
A Programmer’s
Introduction to PHP 4.0

W. J. Gilmore

Gilmore_00FM  12/5/00  2:19 PM  Page i



A Programmer’s Introduction to PHP 4.0
Copyright ©2001 by W. J. Gilmore

All rights reserved. No part of this work may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying, record-
ing, or by any information storage or retrieval system, without the prior written
permission of the copyright owner and the publisher. 

ISBN (pbk): 1-893115-85-2

Printed and bound in the United States of America 12345678910 

Trademarked names may appear in this book. Rather than use a trademark sym-
bol with every occurrence of a trademarked name, we use the names only in an
editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark. 

Editorial Directors: Dan Appleman, Gary Cornell, Karen Watterson
Technical Editor: Brian Wilson
Project Editor: Carol A. Burbo
Developmental Editor and Indexer: Valerie Perry
Copy Editor: Beverly McGuire
Compositor: Susan Glinert 
Artist and Cover and Part Opener Designer: Karl Miyajima

Distributed to the book trade in the United States by Springer-Verlag New York,
Inc.,175 Fifth Avenue, New York, NY, 10010
and outside the United States by Springer-Verlag GmbH & Co. KG, Tiergartenstr.
17, 69112 Heidelberg, Germany

In the United States, phone 1-800-SPRINGER; orders@springer-ny.com;
http://www.springer-ny.com
Outside the United States, contact orders@springer.de; http://www.springer.de;
fax +49 6221 345229

For information on translations, please contact Apress directly at 901 Grayson
Street, Suite 204, Berkeley, CA, 94710
Phone: 510-549-5931; Fax: 510-549-5939; info@apress.com;
http://www.apress.com

The information in this book is distributed on an “as is” basis, without warranty.
Although every precaution has been taken in the preparation of this work, neither
the author nor Apress shall have any liability to any person or entity with respect
to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in this work. 

Gilmore_00FM  12/5/00  2:19 PM  Page ii



For my mother and father,
Judith and John Gilmore.

Gilmore_00FM  12/5/00  2:19 PM  Page iii







Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . .xi

Introduction  . . . . . . . . . . . . . . . . . . . . . .xiii

How To Use This Book  . . . . . . . . . . . . . . . . . . .xv

Part One: The Basics  . . . . . . . . . . . . . . .1

Chapter 1  An Introduction to PHP  . . . . . . . . . . . . .3

An Abbreviated History  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
Characteristics of PHP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
User Affirmations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
An Introductory Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Downloading PHP/Apache  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Installation and Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
PHP Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Basic PHP Constructs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
What’s Next?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

Chapter 2 Variables and Data Types  . . . . . . . . . . . .31

Integer Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Floating-Point Numbers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
String Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Arrays  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
Boolean, or True/False, Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
Identifiers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Type Juggling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Type Casting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Variable Assignment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48

v

Gilmore_00FM  12/5/00  2:19 PM  Page v



Variable Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
Predefined Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
Constants  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
What’s Next?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53

Chapter 3 Expressions, Operators, and Control Structures  .55

Expressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
Control Structures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
Project: Develop an Events Calendar  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
What’s Next?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80

Chapter 4 Functions  . . . . . . . . . . . . . . . . . . .81

What Is a Function?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
Function Definition and Invocation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
Nested Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
Returning Values from a Function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
Recursive Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
Variable Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
Building Function Libraries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
What’s Next?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91

Chapter 5 Arrays  . . . . . . . . . . . . . . . . . . . . .93

Creating Arrays  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
Multidimensional Arrays  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
Referencing Multidimensional Arrays  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97
Locating Array Elements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98
Adding and Removing Elements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
Traversing Arrays   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
Array Size  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109
Sorting Arrays  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
Other Useful Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117
What’s Next?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120

Chapter 6 Object-Oriented PHP  . . . . . . . . . . . . . .121

PHP and OOP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122
Classes, Objects, and Method Declarations  . . . . . . . . . . . . . . . . . . . . . . . . . . . .122

Contents

vi

Gilmore_00FM  12/5/00  2:19 PM  Page vi



Class and Object Functions   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135
What’s Next?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142

Chapter 7 File I/O and the File System  . . . . . . . . .143

Verifying a File’s Existence and Size  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143
Opening and Closing I/O  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145
Writing to a File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147
Reading from a File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148
Reading a File into an Array  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153
Redirecting a File Directly to Output  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153
Opening a Process File Pointer with popen()  . . . . . . . . . . . . . . . . . . . . . . . . . . .154
Opening a Socket Connection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155
External Program Execution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157
Working with the File System  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160
Displaying and Modifying File Characteristics  . . . . . . . . . . . . . . . . . . . . . . . . .162
Copying and Renaming Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164
Deleting Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165
Working with Directories  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165
Project 1: A Simple Access Counter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168
Project 2: A Site Map Generator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169
What’s Next?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173

Chapter 8 Strings and Regular Expressions  . . . . . . . .175

Regular Expressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176
PHP’s Regexp Functions (POSIX Extended)  . . . . . . . . . . . . . . . . . . . . . . . . . . . .179
Regular Expression Syntax (Perl Style)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183
PHP’s Regexp Functions (Perl Compatible)  . . . . . . . . . . . . . . . . . . . . . . . . . . . .185
Other String-Specific Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189
Project: Browser Detection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207
What’s Next?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211

Part Two: The Web  . . . . . . . . . . . . . . .213

Chapter 9 PHP and Dynamic Site Development  . . . . . . .213

Simple Linking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213
File Components (Basic Templates)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215
Project: Build a Page Generator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225
What’s Next?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Contents

vii

Gilmore_00FM  12/5/00  2:19 PM  Page vii



Chapter 10 Forms  . . . . . . . . . . . . . . . . . . . .229

An Introduction to Forms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229
Forms and PHP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238
Error Checking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248
Dynamic Forms Construction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250
Project: Create a Guestbook  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252
What’s Next?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258

Chapter 11 Databases  . . . . . . . . . . . . . . . . . .259

What Is SQL?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260
PHP’s Extensive Database Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263
MySQL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264
PHP’s Predefined MySQL Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266
ODBC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .280
Project: Create a Bookmark Repository  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289
What’s Next  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297

Chapter 12 Templates  . . . . . . . . . . . . . . . . . .299

What You’ve Learned So Far  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .299
Developing an Advanced Template System  . . . . . . . . . . . . . . . . . . . . . . . . . . . .300
Project: Create an Address Book  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .312
What’s Next?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .318

Chapter 13 Cookies and Session Tracking  . . . . . . . . .321

What Is a Cookie?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .321
Unique Identification Numbers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .328
Session Handling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .331
Project: Create a Visitor Log  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345
What’s Next?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351

Part Three: Advanced PHP  . . . . . . . . . . . .353

Chapter 14 PHP and XML  . . . . . . . . . . . . . . . . .355

A Brief Introduction to Markup  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355
An Introduction to XML Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359

Contents

viii

Gilmore_00FM  12/5/00  2:19 PM  Page viii



PHP and XML  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .374
A Final Note About PHP and XML  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .388
What’s Next?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .388

Chapter 15 JavaScript and COM  . . . . . . . . . . . . . .391

JavaScript  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .391
The Component Object Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .400
What’s Next  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .406

Chapter 16 Security  . . . . . . . . . . . . . . . . . . .409

Configuration Issues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .410
Coding Issues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .415
Data Encryption  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .417
E-Commerce Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .422
User Authentication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .424
Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .429

Index  . . . . . . . . . . . . . . . . . . . . . . . . . .431

Contents

ix

Gilmore_00FM  12/5/00  2:19 PM  Page ix



Gilmore_00FM  12/5/00  2:19 PM  Page x



Acknowledgements

This book would not have been possible without the considerable talent, pa-
tience, and endurance of several people. I would like to thank Gary Cornell for
contacting me about writing this book; Grace Wong, Valerie Perry, and Beverly
McGuire for their tireless editing and suggestions; Brian Wilson for sanity check-
ing the text and code, in addition to listening to my endless ramblings regarding
the virtues of PHP programming; Carol Burbo for patiently dealing with my last-
minute modifications; The core PHP development team in addition to all of the
countless other developers who have made PHP 4.0 such a wonderful success;
Randy Cosby for giving me the opportunity to start my writing career; and my
family, friends, and colleagues for their endless support.

All of these people have in some way contributed to the creation of a book far
better than I could have done alone. I am indebted to them all.

xi

Gilmore_00FM  12/5/00  2:19 PM  Page xi



Gilmore_00FM  12/5/00  2:19 PM  Page xii



Introduction

Seriously though, was there life before the Web? Growing up today, one would
hardly think so. The advent of the Internet has provided a basis for communica-
tion unparalleled in the history of mankind, with people both young and not so
young using it as a means for shopping, learning, and communicating. In just a
few short years following its inception, aspiring entrepreneurs have made it big,
corporate empires have been built and lost, and entire economies are booming,
all due in part to the vision of Tim Berners-Lee and his colleagues that the world
might one day be interconnected via hyperlinks. 

Of course, the Web has progressed substantially over the last ten years, begin-
ning largely as a tool for scientific research and soon evolving to one capable of
retrieving sometimes mind-boggling amounts of information. Perhaps the single
most important contributing agent to the aggregation of this information is the
ease in which it can be published to the Web. With minimal knowledge, a person
can download a text editor, FTP software, and Web browsers and consequently be
“published” to the electronic media.

However, the process behind the creation and maintenance of dynamic,
large-scale Web sites tends to be somewhat more complicated. Typically incorpo-
rating features such as user interaction, database mining, and multiplatform ac-
cessibility, development of a professional Web service can quickly become a
major undertaking. If you are interested in learning more about how these types
of services can be constructed and deployed, this book is for you.

xiii

Gilmore_00FM  12/5/00  2:19 PM  Page xiii



Gilmore_00FM  12/5/00  2:19 PM  Page xiv



xv

How To Read This Book

My main goal is to teach PHP in a way that is of immediate benefit to the user; I
have no interest in blindly reciting information that can be easily read in the on-
line PHP documentation. Rather, I’ve attempted to provide only information that
will be of interest to the majority of Web developers, leaving some of the more ob-
scure concepts to be learned in the interested reader’s own time. Concluding proj-
ects that relate to the subject matter discussed in the respective chapters are in-
cluded when deemed necessary, giving the reader some extra insight into how
that particular aspect of PHP can be put to practical use.

The PHP scripting language is the culmination of the collaboration of devel-
opment efforts across the globe, resulting in the creation of a wonderfully rich
and powerful Web development language. The sixteen chapters in this book delve
into the many features that make this language so popular, beginning with a thor-
ough introduction of the general concepts and constructs of the language, then
moving into issues pertaining to Web development, such as building dynamic
pages, creating dynamic links, and database interfacing. Finally, attention is di-
rected toward advanced Web development and the role PHP can play in it, dis-
cussing XML, JavaScript, COM objects, and security. 

Specifically, the book is divided into three parts. Part I, “The Basics,” includes
Chapters 1 through 8.

Chapter 1, “An Introduction to PHP,” introduces PHP, its history, and its key
features. Instructions regarding how to install and configure PHP and Apache are
also provided. The chapter concludes with a survey of the rudimentary PHP syn-
tax needed to create a basic script.

Chapter 2, “Variables and Data Types,” describes the various data formats
supported by PHP and how variables are named and used to store information. 

Chapter 3, “Expressions, Operators, and Control Structures,” expands on the
material presented in Chapter 2, introducing how variable values are manipu-
lated. Control structures are also introduced, providing you with the tools to
begin creating larger and more complex scripts.

Chapter 4, “Functions,” discusses the many underlying details of building
modularized, reusable PHP code. 

Chapter 5, “Arrays,” introduces arrays, providing explanation and examples
regarding the creation and manipulation of single and multidimensional arrays of
both indexed and associative types.

Chapter 6, “Object-Oriented PHP,” highlights PHP’s object-oriented features.
Although not a full-featured object-oriented language, PHP provides support for
several of the basic OOP concepts that can contribute greatly to efficient code de-
velopment and maintenance.

Gilmore_00FM  12/5/00  2:19 PM  Page xv



Chapter 7, “File I/O and the File System,” delves into one of PHP’s noted fea-
tures, manipulation of data files. Information is also provided regarding how PHP
can interact with the many facets of server directories.

Chapter 8, “Strings and Regular Expressions,” discusses string manipulation
through the use of predefined functionality and regular expressions. Both POSIX
and Perl-type regular expressions are introduced.

Part II, “PHP and the Web,” builds on the information covered in the first
eight chapters, using it as a basis for developing Web applications. Part II contains
Chapters 9 through 13.

Chapter 9, “PHP and Dynamic Site Development,” primes the reader on the
very basic concepts of using PHP to create dynamic Web sites. Dynamic content,
link creation, and basic page templating strategies are covered in this chapter.

Chapter 10, “Forms,” describes how PHP can work with HTML forms to
gather, display, and manipulate user input.

Chapter 11, “Databases,” highlights PHP’s vast support for database servers,
focusing on the MySQL database to show how PHP can act as an efficient inter-
face between a database and the Web.

Chapter 12, “Templates,” introduces advanced page templating strategies.
Chapter 13, “Cookies and Session Tracking,” shows how PHP can effectively

track site visitors.
Part III, “Advanced PHP,” introduces a few of the more advanced implementa-

tions of PHP and includes Chapters 14 through 16.
Chapter 14, “PHP and XML,” introduces the reader to XML and shows how

PHP can parse and convert XML documents.
Chapter 15, “JavaScript and COM,” illustrates how PHP can work with

JavaScript to produce increasingly user-friendly and interactive Web applications.
Information regarding how PHP can interact with Windows COM objects is also
covered.

Chapter 16, “Security,” describes several of the many facets of Web security
and how PHP can be used to implement these features. Advanced PHP configura-
tion, coding issues, data encryption, ecommerce, and user authentication are all
topics covered in this chapter.

In an effort to eliminate all possibilities of error in the text and code, I have
taken considerable time to verify all facts and code listings. However, as sure as I
am human, errors are bound to exist. Should you find a mistake, I would greatly
appreciate it if any information regarding the error be sent to
book_errata@wjgilmore.com.

How to Read This Book

xvi

Gilmore_00FM  12/5/00  2:19 PM  Page xvi



Part 1

The Basics

Gilmore_01  12/5/00  10:22 AM  Page 1



Gilmore_01  12/5/00  10:22 AM  Page 2



CHAPTER 1 

An Introduction to PHP

The past five years have been fantastic in terms of the explosive growth of the
Internet and the new ways in which people are able to communicate with one
another. Spearheading this phenomenon has been the World Wide Web (WWW),
with thousands of new sites being launched daily and consumers being consis-
tently offered numerous outstanding services via this new communications
medium. With this exploding market has come a great need for new technologies
and developers to learn these technologies. Chances are that if you are reading
this paragraph, you are one of these Web developers or are soon to become one.
Regardless of your profession, you’ve picked this book up because you’ve heard of
the great new technology called PHP.

This chapter introduces the PHP language, discusses its history and capabili-
ties, and provides the basic information you need to begin developing PHP-
enabled sites. Several examples are provided throughout, hopefully serving to
excite you about what PHP can offer you and your organization. You will learn
how to install and configure the PHP software on both Linux/UNIX and Windows
machines, and you will learn how to embed PHP in HTML. At the conclusion of
the chapter, you will be ready to begin delving into the many important aspects of
the PHP language. So light the fire, turn on your favorite jazz album, and curl up
on the lazyboy; you are about to learn what will be one of the most exciting addi-
tions to your resume: PHP programming.

An Abbreviated History

PHP set its roots in 1995, when an independent software development contractor
named Rasmus Lerdorf developed a Perl/CGI script that enabled him to know
how many visitors were reading his online resume. His script performed two
duties: logging visitor information and displaying the count of visitors to the Web
page. Because the WWW as we know it today was still so young at that time, tools
such as these were nonexistent, and they prompted emails inquiring about Ler-
dorf’s scripts. Lerdorf thus began giving away his toolset, dubbed Personal Home
Page (PHP), or Hypertext Preprocessor.

The clamor for the PHP toolset prompted Lerdorf to begin developing addi-
tions to PHP, one of which converted data entered in an HTML form into sym-
bolic variables that allowed for their export to other systems. To accomplish this,
he opted to continue development in C code rather than Perl. This addition to the

3

Gilmore_01  12/5/00  10:22 AM  Page 3



existing PHP toolset resulted in PHP 2.0, or PHP-FI (Personal Home Page—Form
Interpreter). This 2.0 release was accompanied by a number of enhancements
and improvements from programmers worldwide.

The new PHP release was extremely popular, and a core team of developers
soon formed. They kept the original concept of incorporating code directly along-
side HTML and rewrote the parsing engine, giving birth to PHP 3.0. By the 1997
release of version 3.0, over 50,000 users were using PHP to enhance their Web pages. 

Development continued at a hectic pace over the next two years, with hun-
dreds of functions being added and the user count growing in leaps and bounds.
At the onset of 1999, Netcraft (http://www.netcraft.com) reported a conservative
estimate of a user base surpassing 1,000,000, making PHP one of the most popu-
lar scripting languages in the world. 

Early 1999 saw the announcement of the upcoming PHP 4.0. Although one of
PHP’s strongest features was its proficiency at executing scripts, the developers
had not intended that large-scale applications were going to be built using PHP.
Thus they set out to build an even-more robust parsing engine, better known as
Zend (http://www.zend.com). Development continued rapidly, culminating in the
May 22, 2000, release of PHP 4.0.

In addition to the Zend processor, Zend technologies, based in Israel, offers
the Zend optimizer, which increases even further the performance benefits of the
Zend parsing engine. Available for download free of charge, the benchmarks have
shown that the optimizer can result in a 40 to 100 percent overall performance
gain. Check out the Zend site for more information.

At the time of this writing, according to Netcraft (http://www.netcraft.com),
PHP is installed on over 3.6 million domains, making it one of the most popular
scripting languages in the world. The future of PHP indeed looks bright, as major
Web sites and personal users alike continue to embrace the product.

PHP is best summarized as an embedded server-side Web-scripting language
that provides developers with the capability to quickly and efficiently build
dynamic Web applications. PHP bears a close resemblance, both syntactically and
grammatically, to the C programming language, although developers haven’t been
shy to integrate features from a multitude of languages, including Perl, Java, and
C++. Several of these valuable borrowed features include regular expression pars-
ing, powerful array-handling capabilities, an object-oriented methodology, and
vast database support. 

For writing applications that extend beyond the traditional, static methodol-
ogy of Web page development (that is, HTML), PHP can also serve as a valuable
tool for creating and managing dynamic content, embedded directly beside the

Chapter 1 

4

NOTE 1997 also saw the change of the words underlying the PHP abbrevi-
ation from Personal Home Page to Hypertext Preprocessor.

Gilmore_01  12/5/00  10:22 AM  Page 4



likes of JavaScript, Stylesheets, WML (Wireless Markup Language) and many other
useful languages. Providing hundreds of predefined functions, PHP is capable of
handling just about anything a developer can dream of. Extensive support is
offered for graphic creation and manipulation, mathematical calculations, ecom-
merce, and burgeoning technologies such as Extensible Markup Language (XML),
open database connectivity (ODBC), and Macromedia Shockwave. This vast range
of capabilities eliminates the need for the tedious and costly integration of several
third-party modules, making PHP the tool of choice for developers worldwide.

One of the main strengths of PHP is the fact that because it can be embedded
directly alongside HTML code, there is no need to write a program that has many
commands just to output the HTML. HTML and PHP can be used interchange-
ably as needed, working alongside one another in unison. With PHP, we can sim-
ply do the following:

<html>

<title><? print "Hello world!"; ?></title>

</html>

And Hello world! will be displayed in the Web page title bar. Interestingly, the
single line print statement is enclosed in what are commonly known as PHP’s
escape characters (<?…?>) is a complete program. No need for lengthy prefacing
code or inclusion of libraries; the only required code is what is needed to get the
job done!

Of course, in order to execute a PHP script, you must first install and config-
ure the PHP software on your server. This process is explained in “Downloading
and Installing PHP/Apache,” later in this chapter. Immediately preceding that
section are a few excerpts from prominent users testifying to the power of PHP,
followed by a detailed synopsis of the language and its history. However, before
diving into the installation process, take a moment to read more about the char-
acteristics of PHP that make it such a powerful language. This is the subject of the
next section, aptly titled “Characteristics of PHP.”

Characteristics of PHP

As you may have realized, the PHP language revolves around the central theme of
practicality. PHP is about providing the programmer with the necessary tools to
get the job done in a quick and efficient fashion. Five important characteristics
make PHP’s practical nature possible: 

• Familiarity

• Simplicity

An Introduction to PHP

5

Gilmore_01  12/5/00  10:22 AM  Page 5



• Efficiency

• Security

• Flexibility

One final characteristic makes PHP particularly interesting: it’s free!

Familiarity

Programmers from many backgrounds will find themselves already accustomed
to the PHP language. Many of the language’s constructs are borrowed from C and
Perl, and in many cases PHP code is almost indistinguishable from that found in
the typical C or Pascal program. This minimizes the learning curve considerably.

Simplicity

A PHP script can consist of 10,000 lines or one line: whatever you need to get the job
done. There is no need to include libraries, special compilation directives, or any-
thing of the sort. The PHP engine simply begins executing the code after the first
escape sequence (<?) and continues until it passes the closing escape sequence
(?>). If the code is syntactically correct, it will be executed exactly as it is displayed.

Efficiency

Efficiency is an extremely important consideration for working in a multiuser
environment such as the WWW. PHP 4.0 introduced resource allocation mecha-
nisms and more pronounced support for object-oriented programming, in addi-
tion to session management features. Reference counting has also been intro-
duced in the latest version, eliminating unnecessary memory allocation.

Security

PHP provides developers and administrators with a flexible and efficient set of
security safeguards. These safeguards can be divided into two frames of reference:
system level and application level.

System-Level Security Safeguards

PHP furnishes a number of security mechanisms that administrators can manip-
ulate, providing for the maximum amount of freedom and security when PHP is
properly configured. PHP can be run in what is known as safe mode, which can

Chapter 1 

6

Gilmore_01  12/5/00  10:22 AM  Page 6



limit users’ attempts to exploit the PHP implementation in many important ways.
Limits can also be placed on maximum execution time and memory usage, which
if not controlled can have adverse affects on server performance. Much as with a
cgi-bin folder, administrators can also place restrictions on the locations in which
users can view and execute PHP scripts and use PHP scripts to view guarded
server information, such as the passwd file. 

Application-Level Security Safeguards

Several trusted data encryption options are supported in PHP’s predefined func-
tion set. PHP is also compatible with many third-party applications, allowing for
easy-integration with secure ecommerce technologies. Another advantage is that
the PHP source code is not viewable through the browser because the script is
completely parsed before it is sent back to the requesting user. This benefit of
PHP’s server-side architecture prevents the loss of creative scripts to users at least
knowledgeable enough to execute a ‘View Source’.

Security is such an important issue that this book contains an entire chapter
on the subject. Please read Chapter 16, “Security,” for a thorough accounting of
PHP’s security features.

Flexibility

Because PHP is an embedded language, it is extremely flexible towards meeting the
needs of the developer. Although PHP is generally touted as being used in conjunc-
tion solely with HTML, it can also be integrated alongside languages like JavaScript,
WML, XML, and many others. Additionally, as with most other mainstream lan-
guages, wisely planned PHP applications can be easily expanded as needed.

Browser dependency is not an issue because PHP scripts are compiled
entirely on the server side before being sent to the user. In fact, PHP scripts can be
sent to just about any kind of device containing a browser, including cell phones,
personal digital assistant (PDA) devices, pagers, laptops, not to mention the tradi-
tional PC. People who want to develop shell-based applications can also execute
PHP from the command line.

Since PHP contains no server-specific code, users are not limited to a specific
and perhaps unfamiliar Web server. Apache, Microsoft IIs, Netscape Enterprise
Server, Stronghold, and Zeus are all fair game for PHP’s server integration.
Because of the various platforms that these servers operate on, PHP is largely
platform independent, available for such platforms as UNIX, Solaris, FreeBSD,
and Windows 95/98/NT.

Finally, PHP offers access to external components, such as Enterprise Java Beans
and Win32 COM objects. These newly added features put PHP in the big league, truly
enabling developers to scale PHP projects upward and outward as need be.

An Introduction to PHP

7

Gilmore_01  12/5/00  10:22 AM  Page 7



Free

The open source development strategy has gained considerable notoriety in the
software industry. The prospect of releasing source code to the masses has
resulted in undeniably positive outcomes for many projects, perhaps most
notably Linux, although the success of the Apache project has certainly been a
major contributor in proving the validity of the open source ideal. The same holds
true for the developmental history of PHP, as users worldwide have been a huge
factor in the advancement of the PHP project.

PHP’s embracing of this open source strategy result in great performance
gains for users, and the code is available free of charge. Additionally, an extremely
receptive user community numbering in the thousands acts as “customer sup-
port,” providing answers to even the most arcane questions in popular online dis-
cussion groups. 

The next section, “User Affirmations,” provides testimonies from three noted
industry professionals. Each provides keen insight into why they find PHP such
an appealing technology.

User Affirmations

“We have for a long time had a personal contact to some of the PHP devel-
opers and exchanged a lot of emails with them in the past. When the PHP
developers have had any problems with MySQL related issues we have
always been ready to help them solve them. We have also on some occa-
sions added new features into MySQL just to get the PHP integration better.
The result of this work is that MySQL works extremely well with PHP and
we will ensure that it keeps that way!”

Michael “Monty” Widenius, MySQL Developer
http://www.mysql.com

“FAST used PHP to implement mp3.lycos.com for a number of reasons. The
most important was time to market; PHP really lets you speed up the
development. Another reason was speed, we went from 0 to 1.4 million
page impressions in one day, and PHP coped just fine with this. The third
reason was of course that I knew that if I found bugs in PHP during this
‘“stress test”,’ I could fix them myself since PHP is open source.”

Stig Bakken, FAST Search & Transfer ASA
http://www.fast.no

“I’ve used PHP from the early days when it was PHP/FI 1.x. I loved having
the ability to process forms and customize my pages on the fly with such an
easy-to-use language. As my company’s needs have evolved, so has PHP.

Chapter 1 

8

Gilmore_01  12/5/00  10:22 AM  Page 8



Today, PHP is extremely feature rich. We rely on it for just about every cus-
tom web site we develop, including 32bit.com and DevShed.com. We even
use it at InfoWest to manage our customer service, account management
and port monitoring.

PHP’s evolution and acceptance is a textbook example of a successful
open source project. Open-mindedness, community contribution, and a
well-managed code-base have helped build PHP into a success few com-
mercial entities have been able to emulate. I look forward to the future of
PHP. I encourage any budding web developer to give PHP a spin. Like me,
you may never want to give it up.”

Randy Cosby
President, nGenuity, Inc.

DevShed (http://www.devshed.com) 

An Introductory Example

Consider the example shown in Listing 1-1, which illustrates just how easily PHP
can be integrated alongside HTML:

Listing 1-1: Dynamic PHP page creation
<?

// Set a few variables

$site_title = "PHP Recipes";

$bg_color = "white"; 

$user_name = "Chef Luigi";

?>

<html>

<head>

<title><? print $site_title; ?></title>

</head>

<body bgcolor="<? print $bg_color; ?>" >

<?

// Display an intro. message with date and user name.

print "

PHP Recipes | ".date("F d, Y")." <br>

Greetings, $user_name! <br>

";

?>

</body>

</html>

Figure 1-1 shows how the script appears when it is executed in the browser.

An Introduction to PHP

9

Gilmore_01  12/5/00  10:22 AM  Page 9



Not too shabby, huh? I’m sure many a reader’s mind is already churning with
possibilities. However, before delving further into scripting issues, chances are
you may need to install and configure PHP on your machine. This is the subject of
the next few sections.

Downloading PHP/Apache

Before you proceed, I recommend that you take some time to download, install,
and configure PHP and a Web server on your machine. Although PHP is compati-
ble with a wide variety of Web servers, I’ll assume that you will be using Apache,
partly because it is currently the Web’s most popular Web server and partly
because it is the one most widely used with PHP. Regardless, the general installa-
tion process will not differ widely between Web servers. 

You can download the PHP distribution from the official PHP site or from one
of its many worldwide mirror sites. Go to http://www.php.net for the most recently
updated mirror list. From here, you can download PHP in one of two formats:

• WIN32 Binary 

• Source code

Chapter 1 

10

Figure 1-1. The script is executed in the browser.

Gilmore_01  12/5/00  10:22 AM  Page 10



The Win32 binary is for Windows 95/98/NT/2000 users. While it is also possi-
ble to compile the source code on the Windows platform, for the large majority of
users this won’t be necessary. However, if you insist on doing so (incidentally, a
process that is not discussed within this book), you’ll need a recent Visual C++
compiler for doing so. Check out http://www.php.net/version4/win32build.php
for more information on this process. The Win32 binary installation process is
detailed later in this chapter.

For non-Windows users, you’ll need to build the source code. While many
beginners may shudder at this thought, it is actually a rather simple process, as
you’ll soon learn. For those of you interested to know whether or not PHP is
offered in RPM (RedHat Package Manager) distribution format; it is, although
these RPMs are not available via the official PHP site. Check the discussion groups
(some of which are listed at the end of this chapter) for more information regard-
ing distribution locations and instructions. The generalized build process is
detailed later in this chapter.

Proceed to http://www.php.net and download the distribution that best suits
your needs. Download times will vary with your connection type and speed. Addi-
tionally, the documentation is available for download. I strongly recommend
downloading the most recent version.

If you haven’t yet installed the Apache server, you will want to download the
latest stable version of that as well. These packages are at
http://www.apache.org/dist/binaries/, which contains directories for a plethora
of operating systems. Download the one that is specific to your needs. Providing
instructions regarding PHP configuration specifics for every available platform
and Web server is out of the scope of this book. Therefore, I will concentrate on
the Apache server. Regardless of the Web server you intend to use, I strongly rec-
ommend reading through the configuration sections later in this chapter to gain
some insight into the generalized configuration issues that you may encounter.

Installation of new software can sometimes prove to be a daunting process
for newcomers. However, the PHP developers have taken extra steps to make PHP
installation relatively easy. The following sections highlight the steps you should
take to install and configure PHP on both the non-Windows and the Win32 
platforms. 

An Introduction to PHP

11

TIP PHP 4.0.3 was the current stable version at the time of printing of
this book. Of course, this version number is due to change along with the
continued development of the PHP package. I recommend always down-
loading the most recent stable version of the product.

Gilmore_01  12/5/00  10:22 AM  Page 11



Installation and Configuration

At this point, I’ll assume that you have successfully downloaded PHP and Apache.
The next step is deciding how you would like to install the distribution.For non-
Windows machines, there three different ways to do so: CGI binary, static Apache
module, and the dynamic Apache module. As a non-Windows user, chances are
you will not want to build PHP as a CGI binary. Furthermore, there are several
advantages to building PHP as a server module, therefore I'll concentrate solely
on building PHP both as a static and a dynamic module. As it relates to installa-
tion, the main difference between the two is that any subsequent changes to the
PHP static module will require the recompilation of both Apache and PHP, while
changes to the PHP dynamic module only require the subsequent recompilation
of just PHP and not the server.

For Windows machines, PHP can be installed as either a CGI binary or as a
static Apache module. In this case, I'll concentrate upon the CGI binary, since a
Windows-user might be more prone to use a Web server other than Apache, like
Microsoft's Internet Information Server or Microsoft's Personal Web Server. The
CGI version can easily be integrated into these servers. Although I illustrate the
PHP/Apache Windows installation process, this process is very similar to that
which would be used for the above-mentioned Web servers as well.

Chapter 1 

12

NOTE In later chapters I’ll introduce the MySQL database server, using this
popular product as the basis for illustrating Web/database integration. In
order to experiment with these examples, you’ll need to install the MySQL
package, available at http://www.mysql.com. Like PHP, MySQL is available
for both non-Windows and Windows platforms. Although I defer to the
MySQL documentation due to its thorough installation instructions, you
may be interested in taking a moment to read through the initial pages of
Chapter 11, “Databases,” for an introduction of the MySQL database server.

NOTE Recall that PHP4 comes with support for a wide variety of Web
servers, including AOL Server, Netscape Enterprise Server, Microsoft IIs,
Zeus, and more. However, I will keep the installation process limited to
that relating to Apache. For detailed instructions regarding how to install
PHP with these other servers, check out the PHP documentation at
http://www.php.net.

Gilmore_01  12/5/00  10:22 AM  Page 12



Non-Windows

Regardless of the installation variation you choose, you’ll need to begin by
decompressing the distributions. This is accomplished in two easy steps:

1. Unzip the packages. Once done, you’ll see that the files will be left with
*.tar extensions:

gunzip apache_1.3.9.tar.gz

gunzip php-4.0.0.tar.gz 

2. Untar the packages. This will unarchive the distributions:

tar -zxvf apache_1.3.x.tar

tar -zxvf php-4.0.x.tar

The installation procedure will pick up from this point.

Apache Module

Installing PHP as an Apache module is rather simple. I’ll take you through each
step here:

1. Change location to the Apache directory:

cd apache_1.3.x

2. Configure Apache. You can use any path you like. Keep in mind that a
slash does not follow the pathname:

./configure —prefix=[path] 

3. Change the location to the PHP directory and configure, build, and install
the distribution. The option with-config-file-path specifies the directory
that will contain PHP’s configuration file. Generally, this path is set to be
/usr/local/lib, but you can set it to be anything you wish:

./configure –with-apache=../apache_1.3.x —with-config-file-path=[config-path]

make

make install

An Introduction to PHP

13

Gilmore_01  12/5/00  10:22 AM  Page 13



4. Change back to the Apache directory. Now you will reconfigure, build,
and install Apache. The other-configuration-options option refers to any
special configuration options that you would like to pass along to the
Apache Web server. This is beyond the scope of this book. I suggest
checking out the Apache documentation for a complete explanation of
these options:

./configure –activate-module=src/modules/php4/libphp4.a 

—other-configuration-options

make

make install

5. The final step involves modifying Apache’s httpd.conf file. Some of these
modifications relate specifically to Apache, while others are necessary to
ensure that PHP scripts can be recognized and sent to the Web server.
First, locate the line that reads:

ServerName new.host.name

Change this line to read:

ServerName localhost

Next, locate the following two lines:

#AddType application/x-httpd-php .php .php4 

#AddType application/x-httpd-php-source .phps 

These lines need to be uncommented in order for PHP-enabled files to work
correctly on the server. To uncomment these lines, simply remove the pound
symbol (#) from the beginning of each line. Save the file and move up one direc-
tory. Start the Apache server using the following command:

./bin/apachectl start

Voilà! PHP and Apache are now ready for use. For testing purposes, insert the
following code into a file and save the file as phpinfo.php to the Apache’s docu-
ment root directory. This is the directory called htdocs, located in the Apache
installation directory.

<?

php_info();

?>

Chapter 1 

14

Gilmore_01  12/5/00  10:22 AM  Page 14



Open this file up in a browser on the server. You should see a lengthy list of
information regarding PHP’s configuration. Congratulations, you’ve successfully
installed PHP as an Apache Module.

Dynamic Apache Module

The Dynamic Module is useful because it allows you to upgrade your PHP distri-
bution without having to recompile the Web server as well. Apache considers it
just another one of its many modules, like ModuleRewrite or ModuleSpelling.
This idea becomes particularly useful when you want to add some kind of sup-
port to PHP later, encryption, for example. All you have to do is reconfigure/com-
pile PHP in accordance with the encryption support, and you can immediately
begin using it in your Web applications. Here is the installation process:

1. Change location to the Apache directory:

cd apache_1.3.x

2. Configure Apache. You can use any path you like. Keep in mind that a
slash does not follow the pathname. The –other-configuration-options
option refers to any special configuration options that you would like to
pass along to the Apache Web server. This is beyond the scope of this
book. I suggest checking out the Apache documentation for a complete
explanation of these options:

./configure —prefix=[path] —enable-module=so —other-configuration-options

3. Build the Apache server. After typing make, you will see a bunch of mes-
sages scroll by. This is normal.

make

4. Install the Apache server. After you type make install, another bunch of
messages will scroll by. Again, this is normal. Once this has finished,
you’ll see a message stating that you have successfully installed the
server.

make install

5. Assuming no errors occurred, you’re ready to modify Apache’s
“httpd.con” file. This file is located in the conf directory in the path that

An Introduction to PHP

15

Gilmore_01  12/5/00  10:22 AM  Page 15



you designated in step 4. Open this file in your favorite text editor. Locate
the following line:

ServerName new.host.name

Modify this line to read:

ServerName localhost

6. Change location to the directory in which you downloaded PHP. Then,
configure, make, and install PHP. You will need to specify the path direc-
tory pointing to the apxs file. This file can be found in the bin directory of
the path you designated in step 4.

./configure —with-apxs=[path/to/apxs] 

make 

make install

7. Reopen Apache’s httpd.conf file for another modification. In order for
incoming requests for PHP-enabled files to be properly parsed, the file
extension must coincide with the one as specified in the Apache server’s
configuration file, httpd.conf. This file contains a number of options,
which can be modified at the administrator’s discretion; a few of these
options relate directly to PHP. Open the httpd.conf file in your favorite
text editor. Towards the end of the file are two lines similar to the fol-
lowing:

#AddType application/x-httpd-php .php .php4 

#AddType application/x-httpd-php-source .phps 

8. You must uncomment these in order for PHP-enabled files to work cor-
rectly on the server. To uncomment these lines, simply remove the pound
symbol (#) from the beginning of each line.

9. Save the file and move up one directory (to cd). Start the Apache server
using the following command:

./bin/apachectl start

Voilà! PHP and Apache are now ready for use.

Chapter 1 

16

Gilmore_01  12/5/00  10:22 AM  Page 16



For testing purposes, insert the following code into a file and save the file as
phpinfo.php to the Apache’s document root directory. This is the directory called
htdocs, located in the Apache installation directory.

<?

php_info();

?>

Open this file up in a browser on the server. You should see a lengthy list of
information regarding PHP’s configuration. Congratulations, you’ve successfully
installed the Dynamic Apache Module.

Installation on Windows 95/98/NT

If you have installed an application on the Windows operating system, you have
probably found it to be very easy. Click a few buttons, agree to a few statements,
and the application is installed. And so is the case with the installation of Apache
and PHP on a Windows machine.

1. Double-click the Apache executable to begin the installation. You will be
greeted with an installation wizard. Read attentively and accept the
licensing agreement.

2. The wizard will suggest a default installation directory 
(C:\Program Files\Apache Group\Apache). This is fine, but you may want
to shorten it to just C:\Apache\. However, it’s up to you.

3. You will then be prompted for what name you would like to have appear
in the Start menu. Enter whatever you want, or accept the default.

4. Next you will be prompted for the installation type. Just pick Typical.
After you make your choice, the installation process is carried out.

5. Now it is time to modify the “httpd.conf” file, located in the conf direc-
tory, which is located in whatever directory you chose to install the
Apache server in step 2. Open this file using your favorite text editor.
You’ll probably want to make at least three basic modifications:

An Introduction to PHP

17

Gilmore_01  12/5/00  10:22 AM  Page 17



Replace yourname@yoursite.com with the correct information.

ServerAdmin yourname@yoursite.com

Uncomment this line and place the correct server name. Just use local-
host if you do not have an actual server name:

ServerName localhost

6. Attempt to start Apache to ensure that everything is working. At this
point you need to make the differentiation as to the type of Windows OS
you are using:

If you’re using Windows NT, choose “Install Apache as Service (NT Only)”
from the Start menu. Then go to the Control Panel, open up the Services
window, choose Apache, and click the “Start” button. Apache will start,
and it will start automatically at every subsequent boot of the machine.

If you’re not using Windows NT, choose “Start Apache” from the Start
menu. A small window will open. This window must be kept open in
order for the server to run.

7. Finally, go to a browser installed on the server and enter
http://localhost/. You should see a default page stating that the installa-
tion has been carried out correctly.

8. Now it’s time to install PHP. Change the directory to wherever you down-
loaded the PHP package. Extract it to the directory of your choice using
an unzipping application.

9. Go to that directory and look for a file entitled “php.ini-dist”. Rename this
file to php.ini and place it in the C:\Windows\ directory.

10. Go back to the PHP directory. Look for two more files, php4ts.dll and
Mscvrt.dll. Place these files in the C:\Windows\System\ directory. You
probably already have the Mscvrt.dll file, and you will be prompted to
overwrite it. Don’t overwrite the file or copy it.

11. Return to the Apache http.conf file, again opening it up in a text editor.
There are a few more modifications that you need to make:

[(H2L)]

18

Gilmore_01  12/5/00  10:22 AM  Page 18



Look for this line:

ScriptAlias /cgi-bin/ "C:/Apache/cgi-bin/"

Directly below this line, add the following:

ScriptAlias /php4/ "C:/php4/"

Then search for “AddType”. You will see the following two commented lines:

#AddType application/x-httpd-php3 .phtml

#AddType application/x-httpd-php3-source .phps

Directly below these lines, add the following:

AddType application/x-httpd-php .phtml .php 

AddType application/x-httpd-php-source .phps

Keep scrolling down. You will find the following commented lines:

#

# Action lets you define media types that will execute a script whenever

# a matching file is called. This eliminates the need for repeated URL

# pathnames for oft-used CGI file processors.

# Format: Action media/type /cgi-script/location

# Format: Action handler-name /cgi-script/location

#

Below this, add the following:

Action application/x-httpd-php /php4/php.exe

12. Voilà! PHP and Apache are now ready for use.

For testing purposes, insert the following code into a file and save the file as
“phpinfo.php” to the Apache’s document root directory. This is the directory
called htdocs located in whatever directory you specified in step 4.

<?

php_info();

?>

[(H1L)]

19

Gilmore_01  12/5/00  10:22 AM  Page 19



Open this file in a browser on the server. You should see a lengthy list of informa-
tion regarding PHP’s configuration.

PHP Configuration

Although PHP will correctly run given its default configuration setting, you can
make quite a few modifications to fine-tune the installation to your needs. The
php.ini file, copied by default into the /usr/local/lib/ directory during the installa-
tion process, contains all of these configuration settings.

Regardless of the platform and Web server used in conjunction with PHP, the
php.ini file will contain the same default set of parameters, from which several

important characteristics of the PHP installation can be administered. This file
contains all of the characteristics relevant to how your installation will act when
PHP scripts are executed. The PHP engine reads the php.ini file when PHP 
starts up. 

General Configuration Directives

Reiterating all of the configuration directives is beyond the scope of this book, but
there are several directives worth mentioning, as most the developers may find
them particularly useful. I’ll mention other directives as appropriate in subse-
quent chapters.

Chapter 1 

20

CAUTION Although successfully completing the steps outlined above does
make it possible for the Web server/PHP configuration to be used for testing
purposes, it does not imply that your Web server is accessible via the World
Wide Web. Check out the official Apache site ( http://www.apache.org) for
information regarding this matter. Furthermore, although the preceding
steps suffice to get the PHP package up and running, you will probably be
interested in modifying PHP’s configuration to best suit your needs. See
“PHP Configuration,” later in this chapter, for details.

NOTE The configuration file is entitled php3.ini in the 3.0 version but has
been changed to php.ini in the 4.0 version.

Gilmore_01  12/5/00  10:22 AM  Page 20



short_open_tag [on | off]

The short_open_tag [on | off] configuration directive determines the use of the
short PHP escape tags <?…?>, in addition to the default tags. 

asp_tags [on | off]

The asp_tags [on | off] configuration directive determines the use of ASP style tags
in addition to the default tags. ASP style tags are those that enclose PHP code as
follows: 

<%

print "This is PHP code.";

%>

precision [integer]

The precision [integer] configuration directive sets the number of significant dig-
its displayed in floating point numbers.

safe_mode [on | off]

Turning on safe mode is a particularly good idea if you have several users on your
system. Essentially, turning on safe mode eliminates the possibility that a user
can use a PHP script to gain access to another file on the system, for example, the
passwd file on a Linux machine. Safe_mode works solely on the CGI version of
PHP. Check out Chapter 16 for more details regarding this matter.

max_execution_time [integer]

The max_execution_time [integer] configuration directive determines the maxi-
mum number of seconds that a given PHP script may execute. This prevents run-
away scripts from eating up valuable system resources.

error_reporting [1–8]

The error_reporting [1-8] configuration directive gauges to what degree errors will
be reported, if any. The higher the bit value, the more sensitive PHP will be to
reporting errors:

An Introduction to PHP

21

Gilmore_01  12/5/00  10:22 AM  Page 21



BIT VALUE REPORTING SENSITIVITY

1 normal errors

2 normal warnings

4 parser errors

8 notices

display_errors [on | off]

The display_errors [on | off] configuration directive display the errors in the
browser.

log_errors

The log_errors configuration directive determines whether or not errors are
logged to a file. If log_errors is turned on, the directive error_log designates which
file the errors are logged to.

error_log [filename]

If log_errors is turned on, error_log designates the filename to which all errors
should be logged.

magic_quotes_gpc

When magic_quotes_gpc is activated, all special characters contained in user or
database data will automatically be escaped with the necessary backslash. By the
way, “gpc” stands for “get/post/cookie”.

Personally, I find it more efficient to keep magic_quotes_gpc turned off and to
escape the special characters explicitly. Regardless of the way you ultimately
decide to do it, there can be no compromise or your data may be corrupted. If
magic_quotes_gpc is “on”, then never physically escape special characters with a
backslash; otherwise, make it a habit to always do so.

track_vars

Chapter 1 

22

Gilmore_01  12/5/00  10:22 AM  Page 22



The track_vars configuration directive enables the recording of several important
session variable arrays, including $HTTP_GET_VARS[], $HTTP_POST_VARS[],
$HTTP_POST_FILES, $HTTP_COOKIE_VARS[], $HTTP_ENV_VARS[], and
$HTTP_SERVER_VARS[]. These arrays are discussed in further detail in Chapter
13, “Cookies and Session Tracking.”

It is important to note that there are many more configuration directives than
the ones listed here, although those listed are likely to be the ones that most users
will find useful. Many of these directives will be addressed in their respective later
chapters. 

Basic PHP Constructs

Now I’ll introduce several preliminary concepts related to PHP before delving into
the core topics of the language that make up the rest of this book.

Escaping to PHP

The PHP parsing engine needs a way to differentiate PHP code from other ele-
ments in the page. The mechanism for doing so is known as ‘escaping to PHP.’
There are four ways to do this:

• Default tags

• Short tags

• Script tags

• ASP-style tags

Default Tags

The default tags are perhaps those most commonly used by PHP programmers,
due to clarity and convenience of use:

<?php print "Welcome to the world of PHP!"; ?>

These tags may also be the most practical ones because the initial escape
characters are followed by php, which explicitly makes reference to the type of
code that follows. This can be useful because you may be simultaneously using

An Introduction to PHP

23

Gilmore_01  12/5/00  10:22 AM  Page 23



several technologies in the same page, such as JavaScript, server-side includes,
and PHP. Any ensuing PHP code will then follow the initial escape sequence, pre-
ceded by the closing escape sequence, "?>".

Short Tags

The short tag style is the shortest available for escaping to PHP code:

<? print "Welcome to the world of PHP!"; ?>

Short tags must be enabled in order for them to work. There are two ways to
do this:

• Include the —enable-short-tags option when compiling PHP.

• Enable the short_open_tag configuration directive found within the php.ini
file. 

Script Tags

Several text editors will mistakenly interpret PHP code as HTML (that is, view-
able) code, interfering with the Web page development process. To eliminate this
problem, use the following escape tags:

<script language="php"> 

print "Welcome to the world of PHP!"; 

</script>

ASP-Style Tags

Chapter 1 

24

Gilmore_01  12/5/00  10:22 AM  Page 24



A fourth and final way to embed PHP code is through the use of ASP (Active
Server Page)-style tags. This way is much like the short tag way just described,
except that a percentage sign (%) is used instead of a question mark.

<% print "Welcome to the world of PHP!"; %>

A variation of the ASP-style tag that can result in a lesser degree of code clut-
ter is available. This variation eliminates the need to include a ‘print’ statement in
the enclosed PHP code. The equals sign (=) immediately following the opening
ASP tag signals the PHP parser to output the value of the variable:

<%= $variable %>

Making use of this convenient tag style, we could execute the following:

<%

// set variable $recipe to something…

$recipe = "Lasagna";

%>

Luigi’s favorite recipe is <%=$recipe;%>

There are actually two separate PHP scripts in this listing. The first assigns the
value “Lasagna” to the variable $recipe. Later on, when it is necessary to display
the value of the variable $recipe, you can use the ASP-style variation for this sole
purpose. Incidentally, you could also use short tags (<?...?>) in much the same
way.

Embedding HTML in PHP Code

Perhaps the most powerful characteristic of PHP is its ability to both output and
be written directly alongside other languages, HTML and JavaScript, for example.
Listing 1-2 illustrates this concept.

Listing 1-2: Display of HTML using PHP code
<html>

<head>

<title>Basic PHP/HTML integration</title>

</head>

<body>

<?

An Introduction to PHP

25

Gilmore_01  12/5/00  10:22 AM  Page 25



// Notice how HTML tags are included in the print statement. 

print "<h3>PHP/HTML integration is cool.</h3>";

?>

</body>

</html>

Listing 1-2 illustrates how PHP can incorporate HTML code directly in print
statements. Notice how level-three header (<h3>…</h3>) tags can be placed right
inside the PHP code. These tags will appear in the final document as if they were
regular HTML output.

Listing 1-3 illustrates how PHP can dynamically insert information into a Web
page. The current date will be inserted into the title, as shown in Figure 1-2.

Listing 1-3: Dynamic date insertion
<title>PHP Recipes | <? print (date("F d, Y")); ?></title>

The simple PHP function date() can format the current date in several differ-
ent ways. This formatted date value can then be output into the title. 

PHP is also capable of modifying the format of the HTML itself through the
designation and subsequent insertion of tag characteristics in the file. Listing 1-4
shows how this is possible, assigning a font characteristic (h3) to a variable
($big_font) and later inserting it as needed in the display text.

Listing 1-4: Dynamic HTML tags
<html>

<head>

<title>PHP Recipes | <? print (date("F d, Y")); ?></title>

Chapter 1 

26

Figure 1-2. A simple PHP function, date(), formats the date for display in the
browser title bar.

Gilmore_01  12/5/00  10:22 AM  Page 26



</head>

<?

$big_font = "h3";

?>

<body>

<? print "<$big_font>PHP Recipes</$big_font>"; ?>

</body>

</html>

Listing 1-4 is a variation of Listing 1-3, this time first assigning level-three
header (<h3>…</h3>) tags to a variable and then later using this variable in a print
statement. These tags will appear in the final document as if they were regular
HTML output.

Multiple-PHP Script Embedding

To allow for flexibility when building dynamic Web applications, you can embed
several separate PHP scripts throughout a page. Listing 1-5 illustrates this.

Listing 1-5: Embedding multiple PHP scripts in a single document
<html>

<head>

<title>

<? 

print "Another PHP-enabled page";

$variable = "Hello World!";

?> 

</title></head>

<body>

<? print $variable; ?>

</body>

</html>

Listing 1-5 begins as a typical (albeit simple) HTML page would. The flexibil-
ity offered by this feature is that variables can be assigned in one code section and
still used later on in another code section on the same page. 

