⊕yo
i , βi ∈ R} (3.2)

We define the covariance of two vectors of random variables as:

cov(x,y) = E
{
(x− E {x})(y − E {y})T

}
(3.3)

And the variance as var(x) = cov(x,x).

Being a minimum variance estimate, x̂ minimizes its variance, which is the
same as minimizing its trace. The following theorem shows that the mini-
mum variance estimate of x is its orthogonal projection onto Y

Theorem 3.1 x̂ ∈ Y minimizes tr(var(x − x̂)) if and only if cov(x −
x̂,yo

i ) = O, where O is a n× q matrix of zeros. Moreover x̂ is unique

If we suppose that there exist an observation yo
j0

so that tr(var(x−x̂,yo
j0

)) =
C with C non-zero, then we can try to find a vector that has a lower variance
trace. This vector is probably in the same direction as yo

j0
. So we can

calculate the trace of var(x− x̂−αH⊕yo
j0

), α ∈ R. The vector x̂−αH⊕yo
j0

is in Y as a linear combination of elements of Y . Replacing the known
values, we get:

tr(var(x− x̂− αH⊕yo
j0))

= tr(var(x− x̂) + α2H⊕H⊕Tvar(yo
j0)− αCH⊕T − αH⊕CT)(3.4)

To prove the theorem, we need to find at least one α so that the trace of
α2H⊕H⊕Tvar(yo

j0
)− αCH⊕T − αH⊕CT is negative.

Knowing that:

• The trace is a linear operator
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• H⊕H⊕T is a symetric, non-negative matrix, so its trace is strictly
positive

• tr(AT) = tr(A)

We can define any α:

α <
2tr(CH⊕T)

tr(H⊕H⊕Tvar(yo
j0

))
(3.5)

that verifies tr(var(x − x̂ − αH⊕yo
j0

)) < tr(varx− x̂). It contradicts the
definition of x̂.

The uniqueness of x̂ is derived in [6]. �

It is then possible to define an orthonormal base on Y , e1, ..., es, with s ≤ r,
and to express x̂ by1:

x̂ =
s∑

i=1

cov(x, ei)ei (3.6)

It is important to notice that there is here no assumption about the Gaus-
sianity of the variables.

3.1.2 The Kalman filter

The derivation of the Kalman filter follows easily the results demonstrated
in the previous section, and detailed in [6]. We will just summarize the
algorithm here.

At time step 0, it is necessary to set up the covariance matrix Pa
0 of the

initial conditions xa
0. The model propagation is given by:

xf
k = Mk−1xa

k−1 (3.7)

Pf
k = Mk−1Pa

k−1M
T
k−1 + Qk−1 (3.8)

The innovation vector is defined by:

dk = yo
k −Hkxf

k (3.9)

The analysis step is:

xa
k = xf

k + Kk ·
(
yo

k −Hkxf
k

)
(3.10)

1In [6], the orthonormal base has as many vectors as the number of observations, which
is the case only if the observations are completely uncorrelated.
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and

Pa
k = (I−KkHk)Pf

k (3.11)

The Kalman gain is defined by:

Kk = Pf
kH

T
k

[
Rk + HkPf

kH
T
k

]−1
(3.12)

The analysis step is in fact a linear combination of the observations and the
model estimate. If the model estimate is more certain than the observation,
i.e. Pf

k � Rk, then the gain is close to zero and xa
k → xf

k. In case Pf
k � Rk,

then the gain is close to one, and the analysis is close to the observations.

3.2 Maximum a-posteriori estimate

In this section, we attempt to retrieve the Kalman filter from another
approach: determining the MAP of xf

k, given the set of measurements
(yo

0, ...,y
o
k). We have to solve the following equation:

∂f(xf
k |yo

0, ...,y
o
k)

∂xf
k

∣∣∣∣
xf

k=xa
k

= 0 (3.13)

The measurements from previous time steps are not dependent on xf
k, so it

is equivalent to solve:

∂f(xf
k |yo

k)
∂xf

k

∣∣∣∣
xf

k=xa
k

= 0 (3.14)

Following the results of equation 2.7, we have to solve:

∂ ln(f(yo
k |xf

k))
∂xf

k

∣∣∣∣
xf

k=xa
k

+
∂ ln(f(xf

k))
∂xf

k

∣∣∣∣
xf

k=xa
k

= 0 (3.15)

Without any assumption about the distributions, the problem cannot be
solved in general. In this case, it is assumed that the two distributions are
Gaussian, and written:

f(yo
k |xf

k) = α exp
[(

yo
k −Hkxf

k

)T
R−1

k

(
yo

k −Hkxf
k

)]
(3.16)
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f(xf
k) = β exp

[(
xf

k − E
{
xf

k

})T
Pf

k
−1

(
xf

k − E
{
xf

k

})]
(3.17)

α and β are normalization constants. Rk is the observation noise covariance
at time step k, Pf

k is the forecast error covariance before correction by the
filter.

After derivation, one can find the same result as in previous section.

3.3 Comparison between the two methods

Even though the two methods lead to the same result, the assumptions
to reach the result are different: in the case of the MAP estimate, it is
necessary that the variables follow a Gaussian probability distribution. For
the minimum variance estimate, this is not necessary.

As pointed out in [30], the two approaches are fundamentally similar. It is
the minimization of a cost function of the error between the model estimate
and the observed value. In the case of the minimum variance, the cost
function is related to the square of the difference. As Kalman explains in his
article [30], it is not then necessary to deal with Gaussian distributions. In
the case of the MAP, the cost function is not specified. It demands then the
use of Gaussian functions. In a nutshell, if the distribution is Gaussian, one
gets both the minimum variance and the MAP estimate. If the distribution
is not Gaussian, one gets only a minimum variance estimate, regardless of
the a-priori distributions.

As an additional remark, it is interesting to mention that the linear Kalman
filter is equivalent to the co-krigging of the model forecast error given the
observations [42]. This geostatistical formulation gives a better insight of the
behavior of the filter in situations where the state vectors are random fields
as found in hydrology: the corrections of the model forecast are calculated
at the points where observations are available. Then they are propagated
over the whole field according to the correlation structure.

3.4 Kalman filter and colored noise

It is possible to derive the Kalman filter for model and observation noises
that are correlated in time. See e.g. chapter 5 in [6]. The main results are
summarized below.

Given the noise models as:{
ηk = Λkηk−1 + µk

εk = Γkεk−1 + ϕk
(3.18)
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with the initial conditions η−1 = 0, ε−1 = 0, Λk and Γk constant matrices
defining how the structure of the noise is propagated through time. The
noise sequences µk and ϕk are uncorrelated Gaussian white noise with co-
variance matrices Qk and Rk, respectively.

To make the system white, the noise vector is concatenated with the state
vector. The model operator becomes:[

Mk I
0 Λk

]
Because of the presence of colored noise in both the observation and the
model propagation, it is necessary to derive a recursive relationship between
the analyzed values of the state vector (see the derivation in [6]):

[
xk

ηk

]
=

[
Mk I
0 Λk

] [
xk−1

ηk−1

]
+Kk

(
yo

k − Γkyo
k−1 −H′

k

[
xk−1

ηk−1

])
(3.19)

The observation operator is defined as:

H′
k = [HkMk − ΓkHk−1 Hk] (3.20)

The Kalman gain is:

Kk =
[

Mk I
0 Λk

]
P′

k−1H
′T
k

(
H′

kP
′
k−1H

′T
k + Rk

)−1
(3.21)

And the covariance matrix of the analyzed concatenated state vector is cal-
culated by:

P′
k =

([
Mk I
0 Λk

]
−KkH′

k

)
P′

k−1

[
MT

k 0
I ΛT

k

]
+

[
0 0
0 Qk

]
(3.22)

The initial conditions for the covariance matrix are:

P′
0 =

[ (
var(x0)−1 + H′T

0 R−1
0 H′

0

)−1
0

0 Q0

]
(3.23)

These equations give back the original Kalman filter equations when the
operators Λ and Γ are set to zero. If there is only colored noise in the
model error, i.e. Γ = 0, then it is possible to express the Kalman filter in
its forecast/analysis form, using the same augmented state vector as defined
here.
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3.5 Bias aware Kalman filter (BAKF)

The drawback of the Kalman filter is that it assumes that the model esti-
mates are unbiased. In the colored noise method, the bias can be defined
as a noise with a high autocorrelation. As stated in [17], this approach is
feasible as long as the dimension of the bias term is small compared to the
state variables. It becomes computationally difficult to deal with a bias term
of similar dimension as the state vector.

Two methods have been proposed to derive the Kalman filter in presence
of bias. The first method, developed in [17] starts from the extended state
vector to derive a method where the bias estimate is simply an add-on to
the normal Kalman filter. It has been extended to more general cases in
[35, 25, 26, 55, 27]. In [10], the same equations are derived by studying the
difference between the observed data and the model forecast. The interest of
the original implementation of the bias aware Kalman filter is the possibility
to use it as an add-on to the original Kalman filter in case a bias problem
is noticed. This section will summarize the results of these studies.

3.5.1 Where to put the bias?

Bias is defined in reference to a state of the system that is supposed to be
unbiased. According to the knowledge available, it is possible to define the
bias relative to unbiased measurements, or to unbiased model. Unless the
dynamics of the bias are very well known, it is difficult to assess the bias on
both the measurements and the model. In this derivation, it is assumed that
the measurements or at least a subset of the measurements are unbiased and
that the bias is entirely generated by the model.

3.5.2 Three different implementations

According to the degree of integration of the bias estimation in the whole
filter algorithm, three implementation are possible.

Bias blind estimator This implementation is fully off-line: the bias is
calculated independently of the original Kalman filter.

On-line bias estimate This implementation uses the unbiased state fore-
cast to make the analysis but the input to the next time step of the model
is the biased analysis.
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On-line bias estimate with feedback The bias is calculated as before
but the input to the model is the unbiased analysis.