An Introduction to PHP

27

Gilmore_01  12/5/00  10:22 AM  Page 27



Commenting PHP Code

You should sufficiently comment the code even for relatively short and uncompli-
cated scripts. There are two commenting formats in PHP:

• Single-line comments are generally used for short explanations or notes rel-
evant to the local code.

• Multiline comments are generally used to provide pseudocode algorithms
and more detailed explanations when necessary.

Both methods ultimately result in the same outcome and have no bearing on
the overall performance of the script. Which to use is left up to you.

Single-Line Comments

Two commenting styles are geared toward single-line comments. Both work
exactly the same way, but they employ different escape characters. One style uses
a double backslash (//) at the beginning of a comment, and the other style uses a
pound symbol (#) at the beginning of a comment. Here are examples of each
style:

<?

// set the color of the roses.

$rose_color = "red";

# set the color of the violets.

$violet_color = "blue";

print "Roses are $rose_color, violets are $violet_color";

?>

Of course, it is possible to use single-line comments to build multiline com-
ments using either style, as seen in the following listing:

Chapter 1 

28

Gilmore_01  12/5/00  10:22 AM  Page 28



<?

// file: example.php

// author: WJ Gilmore

// date: August 24, 2000

print "An example with comments";

?>

Multiline Comments

PHP provides a mechanism for detailed comments that may take up more than
one line. This type of comment is enclosed in C-style comments, denoted with an
opening ‘/*’ and ‘*/’.

<?

/*

script: multi_comment_example.php

purpose: Multiline comment example

author: wj gilmore

date: June 14, 2000

*/

print "A multiline comment can be found at the top of this script!";

?>

As you can see, multiline comments are useful when you need to provide a
relatively lengthy summary of a script or a part of one.

What’s Next?

This chapter brought you up to speed regarding several key aspects of PHP,
namely:

• PHP’s history and features

• Installation and configuration

• “Escaping” to PHP

An Introduction to PHP

29

Gilmore_01  12/5/00  10:22 AM  Page 29



• Commenting PHP code

These topics serve as the introduction to subsequent chapters, where you will
learn more about the developmental issues regarding the PHP language. At the
conclusion of the next chapter, you will know enough about PHP to begin writing
your own programs. You will apply this knowledge by developing an events calen-
dar that can be easily inserted into an existing Web page. This project will serve as
the precursor for further development of the PHP Recipes Web application.

Gilmore_01  12/5/00  10:22 AM  Page 30





CHAPTER 2

Variables and
Data Types

Data types form the backbone of any programming language, providing the pro-
grammer with a means by which to represent various types of information. PHP
provides support for six general data types:

• Integers

• Floating-point numbers

• Strings

• Arrays

• Objects

• Booleans

One of the pillars of any programming language is its support for numbers. PHP
supports both integers and real (double) numbers. Each of these number formats
is described in further detail later.

Integer Values

An integer is nothing more than a whole number. Integers are represented as a se-
ries of one or more digits. Some examples of integers are:

5

591

52 

31

Gilmore_02  12/4/00  1:04 PM  Page 31



Octals and Hexadecimals

Integers in octal (base 8) and hexadecimal (base 16) formats are supported. Octal
values begin with the digit 0, followed by a sequence of digits, each ranging from 0
to 7. Some examples of octal integers are:

0422

0534

Hexadecimal integers can consist of the digits 0 through 9 or the letters a (A)
through f (F). All hexadecimal integers are preceded by 0x or 0X. Some examples
of hexadecimal integers are:

0x3FF

0X22abc

Floating-Point Numbers

A floating-point number is essentially a real numbers, that is, a number denoted
either wholly or in part by a fraction. Floating-point numbers are useful for repre-
senting values that call for a more accurate representation, such as temperature
or monetary figures. PHP supports two floating-point formats: standard notation
and scientific notation.

Standard Notation

Standard notation is a convenient representation typically used for real numbers,
for example, monetary values. Some examples are:

12.45

98.6 

Scientific Notation

Scientific notation is a more convenient representation for very large and very
small numbers, such as interplanetary distances or atomic measurements. Some
examples include:

3e8

5.9736e24

Chapter 2

32

Gilmore_02  12/4/00  1:04 PM  Page 32



String Values

A string is a group of characters that are represented as a single entity but can also
be examined on a character-by-character basis. Some examples of strings are:

thesaurus

49ers

abc

&%/$£ 

Note that PHP doesn’t include support for the char data type. Rather, the
string data type can be considered the all-encompassing type that represents
both single and multiple character sets.

String Assignments

Strings can be delimited in two ways, using either double quotation marks (“”) or
single quotation marks (‘’). There are two fundamental differences between the
two methods. First, variables in a double-quoted string will be replaced with their
respective values, whereas the single-quoted strings will be interpreted exactly as
is, even if variables are enclosed in the string.

The following two string declarations produce the same result:

$food = "meatloaf";

$food = 'meatloaf'; 

However, the following two declarations result in two drastically different out-
comes:

$sentence = "My favorite food is $food";

$sentence2 = 'My favorite food is $food';

The following string is what exactly will be assigned to $sentence. Notice how
the variable $food is automatically interpreted: 

My favorite food is meatloaf.

Whereas $sentence2 will be assigned the string as follows:

My favorite food is $food. 

Variables and Data Types

33

Gilmore_02  12/4/00  1:04 PM  Page 33



In contrast with $sentence, the uninterpreted variable $food will appear in the
string assigned to $sentence2. These differing outcomes are due to the usage of
double and single quotation marks in assigning the corresponding strings to
$sentence and $sentence2.

Before discussing the second fundamental difference between double-
quoted and single-quoted strings, an introduction of PHP’s supported string de-
limiters is in order. As with most other mainstream languages, a set of delimiters
is used to represent special characters, such as the tab or newline characters.
Table 2-1 lists the supported delimiters:

Table 2-1. Supported String Delimiters

CHARACTER SEQUENCE REPRESENTATION

\n Newline

\r Carriage return

\t Horizontal tab

\\ Backslash

\$ Dollar sign

\” Double-quotation mark

\[0-7]{1,3} Octal notation regular expression pattern

\x[0-9A-Fa-f]{1,2} Hexadecimal notation regular expression pattern 

With this in mind, the second fundamental difference is that while a double-
quoted string recognizes all available delimiters, a single-quoted string recognizes
only the delimiters “\\” and “\”. Consider an example of the contrasting outcomes
when assigning strings enclosed in double and single quotation marks:

$double_list = "item1\nitem2\nitem3";

$single_list = 'item1\nitem2\nitem3'; 

If you print both strings to the browser, the double-quoted string will conceal
the newline character, but the single-quoted string will print it just as if it were
any other character. Although many of the delimited characters will be irrelevant
in the browser, this will prove to be a major factor when formatting for various
other media. Keep this difference in mind  when using double- or single-quoted
enclosures so as to ensure the intended outcome.

Here Doc Syntax

A second method with which to delimit strings, introduced in PHP4, is known 
as Here doc syntax. This syntax consists of beginning a string with <<< followed 

Chapter 2

34

Gilmore_02  12/4/00  1:04 PM  Page 34



immediately by some identifier of your choice, then the string in which you would
like to assign the variable, and finally a second occurrence of the same chosen
identifier. Consider this example:

$paragraph = <<<DELIM

This is a string that

Will be interpreted exactly

As it is written in the

variable assignment.

DELIM; 

Be sure to choose an identifier that will not appear in the string being as-
signed. Furthermore, the first character of the closing identifier must appear in
the first column of the line following the string.

Character Handling

Strings can be accessed on a character-by-character basis, much like a sequen-
tially indexed array. (Arrays are discussed in the next section.) An example follows:

$sequence_number = "04efgh";

$letter = $sequence_number[4];

The variable $letter will hold the value g. As you will learn in the next sec-
tion, PHP begins array position counts from 0. To illustrate this further, consider
the fact that $sequence_number[1] would hold the value 4.

Arrays

An array is a list of elements each having the same type. There are two types of ar-
rays: those that are accessed in accordance with the index position in which the
element resides, and those that are associative in nature, accessed by a key value
that bears some sort of association with its corresponding value. In practice, how-
ever, both are manipulated in much the same way. Arrays can also be single-
dimensional or multidimensional in size.

Single-Dimension Indexed Arrays

Single-dimension indexed arrays are handled using an integer subscript to denote
the position of the requested value.

Variables and Data Types

35

Gilmore_02  12/4/00  1:04 PM  Page 35



The general syntax of a single-dimension array is:

$name[index1]; 

A single-dimension array can be created as follows:

$meat[0] = "chicken";

$meat[1] = "steak";

$meat[2] = "turkey"; 

If you execute this command:

print $meat[1]; 

The following will be output to the browser:

steak 

Alternatively, arrays may be created using PHP’s array() function. You can use
this function to create the same $meat array as the one in the preceding example:

$meat = array("chicken", "steak", "turkey"); 

Executing the same print command yields the same results as in the previous
example, again producing “steak”.

You can also assign values to the end of the array simply by assigning values
to an array variable using empty brackets. Therefore, another way to assign values
to the $meat array is as follows:

$meat[] = "chicken";

$meat[] = "steak";

$meat[] = "turkey";

Single-Dimension Associative Arrays

Associative arrays are particularly convenient when it makes more sense to map
an array using words rather than integers.

For example, assume that you wanted to keep track of all of the best food and
wine pairings. It would be most convenient if you could simply assign the arrays
using key-value pairings, for example, wine to dish. Use of an associative array to
store this information would be the wise choice:

Chapter 2

36

Gilmore_02  12/4/00  1:04 PM  Page 36



$pairings["zinfandel"] = "Broiled Veal Chops";

$pairings["merlot"] = "Baked Ham";

$pairings["sauvignon"] = "Prime Rib";

$pairings["sauternes"] = "Roasted Salmon";

Use of this associative array would greatly reduce the time and code required
to display a particular value. Assume that you wanted to inform a reader of the
best accompanying dish with merlot. A simple call to the pairings array would
produce the necessary output:

print $pairings["merlot"];                // outputs the value "Baked Ham"

An alternative method in which to create an array is via PHP’s array() function:

$pairings = array(

zinfandel => "Broiled Veal Chops",

merlot => "Baked Ham",

sauvignon => "Prime Rib",

sauternes => "Roasted Salmon";

This assignment method bears no difference in functionality from the previ-
ous $pairings array, other than the format in which it was created. 

Multidimensional Indexed Arrays

Multidimensional indexed arrays function much like their single-dimension
counterparts, except that more than one index array is used to specify an ele-
ment. There is no limit as to the dimension size, although it is unlikely that any-
thing beyond three dimensions would be used in most applications.

The general syntax of a multidimensional array is:

$name[index1] [index2]..[indexN]; 

An element of a two-dimensional indexed array could be referenced as fol-
lows:

$position = $chess_board[5][4]; 

Variables and Data Types

37

Gilmore_02  12/4/00  1:04 PM  Page 37



Multidimensional Associative Arrays

Multidimensional associative arrays are also possible (and quite useful) in PHP.
Assume you wanted to keep track of wine-food pairings, not only by wine type,
but also by producer. You could do something similar to the following: 

$pairings["Martinelli"] ["zinfandel"] = "Broiled Veal Chops";

$pairings["Beringer"] ["merlot"] = "Baked Ham";

$pairings["Jarvis"] ["sauvignon"] = "Prime Rib";

$pairings["Climens"] ["sauternes"] = "Roasted Salmon";

Mixing Indexed and Associative Array Indexes

It is also possible to mix indexed and associative arrays indexes. Expanding on the
single-dimension associative array example, suppose you wanted to keep track of
the first and second string players of the Ohio State Buckeyes football team. You
could do something similar to the following:

$Buckeyes["quarterback"] [1] = "Bellisari";

$Buckeyes["quarterback"] [2] = "Moherman";

$Buckeyes["quarterback"] [3] = "Wiley"; 

PHP provides a vast assortment of functions for creating and manipulating
arrays, so much so that the subject merits an entire chapter. Read Chapter 5, “Ar-
rays,” for a complete discussion of how PHP arrays are handled.

Objects

The fifth PHP data type is the object. You can think of an object as a variable that is
instantiated from a kind of template otherwise known as a class. The concept of
objects and classes is integral to the notion of object-oriented programming
(OOP).

Contrary to the other data types contained in the PHP language, an object
must be explicitly declared. It is important to realize that an object is nothing
more than a particular instance of a class, which acts as a template for creating
objects having specific characteristics and functionality. Therefore, a class must
be defined before an object can be declared. A general example of class declara-
tion and subsequent object instantiation follows: 

Chapter 2

38

Gilmore_02  12/4/00  1:04 PM  Page 38



class appliance {

var power;

function set_power($on_off) {

$this->power = $on_off;

}

}

. . . 

$blender = new appliance;

A class definition creates several characteristics and functions pertinent to a
data structure, in this case a data structure named appliance. So far, the appliance
isn’t very functional. There is only one characteristic: power. This characteristic
can be modified by using the method set_power. 

Remember, however, that a class definition is a template and cannot itself be
manipulated. Instead, objects are created based on this template. This is accom-
plished via the new keyword. Therefore, in the preceding listing an object of class
appliance named blender is created. 

The blender power can then be set by making use of the method set_power:

$blender->set_power("on");

Object-oriented programming is such an important strategy in today’s appli-
cation development standards that its use with PHP merits its own chapter. Chap-
ter 6, “Object-Oriented PHP,” introduces PHP’s OOP implementation in further
detail.

Boolean, or True/False, Values

The boolean data type is essentially capable of representing only two data types:
true and false. Boolean values can be determined in two ways: as a comparison
evaluation or from a variable value. Both are rather straightforward.

Comparisons can take place in many forms. Evaluation typically takes place
by use of a double equal sign and an if conditional. Here is an example:

if ($sum == 40) :

. . . 

This could evaluate to only either true or false. Either $sum equals 40, or it
does not. If $sum does equal 40, then the expression evaluates to true. Otherwise,
the result is false.

Boolean values can also be determined via explicitly setting a variable to a
true or false value. Here is an example:

Variables and Data Types

39

Gilmore_02  12/4/00  1:04 PM  Page 39



$flag = TRUE;

if ($flag == TRUE) :

print "The flag is true!";

else :

print "The flag is false!";

endif;

If the variable $flag has been set to true, then print the appropriate statement;
Otherwise, print an alternative statement.

An alternative way to represent true and false is by using the values 1 and 0,
respectively. Therefore, the previous example can be restated as follows:

$flag = 1;

if ($flag == TRUE) :

print "The flag is true!";

else :

print "The flag is false !";

endif;

Yet another alternative way to represent the above example follows:

$flag = TRUE;

// this implicitly asks "if ($flag == TRUE)"

if ($flag) :

print "The flag is true!";

else :

print "The flag is false!";

endif; 

Identifiers

An identifier is a general term applied to variables, functions, and various other
user-defined objects. There are several properties that PHP identifiers must 
abide by:

• An identifier can consist of one or more characters and must begin with an
alphabetical letter or an underscore. Furthermore, identifiers can only con-
sist of letters, numbers, underscore characters, and other ASCII characters
from 127 through 255. Consider a few examples: 

Chapter 2

40

Gilmore_02  12/4/00  1:04 PM  Page 40



VALID INVALID

my_function This&that

Size !counter

_someword 4ward

• Identifiers are case sensitive. Therefore, a variable named $recipe is differ-
ent from variables named $Recipe, $rEciPe, or $recipE.

• Identifiers can be any length. This is advantageous, as it enables a program-
mer to accurately describe the identifier’s purpose via the identifier name.

• Finally, an identifier name can’t be identical to any of PHP’s predefined key-
words. 

Variables

As a byproduct of examining the examples up to this point, I’ve introduced you to
how variables are assigned and manipulated. However, it would be wise to explic-
itly lay the groundwork as to how variables are declared and manipulated. The
coming sections will examine these rules in detail.

Variable Declaration

A variable is a named memory location that contains data that may be manipu-
lated throughout the execution of the program.

A variable always begins with a dollar sign, $. The following are all valid vari-
ables:

$color

$operating_system

$_some_variable

$model

Variable names follow the same naming rules as those set for identifiers. That
is, a variable name can begin with either an alphabetical letter or underscore and
can consist of alphabetical letters, underscores, integers, or other ASCII charac-
ters ranging from 127 through 255.

Variables and Data Types

41

Gilmore_02  12/4/00  1:04 PM  Page 41



Interestingly, variables do not have to be explicitly declared in PHP, much as
is the case with the Perl language. Rather, variables can be declared and assigned
values simultaneously. Furthermore, a variable’s data type is implicitly deter-
mined by examining the kind of data that the variable holds. Consider the follow-
ing example:

$sentence = "This is a sentence.";    // $sentence evaluates to string.

$price = 42.99;                       // $price evaluates to a floating-point

$weight = 185;                        // $weight evaluates to an integer.

You can declare variables anywhere in a PHP script. However, the location of
the declaration greatly influences the realm in which a variable can be accessed.
This access domain is known as its scope.

Variable Scope

Scope can be defined as the range of availability a variable has to the program in
which it is declared. PHP variables can be one of four scope types:

• Local variables

• Function parameters

• Global variables

• Static variables

Local Variables

A variable declared in a function is considered local; that is, it can be referenced
solely in that function. Any assignment outside of that function will be considered
to be an entirely different variable from the one contained in the function. Note
that when you exit the function in which the local variable has been declared, that
variable and its corresponding value will be destroyed.

Local variables are advantageous because they eliminate the possibility of
unexpected side effects, which can result from globally accessible variables that
are modified, intentionally or not. Consider this listing:

Chapter 2

42

Gilmore_02  12/4/00  1:04 PM  Page 42



$x  = 4;

function assignx () {

$x = 0;

print "\$x inside function is $x. <br>";

}

assignx();

print "\$x outside of function is $x. <br>";

Execution of the above listing results in:

$x inside function is 0.

$x outside of function is 4.
As you can see, two different values for $x are output. This is because the $x

located inside the assignx function is local in nature. Modification of its value has
no bearing on any values located outside of the function. On the same note, mod-
ification of the $x located outside of the function has no bearing on any variables
contained in assignx().

Function Parameters

As is the case with many other programming languages, in PHP any function 
that accepts arguments must declare these arguments in the function header. 
Although these arguments accept values that come from outside of the function,
they are no longer accessible once the function has exited.

Function parameters are declared after the function name and inside paren-
theses. They are declared much like a typical variable would be:

// multiply a value by 10 and return it to the caller

function x10 ($value) {

$value = $value * 10;

return $value;

}

It is important to realize that although you can access and manipulate any
function parameter in the function in which it is declared, it is destroyed when
the function execution ends.

Variables and Data Types

43

Gilmore_02  12/4/00  1:04 PM  Page 43



Global Variables

In contrast to local variables, a global variable can be accessed in any part of the
program. However, in order to be modified, a global variable must be explicitly
declared to be global in the function in which it is to be modified. This is accom-
plished, conveniently enough, by placing the keyword GLOBAL in front of the
variable that should be recognized as global. Placing this keyword in front of an
already existing variable tells PHP to use the variable having that name. Consider
an example:

$somevar = 15;

function addit() {

GLOBAL $somevar;

$somevar++; 

print "Somevar is $somevar";

}

addit();

The displayed value of $somevar would be 16. However, if you were to omit
this line:

GLOBAL $somevar;

The variable $somevar would be assigned the value 1, since $somevar would
then be considered local within the addit() function. This local declaration
would be implicitly set to 0, and then incremented by 1 to display the value 1.

An alternative method for declaring a variable to be global is to use PHP’s
$GLOBALS array. Reconsidering the above example, I use this array to declare the
variable $somevar to be global:

$somevar = 15;

function addit() {

$GLOBALS["somevar"];

$somevar++; 

}

addit();

print "Somevar is $somevar";

Chapter 2

44

Gilmore_02  12/4/00  1:04 PM  Page 44



Regardless of the method you choose to convert a variable to global scope, be
aware that the global scope has long been a cause of grief among programmers
due to unexpected results that may arise from their careless use. Therefore, al-
though global variables can be extremely useful, be prudent when using them.

Static Variables

The final type of variable scoping that I discuss is known as static. In contrast to
the variables declared as function parameters, which are destroyed on the func-
tion’s exit, a static variable will not lose its value when the function exits and will
still hold that value should the function be called again. You can declare a variable
to be static simply by placing the keyword STATIC in front of the variable name.

STATIC $somevar; 

Consider an example:

function keep_track() {

STATIC $count  = 0;

$count++;

print $count;

print "<br>";

}

keep_track();

keep_track();

keep_track(); 

What would you expect the outcome of this script to be? If the variable $count
were not designated to be static (thus making $count a local variable), the out-
come would be:

1

1

1 

Variables and Data Types

45

Gilmore_02  12/4/00  1:04 PM  Page 45



However, since $count is static, it will retain its previous value each time the
function is executed. Therefore, the outcome will be:

1

2

3

Static scoping is particularly useful for recursive functions. Recursive func-
tions are a powerful programming concept in which a function repeatedly calls it-
self until a particular condition is met. Recursive functions are covered in detail in
Chapter 4, “Functions.”

Type Juggling

From time to time, it may be convenient to use a variable in ways that were not
intended when it was first created. For example, you may wish to add the string
value “15” to the integer value 12. Fortunately, PHP variable types may be modi-
fied without any explicit conversion process. This conversion process, whether
explicit or implicit, is known as type juggling and is best illustrated with a few ex-
amples.

Consider a string and an integer value summed together. What do you think
should take place? You may want different actions to take place depending on the
contents of the string. For example, if an integer and a numerical string are added
together, an integer will result:

$variable1 = 1;

$variable2 = "3";

$variable3 = $variable1 + $variable2;               

//  $variable3 holds the value 4.

Another example of type juggling is the attempt to add an integer and a dou-
ble. Most certainly the integer would be converted to a double, so as not to lose
any degree of accuracy provided by the double:

$variable1 = 3;

$variable2 = 5.4;

$variable3 = $variable1 + $variable2;      

// $variable3 converts to a double, and $variable3 is assigned 8.4

A few obscure features of type juggling should be brought to light. What if you at-
tempted to add together an integer and a string containing an integer value, as-

Chapter 2

46

Gilmore_02  12/4/00  1:04 PM  Page 46



suming the string was not solely numerical in nature? Consider the following ex-
ample:

$variable1 = 5;

$variable2 = "100 bottles of beer on the wall";

$variable3 = $variable1 + $variable2;                       

// $variable3 holds the value 105. 

This will result in $variable3 being set to 105. This is because the PHP parser de-
termines the type by looking at only the initial part of a string. However, suppose
we modified $variable2 to read “There are 100 bottles of beer on the wall”. Since
there is no easy way to convert an alphabetical character into an integer value,
this string would evaluate to 0, and thus $variable3 would be assigned the value 5.

Although in most cases, PHP’s type-juggling strategy will suffice and produce
the intended result, it is also possible to explicitly modify a variable to a particular
type. This is explained in further detail in the next section, “Type Casting.”

Type Casting

Forcing a variable to behave as a type other than the one originally intended for it
is a rather straightforward process known as type casting. Type modification can
be either a one-time occurrence or permanent.

A variable can be evaluated once as a different type by casting it. This is ac-
complished by placing the intended type in front of the variable to be cast. A type
can be cast by inserting one of the casts in front of the variable (see Table 2-2).

Table 2-2. Cast Operators for Variables

CAST OPERATORS CONVERSION

(int) or (integer) Integer

(real) or (double) or (float) Double

(string) String

(array) Array

(object) Object 

A simple example of how type casting works is as follows:

$variable1 = 13;                   // $variable1 is assigned the integer value 13.

$variable2 = (double) $variable1;  // $variable2 is assigned the value 13.0

Variables and Data Types

47

Gilmore_02  12/4/00  1:04 PM  Page 47



Although $variable1 originally held the integer value 13, the double cast tem-
porarily converted the type to double (and in turn, 13 became 13.0). This value
was then assigned to $variable2.

You know from the previous section that an attempt to add an integer and a
double together will result in a double. This could be prevented by casting the
double to be an integer, as follows:

$variable1 = 4.0;

$variable2 = 5;

$variable3 = (int) $variable1 + $variable2;   // $variable3 =  9 

It is worth noting that type casting a double to an integer will always result in
that double being rounded down:

$variable1 = 14.7;

$variable2 = (int) $variable1; // $variable2 = 14;

It is also possible to cast a string or other data type to be a member of an
array. The variable being cast simply becomes the first element of the array:

$variable1 = 1114;

$array1 = (array) $variable1;

print $array1[0];                         // The value 1114 is printed. 

Finally, any data type can also be cast as an object. The result is that the vari-
able becomes an attribute of the object, the attribute having the name scalar:

$model = "Toyota";

$new_obj = (object) $model; 

The value can then be referenced as:

print $new_obj->scalar; 

Variable Assignment

You’ve already been exposed to how values can be assigned to variables in a PHP
script. However, several nuances to variable assignment are worth reviewing. You
might be familiar with assignment by value, which simply assigns a particular
value, such as the integer 1 or the string ciao, to a named variable. However, there
is a second kind of variable assignment, known as assignment by reference, which
provides a valuable service to the developer. The following sections will consider
each of these assignment methods in further detail.

Chapter 2

48

Gilmore_02  12/4/00  1:04 PM  Page 48



Assignment by Value

This is the most common type of assignment, which simply assigns a value to a
memory location represented by a variable name. Some examples of assignments
by value are:

$vehicle = "car";

$amount = 10.23; 

These two assignments result in the memory address represented by 
$vehicle being assigned the string “car” and that represented by $amount receiving
the value 10.23.

Assignments by value can also take place through a return call in a function:

function simple () {

return 5;

}

$return_value = simple();

The function simple() does nothing more than return the value 5 to the variable
that called it. In this case, $return_value will be assigned the value 5.

Assignment by Reference

The other way to assign a value to a variable is by referencing another variable’s
memory location. Instead of copying an actual value into the destination variable,
a pointer (or reference) to the memory location is assigned to the variable receiv-
ing the assignment, and therefore no actual copying takes place.

An assignment by reference is accomplished by placing an ampersand (&) in
front of the source variable:

$dessert = "cake";

$dessert2 = &$dessert;

$dessert2 = "cookies";

print "$dessert2 <br>"; // prints cookies

print $dessert; // Again, prints cookies 

As you can see by the previous listing, after $dessert2 has been assigned
$dessert’s memory location reference, any modifications to $dessert2 will result
in modification of $dessert or any other variable pointing to that same memory
location.

Variables and Data Types

49

Gilmore_02  12/4/00  1:04 PM  Page 49



Variable Variables

On occasion it is useful to make use of variables whose contents can be treated
dynamically as a variable in itself. Consider this typical variable assignment:

$recipe = "spaghetti";

Interestingly, we can then treat the value “spaghetti” as a variable by placing a
second dollar sign ($) in front of the original variable name and again assigning
another value:

$$recipe = "& meatballs"; 

This in effect assigns "& meatballs" to a variable named "spaghetti".
Therefore, the following two snippets of code produce the same result:

print $recipe $spaghetti;

print $recipe $($recipe); 

The result of both is the string "spaghetti & meatballs".

Predefined Variables

PHP offers a number of predefined variables geared toward providing the devel-
oper with a substantial amount of internal configuration information. PHP itself
creates some of the variables, while many of the other variables change depend-
ing in which operating system and Web server PHP is running.

Rather than attempt to compile a complete listing of available predefined
variables, I will highlight a few of the available variables and functions that most
users will find applicable and useful. 

To view a comprehensive list of Web server, environment, and PHP variables
offered on your particular system setup, simply execute the following code:

while (list($var,$value) = each ($GLOBALS)) :

echo "<BR>$var => $value";

endwhile;

This will return a list of variables similar to the following. Take a moment to
peruse through the listing produced by the above code and then check out the ex-
amples that immediately follow.

Chapter 2

50

Gilmore_02  12/4/00  1:04 PM  Page 50



GLOBALS => 

HTTP_GET_VARS => Array

HTTP_COOKIE_VARS => Array

HISTSIZE => 1000

HOSTNAME => server1.apress.com

LOGNAME => unstrung

HISTFILESIZE => 1000

REMOTEHOST => apress.com

MAIL => /var/spool/mail/apress

MACHTYPE => i386

TERM => vt100

HOSTTYPE => i386-linux

PATH =>

/usr/sbin:/sbin:/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/usr/local/ja=va/bin

HOME => /root

INPUTRC => /etc/inputrc

SHELL  => /bin/csh

USER => nobody

VENDOR => intel

GROUP  => root

HOST => server1.apress.com

OSTYPE => linux

PWD => /www/bin

SHLVL => 3_ => /www/bin/httpd

DOCUMENT_ROOT  => /usr/local/apress/site.apress

HTTP_ACCEPT => */*

HTTP_ACCEPT_ENCODING => gzip, deflate

HTTP_ACCEPT_LANGUAGE => it,en-us;q=0.5

HTTP_CONNECTION => Keep-Alive

HTTP_HOST => www.apress.com

HTTP_USER_AGENT  => Mozilla/4.0 (compatible; MSIE 5.0; Windows 98;

CNETHomeBuild051099)

REMOTE_ADDR => 127.0.0.1

REMOTE_PORT => 3207

SCRIPT_FILENAME => /usr/local/apress/site.apress/j/environment_vars.php

SERVER_ADDR => 127.0.0.1

SERVER_ADMIN => admin@apress.com

SERVER_NAME => www.apress.com

SERVER_PORT  => 80

SERVER_SIGNATURE =>

Apache/1.3.12 Server at www.apress.com Port 80

SERVER_SOFTWARE => Apache/1.3.12 (Unix) PHP/4.0.1

GATEWAY_INTERFACE => CGI/1.1

Variables and Data Types

51

Gilmore_02  12/4/00  1:04 PM  Page 51



SERVER_PROTOCOL => HTTP/1.1

REQUEST_METHOD => GET

QUERY_STRING => 

REQUEST_URI => /j/environment_vars.php

SCRIPT_NAME => /j/environment_vars.php

PATH_TRANSLATED => /usr/local/apress/site.apress/j/environment_vars.php

PHP_SELF  => /j/environment_vars.php

argv => Array

argc => 0

var => argc

value => argc 

As you can see, quite a bit of information is available to you, some rather use-
ful, some not so useful. It is possible to display just one of these variables simply
by treating it as such; a variable. For example, use this to display the user’s IP ad-
dress:

print "Hi! Your IP address is: $REMOTE_ADDR";

This returns a numerical IP address, such as 208.247.106.187.
It is also possible to gain information regarding the user’s browser and oper-

ating system. The following one-liner:

print "Your browser is: $HTTP_USER_AGENT";

returns information similar to the following:

Your browser is: Mozilla/4.0 (compatible; MSIE 5.0; Windows 98;

CNETHomeBuild051099)

This is information regarding the browser and the operating system on which
it is running. This data can prove quite useful when formatting applications to
browser-specific formats.

Chapter 2

52

NOTE To make use of the predefined variable arrays, track_vars must be
turned on in the php.ini file. As of PHP 4.03, track_vars is always enabled.

Gilmore_02  12/4/00  1:04 PM  Page 52



Constants

A constant is essentially a value that cannot be modified throughout the execu-
tion of a program. Constants are particularly useful when working with values
that will definitely not require modification, such as pi (3.141592), or a specific
distance such as the number of feet in a mile (5,280).

In PHP, constants are defined using the define() function. Once a constant
has been defined, it cannot be changed (or redefined) at any other point of the
program.

Pi could be defined in a PHP script as follows:

define("PI", "3.141592"); 

And subsequently used in the following listing:

print "The value of pi is". PI.".<br>";

$pi2 = 2 * PI;

print "Pi doubled equals $pi2."; 

producing:

The value of pi is 3.141592.

Pi doubled equals 6.283184. 

There are two points to note regarding the previous listing: The first is that
use of a constant does not require a dollar sign. The second is that it’s not possible
to modify the constant once it has been defined (for example, 2*PI); if you need to
produce a value based on the constant, the value must be stored in an alternative
variable.

What’s Next?

Quite a bit of material was covered in this chapter, which introduced many of the
details you need to begin understanding and writing the most basic PHP pro-
grams. In particular, the following topics were discussed:

• Valid data types (integers, floating points, strings, arrays, objects, booleans)

• Identifiers

Variables and Data Types

53

Gilmore_02  12/4/00  1:04 PM  Page 53



• Variables (declaration, scope)

• Type juggling

• Type casting

• Variable assignment (value, reference)

• Constants

This material will serve as the foundation for creating more complicated
scripts in the next chapter, which covers PHP’s expressions, operators, and con-
trol structures in detail. At the conclusion of Chapter 3, you will possess enough
knowledge to build your first useful PHP application; namely, a simple Web-based
events calendar.

Chapter 2

54

Gilmore_02  12/4/00  1:04 PM  Page 54



CHAPTER 3

Expressions, Operators,
and Control Structures

This chapter will introduce several aspects crucial to any programming language,
namely, expressions, operators, and control structures. Knowledge of these topics
will prove invaluable for creating large and complex PHP applications, as they will
make up much of the code. If you are already familiar with languages such as C
and Java, much of this chapter will be a review. If these terms and topics are new
for you, comprehension of this chapter will be extremely important for your un-
derstanding the later chapters of this book.

Expressions

An expression is essentially a phrase representing a particular action in a program.
All expressions consists of at least one operand and one or more operators. Before
delving into a few examples illustrating the use of expressions, an introduction of
operands and operators is in order.

Operands

An operand is one of the entities being manipulated in an expression. Valid
operands can be of any data type discussed in Chapter 2, “Variables and Data
Types.” You are probably already familiar with the manipulation and use of
operands not only through everyday mathematical calculations, but also through
prior programming experience. Some examples of operands follow:

$a++; // $a is the operand

$sum = $val1 + val2; // $sum, $val1 and $val2 are operands

Operators

An operator is a symbol that specifies a particular action in an expression. Many
operators may be familiar to you. Regardless, it is important to remember that
PHP’s automatic type conversion will convert types based on the type of operator

55

Gilmore_03  12/4/00  1:04 PM  Page 55



placed between the two operands, which is not always the case in other program-
ming languages.

The precedence and associativity of operators are significant characteristics
of a programming language (see “Operator Associativity,” later in this chapter, for
details). Table 3-1 contains a complete listing of all operators, ordered from high-
est to lowest precedence. Sections following the table discuss each of these topics
in further detail.

Table 3-1. PHP’s Operators

OPERATOR ASSOCIATIVITY PURPOSE

( ) NA Precedence ordering

new NA Object instantiation

! ~ R Boolean NOT, bitwise NOT

++ — R Autoincrement, autodecrement

@ R Error concealment

/ * % L Division, multiplication, modulus

+ - . L Addition, subtraction, concatenation

<< >> L Shift left, shift right (bitwise)

< <= > >= NA Less than, less than or equal to, greater than,

greater than or equal to

== != === <> NA Is equal to, is not equal to, identical to, is not

equal to

& ^ | L Bitwise AND, bitwise XOR, bitwise OR

&& || L Boolean AND, boolean OR

?: R Ternary operator

= += *= /= .= R Assignment operators

%=&= |= ^=

<<= >>=

AND XOR OR L Boolean AND, boolean XOR, boolean OR

Now that the concepts of operands and operators have been introduced, the
following examples of expressions will make much more sense:

$a = 5;               // assign integer value 5 to the variable $a

$a = "5";           // assign string value "5" to the variable $a

$sum = 50 + $some_int;   // assign sum of 50 + $some_int to $sum

$wine = "Zinfandel";     // assign "Zinfandel" to the variable $wine

$inventory++;            // increment the variable $inventory by 1

Chapter 3

56

Gilmore_03  12/4/00  1:04 PM  Page 56



More complex types of expressions that enable the programmer to perform more
elaborate calculations are also available. An example follows:

$total_cost = $cost + ($cost * 0.06); // cost plus sales tax

Operator Precedence

Operator precedence is a characteristic of operators that determines the order in
which they will evaluate the operands surrounding them. PHP follows the stan-
dard precedence rules used in elementary school math class. Let’s consider a few
examples:

$total_cost = $cost + $cost * 0.06;

is the same as writing:

$total_cost = $cost + ($cost * 0.06);

This is because the multiplication operator has higher precedence than that of
the addition operator. 

Operator Associativity

The associativity characteristic of an operator is a specification of how opera-
tions of the same precedence (having the same precedence value as displayed in
Table 3-1) are evaluated as they are executed. Associativity can be performed 
in two directions, left to right and right to left. Left-to-right associativity means
that the various operations making up the expression are evaluated from left to
right. Consider the following example:

$value = 3 * 4 * 5 * 7 * 2;

is the same as:

$value = ((((3 * 4) * 5) * 7) * 2);

resulting in the value 840. This is because the multiplication (*) operator is left-to-
right associative. In contrast, right-to-left associativity evaluates operators of the
same precedence from right to left:

Expressions, Operators, and Control Structures

57

Gilmore_03  12/4/00  1:04 PM  Page 57



$c = 5;

print $value = $a = $b = $c;

is the same as:

$c = 5;

$value = ($a = ($b = $c));

When this expression is evaluated, variables $value, $a, $b, and $c will all con-
tain the value 5. This is because the assignment operator (=) has right-to-left asso-
ciativity.

Arithmetic Operators

The arithmetic operators, listed in Table 3-2, perform various mathematical oper-
ations and will probably be used frequently in most PHP programs. Fortunately
they are easy to use.

Table 3-2. Arithmetic Operators

EXAMPLE LABEL OUTCOME

$a + $b Addition Sum of $a and $b

$a - $b Subtraction Difference of $a and $b

$a * $b Multiplication Product of $a and $b

$a / $b Division Quotient of $a and $b

$a % $b Modulus Remainder of $a / $b

Incidentally, PHP provides a vast assortment of predefined mathematical
functions, capable of performing base conversions and calculating logarithms,
square roots, geometric values, and more. Check the manual for an updated list of
these functions.

Assignment Operators

The assignment operators assign a data value to a variable. The simplest form of
assignment operator just assigns some value, while others (known as shortcut as-
signment operators) perform some other operation before making the assign-
ment. Table 3-3 lists examples using this type of operator.

Chapter 3

58

Gilmore_03  12/4/00  1:04 PM  Page 58



Table 3-3. Assignment Operators

EXAMPLE LABEL OUTCOME

$a = 5; Assignment $a equals 5

$a += 5; Addition-assignment $a equals $a plus 5

$a *= 5; Multiplication-assignment $a equals $a multiplied by 5

$a /= 5; Division-assignment $a equals $a divided by 5

$a .= 5; Concatenation-assignment $a equals $a concatenated with 5

Prudent use of assignment operators ultimately result in cleaner, more com-
pact code.

String Operators

PHP’s string operators (see Table 3-4) provide a convenient way in which to con-
catenate strings together. There are two such operators, including the concatena-
tion operator ( . ) and the concatenation assignment operator ( .= ), discussed in
the previous section, “Assignment Operators.”

Table 3-4. String Operators

EXAMPLE LABEL OUTCOME

$a = “abc”.“def”; Concatenation $a equals the concatenation of the

two strings $a and $b

$a .= “ghijkl”; Concatenation-assignment $a equals its current value

concatenated with “ghijkl”.

Here is an example of usage of the string operators:

// $a will contain string value "Spaghetti & Meatballs";

$a = "Spaghetti" . "& Meatballs"; 

// $a will contain value "Spaghetti & Meatballs are delicious.".

$a .= "are delicious";

The two concatenation operators are hardly the extent of PHP’s string-
handling capabilities. Read Chapter 8, “Strings and Regular Expressions,” for a
complete accounting of this functionality.

Expressions, Operators, and Control Structures

59

DEFINITION Concatenate means to combine two or more objects together
to form one single entity.

Gilmore_03  12/4/00  1:04 PM  Page 59



Autoincrement and Autodecrement Operators

The autoincrement (++) and autodecrement (—) operators listed in Table 3-5 pre-
sent a minor convenience in terms of code clarity, providing shortened means by
which to add 1 to or subtract 1 from the current value of a variable. 

Table 3-5. PHP’s Autoincrement and Autodecrement Operators

EXAMPLE LABEL OUTCOME

++$a, $a++ Autoincrement Increment $a by 1

—$a, $a— Autodecrement Decrement $a by 1

Interestingly, these operators can be placed on either side of a variable, the
side on which they are placed providing a slightly different effect. Consider the
outcomes of the following examples:

$inventory = 15;  // Assign integer value 15 to $inventory

$old_inv = $inventory—;         // FIRST assign $old_inv the value of 

// $inventory, THEN decrement $inventory.

$orig_inventory = ++$inventory;   // FIRST increment inventory, then assign 

// the newly incremented $inventory value         

// to $orig_inventory

As you can see, the order in which the autoincrement and autodecrement op-
erators are used can have profound effects on the value of a variable.

Logical Operators

Much like the arithmetic operators, logical operators (see Table 3-6) will probably
play a major role in many of your PHP applications, providing a way to make de-
cisions based on the values of multiple variables. Logical operators make it possi-
ble to direct the flow of a program and are used frequently with control structures
such as the if conditional and the while and for loops.

Table 3-6. Logical Operators

EXAMPLE LABEL OUTCOME

$a && $b And True if both $a and $b are true.

$a AND $b And True if both $a and $b are true.

$a || $b Or True if either $a or $b are true.

$a OR $b Or True if either $a or $b are true.

! $a Not True if $a is not true.

NOT $a Not True if $a is not true.

$a XOR $b Exclusive or True if only $a or only $b is true.

Chapter 3

60

Gilmore_03  12/4/00  1:04 PM  Page 60



Logical operators are also commonly used to provide details about the out-
come of other operations, particularly those that return a value:

file_exists("filename.txt") OR print "File does not exist!";

One of two outcomes will occur:

• The file filename.txt exists

• The sentence “File does not exist!” will be output.

Equality Operators

Equality operators (see Table 3-7) are used to compare two values, testing for
equivalence.

Table 3-7. Equality Operators

EXAMPLE LABEL OUTCOME

$a == $b Is equal to True if $a and $b are equivalent.

$a != $b Is not equal to True if $a is not equal to $b

$a === $b Is identical to True if $a and $b are equivalent and $a and 

$b have the same type.

It is a common mistake for even experienced programmers to attempt to test
for equality using just one equal sign (for example, $a = $b). Keep in mind that
this will result in the assignment of the contents of $b to $a, in effect not produc-
ing the expected results.

Comparison Operators

Comparison operators (see Table 3-8), like logical operators, provide a method by
which to direct program flow through examination of the comparative values of
two or more variables.

Expressions, Operators, and Control Structures

61

Gilmore_03  12/4/00  1:04 PM  Page 61



Table 3-8. Comparison Operators

EXAMPLE LABEL OUTCOME

$a < $b Less than True if $a is less than $b

$a > $b Greater than True if $a is greater than $b

$a <= $b Less than or equal to True if $a is less than or equal to $b

$a >= $b Greater than or equal to True if $a is greater than or equal to $b

($a == 12) ? 5 : -1 Trinary If $a equals 12, then the return value 

is 5. Otherwise, the return value is –1.

Note that the comparison operators should be used solely for comparing nu-
merical values. While you may be tempted to compare strings with these opera-
tors, you will most likely not arrive at the expected outcome if you do so. There is
a set of predefined functions that compare string values. These functions are dis-
cussed in detail in Chapter 8, “Strings and Regular Expressions.”

Bitwise Operators

Bitwise operators examine and manipulate integer values on the level of individ-
ual bits that make up the integer value (thus the name). To fully understand this
concept, you must have at least an introductory knowledge to the binary repre-
sentation of decimal integers. Table 3-9 presents a few decimal integers and their
corresponding binary representations. 

Table 3-9. Decimal Integers and Their Binary Representations

DECIMAL INTEGER BINARY REPRESENTATION

2 10

5 101

10 1010

12 1100

145 10010001

1,452,012 101100010011111101100

The bitwise operators listed in Table 3-10 are variations on some of the logical
operators, but can result in a drastically different outcome.

Chapter 3

62

Gilmore_03  12/4/00  1:04 PM  Page 62



Table 3-10. Bitwise Operators

EXAMPLE LABEL OUTCOME

$a & $b And And together each bit contained in $a and $b

$a | $b Or Or together each bit contained in $a and $b

$a ^ $b Xor Exclusive-or together each bit contained in $a and $b

~ $b Not Negate each bit in $b

$a << $b Shift left $a will receive the value of $b shifted left two bits.

$a >> $b Shift right $a will receive the value of $b shifted right two bits.

If you are interested in learning more about binary encoding, bitwise 
operators, and why they are important, I suggest Randall Hyde’s massive 
online reference, “The Art of Assembly Language Programming,” available at:
http://webster.cs.ucr.edu/Page_asm/Page_asm.html. It’s by far the best resource
I’ve found thus far on the Web.

Control Structures

Control structures provide programmers with the tools to build complex programs
capable of evaluating and reacting to the changing values of various inputs
throughout the execution of a program. In summary, these structures control the
execution of a program.

True/False Evaluation

Control structures generally evaluate expressions in terms of true and false. A par-
ticular action will occur based on the outcome of this evaluation. Consider the
comparative expression $a = $b. This expression will evaluate to true if $a in fact
is equal to $b, and false otherwise. More specifically, the expression will evaluate
to the value 1 if it is true, and 0 if it is false. Consider the following:

$a = 5;

$b = 5;

print $a == $b;

This would result in 1 being displayed. Changing $a or $b to a value other than 5
would result in 0 being displayed.

Expressions, Operators, and Control Structures

63

Gilmore_03  12/4/00  1:04 PM  Page 63



if 

The if statement is a type of selection statement that evaluates an expression and
will (or will not) execute a block of code based on the truth or falsehood of the ex-
pression. There are two general forms of the if statement:

if (expression) {

statement block

}

and 

if (expression) {

statement block

}

else {

statement block

}

As stated in the previous section, “True/False Evaluation,” the expression
evaluates to either true or false. The execution of the statement block depends on
the outcome of this evaluation, where a statement block could be either one or
several statements. The following example prints out an appropriate statement
after evaluating the string value:

if ($cooking_weight < 200) {

print "This is enough pasta (< 200g) for 1-2 people";

}

else {

print "That's a lot of pasta. Having a party perhaps?";

}

If only one statement is to be executed after the evaluation of the expression,
then there is no need to include the bracket enclosures:

if ($cooking_weight < 100) print "Are you sure this is enough?";

Chapter 3

64

Gilmore_03  12/4/00  1:04 PM  Page 64



elseif 

The elseif statement provides another level of evaluation for the if control struc-
ture, adding depth to the number of expressions that can be evaluated:

if (expression) {

statement block

}

elseif (expression) {

statement block

}

if ($cooking_weight < 200) {

print "This is enough pasta (< 200g) for 1-2 people";

}

elseif ($cooking_weight < 500) {

print "That's a lot of pasta. Having a party perhaps?";

}

else {

print "Whoa! Who are you cooking for, a football team?";

}

Nested if Statements

The ability to nest, or embed, several if statements within one another provides
the ultimate level of control in evaluating expressions. Let’s explore this concept
by expanding on the cooking weight example in the previous sections. Suppose
we wanted to evaluate the cooking weight only if the food in question was pasta:

Expressions, Operators, and Control Structures

65

NOTE PHP also allows the alternative representation of the elseif state-
ment, that is, else if. Both result in the same outcome, and the alternative
representation is only offered as a matter of convenience. The elseif state-
ment is particularly useful when it is necessary to more specifically evalu-
ate values. Note that an elseif statement will only be evaluated if the if and
elseif statements before it had all evaluated to false.

Gilmore_03  12/4/00  1:04 PM  Page 65



// check $pasta value

if ($food == "pasta") {

// check $cooking_weight value

if ($cooking_weight < 200) {

print "This is enough pasta (< 200g) for 1-2 people";

}

elseif ($cooking_weight < 500) {

print "That's a lot of pasta. Having a party perhaps?";

}

else {

print "Whoa! Who are you cooking for, a football team?";

}

} 

As you can see from the preceding code listing, nested if statements provide
you with greater control over the flow of your program. As your programs grow in
size and complexity, you will find nested control statements an indispensable
programming tool.

Multiple Expression Evaluation

To further dictate the flow of control in a program, it is possible to simultaneously
evaluate several expressions in a control structure:

if ($cooking_weight < 0) {

print "Invalid cooking weight!";

}

elseif ( ($cooking_weight > 0) && ($cooking_weight < 200) ) {

print "This is enough pasta (< 200g) for 1-2 people";

}

elseif ( ($cooking_weight > 200) && ($cooking_weight < 500) ) {

print "That's a lot of pasta. Having a party perhaps?";

}

else {

print "Whoa! Who are you cooking for, a football team?";

}

Multiple expression evaluations enable you to set range restrictions, provid-
ing greater control over your code flow while simultaneously reducing otherwise
redundant control structure calls, resulting in better code readability.

Chapter 3

66

Gilmore_03  12/4/00  1:04 PM  Page 66



Alternative Enclosure Bracketing

Control structures are enclosed in a set of brackets to clearly signify the various
statements making up the structure. Curly brackets ( { } ) were introduced earlier.
As a convenience for programmers, an alternative format for enclosing control
structures exists, as demonstrated here:

if (expression) :

statement block 

else :

statement block

endif;

Therefore the following two structures will produce exactly the same outcome:

if ($a == $b) {                              if ($a == $b) :

print "Equivalent values!";                  print "Equivalent values!";

endif;

}

while 

The while structure provides a way to repetitively loop through a statement 
block. The number of times the statement block is executed depends on the total
times the expression evaluates to true. The general form of the while loop is:

while (expression) :

statement block

endwhile;

Let’s consider an example of the computation of n-factorial (n!), where n = 5:

$n = 5;

$ncopy = $n;

$factorial = 1; // set initial factorial value

while ($n > 0) :

$factorial = $n * $factorial;

$n—; // decrement $n by 1

endwhile;

print "The factorial of $ncopy is $factorial.";

Expressions, Operators, and Control Structures

67

Gilmore_03  12/4/00  1:04 PM  Page 67



resulting in:

The factorial of 5 is 120.

In the preceding example, $n will be decremented at the conclusion of each
loop iteration. We want to be sure that the evaluation expression does not evalu-
ate to true when $n = 0, because this would cause $factorial to be multiplied by
0, surely an unwanted result.

do..while 

A do..while structure works in much the same way as the while structure pre-
sented in the previous section, except that the expression is evaluated at the end
of each iteration. It is important to note that a do..while loop will always execute
at least once, whereas a while loop might not execute at all if the condition is first
evaluated before entering the loop.

do :

statement block

while (expression);

Let’s reconsider the previous n-factorial example, this time using the
do..while construct:

$n = 5;

$ncopy = $n;

$factorial = 1; // set initial factorial value

do {

$factorial = $n * $factorial;

$n—; // decrement $n by 1

} while ($n > 0);

print "The factorial of $ncopy is $factorial.";

Chapter 3

68

NOTE In regard to this particular algorithm, the evaluation expression ac-
tually could be optimized to be $n > 1, because any number multiplied by
1 will not change. Although this is an extremely small gain in terms of exe-
cution time, these factors should always be considered as programs grow in
size and complexity.