3.5.3 Bias blind estimator

The forecast and analysis of the state variable are the same as with the usual
Kalman filter:

xf
k = Mkxa

k−1 (3.24)

xa
k = xf

k + Kk

(
yo

k −Hkx
f
k

)
(3.25)

with the gain defined as

Kk = Sf
kH

T
k

[
HkS

f
kH

T
k + Rk

]−1
(3.26)

Sf
k = MkSa

k−1M
T
k + Qk (3.27)

Sa
k = [I−KkHk]S

f
k (3.28)

It is important to notice that the matrices S are the actual estimation error
covariances only in the case when there is no bias. In the general case, they
are smaller than the actual error covariance matrices (in a meaningful norm)
as the estimates in the absence of bias are more accurate than the estimates
with unknown bias. If Tk is the bias prediction error covariance matrix then
according to [10]:

Sf
k = Pf

k −Tk (3.29)

If the bias propagation model is the constant model,

bf
k = ba

k−1 (3.30)

and the unbiased model estimate is:

x̃f
k = xf

k − bf
k (3.31)

then the analysis of the bias is calculated by:

ba
k = bf

k − Lk

[
yo

k −Hkx̃
f
k

]
(3.32)
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The matrix Lk is defined by:

Lk = TkHk

[
HkTkHT

k + HkSkHT
k + Rk

]−1
(3.33)

The gain matrix Lk is the optimal Kalman gain for the system defined by
the propagation equation:

bf
k = bf

k−1 (3.34)

and the observation equation:

dk = −Hkb
f
k + µk (3.35)

The innovation vector is also defined by:

dk = yo
k −Hkx

f
k (3.36)

and its noise component µk is unbiased and has a covariance of:

E
(
µkµ

T
k

)
= Rk + HkP

f
kH

T
k (3.37)

Pros and cons of this method This approach has the nice interest of
being an add-on to the original Kalman filter. An original implementation
of the filter does not need to be modified. The bias estimation is used when
a bias problem is observed.

The problem of this method is that the original Kalman filter corrects values
that are biased, which leads to biased estimates, i.e. not optimal estimates.
The optimality of the results could be improved by providing a better esti-
mate of the bias before the correction by the filter.

3.5.4 On-line bias estimate

In this implementation of the filter, there are two analysis values. xa
k is the

analysis from the biased value, that will be used in the next time step. x̃a
k

is the unbiased estimate.

The algorithm reads:

xf
k = Mkxa

k−1 (3.38)

bf
k = ba

k−1 (3.39)
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x̃f
k = xf

k − bf
k (3.40)

The bias is updated by:

ba
k = bf

k − Lk

[
yo

k −Hkx̃
f
k

]
(3.41)

The two analysis values are then calculated:

xa
k = xf

k + Kk

[
yo

k −Hkx
f
k

]
(3.42)

x̃a
k = xa

k − [I−KkHk]ba
k (3.43)

The propagation and update of the covariance matrix are identical to the
off-line bias estimate.

3.5.5 On-line bias estimate with feedback

In this implementation, the unbiased value is used in the next time step.
The bias is then an estimation of the bias introduced by the system at each
time step.

The propagation equation reads:

xf
k = Mkx̃a

k−1 (3.44)

and the analysis equation is equivalent to the combination of the equations
3.42 and 3.43.

x̃a
k =

(
xf

k − ba
k

)
+ Kk

[
yo

k −Hk

(
xf

k − ba
k

)]
(3.45)

3.5.6 The covariance estimation problem

Estimating the covariance matrix Pf
k has always been a problem. Generally

speaking, the matrix is defined using some assumptions about the system.
Then the covariance is propagated through the system using the model.

For the covariance of the bias, the model propagation is too simple to allow
for a proper propagation of the correlation structure.

The paper [10] considers that the propagation of the bias covariance cannot
be directly estimated from the simple assumption of a persistent model. It
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BAKF Colored
noise
KF

Covariance matrix size 2n2 4n2

Kalman gain size 2nq 2nq

Model operator matrix size n2 + 1 4n2

Table 3.1: Comparison of the storage requirements of the BAKF and the
colored noise KF given a bias and state vector size of n and an observation
vector size of q

is assumed that it should have the same correlation structure as the state
and propose to model the bias covariance with:

Tk = γPf
k (3.46)

where 0 ≤ γ ≤ 1 is a tuning parameter that controls the stability of the
bias estimate. It determines to which extent the information given by the
observation should be used to correct the bias parameter, and what remains
to correct the random component.

The main issue with this method is the necessity to evaluate this parame-
ter. In [11], γ is chosen using a Fourier analysis of the residual after bias
correction and assimilation over a given period of time. The parameter is
optimized so that the spectrum is flat, i.e. when the residual uncertainty
is close to white noise. This assumes that the data are ergodic (cf. section
6.1.1).

3.6 Colored noise filter against bias aware filter

3.6.1 Storage requirements and computational demands

The BAKF is designed to have smaller storage requirements than the colored
noise filter. In table 3.6.1, the sizes of the different matrices are compared.
To make the comparison possible, the sizes of the covariance matrices for
the state and the bias in the BAKF are summed, as well as the two Kalman
gains. The persistent model operator is considered as a scalar of dimension
1× 1.

The computational costs of the two methods are similar. Both need 2n + 1
model evaluations for the propagation of the state vector and the covari-
ance matrix. For the bias propagation, the persistent model of the BAKF
demands no extra computation and the autoregressive model of the colored
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noise filter demands only one multiplication, which is normally negligible
compared to the model evaluation.

3.6.2 Cross-diagonal correlation structure

The main difference between the two implementations of the filter are the
way the bias interacts with the original state vector.

In the BAKF, the bias does not influence whatsoever the way the Kalman
gain and the covariance matrix of the state vector is calculated. In the
implementation with feedback, the state is corrected for bias before being
processed for the next time step, but it does not affect the covariance matri-
ces. It is impossible to calculate an expression of an augmented covariance
matrix of the concatenated state and bias vectors because one cannot get
an expression of the cross-diagonal terms of the covariance.

In comparison, the colored noise implementation does not impose any re-
striction of the cross-diagonal terms of the augmented covariance matrix,
except the ones imposed by the autoregressive model of the noise part of
the augmented vector.

Even though the two implementations seem similar, they have a different
role:

• The BAKF intends to correct a Kalman filter implementation that
would generate analysis errors that are constant in time compared to
the dynamics of the system.

• The colored noise Kalman filter is in theory able to represent a system
where the innovation is biased. It is then important to notice that the
covariance matrix Q defines two completely different characteristics
of the system: the rate of convergence of the colored noise towards a
value that is supposed to be constant in time and the uncertainty on
the state vector. This dual function can pose some practical problems.

21



Chapter 4

Towards non-linearity

The original Kalman filter theory is based on linear systems. For non-
linear systems, the Kalman filter has been extended, using approximations
of the non-linear system in order to use linear algebra. There are two main
approaches:

• The extended Kalman filter (EKF), based on the local derivatives of
the non-linear system. The description is based on [6], pp 108-111.

• The unscented Kalman filter (UKF), based on the unscented trans-
formation that is supposed to preserve at least the two first moments
through a linear system by judiciously choosing the points where the
model is evaluated. The section is based on [29, 28, 53].

In this chapter, the system studied is then described as:{
xf

k = M(xa
k−1,uk, ηk)

yo
k = H(xf

k, εk)
(4.1)

where uk is the forcing term of the system. Note that the model and ob-
servation operators are not matrices any more but any function, linear or
non-linear.

4.1 The extended Kalman filter

The extended Kalman filter is based on the linearization of the model and
observation operators in the neighborhood of (xf

k,uk, 0). It is then possible
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to rewrite equations 3.8 to 3.12, replacing the matrices Mk and Hk by:
Mk = ∂M

∂xk

∣∣∣
(xf

k,uk,0)

Hk = ∂H
∂xk

∣∣∣
(xf

k,0)

(4.2)

The model propagation does not need to be linearized.

This method handles well small non-linearities but is rather inefficient in
case of very nonlinear systems as explained in [28]. Moreover the method is
not suited for large dimension systems, as the calculation of the derivatives,
using a finite difference method, demands n + 1 model evaluations for each
time step (n is the dimension of the state vector), and q + 1 evaluations of
the observation operator (q is dimension of the observation space).

The other possibility is to write a tangent linear model, but it is generally
difficult for complex models or impossible for highly non-linear models.

4.2 The unscented Kalman filter

4.2.1 The unscented transform

The unscented transform attempts to solve the problem of the propagation
of a probability distribution through a nonlinear transformation. With the
EKF, the necessity of linearizing implies a loss of information about the
model operator.

We are essentially interested in the propagation of the two first moments
of the probability distribution. The unscented transform proposes a way
to generate a population from a probability distribution so that the two
first moments are propagated accurately. Instead of using a Monte Carlo
approach, the points are chosen deterministically.

From [29], a n-dimensional random variable xk with mean E {xk} and co-
variance Pk is approximated by 2n + 1 weighted points given by:

X0 = E {x} W0 = κ/(n + κ)
Xi = E {x}+

(√
n + κ P1/2

)
i

Wi = 1/2(n + κ)
Xi+n = E {x} −

(√
n + κ P1/2

)
i

Wi+n = 1/2(n + κ)
(4.3)

where κ ∈ R is a fitting parameter that varies according to the initial dis-
tribution. Its choice is empirical. For Gaussian probability distributions,
n+κ = 3 is a good rule of thumb. (·)i is the ith column of the matrix inside
the brackets, and Wi the weight associated with the ith point.
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The propagation of the set of points through the model M allows for better
accuracy in the propagation of the mean and covariance of a distribution
even through nonlinear models as compared to the EKF (cf. appendices in
[28]). The statistics of the propagated points are calculated as follows.

The resulting random variable xk+1 = M (xk) is represented by the propa-
gation of the ensemble members:

X ′
i = M (Xi) (4.4)

The mean of the resulting ensemble is approximated by:

E {xk+1} ≈
2n∑
i=0

WiX ′
i (4.5)

And the covariance matrix by:

Pk+1 ≈
2n∑
i=0

Wi

(
X ′

i − E {xk+1}
) (
X ′

i − E {xk+1}
)T (4.6)

4.2.2 The unscented Kalman filter

The unscented Kalman filter relies on the unscented transformation to prop-
agate the uncertainty instead of calculating the Jacobian of the operators.
The calculation of the Kalman gain and the updates relies on the estimates
of the mean and the covariance as explained in equations 4.5 and 4.6. The
algorithm is described in detail in [29] and [48]. They show that nonlin-
earities are better taken into account, compared to the extended Kalman
filter.

An improvement of the UKF is the square root UKF developed in [48]. The
main advantage of the square root algorithm is to provide a better numerical
stability and ensure that the state covariance matrices are positive, which
was not necessarily the case in the standard UKF. The square root version
of the filter performs as well as the standard filter.