Gilmore_03  12/4/00  1:04 PM  Page 68



Execution of the preceding example will have the same results as its counter-
part in the example accompanying the explanation of the while loop.

for 

The for loop is simply an alternative means for specifying the duration of iterative
loops. It differs from the while loop only in the fact that the iterative value is up-
dated in the statement itself instead of from somewhere in the statement block.
As is the case with the while loop, the looping will continue as long as the condi-
tion being evaluated holds true. The general form of the for construct is:

for (initialization; condition; increment) {

statement block

}

Three components actually make up the conditional. The initialization is
considered only once, used to assign the initial value of the loop control variable.
The condition is considered at the start of every repetition and will determine
whether or not the next repetition will occur. Finally, the increment determines
how the loop control variable changes with each iteration. Use of the term incre-
ment is perhaps misleading because the variable could be either incremented or
decremented in accordance with the programmer’s intentions. This example il-
lustrates the basic usage of the for loop:

for ($i = 10; $i <= 100; $i+=10) :

print "\$i = $i <br>";            // escaping backslash to suppress

// conversion of $i variable.

endfor;

which results in:

$i = 10 

$i = 20

$i = 30

$i = 40

$i = 50

$i = 60

Expressions, Operators, and Control Structures

69

NOTE The do..while loop does not support the alternative syntax form (the
colon [:] end control enclosure), allowing only usage of curly brackets as an
enclosure.

Gilmore_03  12/4/00  1:04 PM  Page 69



$i = 70

$i = 80

$i = 90

$i = 100

Summarizing the example, the conditional variable $i is initialized to the
value 10. The condition is that the loop will continue until $i reaches or surpasses
the value 100. Finally, $i will be increased by 10 on each iteration. The result is
that 10 statements are printed, each denoting the current value of $i. It is impor-
tant to note that an assignment operator is used to increment $i by 10. This is not
without reason, as the PHP for loop will not accept the alternative method for in-
crementation, that is, the form $i = $i + 10. 

Interestingly, the above example can be written in a second format, produc-
ing the same results:

for ($i = 10; $i <= 100; print "\$i = $i <br>", $i+=10) ; 

Many novice programmers may be questioning the logic behind having more
than one method for implementing looping in a programming language, PHP or
another language. The reason for this alternate looping implementation is that
quite a few variations of the for loop are available.

One interesting variation is the ability to initialize several variables simulta-
neously, separating each initialization variable with a comma:

for ($x=0,$y=0; $x+$y<10; $x++) :

$y +=2;                      // increment $y by 2

print "\$y = $y <BR>";       // print value of $y

$sum = $x + $y;              

print "\$sum = $sum<BR>";    // print value of $sum

endfor;

$y = 2 

$sum = 2

$y = 4 

$sum = 5

$y = 6 

$sum = 8

$y = 8 

$sum = 11

Chapter 3

70

Gilmore_03  12/4/00  1:04 PM  Page 70



The example will repeatedly print out both the current value of $y and the
sum of $x and $y. As you can see, $sum = 11 is printed, even though this sum sur-
passes the boundary of the conditional ($x + $y < 10). This is because on the en-
trance of that particular iteration, $y was equal to 6 and $x equal to 2. This fell
within the terms of the condition, and $x and $y were incremented, respectively.
The sum of 11 was output, but on return to the condition, 11 surpassed the limit
of 10, and the for loop was terminated.

It is also possible to omit one of the components of the conditional expres-
sion. For example, you may want to pass an initialization variable directly into the
for loop, without explicitly setting it to any particular value. You may also want to
change the increment variable based on a particular condition in the loop. There-
fore, it would make no sense to include these in the for loop. Consider the follow-
ing example:

$x = 5;

for (; ; $x += 2) :

print " $x ";

if ($x == 15) :

break;     // break out of this for loop

endif;

endfor;

which results in the following outcome:

5 7 9 11 13 15

Although there is no difference in function between the for and while looping
structures, the for loop arguably promotes a cleaner code structure. This is be-
cause a quick glance in the for statement itself provides the programmer with all
of the necessary information regarding the mechanics and duration of the struc-
ture. Contrast this with the while statement, where one must take extra time to
hunt for iterative updates, a task that could be time consuming as a program
grows in size.

foreach 

The foreach construct is a variation of the for structure, included in the language
as a more convenient means to maneuver through arrays. There are two general
forms of the foreach statement, each having its own specific purpose:

Expressions, Operators, and Control Structures

71

Gilmore_03  12/4/00  1:04 PM  Page 71



foreach (array_expression as $value) {

statement

}

foreach (array_expression as $key => $value) {

statement

}

Let’s use the first general format in an expression:

$menu = array("pasta", "steak", "potatoes", "fish", "fries");

foreach ($menu as $item) {

print "$item <BR>";

}

resulting in:

pasta

steak

potatoes

fish

fries

In the above example, two points are worth noting. The first is that the 
foreach construct will automatically reset the array to its beginning position,
something that does not occur using other iterative constructs. Second, there is
no need to explicitly increment a counter or otherwise move the array forward;
This is automatically accomplished through the foreach construct.

The second general format is used for associative arrays:

$wine_inventory = array {

"merlot" => 15,

"zinfandel" => 17,

"sauvignon" => 32

}

foreach ($wine_inventory as $i => $item_count) {

print "$item_count bottles of $i remaining<BR>";

}

Chapter 3

72

Gilmore_03  12/4/00  1:04 PM  Page 72



resulting in:

15 bottles of merlot remaining

17 bottles of zinfandel remaining

32 bottles of sauvignon remaining

As this example demonstrates, handling arrays becomes rather simple with
the foreach statement. For more information regarding arrays, refer to Chapter 5,
“Arrays.”

switch 

The switch statement functions much like an if statement, testing an expression
value against a list of potential matches. It is particularly useful when you need to
compare many values, as the switch statement provides clean and compact code.
The general format of the switch statement is:

switch (expression) {

case (condition) :

statement block

case (condition) :

statement block

. . . 

default :

statement block

}

The variable to be evaluated is denoted in the expression part of the switch
statement. That variable is then compared with each condition, searching for a
match. Should a match be found, the corresponding statement block is executed.
Should a match not be found, the optional default statement block will execute.

As you will learn in later chapters, PHP is especially valuable for manipulating
user input. Assume that the user is presented with a drop-down list containing
several choices, each choice resulting in the execution of a different  command
contained in a case construct. Use of the switch statement would be very practical
for implementing this:

Expressions, Operators, and Control Structures

73

Gilmore_03  12/4/00  1:04 PM  Page 73



$user_input = "recipes"; // assume $user_input is passed in to the script

switch ($user_input) :

case("search") :

print "Let's perform a search!";

break;

case("dictionary") :

print "What word would you like to look up?";

break;

case("recipes") :

print "Here is a list of recipes…";

break;

default:

print "Here is the menu…";

break;

endswitch;

As you can see, the switch statement offers a clean and concise way in which
to order code. The variable denoted in the switch statement (in this case
$user_input) will be evaluated by all subsequent case statements in the switch
block. If any of the values denoted in a case statement matches the value con-
tained in the variable being compared, the code contained in that case statement
block will be executed. The break statement will then cause the execution of sub-
sequent evaluations and code in the switch construct to be terminated. If none of
the cases is applicable, the optional default case statement will be activated. If
there is no default case and no cases are applicable, the switch statement will
simply be exited, and code execution will continue as necessary below it.

It is important to note that the lack of a break statement (discussed in the
next section) in a case will cause all subsequent commands in the switch state-
ment to be executed until either a break statement is found or the end of the
switch construct is reached. This result of forgetting a break statement is illus-
trated in the following listing:

$value = 0.4;

switch ($value) :

case (0.4) :

print "value is 0.4<br>";

case (0.6) :

print "value is 0.6<br>";

break;

case (0.3) :

print "value is 0.3<br>";

break;

Chapter 3

74

Gilmore_03  12/4/00  1:04 PM  Page 74



default :

print "You didn't choose a value!";

break;

endswitch;

resulting in the following output:

value is 0.4

value is 0.6

Lack of the break statement will cause not only the print statement contained
in the matching case to be output, but also the print statement contained in the
following case. Execution of commands in the switch construct then halts due to
the break statement following the second print statement.

break 

More of a statement than a control structure, break is used to immediately exit
out of the while, for, or switch structure in which it is contained. The break state-
ment was already introduced to a certain extent in the preceding section,
“switch.” However, I’ll present one more example to thoroughly introduce the use
of the break statement. Let’s begin with a review of the rather simple break state-
ment syntax:

break n;

The optional n proceeding the call to break denotes how many levels of con-
trol structures will be terminated should the break statement be executed. For ex-
ample, if a break statement was nested within two while statements, and the
break was preceded by ‘2’, then both while statements would be exited immedi-
ately. The default n value is 1, noted either by omitting the n value after the break
statement or by explicit inclusion of the value. Interestingly, break does not con-
sider an if statement to be a control statement in the sense that it should be exited
in accordance with the depth specified by the n value. Be sure to take this into ac-
count when making use of this optional n parameter. 

Expressions, Operators, and Control Structures

75

NOTE There are no performance gains to be had in choosing between the
switch and if statements. The decision to use one or the other is more or less
a matter of convenience for the programmer.

Gilmore_03  12/4/00  1:04 PM  Page 75



Consider use of the break statement in a foreach loop:

$arr = array(14, 12, 128, 34, 5);

$magic_number = 128;

foreach ($arr as $val) :

if ($val == $magic_number) :

print "The magic number is in the array!";

break;

endif;

print "val is $val <br>";

endforeach;

If the magic number is in fact found in the array $arr (in this example, it is),
there will be no more need to continue looking for the magic number. The follow-
ing output would result:

val is 14 

val is 12 

The magic number is in the array!

Note that the preceding example is provided merely to illustrate usage of the
break statement. A predefined array function exists in in_array(), which is capa-
ble of searching an array for a given value; in_array() is discussed in further de-
tail in Chapter 5, “Arrays.”

continue 

The final PHP construct that we will examine is continue. Execution of a continue
in an iterative loop will bypass the rest of the current loop iteration, instead im-
mediately beginning a new one. The general syntax of continue is:

continue n;

The optional n acts as the opposite of the n accompanying the break statement,
specifying to the end of how many levels of enclosing loops the continue state-
ment should skip. 

Let’s consider an example that incorporates the continue statement. Suppose
we wanted to count prime numbers between 0 and some designated boundary.

Chapter 3

76

Gilmore_03  12/4/00  1:04 PM  Page 76



For sake of simplicity, assume that we have written a function capable of deter-
mining whether or not a number is prime. We’ll call that function is_prime():

$boundary = 558;

for ($i = 0; $i <= $boundary; $i++) :

if ( ! is_prime($i)) :

continue;

endif;

$prime_counter++;

endfor;

If the number is in fact prime, then the if statement block will be bypassed,
and $prime_counter will be incremented. Otherwise, the continue statement will
be executed, resulting in the jump to the beginning of the loop. 

The continue statement is certainly not a necessity, as if statements will ac-
complish the same result. 

Project: Develop an Events Calendar

Putting into practice many of the concepts that have been introduced thus far, I’ll
conclude this chapter with instructions illustrating how to create a Web-based
events calendar. This calendar could store information regarding the latest cook-
ing shows, wine-tasting seminars, or whatever else you deem necessary for your
needs. This calendar will make use of many of the concepts you’ve learned thus
far and will introduce you to a few others that will be covered in further detail in
later chapters.

A simple file will store the information contained in the calendar. Here are the
file’s contents:

July 21, 2000|8 p.m.|Cooking With Rasmus|PHP creator Rasmus Lerdorf discusses the

wonders of cheese.

July 23, 2000|11 a.m.|Boxed Lunch|Valerie researches the latest ham sandwich

making techniques (documentary)

Expressions, Operators, and Control Structures

77

NOTE The use of continue in long and complex algorithms can result in
unclear and confusing code. I recommend avoiding use of this construct in
these cases.

Gilmore_03  12/4/00  1:04 PM  Page 77



July 31, 2000|2:30pm|Progressive Gourmet|Forget the Chardonnay; iced tea is the

sophisticated gourmet's beverage of choice.

August 1, 2000|7 p.m.|Coder's Critique|Famed Food Critic Brian rates NYC's hottest

new Internet cafés.

August 3, 2000|6 p.m.|Australian Algorithms|Matt studies the alligator's diet.

Our PHP script shown in Listing 3-1 will produce the output seen in Figure 3-1.

Before delving into the code, take a moment to read through the algorithm,
which will outline the series of commands executed by the code:

1. Open the file containing the event information.

2. Split each line into four elements: date, time, event title, and event sum-
mary.

3. Format and display the event information.

4. Close the file.

Chapter 3

78

Figure 3-1. The sample events calendar.

Gilmore_03  12/4/00  1:04 PM  Page 78



Listing 3-1: Script used to display contents of events.txt to browser
<?

// application: events calendar

// purpose: read and parse data from a file and format it 

// for output to a browser.

// open filehandle entitled '$events' to file 'events.txt'.

$events = fopen("events.txt", "r");

print "<table border = 0 width = 250>";

print "<tr><td valign=top>";

print "<h3>Events Calendar:</h3>";

// while not the end of the file

while (! feof($events)) :

// read the next line of the events.txt file

$event = fgets($events, 4096); 

// separate event information in the current

// line into array elements.

$event_info = explode("|", $event);

// Format and output event information

print "$event_info[0] ( $event_info[1] ) <br>";

print "<b>$event_info[2]</b> <br>";

print "$event_info[3] <br> <br>";

endwhile;

// close the table

print "</td></tr></table>";

fclose ($events); 

?>

This short example serves as further proof that PHP enables even novice 
programmers to develop practical applications while investing a minimum of
time and learning. Don’t worry if you don’t understand some of the concepts in-
troduced; they are actually quite simple and will be covered in detail in later

Expressions, Operators, and Control Structures

79

Gilmore_03  12/4/00  1:04 PM  Page 79



chapters. However, if you just can’t wait to learn more about these subjects, jump
ahead to Chapter 7, “File I/O and the File System,” and Chapter 8, “Strings and
Regular Expressions,” as much of the unfamiliar syntax is described in those
chapters.

What’s Next?

This chapter introduced many of the features of the PHP language that you will
probably implement in one form or another in almost every script you write: ex-
pressions and control structures. Many topics using these features were ex-
plained, namely:

• Operators

• Operands

• Operator precedence

• Operator associativity

• Control structures (if, while, do..while, for, foreach, switch, break, continue)

The first three chapters served to introduce you to the core components of
the PHP language. The remaining five chapters of this first part of the book will
build on these core components, providing you with further information regard-
ing arrays, object-oriented features, file handling, and PHP’s string manipula-
tions. This all sets the stage for the second half of the book, serving to highlight
PHP’s application-building features. So hold on tight and read on!

Chapter 3

80

Gilmore_03  12/4/00  1:04 PM  Page 80



CHAPTER 4

Functions

This chapter introduces the general concepts of functional programming, one of
the most influential advances in application development. Functions enable you
to develop reusable and easily modifiable components, which are particularly
useful when you need to develop Web applications similar in concept and utility.
Functional programming results in shorter, easier to read programs.

In particular, this chapter is concerned with the creation, implementation,
and manipulation of PHP functions. Although the general focus is on defining
and executing user-defined functions, it is also important to know that PHP offers
hundreds of predefined functions. Predefined functions are used exactly as user-
defined functions are and save considerable time for developing new applica-
tions. For the most up-to-date listing of these functions, check out
http://www.php.net.

What Is a Function?

A function is a section of code with a specific purpose that is assigned a unique
name. The function name can be called at various points in a program, allowing
the section of code represented by this name to be repeatedly executed as
needed. This is convenient because the same section of code is written only once,
but can be easily modified as necessary.

Function Definition and Invocation

Creating a PHP function is a rather straightforward process. You can create a func-
tion at any point in a PHP program. However, for organizational purposes you
may find it convenient to place all functions intended for use in a script at the
very top of the script file. An alternative method for function organization that
can greatly reduce redundancy and promote code reuse is the placement of the
functions in a separate file (also known as a library). This is convenient because
you can use the functions repeatedly in various applications without having to
make redundant copies and thus risk errors due to rewriting. I explain this pro-
cess in detail toward the conclusion of this chapter, in “Building Function Li-
braries.”

81

Gilmore_04  12/4/00  1:04 PM  Page 81



A function definition generally consists of three distinct parts:

• The name of the function

• Parentheses enclosing an optional set of comma-delimited input parame-
ters

• The body of the function, enclosed in curly brackets

The general form of a PHP function is as follows:

function function_name (optional $arg1, $arg2, ..., $argn) {

code section

}

The function name must follow the lexical structure conditions as specified in
Chapter 2, “Variables and Data Types.” The function name is then followed by a
mandatory set of parentheses, enclosing an optional set of input parameters
($arg1, $arg2, ..., $argn). Due to PHP’s relatively relaxed perspective on variable
definitions, there is no need to specify the data type of the input parameters.
While this has its advantages, realize that the PHP engine does not verify that the
data passed into the function is intended to be handled by the function. This
could result in unexpected results if the input parameter is used in an unintended
fashion. (To ensure that the input parameter is being used as intended, you can
test it using the predefined gettype() function.) A set of curly brackets ({}) follows
the closing parentheses, enclosing the section of code to be associated with the
function name.

Let’s consider a simple example of practical usage of a function. Suppose you
wanted to create a function that outputs a general copyright notice to a Web page:

function display_copyright() {

print "Copyright &copy; 2000 PHP-Powered Recipes. All Rights Reserved.";

}

Assuming that your Web site contains many pages, you could simply call this
function at the bottom of each page, eliminating the need to continually rewrite
the same information. Conveniently, the arrival of the year 2001 will bring about
one simple modification of the text contained in the function that will result in an
updated copyright statement. If functional programming weren’t possible, you
would have to modify every page in which the copyright statement was included!

Consider a variation of the display_copyright() function in which we pass a
parameter. Suppose that you were in charge of the administration of several Web
sites, each with a different name. Further imagine that each site had its own ad-

Chapter 4

82

Gilmore_04  12/4/00  1:04 PM  Page 82



ministration script, consisting of various variables relative to the specific site, 
one of the variables being $site_name. With this in mind, the function
display_copyright() could be rewritten as follows:

function display_copyright($site_name) {

print "Copyright &copy 2000 $site_name. All Rights Reserved.";

}

The variable $site_name, assigned a value from somewhere outside of the
function, is passed into display_copyright() as an input parameter. It can then
be used and modified anywhere in the function. However, modifications to the
variable will not be recognized anywhere outside of the function, although it is
possible to force this recognition through the use of special keywords. These key-
words, along with a general overview of variable scoping as it relates to functions,
were introduced in Chapter 2, “Variables and Data Types.” 

Nested Functions

It is also possible to nest functions within functions, much as you can insert one
control structure (if, while, for, and so on) within another. This is useful for pro-
grams large and small, as it adds another level of modularization to the applica-
tion, resulting in increasingly manageable code.

Revisiting the copyright example described earlier, you can eliminate the
need to modify the date altogether by nesting PHP’s predefined date() function in
the display_copyright() function:

function display_copyright($site_name) {

print "Copyright &copy". date("Y"). " $site_name. All Rights Reserved.";

}

The Y input parameter of the date() function specifies that the return value
should be the current year, formatted using four digits. Assuming that the system
date configuration is correct, PHP will output the correct year on each invocation
of the script. PHP’s date() function is extremely flexible, offering 25 different
date- and time-formatting flags.

You can also nest function declarations inside one another. However, nesting
a function declaration does not imply that it is protected in the sense of it being
limited to use only in the function in which it is declared. Furthermore, a nested
function does not inherit the input parameters of its parent; they must be passed
to the nested function just as they are passed to any other function. Regardless,
you may find it useful to do nest function declarations for reasons of code man-
agement and clarity. Listing 4-1 gives an example of nesting function declarations.

Functions

83

Gilmore_04  12/4/00  1:04 PM  Page 83



Listing 4-1: Making efficient use of nested functions
function display_footer($site_name) {

function display_copyright($site_name) {

print "Copyright &copy ". date("Y"). " $site_name. All Rights

Reserved.";

}

print "<center>

<a href = \"\">home</a> | <a href = \"\">recipes</a> | <a href =

\"\">events</a><br>

<a href = \"\">tutorials</a> | <a href = \"\">about</a> | <a href =

\"\">contact us</a><br>";

display_copyright($site_name);

print "</center>";

}

$site_name = "PHP Recipes";

display_footer($site_name);

Executing this script produces the following output:

home | recipes | events

tutorials | about | contact us

Copyright © 2000 PHP Recipes. All Rights Reserved.

Although nested functions are not protected from being called from any
other location of the script, they cannot be called until after their parent function
has been called. An attempt to call a nested function before calling its parent
function results in an error message.

Chapter 4

84

NOTE It is important to note that we could also call display_copyright()
from outside the display_footer() function, just as display_footer() was
called in the preceding example. PHP does not support the concept of pro-
tected functions.

Gilmore_04  12/4/00  1:04 PM  Page 84



Returning Values from a Function

It is often useful to return a value from a function. This is accomplished by assign-
ing the function call to a variable. Any type may be returned from a function, in-
cluding lists and arrays. Consider Listing 4-2, in which the sales tax for a given
price is calculated and the total cost subsequently returned. Before checking out
the code, take a minute to review the pseudocode summary:

• Assume that a few values have been set, in this case some product price,
$price, and sales tax, $tax.

• Declare function calculate_cost(). It accepts two parameters, the sales tax
and the product price.

• Calculate the total cost and use return to send the calculated cost back to
the caller.

• Call calculate_cost(), setting $total_cost to whatever value is returned from
the function.

• Output a relevant message.

Listing 4-2: Building a function that calculates sales tax
$price = 24.99;

$tax = .06;

function calculate_cost($tax, $price) {

$sales_tax = $tax;

return $price + ($price * $sales_tax);

}

// Notice how calculate_cost() returns a value.

$total_cost = calculate_cost ($tax, $price);

// round the cost to two decimal places.

$total_cost = round($total_cost, 2);

print "Total cost: ".$total_cost;

// $total_cost = 26.49

Functions

85

NOTE A function that does not return a value is also known as a procedure.

Gilmore_04  12/4/00  1:04 PM  Page 85



Another way in which to use returned values is to incorporate the function
call directly into a conditional/iterative statement. Listing 4-3 checks a user’s total
bill against a credit limit. The pseudocode is found here:

• Declare function check_limit(), which takes as input two parameters. The
first parameter, $total_cost, is the total bill accumulated by the user thus
far. The second, $credit_limit, is the maximum cash amount the user is al-
lowed to charge. 

• If the total accumulated bill is greater than the credit limit, return a false (0)
value.

• If the if statement evaluates to false, then the function has not yet termi-
nated. Therefore, the total cost has not exceeded the credit limit, and true
should be returned.

• Use the function check_limit() in an if conditional statement. Check_limit()
will return either a true or a false value. This returned value will determine
the action that the if statement takes.

If check_limit() evaluates to true, tell the user to keep shopping. Otherwise,
inform that user that the credit limit has been exceeded.

Listing 4-3: Comparing a user’s current bill against a credit limit
$cost = 1456.22;

$limit = 1000.00;

function check_limit($total_cost, $credit_limit) {

if ($total_cost > $credit_limit) :

return 0;

endif;

return 1;

}

if (check_limit($cost, $limit)) :

// let the user keep shopping

print "Keep shopping!";

else :

print "Please lower your total bill to less than $".$limit."!";

endif;

Chapter 4

86

Gilmore_04  12/4/00  1:04 PM  Page 86



Execution of Listing 4-3 results in the error message being displayed, since
$cost has exceeded $limit.

It is also possible to simultaneously return multiple values from a function by
using a list. Continuing with the culinary theme, consider a function that returns
the three recommended years of a particular wine. This function is illustrated in
Listing 4-4. Read through the pseudocode first:

• Declare function best_years(), which takes as input one parameter. The
parameter $label is the type of wine in which the user would like to view
the three recommended years.

• Declare two arrays, $merlot, and $zinfandel. Each array holds the three rec-
ommended years for that wine type.

• Implement the return statement to make wise use of the variable function-
ality. The statement $$label will first interpret the variable $label and then
interpret whatever the value of $label is as another variable. In this case,
the merlot array will be returned as a list, each year taking its respective po-
sition in the calling list.

• Print out a relevant message, informing the user of these recommended
years.

Listing 4-4: Returning multiple values from a function
// wine for which best years will be displayed

$label = "merlot";

// This function merely makes use of various arrays and a variable variable to

return multiple values.

function best_years($label) {

$merlot = array(1987, 1983, 1977);

$zinfandel = array(1992, 1990, 1989);

return $$label;

}

// a list() Is used to display the wine's best years.

list ($yr_one, $yr_two, $yr_three) = best_years($label);

print "$label had three particularly remarkable years: $yr_one, $yr_two, and

$yr_three.";

Functions

87

Gilmore_04  12/4/00  1:04 PM  Page 87



Execution of Listing 4-3 results in the following output:

merlot had three particularly remarkable years: 1987, 1983, and 1977.

Recursive Functions

The act of a function calling on itself again and again to satisfy some operation is
indeed a powerful one. Used properly, recursive function calls can save undue
space and redundancy in a script and are especially useful for performing repeti-
tive procedures. Examples of these repetitive applications include file/array
searches and graphic renderings (fractals, for instance). An example commonly il-
lustrated in computer science courses is the summation of integers 1 to N. Listing
4-5 recursively sums all integers between 1 and 10.

Listing 4-5: Using a recursive function to sum an integer set
function summation ($count) {

if ($count != 0) :

return $count + summation($count-1);

endif;

}

$sum = summation(10);

print "Summation = $sum";

Execution of the Listing 4-5 produces the following results:

Summation = 55

Using functional iteration (recursion) can result in speed improvements in a
program if the function is called often enough. However, be careful when writing
recursive procedures, as improper coding can result in an infinite loop.

Variable Functions

An interesting capability of PHP is the possibility to execute variable functions. A
variable function is a dynamic call to a function whose name is determined at the
time of execution. Although not necessary in most Web applications, variable
functions can significantly reduce code size and complexity, often eliminating un-
necessary if conditional statements.

Chapter 4

88

Gilmore_04  12/4/00  1:04 PM  Page 88



A call to a variable function is nothing more than a variable name followed by
a set of parentheses. In the parentheses an optional set of input parameters can
be included. The general form of a variable function is as follows:

$function_name();

Listing 4-6 illustrates this odd but useful feature. Suppose that users are given
the possibility to view certain information in their choice of language. Our exam-
ple will keep things simple, offering a welcome message tailored to English- and
Italian-speaking users. Here is the pseudocode:

• An Italian interface is created in a function entitled “italian”.

• An English interface is created in a function entitled “english”.

• The choice of language is passed into the script, set in the variable 
$language.

The variable $language is used to execute a variable function, in this case
italian().

Listing 4-6: Using a variable function determined by some input variable
// italian welcome message.

function italian() {

print "Benvenuti al PHP Recipes.";

}

// english welcome message

function english() {

print "Welcome to PHP Recipes.";

}

// set the user language to italian

$language = "italian";

// execute the variable function

$language();

Listing 4-6 illustrates the interesting concept of a variable function and how it
can be used to greatly limit code volume. Without the capability of using a vari-
able function, you would be forced to use a switch or if statement to determine
which function should be executed. This would take up considerably more space
and introduce the possibility of errors due to added coding.

Functions

89

Gilmore_04  12/4/00  1:04 PM  Page 89



Building Function Libraries

Function libraries are one of the most efficient ways to save time when building
applications. For example, you may have written a series of function for sorting
arrays. You could probably use these functions repeatedly in various applications.
Rather than continually rewrite or copy and paste these functions into new
scripts, it is much more convenient to place all relevant sorting functions into a
separate file altogether. This file would then be given an easily recognizable title,
for example, array_sorting.inc, as shown in Listing 4-7.

Listing 4-7: A sample function library (array_sorting.inc)
<?

// file: array_sorting.inc

// purpose: library containing functions used for sorting arrays.

// date: July 17, 2000

function merge_sort($array, $tmparray, $right, $left) {

. . . 

}

function bubble_sort($array, $n) {

. . . 

}

function quick_sort($array, $right, $left) {

. . . 

}

?>

This function library, array_sorting.inc, acts as a receptacle for all of my array-
sorting functions. This is convenient because I can effectively organize my func-
tions according to purpose, allowing for easy lookup when necessary. As you can
see in Listing 4-7, I like to add a few lines of commented header at the top of each
library so I have a quick synopsis of the library contents once I open the file. Once
you have built your own custom function library, you can use PHP’s include() and
require() statements to include the entire library file to a script, thus making all of
the functions available. The general syntax of both statements is as follows:

include(path/filename);

require(path/filename);

Chapter 4

90

Gilmore_04  12/4/00  1:04 PM  Page 90



An alternate syntax is also available:

include "path/filename";

require "path/filename";

where “path” refers to either the relative or absolute path location of the filename.
The include() and require() constructs are introduced in detail in Chapter 9, “PHP
and the Web.” For the moment, however, you should just understand that these
constructs can be used to include a file directly into a script for use.

Suppose you wanted to use the library array_sorting.inc in a script. You could
easily include the library, as shown in Listing 4-8.

Listing 4-8: Including a function library (array_sorting.inc) in a script
// this assumes that the array_sorting.inc library resides in the same folder as

this script.

include ("array_sorting.inc");

// you are now free to use any function in array_sorting.inc.

$some_array = (50, 42, 35, 46);

// make use of the bubble_sort() function

$sorted_array = bubble_sort($some_array, 1);

What’s Next?

This chapter introduced functions and their range of uses as applied to PHP. In
particular, the following topics were discussed:

• Function definition and invocation

• Nested functions

• Returning values from a function

• Returning multiple values

• Recursive functions

• Variable functions

• Building function libraries

Functions

91

Gilmore_04  12/4/00  1:04 PM  Page 91



Understanding this chapter will be integral to understanding the concepts
discussed throughout the remaining chapters, as functions are used whenever
possible. As is the case with every other chapter, I suggest experimenting with the
examples in order to strengthen your comprehension of the provided material.

Chapter 5 introduces what will surely become a welcome addition to your
PHP knowledge: arrays. Chapter 5 will provide you with your first real taste of data
storage, paving the way to more content-oriented and ultimately interesting ap-
plications.

Chapter 4

92

Gilmore_04  12/4/00  1:04 PM  Page 92



Beginning MySQL Database Design and Optimization: From Novice to Professional
ISBN 1590593324  - Published October 2004  - $44.99

You may also be interested in...



CHAPTER 5

Arrays

Chapter 2, “Variables and Data Types,” introduced the two types of arrays avail-
able for use in your PHP programs, indexed and associative. As you may recall, in-
dexed arrays manipulate elements in accordance with position, while associative
arrays manipulate elements in terms of a key/value association. Both offer a pow-
erful and flexible method by which to handle large amounts of data.

This chapter is devoted to the various aspects of PHP’s array-manipulation
capabilities. By the chapter’s conclusion, you will be familiar with single-
dimensional and multidimensional arrays, array sorting, array traversal, and 
various other functions useful in manipulating arrays. It is not in the scope of 
this book to provide a comprehensive list of all available functions, although this
chapter just so happens to cover almost all array functions. For the most up-to-
date list, please refer to the PHP home page at http://www.php.net.

Creating Arrays

An array is essentially a series of objects all bearing the same size and type. Each
object in the array is generally known as an array element. Creating an array in
PHP is easy. You can create an indexed array by placing a set of square brackets 
([ ]) after a variable name:

$languages[ ] = "Spanish";

// $languages[0] = "Spanish"

You can then add further elements to the array, as seen in the following list-
ing. Notice that there is no explicit reference to index positions. Each array alloca-
tion is assigned the position at the length of the array plus 1:

$languages[ ] = "English"; // $languages[1] = "English"

$languages[ ] = "Gaelic";  // $languages[2] = "Gaelic"

You can also explicitly add elements to a particular location by designating
the index key:

$languages[15] = "Italian";

$languages[22] = "French";

93

Gilmore_05  12/5/00  10:23 AM  Page 93



You can create associative arrays in much the same way:

$languages["Spain"] = "Spanish";

$languages["France"] = "French";

There are also three predefined language constructs that you can use to cre-
ate an array:

• array()

• list()

• range()

Although all achieve the same result, array creation, there are instances in which a
given construct may be more suitable than the others. Descriptions and examples
of each construct follow. 

array()

The array function takes as input zero or more elements and returns an array
made up of these input elements. Its syntax is:

array array ( [element1, element2 …] )

The array() language construct is perhaps nothing more than a more explicit
declaration that an array is being created, used for convenience of the program-
mer. Here is an example of using array() to create an indexed array:

$languages = array ("English", "Gaelic", "Spanish");

// $languages[0] = "English", $languages[1] = "Gaelic", $languages[2] = "Spanish"

Here is how you would use array() to create an associative array:

$languages = array ("Spain" => "Spanish",

"Ireland" => "Gaelic",

"United States" => "English");

// $languages["Spain"] = "Spanish"

// $languages["Ireland"] = "Gaelic"

// $languages["United States"] = "English"

Mapping arrays associatively is particularly convenient when using index val-
ues just doesn’t make sense. In the preceding example it is useful because it

Chapter 5

94

Gilmore_05  12/5/00  10:23 AM  Page 94



makes sense to associate country names with their language counterparts. Imag-
ine trying to contrive a logical methodology using numbers!

list()

The list()language construct is similar to array(), though it’s used to make si-
multaneous variable assignments from values extracted from an array in just one
operation. Its syntax is:

void list (variable1 [, variable2, ...] )

It can be particularly useful when extracting information from a database or file.
Suppose you wanted to format and output information read from a text file. Each
line of the file contains user information, including name, occupation, and fa-
vorite color, with each piece of information delimited by a vertical bar ( | ). The
typical line would look similar to the following:

Nino Sanzi|Professional Golfer|green

If you use list(), a simple loop could read each line, assign each piece of
data to a variable, and format and display the data as needed. Here’s how you
could use list() to make multiple variable assignments:

// While the end-of-file hasn't been reached, get next line

while ($line = fgets ($user_file, 4096)) :

// use split() to separate each piece of data, assign data to $name,

$occupation, and $color

list ($name, $occupation, $color) = split ( "|", $line);

// format and output the data

print "Name: $name <br>";

print "Occupation: $occupation <br>";

print "Favorite color: $color <br>";

endwhile;

Each line would in turn be read and formatted similar to this:

Name: Nino Sanzi

Occupation: Professional Golfer

Favorite Color: green

Arrays

95

Gilmore_05  12/5/00  10:23 AM  Page 95



Reviewing the example, list() depends on the function split() to split each
line into three elements. These elements are then assigned to $name, $occupation,
and $color, respectively. At that point, it’s just a matter of formatting for display to
the browser. This is one of the powers of PHP: the ability to easily parse data from
text files. This topic is covered in detail in Chapters 7 and 8.

range()

The range() language construct provides an easy way to quickly create and fill an
array with a specified range of integers, allowing you to specify a range of low and
high integer values. An array containing all integer values making up this range is
then returned. Its syntax is:

array range (int low, int high)

You can see the convenience of this construct in the following example:

$lottery = range(0,9);

// $lottery = array(0,1,2,3,4,5,6,7,8,9)

As you can observe, the range 0 to 9 was specified as the input parameters of
range(), and the array $lottery was subsequently filled with that integer range. 

Multidimensional Arrays

As you begin developing more complicated programs, a single-dimensional array
may not suffice to store the information that you would like to manipulate. The
multidimensional array (an array of arrays) offers a much more effective way to
store information that requires an extra level of organization. Creating a multidi-
mensional array is easy; simply add an extra set of square brackets to expand the
array by one dimension:

$chessboard[1] [4] = "King"; // two-dimensional

$capitals["USA"] ["Ohio"] = "Columbus"; // two-dimensional

$streets["USA"] ["Ohio"]["Columbus"] = "Harrison"; // three-dimensional

Consider an array that stores information regarding desserts and their prepa-
ration details. While this would be rather difficult using a single-dimensional
array, a two-dimensional associative array will work just fine:

Chapter 5

96

Gilmore_05  12/5/00  10:23 AM  Page 96



$desserts = array (

"Fruit Cup" => array (

"calories" => "low",

"served" => "cold",

"preparation" => "10 minutes"

),

"Brownies" => array (

"calories" => "high",

"served" => "piping hot",

"preparation" => "45 minutes"

)

);

Once the array has been created, references could be made to each element
by indicating the relevant keys:

$desserts["Fruit Cup"] ["preparation"] // returns "10 minutes"

$desserts["Brownies"] ["calories"] // returns "high"

You can assign elements to a multidimensional array in the same way that
you do so with a single-dimensional array:

$desserts["Cake"]["calories"] = "too many"; 

// assigns "too many" to "Cake" property "calories"

Although multidimensional arrays introduce another level of complexity to the
array structure, creating them is not all that different creating single-dimensional
arrays. However, referencing multidimensional arrays in strings requires some
special attention. This is the subject of the next section.

Referencing Multidimensional Arrays

You must reference multidimensional arrays in a string slightly differently than
you reference other types. You can use the string concatenation operator:

print "Brownies are good, but the calorie content is ".

$desserts["Brownies"]["calories"];

or you can enclose the multidimensional array in curly brackets ( { } ):

print "Brownies are good, but the calorie content is

{$desserts[Brownies][calories]}";

Arrays

97

Gilmore_05  12/5/00  10:23 AM  Page 97



When using this alternative syntax, take note that there are no quotation
marks surrounding the array keys. Furthermore, notice that there is no space be-
tween the curly brackets and array reference. If you fail to satisfy both of these
requisites, an error will occur.

Either way works fine. I suggest choosing one format and sticking with it to
eliminate inconsistencies in your code. The flip side to not using either of these
formatting rules is that the multidimensional array will be interpreted exactly as it
is seen in the string, causing what would most certainly be an unexpected out-
come.

Locating Array Elements

The ability to easily locate elements in an array is very important. PHP offers a se-
ries of functions that allow for the convenient retrieval of both keys and values
constituting an array.

in_array()

The in_array() function provides a convenient way to quickly determine whether
or not an element exists in an array, returning true if it does, and false otherwise.
Its syntax is:

bool in_array(mixed element, array array)

This function is particularly convenient because it eliminates the need to create
looping constructs to search through each array element. Consider the following
example, which uses in_array() to search for the element “Russian” in the array
$languages:

$languages = array ("English", "Gaelic", "Spanish");

$exists = in_array("Russian", $languages); // $exists set to false

$exists = in_array("English", $languages); // $exists set to true

The in_array() function is particularly helpful in a control statement, as the
true/false return value can determine the path the conditional construct takes.
Here’s an example of how you would use in_array() to determine the path of a
conditional statement:

// user input

$language = "French";

$email = "wjgilmore@hotmail.com";

Chapter 5

98

Gilmore_05  12/5/00  10:23 AM  Page 98



// if language exists in the array

if (in_array($language, $languages)) :

// subscribe the user to the newsletter.

// . Note that subscribe_user() is not a PHP predefined function. I'm just

using it to simulate the process.

subscribe_user($email, $language);

print "You are now subscribed to the $language edition of the newsletter.";

// language does not exist in the array

else :

print "We're sorry, but we don't yet offer a $language edition of the

newsletter".

endif;

What happened in this example? Assume that the variables $language and
$email are pieces of data supplied by the user. You want to ensure that their cho-
sen language corresponds to one of those that you offer, and you use in_array()
to verify this. If it does exist, then the user is subscribed and receives a message
stating so. Otherwise, the user is informed that the newsletter is not offered in
that particular language. Of course, chances are you are not going to want to force
the user to guess in what languages you offer your newsletter. This problem could
be eliminated altogether using a drop-down form list, a subject covered in detail
in Chapter 10, “Forms.” However, for purposes of illustration, this example does
the trick nicely.

array_keys()

The array_keys() function returns an array containing all of the keys constituting
the input array. If the optional search_element is included, then only the keys
matching that particular element are returned; otherwise, all keys constituting
the array are returned. Its syntax is:

array array_keys (array array, mixed [search_element])

Here’s how you could use array_keys() to return the key of a given element:

$great_wines = array ("Australia" => "Clarendon Hills 96",

"France" => "Comte Georges de Vogue 97",

"Austria" => "Feiler Artinger 97");

$great_labels = array_keys($great_wines);

Arrays

99

Gilmore_05  12/5/00  10:23 AM  Page 99



// $great_labels = array ("Australia", "France", "Austria");

$great_labels = array_keys($great_wines, "Clarendon Hills 96");

// $great_labels = array("Australia");

Using array_keys() is a very easy way to retrieve all of the index values of an
array, in the preceding example, the names of the countries where the wines are
produced.

array_values()

The array_values() function returns an array containing all of the values consti-
tuting the input array. Its syntax is:

array array_values(array array)

Reconsider the previous example, where array_keys() was used to retrieve all of
the key values. This time array_values() acts to retrieve all of the corresponding
key elements:

// $great_wines = array ("Australia" = "Clarendon Hills 96",

"France = "Comte Georges de Vogue 97",

"Austria = "Feiler Artinger 97");

$great_labels = array_values($great_wines);

// $great_labels = array ("Clarendon Hills 96", 

"Comte Georges de Vogue 97", 

"Feiler Artinger 97");

The array_keys() and array_values() functions complement each other per-
fectly, allowing you to retrieve either side of the array as necessary. 

Adding and Removing Elements

Thankfully, PHP does not require you to specify the number of elements in an
array on its creation. This makes for flexible array manipulation, as there are no
worries about surpassing previously designated constraints if an array becomes
larger than expected. PHP provides a number of functions for growing an array.
Some of these functions are provided as a convenience to programmers wishing
to mimic various queue types (FIFO, LIFO, and so on) and stacks, as reflected by
their names (push, pop, shift, and unshift). Even if you don’t know what queues or
stacks are, don’t worry; these functions are easy to use. 

Chapter 5

100

Gilmore_05  12/5/00  10:23 AM  Page 100



array_push()

The array_push() function appends, or pushes, one or more values onto the end
of the array. Its syntax is:

int array_push(array array, mixed var, [. . . ])

The length of the array will increase in direct proportion to the number of val-
ues pushed onto the array. This is illustrated in the following example:

$languages = array("Spanish", "English", "French");

array_push($languages, "Russian", "German", "Gaelic");

// $languages = array("Spanish", "English", "French", 

//                    "Russian", "German", "Gaelic");

As is the case with many of PHP’s predefined functions, array_push() has a
counterpart entitled array_pop(), which acts to pull elements from an array. The
main difference between the two is that while array_push() is capable of adding sev-
eral elements simultaneously, array_pop() can only pull one element off at a time. 

array_pop()

The array_pop() function accomplishes a result the exact opposite of that of
array_push(), removing, or popping, a value from the end of the array. This value
is then returned. Its syntax is:

mixed array_pop(array array)

Each iteration of array_pop() will shorten the length of the array by 1. Consider
the following example:

$languages = array ("Spanish", "English", "French", 

//                  "Russian", "German", "Gaelic");

$a_language = array_pop ($languages); // $a_language = "Gaelic"

$a_language = array_pop ($languages); // $a_language = "German"

// $languages = array ("Spanish", "English", "French", "Russian");

Arrays

101

DEFINITION A queue is a data structure in which the elements are re-
moved in the same order that they were entered. In contrast, a stack is a
data structure in which the elements are removed in the order opposite to
that in which they were entered.

Gilmore_05  12/5/00  10:23 AM  Page 101



The reason for using array_push() and array_pop() is that they provide for a
very clean way to both manipulate array elements and control the length without
worrying about uninitialized or empty values. They work much more efficiently
than attempting to control these factors on your own.

array_shift()

The array_shift() function operates much like array_pop(), except that it re-
moves one element from the beginning (the left side) of the array. All remaining
array elements are shifted one unit toward the beginning of the array. Notice that
array_shift() has the same syntax as array_pop():

mixed array_shift (array array)

The important thing to keep in mind is that array_shift() removes the ele-
ment from the beginning of the array, as shown here:

$languages = array("Spanish", "English", "French", "Russian");

$a_language = array_shift($languages); // $a_language = "Spanish";

// $languages = array("English", "French", "Russian");

array_unshift()

The array_unshift() function is the counterpart to array_shift(), instead ap-
pending values to the beginning of the array and shifting the array to the right. Its
syntax is:

int array_unshift(array array, mixed var1 [, mixed var2. . .])

You can append one or several values simultaneously, the length of the array in-
creasing in direct proportion to the number of values added. An example of ap-
pending multiple values follows:

$languages = array ("French", "Italian", "Spanish");

array_unshift ($languages, "Russian", "Swahili", "Chinese");

// $languages = array ("Russian", "Swahili", "Chinese", 

//                     "French", "Italian", "Spanish");

array_pad()

The array_pad() function enables you to quickly expand an array to a precise size,
padding it with a default value. Its syntax is:

Chapter 5

102

Gilmore_05  12/5/00  10:23 AM  Page 102



array array_pad(array array, int pad_size, mixed pad_value);

The input parameter pad_size specifies the new length of the array. The
pad_value parameter specifies the default value to which all of the new array po-
sitions should be set. Here are several details regarding array_pad() that you
should know:

• If pad_size is positive, then the array will be padded to the right; if negative,
the array will be padded to the left.

• If the absolute value of pad_size is less than or equal to the length of the
array, then no action will be taken.

Here is an array that is padded from the back:

$weights = array (1, 3, 5, 10, 15, 25, 50);

$weights = array_pad($weights, 10, 100);

// The result is $weights = array(1, 3, 5, 10, 15, 25, 50, 100, 100, 100)

Here is an array that is padded from the front:

$weights = array (1, 3, 5, 10, 15, 25, 50);

$weights = array_pad($weights, -10, 100);

// The result is $weights = array(100, 100, 100, 1, 3, 5, 10, 15, 25, 50)

This is an incorrect attempt to pad an array:

$weights = array (1, 3, 5, 10, 15, 25, 50);

$weights = array_pad ($weights, 3, 100);

// The array $weights remains $weights = array (1, 3, 5, 10, 15, 25, 50)

Traversing Arrays 

PHP offers a host of functions for traversing the various elements in an array.
Used together, they offer a flexible solution for quickly manipulating and out-
putting array values. You will probably use these functions frequently, as they
form the core of almost every array algorithm.

Arrays

103

NOTE The absolute value of an integer is its value disregarding any nega-
tive signs preceding it. For example, the absolute value of both 5 and –5 is 5.

Gilmore_05  12/5/00  10:23 AM  Page 103



reset()

The function reset() will rewind the internal pointer of the array back to the first
element. It also returns the value of the first element. Its syntax follows:

mixed reset (array array)

Consider the following array:

$fruits = array("apple", "orange", "banana");

Suppose the pointer in this array is currently set to the element “orange.” 
Executing: 

$a_fruit = reset ($fruits); 

will set the pointer back to the beginning of the array, that is, “apple”, and return
that value if reset() is used as a function. Alternatively, it could be called as 
simply:

reset ($fruits);

This will effectively set the pointer back to the initial array element, but will not
return a value.

each()

The each() function performs two distinct operations each time it is executed; It
returns the key-value pair residing at the current pointer position and advances
the pointer to the next element. The syntax is:

array each (array array)

For convenience, each() actually returns the key and value in a four-element
array, the keys of this array being 0, 1, key, and value. The returned key is associ-
ated with the keys 0 and key, while the returned value is associated with the keys 1
and value.

Chapter 5

104

Gilmore_05  12/5/00  10:23 AM  Page 104



This example uses each() to return the element found at the current pointer
position:

// declare array of five elements

$spices = array("parsley", "sage", "rosemary", "thyme", "pepper");

// make sure that array is set at first element

reset($spices);

// create array $a_spice, which will hold four values.

$a_spice = each($spices);

Executing the preceding listing, the array $a_spice will now contain the fol-
lowing key-value pairs:

• 0 => 0

• 1 => “parsley”

• key => 0

• value => “parsley”

“Parsley” could then be displayed using either of the following statements:

print $a_spice[1];

print $a_spice["value"];

A common use of the each() function is in conjunction with list() and a
looping construct for cycling through some or all of the elements in an array. Each
iteration of each() will return either the next key-value pair or false if it has
reached the last element in the array. Revisiting the $spices array, you could print
all of the values to the screen using the following script:

// reset the array pointer

reset ($spices);

// cycle through each key-value pair, printing only the relevant part (the value)

while ( list ($key, $val) = each ($spices) ) :

print "$val <br>"

endwhile;

A more interesting use of each(), along with several other functions intro-
duced in this chapter, follows. Listing 5-1 shows how you could use these func-
tions to display a formatted table of countries and languages.

Arrays

105

Gilmore_05  12/5/00  10:23 AM  Page 105



Listing 5-1: Creating an HTML table from array elements
// declare associative array of countries and languages

$languages = array ("Country" => "Language",

"Spain" => "Spanish",

"USA" => "English",

"France" => "French",

"Russia" => "Russian");

// begin new table

print "<table border=0>";

// move pointer to first element position

reset ($languages);

// extract the first key and element

$hd1 = key ($languages);

$hd2 = $languages[$hd1];

// Print first key and element as table headers

print "<tr><th>$hd1</th><th>$hd2</th></tr>";

// move to next element set

next($languages);

// Print table rows including keys and elements of array

while ( list ($ctry,$lang) = each ($languages)) :

print "<tr><td>$ctry</td><td>$lang</td></tr>";

endwhile;

// close table

print "</table>";

Execution of the preceding code yields the following HTML table:

COUNTRY LANGUAGE

Spain Spanish

USA English

France French

Russia Russian

In this example we truly touched on the power of PHP; that is, the ability to
mix dynamic code with HTML to produce clean, formatted results of mined infor-
mation.

Chapter 5

106

Gilmore_05  12/5/00  10:23 AM  Page 106



end()

The end() function moves the pointer to the last position of the array. Its syntax is:

end (array array)

next()

The next() function moves the pointer ahead one position before returning the
element found at the pointer position. If an advance in the pointer position will
move it past the last element of the array, next() will return false. Its syntax is:

mixed next (array array)

prev()

The prev() function operates just like next(), except that it moves the pointer
back one position before returning the element found at the pointer position. If
the next retreat in pointer position will move it past the first element of the array,
prev() will return false. Its syntax is:

mixed prev (array array)

array_walk()

The array_walk() function provides an easy way to apply a function to several or
all elements in an array. Its syntax is:

int array_walk(array array, string func_name, [mixed data])

Arrays

107

NOTE A problem with next() is that it will also return false for an array
element that exists but is empty. If you are interested in merely traversing
the array, use each() instead.

NOTE A problem with prev() is that it will also return false for an array el-
ement that exists but is empty. If you are interested in merely traversing the
array, use each() instead.

Gilmore_05  12/5/00  10:23 AM  Page 107



The function, denoted by the input parameter func_name, could be used for
many purposes, for example, searching for elements having a specific characteris-
tic or actually modifying the values of the array itself. At least two values must be
passed into func_name: the first is the array value, and the second is the array key.
If the optional input parameter data is supplied, then it will be the third value to
func_name. Here’s how you could use array_walk() to delete duplicates in an
array:

function delete_dupes($element) {

static $last="";

if ($element == $last) 

unset($element);

else 

$last=$element;

}

$emails = array("blah@blah.com", "chef@wjgilmore.com", "blah@blah.com");

sort($emails);

reset($emails);

array_walk($emails,"delete_dupes");

// $emails = array("chef@wjgilmore.com", "blah@blah.com");

array_reverse()

The array_reverse() function provides an easy way to reverse the order of the el-
ements constituting the array. The syntax is:

array array_reverse(array array)

An example of array_reverse() follows:

$us_wine_producers = array ("California", "Oregon", "New York", "Washington");

$us_wine_producers = array_reverse ($us_wine_producers);

// $us_wine_producers = array ("Washington", "New York", "Oregon", "California");

Performing array_reverse() on an associative array will retain the key/value
matching, but reverse the array order.

Chapter 5

108

Gilmore_05  12/5/00  10:23 AM  Page 108



array_flip()

The array_flip() function will exchange (“flip”) all key and element values for the
array. Its syntax is:

array array_flip(array array)

Here’s how you could use array_flip() to flip all key and element values:

$languages = array("Spain" => "Spanish",

"France" => "French",

"Italy" => "Italian");

$languages = array_flip($languages);

// $languages = array("Spanish" => "Spain",

//                                 "French" => "France",

//                                 "Italian" => "Italy");

Keep in mind that array_flip() only flips the key/value mapping and does
not reverse the positioning. To reverse the positioning of the elements, use
array_reverse().

Array Size

Knowledge of the current size of an array has many applications when coding effi-
cient scripts. Other than using the size for simple referential purposes, perhaps
the most common use of the array size is for looping through arrays:

$us_wine_producers = array ("Washington", "New York", "Oregon", "California");

for ($i = 0; $i < sizeof ($us_wine_producers); $i++) :

print "$us_wine_producers[$i]";

endfor;

Because the $us_wine_producers array is indexed by integer value, you can
use a for loop to iteratively increment a counting variable ($i) and display each el-
ement in the array. 

sizeof()

The function sizeof() is used to return the number of elements contained in an
array. Its syntax is:

Arrays

109

Gilmore_05  12/5/00  10:23 AM  Page 109



int sizeof (array array)

You will probably use the sizeof()function often in your Web applications. A
brief example of its usage follows. The previous example is another common
usage of the sizeof() function.

$pasta = array("bowties", "angelhair", "rigatoni");

$pasta_size = sizeof($pasta);

// $pasta_size = 3

An alternative, extended form of sizeof() is count(), next.

count()

The count() function performs the same operations as sizeof(), returning the
number of values contained in an array. Its syntax is:

int count (mixed variable)

The only difference between sizeof() and count() is that count() provides a bit
more information in some situations:

• If the variable exists and is an array, count() will return the number of ele-
ments contained in the array.

• If the variable exists but is not an array, the value ‘1’ will be returned.

• If the variable does not exist, the value ‘0’ will be returned.

array_count_values()

The array_count_values() function is a variation of sizeof() and count(), in-
stead counting the frequency of the values appearing in the array. Its syntax is:

array array_count_values (array array);

The returned array will use the values as keys and their corresponding frequen-
cies as the values, as illustrated here:

$states = array("OH", "OK", "CA", "PA", "OH", "OH", "PA", "AK");

$state_freq = array_count_values($states);

Chapter 5

110

Gilmore_05  12/5/00  10:23 AM  Page 110



The array $state_freq will now contain the following key/value associations:

$state_freq = array("OH" => 3, "OK" => 1, "CA" => 1, "PA" => 2, "AK" => 1);

Sorting Arrays

The importance of sorting routines can hardly be understated in the realm of pro-
gramming and can be seen in action in such online applications as ecommerce
sites (sorting categories by alphabetical order), shopping bots (sorting prices),
and software search engines (sorting software by number of downloads). PHP of-
fers the nine predefined sorting functions listed in Table 5-1, each sorting an array
in a unique fashion.

Table 5-1. Sort Function Summary

FUNCTION SORT BY REVERSE SORT? MAINTAIN KEY/VALUE CORRELATION?

sort Value No No

rsort Value Yes No

asort Value No Yes

arsort Value Yes Yes

ksort Key No Yes

krsort Key Yes Yes

usort Value ? No

uasort Value ? Yes

uksort Key ? Yes

? applies to the user-defined sorting functions, where the order in which the array is sorted

depends on the results brought about by the user-defined function.

You are not limited to using predefined criteria for sorting your array infor-
mation, as three of these functions (usort(), uasort(), and uksort()) allow you
to introduce array-specific criteria to sort the information any way you please.

sort()

The sort() function is the most basic sorting function, sorting array elements
from lowest to highest value. Its syntax is:

void sort (array array)

Arrays

111

Gilmore_05  12/5/00  10:23 AM  Page 111



Nonnumerical elements will be sorted in alphabetical order, according to
their ASCII values. This basic example illustrates use of the sort function:

// create an array of cities.

$cities = array ("Aprilia", "Nettuno", "Roma", "Venezia", "Anzio");

// sort the cities from lowest to highest value

sort($cities);

// cycle through the array, printing each key and value.

for (reset ($cities); $key = key ($cities); next ($cities)) :

print "cities[$key] = $cities[$key] <br>";

endfor;

Executing the preceding code yields:

cities[0] = Anzio

cities[1] = Aprilia

cities[2] = Nettuno

cities[3] = Roma

cities[4] = Venezia

As you can see, the $cities array has been sorted in alphabetical order. A
variation on this algorithm is asort(), introduced later in this chapter.

rsort()

The rsort() function operates exactly like the sort() function, except that it sorts
the elements in reverse order. Its syntax is:

void rsort (array array)

Reconsider the $cities array, first introduced in the preceding example:

$cities = array ("Aprilia", "Nettuno", "Roma", "Venezia", "Anzio")

rsort($cities);

Chapter 5

112

Gilmore_05  12/5/00  10:23 AM  Page 112



Using rsort() to sort the $cities array results in the following reordering:

cities[0] = Venezia 

cities[1] = Roma 

cities[2] = Nettuno

cities[3] = Aprilia

cities[4] = Anzio

Once again, the $cities array is sorted, but this time in reverse alphabetical
order. A variation of this function is arsort(), described later in this chapter.

asort()

The asort() function works much like the previously explained sort() function,
except that the array indexes maintain their original association with the elements
regardless of the new position the element assumes. The function’s syntax is:

void asort (array array)

Revisiting the $cities array:

$cities = array ("Aprilia", "Nettuno", "Roma", "Venezia", "Anzio");

asort($cities);

Use asort() to sort the $cities array, which yields this new array ordering:

cities[4] = Anzio

cities[0] = Aprilia

cities[1] = Nettuno

cities[2] = Roma

cities[3] = Venezia

Note the index values and compare them to those in the example accom-
panying the introduction to sort(). This is the differentiating factor between the
two functions.

arsort()

The arsort() function is a variation of asort(), maintaining the original index as-
sociation but instead sorting the elements in reverse order. Its syntax is:

void arsort (array array)

Arrays

113

Gilmore_05  12/5/00  10:23 AM  Page 113



Using arsort() to sort the $cities array: 

$cities = array ("Aprilia", "Nettuno", "Roma", "Venezia", "Anzio");

arsort($cities);

results in the array being sorted in the following order:

cities[3] = Venezia

cities[2] = Roma

cities[1] = Nettuno

cities[0] = Aprilia

cities[4] = Anzio

Note the index values and compare them to those in the example accompa-
nying the introduction to rsort(). This is the differentiating factor between the
two functions.

ksort()

The ksort() function sorts an array according to its key values, maintaining the
original index association. Its syntax is:

void ksort (array array)

Consider an array slightly different from the original $cities array:

$wine_producers = array ("America" => "Napa Valley", 

"Italy" => "Tuscany",

"Australia" => "Rutherglen", 

"France" => "Loire",

"Chile" => "Rapel Valley");

Sorting this array using ksort(), it would be reordered as follows:

"America" => "Napa Valley"

"Australia" => "Rutherglen"

"Chile" => "Rapel Valley"

"France" => "Loire"

"Italy" => "Tuscany"

Chapter 5

114

Gilmore_05  12/5/00  10:23 AM  Page 114



Contrast this to the effects of sorting $wine_producers using sort():

"America" => "Napa Valley"

"Australia" => "Tuscany"

"Chile" => "Rutherglen"

"France" => "Loire"

"Italy" => "Rapel Valley"

Less than optimal results!

krsort()

The krsort() function performs the same operations as ksort(), except that the
key values are sorted in reverse order. Its syntax is:

void krsort (array $array)

Sorting $wine_producers using krsort():

$wine_producers = array ("America" => "Napa Valley", 

"Italy" => "Tuscany",

"Australia" => "Rutherglen", 

"France" => "Loire",

"Chile" => "Rapel Valley");

krsort($wine_producers);

yields the following reordering of $wine_producers:

"Italy" => "Tuscany"

"France" => "Loire"

"Chile" => "Rapel Valley"

"Australia" => "Rutherglen"

"America" => "Napa Valley"

For the most part, the sorting functions presented thus far will suit your gen-
eral sorting requirements. However, occasionally you may need to define your
own sorting criteria. This is possible with PHP, through the use of its three prede-
fined functions: usort(), uasort(), and uksort().

Arrays

115

Gilmore_05  12/5/00  10:23 AM  Page 115



usort()

The sorting function usort() provides a way in which to sort an array based on
your own predefined criteria. This is possible because usort() accepts as an input
parameter a function name that is used to determine the sorting order of the data.
Its syntax is:

void usort(array array, string function_name)

The input parameter array is the name of the array that you are interested in
sorting, and the parameter function_name is the name of the function on which
the sorting mechanism will be based. To illustrate just how useful this function
can be, assume that you had a long list of Greek vocabulary that you needed to
learn for an upcoming history exam. You wanted to sort the words according to
length, so that you could study the longer ones first, saving the short ones for
when you are more fatigued. You could sort them according to length using
usort():

Listing 5-2: Defining sorting criteria with usort()
$vocab = array("Socrates","Aristophanes", "Plato", "Aeschylus",

"Thesmophoriazusae");

function compare_length($str1, $str2) {

// retrieve the lengths of the next two array values

$length1 = strlen($str1);

$length2 = strlen($str2);

// Verify which string is shorter in length.

if ($length1 == $length2) :

return 0;

elseif ($length1 < $length2) :

return -1;

else :

return 1;

endif;

}

// call usort(), defining the sorting function compare_length()

usort($vocab, "compare_length");

// display the sorted list

while (list ($key, $val) = each ($vocab)) { 

echo "$val<br>"; 

} 

Chapter 5

116

Gilmore_05  12/5/00  10:23 AM  Page 116



In Listing 5-2, the function compare_length() defines how the array will be
sorted, in this case by comparing the lengths of the passed in elements. Note that
you must define two input parameters that represent the next two array elements
to be compared. Furthermore, take note that these elements are implicitly passed
into the criteria function once usort() is called and that all elements are passed
through this function automatically.

The functions uasort() and uksort() are variations of usort(), each using
the same syntax. The function uasort() will sort according to the predefined cri-
teria, except that the key->value correlation will remain the same. The function
uksort() will also sort according to the predefined criteria, except that the keys
will be sorted instead of the values.

Other Useful Functions

This section describes a few functions that are obscure enough to not have a sec-
tion subtitle, but are nonetheless useful.

array_merge()

The array_merge() function merges 1 to N arrays together, appending each to 
another in the order in which they appear as input parameters. The function’s
syntax is:

array array_merge (array array1, array array2, . . ., array arrayN)

The array_merge() function provides an easy way to merge several arrays, as
shown here:

$arr_1 = array ("strawberry", "grape", "lemon");

$arr_2 = array ("banana", "cocoa", "lime");

$arr_3 = array ("peach", "orange");

$arr_4 = array_merge ($arr_2, $arr_1, $arr_3);

// $arr_4 = array("banana", "cocoa", "lime", "strawberry", 

//                "grape", "lemon", "peach", "orange");

array_slice()

The array_slice() function will return a piece of the array, the starting and 
ending points decided by the offset and optional length input parameters. Its 
syntax is:

Arrays

117

Gilmore_05  12/5/00  10:23 AM  Page 117



array array_slice(array array, int offset, int [length])

There are several nuances regarding the input parameters:

• If the offset is positive, the returned slice will start that far away from the
beginning of the array.

• If the offset is negative, the returned slice will start that far away from the
end of the array.

• If the length is omitted, the returned array will consist of everything from
the offset to the end of the array.

• If the length is provided and is positive, the returned slice will have length
elements in it.

• If the length is provided and is negative, the returned slice will stop length
elements away from the end of the array.

array_splice()

The array_splice() function operates somewhat like the function array_slice,
except that it replaces the designated elements specified by the offset and the op-
tional length input parameters with the elements in the optional array replace-
ment_array. Its syntax is:

array_splice(array input_array, int offset, int [length], array

[replacement_array]);

There are several factors to keep in mind regarding the input parameters:

• If offset is positive, then the first element to be removed will be offset ele-
ments away from the beginning of the array.

• If offset is negative, then the first element to be removed will be offset ele-
ments away from the end of the array.

• If length is not provided, all elements starting from offset to the end of the
array will be removed.

• If length is provided and is positive, length elements will be removed from
the array.

Chapter 5

118

Gilmore_05  12/5/00  10:23 AM  Page 118



• If length is provided and is negative, elements from offset to length ele-
ments away from the end of the array will be removed.

• If replacement_array is not specified, then the elements from offset to the
optional length will be removed from the input array.

• If $replacement_array is specified, it must be enclosed using the array()
construct, unless $replacement_array consists of only one element.

A few examples are in order to fully illustrate the capabilities of this function.
Consider the array $pasta, below. Each example will manipulate this array in a
slightly different manner.

Remove all elements from the fifth element to the end of the array:

$pasta = array_splice($pasta, 5);

Remove the fifth and sixth elements from the array:

$pasta = array_splice($pasta, 5, 2);

Replace the third and fourth elements with new elements:

$pasta = array_splice($pasta, 5, 2, array("element1", "element2"));

Remove all elements from positions 3 to (n  3):

$pasta = array_splice($pasta, 5, -3);

As illustrated by the preceding examples, array_splice() provides a flexible
method to remove specific array elements with a minimal amount of code.

shuffle()

The function shuffle() will sort the elements of an array in random order. Its syn-
tax is:

void shuffle(array array);

Arrays

119

Gilmore_05  12/5/00  10:23 AM  Page 119



What’s Next?

This chapter introduced arrays and the predefined array-handling functions of-
fered by PHP. In particular, the following concepts were discussed:

• Creation of indexed and associative arrays

• Multidimensional arrays

• Display of multidimensional arrays

• Locating array elements

• Adding and removing elements

• Array size

• Sorting arrays

• Other useful array functions

Arrays provide a very convenient and flexible means for managing informa-
tion in Web applications. There are several instances in later chapters in which I
make use of arrays to improve coding efficiency and clarity.

Chapter 6 continues our survey of PHP’s basic functionality, discussing PHP’s
object-oriented capabilities.

Chapter 5

120

Gilmore_05  12/5/00  10:23 AM  Page 120



CHAPTER 6

Object-Oriented PHP

If you are familiar with programming strategy, object-oriented programming
(OOP) is most likely a part of your daily developmental strategy. If you are new to
OOP, after reading this chapter and implementing a few of the examples, you will
look at coding in a whole new light. This chapter focuses on OOP and PHP’s par-
ticular implementation of the OOP strategy, introducing the necessary syntax and
providing examples that will allow you to begin building your own OO applica-
tions.

The OOP strategy can be best summed up as a shift of developmental focus
from an application’s functional operations to its data structures. This enables
programmers to model real world objects and scenarios in the applications that
they write. In particular, the OOP strategy offers three advantages:

• Easier to understand: OOP makes it possible to think of programs in terms
of everyday objects. 

• Improved reliability and maintenance: Designed properly, OO programs
are easily expanded and modified. The modular property makes it possible
to independently edit various parts of the program, effectively minimizing
the risk of programming errors. 

• Faster development cycles: Modularity again plays an important role, as
various parts of OO programs can be easily reused, eliminating code redun-
dancy and ultimately resulting in the reduction of unnecessarily repeated
coding errors.

These intrinsic advantages of OOP have resulted in major efficiency gains for
developers, enabling programmers to develop more powerful, scalable, and effi-
cient applications. Many of these advantages are due to one of OOP’s founda-
tional concepts known as encapsulation, or information hiding. Encapsulation is
the concept of hiding various elements in a larger entity, causing the programmer
to concentrate on the larger object. This results in the overall reduction of pro-
gram complexity due to the diminution of unnecessary details. 

The concept of encapsulation can be correlated to the typical driver’s opera-
tion of a car. Most drivers are oblivious to the actual mechanical operations of the
automobile, yet are capable of operating the vehicle exactly in the way it was in-
tended to be operated. Knowledge of the inner-workings of the engine, brakes,

121

Gilmore_06  12/4/00  1:05 PM  Page 121



and steering is unnecessary, because proper interfacing has been provided to the
driver that makes these otherwise highly complex operations automated and
easy. The same idea holds true with encapsulation and OOP, as many of these
“inner workings” are hidden from the user, allowing the user to focus on the task
at hand. OOP makes this possible through the use of classes, objects, and various
means of expressing hierarchical relationships between data entities. (Classes and
objects are discussed shortly.)

PHP and OOP

Although PHP offers general object-oriented features, it is not yet a full-featured
OO language, like C++ or Java, for example. Unlike OOP, PHP does not explicitly
offer the following object-oriented characteristics:

• Multiple inheritance

• Constructor chaining (you must call a parent class constructor explicitly if
you would like it to execute on construction of a derived class object)

• Class abstraction

• Method overloading

• Operator overloading (because PHP is a loosely typed language; see Chap-
ter 2, “Variables and Data Types,” for more info)

• Concepts of private, virtual, and public

• Destructors

• Polymorphism

However, even without these important OO features, you can still benefit
from using those OO features that PHP does support. PHP’s OO implementation
can aid tremendously in packaging your programming functionality. Read on to
learn more.

Classes, Objects, and Method Declarations

The class is the syntactical foundation of object-oriented programming and can
be considered a container of sorts that holds an interrelated set of data and the

Chapter 6

122

Gilmore_06  12/4/00  1:05 PM  Page 122



data’s corresponding functions, better known as methods (discussed shortly). A
class is a template from which specific instances of the class may be created and
used in a program. These instances are also known as objects.

One way to grasp the relationship between classes and objects is to consider
the class as a general blueprint for a structure. From this blueprint, several struc-
tures (or objects) can be built, each sharing the same set of core characteristics
(for example, one door, two windows, and a wall thickness). However, each 
structure is independent of the others in the sense that it is free to change the
characteristic values without affecting the values of the others. (For example, 
one structure might have a wall thickness of five inches, while another has a wall
thickness of ten inches.) The important thing to keep in mind is that they all share
this characteristic of wall thickness. 

A class can also be thought of as a data type (discussed in Chapter 2), much as
one would consider a variable entitled $counter to be of type int, or a variable en-
titled $last_name to be of type string. One could simultaneously manipulate sev-
eral objects of type class just as one manipulates several variables of type int. The
general format of a PHP class is shown in Listing 6-1.

Listing 6-1: PHP class declaration structure
class Class_name {

var $attribute_1;

. . . 

var $attribute_N;

function function1() {

. . . 

}

. . . 

function functionN() {

. . . 

}

} // end Class_name

To summarize Listing 6-1, a class declaration must begin with the keyword
class, much like a function declaration begins with the keyword function. Each at-
tribute declaration contained in a class must be preceded by the keyword var. An
attribute can be of any PHP-supported data type and should be thought of as a
variable with minor differences, as you will learn throughout the remainder of
this chapter. Following the attributes are the method declarations, which bear a
close resemblance to typical function declarations. 

Object-Oriented PHP

123

Gilmore_06  12/4/00  1:05 PM  Page 123



One main use of methods is to manipulate the various attributes constituting
the class. However, these attributes are referenced in the methods using a special
variable called $this. Consider the following example demonstrating the use of
this syntax:

<?

class Webpage {

var $bgcolor;

function setBgColor($color) {

$this->bgcolor = $color;

}

function getBgColor() {

return $this->bgcolor;

}

}

?>

The $this variable is referring to the particular object making use of the
method. Because there can be many object instances of a particular class, $this is
a means of referring to the attribute belonging to the calling (or ‘this’) object. Fur-
thermore, there are two points regarding this newly introduced syntax worth
mentioning:

• The attribute being referenced in the method does not have to be passed in
as would a functional input parameter.

• A dollar sign ($) precedes only the $this variable and not the attribute itself,
as would be the case with a normal variable.

Chapter 6

124

NOTE It is a general convention that OO classes begin with a capital letter,
while methods start in lowercase with uppercase separating each word
from a multiword function name. Of course, you can use whatever nomen-
clature you feel most comfortable with; just be sure to choose a standard
and stick with it.

Gilmore_06  12/4/00  1:05 PM  Page 124



Creating and Working with Objects

An object is created using the new operator. An object based on the class Web-
page can be instantiated as follows:

$some_page = new Webpage;

The new object $some_page now has its own set of attributes and methods
specified in the class Webpage. The attribute $bgcolor corresponding to this 
specific object can then be assigned or changed via the predefined method 
setBgColor():

$some_page->setBgColor("black");

• Keep in mind that PHP also allows you to retrieve the value by explicitly
calling the attribute along with the object name:

$some_page->bgcolor;

However, this second method of retrieval defeats the purpose of encapsula-
tion, and you should never retrieve a value this way when working with OOP. To
better understand why this is the case, take a moment to read the next section.

Why Insufficient Encapsulation Practice Is BAD!

Consider a scenario in which you assign an array as an attribute in a given class.
However, instead of calling intermediary methods to control the array (for exam-
ple, add, delete, modify elements, and so on), you directly call the array whenever
needed. Over the period of a month, you confidently design and code a massive
“object-oriented” application and revel in the glory of the praise provided to you
by your fellow programmers. Ahhhh, a pension plan, paid vacation, and maybe
your own office are just around the corner.

But wait, one month after the successful launch of your Web application, your
boss decides that arrays aren’t the way to go and instead wants all data controlled
via a database.

Uh-oh. Because you decided to explicitly manipulate the attributes, you now
must go through the code, changing every instance in which you did so to fit the
new requirements of a database interface. A time-consuming task to say the least,
but also one that could result in the introduction of many new coding errors.

However, consider the result if you had used methods to interface with this
data. The only thing you would have to do to switch from an array to a database
storage protocol would be to modify the attribute itself and the code contained in

Object-Oriented PHP

125

Gilmore_06  12/4/00  1:05 PM  Page 125



the methods. This modification would result in the automatic propagation of
these changes to every part of the code in which the relevant methods are called.

Constructors

Often, just creating a new object is a bit inefficient, as you may need to assign sev-
eral attributes along with each object. Thankfully, the designers of the OOP strat-
egy took this into consideration, introducing the concept of a constructor. A con-
structor is nothing more than a method that sets particular attributes (and can
also trigger methods), simultaneously called when a new object is created. For
this concurrent process to occur, the constructor method must be given the same
name as the class in which it is contained. Listing 6-2 shows how you might use a
constructor method.

Listing 6-2: Using a constructor method
<?

class Webpage {

var $bgcolor;

function Webpage($color) {

$this->bgcolor = $color;

}

}

// call the Webpage constructor

$page = new Webpage("brown");

?>

Previously, two steps were required for the class creation and initial attribute
assignment, one step for each task. Using constructors, this process is trimmed
down to just one step.

Interestingly, different constructors can be called depending on the number
of parameters passed to them. Referring to Listing 6-2, an object based on the
Webpage class can be created in two ways: You can use the class as a constructor,
which will simply create the object, but not assign any attributes, as shown here:

$page = new Webpage;

Or you can create the object using the predefined constructor, creating an object
of class Webpage and setting its bgcolor attribute, as you see here:

$page = new Webpage("brown");

Chapter 6

126

Gilmore_06  12/4/00  1:05 PM  Page 126



Destructors

As I’ve already stated, PHP does not explicitly support destructors. However, you
can easily build your own destructor by calling the PHP function unset(). This
function acts to erase the contents of a variable, thereby returning its resources
back to memory. Quite conveniently, unset() works with objects in the same way
that it does with variables. For example, assume that you are working with the ob-
ject $Webpage. You’ve finished working with this particular object, so you call:

unset($Webpage);

This will remove all of the contents of $Webpage from memory. Keeping with
the spirit of encapsulation, you could place this command within a method called
destroy() and then call:

$Website->destroy();

Keep in mind that there really isn’t a need to use destructors, unless you are
using objects that are taking up considerable resources; all variables and objects
are automatically destroyed once the script finishes execution.

Inheritance and Multilevel Inheritance

As you are already aware, a class is a template for a real world object that acts as a
representation of its characteristics and functions. However, you probably know
of instances in which a particular object could be a subset of another. For exam-
ple, an automobile could be considered a subset of the category vehicle because
airplanes are also considered vehicles. Although each vehicle type is easily distin-
guishable from the other, assume that there exists a core set of characteristics that
all share, including number of wheels, horsepower, current speed, and model. Of
course, the values assigned to the attributes of each may differ substantially, but
nonetheless these characteristics do exist. Consequently, it could be said that the
subclasses automobile and airplane both inherit this core set of characteristics
from a superclass known as vehicle. The concept of a class inheriting the charac-
teristics of another class is known as inheritance.

Inheritance is a particularly powerful programming mechanism because it
can eliminate an otherwise substantial need to repeat code that could be shared
between data structures, such as the shared characteristics of the various vehicle
types mentioned in the previous paragraph. The general PHP syntax used to in-
herit the characteristics of another class follows:

Object-Oriented PHP

127

Gilmore_06  12/4/00  1:05 PM  Page 127



class Class_name2 extends Class_name1 {

attribute declarations; 

method declarations;

}

The notion of a class extending another class is just another way of stating
that Class_name2 inherits all of the characteristics contained in Class_name1 and
in turn possibly extends the use and depth of the Class_name1 characteristics with
those contained in Class_name2.

Other than for reason of code reusability, inheritance provides a second im-
portant programming advantage: it reduces the possibility of error when a pro-
gram is modified. Considering the class inheritance hierarchy shown in Figure 6-
1, realize that a modification to the code contained in auto will have no effect on
the code (and data) contained in airplane, and vice versa.

Let’s use Listing 6-3 to build the code needed to accurately represent Figure 6-1.

Chapter 6

128

Figure 6-1. Relationship diagram of the various vehicle types

CAUTION A call to the constructor of a derived class does not imply that
the constructor of the parent class is also called.

Gilmore_06  12/4/00  1:05 PM  Page 128



Listing 6-3: Using inheritance to efficiently represent various vehicle
types
<?

class Vehicle {

var $model;

var $current_speed;

function setSpeed($mph) {

$this->current_speed = $mph;

}

function getSpeed() {

return $this->current_speed;

}

} // end class Vehicle

class Auto extends Vehicle {

var $fuel_type;

function setFuelType($fuel) {

$this->fuel_type = $fuel;

}

function getFuelType() {

return $this->fuel_type;

}

} // end Auto extends Vehicle

class Airplane extends Vehicle {

var $wingspan;

function setWingSpan($wingspan) {

$this->wingspan = $wingspan;

}

function getWingSpan() {

return $this->wingspan;

}

} // end Airplane extends Vehicle

Object-Oriented PHP

129

Gilmore_06  12/4/00  1:05 PM  Page 129



We could then instantiate various objects as follows:

$tractor = new Vehicle;

$gulfstream = new Airplane;

?>

Two objects have been created. The first, $tractor, is a member of the Vehicle
class. The second, $gulfstream, is a member of the Airplane class, possessing the
characteristics of the Airplane and the Vehicle class.

Multilevel Inheritance

As programs increase in size and complexity, you may need several levels of in-
heritance, or classes that inherit from other classes, which in turn inherit proper-
ties from other classes, and so on. Multilevel inheritance further modularizes the
program, resulting in an increasingly maintainable and detailed program struc-
ture. Continuing along with the Vehicle example, a larger program may demand
that an additional class be introduced between the Vehicle superclass to further
categorize the class structure. For example, the class Vehicle may be divided into
the classes land, sea, and air, and then specific instances of each of those sub-
classes can be based on the medium in which the vehicle in question travels. This
is illustrated in Figure 6-2.

Chapter 6

130

CAUTION The idea of a class inheriting the properties of more than one
parent class is known as multiple inheritance. Unfortunately, multiple in-
heritance is not possible in PHP. For example, you cannot do this in PHP:

Class Airplane extends Vehicle extends Building . . .

Gilmore_06  12/4/00  1:05 PM  Page 130



Consider the brief example in Listing 6-4, which serves to highlight a few im-
portant aspects of multilevel inheritance in regard to PHP.

Listing 6-4: Making use of multilevel inheritance
<?

class Vehicle {

Attribute declarations. . . 

Method declarations. . .

}

class Land extends Vehicle {

Attribute declarations. . . 

Method declarations. . .

}

class Car extends Land {

Attribute declarations. . . 

Method declarations. . .

}

$nissan = new Car;

?>

Object-Oriented PHP

131

Figure 6-2. Multilevel inheritance model of the Vehicle superclass

Gilmore_06  12/4/00  1:05 PM  Page 131



Once instantiated, the object $nissan has at its disposal all of the attributes
methods available in Car, Land, and Vehicle. As you can see, this is an extremely
modular structure. For example, sometime throughout the lifecycle of the pro-
gram, you may wish to add a new attribute to Land. No problem: just modify the
Land class accordingly, and that attribute becomes immediately available to itself
and Car, without affecting the functionality of any other class. This idea of code
modularity and flexibility is indeed one of the great advantages of OOP.

Class Abstraction

Sometimes it is useful to create a class that will never be instantiated and instead
will just act as the base for a derived class. This kind of class is known as an ab-
stract class. An abstract class is useful when a program designer wants to ensure
that certain functionality is available in any subsequently derived classes based
on that abstract class.

PHP does not offer explicit class abstraction, but there is an easy workaround.
Just create a default constructor and place a call to die() in it. Referring to the
classes in Listing 6-4, chances are you will never wish to instantiate the Land or
Vehicle classes, because neither could represent a single entity. Instead, you
would extend these classes into a real world object, such as the car class. There-
fore, to ensure that Land or Vehicle is never directly instantiated, place the die()
call in each, as seen in Listing 6-5.

Chapter 6

132

NOTE Keep in mind that although a class can inherit characteristics from
a chain of parents, the parents’ constructors are not called automatically
when you instantiate an object from the inheriting class. These construc-
tors become methods for the child class.

Gilmore_06  12/4/00  1:05 PM  Page 132



Listing 6-5: Building abstract classes
<?

class Vehicle {

Attribute declarations. . . 

function Vehicle() {

die("Cannot create Abstract Vehicle class!");

}

Other Method declarations. . .

}

class Land extends Vehicle {

Attribute declarations. . . 

function Land() {

die("Cannot create Abstract Land class!");

}

Other Method declarations. . .

}

class car extends Land {

Attribute declarations. . . 

Method declarations. . .

}

?>

Therefore, any attempt to instantiate these abstract classes results in an ap-
propriate error message and program termination.

Method Overloading

Method overloading is the practice of defining multiple methods with the same
name, but each having a different number or type of parameters. This too is not a
feature supported by PHP, but an easy workaround exists, as shown in Listing 6-6.

Object-Oriented PHP

133

Gilmore_06  12/4/00  1:05 PM  Page 133



Listing 6-6: Method overloading

<?

class Page { 

var $bgcolor;

var $textcolor;

function Page() { 

// Determine the number of arguments 

// passed in, and create correct method name

$name = "Page".func_num_args(); 

// Call $name with correct number of arguments passed in

if ( func_num_args() == 0 ) : 

$this->$name(); 

else :

$this->$name(func_get_arg(0)); 

endif; 

} 

function Page0() { 

$this->bgcolor = "white";

$this->textcolor = "black";

print "Created default page";

} 

function Page1($bgcolor) { 

$this->bgcolor = $bgcolor;

$this->textcolor = "black";

print "Created custom page";

} 

} 

$html_page = new Page("red");

?>

In this example, a new object entitled $html_page is created, with one argu-
ment passed in. Since a default constructor has been created (Page()), the instan-
tiation begins there. However, this default constructor is simply used to deter-
mine exactly which of the other constructor methods (Page0() or Page1()) is
called. This is determined by making use of the func_num_args() and
func_get_arg() functions, which count the number of arguments and retrieve the
arguments, respectively.

Chapter 6

134

Gilmore_06  12/4/00  1:05 PM  Page 134



Obviously, this is not method overloading as it was intended to be imple-
mented, but it does the job for those of you who cannot live without this impor-
tant OOP feature.

Class and Object Functions 

PHP offers a number of predefined class and object functions, which are dis-
cussed in the following sections. All can be useful, particularly for interface devel-
opment, code administration, and error checking.

get_class_methods()

The get_class_methods() function returns an array of methods defined by the
class specified by class_name. The syntax is:

array get_class_methods (string class_name)

A simple example of how get_class_methods() is used is in Listing 6-7.

Listing 6-7: Retrieving the set of methods available to a particular
class
<?

. . . 

class Airplane extends Vehicle {

var $wingspan;

function setWingSpan($wingspan) {

$this->wingspan = $wingspan;

}

function getWingSpan() {

return $this->wingspan;

}

}

$cls_methods = get_class_methods(Airplane);

// $cls_methods will contain an array of all methods 

// declared in the classes "Airplane" and "Vehicle".

?>

As you can see by following the code in Listing 6-7, get_class_methods() is an
easy way to obtain a listing of all supported methods of a particular class.

Object-Oriented PHP

135

Gilmore_06  12/4/00  1:05 PM  Page 135



get_class_vars()

The get_class_vars() function returns an array of attributes defined in the class
specified by class_name. Its syntax is:

array get_class_vars (string class_name)

An example of how get_class_vars() is used is in Listing 6-8.

Listing 6-8: Using get_class_vars() to create $attribs
<?

class Vehicle {

var $model;

var $current_speed;

}

class Airplane extends Vehicle {

var $wingspan;

}

$a_class = "Airplane";

$attribs = get_class_vars($a_class);

// $attribs = array ( "wingspan", "model", "current_speed")

?>

Therefore, the variable $attribs is created and becomes an array containing
all available attributes of the class Airplane.

get_object_vars()

The get_object_vars() function returns an array containing the properties of the
attributes assigned to the object specified by obj_name. Its syntax is:

array get_object_vars (object obj_name)

An example of how get_object_vars() is used is in Listing 6-9.

Chapter 6

136

Gilmore_06  12/4/00  1:05 PM  Page 136



Listing 6-9: Obtaining object variables
<?

class Vehicle {

var $wheels;

}

class Land extends Vehicle {

var $engine;

}

class car extends Land {

var $doors;

function car($doors, $eng, $wheels) {

$this->doors = $doors;

$this->engine = $eng;

$this->wheels = $wheels;

}

function get_wheels() {

return $this->wheels;

}

}

$toyota = new car(2,400,4);

$vars = get_object_vars($toyota);

while (list($key, $value) = each($vars)) :

print "$key ==> $value <br>";

endwhile;

// displays:

// doors ==> 2

// engine ==> 400

// wheels ==> 2

?>

Using get_object_vars() is a convenient way to quickly obtain all of the 
attribute/value mappings of a particular object.

Object-Oriented PHP

137

Gilmore_06  12/4/00  1:05 PM  Page 137



method_exists()

The method_exists() function checks to see if a particular method (denoted by
method_name), exists in the object specified by obj_name, returning true if it ex-
ists, or false if it does not. Its syntax is:

bool method_exists (object obj_name, string method_name)

An example of the usage of method_exists() is in Listing 6-10.

Listing 6-10: Using method_exists() to verify an object/method mapping.
<?

class Vehicle {

. . . 

}

class Land extends Vehicle {

var $fourWheel;

function setFourWheelDrive() {

$this->fourWeel = 1;

}

}

//  create object named $car

$car = new Land;

// if method "fourWheelDrive" is a part of classes "Land" or "Vehicle",

// then the call to method_exists() will return true; 

// Otherwise false will be returned.

// Therefore, in this case, method_exists() will return true.

if (method_exists($car, "setfourWheelDrive")) :

print "This car is equipped with 4-wheel drive";

else :

print "This car is not equipped with 4-wheel drive";

endif;

?>

In Listing 6-10, the function method_exists() is used to verify whether or not
the object $car has access to the method setFourWheelDrive(). If it does, true is
returned, and the appropriate message is displayed. Otherwise, false is returned,
and a message stating that four-wheel drive is not available with that particular
object.

Chapter 6

138

Gilmore_06  12/4/00  1:05 PM  Page 138



get_class()

The get_class() function returns the name of the class from which the object
specified by obj_name is instantiated. The syntax is:

string get_class(object obj_name); 

An example of how get_class() is implemented is in Listing 6-11.

Listing 6-11: Using get_class()to return the name of an instantiation
class
<?

class Vehicle {

. . . 

}

class Land extends Vehicle {

. . . 

}

// create object named $car

$car = new Land;

// $class_a is assigned "Land"

$class_a = get_class($car);

?>

Simply enough, the variable $class_a is assigned the name of the class from
which the object $car was derived.

get_parent_class()

The get_parent_class() function returns the name, if any, of the parent class of
the object specified by objname. The syntax is:

string get_parent_class(object objname); 

Listing 6-12 illustrates usage of get_parent_class().

Object-Oriented PHP

139

Gilmore_06  12/4/00  1:05 PM  Page 139



Listing 6-12: Name of the class parent returned using get_parent_class()
<?

class Vehicle {

. . . 

}

class Land extends Vehicle {

. . . 

}

// create object named $car

$car = new Land;

// $parent is assigned "Vehicle"

$parent = get_parent_class($car);

?>

As you would expect, the call to get_parent_class() assigns the value “Vehi-
cle” to the variable $parent.

is_subclass_of()

The is_subclass_of() function ensures whether or not an object was created
from a class whose parent is specified by class_name, returning true if it was, and
false otherwise. Its syntax is:

bool is_subclass_of (object obj, string class_name)

Listing 6-13 illustrates proper usage of is_subclass_of().

Chapter 6

140

Gilmore_06  12/4/00  1:05 PM  Page 140



Listing 6-13: Using is_subclass_of() to determine whether an object was
created from a class derived from a specific parent class
<?

class Vehicle {

. . . 

}

class Land extends Vehicle {

. . . 

}

$auto = new Land;

// $is_subclass receives the value "true"

$is_subclass = is_subclass_of($auto, "Vehicle");

?>

In Listing 6-13, the variable $is_subclass is used to determine whether the
object $auto is derived from a subclass of the parent class Vehicle. In fact, $auto is
derived from Land; therefore, $is_subclass will receive the boolean value true.

get_declared_classes()

The get_declared_classes() function returns an array of all defined classes, as
shown in Listing 6-14. Its syntax is:

array get_declared_classes()

Listing 6-14: Retrieving all defined classes with get_declared_classes()
<?

class Vehicle {

. . . 

}

class Land extends Vehicle {

. . . 

}

// $declared_classes = array("Vehicle", "Land")

$declared_classes = get_declared_classes();

?>

Object-Oriented PHP

141

Gilmore_06  12/4/00  1:05 PM  Page 141



What’s Next?

This chapter introduced you to several of object-oriented programming’s basic
concepts, concentrating on how these concepts are applied to the PHP program-
ming language. In particular, the following subjects were discussed in detail:

• Introduction to object-oriented programming

• Classes, objects, and methods

• Inheritance and multilevel inheritance

• Class abstraction

• Method overloading

• PHP’s class and object functions

Although not overly complicated, the object-oriented programming strategy
usually requires of the programmer an initial exploration period before all of the
concepts are really understood. However, I guarantee that the extra time you take
to understand these notions will add an entirely new level of efficiency and cre-
ativity to your programming repertoire.

Chapter 6

142

Gilmore_06  12/4/00  1:05 PM  Page 142



CHAPTER 7

File I/O
and the File System

This chapter introduces a particularly important aspect of PHP: file I/O
(input/output). As you can imagine, data input and output flows are put to con-
siderable use in the developing of Web applications. Not limited to simple reading
and writing of files, PHP provides support for viewing and modifying server infor-
mation, in addition to executing third-party programs. These features are the sub-
ject of this chapter.

Verifying a File’s Existence and Size

It is useful to be able to determine the existence of a file before attempting to
work with it. Two functions are particularly useful for accomplishing this:
file_exists() and is_file().

file_exists()

The file_exists() function will ensure that file exists, returning true if it does,
and false otherwise. Its syntax is:

bool file_exists (string file)

Here’s how you can verify the existence of a file:

$filename = "userdata.txt";

if (! file_exists ($filename)) :

print "File $filename does not exist!";

endif;

143

Gilmore_07  12/4/00  1:06 PM  Page 143



is_file()

The is_file() function will return true if file exists and is a readable/writable file.
Essentially, is_file() is a bullet-proof version of file_exists(), verifying not
only the file’s existence but also whether it can be read from or written to:

bool is_file (string file)

This example shows how to verify the existence and validity of a file:

$file = "somefile.txt";

if (is_file($file)) :

print "The file $file is valid and exists!";

else :

print "Either $file does not exist or it is not a valid file!";

endif;

Once you have verified that the file of interest does exist and is capable of
having various I/O operations performed on it, you can open it. 

filesize()

The filesize() function will return the size, in bytes, of the file designated by file-
name, or false should an error occur. Its syntax is:

int filesize (string filename)

Assume that you want to know the size of a file named pastry.txt. You can use
filesize() to retrieve this information:

$fs = filesize("pastry.txt");

print "Pastry.txt is $fs bytes.";

This will return:

Pastry.txt is 179 bytes.

Before files can be manipulated, they must be opened and assigned a file
handle. Once you have finished working with a file, it should be closed. These
subjects are the focus of the next section.

Chapter 7

144

Gilmore_07  12/4/00  1:06 PM  Page 144



Opening and Closing I/O

Before you can perform any I/O operation on a file, you must open it using the
fopen() function.

fopen()

The fopen() function opens a file, assuming that it exists, and returns an integer,
better known as a file handle. Its syntax is:

int fopen (string file, string mode [, int use_include_path])

File may be a file contained in the local file system, an stdio stream, or a re-
mote file obtained via HTTP or FTP.

The input file can be of several forms, denoted by the filename syntax. These
forms are listed here:

• If file is perceived to be a local filename, the file will be opened, and a
pointer to the file will be returned.

• If file is either php://stdin, php://stdout, or php://stderr, stdio will be
opened accordingly.

• If file begins with http://, an HTTP connection will be opened to the file
server in question and a file pointer will be returned to the file in question.

• If file begins with ftp://, an FTP connection to the server in question will be
opened, and a file pointer will be returned to the specified file. Two particu-
larities are worth noting regarding this option: If the server does not sup-
port passive mode FTP, fopen() will fail. Furthermore, FTP files can only be
opened exclusively either for reading or writing.

The mode specifies the read/write readiness of the file in question. Table 7-1
lists several possible modes pertaining to how a file can be opened.

File I/O and the File System

145

NOTE When an FTP server is in passive mode, it is listening for a connec-
tion from a client. In contrast, when an FTP server is in active mode, the
server makes the connection to the client. Active mode is generally the 
default.

Gilmore_07  12/4/00  1:06 PM  Page 145



Table 7-1. File modes

MODE MEANING

r Read only. The file pointer is placed at the beginning of the file.

r+ Reading and writing. The file pointer is placed at the beginning  of the 

file.

w Write only. The file pointer is placed at the beginning of the file, and the 

file contents are erased. If the file does not exist, an attempt will be

made to create it.

w+ Reading and writing. The file pointer is placed at the beginning of the 

file, and the file contents are erased. If the file does not exist, an

attempt will be made to create it.

a Write only. The file pointer is placed at the end of the file. If the file does 

not exist, an attempt will be made to create it.

a+ Reading and writing. The file pointer is placed at the end of the file. If

the file does not exist, an attempt will be made to create it.

The third input parameter, use_include_path, can be set to 1 if you would like
the file path to be compared to the include path contained in the php.ini file (de-
scribed in Chapter 1). The following listing illustrates the opening of a file with
fopen(). It is a good idea to use the command die() in conjunction with fopen()to
ensure display of an appropriate message should the function fail:

$file = "userdata.txt";                                            // some file

$fh = fopen($file, "a+") or die("File ($file) does not exist!");   

The next listing will open a connection with the PHP site
(http://www.php.net):

$site = "http://www.php.net";     // some server that can communicate via HTTP

$sh = fopen($site, "r");          // assigns PHP.net index page to a filehandle.

Once you have finished with a file, you should always close it. This is accom-
plished with the fclose() function.

fclose()

The fclose() function closes the file designated by filepointer, returning true on
success and false otherwise:

int fclose (int filepointer)

Chapter 7

146

Gilmore_07  12/4/00  1:06 PM  Page 146



The fclose() function will only successfully close those files opened by fopen()
or fsockopen(). Here’s how you can close a file: 

$file = "userdata.txt";

if (file_exists($file)) :

$fh = fopen($file, "r");

// execute various file-related functions

fclose($fh);

else:

print "File $file does not exist!";

endif;

Writing to a File

Once a file has been opened, there are generally two operations that can be per-
formed; writing and reading. 

is_writeable()

The is_writeable() function will ensure that file exists and is writable. It is capa-
ble of checking the writability of both a file and a directory. Its syntax is:

bool is_writeable (string file)

It is important to note that PHP will likely be running under the user ID that
the Web server is using (typically “nobody”). An example of is_writeable() is in-
cluded in the next section, “fwrite().”

fwrite()

The fwrite() function will simply write the contents of string to the file specified
by filepointer. Its syntax is:

int fwrite (int filepointer, string string [, int length])

If the optional input parameter length is provided, writing will stop either
after length characters have been written or after the end of string has been
reached. The following example shows how to check the writability of a file:

File I/O and the File System

147

Gilmore_07  12/4/00  1:06 PM  Page 147



<?

// user site traffic Information

$data = "08:13:00|12:37:12|208.247.106.187|Win98";

$filename = "somefile.txt";

// If file exists and Is writable

if ( is_writeable($filename) ) :

// open file and place file pointer at end of file

$fh = fopen($filename, "a+");

// write $data to file

$success = fwrite($fh, $data);

// close the file

fclose($fh);

else :

print "Could not open $filename for writing";

endif;

?>

fputs()

The fputs() function is an alias to fwrite() and is implemented in exactly the
same way. Its syntax is:

int fputs (int filepointer, string string [, int length])

As you have seen, I prefer fputs() to fwrite(). Keep in mind that this is just a
stylistic preference and has nothing to do with any differences between the two
functions.

Reading from a File

The ability to read from a file is of obvious importance. The following are a set of
functions geared toward making file reading an efficient process. You will see that
the syntax of many of the functions are almost replicas of those used for writing.

Chapter 7

148

NOTE Fputs() is an alias to fwrite() and can be used by substituting the
function name fwrite with fputs.

Gilmore_07  12/4/00  1:06 PM  Page 148



is_readable()

The is_readable() function will ensure that file exists and is readable. It is capa-
ble of checking the readability of both a file and a directory. Its syntax is:

bool is_readable (string filename)

It is important to note that PHP will likely be running under the user ID that
the Web server is using (probably “nobody”), and therefore the file will have to be
world readable for is_readable() to return a true value. Here’s how you would en-
sure that a file exists and is readable:

if ( is_readable($filename) ) :

// open file and place file pointer at end of file

$fh = fopen($filename, "r");

else :

print "$filename Is not readable!";

endif;

fread()

The fread() function reads up to length bytes from the file designated by file-
pointer, returning the file’s contents. Its syntax is:

string fread (int filepointer, int length)

The file pointer must point to an opened file that is readable (see function
is_readable()). Reading will stop either when length bytes have been read or
when the end of the file has been reached. Consider the sample textfile pastry.txt,
shown in Listing 7-1. It could be read in and displayed to the browser using this
code:

$fh = fopen('pastry.txt', "r") or die("Can't open file!");

$file = fread($fh, filesize($fh));

print $file;

fclose($fh);

By using filesize() to retrieve the byte size of pastry.txt, you ensure that
fread() will read in the entire contents of the file.

File I/O and the File System

149

Gilmore_07  12/4/00  1:06 PM  Page 149



Listing 7-1: A sample file, pastry.txt

Recipe: Pastry Dough

1 1/4 cups all-purpose flour

3/4 stick (6 tablespoons) unsalted butter, chopped

2 tablespoons vegetable shortening

1/4 teaspoon salt 

3 tablespoons water

fgetc()

The fgetc() function returns a string containing one character from the file
pointed to by filepointer or returns false on reaching the end of file. Its syntax is:

string fgetc (int filepointer)

The file pointer must point to an opened file that is readable. (To ensure that
a file is readable, see “is_readable(),” earlier in this chapter.) Here is an example
of outputting a file, character by character:

$fh = fopen("pastry.txt", "r");

while (! feof($fh)) :

$char = fgetc($fh);

print $char;

endwhile;

fclose($fh);

fgets()

The fgets() function returns a string read from a file pointed to by the file
pointer. The file pointer must point to an opened file that is readable (see
“is_readable(),” earlier in this chapter). Its syntax is:

string fgets (int filepointer, int length)

Chapter 7

150

Gilmore_07  12/4/00  1:06 PM  Page 150



Reading will stop when one of the following conditions has been met:

• Length: 1 byte is read.

• A newline is read (returned with the string).

• An end of file (EOF) is read.

If you are interested in reading in a file line by line, you should just set the
length parameter to a value higher than the number of bytes on a line. Here’s an
example of outputting a file, line by line:

$fh = fopen("pastry.txt", "r");

while (! feof($fh)) :

$line = fgets($fh, 4096);

print $line."<br>";

endwhile;

fclose($fh);

fgetss()

The fgetss() function operates exactly like fgets(), except that it will attempt to
strip all HTML and PHP tags from the file designated by filepointer as its text is
read:

string fgetss (int filepointer, int length [, string allowable_tags])

Before proceeding with an example, take a moment to read through 
Listing 7-2, as it is the file used in  Listings 7-3 and 7-4. 

Listing 7-2: The science.html sample program
<html>

<head>

<title>Breaking News - Science</title>

<body>

<h1>Alien lifeform discovered</h1><br>

<b>August 20, 2000</b><br>

Early this morning, a strange new form of fungus was found growing in the closet

of an old apartment refrigerator. It is not known if powerful radiation emanating

from the tenant's computer monitor aided in this evolution.

</body>

</html>

File I/O and the File System

151

Gilmore_07  12/4/00  1:06 PM  Page 151



Listing 7-3: Stripping all tags from an HTML file before browser display
<?

$fh = fopen("science.html", "r");

while (!feof($fh)) :

print fgetss($fh, 2048);

endwhile;

fclose($fh);

?>

As you can see from the resulting output, all HTML tags are stripped from 
science.html, eliminating all formatting:

Breaking News - Science Alien lifeform discovered August 20, 2000. Early this

morning, a strange new form of fungus was found growing in the closet of an old

apartment refrigerator. It is not known if powerful radiation emanating from the

tenant's computer monitor aided in this evolution.