4.3 Some additional comments

The two implementation of the filter for nonlinear system assume that n is
small:

• There is a need to store n2 elements for the covariance matrix. For
problems where n reaches the value of 104−106, it surpasses the storage
capacity of most computers.

24



• There is a need for 2n + 1 model evaluations. In case of real life
models, the time necessary to evaluate the model is the limiting factor
compared to the time necessary to propagate the filter.

For complex models and large dimensional systems, there is a need for al-
gorithms that reduce the computational time and somehow compact the
representation of the covariance matrix.

Some other extensions of the EKF are available, where the nonlinearities are
better taken into account. They are normally based on a different sampling
of the space to avoid derivation of the model operator. For example, [36]
uses Stirling’s interpolation formula to approximate the model operator. In
general, those methods are as complex as UKF and EKF and present little
interest in their original form for complex models and highly dimensional
systems.
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Chapter 5

Computational issues:
sub-optimal schemes

In this chapter, methods are described that allow for high dimensional sys-
tems and reduce the number of model runs. These approaches are all sub-
optimal, i.e. they do not lead to the optimal state estimate. But they have
the advantage to work easily with large problems and complex models.

The methods can be divided into two categories:

• The covariance reduction methods, where the covariance matrix is ap-
proximated to reduce the number of model evaluation and the storage
requirements.

• The model reduction methods, where the model operator is simplified
to reduce the computational cost of the covariance matrix propagation.

5.1 Covariance reduction methods

5.1.1 Ensemble Kalman filter

Evensen in [14] provided for the first time a version of the Kalman filter that
did not need any derivation of the model operator and that could virtually
be used with any probability distribution.

The Ensemble Kalman filter (EnKF) is based on a Monte Carlo simulation of
the probability distribution of the state. A set of realizations (the ensemble)
is generated and propagated through the model operator. The statistics
necessary for the Kalman filter are derived from the analysis of the ensemble.

The approach is very popular as its implementation is very simple, and the
number of members of the ensemble necessary to get acceptable behavior of
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the Kalman filter is small compared to the dimension of the system.

The main drawback of this method is the random sampling. The fact that
the population is not drawn to represent some of its statistical features makes
the convergence very slow (as fast as n−0.5) [20].

Evensen in [15] reviews what has been done with the EnKF and gives a
better mathematical framework for the filter as well as some implementation
advices. In the case of non-linear model dynamics, the filter is not presented
as a variance minimizer (in agreement with van Leeuwen in [49]). The stress
is put on the simplicity of implementation and the ability of the filter to
handle the non-linearities because it does not use tangent-linear models or
adjoints.

The algorithm can be summarized as follows.

The ensemble of m members is propagated through the model:

xf
k,i = M (xa

k−1,i,uk, ηk,i) (5.1)

where i = 1, 2, ...,m is the subscript designing the ensemble member and
the set of ηk,i are realizations of the model noise. The forecast of the state
vector is calculated as the mean of the ensemble.

The error covariance matrix of the forecast is estimated from the ensemble
as:

Pf
k = ∆f

k(∆
f
k)

T (5.2)

Each column ∆f
k,i of the matrix ∆ is defined as:

∆f
k,i =

1√
m− 1

(
xf

k,i − E
{
xf

k

})
(5.3)

The covariance matrix is used to calculate the Kalman gain. The analysis is
done by generating an ensemble of possible observations (assuming additive
noise):

yo
k,i = yo

k + εk,i (5.4)

and apply the analysis equation to each member of the ensemble:

xa
k,i = xf

k,i + Kk

(
yo

k,i −Hkxf
k,i

)
(5.5)

The propagation of the covariance matrix is implicit in the propagation of
the ensemble and does not require the linearization of the model nor the
calculation of tangent linear model.
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5.1.2 Reduced rank square root Kalman filter

The reduced rank square root Kalman filter (RRSQRT KF) is also a popula-
tion based algorithm. The choice of the population is here deterministic. It
is based on the square root filter (described for example in [6], pp 103-105).

The square root filter

One of the numerical issues of the Kalman filter is the inversion of large
covariance matrices. The square root filter is based on the Kalman filter
but operates with a lower triangular square root of the covariance matrix.
It has the advantage of simplifying the inversion of the matrices as there
exist specific numerical methods for triangular matrix inversion.

Moreover, the covariance matrices can contain very large and very small en-
tries, making their manipulation numerically unstable. Manipulating square
root of those matrices reduces the difference between the larger and the
smaller entry of the matrix and ensures the positive-definiteness of the re-
sulting covariance matrix.

The reduced rank square root filter

Verlaan and Heemink introduced in [51] the RRSQRT KF that limited the
computation needed to obtain an estimate of the square root of the state
covariance matrix. The population to evaluate the covariance matrix is
chosen to represent the main eigenvalues of the covariance matrix. It is then
assumed that the model is linear enough so that the propagation of the main
eigendirections is sufficient to represent the state probability distribution.

The algorithm is summarized as follows.