Of course, you might be interested in stripping all but a select few tags from
the file, for example line breaks (<br>). This is illustrated in Listing 7-4.

Listing 7-4: Stripping all but a select few tags from an HTML file
<?

$fh = fopen("science.html", "r");

$allowable = "<br>";

while (!feof($fh)) :

print fgetss($fh, 2048, $allowable);

endwhile;

fclose($fh);

?>

Breaking News - Science Alien lifeform discovered August 20, 2000

Early this morning, a strange new form of fungus was found growing in the closet

of an old apartment refrigerator. It is not known if powerful radiation

emanating from the tenant's computer monitor aided in this evolution.

As you can see, fgetss() can be rather useful for file conversion, particularly
when you have a large group of HTML files similarly formatted.

Chapter 7

152

Gilmore_07  12/4/00  1:06 PM  Page 152



Reading a File into an Array

The file() function will read the entire contents of a file into an indexed array.
Each element in the array corresponds to a line in the file. Its syntax is:

array file (string file [, int use_include_path])

If the optional input parameter use_include_path is set to 1, then the file is
searched along the include path in the php.ini file (See Chapter 1 for more infor-
mation about the php.ini file.) Listing 7-5 shows how to use file() to read
pastry.txt, first shown in Listing 7-1.

Listing 7-5: Reading pastry.txt using file()
<?

$file_array = file( 'pastry.txt' ); 

while ( list( $line_num, $line ) = each( $file_array ) ) :

print "<b>Line $line_num:</b> " . htmlspecialchars( $line ) . "<br>\n"; 

endwhile;

?>

Cycling through the array, each line is output along with the corresponding
line number:

Line 0: Recipe: Pastry Dough 

Line 1: 1 1/4 cups all-purpose flour 

Line 2: 3/4 stick (6 tablespoons) unsalted butter, chopped 

Line 3: 2 tablespoons vegetable shortening 

Line 4: 1/4 teaspoon salt 

Line 5: 3 tablespoons water

Redirecting a File Directly to Output

The readfile() function reads in a file and outputs it to standard output (in most
cases the browser). Its syntax is:

int readfile (string file [, int use_include_path])

The number of bytes read in is returned to the caller. File may be a file con-
tained in the local file system, an stdio stream, or a remote file obtained via HTTP
or FTP. Its specifications for the file input parameter mimic those of the fopen()
function. 

File I/O and the File System

153

Gilmore_07  12/4/00  1:06 PM  Page 153



Suppose you had a restaurant review that you wanted to display online. This
review, entitled “latorre.txt”, follows:

Restaurant “La Torre,” located in Nettuno, Italy, offers an eclectic blend of
style, history, and fine seafood cuisine. Within the walls of the medieval
borgo surrounding the city, one can dine while watching the passersby
shop in the village boutiques. Comfort coupled with only the freshest sea-
fare make La Torre one of Italy’s finest restaurants.

Executing the following code will result in the entire contents of “latorre.txt”
being displayed to standard output:

<?

$restaurant_file = "latorre.txt";

// display entire file to standard output

readfile($restaurant_file);

?>

Opening a Process File Pointer with popen()

Just as a file can be opened, so can a file pointer to a server process. This is ac-
complished with the function popen(). Its syntax is:

int popen (string command, string mode)

The input parameter command refers to the system command that will be ex-
ecuted, and mode refers to how you would use the popen() function to search a file:

<?

// open file "spices.txt" for writing purposes

$fh = fopen("spices.txt","w");

// Add a few lines of text

fputs($fh, "Parsley, sage, rosemary\n");

fputs($fh,"Paprika, salt, pepper\n");

fputs($fh,"Basil, sage, ginger\n");

// close the file handle

fclose($fh);

// Open UNIX grep process, searching for "Basil" in spices.txt

$fh =popen("grep Basil < spices.txt", "r");

// output the result of the grep

fpassthru($fh);

?>

Chapter 7

154

Gilmore_07  12/4/00  1:06 PM  Page 154



The resulting output:

Basil, sage, ginger

The fpassthru() function is covered later this chapter in “External Program
Execution.” 

pclose()

After you’re done with a file or process, you should close it. The pclose() function
simply closes the connection to a process designated by filepointer, just as
fclose() closes a file opened by fopen(). Its syntax is:

int pclose (int filepointer)

The input parameter filepointer refers to a previously opened file pointer.

Opening a Socket Connection

PHP does not limit you to working solely with files and processes. You can also
manipulate socket connections. A socket is a software tool that allows you to make
connections with various services offered by some machine.

fsockopen()

The fsockopen() function establishes a socket connection to an Internet server
via either TCP or UDP. Its syntax is:

int fsockopen (string host, int port [, int errnumber [, string errstring [, int

timeout]]])

The optional input parameters errnumber and errstring return error informa-
tion specific to the attempt to connect to the host. Both of these parameters must
be specified as reference variables. The other optional input parameter, timeout,
can be used to specify the number of seconds the call should wait before the host
to respond. Listing 7-6 shows how you might use fsockopen() to retrieve informa-
tion about a server. However, before Listing 7-6, I need to introduce another func-
tion, set_socket_blocking().

File I/O and the File System

155

Gilmore_07  12/4/00  1:06 PM  Page 155



set_socket_blocking()

The set_socket_blocking() function, when the mode is set to false, allows you to
obtain control of the timeout setting specified by the server pointed to by file-
pointer:

set_socket_blocking(int filepointer, boolean mode)

The input parameter filepointer refers to a previously opened socket pointer,
and mode refers to the mode that the socket file pointer will be switched to; false
for nonblocking mode, true for blocking mode. An example of fsockopen() and
set_socket_blocking() in shown in Listing 7-6.

Listing 7-6: Using fsockopen() to retrieve information about a server
<?

function get_the_host($host,$path) { 

// open the host

$fp = fsockopen($host, 80, &$errno, &$errstr, 30); 

// take control of server timeout

socket_set_blocking($fp, 1);

// send the appropriate headers

fputs($fp,"GET $path HTTP/1.1\r\n"); 

fputs($fp,"Host: $host\r\n\r\n"); 

$x = 1;

// grab a bunch of headers

while($x < 10) : 

$headers = fgets($fp, 4096); 

print $headers;

$x++;

endwhile;

// close the filepointer.

fclose($fp); 

} 

get_the_host("www.apress.com", "/");

?>

Chapter 7

156

NOTE UDP, short for User Datagram Protocol, is a connectionless protocol
similar to TCP/IP.

Gilmore_07  12/4/00  1:06 PM  Page 156



Execution of Listing 7-6 results in the following output:

HTTP/1.1 200 OK Server: Microsoft-IIS/4.0 Content-Location:

http://www.apress.com/Default.htm Date: Sat, 19 Aug 2000 23:03:25 GMT Content-

Type: text/html Accept-Ranges: bytes Last-Modified: Wed, 19 Jul 2000 20:25:06

GMT ETag: "f0a6166dbff1bf1:34a5" Content-Length: 1311

pfsockopen()

The pfsockopen() function is just a persistent version of fsockopen() This means
that it will not automatically close the connection once the script making use of
the command has terminated. Its syntax is:

int pfsockopen (string hostname, int port [, int errno [, string errstr [, int

timeout]]])

Depending on the exact purpose of your application, it may be more conven-
ient to choose pfsockopen() over fsockopen().

External Program Execution

It is also possible to execute programs residing on a server. These functions can be
particularly useful when administrating various aspects of the system via a Web
browser, in addition to creating more user-friendly system summaries.

exec()

The exec() function will execute the program specified by command and return
the last line of the command output. Its syntax is:

string exec (string command [, string array [, int return_variable]])

Note that it will not display the command output, just execute it. It is possible
to store all of the command output in the optional input parameter array. Fur-
thermore, if the optional input parameter return_variable is provided in conjunc-
tion with array, it will be assigned the status of the executed command.

Listing 7-7 shows how exec can be used to execute the UNIX system function
ping. 

File I/O and the File System

157

Gilmore_07  12/4/00  1:06 PM  Page 157



Listing 7-7: Using exec() to ping a server
<?

exec("ping -c 5  www.php.net", $ping);       

// For Windows, do exec("ping -n 5 www.php.net", $ping);

for ($i=0; $i < count($ping); $i++) :

print "<br>$ping[$i]";

endfor;

?>

PING www.php.net (208.247.106.187): 56 data bytes

64 bytes from 208.247.106.187: icmp_seq=0 ttl=243 time=66.602 ms

64 bytes from 208.247.106.187: icmp_seq=1 ttl=243 time=55.723 ms

64 bytes from 208.247.106.187: icmp_seq=2 ttl=243 time=70.779 ms

64 bytes from 208.247.106.187: icmp_seq=3 ttl=243 time=55.339 ms

64 bytes from 208.247.106.187: icmp_seq=4 ttl=243 time=69.865 ms

—- www.php.net ping statistics —-

5 packets transmitted, 5 packets received, 0% packet loss

round-trip min/avg/max/stddev = 55.339/63.662/70.779/6.783 ms

Backticks

An alternative method exists for execution of a system command, in which no
predefined function is required. The command can be executed if it is enclosed
within backticks (``), and its output subsequently displayed to the browser. An ex-
ample follows:

$output = `ls`;

print "<pre>$output</pre>";

This would result in the directory contents from which the script executing
these commands resides being output to the browser. 

If you are interested in simply returning unformatted command output,
check out passthru(), described next.

Chapter 7

158

NOTE The -c 5 (-n 5 for Windows) is a parameter internal to ping that 
tells it to ping the server x times. The -c means count, and the -n means
number.

Gilmore_07  12/4/00  1:06 PM  Page 158



passthru()

The passthru() function works almost exactly like exec(), except that the com-
mand output is automatically output. Its syntax is:

void passthru (string command [, int return_variable])

If the optional input parameter return_variable is provided, it will be assigned
the command return status. 

You can use passthru() to view the uptime of the server, for example:

passthru("uptime");

1:21PM up 4 days, 23:16, 1 user, load averages: 0.02, 0.01, 0.00

fpassthru()

The fpassthru() function behaves exactly like passthru(), except that it works
with file pointers pointing to files or processes opened by popen(), fopen(), or
fsockopen(). Its syntax is:

int fpassthru (int fp)

It will read the entire file or process pointed to by the file pointer and forward
it directly to standard output.

system()

You can think of the system() function as a hybrid of exec() and passthru(), exe-
cuting command and automatically outputting the results and returning the last
line of command, the input parameter command being a call to some system
command that the server recognizes. Its syntax is:

string system (string command [, int return_variable])

If the optional input parameter return_variable is provided, it will be assigned
the command return status.

File I/O and the File System

159

Gilmore_07  12/4/00  1:06 PM  Page 159



The escapeshellcmd() Security Feature

The escapeshellcmd() function will escape any potentially dangerous characters
that may be supplied by a user (via an HTML form, for example) for reason of exe-
cuting the exec(), passthru(), system() or popen() commands. Its syntax is:

string escapeshellcmd (string command)

User input should always be treated with some degree of caution, and even
more so when users can input commands that may be executed with functions
capable of executing system commands. Consider the following:

$user_input = 'rm –rf *'; // Input means erase the parent directory and _all_ of

Its children.

exec( $user_input);       // execute $user_input!!!

Left uncontrolled, such commands could cause disaster. However, if you use
escapeshellcmd() to escape user input:

$user_input = `rm –rf *`;                 // Input means erase the parent

directory and _all_ of Its children.

exec( escapeshellcmd($user_input));       // escapes dangerous characters.

Keep in mind that the function escapeshellcmd() will escape the *, preventing
the command from being executed as intended.

Working with the File System

PHP provides a number of functions geared toward viewing and manipulating
server files. Obtaining numerous facts about server files, such as location, owner,
and privileges, can be useful. 

basename()

The basename() function returns the file pointed to by path. Its syntax is:

string basename (string path)

Chapter 7

160

NOTE Because security is such an important issue in the Web environ-
ment, I have devoted an entire chapter to it and how it relates to PHP pro-
gramming. See Chapter 16, “Security,” for more information.

Gilmore_07  12/4/00  1:06 PM  Page 160



Here’s how you would parse out the base name of a path:

$path = "/usr/local/phppower/htdocs/index.php";

$file = basename($path);     // $file = "index.php"

This effectively parses the path, returning just the filename.

getlastmod()

The getlastmod() function returns the most recent modification date and time of
the page in which the function is placed. The syntax:

int getlastmod (void)

The return value is in the form of a UNIX timestamp and can be formatted
using the date() function. Here’s how you could display the last modified time of
a page:

echo "Last modified: ".date( "H:i:s a", getlastmod() );

stat()

The stat() function returns a comprehensive indexed array of information con-
cerning the file designated by filename:

array stat (string filename)

The indexed values correspond to the following pieces of information:

0 Device

1 Inode

2 Inode protection mode

3 Number of links

4 Owner user ID

5 Owner group ID

6 Inode device type

7 Byte size

8 Last access time

9 Last modification time

10 Last change time

11 File system I/O block size

12 Block allocation

File I/O and the File System

161

Gilmore_07  12/4/00  1:06 PM  Page 161



Therefore, if you wanted the last access time of the filename in question, you
would call element 8 of the returned array. Consider this example:

$file = "datafile.txt";

list ($dev, $inode, $inodep, $nlink, $uid, $gid, $inodev, $size, $atime, $mtime,

$ctime, $bsize) = stat($file);

print "$file is $size bytes. <br>";

print "Last access time: $atime <br>";

print "Last modification time: $mtime <br>";

popen.php is 289 bytes. 

Last access time: August 15 2000 12:00:00 

Last modification time: August 15 2000 10:07:18

In this example, I used list() to explicitly name each piece of returned infor-
mation. Of course, you could also just return an array and then use an iterative
loop to display each piece of information as necessary. As you can see, stat() can
be particularly useful when you need to retrieve various information about a file.

Displaying and Modifying File Characteristics

All files on UNIX-based systems have three basic characteristics:

• Group membership

• Ownership

• Permissions

Each of these characteristics can be changed through its respective PHP func-
tions. The functions described in this section will not work on Windows-based
systems.

Chapter 7

162

NOTE If you are new to the UNIX operating system, a great resource for
learning about the UNIX file system characteristics is at
http://sunsite.auc.dk/linux-newbie/FAQ2.htm. Section 3.2.6 in particular
addresses group, ownership, and permission issues.

Gilmore_07  12/4/00  1:06 PM  Page 162



chgrp()

The chgrp() function will attempt to change the group of the file denoted by file-
name to group. Its syntax is:

int chgrp (string filename, mixed group)

filegroup()

The filegroup() function returns the group ID of the owner of a file specified by
filename, or false should some error occur. Its syntax is:

int filegroup (string filename)

chmod()

The chmod() function changes the mode of filename to permissions. Its syntax is:

int chmod (string filename, int permissions)

The permissions must be specified in octal mode. The following example
shows that chmod() is particular about the permissions input parameter:

chmod ("data_file.txt", g+r); // This will not work

chmod ("data_file.txt", 766); // This will not work

chmod ("data_file.txt", 0766); // This will work

fileperms()

The fileperms() function returns the permissions of a file specified by filename,
or false should some error occur. Its syntax is:

int fileperms (string filename)

chown()

The chown() function attempts to change the ownership of a filename to user.
Only the superuser can change the ownership of a file. Its syntax is:

int chown (string filename, mixed user)

File I/O and the File System

163

Gilmore_07  12/4/00  1:06 PM  Page 163



fileowner()

The fileowner() function returns the user ID of the owner of the file specified by
filename. Its syntax is:

int fileowner (string filename)

Copying and Renaming Files

Other useful system functions that can be performed via a PHP script are copying
and renaming files on the server. The two functions capable of doing so are
copy() and rename().

copy()

You can easily make a copy of a file much in the same way as you would with the
UNIX cp command. This is done with PHP’s copy() function. Its syntax is:

int copy (string source, string destination)

The copy() function will attempt to copy a file by the name of source to a file
named destination, returning true on success and false otherwise. If destination
does not exist, copy() will create it. Here’s how to back up a file with copy():

$data_file = "data1.txt";

copy($data_file, $data_file'.bak') or die("Could not copy $data_file");

rename()

A file can be renamed with the rename() function, returning true on success and
false otherwise. Its syntax is:

bool rename (string oldname, string newname)

Here’s how you would use the rename() function for renaming a file:

$data_file = "data1.txt";

rename($data_file, $data_file'.old') or die("Could not rename $data_file");

Chapter 7

164

Gilmore_07  12/4/00  1:06 PM  Page 164



Deleting Files

unlink()

You can delete a file with the unlink() function. Its syntax is:

int unlink (string file)

If you are using PHP on a Windows system, you may have problems with this
function. If so, you can use the previously discussed system() function, deleting a
file with a call to the DOS del function:

system ("del filename.txt");

Working with Directories

You can modify and traverse directories just as you are able to modify and tra-
verse files. A typical non-Windows directory structure might look similar to the
one displayed in Listing 7-8.

Listing 7-8: A typical directory structure

drwxr-xr-x  4 root  wheel    512  Aug 13  13:51   book/

drwxr-xr-x  4 root  wheel    512  Aug 13  13:51   code/

-rw-r—r—    1 root  wheel    115  Aug  4   09:53  index.html

drwxr-xr-x  7 root  wheel   1024  Jun 29  13:03   manual/

-rw-r—r—    1 root  wheel    19   Aug 12  12:15  test.php

dirname()

The dirname() function operates as the counterpart to basename(), returning the
directory element of path. Its syntax is:

string dirname (string path)

Here’s an example of using basename() to parse the base name of a path:

$path = "/usr/local/phppower/htdocs/index.php";

$file = basename($path);     // $file = "/usr/local/phppower/htdocs"

File I/O and the File System

165

Gilmore_07  12/4/00  1:06 PM  Page 165



You can also use dirname() in conjunction with the predefined variable
$SCRIPT_FILENAME to obtain the complete path of the script executing the 
command:

$dir = dirname($SCRIPT_FILENAME);

is_dir()

The is_dir() function verifies that the file designated by filename is a directory:

bool is_dir (string filename)

Refer to Listing 7-8 to understand the following example:

$isdir = is_dir("index.html"); // returns false

$isdir = is_dir("book"); // returns true

mkdir()

The mkdir() function has the same purpose as the UNIX command mkdir(), cre-
ating a new directory. Its syntax is:

int mkdir (string pathname, int mode)

The pathname specifies the path in which the directory is to be created. Don’t
forget to include the directory name at the end of this path! The mode is the file
permission setting to which the newly created directory should be set.

opendir()

Just as fopen() opens a file pointer to a given file, opendir() will open a directory
stream specified by directory_path. Its syntax is:

int opendir (string directory_path)

closedir()

The closedir() function will close the directory stream pointed to by
directory_handle. Its syntax is:

void closedir (int directory_handle)

Chapter 7

166

Gilmore_07  12/4/00  1:06 PM  Page 166



readdir()

The readdir() function returns each element in a given directory. Its syntax is:

string readdir (int directory_handle)

Using it, we can easily list all files and child directories in a given directory:

$dh = openddir('.');

while ($file = readdir($dh)) :

print "$file <br>";

endwhile;

closedir($dh);

chdir()

The chdir() function operates just like the UNIX cd function, changing to the file
directory specified by directory. Its syntax is:

int chdir (string directory)

Assume that you were currently sitting at the directory. You could change to
and subsequently output the contents of the book/directory as follows:

$newdir = "book";

chdir($newdir) or die("Could not change to directory ($newdir)");

$dh = opendir('.');

print "Files:";

while ($file = readdir($dh)) :

print "$file <br>";

endwhile;

closedir($dh);

rewinddir()

The rewinddir() function will reset the directory pointer pointed to by 
directory_handle. Its syntax is:

void rewinddir (int directory_handle)

File I/O and the File System

167

Gilmore_07  12/4/00  1:06 PM  Page 167



Project 1: A Simple Access Counter

This simple access counter will keep count of the number of visits to the page in
which the script is inserted. Before checking out the code in Listing 7-9, take a
moment to review the pseudocode:

1. Assign $access the name of the file in which you would like to store the
counter.

2. Use file() to read the contents of $access into the $visits array. The @
preceding the function acts to suppress any potential errors (such as a
nonexistent file).

3. Assign the first (and only) element of the $visits array to 
$current_visitors.

4. Increment $current_visitors by 1.

5. Open the $access file for writing, placing the file pointer at the beginning
of the file.

6. Write $current_visitors to the $access file.

7. Close the file handle pointing to the $access file.

Listing 7-9: A simple access counter
<? 

// script: simple access counter

// purpose: uses a file to keep track of visitor count.

$access = "hits.txt";               // name this file whatever you want

$visits = @file($access);           // feed file into array

$current_visitors = $visits[0];     // extract first (and only) element from array

++$current_visitors;                // increment visitor count

$fh = fopen($access, "w");          // open "hits.txt" and place file pointer at

beginning of file

@fwrite($fp, $current_visitors);    // write new visitor count to "hits.txt"

fclose($fh);                        // close filepointer to "hits.txt"

?>

Chapter 7

168

Gilmore_07  12/4/00  1:06 PM  Page 168



Project 2: A Site Map Generator

The script in Listing 7-10 produces a site map of all folders and files on a server,
starting from a specified directory. The site map is staggered through the calcula-
tion of indentation values through several functions defined in this and previous
chapters. Before checking out the code, take a moment to review the pseudocode:

1. Declare a few necessary variables: parent directory, folder graphic loca-
tion, page title, and server OS flag (Windows or non-Windows).

2. Declaration of display_directory() function, which parses and formats
a directory for display in the browser.

3. Concatenate the directory passed in as $dir1 to $dir, producing the cor-
rect directory path.

4. Open the directory and read its contents. Format the directory name and
files and display them to the browser.

5. If the file in question is a directory, recursively call display_directory()
with the file passed in as the new directory to parse. Also calculate spe-
cific indentation value for formatting purposes.

If the file in question is a file, format it as a link to itself, in addition to calcu-
lating a specific indentation value for formatting purposes.

Listing 7-10: The sitemap.php sample program
<?

// file: sitemap.php

// purpose: display a map of entire site structure

// From which parent directory should the sitemap begin?

$beg_path = "C:\Program Files\Apache Group\Apache\htdocs\phprecipes";

// What Is the location of the folder graphic?

// This path should be *relative* to the Apache server root directory

$folder_location = "C:\My Documents\PHP for Programmers\FINAL

CHPS\graphics\folder.gif";

// What should be displayed in the sitemap title bar?

$page_name = "PHPRecipes SiteMap";

File I/O and the File System

169

Gilmore_07  12/4/00  1:06 PM  Page 169



// Will this script be used on a Windows or non-Windows server? 

// (0 for Windows; 1 for non-Windows)

$using_linux = 0;

// function: display_directory

// purpose: Parses a directory specified by $dir1 and formats directory and file

structure. 

// This function is recursively called.

function display_directory($dir1, $folder_location, $using_linux, $init_depth) {

// update the directory path

$dir .= $dir1;

$dh = opendir($dir);

while ($file = readdir($dh)) :

// do not display the "." and ".."in each directory.

if ( ($file != ".") && ($file != "..") ) :

if ( $using_linux == 0 ) :

$depth = explode("\\", $dir);

else :

$depth = explode("/", $dir);

endif;

$current_depth = sizeof($depth);

// Build path In accordance with what OS Is being used.

if ($using_linux == 0) :

$tab_depth = $current_depth - $init_depth;

$file = $dir."\\".$file;

else :

$file = $dir."/".$file;

endif;

// Is $file a directory?

if ( is_dir($file) ) :

$x = 0;

// calculate tab depth

while ( $x < ($tab_depth * 2) ) :

print "&nbsp;";

$x++;

endwhile;

print "<img src=\"$folder_location\" alt=\"[dir]\">

".basename($file)."<br>";

Chapter 7

170

Gilmore_07  12/4/00  1:06 PM  Page 170



// Increment the &nbsp; count

// Recursive call to display_directory() function

display_directory($file, $folder_location, $using_linux,    

// $init_depth);

// Not dealing with a directory

else :

// Build path In accordance with what OS Is being used.

if ($using_linux == 0) :

$tab_depth = ($current_depth - $init_depth) - 2;

$x = 0;

// calculate tab depth

while ( $x < (($tab_depth * 2) + 5) ) :

print "&nbsp;";

$x++;

endwhile;

print "<a href =

\"".$dir."\\".basename($file)."\">".basename($file)."</a> <br>";

else :

print "<a href =

\"".$dir."/".basename($file)."\">".basename($file)."</a> <br>";

endif;

endif; // Is_dir(file)

endif; // If ! "." or ".."

endwhile;

// close the directory

closedir($dh);

}

?>

<html>

<head>

<title> <? print "$page_name"; ?> </title>

</head>

<body bgcolor="#ffffff" text="#000000" link="#000000" vlink="#000000"

alink="#000000">

<?

// calculate Initial tab depth

if ($using_linux == 0) :

$depth = explode("\\", $beg_path);

File I/O and the File System

171

Gilmore_07  12/4/00  1:06 PM  Page 171



else :

$depth = explode("/", $beg_path);

endif;

$init_depth = sizeof($depth);

display_directory($beg_path, $folder_location, $using_linux, $init_depth);

?>

</body>

</html>

Executing this script on the directory pointing to the folder I am using to or-
ganize a few of the chapters of this book displays the output shown in Figure 7-1.

Chapter 7

172

Figure 7-1. Using sitemap.php to display the structure of a server directory

Gilmore_07  12/4/00  1:06 PM  Page 172



What’s Next?

This chapter introduced many aspects of PHP’s file-handling functionality, in par-
ticular:

• Verifying a File’s Existence

• Opening I/O and closing I/O

• Writing to and reading from a file

• Redirecting a file directly to output

• External program execution

• Working with the file system

These topics set the stage for the next chapter, “Strings and Regular Expres-
sions,” as string manipulation and I/O manipulation go hand in hand when you
are developing PHP-enabled Web applications. With that said, let’s forge ahead!

File I/O and the File System

173

Gilmore_07  12/4/00  1:06 PM  Page 173





CHAPTER 8

Strings and Regular
Expressions

The ability to efficiently organize, search, and disseminate information has long
been a topic of great interest for computer scientists. Because most of this infor-
mation is text based as alphanumeric characters, a good deal of research has been
invested in developing techniques to search and organize information based on
an analysis of the patterns (known as pattern matching) in the text itself.

Pattern matching makes it possible not only to locate specific string instances
but also to replace these instances with alternative strings. Common use of pat-
tern matching is made in the find/replace functionality in word processors such
as MS Word, Emacs, and my personal favorite, vi. UNIX users are undoubtedly 
familiar with programs such as sed, awk, and grep, all of which use pattern-
matching techniques to provide the powerful functionality in each. Summarizing,
pattern matching provides four useful functions:

• Locating strings exactly matching a specified pattern

• Searching strings for substrings matching a specified pattern

• Replacing strings and substrings matching a specified pattern

• Finding strings where the specified pattern does not match

The advent of the Web has caused a surge in research in faster, more efficient
data-mining techniques, providing users worldwide with the capability to sift
through the billions of pages of information. Search engines, online financial
services, and ecommerce sites would all be rendered useless without the ability 
to analyze the mammoth quantities of data in these sectors. Indeed, string-
manipulation capabilities are a vital part of almost any sector involving itself with
information technology today.

This chapter concentrates on PHP’s adept string-handling functionality. I will
focus on a number of the more than 60 predefined string functions, providing
definitions and practical examples that will give you the knowledge you need 
to begin coding powerful Web applications. However, before presenting the 
PHP-specific content of this chapter, I would like to provide a brief introduction

175

Gilmore_08  12/4/00  1:06 PM  Page 175



to the underlying mechanics that make pattern matching possible: regular ex-
pressions.

Regular Expressions

Regular expressions, or regexps, as they are so affectionately called by program-
mers, provide the foundation for pattern-matching functionality. A regular ex-
pression is nothing more than a sequence or pattern of characters itself, matched
against the text in which a search has been requested. This sequence may be a
pattern with which you are already familiar, such as the word “dog,” or it may be a
pattern having specific meaning in the context of the world of pattern-matching,
such as <(?)>.*<\/.?>. 

PHP offers functions specific to two sets of regular expression functions, each
corresponding to a certain type of regular expression: POSIX and Perl style. Each
has its own unique style of syntax and is discussed accordingly in later sections.
Keep in mind that innumerable tutorials have been written regarding this matter;
you can find them both on the Web and in various books. Therefore, I will provide
you with a basic introduction to both and leave it to you to search out further in-
formation should you be so inclined.

If you are not already familiar with the mechanics of general expressions,
please take some time to read through the short tutorial comprising the remain-
der of this section. If you are already a regexp pro, feel free to skip past the tutorial
to subsequent sections.

Regular Expression Syntax (POSIX)

The structure of a POSIX regular expression is not dissimilar to that of a typical
arithmetic expression: various elements (operators) are combined to form more
complex expressions. However, it is the meaning of the combined regexp ele-
ments that makes them so powerful. It is possible not only to locate literal expres-
sions, such as a specific word or number, but also to locate a multitude of seman-
tically different but syntactically similar strings, for instance, all HTML tags in a
file. 

The simplest regular expression is one that matches a single character, such
as g, matching strings such as g, haggle, and bag. You could combine several let-
ters together to form larger expressions, such as gan, which logically would match
any string containing gan; gang, organize, or Reagan, for example.

It is possible to simultaneously test for several different expressions by using
the pipe (|) operator. For example, you could test for php or zend via the regular
expression php|zend.

Chapter 8

176

Gilmore_08  12/4/00  1:06 PM  Page 176



Bracketing

Brackets ([ ]) have a special meaning when used in the context of regular expres-
sions, used to find a range of characters. Contrary to the regexp php, which will
find strings containing the explicit string php, the regexp [php] will find any string
containing the character p or h. Bracketing plays a significant role in regular ex-
pressions, since many times you may be interested in finding strings containing
any of a range of characters. Several commonly used character ranges follow:

• [0–9] matches any decimal digit from 0 through 9.

• [a–z] matches any character from lowercase a through lowercase z.

• [A–Z] matches any character from uppercase A through uppercase Z.

• [a–Z] matches any character from lowercase a through uppercase Z.

Of course, the ranges shown above are general; you could also use the range
[0–3] to match any decimal digit ranging from 0 through 3, or the range [b–v] to
match any lowercase character ranging from b through v. In short, you are free to
specify whatever range you wish. 

Quantifiers

The frequency or position of bracketed character sequences and single characters
can be denoted by a special character, each special character having a specific
connotation. The +, *, ?, {int. range}, and $ flags all follow a character sequence:

• p+ matches any string containing at least one p.

• p* matches any string containing zero or more p’s.

• p? matches any string containing zero or more p’s. This is just an alternative
way to use p*.

• p{2} matches any string containing a sequence of two p’s. 

• p{2,3} matches any string containing a sequence of two or three p’s.

• p{2, } matches any string containing a sequence of at least two p’s.

• p$ matches any string with p at the end of it.

Strings and Regular Expressions

177

Gilmore_08  12/4/00  1:06 PM  Page 177



Still other flags can precede and be inserted before and within a character se-
quence:

• ^p matches any string with p at the beginning of it.

• [^a–zA-Z] matches any string not containing any of the characters ranging
from a through z and A through Z.

• p.p matches any string containing p, followed by any character, in turn fol-
lowed by another p.

You can also combine special characters to form more complex expressions.
Consider the following examples:

• ^.{2}$ matches any string containing exactly two characters.

• <b>(.*)</b> matches any string enclosed within <b> and </b> (presumably
HTML bold tags).

• p(hp)* matches any string containing a p followed by zero or more in-
stances of the sequence hp.

You may wish to search for these special characters in strings instead of using
them in the special context just described. For you to do so, the characters must
be escaped with a backslash (\). For example, if you wanted to search for a dollar
amount, a plausible regular expression would be as follows: ([^\$])([0-9]+), that is,
a dollar sign followed by one or more integers. Notice the backslash preceding the
dollar sign. Potential matches of this regular expression include $42, $560, and $3.

Predefined Character Ranges (Character Classes) 

For your programming convenience several predefined character ranges, also
known as character classes, are available. Character classes specify an entire range
of characters, for example, the alphabet or an integer set:

[[:alpha:]] matches any string containing alphabetic characters aA through zZ.

[[:digit:]] matches any string containing numerical digits 0 through 9.

[[:alnum:]] matches any string containing alphanumeric characters aA
through zZ and 0 through 9.

[[:space:]] matches any string containing a space. 

Chapter 8

178

Gilmore_08  12/4/00  1:06 PM  Page 178



PHP’s Regexp Functions (POSIX Extended)

PHP currently offers seven functions for searching strings using POSIX-style regu-
lar expressions:

ereg()

ereg_replace()

eregi()

eregi_replace()

split()

spliti()

sql_regcase()

These functions are discussed in the following sections.

ereg()

The ereg() function searches a string specified by string for a string specified by
pattern, returning true if the pattern is found, and false otherwise. Its syntax is:

int ereg(string pattern, string string, [array regs])

The search is case sensitive in regard to alphabetical characters. Here’s how you
could use ereg() to search strings for .com domains:

$is_com = ereg("(\.)(com$)", $email);

// returns true if $email ends with ".com".

// "www.wjgilmore.com" and "someemail@apress.com" would both return true values.

Note that since the $ concludes the regular expression, this will match only
strings that end in com. For example, while this would match www.apress.com, it
would not match www.apress.com/catalog.

The optional input parameter regs contains an array of all matched expres-
sions that were grouped by parentheses in the regular expression. Making use of
this array, we could segment a URL into several pieces, as shown in Listing 8-1.

Strings and Regular Expressions

179

Gilmore_08  12/4/00  1:06 PM  Page 179



Listing 8-1: Displaying elements of $regs array
<?

$url = "http://www.apress.com";

// break $url down into three distinct pieces: "http://www", "apress", and "com"

$www_url = ereg("^(http://www)\.([[:alnum:]]+)\.([[:alnum:]]+)", $url, $regs);

if ($www_url) :         // if $www_url is a valid URL

echo $regs[0];     // outputs the entire string "http://www.apress.com"

print "<br>";

echo $regs[1];     // outputs "http://www"

print "<br>";

echo $regs[2];     // outputs "apress"

print "<br>";

echo $regs[3];     // outputs "com"

endif;

?>

Executing Listing 8-1 results in:

http://www.apress.com

http://www

apress

com

ereg_replace()

The ereg_replace() function searches for string specified by pattern and replaces
pattern with replacement if found. The syntax is:

string ereg_replace (string pattern, string replacement, string string)

The ereg_replace() function operates under the same premises as ereg(),
except that the functionality is extended to finding and replacing pattern instead
of simply locating it. After the replacement has occurred, the modified string will
be returned. If no matches are found, the string will remain unchanged. Like
ereg(), ereg_replace() is case sensitive. Here is a simple string replacement ex-
ample that uses the function:

$copy_date = "Copyright 1999";

$copy_date = ereg_replace("([0-9]+)", "2000", $copy_date);

print $copy_date;     // displays "Copyright 2000"

Chapter 8

180

Gilmore_08  12/4/00  1:06 PM  Page 180



A rather interesting feature of PHP’s string-replacement capability is the abil-
ity to back-reference parenthesized substrings. This works much like the optional
input parameter regs in the function ereg(), except that the substrings are refer-
enced using backslashes, such as \0, \1, \2, and so on, where \0 refers to the entire
string, \1 the first successful match, and so on. Up to nine back references can be
used. This example shows how to replace all references to a URL with a working
hyperlink:

$url = "Apress (http://www.apress.com)";

$url = ereg_replace("http://(([A-Za-z0-9.\-])*)", "<a href=\"\\0\">\\0</a>",$url);

print $url; 

// Displays Apress (<a href="http://www.apress.com">http://www.apress.com</a>)

eregi()

The eregi() function searches throughout a string specified by pattern for a string
specified by string. Its syntax is:

int eregi(string pattern, string string, [array regs])

The search is not case sensitive. Eregi() can be particularly useful when
checking the validity of strings, such as passwords. This concept is illustrated in
the following sample:

$password = "abc";

if (! eregi ("[[:alnum:]]{8,10}", $password)) :

print "Invalid password! Passwords must be from 8 through 10 characters in

length.";

endif;

// execution of the above code would produce the error message 

// since "abc" is not of length ranging from 8 through 10 characters.

Strings and Regular Expressions

181

NOTE Although ereg_replace() works just fine, another predefined func-
tion named str_replace() is actually much faster when complex regular
expressions are not required. Str_replace() is discussed later in this 
chapter.

Gilmore_08  12/4/00  1:06 PM  Page 181



eregi_replace()

The eregi_replace() function operates exactly like ereg_replace(), except that
the search for pattern in string is not case sensitive. Its syntax is:

string eregi_replace (string pattern, string replacement, string string)

split()

The split() function will divide a string into various elements, the boundaries of
each element based on the occurrence of pattern in string. Its syntax is:

array split (string pattern, string string [, int limit])

The optional input parameter limit is used to signify the number of elements
into which the string should be divided, starting from the left end of the string
and working rightward. In cases where the pattern is an alphabetical character,
split() is case sensitive. Here’s how you would use split() to partition an IP ad-
dress:

$ip = "123.456.789.000";      // some IP address

$iparr = split ("\.", $ip);    // Note that since "." is a special character, it

must be escaped.

print "$iparr[0] <br>";       // outputs "123"

print "$iparr[1] <br>";       // outputs "456"

print "$iparr[2] <br>";       // outputs "789"

print "$iparr[3] <br>";       // outputs "000"

You could also use split() to limit a parameter to restrict division of $ip:

$ip = "123.456.789.000";          // some IP address

$iparr = split ("\.", $ip, 2);    // Note that since "." is a special character,

it must be escaped.

print "$iparr[0] <br>";           // outputs "123"

print "$iparr[1] <br>";           // outputs "456.789.000"

spliti()

The spliti() function operates exactly in the same manner as its sibling split(),
except that it is not case sensitive. Its syntax is:

array split (string pattern, string string [, int limit])

Chapter 8

182

Gilmore_08  12/4/00  1:06 PM  Page 182



Of course, case-sensitive characters are an issue only when the pattern is al-
phabetical. For all other characters, spliti() operates exactly as split() does.

sql_regcase()

The sql_regcase() function can be thought of as a utility function, converting
each character in the input parameter string into a bracketed expression contain-
ing two characters. Its syntax is:

string sql_regcase (string string)

If the alphabetical character has both an uppercase and a lowercase format,
the bracket will contain both forms; otherwise the original character will be re-
peated twice. This function is particularly useful when PHP is used in conjunction
with products that support solely case-sensitive regular expressions. Here’s how
you would use sql_regcase() to convert a string:

$version = "php 4.0";

print sql_regcase($version);

// outputs [Pp] [Hh] [Pp] [ ] [44] [..] [00]

Regular Expression Syntax (Perl Style)

Perl (http://www.perl.com), long considered one of the greatest parsing lan-
guages ever written, provides a comprehensive regular expression language that
can be used to search and replace even the most complicated of string patterns.
The developers of PHP felt that instead of reinventing the regular expression
wheel, so to speak, they should make the famed Perl regular expression syntax
available to PHP users, thus the Perl-style functions. 

Perl-style regular expressions are similar to their POSIX counterparts. In fact,
Perl’s regular expression syntax is a distant derivation of the POSIX implementa-
tion, resulting in the fact that the POSIX syntax can be used almost interchange-
ably with the Perl-style regular expression functions. 

I devote the remainder of this section to a brief introduction of Perl regexp
syntax. This is a simple example of a Perl regexp:

/food/

Notice that the string ‘food’ is enclosed between two forward slashes. Just like
with POSIX regexps, you can build a more complex string through the use of
quantifiers:

Strings and Regular Expressions

183

Gilmore_08  12/4/00  1:06 PM  Page 183



/fo+/

This will match ‘fo’ followed by one or more characters. Some potential matches
include ‘food’, ‘fool’, and ‘fo4’. Here is another example of using a quantifier:

/fo{2,4}/

This matches ‘’f ‘’ followed by two to four occurrences of ‘o.’ Some potential
matches include ‘fool’, ‘fooool’, and ‘foosball’.

In fact, you can use any of the quantifiers introduced in the previous POSIX
section.

Metacharacters

Another cool thing you can do with Perl regexps is use various metacharacters to
search for matches. A metacharacter is simply an alphabetical character preceded
by a backslash that acts to give the combination a special meaning. For instance,
you can search for large money sums using the ‘\d’ metacharacter:

/([\d]+)000/

‘\d’ will search for any string of numerical character. Of course, searching for al-
phabetical characters is important, thus the ‘\w’ metacharacter:

/<([\w]+)>/

This will match things like HTML tags. (By contrast, the ‘\W’ metacharacter
searches for nonalphabetical characters.)

Another useful metacharacter is ‘\b’, which searches for word boundaries:

/sa\b/

Because the word boundary is designated to be on the right-side of the strings,
this will match strings like ‘pisa’ and ‘lisa’ but not ‘sand’. The opposite of the word
boundary metacharacter is ‘\B’. This matches on anything but a word boundary:

/sa\B/

This will match strings like ‘sand’ and ‘Sally’ but not ‘Alessia’.

Chapter 8

184

Gilmore_08  12/4/00  1:06 PM  Page 184



Modifiers

Several modifiers are available that can make your work with regexps much eas-
ier. There are many of these; however, I will introduce just a few of the more inter-
esting ones in Table 8-1. These modifiers are placed directly after the regexp, for
example, /string/i.

Table 8-1. Three Sample Modifiers

MODIFIER DESCRIPTION

m Treats a string as several (‘m’ for multiple) lines. By default, the ‘^’ and ‘$’

special characters match at the very start and very end of the string in

question. Using the ‘m’ modifier will allow for ‘^’ and ‘$’ to match at the

beginning of any line in a string.

s Accomplishes just the opposite of the ‘m’ modifier, treating a string as a 

single line, ignoring any newline characters found within.

i Implies a case-insensitive search.

This introduction has been brief, as attempting to document regular expres-
sions in their entirety is surely out of the scope of this book and could easily fill
many chapters rather than just a few pages. For more information regarding regu-
lar expression syntax, check out these great online resources:

• http://www.php.net/manual/pcre.pattern.modifiers.php

• http://www.php.net/manual/pcre.pattern.syntax.php

• http://www.perl.com/pub/doc/manual/html/pod/perlre.html

• http://www.codebits.com/p5be/

• http://www.metronet.com/1/perlinfo/doc/FMTEYEWTK/regexps.html

PHP’s Regexp Functions (Perl Compatible)

PHP offers five functions for searching strings using Perl-compatible regular ex-
pressions:

• preg_match()

• preg_match_all()

Strings and Regular Expressions

185

Gilmore_08  12/4/00  1:06 PM  Page 185



• preg_replace()

• preg_split()

• preg_grep()

These functions are discussed in the following sections.

preg_match()

The preg_match() function searches string for pattern, returning true if pattern ex-
ists, and false otherwise. Its syntax follows:

int preg_match (string pattern, string string [, array pattern_array])

If the optional input parameter pattern_array is provided, then pattern_array will
contain various sections of the subpatterns contained in the search pattern, if ap-
plicable. Here’s an example that uses preg_match() to perform a case-sensitive
search:

$line = "Vi is the greatest word processor ever created!"; 

// perform a case-Insensitive search for the word "Vi"

if (preg_match("/\bVi\b/i", $line, $match)) :      

print "Match found!";

endif;

// The if statement will evaluate to true in this example.

preg_match_all()

The preg_match_all() function matches all occurrences of pattern in string. Its
syntax is:

int preg_match_all (string pattern, string string, array pattern_array [, int

order])

It will place these matches in the array pattern_array in the order you specify
using the optional input parameter order. There are two possible types of order:

• PREG_PATTERN_ORDER is the default if the optional order parameter is
not included. PREG_PATTERN_ORDER specifies the order in the way that
you might think most logical; $pattern_array[0] is an array of all complete
pattern matches, $pattern_array[1] is an array of all strings matching the
first parenthesized regexp, and so on. 

Chapter 8

186

Gilmore_08  12/4/00  1:06 PM  Page 186



• PREG_SET_ORDER will order the array a bit differently than the default set-
ting. $pattern_array[0] will contain elements matched by the first paren-
thesized regexp, $pattern_array[1] will contain elements matched by the
second parenthesized regexp, and so on. 

Here’s how you would use preg_match_all to find all strings enclosed in bold
HTML tags:

$userinfo = "Name: <b>Rasmus Lerdorf</b> <br> Title: <b>PHP Guru</b>";

preg_match_all ("/<b>(.*)<\/b>/U", $userinfo, $pat_array); 

print $pat_array[0][0]." <br> ".$pat_array[0][1]."\n";

Rasmus Lerdorf

PHP Guru

preg_replace()

The preg_replace() function operates just like ereg_replace(), except that regu-
lar expressions can be used in the pattern and replacement input parameters. Its
syntax is:

mixed preg_replace (mixed pattern, mixed replacement, mixed string [, int limit])

The optional input parameter limit specifies how many matches should take
place. Interestingly, the pattern and replacement input parameters can be arrays.
Preg_replace() will cycle through each element of each array, making replace-
ments as they are found.

preg_split()

The preg_split() function operates exactly like split(), except that regular ex-
pressions are accepted as input parameters for pattern. Its syntax is:

array preg_split (string pattern, string string [, int limit [, int flags]])

If the optional input parameter limit is specified, then only limit number of
substrings are returned. This example uses preg_split() to parse a variable.

Strings and Regular Expressions

187

Gilmore_08  12/4/00  1:06 PM  Page 187



$user_info = "+WJ+++Gilmore+++++wjgilmore@hotmail.com++++++++Columbus+++OH";

$fields = preg_split("/\+{1,}/", $user_info); 

while ($x < sizeof($fields)) :

print $fields[$x]. "<br>";

$x++;

endwhile;

WJ

Gilmore

wjgilmore@hotmail.com

Columbus

OH

preg_grep()

The preg_grep() function searches all elements of input_array, returning all ele-
ments matching the regexp pattern. Its syntax is:

array preg_grep (string pattern, array input_array)

Here’s how you would use preg_grep() to search an array for foods beginning
with p:

$foods = array("pasta", "steak", "fish", potatoes");

// find elements beginning with "p", followed by one or more letters.

$p_foods = preg_grep("/p(\w+)/", $foods);

$x = 0;

while ($x < sizeof($p_foods)) :

print $p_foods[$x]. "<br>";

$x++;

endwhile;

pasta

potatoes

Chapter 8

188

Gilmore_08  12/4/00  1:06 PM  Page 188



Other String-Specific Functions

In addition to the regular expression–based functions discussed in the first half of
this chapter, PHP provides 70+ functions geared toward manipulating practically
every aspect of a string that you can think of. To list and explain each function
would be out of the scope of this book and would not accomplish much more
than repeat much of the information in the PHP documentation. Therefore, I
have devoted the remainder of this chapter to a FAQ of sorts, the questions being
those that seem to be the most widely posed in the many PHP discussion groups
and related sites. Hopefully, this will be a much more efficient means for covering
the generalities of the immense PHP string-handling library.

Padding and Compacting a String

For formatting reasons, it is necessary to modify the string length via either
padding or stripping characters. PHP provides a number of functions for doing so.

chop()

The chop() function returns a string minus any ending whitespace and newlines.
Its syntax is:

string chop (string str)

This example uses chop() to remove unnecessary newlines:

$header = "Table of Contents:\n\n";

$header = chop($header);

// $header = "Table of Contents"

str_pad()

The str_pad() function will pad string to length pad_length with a specified set of
characters, returning the newly formatted string. Its syntax is:

string str_pad (string input, int pad_length [, string pad_string [, int

pad_type]])

If the optional parameter pad_string is not specified, string will be padded with
blank spaces; otherwise it will be padded with the character pattern specified in

Strings and Regular Expressions

189

Gilmore_08  12/4/00  1:06 PM  Page 189



pad_string. By default, the string will be padded to the right; however, the op-
tional pad_type may be assigned STR_PAD_RIGHT, STR_PAD_LEFT, or
STR_PAD_BOTH, padding the string accordingly. This example shows how to pad
a string using str_pad() defaults:

$food = "salad";

print str_pad ($food, 5);     // prints "salad     "

This sample makes use of str_pad()’s optional parameters:

$header = "Table of Contents";

print str_pad ($header, 5, "=+=+=", STR_PAD_BOTH);

// "=+=+=Table of Contents=+=+=" will be displayed to the browser.

trim()

The trim() function will remove all whitespace from both the left and right sides
of string, returning the resulting string. Its syntax is:

string trim (string string)

It will also remove the special characters “\n”, “\r”, “\t”, “\v” and “\0”.

ltrim()

The ltrim() function will remove the whitespace and special characters from the
left side of string, returning the remaining string. Its syntax follows:

string ltrim (string str)

The special characters that will be removed are the same as those removed by
trim().

Finding Out the Length of a String

You can determine the length of a string through use of the strlen() function.
This function returns the length of a string, each character in the string being
equivalent to one unit. Its syntax is:

int strlen (string str)

Chapter 8

190

Gilmore_08  12/4/00  1:06 PM  Page 190



This example uses strlen() to determine the length of a string:

$string = "hello";

$length = strlen($string);

// $length = 5

Comparing Two Strings

String comparison is arguably one of the most important features of the string-
handling capabilities of any language. Although there are many ways in which
two strings can be compared for equality, PHP provides four functions for per-
forming this task:

• strcmp()

• strcasecmp()

• strspn()

• strcspn()

These functions are discussed in the following sections.

strcmp()

The strcmp() function performs a case-sensitive comparison of two strings. Its
syntax follows:

int strcmp (string string1, string string2)

On completion of the comparison, strcmp() will return one of three possible
values:

• 0 if string1 and string2 are equal

• < 0 if string1 is less than string2

• > 0 if string2 is less than string1

Strings and Regular Expressions

191

Gilmore_08  12/4/00  1:06 PM  Page 191



This listing compares two equivalent string values:

$string1 = "butter";

$string2 = "butter";

if ((strcmp($string1, $string2)) == 0) :

print "Strings are equivalent!";

endif;

// If statement will evaluate to true

strcasecmp()

The strcasecmp() function operates exactly like strcmp(), except that its compari-
son is case insensitive. Its syntax is:

int strcasecmp (string string1, string string2)

The following example compares two equivalent string values:

$string1 = "butter";

$string2 = "Butter";

if ((strcasecmp($string1, $string2)) == 0) :

print "Strings are equivalent!";

endif;

// If statement will evaluate to true

strspn()

The strspn() function returns the length of the first segment in string1 containing
characters also in string2. Its syntax is:

int strspn (string string1, string string2)

Here’s how you would use strspn() to validate a password:

$password = "12345";

if (strspn($password, "1234567890") != strlen($password)) :

print "Password cannot consist solely of numbers!";

endif;

Chapter 8

192

Gilmore_08  12/4/00  1:06 PM  Page 192



strcspn()

The strcspn() function returns the length of the first segment in string1 contain-
ing characters not in string2. Its syntax is:

int strcspn (string str1, string str2)

Here’s an example of password validation using strcspn():

$password = "12345";

if (strcspn($password, "1234567890") == 0) :

print "Password cannot consist solely of numbers!";

endif;

Alternatives for Regular Expression Functions

When processing large amounts of information, the regular expression functions
can slow matters dramatically. You should use these functions only when you are
interested in parsing relatively complicated strings that require the use of regular
expressions. If you are instead interested in parsing for simple expressions, there
are a variety of predefined functions that will speed up the process considerably.
Each of these functions is described below.

strtok()

The strtok() function will tokenize string, using the characters specified in to-
kens. Its syntax is:

string strtok (string string, string tokens)

One oddity about strtok() is that it must be continually called in order to com-
pletely tokenize a string; Each call to strtok() only tokenizes the next piece of the
string. However, the string parameter only needs to be specified once, as the func-
tion will keep track of its position in string until it either completely tokenizes
string or a new string parameter is specified. This example tokenizes a string with
several delimiters:

Strings and Regular Expressions

193

Gilmore_08  12/4/00  1:06 PM  Page 193



$info = "WJ Gilmore:wjgilmore@hotmail.com|Columbus, Ohio";

// delimiters include colon (:), vertical bar (|), and comma (,)

$tokens = ":|,";

$tokenized = strtok($info, $tokens);

// print out each element in the $tokenized array

while ($tokenized) : 

echo "Element = $tokenized<br>"; 

// Note how strtok does not take the first argument on subsequent executions

$tokenized = strtok ($tokens); 

endwhile;

Element =WJ Gilmore

Element = wjgilmore@hotmail.com 

Element = Columbus

Element = Ohio

parse_str()

The parse_str() function parses string into various variables, setting the vari-
ables in the current scope. The syntax is:

void parse_str (string string)

This function is particularly useful when handling URLs that contain HTML form
or otherwise extended information. The following example parses information
passed via a URL. This string is the common form for a grouping of data that is
passed from one page to another, compiled either directly in a hyperlink or in an
HTML form:

$url = "fname=wj&lname=gilmore&zip=43210";

parse_str($url);

// after execution of parse_str(), the following variables are available:

// $fname = "wj"

// $lname = "gilmore"

// $zip = "43210"

Because this function was created to work with URLs, it ignores the ampersand
(&) symbol.

Chapter 8

194

Gilmore_08  12/4/00  1:06 PM  Page 194



explode()

The explode() function will divide string into various elements, returning these
elements in an array. The syntax is:

array explode (string separator, string string [, int limit])

The division takes place at each occurrence of separator, and the number of
divisions can be regulated with the optional inclusion of the input parameter
limit. This example divides a string using the explode() function:

$info = "wilson|baseball|indians";

$user = explode("|", $info);

// $user[0] = "wilson";

// $user[1] = "baseball";

// $user[2] = "indians";

implode()

Just as you can use the explode() function to project a string into various ele-
ments of an array, you can implode an array to form a string. This is accomplished
with the implode() function. Its syntax is:

string implode (string delimiter, array pieces)

This example forms a string out of the elements of an array:

$ohio_cities = array("Columbus", "Youngstown", "Cleveland", "Cincinnati");

$city_string = implode("|", $ohio_cities);

// $city_string = "Columbus|Youngstown|Cleveland|Cincinnati";

Strings and Regular Expressions

195

NOTE The subject of PHP and HTML forms is introduced in Chapter 10,
“Forms.”

NOTE The explode() function is virtually identical to the POSIX regular
expression function split(), described earlier in this chapter. The main
difference is that split() should only be used when you need to employ reg-
ular expressions in the input parameters.

Gilmore_08  12/4/00  1:06 PM  Page 195



strpos()

The strpos() function finds the position of the first occurrence in string. Its 
syntax is:

int strpos (string string, string occurrence [, int offset])

The optional input parameter offset specifies the position at which to begin
the search. If occurrence is not in string, strpos() will return false (0). 

The following example determines the location of the first date entry in an
abbreviated log:

$log = "

206.169.23.11:/www/:2000-08-10

206.169.23.11:/www/logs/:2000-02-04

206.169.23.11:/www/img/:1999-01-31";

// what is first occurrence of year 1999 in log?

$pos = strpos($log, "1999");

// $pos = 95, because first occurrence of "1999" is 

// at position 95 of the string contained in $log,

strrpos()

The strrpos() function locates the last occurrence of character in string. Its syn-
tax is:

int strrpos (string string, char character)

This function is less powerful than its counterpart, strpos(), because the search
can only be performed on one character rather than a string. If a string is passed
as the second input parameter into strrpos(), only the first character of that
string will be used in the search.

str_replace()

The str_replace() function searches for occurrence in string, replacing all in-
stances with replacement. Its syntax is:

Chapter 8

196

NOTE Join() is an alias for implode.

Gilmore_08  12/4/00  1:06 PM  Page 196



string str_replace (string occurrence, string replacement, string string)

If occurrence is not in string, the string is not modified.

strstr()

The strstr() function returns the remainder of string beginning at the first occur-
rence. Its syntax is:

string strstr (string string, string occurrence)

This example uses strstr() to return the domain name of a URL:

$url = "http://www.apress.com"; 

$domain = strstr($url, ".");

// $domain = ".apress.com"

substr()

The substr() function returns the part of the string between the start and
start+length parameters. Its syntax is:

string substr (string string, int start [, int length])

If the optional length parameter is not specified, the substring is considered
to be the string starting at start and ending at the end of string. There are four
points to keep in mind when using this function:

• If start is positive, the returned substring will begin at the start ’th 
position of the string.

• If start is negative, the returned substring will begin at the string (length –
start ’th position of the string.

Strings and Regular Expressions

197

TIP substr_replace(), described later in this section, allows you to re-
place just a portion of a string. This example shows how str_replace()
can replace several instances of an element in a string:

$favorite_food = "My favorite foods are ice cream and chicken wings";

$favorite_food = str_replace("chicken wings", "pizza", $favorite_food); 

// $favorite_food = "My favorite foods are ice cream and pizza"

Gilmore_08  12/4/00  1:06 PM  Page 197



• If length is provided and is positive, the returned substring will consist of
the characters between start and (start + length). If this distance is greater
than the distance between start and the end of string, then only the sub-
string between start and the string’s end will be returned.

• If length is provided and is negative, the returned substring will end length
characters from the end of string.

This sample returns a portion of a string using substr():

$car = "1944 Ford";

$model = substr($car, 6);

// $model = "Ford"

The following code is an example of a positive substr() length parameter: 

$car = "1944 Ford";

$yr = substr($car, 0, 4);

// $yr = "1944"

Here is an example of a negative substr() length parameter:

$car = "1944 Ford";

$yr = substr($car, 2, -5);

// $yr = "44"

substr_count()

The substr_count() function returns the number of times substring occurs in
string. Its syntax is:

int substr_count (string string, string substring)

This example counts the frequency of occurrence of a substring in a string:

$tng_twist = "The rain falls mainly on the plains of Spain";

$count = substr_count($tng_twist, "ain");

// $count = 4

Chapter 8

198

TIP Keep in mind that start is the offset from the first character of the
string; therefore the returned string will actually start at character position
(start + 1).

Gilmore_08  12/4/00  1:06 PM  Page 198



substr_replace()

The substr_replace() function will replace a portion of string with replacement,
beginning the replacement at start position of the string, and ending at 
start + length (assuming that the optional input parameter length is included). 
Its syntax is:

string substr_replace (string string, string replacement, int start [, int

length])

Alternatively, the replacement will stop on the complete placement of re-
placement in string. There are several subtleties regarding the values of start and
length:

• If start is positive, replacement will begin at character start.

• If start is negative, replacement will begin at (string length – start).

• If length is provided and is positive, replacement will be length characters
long.

• If length is provided and is negative, replacement will end at 
(string length – length) characters.

This example shows a simple replacement of the remainder of a string using
substr_replace():

$favs = "'s favorite links";

$name = "Alessia";

// The "0, 0" means that the replacement should begin at 

// string's first position, and end at the original first position.

$favs = substr_replace($favs, $name, 0, 0);

print $favs;

Resulting in:

Alessia's favorite links

Strings and Regular Expressions

199

Gilmore_08  12/4/00  1:06 PM  Page 199



Converting Strings and Files to HTML and Vice Versa

Converting a string or an entire file into one suitable for viewing on the Web (and
vice versa) is easier than you would think. Several functions are suited for this
task.

Plain Text to HTML

It is often useful to be able to quickly convert plain text into a format that is read-
able in a Web browser. Several functions can aid you in doing so. These functions
are the subject of this section.

nl2br()

The nl2br() function will convert all newline (\n) characters in a string to their
HTML equivalent, that is, <br>. Its syntax is:

string nl2br (string string)

The newline characters could be invisible, created via hard returns, or visible,
explicitly written in the string. The following example translates a text string (hav-
ing newline characters ‘\n’ to break lines) to HTML format:

// text string as it may be seen in a word processor.

$text_recipe = "

Party Sauce recipe:

1 can stewed tomatoes

3 tablespoons fresh lemon juice

Stir together, Serve cold.";

// convert the newlines to <br>'s.

$html_recipe = nl2br ($text_recipe);

Subsequently printing $html_recipe to the browser would result in the fol-
lowing HTML content being output:

Party Sauce recipe:<br>

1 can stewed tomatoes<br>

3 tablespoons fresh lemon juice<br>

Stir together, Serve cold.<br>

Chapter 8

200

Gilmore_08  12/4/00  1:06 PM  Page 200



htmlentities()

The htmlentities() function will convert all characters into their equivalent
HTML entities. The syntax is:

string htmlentities (string string)

The following example converts necessary characters for Web display:

$user_input = "The cookbook, entitled 'Cafè Française' costs < $42.25.";

$converted_input =  htmlentities($user_input);

// $converted_input = "The cookbook, entitled 'Caf&egrave; 

// Fran&ccedil;aise' costs &lt; 42.24.";

htmlspecialchars()

The htmlspecialchars() function converts a select few characters having special
meaning in the context of HTML into their equivalent HTML entities. Its syntax is:

string htmlspecialchars (string string)

The htmlspecialchars() function currently only converts the following charac-
ters:

• & becomes &amp

• “” becomes &quot

• < becomes &lt;

• > becomes &gt

This function is particularly useful in preventing users from entering HTML
markup into an interactive Web application, such as a message board. Improperly
coded HTML markup can cause an entire page to be formed incorrectly. However,
perhaps a more efficient way to do this is to use strip_tags(), which deletes the
tags from the string altogether.

Strings and Regular Expressions

201

NOTE The htmlentities() function currently only works in conjunction
with the ISO-8859-1 (ISO-Latin-1) character set. Also, htmlentities() does
not convert spaces to &nbsp; as you may expect.

Gilmore_08  12/4/00  1:06 PM  Page 201



The following example converts potentially harmful characters using 
htmlspecialchars():

$user_input = "I just can't get <<enough>> of PHP & those fabulous cooking

recipes!";

$conv_input = htmlspecialchars($user_input);

// $conv_input = "I just can't get &lt;&lt;enough&gt;&gt; of PHP &amp those

fabulous cooking recipes!"

get_html_translation_table()

Using get_html_translation_table() is a convenient way to translate text to its
HTML equivalent. Its syntax is:

string get_html_translation_table (int table)

Basically, get_html_translation_table() returns one of the two translation
tables (specified by the input parameter table) used for the predefined 
htmlspecialchars() and htmlentities() functions. This returned value can then
be used in conjunction with another predefined function, strtr() (defined later
in this chapter), to essentially translate the text into HTML code.

The two tables that can be specified as input parameters to this function are:

• HTML_ENTITIES

• HTML_SPECIALCHARS

The following sample uses get_html_translation_table() to convert text to
HTML:

$string = "La pasta é il piatto piú amato in Italia";

$translate = get_html_translation_table(HTML _ENTITIES);

print strtr($string, $translate);

// the special characters are converted to HTML entities and properly 

// displayed in the browser.

Chapter 8

202

TIP If you are using gethtmlspecialchars() in conjunction with
nl2br(), you should execute nl2br() after gethtmlspecialchars();
otherwise the <br>’s generated with nl2br() will be converted to visible 
characters.

Gilmore_08  12/4/00  1:06 PM  Page 202



Interestingly, array_flip() is capable of reversing the text-to-HTML transla-
tion and vice versa. Assume that instead of printing the result of strtr() in the
preceding code sample, we assigned it to the variable $translated_string.

The next example uses array_flip() to return a string back to its original
value:

$translate = array_flip($translate);

$translated_string = "La pasta &eacute; il piatto pi&uacute; amato in Italia"

$original_string = array_flip($translated_string, $translate); 

// $original_string = "La pasta é il piatto piú amato in Italia";

strtr()

The strtr() function will convert all characters contained in destination to their
corresponding character matches in source. Its syntax:

string strtr (string string, string source, string destination)

If the source and destination strings are of different length, any characters in
the longer of the two will be truncated.

Essentially, you can think of strtr() as inversely comparing the values of two
sets of arrays and making the replacements from source to destination as neces-
sary. This example converts HTML characters to XML-like format:

$source = array("<title>" => "<h1>", "</title>" => "</h1>");

$string = "<h1>Today In PHP-Powered News</h1>";

print strtr($string, $source);

// prints "<title>Today In PHP-Powered News</title>"

HTML to Plain Text

You may sometimes need to convert an HTML file to plain text. The following
functions can help you to do so.

strip_tags()

The strip_tags() function will remove all HTML and PHP tags from string, leav-
ing only the text entities. Its syntax is:

string strip_tags (string string [, string allowable_tags])

Strings and Regular Expressions

203

Gilmore_08  12/4/00  1:06 PM  Page 203



The optional allowable_tags parameter allows you to specify which tags you
would like to be skipped during this process.

This example uses strip_tags() to delete all HTML tags from a string:

$user_input = "i just <b>love</b> PHP and <i>gourmet</i> recipes!";

$stripped_input = strip_tags($user_input);

// $stripped_input = "I just love PHP and gourmet recipes!";

The following sample strips all except a few tags:

$input = "I <b>love</b> to <a href = \"http://www.eating.com\">eat<a>!";

$strip_input = strip_tags($user_input, "<a>");

// $strip_input = "I love to <a href = \"http://www.eating.com\">eat</a>!";

get_meta_tags()

Although perhaps not relating directly to the question of conversion,
get_meta_tags() can be such a useful function that I did not want to leave it out.
Its syntax is:

array get_meta_tags (string filename/URL [, int use_include_path])

The get_meta_tags() function will search an HTML file for what are known as
META tags.

META tags are special descriptive tags that provide information, primarily to
search engines, about a particular page. These tags are contained in the
<head>…</head> HTML tags of a page. An example set of some available META
tags might look like the following (we’ll call this example.html, as it will be used in
Listing 8-1):

<html>

<head>

<title>PHP Recipes</title>

<META NAME="keywords" CONTENT="gourmet, PHP, food, code, recipes, chef,

programming, Web">

Chapter 8

204

NOTE Another function that performs similarly to strip_tags() is
fgetss(). This function is described in Chapter 7, “File I/O and the File 
System.”

Gilmore_08  12/4/00  1:06 PM  Page 204



<META NAME="description" CONTENT="PHP Recipes provides savvy readers with the

latest in PHP programming and gourmet cuisine!">

<META NAME="author" CONTENT="WJ Gilmore">

</head>

Get_meta_tags() will search for tags beginning with the word META in the
head of a document and will place all tag names and their content in an associa-
tive array. Considering the previous META tag example, take a look at Listing 8-1.

Listing 8-1: Using get_meta_tags() to parse META tags in an HTML file
$meta_tags = get_meta_tags("example.html");

// $meta_tags will return an array containing the following information:

// $meta_tags["keywords"] = "gourmet, PHP, food, code, recipes, chef, programming,

Web";

// $meta_tags["description"] = "PHP-Powered Recipes provides savvy readers with

the latest in PHP 

// programming and gourmet cuisine!";

// $meta_tags["author"] = "WJ Gilmore";

Interestingly, it is possible to extract META tags not only from a file residing
on the server from which the script resides but also from other URLs.

Converting a String into Uppercase and Lowercase
Letters 

Four functions are available to aid you in accomplishing this task:

• strtolower()

• strtoupper()

• ucfirst()

• ucwords()

These functions are discussed in the following sections.

Strings and Regular Expressions

205

TIP For a great tutorial describing what META tags are and how to 
use them, I suggest checking out Joe Burn’s tutorial, “So, You Want a Meta
Command, Huh?” on the HTML Goodies site at http://htmlgoodies 
.earthweb.com/tutors/meta.html.

Gilmore_08  12/4/00  1:06 PM  Page 205



strtolower()

The strtolower() function does exactly what you would expect it to: it converts a
string to all lowercase letters. Its syntax is:

string strtolower (string string)

Nonalphabetical characters are not affected. The following example uses 
strtolower() to convert a string to all lowercase letters:

$sentence = "COOKING and PROGRAMMING PHP are my TWO favorite pastimes!";

$sentence = strtolower($sentence);

// $sentence is now 

// "cooking and programming php are my two favorite pastimes!"

strtoupper()

Just as you can convert a string to lowercase, so can you convert one to uppercase.
This is accomplished with the function strtoupper(), and its syntax is:

string strtoupper (string string)

Nonalphabetical characters are not affected. This example uses strtoupper()
to convert a string to all uppercase letters:

$sentence = "cooking and programming PHP are my two favorite pastimes!";

$sentence = strtoupper($sentence);

// $sentence is now 

// "COOKING AND PROGRAMMING PHP ARE MY TWO FAVORITE PASTIMES!"

ucfirst()

The ucfirst() function capitalizes the first letter of a string, provided that it is al-
phabetical. Its syntax is:

string ucfirst (string string)

Nonalphabetical characters will not be affected. The following example uses
ucfirst() to capitalize the first letter of a string:

Chapter 8

206

Gilmore_08  12/4/00  1:06 PM  Page 206



$sentence = "cooking and programming PHP are my two favorite pastimes!";

$sentence = ucfirst($sentence);

// $sentence is now 

// "Cooking and programming PHP are my two favorite pastimes!"

ucwords()

The ucwords() function capitalizes the first letter of each word in a string. Its syn-
tax is:

string ucwords (string string)

Nonalphabetical characters are not affected. A word is defined as a string of
characters separated from other entities in the string by a blank space on each
side. This example uses ucwords() to capitalize each word in a string:

$sentence = "cooking and programming PHP are my two favorite pastimes!";

$sentence = ucwords($sentence);

// $sentence is now 

// "Cooking And Programming PHP Are My Two Favorite Pastimes!"

Project: Browser Detection

Anyone who attempts to develop a user-friendly Web site must take into account
the differences of page formatting when the site is viewed using the various Web
browsers and operating systems. Even though the W3 (http://www.w3.org) organ-
ization continues to offer standards that Internet application developers should
adhere to, the various browser developers just love to add their own little “im-
provements” to these standards, essentially causing havoc and confusion for con-
tent developers worldwide. Developers have largely resolved this problem by ac-
tually creating different pages for each type of browser and operating system, a
process that at times can be painful but results in sites that conform perfectly for
any user, building the reputability and confidence that user has in returning to
that site. 

For users to view the page format that is intended for their browser and oper-
ating system, the incoming page request is “sniffed” for browser and platform in-
formation. Once the necessary information has been determined, users are then
redirected to the correct page.

The purpose of this project is to show you how PHP’s regular expression func-
tionality can be used to build a “browser sniffer,” sniffer.php. This sniffer will de-
termine the operating system and browser type and version, displaying the infor-
mation to the browser window. However, before delving into the code, I would

Strings and Regular Expressions

207

Gilmore_08  12/4/00  1:06 PM  Page 207



like to take a moment to review one of the primary pieces of the sniffer, the pre-
defined PHP variable $HTTP_USER_AGENT. This variable basically stores various
information in string format about the requesting user’s browser and operating
system, which is exactly what we are looking for. We could easily display this in-
formation to the screen with just one line of code:

<?

echo $HTTP_USER_AGENT;

?>

If you are using Internet Explorer 5.0 on a Windows 98 machine, you will see
the following output:

Mozilla/4.0 (compatible; MSIE 5.0; Windows 98; DigExt)

In contrast, Netscape Navigator 4.75 would display the following:

Mozilla/4.75 [en] (Win98; U)

Finally, the Opera browser displays:

Mozilla/4.73 (Windows 98; U) Opera 4.02  [en]

Sniffer.php will make use of the information returned by
$HTTP_USER_AGENT, parsing out the relevant pieces using various regular ex-
pression and string-handling functions. Before reviewing the code, take a mo-
ment to read through the following pseudocode:

• Two functions are used to determine the browser and operating system in-
formation: browser_info() and opsys_info(). Let’s start with the
browser_info() pseudocode.

• Determine the browser type using the ereg() function. Although it is slower
than using another non-Perl-style function such as strstr(), it comes in
handy because a regular expression can be used to determine the browser
version. 

• Use a compound if statement to test for the following browsers and their
versions: Internet Explorer, Opera, Netscape, and unknown. Simple
enough.

Chapter 8

208

Gilmore_08  12/4/00  1:06 PM  Page 208



• The resulting browser and version is returned in an array.

• The opsys_info() function determines the operating system type. This
time, the strstr() function is used because there is no need to use a regu-
lar expression to determine the OS.

• A compound if statement is used to test for the following operating sys-
tems: Windows, Linux, UNIX, Macintosh, and unknown.

The resulting operating system is returned.

Listing 8-3: Determining client operating system and browser
<?

/*

File: sniffer.php

Purpose: Determines browser type / version and platform information

Date: August 24, 2000

*/

// Function: browser_info

// Purpose: Returns browser type and version

function browser_info ($agent) {

// Determine browser type

//  Search for Internet Explorer signature. 

if (ereg( 'MSIE ([0-9].[0-9]{1,2})', $agent, $version)) :

$browse_type = "IE";

$browse_version = $version[1];

//  Search for Opera signature. 

elseif (ereg( 'Opera ([0-9].[0-9]{1,2})', $agent, $version)) :

$browse_type = "Opera";

$browse_version = $version[1];

//  Search for Netscape signature. The search for the Netscape browser

//  *must* take place after the search for the Internet Explorer and Opera

//  browsers, because each likes to call itself

//  Mozilla as well as by its actual name.

elseif (ereg( 'Mozilla/([0-9].[0-9]{1,2})', $agent, $version)) :

$browse_type = "Netscape";

$browse_version = $version[1];

Strings and Regular Expressions

209

Gilmore_08  12/4/00  1:06 PM  Page 209



// If not Internet Explorer, Opera, or Netscape, then call it unknown.

else :

$browse_type = "Unknown";

$browse_version = "Unknown";

endif;

// return the browser type and version as array

return array($browse_type, $browse_version);

} // end browser_info

// Function: opsys_info

// Purpose: Returns the user operating system

function opsys_info($agent) {

// Determine operating system

// Search for Windows platform

if ( strstr ($agent, 'Win') ) :

$opsys = "Windows";

// Search for Linux platform

elseif ( strstr($agent, 'Linux') ) :

$opsys = "Linux";

// Search for UNIX platform

elseif ( strstr ($agent, 'Unix') ) :

$opsys = "Unix";

// Search for Macintosh platform

elseif ( strstr ($agent,'Mac') ) :

$opsys = "Macintosh";

// Platform is unknown

else :

$opsys = "Unknown";

endif;

// return the operating system

return $opsys;

} // end opsys_info

// receive returned array as a list

Chapter 8

210

Gilmore_08  12/4/00  1:06 PM  Page 210



list ($browse_type, $browse_version) = browser_info ($HTTP_USER_AGENT);

$operating_sys = opsys_info ($HTTP_USER_AGENT);

print "Browser Type: $browse_type <br>";

print "Browser Version: $browse_version <br>";

print "Operating System: $operating_sys <br>";

?>

Easy as that! For example, if the user is using Netscape 4.75 on a Windows
machine, the following will be displayed:

Browser Type: Netscape 

Browser Version: 4.75 

Operating System: Windows

Next chapter, you’ll learn how to perform page redirects and even create style
sheets based on the operating system and browser.

What’s Next?

This chapter covered quite a bit of ground. After all, what good would a program-
ming language be to you if you couldn’t work with text? In particular, the following
subjects were covered:

• A general introduction to regular expressions, both POSIX and Perl style

• PHP’s predefined regular expression functionality

• Manipulating string length

• Determining string length

• Faster alternatives to PHP’s regular expression functionality

• Converting plain text to HTML and vice versa

• Manipulating character case of strings

Strings and Regular Expressions

211

Gilmore_08  12/4/00  1:06 PM  Page 211



Next chapter begins Part II of this book, which also happens to be my fa-
vorite. Here we begin a survey of PHP’s Web capabilities, covering dynamic 
content creation, file inclusion, and basic template generation. Subsequent 
chapters in Part II delve into HTML forms usage, databasing, session tracking,
and advanced templates. So hold on to your hat; things are about to get really 
interesting!

Chapter 8

212

Gilmore_08  12/4/00  1:06 PM  Page 212



Gilmore_09  12/4/00  1:07 PM  Page 213



Gilmore_09  12/4/00  1:07 PM  Page 214



CHAPTER 9

PHP and Dynamic Site
Development

If you’re anything like myself, chances are you typically flip through the chapters
of any computer textbook that do not apply immediately to what you’re interested
in learning, instead skipping directly to those chapters that apply to what you do
want to know. Chances are, that’s just fine; computer textbooks usually aren’t
meant to be read from cover to cover anyway. You are probably smiling as you
read this paragraph, because you indeed did just this, skipping past the first eight
chapters, settling on this one because it has the most interesting title. After all, no
time to read the details when the big bossman is screaming in your ear, right? 

Luckily, your eagerness won’t inhibit you too much in regard to your compre-
hension of much of the material covered in Part II of this book, which turns our
attention directly toward how PHP is used to build and interact with the Web. This
chapter introduces how PHP’s dynamic properties can easily change the content
and navigability of Web pages through the use of links and various predefined
functions. The next chapter will build on what you’ve learned here, delving into
how PHP perpetuates user interaction via HTML forms. Chapter 11 then turns to
PHP’s database-interfacing capabilities. And onward we march toward the con-
clusion of Part II, covering several of the more advanced subjects of PHP’s Web
development capability.

However, keep in mind that the material covered in Part I is indispensable to
the language. I will make use of many of the concepts covered in my code exam-
ples and will assume that you have read Part I. So if you have skipped ahead, be
prepared to occasionally refer to previous chapters to bring yourself up to speed
regarding a few topics.

Simple Linking

Just as a link can be used to direct a user to an HTML page, it can be used to lead
to a PHP-enabled page, as shown here:

<a href = "date.php">View today's date</a>

213

Gilmore_09  12/4/00  1:07 PM  Page 213



Clicking the link will transport you to the page entitled “date.php”. Simple
enough, right? Building on this example, you can use a variable to construct a
dynamic link:

<?

$link = "date.php";

print "<a href = \"$link\">View today's date</a> <br>\n";

?>

You’re probably wondering why the double quotation marks (“”) are preceded
by backslashes (\). This is because double quotation marks are special characters
in PHP, since they are also used to enclose print statements. Thus, they must be
escaped with the backslash.

Building on this example, you can use an array to quickly display a list of links
to the browser:

<?

// create array of content titles

$contents = array("tutorials", "articles", "scripts", "contact");

// loop through and display each element of the array.

for ($i = 0; $i < sizeof($contents); $i++) 

print " &#149; <a href = \"".$contents[$i].".php\">".$contents[$i]."</a>

<br>\n"; 

// The &149; is the special character for a bullet.

endfor;

?>

The result:

&#149; <a href = "tutorials.php">tutorials</a> <br>

&#149; <a href = "articles.php">articles</a> <br>

&#149; <a href = "scripts.php">scripts</a> <br>

&#149; <a href = "contact.php">contact</a> <br>

Chapter 9

214

TIP If you find escaping double quotation marks annoying, just enable
magic_quotes_gpc in the php.ini file. Once this is enabled, all single quota-
tion marks, double quotation marks, backslashes, and NULL characters
will be automatically escaped!

Gilmore_09  12/4/00  1:07 PM  Page 214



File Components (Basic Templates)

At this point, I turn to one of my favorite capabilities of PHP: templates. A tem-
plate as it pertains to Web building is essentially a particular part of the Web doc-
ument that you would like to use in more than one page. A template, just like a
PHP function, saves you from needing to redundantly type or cut and paste sec-
tions of page content and code. This concept will become particularly important
as your site grows in size, as use of templates will allow you to quickly and easily
perform sitewide modifications quickly. In the next few pages, I will introduce the
advantages of building basic templates.

Typically, these code/content sections (or templates) are placed in one or
more separate files. As you build your Web document, you simply “include” these
pages into their respective position on the page. Two PHP functions provide for
doing just this: include() and require().

include() and require()

One of the powerful aspects of PHP is the ability to build templates and code
libraries that can be easily inserted into new scripts. In the long run, using code
libraries can drastically minimize time and tears when you need to reuse com-
mon functionality across Web sites. Those of you with backgrounds in other lan-
guages (such as C, C++, or Java) are familiar with this concept of code libraries
(hereafter code libraries and templates will be singly referred to as templates) and
including them in your program to extend functionality.

You can build basic templates easily by including one or a series of files via
two of PHP’s predefined functions, require() and include(). Each has its specific
application, as you will learn in the next section.

The Functions

There are four functions that can be used to include files in a PHP script:

• include()

• include_once()

• require()

• require_once()

PHP and Dynamic Site Development

215

Gilmore_09  12/4/00  1:07 PM  Page 215



Although some of these seem equivalent in function due to the similarity of
their names, be forewarned that each has a distinct purpose.

include()

The include() function does exactly what its name implies; it includes a file. This
is its syntax:

include (file insertion_file)

An interesting characteristic of include() is that you can execute it condition-
ally. For example, if an include is placed in an if statement, insertion_file will be
included only if the if statement in which it is enclosed evaluates to true. Keep in
mind that if you decide to use include() in a conditional, the include() construct
must be enclosed in statement block curly brackets or in the alternative statement
enclosure. Consider the difference in syntax between Listings 9-1 and 9-2.

Listing 9-1: Incorrect usage of include()
…

if (some_conditional)

include ('some_file');

else

include ('some_other_file');

…

Listing 9-2: Correct usage of include()
. . .

if (some_conditional) :

include ('some_file');

else :

include ('some_other_file');

endif;

. . .

One misleading aspect of the include() statement is that any PHP code in the
included file must be escaped with valid PHP enclosure tags. Therefore, you could
not just place a PHP command in a file and expect it to parse correctly, such as
the one found here:

print "this is an invalid include file";

Chapter 9

216

Gilmore_09  12/4/00  1:07 PM  Page 216



Instead, any PHP statements must be enclosed with the correct escape tags,
as shown here:

<?

print "this is an invalid include file";

?>

include_once()

The include_once() function has the same purpose as include(), except that it
first verifies whether or not the file has already been included. If it has been, 
include_once() will not execute. Otherwise, it will include the file as necessary.
Other than this difference, include_once() operates in exactly the same way as
include(). Its syntax follows:

include_once (file insertion_file)

require()

For the most part, require() operates like include(), including a template into
the file in which the require() call is located. It has this syntax:

require(file insertion_file)

However, there is one important difference between require() and
include(). The insertion_file will be included in the script in which the require()
construct appears regardless of where require() is located. For instance, if 
require() were placed in an if statement that evaluated to false, insertion_file
would be included anyway!

It is often useful to create a file containing variables and other information
that may be used throughout the site and then require it where necessary.
Although you can name this file anything you like, I like to call mine “init.tpl”
(short for “initialization.template”). Listing 9-3 shows what a very simple init.tpl
file would look like. Listing 9-4 subsequently uses require() to include the init.tpl
information into its script.

PHP and Dynamic Site Development

217

TIP A URL can be used with require() only if “URL fopen wrappers” has
been enabled, which by default it is.

Gilmore_09  12/4/00  1:07 PM  Page 217



Listing 9-3: A sample file to be inserted (init.tpl)
<?

$site_title = "PHP Recipes";

$contact_email = "wjgilmore@hotmail.com";

$contact_name = "WJ Gilmore";

?>

Listing 9-4 inserts the init.tpl information into its script and then uses the
variables  in it to dynamically change the page contents.

Listing 9-4: Making use of init.tpl
<? require ('init.tpl'); ?>

<html>

<head>

<title><?=$site_title;?></title>

</head>

<body>

<? 

print "Welcome to $site_title. For questions, contact <a href =

\"mailto:$contact_email\">$contact_name</a>."; ?>

</body>

</html>

As your site grows in size, you may find yourself redundantly including partic-
ular files. While this might not always be a problem, sometimes you will not want
modified variables in the included file to be overwritten by a later inclusion of the
same file. Another problem that arises is the clashing of function names should
they exist in the inclusion file. And thus I introduce the next function,
require_once().

require_once()

The require_once() function ensures that the insertion file is included only once
in your script. After require_once() is encountered, any subsequent attempts to
include the same file will be ignored. Its syntax follows:

require_once(file insertion_file)

Other than the verification procedure of require_once(), all other aspects of
the function are the same as for require().

You will probably use these functions extensively as your Web applications
grow in size. You will regularly see these functions in my examples throughout the

Chapter 9

218

Gilmore_09  12/4/00  1:07 PM  Page 218



remainder of this book in order to eliminate code redundancies. The first practi-
cal use of these functions occurs in the next section, where I introduce basic tem-
plate construction strategies.

Building Components

When referring to the structure of a typical Web page, I generally like to break it
up into three distinct parts: header, footer, and body. Usually, most well-organized
Web sites have a top section that remains largely unchanged; a middle section
that displays the requested content, thus changing regularly; and finally a bottom
section containing copyright and general link information that, like the header,
generally does not change. Don’t get me wrong; I’m not trying to stifle creativity.
I’ve seen many fantastic sites that do not follow this structure. I’m just attempting
to set up a framework from which we can begin.

The Header

One thing I like to use in almost all of my PHP-enabled Web sites is a header file,
such as the one shown in Listing 9-5. This file holds several pieces of information
that will be applied sitewide, such as the title, contact information, and actual ini-
tial HTML components of the page.

Listing 9-5: A sample header file
<?

// filename: header.tpl

// purpose: site header file for PhpRecipes site

// date: August 22, 2000

$site_name = "PHPRecipes";

$site_email = "wjgilmore@hotmail.com";

$site_path = "http://localhost/phprecipes";

?>

<html>

<head>

<title> <?=$site_name;?> </title>

</head>

<body bgcolor="#7b8079" text="#ffffff" link="#e7d387" alink="#e7d387"

vlink="#e7f0e4">

<table width = "95%" cellpadding="0" cellspacing="0" border="1">

<tr>

<td valign = "top">

PHPRecipes

</td>

PHP and Dynamic Site Development

219

Gilmore_09  12/4/00  1:07 PM  Page 219



<td valign = "top" align="right">

<?

// output current date and time

print date ("F d, h:i a"); 

?> 

</td>

</tr>

</table>

You may often want to ensure that unwanted visitors do not view your
included files, particularly if they hold information such as access passwords. In
Apache, you can wholly deny the viewing of certain files by modifying your
http.conf or htaccess file. This is an example of how you can prevent the viewing
of any file with a .tpl extension:

<Files "*.tpl">

Order allow,deny

Allow from 127.0.0.1

Deny from all

</Files>

The Footer

What is typically deemed the “footer” of a site is the information  at the bottom 
of site pages, generally the contact, linking, and copyright information. This 
information can be placed in a single file and included as a template just as easily
as the header information can. Consider the need to change the copyright infor-
mation to read “Copyright © 2000-2001” You have two choices: spend your New
Year’s Eve frantically changing hundreds of static pages or use a footer template
like the one in Listing 9-6. Make one simple change and voilà! Back to the 
festivities.

Chapter 9

220

NOTE PHP and site security are discussed in more detail in Chapter 16.

Gilmore_09  12/4/00  1:07 PM  Page 220



Listing 9-6: A sample footer file (footer.tpl)
<table width="95%" cellspacing="0" cellpadding="0" border="1">

<tr><td valign="top" align="middle">

Copyright &copy; 2000 PHPRecipes. All rights reserved.<br>

<a href = "mailto:<?=$site_email;?>">contact</a> | <a href =

"<?=$site_path;?>/privacy.php">your privacy</a>

</td></tr>

</table>

</body>

</html>

Take note that I am using one of the global variables ($site_email) within the
footer file. This is because that variable will propagate throughout the entire page,
since it is assumed that the header.tpl and footer.tpl files will be assimilated into
one cohesive page. Also, notice that I output $site_path in the “privacy” link. I
always want to use a complete path to any link in a template file because if I use
this footer in any child directories, the path would not be correct if I were only to
use privacy.php as the link URL. 

The Body

The page body connects the header to the footer. The body section of a Web docu-
ment is basically the “meat-and-bones” section of the page—that is, the page that
the readers care about. Sure, the header is cool, the footer is helpful, but it is the
body that keeps readers returning. Although I can’t provide any pointers as to the
content of your page structure, I can help in terms of your ease of page adminis-
tration by providing Listing 9-7.

Listing 9-7: A simple body section (index_body.tpl)
<table width="95%" cellspacing="0" cellpadding="0" border="1">

<tr>

<td valign="top" width="25%">

<a href = "<?=$site_path;?>/tutorials.php">tutorials</a> <br>

<a href = "<?=$site_path;?>/articles.php">articles</a> <br>

<a href = "<?=$site_path;?>/scripts.php">scripts</a> <br>

<a href = "<?=$site_path;?>/contact.php">contact</a> <br>

</td>

<td valign="top" width="75%">

Welcome to PHPRecipes, the starting place for PHP scripts, tutorials, and

information about gourmet cooking!

</td>

</tr>

</table>

PHP and Dynamic Site Development

221

Gilmore_09  12/4/00  1:07 PM  Page 221



Putting It Together: Incorporating the Header,
Footer, and Body

My feelings are perhaps best phrased as Colonel “Hannibal” Smith (George Pep-
pard) put it on the famous A-Team television show, “I love it when a good plan
comes together.” In my nerdy way, I feel the same when I see several template
files come together to form a complete Web document. Combining the three doc-
ument sections, header.tpl, index_body.tpl, footer.tpl, you can quickly build a
basic page like the one in Listing 9-8.

Listing 9-8: Various includes compiled together to produce index.php
<?

// file: index.php

// purpose: Home page of PHPRecipes

// date: August 23, 2000

// Include the header

include ("header.tpl");

// Include the index body

include ("index_body.tpl");

// Include the footer

include ("footer.tpl");

?>

How about that? Three simple commands, and the page is built. Check out
the resulting page in Listing 9-9.

Listing 9-9: Resulting HTML constructed from Listing 9-8 (index.php)
<html>

<head>

<title> PHPRecipes </title>

</head>

<body bgcolor="#7b8079" text="#ffffff" link="#e7d387" alink="#e7d387"

vlink="#e7f0e4">

<table width = "95%" cellpadding="0" cellspacing="0" border="1">

<tr>

<td valign = "top">

PHP Recipes

</td>

<td valign = "top" align="right">

Chapter 9

222

Gilmore_09  12/4/00  1:07 PM  Page 222



August 23, 03:17 pm 

</td>

</tr>

</table>

<table width="95%" cellspacing="0" cellpadding="0" border="1">

<tr>

<td valign="top" width="25%">

<a href = "http://localhost/phprecipes/tutorials.php">tutorials</a> <br>

<a href = "http://localhost/phprecipes/articles.php">articles</a> <br>

<a href = "http://localhost/phprecipes/scripts.php">scripts</a> <br>

<a href = "http://localhost/phprecipes/contact.php">contact</a> <br>

</td>

<td valign="top" width="75%">

Welcome to PHPRecipes, the starting place for PHP scripts, tutorials, and gourmet

cooking tips and recipes!

</td>

</tr>

</table><table width="95%" cellspacing="0" cellpadding="0" border="1">

<tr><td valign="top" align="middle">

Copyright &copy; 2000 PHPRecipes. All rights reserved.<br>

<a href = "mailto:wjgilmore@hotmail.com">contact</a> | <a href =

"http://localhost/phprecipes/privacy.php">your privacy</a>

</td></tr>

</table>

</body>

</html>

Figure 9-1 shows you the resulting page as viewed in the browser. Although I
detest table borders, I set them to 1 so that you can more easily differentiate the
three sections of the page.

PHP and Dynamic Site Development

223

Gilmore_09  12/4/00  1:07 PM  Page 223



Optimizing Your Site’s Templates

A second, and arguably preferred, method of using your templates is to store
them in functions, placed in a single file. This further organizes your template,
making a “template of templates.” I also call this my initialization file, as I tend to
store other useful information in it. Since you already have been exposed to a rel-
atively lengthy header and footer example, I’ll abbreviate the ones in Listings 9-10
and 9-11 for the sake of illustrating this new idea. 

Listing 9-10: Optimized site template (site_init.tpl)
<?

// filename: site_init.tpl

// purpose: PhpRecipes Initialization file.

// date: August 22, 2000

$site_name = "PHPRecipes";

$site_email = "wjgilmore@hotmail.com";

$site_path = "http://localhost/phprecipes";

function show_header($site_name) {

?>

<html>

Chapter 9

224

Figure 9-1. Resulting page as constructed from Listing 9-8

Gilmore_09  12/4/00  1:07 PM  Page 224



<head>

<title> <? print $site_name; ?> </title>

</head>

<body bgcolor="#7b8079" text="#ffffff" link="#e7d387" alink="#e7d387"

vlink="#e7f0e4">

This is the header

<hr>

<?

}

function show_footer() {

?>

<hr>

This Is the footer

</body>

</html>

<?

}

?>

Listing 9-11: Using the initialization file
<?

// Include site Initialization Information

include("site_init.tpl");

// display the header

show_header($site_name);

?>

This is some body information

<?

// display the footer

show_footer();

?>

Using functions further condenses the code and number of templates
needed, ultimately allowing you to more efficiently administer your site. This
strategy also makes it easier to reuse your code to build other sites without having
to keep track of a number of involved files.

Project: Build a Page Generator

Although large parts of the Web sites I build make use of database information to
display content, there are always a few pages that aren’t going to change much.

PHP and Dynamic Site Development

225

Gilmore_09  12/4/00  1:07 PM  Page 225



Some of these pages may contain information about the development team, con-
tact information, advertising information, and so on. You get the picture. I gener-
ally store this “static” information in its own folder and use a PHP script to pull it
to the Web page on request. Of course, since this information is static, you may be
asking yourself why you should even employ the use of a PHP script. Why not just
use plain old HTML pages? The advantage of using PHP is that you can take
advantage of the templates, just inserting the static part as necessary.

The link used to call the various static files is dynamic. Its general form is:

<a href = "<?=$site_path;?>/static.php?content=$content">Static Page Name</a>

To begin, create your various static pages. For sake of simplicity, I’ll create
three of them: About This Site (Listing 9-12), Advertising Information (Listing 
9-13), and Contact Us (Listing 9-14).

Listing 9-12: About This Site (about.html)
<h3>About PHPRecipes</h3>

What programmer doesn't mix all night programming with gourmet cookies? Here at

PHPRecipes, hardly a night goes by without one of our coders mixing a little bit

of HTML with a tasty plate of Portobello Mushrooms or even Fondue. So we decided

to bring you the best of what we love most: PHP and food!

<p>

That's right, readers. Tutorials, scripts, souffles and more. <i>Only</i> at

PHPRecipes.

Listing 9-13: Advertising Information (advert_info.html)
<h3>Advertising Information</h3>

Regardless of whether they come to learn the latest PHP techniques or for brushing

up on how to bake chicken, you can bet our readers are decision makers. They are

the Industry professionals who make decisions about what their company purchases.

For advertising information, contact <a href = "mailto:ads@phprecipes.com

">ads@phprecipes.com</a>.

Listing 9-14 Contact Us (contact.html)
<h3>Contact Us</h3>

Have a coding tip? <br>

Know the perfect topping for candied yams?<br>

Let us know! Contact the team at <a href =

"mailto:theteam@phprecipes.com">team@phprecipes.com</a>.

Chapter 9

226

Gilmore_09  12/4/00  1:07 PM  Page 226



Now you will design the page that will house the requested information, enti-
tled “static.php”. This file acts as the aggregator of the various components of a
page on our site and makes use of the site_init.tpl file, shown in Listing 9-15.

Listing 9-15: Page aggregator (static.php)
<?

// file: static.php

// purpose: display various requested static pages.

// IMPORTANT: It Is assumed that "site_init.tpl" and all of the static files are

located in the same directory.

// load functions and site variables 

include("site_init.tpl");

// display the page header

show_header($site_name);

// display the requested content

include("$content.html");

// display the page footer

show_footer();

?>

OK, now you’re ready to implement this script. Simply place the correct link
reference relative to the page, as shown here:

<a href = "static.php?content=about">About This Site</a><br>

<a href = "static.php?content=advert_info">Advertising Information</a><br>

<a href = "static.php?content=contact">Contact Us</a><br>

Clicking any of the links will take you to the respective static page, embedded
in static.php!

What’s Next?

This chapter introduced you to the heart of what PHP was intended to do in the
first place: dynamic Web page generation. In this chapter, you learned how to do
the following:

• Manipulate URLs

• Generate dynamic content

• Include and build basic templates

PHP and Dynamic Site Development

227

Gilmore_09  12/4/00  1:07 PM  Page 227



The project concluding the chapter illustrated how you could build a page
generator that would pull static pages into a larger template structure, making it
ever so easy for you to maintain large numbers of static HTML pages.

The next chapter builds on this foundation significantly, introducing how
PHP can be used in conjunction with HTML forms, adding a whole new degree of
user interactivity into your site. Then, it’s onward to databasing! What an exciting
few chapters these are going to be!

Chapter 9

228

Gilmore_09  12/4/00  1:07 PM  Page 228



CHAPTER 10

Forms

The ability to retrieve and process user-provided information has become an
integral part of most successful Web sites. The ability to collect statistics, poll
users, store preferential information, and offer document searches certainly adds
a whole new dimension to what would be an otherwise only minimally interactive
medium.

Information retrieval is largely implemented through the use of HTML forms.
Certainly you are already familiar with the look and feel of an HTML form. Gen-
eral practice is that you enter one or more pieces of data (for example, your name
and email address), press a submit button of sorts, and are then greeted with a 
response message.

You may be thinking that the process of collecting user data via HTML forms
is a complicated and tedious process. If so, you will be surprised to learn that it is
actually quite easy. 

An Introduction to Forms

There are a number of different forms you can use to input information. Some
require users to enter information using their keyboard, while others require the
users to select one or more choices by clicking with a mouse. Yet others simply
involve a hidden form value that is embedded in the form itself and is not
intended to be modified by the user.

It is possible to have multiple forms on the same page, so there must be some
way to distinguish one form from the other. Furthermore, there must be a way to
tell the form where to go once the user initiates the form action (usually by click-
ing a button). Both of these needs are taken care of by enclosing the form entities
in the following HTML tags:

<form action="some_action" method="post">

… form entities …

</form>

As you can see, two important elements make up this enclosure: the action
and the method. The action specifies what script should process the form, while
the method specifies how the form data will be sent to the script. There are two
possible methods:

229

Gilmore_10  12/5/00  2:23 PM  Page 229



• The get method sends all of the form information at the end of the URL.
This method is rarely used, due to various language and length restrictions.

• The post method sends all of the form information in the request body.
This method is usually preferred over get.

Keyboard-Oriented Form Entities

Now you’re ready to begin building forms. The first step is to learn the keyboard-
oriented form entities. There are only two: the text box and the text area box.

The Text Box

The text box is typically used for short text entries, such as an email address,
postal address, or name. Its syntax is:

<input type="text" name="variable_name" size="N" maxlength="N" value="">

There are five text box components:

• type: Type of form input, in this case text.

• name: Variable name used to store the data.

• size: Total size of the text box as it will display in the browser.

• maxlength: Total number of characters that can be input into the text box. 

• value: Default value that will display in the text box.

A sample text box is shown in Figure 10-1.

Chapter 10

230

NOTE This introduction is intended to be a brief primer regarding the
basic syntax of HTML forms. For a more complete introduction, I suggest
checking out Special Edition Using HTML 4 by Molly E. Holzschlag (QUE;
ISBN 0789722674, December 1999).

Gilmore_10  12/5/00  2:23 PM  Page 230



A variation on the text box is the password text box, which operates exactly
like the text box, except that the data is hidden with asterisks as it is entered 
in the text field. To change the text box to a password text box, just use 
type = “password” instead of type = “text”.

The Text Area Box

The text area box is useful when you would like the reader to be a bit more ver-
bose than just entering a name or email address. Its syntax is:

<textarea name="variable_name" rows="N" cols="N"></textarea>

There are three textarea components:

• name: Variable name used to store the data.

• rows: Number of rows comprising textarea.

• cols: Number of columns comprising textarea.

A sample text area box is shown in Figure 10-2.

Forms

231

Figure 10-1. A text box

Gilmore_10  12/5/00  2:23 PM  Page 231



Mouse-Oriented Form Entities

There are several other form entities that are controlled by the user selecting a
predefined value with a mouse. I will limit the introduction to checkboxes, radio
buttons, and pull-down menus.

The Checkbox

Checkboxes are convenient when you would like to present users with one or
more choices to check, much like making a checkmark on some form with a pen-
cil. The syntax is:

<input type="checkbox" name="variable_name" value="variable_value">

There are three checkbox components:

• type: Type of form input, in this case a checkbox.

• name: Variable name used to store the data, in this case the entity value. 

• value: Default value that will be assigned to the variable name. Note that if
the checkbox is checked, this is the value that is assigned to variable name.
If it is not checked, then this variable will not be passed.

A sample checkbox is shown in Figure 10-3.

Chapter 10

232

Figure 10-2. A text area box

Gilmore_10  12/5/00  2:23 PM  Page 232



The Radio Button

The radio button is a variation of the checkbox, similar in all aspects except that
only one button can be checked. The syntax is:

<input type="radio" name="variable_name" value="variable_value">

As you can see, its syntax is exactly like that of the checkbox. There are three
radio button components:

• type: Type of form input, in this case a radio.

• name: Variable name used to store the data, in this case the entity value.

• value: Default value that will display in the text box. Note that if the radio
button is selected, this is the value that is assigned to variable name. If it is
not selected, then this variable will not be passed.

Sample radio buttons are shown in Figure 10-4.

Forms

233

Figure 10-3. Checkboxes

Figure 10-4. Radio buttons

Gilmore_10  12/5/00  2:23 PM  Page 233



The Pull-Down Menu

Pull-down menus are particularly convenient when you have a long list of data
from which you would like users to select a value. Pull-down menus are com-
monly used for large data sets, a list of American states or countries, for example.
The syntax is:

<select name="variable_name">

<option value="variable_value1">

<option value="variable_value2">

<option value="variable_value3">

. . . 

<option value="variable_valueN">

</select>

There are two pull-down menu components:

• name: Variable name used to store the data, in this case the variable name
that will store the chosen value.

• value: Default value that will display in the text box. Note that if the check-
box is checked, this is the value that is assigned to variable name.