The state vector is propagated through the model:

xf
k = M (xa

k−1,uk, 0) (5.6)

Instead of calculating the whole covariance matrix, only a reduced rank
square root approximation L is calculated. The number of column of L is
p < n. Each column Lk,i (i = 1, ..., p) is propagated by:

Lf
k,i = M (xa

k−1 + La
k−1,i,uk, 0)−M (xa

k−1,uk, 0) (5.7)

The system noise is propagated by adding extra columns:

Lf
k,p+i = M (xa

k−1,uk, ηk,i)−M (xa
k−1,uk, 0) (5.8)
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where ηk,i (i = 1, ..., p′) are the modes of the square root of the system
noise covariance matrix Q that are kept for approximation. In case of ad-
ditive noise, the operation is equivalent to the concatenation of the system
covariance matrix to the first p columns of the matrix L.

The number of columns of the matrix Lf
k is reduced from p + p′ to p by

eigenvalue decomposition of the matrix (Lf
k)

TLf
k.

The Kalman gain and the updates are calculated using the approximation
Pf

k ≈ Lf
k(L

f
k)

T.

This filter is performing well on cases that are close to linear but has some
drawbacks:

• The implementation works best in case of additive noise. If the model
noise is not additive, extra model computations are needed to calculate
the extra columns in the equation 5.8.

• The selection of the main eigenvalues as representing the covariance
matrix requires that the model is linear or close to linear. For nonlinear
systems, improvements of the filter are needed and explored in section
5.1.3.

• The reduction of the covariance matrix, based on a singular value de-
composition requires that the state vector contains values of the same
order of magnitude. In his thesis [50], Verlaan proposes to normalize
the state vector in case its values are too far apart. By experience, the
normalization is not easy to implement and remains one of the major
drawbacks of the method. A new implementation of the filter, called
TRUE RRSQRT avoids the normalization part by using a different
algorithm to reduce the matrix L [46].

• The implementation of the filter is less straightforward than the EnKF.
The points mentioned above can be difficult to tackle.

If the filter can apply, then similar performances can be attained using less
model evaluations than the EnKF. [32].

5.1.3 Hybrids of ensemble and reduced rank Kalman filter

The creators of the RRSQRT KF propose in [20] two filters that are hybrids
of the EnKF and the RRSQRT KF. They aim essentially at reducing the
computing power needed while better taking into account the nonlinearities
of the system. In both techniques, the main variations of the state are
captured by a reduced square root filter. An ensemble filter is used to
capture the additional variations left out by the square root filter.
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The Partial Orthogonal Ensemble Kalman Filter, POEnKF

In this filter, q1 elements are propagated using the RRSQRT KF algorithm,
while q2 elements are propagated using the EnKF. During the measurement
update, the q2 elements of the ensemble filter are taken into account only for
their contribution in the space orthogonal to the q1 elements of the square
filter.

The Complementary Orthogonal subspace Filter For Efficient En-
sembles, COFFEE

The COFFEE filter uses the same principle as the POEnKF. The only dif-
ference is in the method of sampling the q2 elements of the ensemble filter.
Instead of sampling over the whole state space, only elements that are or-
thogonal to the q1 elements are chosen.

The results show that those filters are efficient for small q2. They are much
faster than the EnKF as most of the covariance evaluation is done following
a RRSQRT KF scheme.

5.1.4 Singular Evolutive Kalman filters

Different implementations of the singular evolutive extended Kalman filter
(SEEK) have been provided in a series of papers [37, 38, 22, 23]. The
original filter consists in the approximation of the covariance matrix using an
Empirical Orthogonal Function (EOF) analysis of its evolution in time. The
filter then makes the correction only in the directions that are significant.

This filter has the drawback on relying on the linearization of the model
operator. The Singular Evolutive Interpolated Kalman filter (SEIK) do not
rely on such a linearization. It uses instead an ensemble of realizations that
it propagates in the same way as the EnKF. The difference lies in the way
the ensemble is generated. Instead of being drawn completely at random,
the members of the ensemble are drawn in the main orthogonal directions
that have been defined by the EOF analysis of the model. By definition, the
resulting ensemble has the mean and covariance matrix estimated by the
analysis step of the Kalman filter.

5.2 Model reduction methods

5.2.1 Simplification of the model dynamics

The simplification of the model dynamics allow for a larger amount of model
runs, without additional computational costs. A simple model is generally
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used to compute the propagation of the covariance matrix, while the full
model is still used for the propagation of the state.

Whereas the covariance reduction methods are general, the model reduction
methods are related to the type of problem solved. Todling and Cohn in [45]
propose to classify the suboptimal filters in six categories. In reality most
methods are hybrids.

1. Covariance modelling. (See section 5.1)

2. Dynamics simplification. Dee [9] used a simplification of a wind model
as a forcing for a one-dimensional shallow water model. He showed
that the analysis remains nearly optimal. In [21], Hoeben and Troch
use a linearization of their unsaturated zone model to assimilate mi-
crowave data.

3. Reduced resolution. Sørensen et al. in [43] used a two-dimensional
approximation of their three-dimensional hydrodynamic model to es-
timate the state covariance matrix. EOF analysis of the model oper-
ator or of the covariance matrix (like in [7]) can be included in these
methods as they are only taking in account the main modes of the
dynamics.

4. Local approximation. Only points that are close enough to each other
are considered in the estimation of the covariance structure (c.f. [45]).
This method can be considered either as model reduction or a covari-
ance reduction.

5. Limiting filtering. (c.f. the steady Kalman filter in section 5.2.2)

6. Monte Carlo methods (c.f. EnKF in section 5.1.1)

The study by Fukumori and Malanotte-Rizzoli [18] is an hybrid of different
methods. They use an approximation of the covariance matrix, combined
with a model linearization for the error propagation and a reduction of the
model dimension.

5.2.2 The steady Kalman filter

The steady Kalman filter is an extreme case of model reduction. The
Kalman gain is assumed to be constant, which implies that the model does
not affect the covariance matrix of the state. Usually, the Kalman gain is
estimated during a warm-up period and then is kept constant for the rest of
the simulation. This technique has the advantage of not requiring any addi-
tional model run when the Kalman gain is estimated. In [43], the Kalman
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gain is estimated using an EnKF run before being used in other experiments.
Cañizares et al. [5] showed that in an operational 2D model of the Dan-
ish waters a few days of assimilation were sufficient to reach a quasi-steady
state.

5.3 Further than the Kalman filter: a variance
minimizing filter

The variance minimizing filter has been proposed by van Leeuwen in [49] as
an alternative to the EnKF in situations where non-linearities are important.
In this case, the linear analysis step of the Kalman filter does not allow for
taking into account probability distributions that are not defined by their
first two moments. The EnKF is not a variance minimizing filter anymore.

The filter is derived from Bayes’s theorem. The main interest of the filter is
that it does not require any inversion or linearization of the model operator
or the observation operator. The representation of the probability distribu-
tion is based on an ensemble where the members are weighted according to
their probability.

The original implementation needs a large amount of ensemble members to
be able to represent the realization with low probability. A technique similar
to importance resampling has been used to tackle the problem. It consists
in checking the weight of each member of the ensemble and duplicate it
according to its weight. The number of copies is calculated by the weight
multiplied by the size of the ensemble. The fractional remainders defines a
new probability distribution where the last ensemble members are randomly
drawn from. This approach prevents the ensemble to diverge by removing
ensemble members that are unlikely to occur.
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Chapter 6

Application of the Kalman
filter to hydrological
modelling

6.1 The Kalman filter in practice

6.1.1 Discussion of the usual assumptions

To apply data assimilation, and more specifically the Kalman filter, to hy-
drological modelling, assumptions have to be made. Even though it is most
of the time necessary to make those assumptions to be able to apply the al-
gorithms, one has to be aware of the limitations they impose on the systems
and the way the data are handled.

Ergodicity

The ergodic hypothesis was first stated in 1850 by Maxwell, as explained
in [3]. It states that for a system with a very large number of degrees of
freedom, the statistical mean is equal to the temporal mean.

This assumption is needed in hydrology when real-life systems are studied,
because the only data available are historical time series. The statistics
have to be drawn from temporal sampling instead of ensemble sampling.
The problems of bias in relation with the Kalman filter are one of the exam-
ples where the assumption is used: the difference between the bias and the
random error is quantified by the time variability. For example, Dee and
Todling in [11] use the hydrological time series to identify the parameter γ
defined in section 3.5.6.
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Stationarity

There are different levels of stationarity. Here are described those that are
the most commonly considered in hydrology

First order stationarity The function X(t) is stationary to the first
order if it satisfies the condition [3]:

E {X(t)} = m (6.1)

for all t, with m independent of t.

Weak second order stationarity The function X(t) is stationary to the
second order in the weak sense if it is first order stationary and satisfies the
condition [3]:

cov{X(t), X(t− τ)} = cov{X(t + h), X(t− τ + h)} (6.2)

for any h.

A weaker stationarity definition includes only the stationarity of the covari-
ance.

In both definitions, one can replace the temporal variable by a spatial vari-
able. For the first order stationarity, it means that the expected value of a
field is constant over space. In the case of the weak second order stationarity,
it means that the covariance between two points in space only depends on
the distance between the two points. The construction of semi-variograms
relies on this assumption.

Stationarity and Kalman filtering Because most of the error covari-
ance models are stationary, it is sometimes assumed that the Kalman filter
needs some stationarity. In fact, the filter itself does not require any sta-
tionarity assumption.

Gaussian noise Most of the applications quoted in the following sections
still assume that the noise structures are Gaussian and additive. These are
the original assumptions of the linear Kalman filter. Those assumptions,
as questionable as they are, still provide decent results. In any case, the
analysis equation is linear and therefore corrects only the first two moments
of the probability distribution of the state vector.
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6.1.2 Data assimilation in hydrology

As mentioned in [47], data assimilation in hydrology uses algorithms that
have been developed in other domains, like oceanography or meteorology.
With the availability of new data sources, both from remote sensing and
cheaper sensors on the ground, it became possible to validate and correct
hydrological models. There is still a need for improvement and adaptation of
the methods to the specificities of hydrological modelling, such as the prob-
lems of heterogeneity and the difficulties to observe subsurface processes.

McLaughlin in [33] goes in the same way when he points out that most
of the data assimilation techniques used in hydrology are “natural exten-
sions of classical linear Gaussian estimation methods”. Most of hydrological
problems are non-linear and would demand more advanced techniques.

Nevertheless the following sections show that the techniques derived from
the Kalman filter have potentials to improve the performance of hydrological
models.

6.2 Groundwater modelling

Most of the applications of Kalman filtering to groundwater modelling before
1995 has been studied in [12]. This part will focus on the recent develop-
ments.