A sample pull-down menu is shown in Figure 10-5.

Hidden Values

Hidden form values are embedded in the form itself and are generally used as a
means to persist data from one script to the other. While there is nothing wrong
with doing so, PHP offers a much more convenient method for keeping persistent
data: session tracking, which is the subject of Chapter 13. Regardless, hidden val-
ues have their uses, so I will proceed with the introduction. 

Chapter 10

234

Figure 10-5. A pull-down menu

Gilmore_10  12/5/00  2:23 PM  Page 234



The syntax of the hidden form value is exactly like that of the text box, save for
the differing type value. Since the hidden value is hidden from the user, there is
no way to show a sample. The syntax is:

<input type="hidden" name="variable_name" value="variable_value">

There are three hidden value components:

• type: Type of form input. In this case it’s hidden.

• name: Variable name used to store the hidden data.

• value: Default value that will display in the text box.

Keep in mind that perhaps the title of this form entity is a misnomer. While the
hidden value does not display to the browser, the user could simply perform a
View Source and view whatever hidden values are in the form. 

The Submit Button

The submit button actuates the action specified in the action component of the
form enclosure. Its syntax is:

<input type="submit" value="button_name">

There are two submit button components:

• type: Type of form input, in this case submit.

• value: Default value that will display in the text box.

A sample submit button is shown in Figure 10-6.

Forms

235

Figure 10-6. A submit button

Gilmore_10  12/5/00  2:23 PM  Page 235



The Reset Button

The reset button will erase all information entered into the form. This is generally
a pretty useless feature, but has become so commonly used in forms on the Web
that I thought I should include it. The syntax is:

<input type="reset" name="reset" value="button_name">

There are two reset button components:

• type: Type of form input, in this case reset.

• value: Name shown on top of the button.

A reset button looks exactly like a submit button (illustrated in Figure 10-6),
except that its type and value are set to “reset”.

Putting It Together: A Sample Form

Now that you have been introduced to the basic form components, you can cre-
ate one that will accept user information. Suppose you wanted to create a form
that would pose various questions to users about what they think about your new
site. I’ll create this form in Listing 10-1.

Listing 10-1: Sample user feedback form
<form action = "process.php" method = "post">

<b>Please take a moment to tell us what you think about our site:</b><p>

<b>Name:</b><br>

<input type="text" name="name" size="15" maxlength="25" value=""><br> 

<b>Email:</b><br>

<input type="text" name="email" size="15" maxlength="45" value=""><br>

<b>How frequently do you visit our site?:</b><br>

<select name="frequency">

<option value="">Site frequency:

<option value="0">This is my first time

<option value="1">&lt; 1 time a month

<option value="2">Roughly once a month

<option value="3">Several times a week

Chapter 10

236

NOTE Jakob Nielsen, a noted Web-usability expert, recently wrote a rather
interesting article about the drawbacks to the reset button. It is at
http://www.useit.com/alertbox/20000416.html.

Gilmore_10  12/5/00  2:23 PM  Page 236



<option value="4">Every day

<option value="5">I'm addicted

</select><br>

<b>I frequently purchase the following products from our site:</b><br>

<input type="checkbox" name="software" value="software">Software<br>

<input type="checkbox" name="cookware" value="cookware">Cookware<br>

<input type="checkbox" name="hats" value="hats">Chef's Hats<br>

<b>Our site's greatest asset is:</b><br>

<input type="radio" name="asset" value="products">Product selection<br>

<input type="radio" name="asset" value="design">Cool design<br>

<input type="radio" name="asset" value="service">Customer Service<br>

<b>Comments:</b><br>

<textarea name="comments" rows="3" cols="40"></textarea><br>

<input type="submit" value="Submit!">

</form>

The form as displayed in the browser is illustrated in Figure 10-7.

Forms

237

Figure 10-7. A sample user input form

Gilmore_10  12/5/00  2:23 PM  Page 237



Pretty straightforward, right? But the question now arises of how you take the
user input and do something useful with it. That is the subject of the next section,
“Forms and PHP.”

Keep in mind that this introduction to forms should be considered just that;
an introduction. It is by no means a comprehensive summary of all options
offered to the various form components. Check out any of the many forms-
related tutorials  on the Web and recently released HTML books for further infor-
mation. 

Having completed this introduction to HTML forms, I now proceed to the 
really interesting part of this chapter; that is, how PHP can be used to process and
interact with user information input via these forms.

Forms and PHP

How PHP handles form information is really not all that different from how PHP
handles variable data passed along with the URL, a subject I discussed in detail in
the previous chapter.

Introductory Examples

To facilitate rapid learning of the various ways you can use PHP to manipulate
form information, I present a series of scenarios. Each scenario illustrates a differ-
ent way you can take advantage of this technology to add interactivity to your site.

Scenario 1: Passing Form Information
from One Script to Another

This is perhaps the most basic of examples, in which user input is simply gath-
ered on one page and displayed on another. Listing 10-2 contains the form that
will prompt a user for a name and email address. When the user clicks the submit
button, entitled “go!” the form will request listing10-3.php. Listing 10-3 will in
turn display the $name and $email variables that were passed along with the page
request.

Listing 10-2: A simple form
<html>

<head>

<title>Listing 10-2</title>

</head>

Chapter 10

238

Gilmore_10  12/5/00  2:23 PM  Page 238



<body bgcolor="#ffffff" text="#000000" link="#cbda74" vlink="#808040"

alink="#808040">

<form action="listing10-3.php" method="post">

<b>Give us some information!</b><br>

Your Name:<br>

<input type="text" name="name" size="20" maxlength="20" value=""><br>

Your Email:<br>

<input type="text" name="email" size="20" maxlength="40" value=""><br>

<input type="submit" value="go!">

</form>

</body>

</html>

Listing 10-3: Displaying the data collected in Listing 10-1
<html>

<head>

<title>Listing 10-3</title>

</head>

<body bgcolor="#ffffff" text="#000000" link="#cbda74" vlink="#808040"

alink="#808040">

<?

// output the user's name and email address.

print "Hi, $name!. Your email address is $email";

?>

</body>

</html>

In summary, the user fills out the form fields, clicks the submit button, and is
directed to Listing 10-3, which then formats and displays the data. Simple as that.

An alternative method to carry out form processing uses just one script. The
disadvantage of this method is that the script becomes longer and therefore rela-
tively more difficult to view and understand; the advantage is that you minimize
the total number of files to handle. Furthermore, you eliminate code redundancy
when error checking, a subject I discuss later in this chapter. Of course, there will
be times when one script is not advantageous, but it’s always nice to keep in mind
that it’s easily done. In Scenario 2, I reconsider Scenario 1, this time using just one
script.

Forms

239

Gilmore_10  12/5/00  2:23 PM  Page 239



Scenario 2: Alternative (One-Script) Form Processing

Processing forms using one script is fairly simple, making use of an if conditional
statement to tell us whether or not the form variables have been set. If they have
been set, then they will be processed (in this example, displayed). Otherwise, the
form will be displayed. Verifying whether or not the variables have been set is
accomplished with the strcmp() function, described in Chapter 8, “Strings and
Regular Expressions.” Listing 10-4 provides an example of one-script processing.
Notice how the form action calls the page in which it resides. A conditional if
statement is used to check for the transmission of a hidden variable named seen-
form. If seenform doesn’t exist, the form will be displayed. If seenform does exist,
this implies that the form has been filled out by the user, and the information is
processed, in this case output to the browser.

Listing 10-4: One-script form processing
<html>

<head>

<title>Listing 10-4</title>

</head>

<body bgcolor="#ffffff" text="#000000" link="#cbda74" vlink="#808040"

alink="#808040">

<?

// all double quotations in $form must be escaped, 

// otherwise a parse error will occur

$form = "

<form action=\"listing10-4.php\" method=\"post\">

<input type=\"hidden\" name=\"seenform\" value=\"y\">

<b>Give us some information!</b><br>

Your Name:<br>

<input type=\"text\" name=\"name\" size=\"20\" maxlength=\"20\" value=\"\"><br>

Your Email:<br>

<input type=\"text\" name=\"email\" size=\"20\" maxlength=\"40\" value=\"\"><br>

<input type=\"submit\" value=\"subscribe!\">

</form>";

// If we haven't already seen the form ($seenform passed by hidden 

// form value), show the form.

if ($seenform != "y"):

print "$form";

else :

print "Hi, $name!. Your email address is $email";

endif;

?>

</body>

</html>

Chapter 10

240

Gilmore_10  12/5/00  2:23 PM  Page 240



Keep in mind that this is not the most user-friendly format, as it does not
specifically inform readers that they have not correctly filled in the form on sub-
sequent reloads of the page. The issue of error verification is discussed later in
this chapter. For the moment, it’s just important to realize how one script can be
used to perform these operations.

Now that you’re getting an idea just how easy it is to process form informa-
tion, I’ll proceed with an interesting example that will automatically mail the user
information to an address that you specify. This is illustrated in Scenario 3.

Scenario 3: Sending the Information to an Email Address

While the idea of simply displaying the entered user information to the browser is
appealing, it doesn’t do too much for us in the sense of actually processing the
user input in a meaningful way. One way to process this information could be to
send it to a particular email address, for example, the site administrator’s. While
the mailto: hyperlink can spurn an email message from the browser, keep in mind
that not all computers are configured with an external email application. There-
fore, using a Web-based form to send email is one foolproof way to make sure the
user’s message gets to you. 

In the next section, “mail(),” I create a short form that prompts the user to
enter some information and comments about the site. This data is then formatted
accordingly and fed to PHP’s predefined mail() function. Before delving into this
sample form, take a moment to brush up on the mail() syntax.

mail()

The mail() function, as you may have surmised, is used to mail information to a
given recipient. Its syntax is:

boolean mail(string recipient, string subject, string message [, string

addl_headers])

The subject is, of course, the subject of the email. The message is the textual
body of the email, and the optional input parameter addl_headers is used to sup-
ply any additional header information (such as HTML formatting) that is sent
along with the email.

Forms

241

Gilmore_10  12/5/00  2:23 PM  Page 241



Assuming you have heeded the preceding note, and your mail() function is oper-
ating properly, go ahead and execute the following code (of course first changing
youraddress@yourserver.com to your valid email address):

$email = "youraddress@yourserver.com";

$subject = "This is the subject";

$message = "This is the message";

$headers = "From: somebody@somesite.com ";

mail($email, $subject, $message, $headers);

Although for large volumes of email you are definitely better off going with a
robust mailer application such as majordomo (http://www.greatcircle.com
/majordomo/), PHP’s mail() function works great when the need arises.

Now that you’ve been brought up to speed regarding the mail() function, you
are ready to implement it. Check out Listing 10-5, which gathers user information
and sends it to an address specified by the script administrator.

Listing 10-5: Using mail() to redirect user information
<html>

<head>

<title>Listing 10-5</title>

</head>

<body bgcolor="#ffffff" text="#000000" link="#cbda74" vlink="#808040"

alink="#808040">

<?

$form = "

<form action=\"listing10-5.php\" method=\"post\">

<input type=\"hidden\" name=\"seenform\" value=\"y\">

<b>Send us your comments!</b><br>

Your Name:<br>

<input type=\"text\" name=\"name\" size=\"20\" maxlength=\"20\" value=\"\"><br>

Chapter 10

242

NOTE The function mail() uses sendmail on UNIX-based machines. For
Windows, this function will not work unless you have a mail server
installed or you point mail() to a working SMTP server. This is accom-
plished by modifying the SMTP variable, in the php.ini file.

Gilmore_10  12/5/00  2:23 PM  Page 242



Your Email:<br>

<input type=\"text\" name=\"email\" size=\"20\" maxlength=\"40\" value=\"\"><br>

Your Comments:<br>

<textarea name=\"comments\" rows=\"3\" cols=\"30\"></textarea><br>

<input type=\"submit\" value=\"submit!\">

</form>

";

// If we haven't already seen the form ($seenform passed by hidden 

// form value), show the form.

if ($seenform != "y") :

print "$form";

else :

// change $recipient to be the recipient of the form information

$recipient = "yourname@youremail.com";

// email subject

$subject = "User Comments ($name)";

// extra email headers

$headers = "From: $email";

// send the email or produce an error

mail($recipient, $subject, $comments, $headers) or die("Could not send 

email!");

// send the user an appropriate message

print "Thank you $name for taking a moment to send us your comments!";

endif;

?>

</body>

</html>

Pretty slick, isn’t it? Listing 10-5 works like Listing 10-4, first checking whether
or not the form has already been viewed by the user. Assuming that it has, the
mail() function is invoked, and the user information is sent to the recipient
address as designated by $recipient The user is then greeted with a thank you
message, displayed to the browser.

An easy add-on to this example is a second mail() call that formats a short
thank you that is subsequently sent to the user. The next example builds on this
premise, providing the user with a choice of newsletters. The user will be sent the
corresponding newsletters based on the selections made.

Forms

243

Gilmore_10  12/5/00  2:23 PM  Page 243



Scenario 4: Sending the User Information via Email

In this scenario, I use a series of checkboxes, each specifying a different informa-
tional brochure. Users can click one, two, or three of these checkboxes, enter their
email address, and they will be sent the selected brochures. Note the usage of an
array in the checkboxes. This will facilitate the verification of which checkboxes
have been selected, in addition to improving the code organization.

Each informational email should be kept in a separate file. For purposes of
this scenario, there are three text files:

• Site architecture: site.txt is the information about the site.

• Development team: team.txt is the information about our talented team.

• Upcoming events: events.txt invites you to join a wild event.

Now check out Listing 10-6.

Listing 10-6: Sending user-requested information
<html>

<head>

<title>Listing 10-6</title>

</head>

<body bgcolor="#ffffff" text="#000000" link="#cbda74" vlink="#808040"

alink="#808040">

<?

$form = "

<form action=\"listing10-6.php\" method=\"post\">

<input type=\"hidden\" name=\"seenform\" value=\"y\">

<b>Receive information about our site!</b><br>

Your Email:<br>

<input type=\"text\" name=\"email\" size=\"20\" maxlength=\"40\" value=\"\"><br>

<input type=\"checkbox\" name=\"information[site]\" value=\"y\">Site

Architecture<br>

<input type=\"checkbox\" name=\"information[team]\" value=\"y\">Development

Team<br>

<input type=\"checkbox\" name=\"information[events]\" value=\"y\">Upcoming

Events<br>

<input type=\"submit\" value=\"send it to me!\">

</form>";

Chapter 10

244

Gilmore_10  12/5/00  2:23 PM  Page 244



if ($seenform != "y") :

print "$form";

else :

$headers = "From: devteam@yoursite.com";

// cycle through each array key/value element

while ( list($key, $val) = each ($information) ) :

// verify if the current value is "y"

if ($val == "y") :

// create filename that corresponds with current key

$filename = "$key.txt";

$subject = "Requested $key information"; 

// open the filename

$fd = fopen ($filename, "r"); 

// read the entire file into a variable

$contents = fread ($fd, filesize ($filename)); 

// send email.

mail($email, $subject, $contents, $headers) or die("Can't send 

// email!");

fclose($fd);

endif;

endwhile;

// Notify user of success

print sizeof($information)." informational newsletters have been sent to

$email!";

endif;

?>

</body>

</html>

Listing 10-6 uses a convenient while loop to cycle through each array
key/value pair, sending out only those informational newsletters that correspond
to those key/value pairs in which the value has been set to y. It is important to
remember that the text files must be named in accordance with each key  in the
array (site.txt, team.txt, and events.txt). I dynamically create the filename using
each key and then open that filename, in turn reading the file contents to a vari-
able ($contents). The $contents variable is then used as the message parameter of
the mail() function.

The next scenario deals with storing the user information in a more organ-
ized format, using a text file to do so. 

Forms

245

Gilmore_10  12/5/00  2:23 PM  Page 245



Scenario 5: Adding the User Information to a Text File

This text file information can later be analyzed for statistical meaning, searched,
or whatever your heart desires. Listing 10-7 is a one-script form processor like
those in the previous scenarios. The user is prompted to complete four items:
name, email address, preferred language, and occupation. This information is
then appended to a text file aptly named user_information.txt. Information ele-
ments are separated by a vertical bar (|) to distinguish them from each other.

Listing 10-7: Storing user information in a text file
<html>

<head>

<title>Listing 10-7</title>

</head>

<body bgcolor="#ffffff" text="#000000" link="#cbda74" vlink="#808040"

alink="#808040">

<?

// create the form

$form = "

<form action=\"listing10-7.php\" method=\"post\">

<input type=\"hidden\" name=\"seenform\" value=\"y\">

<b>Give us your personal info!</b><br>

Your Name:<br> 

<input type=\"text\" name=\"name\" size=\"20\" maxlength=\"20\" value=\"\"><br>

Your Email:<br> 

<input type=\"text\" name=\"email\" size=\"20\" maxlength=\"20\" value=\"\"><br>

Your Preferred Language:<br>

<select name=\"language\">

<option value=\"\">Choose a language:

<option value=\"English\">English

<option value=\"Spanish\">Spanish

<option value=\"Italian\">Italian

<option value=\"French\">French

<option value=\"Japanese\">Japanese

<option value=\"newyork\">NewYork-ese

</select><br>

Your Occupation:<br>

<select name=\"job\">

<option value=\"\">What do you do?:

<option value=\"student\">Student

<option value=\"programmer\">Programmer

<option value=\"manager\">Project Manager

Chapter 10

246

Gilmore_10  12/5/00  2:23 PM  Page 246



<option value=\"slacker\">Slacker

<option value=\"chef\">Gourmet Chef

</select><br>

<input type=\"submit\" value=\"submit!\">

</form>";

// has the form already been filled in?

if ($seenform != "y") :

print "$form";

else :

$fd = fopen("user_information.txt", "a");

// make sure user has not entered a vertical bar in the input

$name = str_replace("|", "", $name);

$email = str_replace("|", "", $email);

// assemble user information

$user_row = $name."|".$email."|".$language."|".$job."\n";

fwrite($fd, $user_row) or die("Could not write to file!");

fclose($fd);

print "Thank you for taking a moment to fill out our brief questionnaire!";

endif;

?>

</body>

</html>

One important item is the section of code that ensures that the user did not
insert any vertical bars (|) in the name or email data. The function
str_replace()strips those out, replacing them with nothing. If this were not done,
any user-inserted vertical bars would act to corrupt the data file, making it diffi-
cult, if not impossible, to correctly parse that file.

Keep in mind that when dealing with relatively large amounts of information,
a text file works just fine. However, when you are dealing with many users, or large
amounts of information, you may wish to make use of a database to store and
manipulate forms-entered data. This matter is covered in detail in Chapter 11.

Up to this point, the forms that I have covered have generally assumed that
the user will enter correct and nonmalicious data. This is a very unwise assump-
tion! In the next section I complement the scenarios discussed in this section,
showing how you can verify the integrity of the forms information. In addition to
weeding out any information that may be malicious or insufficient, error check-
ing ultimately results in a more efficient and user-friendly interface.

Forms

247

Gilmore_10  12/5/00  2:23 PM  Page 247



Error Checking

Processing user information could be rather useless if it were constantly filled
with misleading data. While there is no way to ensure that users are not lying, you
can verify the information’s integrity (for example, you can verify whether or not
an email address is valid). While JavaScript is a popular technology for form verifi-
cation, browser incompatibilities can render this useless. Since PHP executes on
the server side, you can rest assured that the form data will always be correctly
verified (provided that your code is correct).

When you find errors in user data, you need to inform users what errors were
found and suggest how they could fix these errors. Some possible methods of
informing users include simply displaying proper error messages and suggesting
alternative variations of the entered information (as may be the case when the
user enters a username that is already taken). In this section, I cover verification
and message display, saving input information for a larger example  in the project
at the end of this chapter.

Scenario 6: Displaying Missing or Erred Form Fields

The last thing you want as a site developer is for users to become frustrated due to
lack of feedback as to what they are doing wrong when filling out a form, particu-
larly when requesting further product information or even making a purchase!
One efficient way to ensure that users understand which form fields are missing
or not being accepted is to display explicit error messages. 

The idea behind this form of error checking is to check each field separately,
ensuring that it is not empty and that illegal data has not been entered. If the field
is OK, move on to the next field. Otherwise, display an appropriate error message,
set a flag that will later be used as a means for triggering the form redisplay, and
move on to the next field, repeating this process until you’ve checked the entire
form. This method is illustrated in Listing 10-8.

Listing 10-8: Verifying form information and displaying appropriate
messages
<html>

<head>

<title>Listing 10-8</title>

</head>

<body bgcolor="#ffffff" text="#000000" link="#cbda74" vlink="#808040"

alink="#808040">

<?

// create the form

$form = "

Chapter 10

248

Gilmore_10  12/5/00  2:23 PM  Page 248



<form action=\"listing10-8.php\" method=\"post\">

<input type=\"hidden\" name=\"seenform\" value=\"y\">

<b>Give us some information!</b><br>

Your Name:<br>

<input type=\"text\" name=\"name\" size=\"20\" maxlength=\"20\"

value=\"$name\"><br>

Your Email:<br>

<input type=\"text\" name=\"email\" size=\"20\" maxlength=\"40\"

value=\"$email\"><br>

<input type=\"submit\" value=\"subscribe!\">

</form>";

// has the form already been filled in?

if ($seenform != "y"):

print "$form";

// The user has filled out the form. Now verify the information

else :

$error_flag = "n";

// ensure that the name variable is not empty

if ($name == "") :

print "<font color=\"red\">* You forgot to enter your name!</font> 

// <br>";

$error_flag = "y";

endif;

// ensure that the email variable is not empty

if ($email == "") :

print "<font color=\"red\">* You forgot to enter your email!</font> 

<br>";

$error_flag = "y";

else :

// convert all email alphabetical characters to lowercase

$email = strtolower(trim($email));

// ensure the email address is of valid syntax

if (! @eregi('^[0-9a-z]+'.

'@'.

'([0-9a-z-]+\.)+'.

'([0-9a-z]){2,4}$', $email)) :

Forms

249

Gilmore_10  12/5/00  2:23 PM  Page 249



print "<font color=\"red\">* You entered an invalid email 

address!</font> <br>";

$error_flag = "y";

endif;

endif;

// If the $error_flag has been set, redisplay the form

if ($error_flag == "y") :

print "$form";

else :

// do something with that user information

print "You entered valid form information!";

endif;

endif;

?>

</body>

</html>

Listing 10-8 ensures that the form fields, in this case name and email address,
is not empty and verifies that the supplied email address is valid. If any of the data
checks out as invalid, the appropriate error messages are displayed, and the form
is again displayed, with all of the previously entered data already filled in The fact
that the information is already filled in will make users more willing to attempt to
correct the incorrect information. An empty form invites users to go elsewhere for
the services they need.

Dynamic Forms Construction

To this point, I have been coding each form manually, toiling away as I bask in the
irradiated glow of my computer screen. In the programming world, we all know
that doing anything manually is bad, as it introduces the chance for errors, not to
mention that it cuts into our game-playing time.

Therefore, in this section, I provide a scenario in which you use array data to
dynamically build a pull-down menu. It’s a rather simple process, but can cut
quite a bit of time from the initial coding and later code maintenance.

Scenario 7: Generating a Pull-Down Menu

Assume that you have a list of your favorite sites that you would like to provide to
your site readers as examples of cool design. Rather than hard coding each, you
could build an array and then use that array to populate your form.

Chapter 10

250

Gilmore_10  12/5/00  2:23 PM  Page 250



Listing 10-9 makes use of the one-script processor, first checking whether or
not the $site variable has been assigned a value. If it has, the header() function is
called, and the $site variable is appended to the string “Location: http://”. This
command tells the header() function to redirect the browser to whatever URL is
specified in that command. If $site has not been assigned a value, then the form is
displayed. The pull-down menu is created by looping x times based on the size of
the $favsites array. This array contains five of my favorite sites. Of course, you can
add as many sites as you wish.

Listing 10-9: Generating a dynamic pull-down menu
<?

if ($site != "") :

header("Location: http://$site");

exit;

else :

?>

<html>

<head>

<title>Listing 10-9</title>

</head>

<body bgcolor="#ffffff" text="#000000" link="#cbda74" vlink="#808040"

alink="#808040">

<?

$favsites = array ("www.k10k.com",

"www.yahoo.com",

"www.drudgereport.com",

"www.phprecipes.com",

"www.frogdesign.com");

// now build the form

?>

<form action = "listing10-9.php" method="post">

<select name="site">

<option value = "">Choose a site:

<?

Forms

251

CAUTION It is extremely important that you understand that the header()
function must be called before any output is displayed to the browser. You
cannot just call header() whenever you wish in a PHP script. Calling
header() at the wrong time has caused such grief among novice PHP
developers that I suggest you repeat this rule five times.

Gilmore_10  12/5/00  2:23 PM  Page 251



$x = 0;

while ( $x < sizeof ($favsites) ) :

print "<option value='$favsites[$x]'>$favsites[$x]";

$x++;

endwhile;

?>

</select>

<input type="submit" value="go!">

</form>

<?

endif;

?>

Generating dynamic forms is particularly useful when you are dealing with a
large amount of data that could change at a given time, thus causing any hard-
coded form information to become outdated. However, I do recommend hard
coding any information that you would deem to be static (for example, a listing of
the U.S. states), as this could result in a slight gain in performance.

Project: Create a Guestbook

Ever since the dawn of the World Wide Web, site builders have been interested in
providing ways for visitors to post comments and thoughts onsite. Typically, this
feature is known as a guestbook. Using HTML forms, PHP’s form-processing capa-
bilities, and a text file, I’ll show you just how easily you can create a customizable
guestbook.

First, you want to create an initialization file that holds certain global vari-
ables and application functions. This file, entitled “init.inc”, is shown in Listing
10-10.

Listing 10-10: The init.inc file used to create your guestbook
<?

// file: init.inc

// purpose: provides global variables and functions for use in guestbook project

// Default page title

$title = "My Guestbook";

// Background color

$bg_color = "white";

Chapter 10

252

Gilmore_10  12/5/00  2:23 PM  Page 252



// Font face

$font_face = "Arial, Verdana, Times New Roman";

// Font color

$font_color = "black";

// Posting date

$post_date = date("M d y");

// Guestbook data

$guest_file = "comments.txt";

// This function retrieves the guestbook information

// and displays it to the browser.

function view_guest($guest_file) {

GLOBAL $font_face, $font_color;

print "Return to <a href=\"index.php\">index</a>.<br><br>";

// If there is data in the guestbook data file…

if (filesize($guest_file) > 0) :

// open the guestbook data file

$fh = fopen($guest_file, "r") or die("Couldn't open $guest_file");

print "<table border=1 cellpadding=2 cellspacing=0 width=\"600\">";

// while not the end of the file

while (! feof($fh)) :

// get the next line

$line = fgets($fh, 4096);

// split the line apart, and assign each component to a variable

list($date, $name, $email, $comments) = explode("|", $line);

// If there is a name, print it

if ($name != "") :

print "<tr>";

print "<td><font color=\"$font_color\"         

face=\"$font_face\">Date:</font></td>";

Forms

253

Gilmore_10  12/5/00  2:23 PM  Page 253



print "<td><font color=\"$font_color\" 

// face=\"$font_face\">$date</font></td>";

print "</tr>"; 

print "<tr>";

print "<td><font color=\"$font_color\" 

// face=\"$font_face\">Name:</font></td>";

print "<td><font color=\"$font_color\" 

// face=\"$font_face\">$name</font></td>";

print "</tr>";

print "<tr>";

print "<td><font color=\"$font_color\" 

// face=\"$font_face\">Email:</font></td>";

print "<td><font color=\"$font_color\" 

// face=\"$font_face\">$email</font></td>";

print "</tr>";

print "<tr>";

print "<td valign=\"top\"><font color=\"$font_color\" 

// face=\"$font_face\">Message:</font></td>";

print "<td><font color=\"$font_color\" 

// face=\"$font_face\">$comments</font></td>";

print "</tr>";

print "<tr><td colspan=\"2\">&nbsp;</td></tr>";

endif;

endwhile;

print "</table>";

// close the file

fclose($fh);

else :

print "Currently there are no entries in the guestbook!"; 

endif;

} // view_guest

Chapter 10

254

Gilmore_10  12/5/00  2:23 PM  Page 254



// This function adds new information to the datafile.

function add_guest($name, $email, $comments) {

GLOBAL $post_date, $guest_file;

// format the data for file input

$contents = "$post_date|$name|$email|$comments\n";

// open the data file

$fh = fopen($guest_file, "a") or die("Could not open $guest_file!");

// write the data contents to the file

$wr = fwrite($fh, $contents) or die("Could not write to $guest_file!");

// close the file

fclose($fh);

} // add_guest

?>

Next, you want to create three files: an index file containing the “add” and
“view” links for the guestbook, a file that will display the guestbook information,
and a file that will prompt users for new guestbook information. The index file in
Listing 10-11 simply displays two links to the functions of the guestbook: adding
and viewing data. You could easily incorporate these links into a more compre-
hensive site.

Listing 10-11: An index file containing add and view links for your
guestbook
<html>

<?

INCLUDE("init.inc");

?>

<head>

<title><?=$page_title;?></title>

</head>

<body bgcolor="<?=$bg_color;?>" text="#000000" link="#808040" vlink="#808040"

alink="#808040">

<a href="view_guest.php">View the guestbook!</a><br>

<a href="add_guest.php">Sign the guestbook!</a><br>

</body>

</html>

Forms

255

Gilmore_10  12/5/00  2:23 PM  Page 255



The view_guest.php file in Listing 10-12 displays all guestbook information in
the data file.

Listing 10-12: The view_guest.php file
<html>

<?

INCLUDE("init.inc");

?>

<head>

<title><?=$page_title;?></title>

</head>

<body bgcolor="<?=$bg_color;?>" text="#000000" link="#808040" vlink="#808040"

alink="#808040">

<?

view_guest($guest_file);

?>

The add_guest.php file in Listing 10-13 prompts users for new guestbook
data. Subsequently, it is used to add the information to the data file.

Listing 10-13: The add_guest.php file
<html>

<?

INCLUDE("init.inc");

?>

<head>

<title><?=$page_title;?></title>

</head>

<body bgcolor="#ffffff" text="#000000" link="#808040" vlink="#808040"

alink="#808040">

<?

// If the form data has not yet been passed, display the form.

if (! $seenform) :

?>

<form action="add_guest.php" method="post">

<input type="hidden" name="seenform" value="y">

Name:<br>

<input type="text" name="name" size="15" maxlength="30" value=""><br>

Chapter 10

256

Gilmore_10  12/5/00  2:23 PM  Page 256



Email:<br>

<input type="text" name="email" size="15" maxlength="35" value=""><br>

Comment:<br>

<textarea name="comment" rows="3" cols="40"></textarea><br>

<input type="submit" value="submit">

</form>

<?

// The form data has been passed. Therefore, add it to the text file

else :

add_guest($name, $email, $comment);

print "Your comments have been added to the guestbook. <a 

href=\"index.php\">Click here</a> to return to the index.";

endif;

?>

One of the greatest advantages of developing an application using well-
defined functions is ease of portability. For example, you may be interested in
storing guestbook data in a database instead of a text file. No problem: just
change the contents of the add_guest() and view_guest() files for database oper-
ation, and you’ve successfully ported the guestbook application for database use.

Figure 10-8 illustrates how the guestbook would be viewed after a few entries
have been inserted:

Forms

257

Figure 10-8. view_guest.php

Gilmore_10  12/5/00  2:23 PM  Page 257



The datafile would store the same information shown in Figure 10-8 as fol-
lows:

Oct 29 00|Michele|michelle@latorre.com|I love cheese!

Oct 29 00|Nino|nino@latorre.com|Great site!

What’s Next?

Processing form information is arguably one of PHP’s greatest features, as it intro-
duces ease and reliability to an already extremely valuable site feature, that is,
user interactivity. In this chapter we covered quite a bit of material regarding
forms and PHP’s role in forms processing, namely:

• An introduction to form syntax

• Passing form info from one PHP script to another

• One-script forms processing

• The mail() function

• Sending forms information to an email address

• Automating user information requests via email

• Adding user information to a text file

• Error checking

• Dynamic forms construction

Incorporating a database into your site infrastructure is one of the first steps
you should consider taking if you intend to provide any substantial amount of
information over the Web. This is the subject of the next chapter.

Chapter 10

258

Gilmore_10  12/5/00  2:23 PM  Page 258





CHAPTER 11

Databases

The ability to efficiently store and retrieve large amounts of information has con-
tributed enormously to the success of the Internet. Usually this information stor-
age is implemented through the use of a database (db). Sites such as Yahoo, Ama-
zon, and Ebay depend heavily on the reliability of their databases for storing
enormous amounts of information. However, db support is certainly not limited
to the behemoth corporations of the Web, as several powerful database imple-
mentations are available at relatively low cost (or even free) to Web developers.

When a database is properly implemented, using it to store data results in
faster and more flexible retrieval of data. Adding searching and sorting features to
your site is greatly simplified, and control over viewing permissions becomes a
nonissue by way of the privilege control features in many database systems. Data
replication and backup are also simplified.

This chapter begins with an in-depth discussion of how PHP is used to mine
and update information in what is arguably PHP’s most popular database coun-
terpart, MySQL (http://www.mysql.com). I use MySQL to illustrate how PHP can
display and update data in a database, with examples of a basic search engine 
and sorting mechanism, both of which prove useful in many Web applica-
tions. I continue the database discussion with a look into PHP’s ODBC (Open
Data Base Connectivity) features, which provide a single interface that can be
used for simultaneously connecting to several different databases. PHP’s ODBC
support is demonstrated by an illustration of the process of connecting and
retrieving data from a Microsoft Access database. The chapter concludes with a
project showing you how to use PHP and a MySQL database to create a catego-
rized online bookmark repository. Users will be able to add information about
their favorite sites, placing each site under a predefined set of categories specified
by the administrator.

Before commencing the discussion of MySQL, I would like to brief those
users unfamiliar with what has become the worldwide standard database lan-
guage, Structured Query Language (SQL). SQL forms the foundation of practically
every popular database implementation; therefore it is imperative that you
understand at least the basic underlying ideas of SQL before proceeding to the
many database examples throughout the remainder of this book.

259

Gilmore_11  12/5/00  10:24 AM  Page 259



What Is SQL?

SQL could be defined as the standard language used to interact with relational
databases, discussed shortly. However, SQL is not a computer language like C,
C++, or PHP. Instead, it is an interfacing tool for performing various database
management tasks, offering a predefined set of commands to the user. Much
more than just a query language, as its name implies, SQL offers an array of tools
for interacting with a database, including the following:

• Data structure definition: SQL can define the various constructs that the
database uses to store the data. 

• Data querying: SQL can retrieve data in the database and present it in an
easily readable format.

• Data manipulation: SQL can insert, update, and delete database data.

• Data access control: SQL makes it possible to coordinate user-specific con-
trol over who is capable of viewing, inserting, updating, and deleting data.

• Data integrity: SQL prevents data corruption that could be caused by such
problems as concurrent updates or system failures. 

Note from the SQL definition that SQL’s use is specific to relational databases.
A relational database is essentially a database implementation where all data is
organized into related table structures. It is possible to create tables that “relate”
to one another through the use of data inferences from one table to another. You
can think of a table as a gridlike arrangement of data values, the position of each
determined by a row/column position, which is generally how they’re displayed.
A sample relational database is illustrated in Figure 11-1.

Chapter 11

260

Gilmore_11  12/5/00  10:24 AM  Page 260



As you can see in Figure 11-1, each table is arranged in a row/column struc-
ture, with each column given a unique title (the scope of the uniqueness limited
to the table itself). Notice how a relation is drawn between the customer and
orders table, using the cust_id to correctly identify a customer without having to
redundantly include the customer’s name and other information. There also
exists another relation, this one between the orders and products tables. This rela-
tion is drawn using the prod_id, which identifies the product that the customer
(specified by cust_id) has ordered. Using these relations, you can easily make
inferences to both the customer and product information, simply by using these
unique identification numbers. As you can now surmise, when used properly
relational databases are a powerful tool for organizing and efficiently storing data
with a minimum of redundancy. Keep the company database in mind, as I will
refer to it frequently in later examples.

So how does SQL communicate with the relational database? This is accom-
plished through the tailored use of generally defined commands. These com-
mands are clearly descendant from our own spoken language, using easily under-
stood English verbs such as select, insert, update, and delete. For example,
referring to Figure 11-1, if you wanted to retrieve the email of the customer having
the identification number 2001cu, you could execute this SQL command:

SELECT cust_email FROM customers WHERE cust_id = '2001cu'

Databases

261

Figure 11-1. A sample relational database (entitled “company”)

Gilmore_11  12/5/00  10:24 AM  Page 261



Logical enough, right? This command could be generalized as follows:

SELECT column name FROM table name [ WHERE some condition]

The square brackets around the concluding part of the generalized command
mean that it is optional. For example, if you wanted to retrieve all of the customer
emails from the customers table, you could query the database using the following
command: 

SELECT cust_email FROM customers

Moving onward, assume that you wanted to insert a new row of data into the
products table (thus a new product, since it is assumed that each product is
unique). A sample insertion command is:

INSERT into products VALUES ('1009pr', 'Red Tomatoes', '1.43');

Suppose that you later wanted to delete that data. A sample deletion com-
mand is:

DELETE FROM products WHERE prod_id = '1009pr';

There are many SQL command variations, a complete introduction of them
certainly out of the scope of this book. Entire books are devoted to just this sub-
ject! However, I will attempt to keep the SQL commands  throughout the remain-
der of this book relatively simple, while at the same time attaining a certain level
of practicality in the examples. I suggest searching the Web for several of the many
SQL resources and primers. I have included a few of my personal favorites  at the
conclusion of this section.

Given the fact that you are reading this book, you are likely already wondering
how a database is accessed from the Web environment. Typically, some interfac-
ing language such as PHP, Java, or Perl is used to initiate a connection with the
database, and then through the use of predefined functionality the database is
queried as necessary. You can think of this interface language as the “glue” that
melds the database and the Web together. With that said, I turn my attention to
my favorite glue language, PHP.

Chapter 11

262

NOTE It is not required that you capitalize the SQL commands in a query.
This is my personal preference, done so as to more easily distinguish the
query’s various components.

Gilmore_11  12/5/00  10:24 AM  Page 262



Additional Resources

Here are a few online resources that the SQL novice and expert alike may find 
useful.

• Various SQL tutorials: 
http://perl.about.com/compute/perl/cs/beginningsql/index.htm

• SQLCourse.com (also offers an onsite practice database): 
http://www.sqlcourse.com/

• SQL for Web nerds: 
http://www.arsdigita.com/books/sql/

• SQL introduction (focus on MySQL):
http://www.devshed.com/Server_Side/MySQL/Intro/

PHP’s Extensive Database Support

If I could name any single most important feature of PHP, it would likely be its
database support. PHP offers vast support for practically every prominent db
server available today, including those listed below:

Adabas D Informix PostgreSQL

Dbase Ingres Solid

Direct MS-SQL InterBase Sybase

Empress mSQL UNIX dbm 

FilePro (read-only) MySQL Velocis

FrontBase ODBC

IBM DB2 Oracle (OCI7 and OC18)

As you can see from the preceding list, PHP’s database support options are
extensive, including compatibility with many databases that you have certainly
heard of (Oracle, for example) and likely several that you haven’t. The bottom line
is, if you plan on using a competent database to store your Web information,
chances are it will be one that PHP supports. PHP supports a database by offering
a set of predefined functions capable of connecting to, querying, and closing the
connection to a database. 

Discussing the features of each supported database is certainly out of the
scope of this book. However, the MySQL database server sufficiently summarizes
the general capabilities of many of PHP’s supported database servers and serves
as a base for any SQL-based server. For this reason, MySQL syntax is used

Databases

263

Gilmore_11  12/5/00  10:24 AM  Page 263



throughout the remainder of this chapter and in any database-related examples
in the concluding chapters of this book. Regardless of the database server you
decide to implement, you should be able to translate the examples from here on
with relative ease.

MySQL

MySQL (http://www.mysql.com) is a robust SQL database server developed and
maintained by T.c.X DataKonsultAB of Stockholm, Sweden. Publically available
since 1995, MySQL has risen to become one of the most popular database servers
in the world, this popularity due in part to the server’s speed, robustness, and
flexible licensing policy. (See note for more information regarding MySQL’s 
licensing strategy.)  

Given the merits of MySQL’s characteristics, coupled with a vast and
extremely easy-to-use set of predefined interfacing functions, MySQL has
arguably become PHP’s most-popular database counterpart.

Installation

MySQL is so popular among PHP users that support for the db server is automati-
cally built into the PHP distribution. Therefore, the only task that you are left to
deal with is the proper installation of the MySQL package. MySQL is compatible
with practically every major operating system, including, among others, FreeBSD,
Solaris, UNIX, Linux, and the various Windows versions. While the licensing pol-
icy is considerably more flexible than that of other database servers, I strongly
suggest taking some time to read through the licensing information found at the
MySQL site (http://www.mysql.com).

Chapter 11

264

NOTE MySQL is licensed under the GNU General Public License (GPL).
Please read the MySQL license information on the MySQL site
(http://www.mysql.com) for a full accounting of the current MySQL licens-
ing policy.

Gilmore_11  12/5/00  10:24 AM  Page 264



You can download the latest version of MySQL from one of the many world-
wide mirrors. A complete listing of these mirrors is at
http://www.mysql.com/downloads/mirrors.html. At the time of this writing the lat-
est stable version of MySQL was 3.22.32, with version 3.23 in beta. It is in your best
interest to always download the latest stable version. Go to the mirror closest to
you and download the version that corresponds with your operating system plat-
form. You’ll see links at the top of the page pointing to the most recent versions.
Be sure to read through the entire page, as several OS-specific downloads are at
the conclusion. 

The MySQL development team has done a great job putting together exten-
sive documentation regarding the installation process. I recommend taking some
time to thoroughly read through all general installation issues in addition to the
information that applies to your operating system. 

Configuring MySQL

After a successful installation, it is time to configure the MySQL server. This pro-
cess largely consists of creating new databases and configuring the MySQL privi-
lege tables. The privilege tables control the MySQL database access permissions.
Correct configuration of these tables is pivotal to securing your database system,
and therefore it is imperative that you fully understand the details of the privilege
system before launching your site into a production environment.

Although a chore to learn at first, the MySQL privilege tables are extremely
easy to maintain once you understand them. A complete introduction to these
tables is certainly out of the scope of this book. However, a number of resources
available on the Web are geared toward bringing MySQL users up to speed. Check
out the MySQL site (http://www.mysql.com) for further information.

Once you have correctly installed and configured the MySQL distribution, it’s
time to begin experimenting with Web-based databasing! The next section turns
our attention towards exactly this matter, starting with an introduction of PHP’s
MySQL functionality.

Databases

265

Gilmore_11  12/5/00  10:24 AM  Page 265



PHP’s Predefined MySQL Functions

Once you have created and successfully tested the necessary permissions, you are
ready to begin using the MySQL server. In this section, I introduce the predefined
MySQL functions, enabling you to easily interface your PHP scripts with a MySQL
server. Here is the general order of events that take place during the MySQL server
communications process:

1. Establish a connection with the MySQL server. If the connection attempt
fails, display an appropriate message and exit process.

2. Select a database on the MySQL server. If you cannot select the database,
display an appropriate message and exit process. It’s possible to simulta-
neously have several databases open for querying.

3. Perform necessary queries on selected database(s). 

4. Once the querying is complete, close the database server connection.

The example tables (products, customers, orders) in Figure 11-1 are used as
the basis for the examples in the remainder of this section. If you would like to fol-
low along with these examples, I suggest going back and creating them now. Alter-
natively, make a copy of the pages so you do not have to continuously flip back
and forth.

With that said, let’s begin at the beginning, that is, how to connect to the
MySQL database server.

mysql_connect()

The function mysql_connect() is used to establish an initial connection with the
MySQL server. Once a successful connection is established, a database residing
on that server can be selected. The syntax is:

int mysql_connect([string hostname [:port] [:/path/to/socket] [, string username]

[, string password])

The hostname is the name of the host as listed in the MySQL server privilege
tables. Of course, it is also used to direct the request to the Web server hosting the
MySQL server, since it is possible to connect to a remote MySQL server. An
optional port number can be included along with the host, in addition to an
optional path to a socket when a local host is specified. Both the username and
password input parameters should correspond to the username and password,

Chapter 11

266

Gilmore_11  12/5/00  10:24 AM  Page 266



respectively, as specified in the MySQL server privilege tables. Note that all of the
input parameters are optional, since the privilege tables can be loosely configured
to accept a nonauthenticated connection. If the hostname parameter is empty,
mysql_connect() attempts to connect to the local host. 

An example connection call follows:

@mysql_connect("localhost", "web", "4tf9zzzf") or die("Could not connect to MySQL

server!");

In this case, localhost is the server host, web is the username, and 4tf9zzzf is
the password. The @ preceding the mysql_connect() function will suppress any
error message that results from a failed attempt, instead producing the custom
one specified in the die() call. Note that no value is returned from the mysql_con-
nect() call. This is fine when there is only one MySQL server connection that will
come into play. However, when connections are made to multiple MySQL servers
on multiple hosts, a link ID must be generated so that subsequent commands can
be directed to the intended MySQL server. For example:

<?

$link1 = @mysql_connect("www.somehost.com", "web", "abcde") or die("Could not

connect to MySQL server!");

$link2 = @mysql_connect("www.someotherhost.com", "usr", "secret") or die("Could

not connect to MySQL server!");

?>

Now, $link1 and $link2 can be called as needed in subsequent queries. You
will soon learn exactly how these link IDs are used in queries to specify the
intended server.

mysql_select_db()

Once a successful connection is established with the MySQL server, a database
residing on that server can be selected. This is accomplished with
mysql_select_db(). Its syntax is:

int mysql_select_db (string database_name [, int link_id])

Databases

267

NOTE The function mysql_pconnect() offers persistent connection sup-
port. In multiuser environments, mysql_pconnect() is recommended over
mysql_connect() as a means for conserving system resources. The
mysql_pconnect() input and return parameters are exactly the same as in
mysql_connect().

Gilmore_11  12/5/00  10:24 AM  Page 267



The input parameter database_name should be selected and assigned an iden-
tification handle (returned by mysql_select_db()). Note that the input parameter
link_id is optional. This is true only when just a single MySQL server connection
is open. When multiple connections are open, link_id must be specified. An
example of how a database is selected using mysq(_select_db() follows:

<?

@mysql_connect("localhost", "web", "4tf9zzzf") 

or die("Could not connect to MySQL server!");

@mysql_select_db("company") or die("Could not select company database!");

?>

If there is only one database selection, there is no need to return a database
ID. However, as with mysql_connect(), when multiple databases are open, the
database ID must be returned so there is a way to specify exactly which database
you would like to perform a query on; otherwise the most recently opened link is
used.

mysql_close()

Once you have finished querying the MySQL server, you should close the connec-
tion. The function mysql_close() will close the connection corresponding to the
optional input parameter link_id. If the link_id input parameter is not specified,
mysql_close() will close the most recently opened link. The syntax is:

int mysql_close ([int link_id])

An example of mysql_close() follows:

<?

@mysql_connect("localhost", "web", "4tf9zzzf") 

or die("Could not connect to MySQL server!");

@mysql_select_db("company") or die("Could not select company database!");

print "You're connected to a MySQL database!";

mysql_close();

?>

In the above example, there is no need to specify a link identifier, since only
one open server connection exists when mysql_close() is called.

Chapter 11

268

Gilmore_11  12/5/00  10:24 AM  Page 268



mysql_query()

The function mysql_query() provides the functional interface from which a data-
base can be queried. Its syntax is:

int mysql_query (string query [, int link_id])

The input parameter query corresponds to an SQL query. This query is sent
either to the server connection corresponding to the last opened link or to the
connection specified by the optional input parameter link_id.

People often mistakenly think that the mysql_query() function returns the
results of the query. This is not the case. Depending on the type of query,
mysql_query() has different outcomes. In a successful SELECT SQL statement, a
result ID is returned that can subsequently be passed to mysql_result() so the
selected data can be formatted and displayed to the screen. If the query fails,
FALSE is returned. The function mysql_result() is introduced later in this section.
Furthermore, the number of rows that have been selected can be determined by
executing mysql_num_rows(). This function is also introduced later in this section.

In the case of SQL statements involving INSERT, UPDATE, REPLACE, or
DELETE, the function mysql_affected_rows() can be called to determine how
many rows were affected by the query. (The function mysql_affected_rows() is
introduced next.)

With that said, I will delay presenting an example until the mysql_result()
and mysql_affected_rows() functions are introduced. 

mysql_affected_rows()

It is often useful to return the number of rows affected by an SQL query involving
an INSERT, UPDATE, REPLACE, or DELETE. This is accomplished with the func-
tion mysql_affected_rows(). Its syntax is:

int mysql_affected_rows ([int link_id])

Databases

269

NOTE It is not necessary to close database server connections opened by
mysql_pconnect().

TIP If you are concerned that you are using up too much memory when
making various query calls, call the predefined PHP function
mysql_free_result(). This function, which takes as input the result_id
returned from mysql_query(), will free up all memory associated with that
query call.

Gilmore_11  12/5/00  10:24 AM  Page 269



Notice that the input parameter link_id is optional. If it is not included,
mysql_affected_rows() attempts to use the last opened link_id. Consider the fol-
lowing example:

<?

// connect to the server and select a database.

@mysql_connect("localhost", "web", "4tf9zzzf") 

or die("Could not connect to MySQL server!");

@mysql_select_db("company") or die("Could not select company database!");

// declare query

$query = "UPDATE products SET prod_name = \"cantaloupe\" 

WHERE prod_id = \"1001pr\"";

// execute query

$result = mysql_query($query);

// determine the number of rows that have been affected.

print "Total row updated: ".mysql_affected_rows();

mysql_close();

?>

Executing this code example returns this:

Total rows updated: 1

This will not work for queries involving a SELECT statement. To determine the
number of rows returned from a SELECT, use the function mysql_num_rows()
instead. This function is introduced next.

mysql_num_rows()

The function mysql_num_rows() is used to determine the number of rows returned
from a SELECT query statement. Its syntax is:

int mysql_num_rows (int result)

A usage example of mysql_num_rows() follows:

Chapter 11

270

CAUTION There seems to be a quirk when using  mysql_affected_rows()
in one particular situation. If you execute a DELETE without a WHERE
clause, mysql_affected_rows() will return 0.

Gilmore_11  12/5/00  10:24 AM  Page 270



<?

@mysql_connect("localhost", "web", "4tf9zzzf") 

or die("Could not connect to MySQL server!");

@mysql_select_db("company") or die("Could not select company database!");

// select all product names where the product name begins with a 'p'

$query = "SELECT prod_name FROM products WHERE prod_name LIKE \"p%\"";

// execute the query

$result = mysql_query($query);

print "Total rows selected: ".mysql_num_rows($result);

mysql_close();

?>

Since there is only one product name beginning with p (pears), only one row
is selected. This is the result:

Total rows selected: 1

mysql_result()

The function mysql_result() is used in conjunction with mysql_query() (when a
SELECT query is involved) to produce a data set. Its syntax is:

int mysql_result (int result_id, int row [, mixed field])

The input parameter result_id refers to a value returned by mysql_query().
The parameter row refers to a particular row in the dataset specified by the
result_id. Lastly, the optional input parameter field can be used to specify the
following:

• Field offset in the table.