During the past decade, the main improvement in data collection comes
from the availability of remote sensing data, mostly microwave observations.
Therefore, the research has focused on the unsaturated zone and the possi-
bility to propagate in depth information given by the moisture observations
of the upper part of the soil.

6.2.1 State estimation

The state estimation consists in the update of the moisture contents or water
heads at observation points and reconstruction of the state at unobserved
points.

In the unsaturated zone, the work of Walker et al. [52] shows the ability of
the Kalman filter to correct field simulations of the soil moisture content. As
they work with a three-dimensional soil-moisture model that is non-linear
and quite expensive in terms of computation, they also introduce a simplified
propagation of the covariance matrix, using an autoregressive approximation
of the model operator.

Reichle et al. [41] use the Ensemble Kalman filter (EnKF) to assimilate
microwave radiobrightness observations into a land surface model. The filter

35



is compared with the reference performance of an optimal smoother. They
studied the possibility of the EnKF to work with non-Gaussian distributions.
They show that a minimum ensemble size of 500 is necessary to get an
error reduction similar to the smoother and a correct evaluation of the error
variance. The study also shows the existence of a residual error compared
to the optimal estimate of the smoother even when the ensemble size is
increased up to 10000. The study in [8] confirms the performance of the
EnKF without making any comparison with an optimal scheme. A previous
study by Hoeben and Troch [21] used a linearization of the unsaturated
zone model instead of a Monte Carlo approach to assimilate radiobrightness
observations.

In some applications the Kalman filter, used to get an optimal estimate of
the water heads or soil moisture, is combined with a maximum likelihood
estimation of the parameters. In the saturated zone, Bierkens et al. in [2]
use a geostatistical model instead of a physical model of the water heads
combined with an ensemble Kalman filter. In the unsaturated zone, Cahill
et al. [4] use the extended Kalman filter combined with a physical model to
estimate the hydraulic conductivities in an experimental field.

6.2.2 Parameter estimation

Parameter estimation is often called inverse modelling in the groundwater
modelling world. The main parameters estimated are the hydraulic conduc-
tivities in the saturated zone.

Even though McLaughlin and Townley in [34] consider that the extended
Kalman filter should not be used as parameter estimator because it is subop-
timal and the convergence is not well understood, there have been different
successful attempts in using the filter. One of the possible causes of success
is the lack of extreme non-linearities. In the case when the uncertainties are
assumed to be Gaussian, the Kalman filter becomes a maximum a-posteriori
estimate (cf. section 2.1.3).

In [16], a linear Darcy flow model is used to estimate conductivities on a real
case-study. The authors have derived the linear system to be solved using
the Kalman filter formulation.

One step further, Eppstein and Dougherty in [13] simplify the extended
Kalman filter by simplifying the covariance update. They also use a tech-
nique to create zones in the hydraulic conductivity field using a clustering
algorithm. This approach turns the normally ill-posed problem of parameter
estimation into a well-posed problem by reducing the number of unknown
variables. Unfortunately, they do not apply their technique to a real case.
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6.3 Rainfall-runoff and surface water modelling

A series of articles have been written on the NAM model and the DHI model
MIKE 11

Refsgaard et al. in [40] have reformulated the NAM (A lumped rainfall-
runoff model) into a state space form to allow the use of the Kalman filter.
The main interest of this paper is the resulting uncertainty analysis showing
that the uncertainty on the output is mainly driven by the uncertainty on
the rainfall.

Reefsgaard in [39] compared the combination of the NAM model and the
Kalman filter as in [40] to the NAM/MIKE 11 model coupled with an error
prediction technique and concludes that the Kalman filter performs better
than an error prediction model only when the basic hydrological model is
well-calibrated.

Finally, Hartnak and Madsen provide in [19] a thorough analysis of the use of
the ensemble Kalman filter in river modelling with MIKE 11. The Kalman
filter was able to correct different perturbations applied to the model, in-
cluding white noise on the boundary conditions, trend in the boundary con-
ditions, phase shift. Moreover the filter could reconstruct lost information
and be used in a flood forecasting implementation.

Others have applied the Kalman filter to rainfal-runoff models:

In [54], Wood and O’Connell derive the Kalman filter and the extended
Kalman filter for real-time forecasting and apply it for simultaneous param-
eter and state estimation in the Sacramento Soil Moisture model and the
National Weather Services River Forecasting model.

In [31], Lee and Singh apply successfully the Kalman filter for parameter es-
timation in a tank model. The filter has been used to correct the parameters
of the model through time and update the uncertainty on the runoff.
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Chapter 7

Conclusions

This review provides an overview of the uses of the Kalman filter in a domain
that is far from its original use: from a linear filter used in signal processing,
it is now adapted and used in high-dimensional models with non-linearities.

The methods have been developed to a level where they are operational,
and proved that they can be used in hydrology. Now the focus should shift
to issues that have been neglected up till now. The main issue is the way
the uncertainties are actually represented. In most application, the noise is
mostly described as Gaussian and additive. This representation is of course
far from reality but well suited for the linear implementation of the filter.

With the non-linear implementation of the filter, and the development of
more accurate filters (like the variance minimizing filter of van Leeuwen
[49]), a more complex and more detailed representation of the uncertainties
becomes meaningful. Whether the improvement of the noise representation
will improve the filter performances remains to be seen, but there is definitely
knowledge to gain by questioning ourselves on the real origins of uncertainty.
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