• Field name

• Field name specified in dot format. Dot format is simply another way to
specify the field name, specified as fieldname.tablename.

Consider Listing 11-1, which makes use of the database displayed in 
Figure 11-1.

Databases

271

Gilmore_11  12/5/00  10:24 AM  Page 271



Listing 11-1: Retrieving and formatting data  in a MySQL database
<?

@mysql_connect("localhost", "web", "ffttss") or die("Could not connect to MySQL

server!");

@mysql_select_db("company") or die("Could not select company database!");

// Select all rows in the products table

$query = "SELECT * FROM products";

$result = mysql_query($query);

$x = 0;

print "<table>";

print "<tr><th>Product ID</th><th>Product Name</th><th>Product Price</th></tr>";

while ($x < mysql_numrows($result)) :

$id = mysql_result($result, $x, 'prod_id');

$name = mysql_result($result, $x, 'prod_name');

$price = mysql_result($result, $x, 'prod_price');

print "<tr>";

print "<td>$id</td><td>$name</td><td>$price</td>";

print "</tr>";

$x++;

endwhile;

</table>

mysql_close();

?>

Executing this example using our sample data returns the results you see in
Listing 11-2:

Listing 11-2: Output generated from execution of Listing 11-1
<table>

<tr>

<th>Product ID</th><th>Product Name</th><th>Product Price</th>

</tr>

<tr>

<td>1000pr</td>

<td>apples</td>

<td>1.23</td>

</tr>

<tr>

<td>1001pr</td>

<td>oranges</td>

<td>2.34</td>

</tr>

<tr>

Chapter 11

272

Gilmore_11  12/5/00  10:24 AM  Page 272



<td>1002pr</td>

<td>bananas</td>

<td>3.45</td>

</tr>

<tr>

<td>1003pr</td>

<td>pears</td>

<td>4.45</td>

</tr>

</table>

While this function works fine when dealing with relatively small result sets,
there are other functions that operate much more efficiently, namely,
mysql_fetch_row() and mysql_fetch_array(). These functions are described
below.

mysql_fetch_row()

It is typically much more convenient to simultaneously assign an entire row to an
indexed array (starting at offset 0), rather than make multiple calls to
mysql_result() to assign column values. This is accomplished with
mysql_fetch_row() Its syntax is:

array mysql_fetch_row() (int result)

Using the array function list() in conjunction with mysql_fetch_row() can
eliminate several lines of code necessary when using mysql_result(). In Listing
11-3, I reconsider the code used in Listing 11-1, this time using list() and
mysql_fetch_row().

Listing 11-3: Retrieving data with mysql_fetch_row() 
<?

@mysql_connect("localhost", "web", "ffttss") or die("Could not connect to MySQL

server!");

@mysql_select_db("company") or die("Could not select company database!");

$query = "SELECT * FROM products";

$result = mysql_query($query);

print "<table>\n";

print "<tr>\n<th>Product ID</th><th>Product Name</th><th>Product

Price</th>\n</tr>\n";

Databases

273

Gilmore_11  12/5/00  10:24 AM  Page 273



while (list($id, $name, $price) =  mysql_fetch_row($result)) :

print "<tr>\n";

print "<td>$id</td>\n<td>$name</td>\n<td>$price</td>\n";

print "</tr>\n";

endwhile;

print "</table>";

mysql_close();

?>

Execution of Listing 11-3 will produce the same results as Listing 11-1. How-
ever, Listing 11-3 accomplishes this with fewer lines of code.

mysql_fetch_array()

The function mysql_fetch_array() accomplishes the same result as
mysql_fetch_row(), except that by default it assigns a returned row to an associa-
tive array. However, you can specify the type of array mapping (associative,
numerically indexed, or both). The syntax is:

array mysql_fetch_array (int result [, result_type])

The input parameter result is the result returned by a call to mysql_query(). The
optional input parameter result_type can be one of three values:

• MYSQL_ASSOC directs mysql_fetch_array() to return an associative array.
This is the default should result_type not be specified.

• MYSQL_NUM directs mysql_fetch_array() to return a numerically indexed
array.

• MYSQL_BOTH directs mysql_fetch_array() to allow for the returned row to be
accessed either numerically or associatively.

Listing 11-4 is a variation of Listing 11-1 and Listing 11-3, this time using
mysql_fetch_array() to return an associative array of row values.

Listing 11-4: Retrieving data with mysql_fetch_array()
<?

@mysql_connect("localhost", "web", "ffttss") 

or die("Could not connect to MySQL server!");

@mysql_select_db("company") or die("Could not select products database!");

$query = "SELECT * FROM products";

Chapter 11

274

Gilmore_11  12/5/00  10:24 AM  Page 274



$result = mysql_query($query);

print "<table>\n";

print "<tr>\n<th>Product ID</th><th>Product Name</th>

<th>Product Price</th>\n</tr>\n";

// No result type, therefore It defaults to MYSQL_ASSOC

while ($row = mysql_fetch_array($result)) :

print "<tr>\n";

print "<td>".$row["prod_id"]."</td>\n

<td>".$row["prod_name"]."</td>\n

<td>".$row["prod_price"]."</td>\n";

print "</tr>\n";

endwhile;

print "</table>";

mysql_close();

?>

Executing Listing 11-4 yields the same results as Listings 11-1 and 11-3.
At this point, you have been introduced to enough of PHP’s MySQL function-

ality to begin building interesting database applications. The first application that
I will consider is a basic search engine. This example will illustrate how HTML
forms (introduced in the preceding chapter) are used to supply information that
is subsequently used to mine information from a database.

Building a Search Engine

While all of us are certainly familiar with using a Web-based search engine to
retrieve data, how is one built? A simple search engine must be able to accept at
least one keyword, which is then passed to a SQL query, which in turn polls the
database for matches. There are many ways that a search engine could format
results (for example, by category or match consistency).

The search engine illustrated in Listing 11-5 is actually geared toward mining
for customer information. The search form prompts the user for a keyword and a
category (customer name, customer ID, or customer email) from which the
search will take place. If the user enters an existing customer name, ID, or email,
the engine will query the database for the remaining pieces of information. Then
it makes use of the customer ID to poll the orders table for an order history based
on that customer. All orders placed by that customer are displayed in descending
order. If the input keyword is not  in the category chosen by the user, then the
search will cease, and the user is provided with an appropriate message, and the
form is again displayed.

Databases

275

Gilmore_11  12/5/00  10:24 AM  Page 275



Listing 11-5: A simple search engine (searchengine.php)
<?

$form = 

"<form action=\"searchengine.php\" method=\"post\">

<input type=\"hidden\" name=\"seenform\" value=\"y\">

Keyword:<br>

<input type=\"text\" name=\"keyword\" size=\"20\" maxlength=\"20\" value=\"\"><br>

Search Focus:<br>

<select name=\"category\">

<option value=\"\">Choose a category:

<option value=\"cust_id\">Customer ID

<option value=\"cust_name\">Customer Name

<option value=\"cust_email\">Customer Email

</select><br>

<input type=\"submit\" value=\"search\">

</form>

";

// If the form has not been displayed, show it.

if ($seenform != "y") :

print $form;

else :

// connect to MySQL server and select database

@mysql_connect("localhost", "web", "ffttss") 

or die("Could not connect to MySQL server!");

@mysql_select_db("company") or die("Could not select company database!");

// form and execute query statement

$query = "SELECT cust_id, cust_name, cust_email 

FROM customers WHERE $category = '$keyword'";

$result = mysql_query($query);

// If no matches found, display message and redisplay form

if (mysql_num_rows($result) == 0) :

print "Sorry, but no matches were found. Please try your search again:";

print $form;

// matches found, therefore format and display results

else :

// format and display returned row values.

list($id, $name, $email) = mysql_fetch_row($result);

print "<h3>Customer Information:</h3>";

print "<b>Name:</b> $name <br>";

print "<b>Identification #:</b> $id <br>";

print "<b>Email:</b> <a href=\"mailto:$email\">$email</a> <br>";

print "<h3>Order History:</h3>";

Chapter 11

276

Gilmore_11  12/5/00  10:24 AM  Page 276



// form and execute 'orders' query

$query = "SELECT order_id, prod_id, quantity 

FROM orders WHERE cust_id = '$id' 

ORDER BY quantity DESC";

$result = mysql_query($query);

print "<table border = 1>";

print "<tr><th>Order ID</th><th>Product ID</th><th>Quantity</th></tr>";

// format and display returned row values.

while (list($order_id,$prod_id,$quantity) = mysql_fetch_row($result)):

print "<tr>";

print "<td>$order_id</td><td>$prod_id</td><td>$quantity</td>";

print "</tr>";

endwhile;

print "</table>";

endif;

endif;

?>

Entering the keyword Milano and selecting Customer Name from the pull-
down menu, will cause the following information to be displayed on the screen:

Customer Information:

Name: Milano 
Identification #: 2000cu 
Email: felix@milano.com

Order History:

Order ID Product ID Quantity

100003 1000pr 12

100005 1002pr 11

Of course, this is just one of many ways that a search engine could be imple-
mented. Consider adding the possibility to allow multiple keywords, partial key-
words, or automated suggestions for keywords not  in the table, but with similar
matches. I’ll leave these features to your creativeness as a programming exercise.

Databases

277

Gilmore_11  12/5/00  10:24 AM  Page 277



Building a Table Sorter

It is particularly useful for users to be able to sort data as they wish when display-
ing database data. For example, consider the output shown from the search
engine example, in particular the data following the Order History: header. What
if the list was particularly long, and you wanted to reorder the data by the product
ID? Or by order ID? To illustrate this concept, take a moment to check out one of
my favorite sites, http://download.cnet.com. When viewing a particular software
category, notice that when you click each header (Title, Date Added, Downloads,
and File Size), the list is resorted accordingly. The following code shows just how a
feature such as this can be constructed.

In Listing 11-6, I select the data from the orders table. By default, the data is
ordered by descending quantity. However, clicking any of the table headers will
cause the script to again be called, but this time reordering the table information
in accordance with the column in which the user clicked.

Listing 11-6: A table sorter (tablesorter.php)
<?

// connect to MySQL server and select database

@mysql_connect("localhost", "web", "ffttss") 

or die("Could not connect to MySQL server!");

@mysql_select_db("company") or die("Could not select company database!");

// If the $key variable is not set, default to 'quantity'

if (! isset($key)) :

$key = "quantity";

endif;

// create and execute query. Any retrieved data is sorted in descending order

$query = "SELECT order_id, cust_id, prod_id, quantity 

FROM orders ORDER BY $key DESC";

$result = mysql_query($query);

// create table header 

print "<table border = 1>";

print "<tr>

<th><a href=\"tablesorter.php?key=order_id\">Order ID</a></th>

<th><a href=\"tablesorter.php?key=cust_id\">Customer ID</a></th>

<th><a href=\"tablesorter.php?key=prod_id\">Product ID</a></th>

<th><a href=\"tablesorter.php?key=quantity\">Quantity</a></th></tr>";

// format and display each row value

while (list($order_id, $cust_id, $prod_id, $quantity) = 

mysql_fetch_row($result)) :

print "<tr>";

print "<td>$order_id</td><td>$cust_id</td>

<td>$prod_id</td><td>$quantity</td>";

Chapter 11

278

Gilmore_11  12/5/00  10:24 AM  Page 278



print "</tr>";

endwhile;

// close table

print "</table>";

?>

Using the information retrieved from the company database (Figure 11-1),
the default table displayed by Listing 11-6 follows.

Order ID Customer ID Product ID Quantity

100003 2000cu 1000pr 12

100005 2000cu 1002pr 11

100004 2002cu 1000pr 9

100002 2003cu 1001pr 5

100001 2001cu 1002pr 3

Notice that there are four links shown as table headers. Since Quantity is des-
ignated as the default sorting attribute, the rows are sorted in descending order
according to quantity. If you click the Order_ID link, you will see that the page
reloads, but this time the rows are sorted in accordance with descending order
IDs. Thus, the following table would be shown:

Order ID Customer ID Product ID Quantity

100005 2000cu 1002pr 11

100004 2002cu 1000pr 9

100003 2000cu 1000pr 12

100002 2003cu 1001pr 5

100001 2001cu 1002pr 3

As you can see, this feature can prove immensely useful for formatting data-
base information. Just by changing the SELECT clause, you can perform any
number of ordering arrangements, including ascending, descending, and group-
ing information.

Databases

279

Gilmore_11  12/5/00  10:24 AM  Page 279



And thus finishes the introduction to MySQL. Keep in mind that there is still
quite a bit more to be learned about MySQL. For a complete listing of PHP’s sup-
ported MySQL commands, check out the manual at http://www.php.net/manual.

ODBC

Using a database-specific set of commands is fine when you are sure that you
only need to interface with one specific type of database. However, what happens
when you need to connect with MySQL, Microsoft SQL Server, and IBM DB2, all
in the same application? The same problem arises when you want to develop
database-independent applications that can be layered on top of a potential
client’s existing database infrastructure. ODBC, an acronym for Open Database
Connectivity, is an API (application programming interface) used to abstract the
database interface calls, resulting in the ability to implement a single set of com-
mands to interact with several different types of databases. The advantageous
implications of this should be obvious, since it eliminates the need for you to
rewrite the same code repeatedly just to be able to interact with different data-
base brands.

For ODBC to be used in conjunction with a particular database server, that
server must be ODBC compliant. In other words, ODBC drivers must be available
for it. Check the database’s documentation for further information if you are
unsure. Once you locate these drivers, you then need to download and install
them. Although ODBC, originally created by Microsoft and now an open stan-
dard, is predominantly used to access databases developed for the Windows plat-
form, ODBC drivers are also available for the Linux platform. The following links
point to some of the more popular drivers available: 

• Windows 95/98/NT database drivers
(http://www.microsoft.com/data/odbc/)

• Automation Technologies (http://www.odbcsdk.com)

• Easysoft (http://www.easysoft.com/products/oob/main.phtml)

• MySQL’s MyODBC drivers (http://www.mysql.com)

• OpenLinkSoftware (http://www.openlinksw.com)

Each ODBC application may vary slightly in usage, platform, and purpose. I
would advise reading through the documentation of each to gain a better under-
standing of the various issues involved with ODBC and these third-party applica-
tions. Regardless of their differences, all are known to work well with PHP.

Chapter 11

280

Gilmore_11  12/5/00  10:24 AM  Page 280



Once you’ve determined the ODBC application that best fits your purposes,
download it and follow the installation and configuration instructions. Then it’s
time to move on to the next section, “PHP’s ODBC Support.”

PHP’s ODBC Support

PHP’s ODBC support, collectively known as the Unified ODBC Functions, provide
the typical ODBC support in addition to the ability to use these functions to
access certain databases that have based their own API on the already existing
ODBC API. These database servers are listed in below:

• Adabas D

• IODBC

• IBM DB2

• Solid

• Sybase SQL Anywhere

It is important to note that when using any of these databases, there is actu-
ally no ODBC interaction involved. Rather, PHP’s Unified ODBC Functions can be
used to interface with the database. This is advantageous in the sense that should
you choose to use any other ODBC database (or other database listed above), you
already have the necessary scripts at your disposal.

There are currently almost 40 predefined Unified ODBC Functions. However,
you only need to know a few to begin extracting information from an ODBC-
enabled database. I will introduce these necessary functions presently. If you
would like a complete listing of all of PHP’s predefined ODBC functions, please
refer to the PHP manual (http://www.php.net/manual).

odbc_connect()

Before querying an ODBC-enabled database, you must first establish a connec-
tion. This is accomplished with odbc_connect(). Its syntax is:

Databases

281

NOTE PHP’s ODBC support is built in to the PHP distribution, so there is
no need for special configuration options unless otherwise stated.

Gilmore_11  12/5/00  10:24 AM  Page 281



int odbc_connect (string data_source, string username, string password [,int

cursor_type])

The input parameter data_source specifies the ODBC-enabled database to
which you are attempting to connect. The parameters username and password
specify, logically enough, the username and password required to connect to the
data_source. The optional input parameter cursor_type is used to resolve quirks
among some ODBC drivers. There are four possible values for the optional
parameter cursor_type: 

• SQL_CUR_USE_IF_NEEDED

• SQL_CUR_USE_ODBC

• SQL_CUR_USE_DRIVER

• SQL_CUR_DEFAULT

These cursor types attempt to resolve certain errors that arise from use of
ODBC drivers. Chances are you won’t need to use them, but keep them in mind in
case you experience problems when attempting to execute certain queries that
your ODBC distribution may not be able to handle.

Implementing odbc_connect() is easy. Here is an example:

<?

odbc_connect("myAccessDB", "user", "secret") 

or die("Could not connect to ODBC database");

?>

odbc_close()

After you have finished using the ODBC database, you should close the connec-
tion to free up any resources being used by the open connection. This is accom-
plished with odbc_close(). Its syntax is:

void odbc_close (int connection_id)

Chapter 11

282

TIP The function odbc_pconnect() is used to open a persistent database
connection. This can save system resources, because odbc_pconnect() first
checks for an already open connection before opening another. If a connec-
tion is already open, that connection is used.

Gilmore_11  12/5/00  10:24 AM  Page 282



The input parameter connection_id refers to the open connection identifier. Here
is a short example:

<?

$connect = @odbc_connect("myAccessDB", "user", "secret") 

or die("Could not connect to ODBC database!");

print "Currently connected to ODBC database!";

odbc_close($connect);

?>

odbc_prepare()

Before a query is executed, the query must be “prepared.” This is accomplished
with odbc_prepare(). Its syntax is: 

int odbc_prepare (int connection_ID, string query)

The input parameter connection_ID refers to the connection identification
variable returned by odbc_connect(). The parameter query refers to the query that
is to be executed by the database server. If the query is invalid and therefore can-
not be executed, FALSE is returned; Otherwise, a result identifier is returned that
can subsequently be used with odbc_execute() (introduced next).

odbc_execute()

After the query is prepared by odbc_prepare(), it can then be executed with
odbc_execute(). Its syntax is:

int odbc_execute (int result_ID [, array parameters])

The input parameter result_ID is a result identifier returned from a success-
ful execution of odbc_prepare(). The optional parameter parameters only needs to
be used if you are passing serializable data into the function.

Databases

283

Gilmore_11  12/5/00  10:24 AM  Page 283



Consider the following example:

<?

$connect = @odbc_connect("myAccessDB", "user", "secret") 

or die("Could not connect to ODBC database");

$query = "UPDATE customers set cust_id = \"Milano, Inc.\" 

WHERE cust_id \"2000cu\"";

$result = odbc_prepare($connect, $query) or die("Couldn't prepare query!");

$result = odbc_execute($result) or die("Couldn't execute query!");

odbc_close($connect);

?>

This example illustrates a complete ODBC transaction when the query does
not result in the need to display data to the browser (as would likely be the case
with a SELECT statement). A complete ODBC transaction using a SELECT query
is shown later in this chapter, under “odbc_result_all()”.

odbc_exec()

The function odbc_exec() accomplishes the roles of both odbc_prepare() and
odbc_execute(). Its syntax is:

int odbc_exec (int connection_ID, string query)

The input parameter connection_ID refers to the connection identification
variable returned by odbc_connect(). The parameter query refers to the query to
be executed by the database server. If the query fails, FALSE is returned; otherwise
a result identifier is returned, which can be then used in subsequent functions.

<?

$connect = @odbc_connect("myAccessDB", "user", "secret") 

or die("Could not connect to ODBC database!");

$query = "SELECT * FROM customers";

$result = odbc_exec($connect, $query) or die("Couldn't execute query!");

odbc_close($connect);

?>

In the above example, odbc_exec() will attempt to execute the query specified
by $query. If it is successfully executed, $result is assigned a result identifier. Oth-
erwise, $result is assigned FALSE, and the string enclosed in the die() function is
displayed.

Chapter 11

284

Gilmore_11  12/5/00  10:24 AM  Page 284



odbc_result_all()

This very cool function will format and display all rows returned by a result identi-
fier produced by odbc_exec() or odbc_execute(). Its syntax is:

int odbc_result_all (int result_ID [, string table_format])

The input parameter result_ID is a result identifier returned by odbc_exec()
or odbc_execute(). The optional parameter table_format takes as input HTML
table characteristics. Consider this example:

<?

$connect = @odbc_connect("myAccessDB", "user", "secret") 

or die("Could not connect to ODBC database!");

$query = "SELECT * FROM customers";

$result = odbc_exec($connect, $query) or die("Couldn't execute query!");

odbc_result_all($result, "BGCOLOR='#c0c0c0' border='1'");

odbc_close($connect);

?>

Execution of this example would produce a table characterized by a light gray
background and a border size of 1 containing the contents of the customers table.
Assuming that this table contained the data shown back in Figure 11-1, the table
would be displayed as seen in Figure 11-2.

odbc_free_result()

It is generally good programming practice to restore any resources consumed by
operations that have been terminated. When working with ODBC queries, this is
accomplished with odbc_free_result(). Its syntax is:

int odbc_free_result (int result_id)

Databases

285

Figure 11-2. ODBC data as displayed to the browser 

Gilmore_11  12/5/00  10:24 AM  Page 285



The input result_id refers to the result identifier that will not be used any-
more. Keep in mind that all memory resources are automatically restored when
the script finishes; therefore it is only necessary to use odbc_free_result() when
particularly large queries are involved that could consume significant amounts of
memory. The following example illustrates the syntax of odbc_free_result().
Remember that this function isn’t really necessary unless you plan on making sev-
eral queries throughout a single script, since all memory is returned anyway at
the conclusion of the script.

<?

$connect = @odbc_connect("myAccessDB", "user", "secret") 

or die("Could not connect to ODBC database!");

$query = "SELECT * FROM customers";

$result = odbc_exec($connect, $query) or die("Couldn't execute query!");

odbc_result_all($result, "BGCOLOR='#c0c0c0' border='1'")

odbc_free_result($result);

odbc_close($connect);

?>

After odbc_result_all() has finished using the result identifier, the memory
is recuperated using odbc_free_result(). 

This concludes the summarization of those PHP ODBC functions that are
particularly indispensable when creating simple ODBC interfaces through the
Web In the next section, “Microsoft Access and PHP,” many of these functions are
used to illustrate just how easily PHP can be used to interface with one of the
more popular database servers, Microsoft Access.

Microsoft Access and PHP

Microsoft’s Access Database (http://www.microsoft.com/office/access/) is a pop-
ular database solution due in large part to its user-friendly graphical interface. It
alone can be used as the database solution, or its graphical interface can be used
as a front end to interface with other databases, such as MySQL or Microsoft’s
SQL Server.

To illustrate the use of PHP’s ODBC support, I’ll describe how you can con-
nect to an MS Access database using PHP. It is surprisingly easy and is a great
addition to your PHP programming repertoire, due to the popularity of Microsoft
Access. I’ll detail this process step by step:

1. Go ahead and create an Access database. I’ll assume that you know how
to do this already. If you don’t, but still want to follow along with this
example, just quickly create a database using the Access Wizard. For this
example, I created the predefined Contact Management Database using

Chapter 11

286

Gilmore_11  12/5/00  10:24 AM  Page 286



the wizard. Be sure to insert some information into a table and take note
of that table name, as you will need it in a while!

2. Save the database somewhere on your computer.

3. Now it’s time to make that Access database available using ODBC. Go to
Start -> Settings -> Control Panel. You should see an icon entitled “ODBC
Data Sources (32 bit).” This is the ODBC Administrator, used to handle
the various drivers and database sources on the system. Open this icon
by double-clicking it. The window will open to the default tabbed sub-
window entitled “User DSN (User Data Sources).” The User DSN contains
the data sources specific to a single user and can be used only on this
machine. For sake of this example, we’ll use this.

4. Click the Add… button on the right side of this window. A second window
will open, prompting you to select a driver for which you want to set up a
data source. Choose the Microsoft Access Driver (*.mdb) and click Finish.

5. A new window will open, entitled “ODBC Microsoft Access Setup.” You’ll
see a form text box labeled “Data Source Name.” Enter a name relative to
the Access database that you created. If you would like, enter a descrip-
tion in the text box directly below that of the Data Source Name.

6. Now click the Select… button displayed on the middle left of the window.
An Explorer-style window will open, prompting you to search for the
database that you would like to make accessible via ODBC.

7. Browse through the Windows directories to your database. When you find
it, double-click it to select it. You will return to the ODBC Microsoft
Access Setup window. You’ll see the path leading to the selected database
directly above the Select… button. Click OK.

8. That’s it! Your Access database is now ODBC enabled.

Once you have completed this process, all you need to do is create the PHP
script that will communicate via ODBC with the database. The script uses the
Unified ODBC Functions introduced earlier to display all information in the Con-
tacts table  in the Access Contact Management database that I created using the
Access wizard. However, before reviewing the script, take a look at the Contacts
table in Figure 11-3, as seen in Access.

Databases

287

Gilmore_11  12/5/00  10:24 AM  Page 287



Now that you have an idea of what information will be extracted, take a look
at the script. If you are unfamiliar with any of the functions, please refer to the
introductory material  at the beginning of this section. The outcome of Listing 11-
7 is illustrated in Figure 11-4.

Listing 11-7: Using PHP’s ODBC functions to interface with MS Access
<?

// Connect to the ODBC datasource 'ContactDB'

$connect = odbc_connect("ContactDB","","") 

or die("Couldn't connect to datasource."); 

// form query statement 

$query = "SELECT First_Name, Last_Name, Cell_Phone, Email FROM Contacts"; 

// prepare query statement 

$result = odbc_prepare($connect,$query); 

// execute query statement and display results

odbc_execute($result); 

odbc_result_all($result,"border=1"); 

// We're done with the query results, so free memory  

odbc_free_result($result); 

// close connection

odbc_close($connect); 

?>

Chapter 11

288

Figure 11-3. Contacts table as seen in MS Access

Gilmore_11  12/5/00  10:24 AM  Page 288



Pretty easy, right? The really great part is that this script is completely
reusable with other ODBC-enabled database servers. As an exercise, go ahead and
run through the above process, this time using a different database server. Rerun
the script, and you will witness the same results as those shown in Figure 11-4.

Project: Create a Bookmark Repository

Probably the easiest way to build content on your site is to provide users with the
capability of doing it for you. An HTML form is perhaps the most convenient way
for accepting this information. Of course, the user-supplied information must
also be processed and stored. In the project covered in the last chapter, you saw
that this was easily accomplished with PHP and a text file. But what if you needed
a somewhat more robust solution for storing the data? Sure, a text file works when
storing relatively small and simple pieces of data, but chances are you will need a
database to implement any truly powerful Web application. In this project, I
explain how a MySQL database can be used to store information regarding Web
sites. These sites are separated into categories to allow for more efficient naviga-
tion. Users can use an HTML form to enter information regarding their favorite
sites, choosing a fitting category from those predefined by the administrator. Fur-
thermore, users can go to an index page and click one of these predefined cate-
gories to view all of the sites under it.

The first thing you need to do is decide what site information should be
stored in the MySQL database. To keep the project simple, I’ll limit this to the fol-
lowing: site name, URL, category, date added, and description. Therefore, the
MySQL table would look like the following:

mysql>create table bookmarks (

category INT,

site_name char(35),

url char(50),

date_added date,

description char(254) );

Databases

289

Figure 11-4. Contacts table extracted and displayed to the Web browser

Gilmore_11  12/5/00  10:24 AM  Page 289



There are a couple of points to be made regarding the bookmarks table. First
of all, you may be curious as to why I chose to store the category information as
an integer. After all, you want to use category names that are easily intelligible by
the user, right? Don’t worry, as you will soon create an array in an initialization file
that will be used to create integer-to-category name mappings. This is useful
because you may wish to modify or even delete a category in the future. Doing so
is considerably easier if you use an array mapping to store the categories. Further-
more, an integer column will take up less information than would repetitive use
of category names. Another point regarding the table is the choice to designate
only 254 characters to the description. Depending on how extensive you would
like the descriptions to be, you may want to change this column type to a medium
text or even text. Check out the MySQL documentation for further information
regarding possible column types.

The next step in creating this application will be to create an initialization file.
Other than holding various global variables, two functions are defined within,
add_bookmark() and view_bookmark(). The function add_bookmark() takes as input
the user-entered form information and adds it to the database. The function
view_bookmark() takes as input a chosen category and extracts all information
from the database having that category, in turn displaying it to the browser. This
file is shown in Listing 11-8, with accompanying comments.

Listing 11-8: Bookmark repository initialization file (init.inc)
<?

// file: init.inc

// purpose: provides global variables for use in bookmark project

// Default page title

$title = "My Bookmark Repository";

// Background color

$bg_color = "white";

// Posting date

$post_date = date("Ymd");

// bookmark categories

$categories = array(

"computers",

"entertainment",

"dining",

"lifestyle",

"government",

"travel");

Chapter 11

290

Gilmore_11  12/5/00  10:24 AM  Page 290



// MySQL Server Information

$host = "localhost";

$user = "root";

$pswd = "";

// database name

$database = "book";

// bookmark table name

$bookmark_table = "bookmarks";

// Table cell color

$cell_color = "#c0c0c0";

// Connect to the MySQL Server

@mysql_pconnect($host, $user, $pswd) or die("Couldn't connect to MySQL server!");

// Select the database

@mysql_select_db($database) or die("Couldn't select $database database!");

// function: add_bookmark()

// purpose: Add new bookmark to bookmark table.

function add_bookmark ($category, $site_name, $url, $description) {

GLOBAL $bookmark_table, $post_date;

$query = "INSERT INTO $bookmark_table 

VALUES(\"$category\", \"$site_name\", \"$url\",    

\"$post_date\", \"$description\")";

$result = @mysql_query($query) 

or die("Couldn't insert bookmark information!");

} // add_bookmark

// function: view_bookmark()

// purpose: View bookmarks following under 

// the category $category.

function view_bookmark ($category) {

GLOBAL $bookmark_table, $cell_color, $categories;

Databases

291

Gilmore_11  12/5/00  10:24 AM  Page 291



$query = "SELECT site_name, url, DATE_FORMAT(date_added,'%m-%d-%Y') AS 

date_added, description 

FROM $bookmark_table WHERE category = $category 

ORDER BY date_added DESC";

$result = @mysql_query($query);

print "<div align=\"center\"><table cellpadding=\"2\" cellspacing=\"1\" 

border = \"0\" width = \"600\">";

print "<tr><td bgcolor=\"$cell_color\"><b>Category: 

$categories[$category]</b></td></tr>";

if (mysql_numrows($result) > 0) :

while ($row = mysql_fetch_array($result)) :

print "<tr><td>";

print "<b>".$row["site_name"]."</b> | Posted: 

".$row["date_added"]."<br>";

print "</td></tr>";

print "<tr><td>";

print "<a href = \"http://".$row["url"]."\">

http://".$row["url"]."</a><br>";

print "</td></tr>";

print "<tr><td valign=\"top\">";

print $row["description"]."<br>";

print "</td></tr>";

print "<tr><td><hr></td></tr>";

endwhile;

else :

print "<tr><td>There are currently no bookmarks falling under 

this category. Why don't you 

<a href=\"add_bookmark.php\">add one</a>?</td></tr>";

endif;

print "</table><a href=\"index.php\">Return to index</a> |";

Chapter 11

292

Gilmore_11  12/5/00  10:24 AM  Page 292



print "<a href=\"add_bookmark.php\">Add a bookmark</a></div>";

} // view_bookmark

?>

The next file, add_bookmark.php, provides the interface for adding new
bookmark information to the database. Additionally, it calls the function
add_bookmark() to process the user information. The file is shown in Listing 11-9.

Listing 11-9: The add_bookmark.php program
<html>

<?

INCLUDE("init.inc");

?>

<head>

<title><?=$title;?></title>

</head>

<body bgcolor="#ffffff" text="#000000" link="#808040" vlink="#808040"

alink="#808040">

<?

if (! $seenform) :

?>

<form action="add_bookmark.php" method="post">

<input type="hidden" name="seenform" value="y">

Category:<br>

<select name="category">

<option value="">Choose a category:

<?

while (list($key, $value) = each($categories)) :

print "<option value=\"$key\">$value";

endwhile;

?>

</select><br>

Site Name:<br>

<input type="text" name="site_name" size="15" maxlength="30" value=""><br>

Databases

293

Gilmore_11  12/5/00  10:24 AM  Page 293



URL: (do <i>not</i> include "http://"!)<br>

<input type="text" name="url" size="35" maxlength="50" value=""><br>

Description:<br>

<textarea name="description" rows="4" cols="30"></textarea><br>

<input type="submit" value="submit">

</form>

<?

else :

add_bookmark($category, $site_name, $url, $description);

print "<h4>Your bookmark has been added to the repository. <a

href=\"index.php\">Click here</a> to return to the index.</h4>";

endif;

?>

When the user first requests this file, the interface shown in Figure 11-5 will
be displayed to the browser. 

Once a bookmark has been added to the database, the user is notified accord-
ingly, and a link is provided for returning to the home page of the repository, enti-
tled “index.php.” This file is located in Listing 11-11, displayed below.

The next file, view_bookmark.php, simply calls the function view_bookmark().
The file is shown in Listing 11-10.

Chapter 11

294

Figure 11-5. Form interface displayed in add_browser.php

Gilmore_11  12/5/00  10:24 AM  Page 294



Listing 11-10: The view_bookmark.php program
<html>

<?

INCLUDE("init.inc");

?>

<head>

<title><?=$title;?></title>

</head>

<body bgcolor="<?=$bg_color;?>" text="#000000" link="#808040" vlink="#808040"

alink="#808040">

<?

view_bookmark($category);

?>

Assuming that you had entered a few sites under the dining category, exe-
cuting view_bookmark.php would result in an interface similar to the one in 
Figure 11-6.

Finally, you need to provide an interface in which the user can choose the
categorical list of bookmarks. I call this file index.php. The file is shown in Listing
11-11.

Databases

295

Figure 11-6. Executing view_bookmark.php under the dining category

Gilmore_11  12/5/00  10:24 AM  Page 295



Listing 11-11: The index.php program
<html>

<?

INCLUDE("init.inc");

?>

<head>

<title><?=$title;?></title>

</head>

<body bgcolor="<?=$bg_color;?>" text="#000000" link="#808040" vlink="#808040"

alink="#808040">

<h4>Choose bookmark category to view:</h4>

<?

// cycle through each category and display appropriate link

while (list($key, $value) = each($categories)) :

print "<a href = \"view_bookmark.php?category=$key\">$value</a><br>";

endwhile;

?>

<p>

<b><a href="add_bookmark.php">Add a new bookmark</a></b>

</body>

</html>

Assuming you don’t change the default values in the $categories array in
init.inc, the HTML in Listing 11-12 would be output to the browser when
index.php is executed.

Listing 11-12: Output generated from index.php execution
<html>

<head>

<title></title>

</head>

<body bgcolor="white" text="#000000" link="#808040" vlink="#808040"

alink="#808040">

<h4>Choose bookmark category to view:</h4>

<a href = "view_bookmark.php?category=0">computers</a><br>

<a href = "view_bookmark.php?category=1">entertainment</a><br>

<a href = "view_bookmark.php?category=2">dining</a><br>

<a href = "view_bookmark.php?category=3">lifestyle</a><br>

<a href = "view_bookmark.php?category=4">government</a><br>

<a href = "view_bookmark.php?category=5">travel</a><br>

<p>

<b><a href="add_bookmark.php">Add a new bookmark</a></b>

</body>

</html>

Chapter 11

296

Gilmore_11  12/5/00  10:24 AM  Page 296



Clicking any of the links in the preceding HTML source would result in the
request of the file view_bookmark.php, which would then call the function
view_bookmark(), passing the variable $category into it.

What’s Next

This chapter covered a great deal of material, some of which may be the most
important of the entire book for certain users. Database interfacing is certainly
one of the most prominent features of the PHP language, as it can truly lend a
hand to extending the functionality of a Web site. In particular, these topics were
covered:

• Introduction to SQL

• An overview of PHP’s predefined database support

• Case study of the MySQL database server

• PHP’s predefined MySQL functions

• A simple search engine example

• A table resorting example

• Introduction to ODBC

• PHP’s predefined ODBC functions

• Interfacing Microsoft Access with PHP

• A Web-based bulletin board

For those readers interested in developing large and truly dynamic Web sites
with PHP, databasing will be an issue brought up time and time again. I recom-
mend thoroughly reading not only the PHP documentation, but any other data
warehousing resources available. As with most other technologies today, even the
experts can’t seem to learn enough about this rapidly advancing subject.

Next chapter, I delve into one of the more complicated topics of Web develop-
ment: templates. In particular, I focus on how PHP can be used to create these
templates, ultimately saving time and headaches when developing large-scale
Web sites.

Databases

297

Gilmore_11  12/5/00  10:24 AM  Page 297



Gilmore_11  12/5/00  10:24 AM  Page 298



CHAPTER 12

Templates

You can think of templates as an extension to programming. Not only do they
automate an otherwise rigorous process, but they also facilitate the division of
design and coding in a team environment. This division of labor becomes
increasingly important as a project and team grow in size and complexity due to
logistics surrounding the initial design as well as subsequent maintenance of the
Web application.

To put this into perspective, consider the developmental logistics of a team
divided between Web designers and programmers. The ideal situation would be
that the Web design team could embark on building the most eye-appealing,
user-friendly site they can, while at the same time the programming team codes
the most efficient, powerful Web application possible. Fortunately, templates
make this process much easier. Creating a site templating system that facilitates
this separation of labor is the subject of this chapter. 

What You’ve Learned So Far

To this point, I’ve introduced two systems for creating PHP templates:

• HTML embedded in PHP code

• Including files in a page structure

Although the first strategy is the easier to understand and implement, it is
also the more restrictive. A major problem lies in the fact that the actual PHP cod-
ing is intermingled with the components making up the page design. This pres-
ents a problem not only in terms of the need to provide support for the potential
simultaneous access and modification to a single page, but also in regards to the
increased possibility of introducing errors due to constant scrutiny and editing.

The second strategy can be a substantial improvement over the first in many
situations. However, while a patchwork system of header, body, and footer files
(see Chapter 9 for further information) works fine for piecing together relatively
small sites of specific format, limitations become apparent as the project grows in
size and complexity. Attempts to resolve these problems led to the development
of another templating strategy, which, although more complex than the other 
two strategies, is substantially more flexible and superior in many situations. This

299

Gilmore_12  12/4/00  1:08 PM  Page 299



system calls for the separation of the two main components of a Web application:
design and coding. Separating the design and coding of a Web application makes
it possible for simultaneous development (Web design and programming) with-
out the need of extensive coordination throughout the lifetime of the initial devel-
opment cycle. Furthermore, it allows for the later exclusive modification of either
component without interfering with the other. In the next section, I’ll elaborate
on how one of these advanced templating systems is constructed. Keep in mind
that this problem is not specific to PHP. In fact, this general strategy certainly pre-
cedes PHP’s lifetime, and is currently used in several languages, including PHP,
Perl, and Java Server Pages. What is described in this chapter is merely an adapta-
tion of this strategy as it would apply to PHP.

Developing an Advanced Template System

As you may have already surmised, the major hurdle to overcome when develop-
ing this type of templating system is efficiently dividing the labor between design
and functionality. After all, the intended goal of this system is to allow both coders
and designers to independently maintain their end of the application without
interfering with the work of the other group.

Thankfully, this isn’t as difficult as it sounds, provided that some planning
takes place before the development process begins. To illustrate how this is
accomplished, Listing 12-1 presents a basic template that you will actually be able
to implement with the code provided in this chapter.

Listing 12-1: Sample template file
<html>

<head>

<title>:::::{page_title}:::::</title>

</head>

<body bgcolor="{bg_color}">

Welcome to your default home page, {user_name}!<br>

You have 5 MB and 3 email addresses at your disposal<br>

Have fun!

</body>

</html>

Notice that there are three strings enclosed in curly brackets ({}), namely
page_title, bg_color, and user_name. The brackets are of special meaning to the
template parsing engine, signifying that the enclosed string specifies the name of
a variable that should be replaced with its respective value. Other than ensuring
that these key strings are placed where necessary in the document, the designer is

Chapter 12

300

Gilmore_12  12/4/00  1:08 PM  Page 300



free to structure the page as desired. Of course, the coder and the designer must
come to terms with what exactly is to be placed in each page!

So how will the templating system operate? To start, you may be dealing with
several templates simultaneously, all having the same general characteristics. This
could be well suited for object-oriented programming (OOP). Therefore, all func-
tions used to build and manipulate the templates will actually be methods in a
class. The class definition starts as follows:

class template {

VAR $files = array();

VAR $variables = array();

VAR $opening_escape = '{';

VAR $closing_escape = '}';

The attribute $files is an array that will store the file identifiers and the cor-
responding contents of each file. The attribute $variables is a two-dimensional
array used to store a file identifier (key) and all of the corresponding variables to
be parsed in the template system. Finally, the attributes $opening_escape and
$closing_escape refer to the variable delimiters that specify which parts of the
template are to be replaced by the system. As you have seen in Listing 12-1, I use
curly brackets ({}) as delimiters. However, you can use these final two attributes
to change the delimiters to anything you please; just make sure the resulting com-
bination will be unique for this purpose.

Each method  in the class serves a well-defined purpose, each corresponding
to a step in the templating process. At its most basic level, this process can actu-
ally be broken down into these four parts:

• File registration: Registration of all files that will be parsed by the templat-
ing scripts.

• Variable registration: Registration of all variables that will be replaced with
corresponding values in the registered files. 

• File parsing: Replacement of all delimited variables in the registered files.

• File printing: Display of the parsed registered files in the browser.

Templates

301

NOTE OOP as it applies to PHP was discussed in Chapter 6. If you are
unfamiliar with OOP, I would suggest quickly reviewing Chapter 6 before
continuing.

Gilmore_12  12/4/00  1:08 PM  Page 301



File Registration

Registering a file simply means assigning its contents to an array key, the key
uniquely referring to the said file. This method opens and reads in the contents of
the file passed in as an input parameter. Listing 12-2 illustrates this method.

Listing 12-2: The method for registering a file
function register_file($file_id, $file_name) {

// Open $file_name for reading, or exit and print an error message.

$fh = fopen($file_name, "r") or die("Couldn't open $file_name!");

// Read in the entire contents of $file_name.

$file_contents = fread($fh, filesize($file_name));

// Assign these contents to a position in the array. 

// This position is denoted by the key $file_id

$this->files[$file_id] = $file_contents;

// We're finished with the file, so close it.

fclose($fh);

} // end register_file

The input parameter $file_id is just a pseudonym for the file, which will
make all subsequent method calls easier to understand. This parameter will serve
as the array key for the $files array. Here is an example of how a file would be
registered:

// Include the template class

include("template.class");

// Instantiate a new object

$template = new template;

// Register the file "homepage.html", assigning it the pseudonym "home"

$template->register_file("home", "homepage.html");

Variable Registration

After you register the files, all of the variables that are to be parsed must also be
registered with the system. This method operates along the same premise as reg-
ister_file(), retrieving each named variable and inserting it into the $variables
array. Listing 12-3 illustrates this method.

Chapter 12

302

Gilmore_12  12/4/00  1:08 PM  Page 302



Listing 12-3: The method for registering a variable
function register_variables($file_id, $variable_name) {

// attempt to create array from passed in variable names

$input_variables = explode(",", $variable_name);

// assign variable name to next position in $file_id array

while (list(,$value) = each($input_variables)) :

// assign the value to a new position in the $this->variables array

$this->variables[$file_id][] = $value;

endwhile;

} // end register_variables

The input parameter $file_id refers to the previously assigned alias of a file-
name. In the previous example, “home” was the assigned alias of
“homepage.html.” Therefore, if you are registering variable names that are to be
parsed in the homepage.html file, you must refer to it by its alias! The input
parameter $variable_name refers to one or several variables that are to be regis-
tered under that alias name. An example follows:

// Include the template class

include("template.class");

// Instantiate a new object

$template = new template;

// Register the file "homepage.html", assigning it the pseudonym "home"

$template->register_file("home", "homepage.html");

// Register a few variables

$template->register_variables("home", "page_title,bg_color,user_name");

File Parsing

After the files and variables have been registered in the templating system, you
are free to parse the registered files, replacing all variable references with their
respective values. Listing 12-4 illustrates this method.

Templates

303

Gilmore_12  12/4/00  1:08 PM  Page 303



Listing 12-4: The method for parsing a file
function file_parser($file_id) {

// How many variables are registered for this particular file?

$varcount = count($this->variables[$file_id]);

// How many files are registered?

$keys = array_keys($this->files);

// If the $file_id exists in the $this->files array and it 

// has some registered variables…

if ( (in_array($file_id, $keys)) && ($varcount > 0) ) :

// reset $x

$x = 0;

// while there are still variables to parse…

while ($x < sizeof($this->variables[$file_id])) :

// retrieve the next variable

$string = $this->variables[$file_id][$x];

// Retrieve this variable value! Notice that I'm using a 

// variable variable to retrieve this value. This value 

// will be substituted into the file contents, taking the place 

// of the corresponding variable name.

GLOBAL $$string;

// What exactly is to be replaced in the file contents?

$needle = $this->opening_escape.$string.$this->closing_escape;

// Perform the string replacement.

$this->files[$file_id] = str_replace(

$needle,   // needle

$$string,   // string

$this->files[$file_id]); // haystack

// increment $x

$x++;

endwhile;

endif;

} // end file_parser

Chapter 12

304

Gilmore_12  12/4/00  1:08 PM  Page 304



Basically, the $file_id that is passed in is verified to exist in the $this->files
array. If it does, it is also verified that this $file_id has some variables registered
that need to be parsed. If it does, the values of each of those variables are
retrieved and substituted into the contents of $file_id. An example follows:

<?

// Include the template class

include("template.class");

$page_title = "Welcome to your homepage!";

$bg_color = "white";

$user_name = "Chef Jacques";

// Instantiate a new object

$template = new template;

// Register the file "homepage.html", assigning it the pseudonym "home"

$template->register_file("home", "homepage.html");

// Register a few variables

$template->register_variables("home", "page_title,bg_color,user_name");

$template->file_parser("home");

?>

Since the variables page_title, bg_color, and user_name have been registered,
the corresponding values of each (assigned at the beginning of the script) will be
substituted into the homepage.html contents, stored in the objects files array
attribute. To this point, everything has been done except actually displaying the
resulting template to the browser. This is the next step.

File Printing

After parsing the file, you will probably want to print it out, thereby displaying the
parsed template to the user. I create this in a separate method shown in Listing
12-5, but you could also integrate this directly into the file_parser() method,
depending on your usage.

Templates

305

Gilmore_12  12/4/00  1:08 PM  Page 305



Listing 12-5: The method for printing a file
function print_file($file_id) {

// print out the contents pointed to by $file_id     

print $this->files[$file_id];

}

Quite simply, when print_file() is called, the contents represented by the
key $file_id are output to the browser. 

Listing 12-6 displays the finished templating system.

Listing 12-6: Complete example of templating system
<?

// Include the template class

include("template.class");

// Assign a few variables

$page_title = "Welcome to your homepage!";

$bg_color = "white";

$user_name = "Chef Jacques";

// Instantiate a new object

$template = new template;

// Register the file "homepage.html", assigning it the pseudonym "home"

$template->register_file("home", "homepage.html");

// Register a few variables

$template->register_variables("home", "page_title,bg_color,user_name");

$template->file_parser("home");

// output the file to the browser

$template->print_file("home");

?>

If the template first displayed in Listing 12-1 was saved under the name
homepage.html and stored in the same directory as the script shown in Listing
12-6, then the following would be displayed in the browser:

<html>

<head>

<title>:::::Welcome to your homepage!:::::</title>

</head>

Chapter 12

306

Gilmore_12  12/4/00  1:08 PM  Page 306



<body bgcolor=white>

Welcome to your default home page, Chef Jacques!<br>

You have 5 MB and 3 email addresses at your disposal<br>

Have fun!

</body>

</html>

As you can see, all of the previously delimited variable names have been
replaced with their respected values. Although simple, this template class ensures
100 percent separation of design and coding. The entire contents of the template
class are shown in Listing 12-7.

Listing 12-7: Complete template.class file.
<?

class template {

VAR $files = array();

VAR $variables = array();

VAR $opening_escape = '{';

VAR $closing_escape = '}';

// Function: register_file()

// Purpose: Store contents of file specified by $file_id

function register_file($file_id, $file_name) {

// Open $file_name for reading, or exit and print an error message.

$fh = fopen($file_name, "r") or die("Couldn't open $file_name!");

// Read in the entire contents of $file_name.

$file_contents = fread($fh, filesize($file_name));

// Assign these contents to a position in the array. 

// This position is denoted by the key $file_id

$this->files[$file_id] = $file_contents;

// We're finished with the file, so close it.

fclose($fh);

} // end register_file;

// Function: register_variables()

// Purpose: Store variables passed in via $variable_name under the corresponding

// array key, specified by $file_id

Templates

307

Gilmore_12  12/4/00  1:08 PM  Page 307



function register_variables($file_id, $variable_name) {

// attempt to create array from passed in variable names

$input_variables = explode(",", $variable_name);

// assign variable name to next position in $file_id array

while (list(,$value) = each($input_variables)) :

// assign the value to a new position in the $this->variables array

$this->variables[$file_id][] = $value;

endwhile;

} // end register_variables

// Function: file_parser()

// Purpose: Parse all registered variables  in file contents 

//                 specified by input parameter $file_id

function file_parser($file_id) {

// How many variables are registered for this particular file?

$varcount = count($this->variables[$file_id]);

// How many files are registered?

$keys = array_keys($this->files);

// If the $file_id exists in the $this->files array and it 

// has some registered variables…

if ( (in_array($file_id, $keys)) && ($varcount > 0) ) :

// reset $x

$x = 0;

// while there are still variables to parse…

while ($x < sizeof($this->variables[$file_id])) :

// retrieve the next variable

$string = $this->variables[$file_id][$x];

// retrieve this variable value! Notice that I'm using a 

// variable variable to retrieve this value. This value 

Chapter 12

308

Gilmore_12  12/4/00  1:08 PM  Page 308



// will be substituted into the file contents, taking the place 

// of the corresponding variable 

// name.

GLOBAL $$string;

// What exactly is to be replaced in the file contents?

$needle = $this->opening_escape.$string.$this->closing_escape;

// Perform the string replacement.

$this->files[$file_id] = str_replace(

$needle,   // needle

$$string,   // string

$this->files[$file_id]); // haystack

// increment $x

$x++;

endwhile;

endif;

} // end file_parser

// Function: print_file()

// Purpose: Print out the file contents specified by input parameter $file_Id

function print_file($file_id) {

// print out the contents pointed to by $file_id     

print $this->files[$file_id];

}

} // END template.class

Expanding the Template Class

Of course, this template class is rather limited, although it does the trick nicely for
projects that need to be created in a hurry. The nice thing about using an object-
oriented implementation strategy is that you can easily add functionality without
worrying about potentially “breaking” existing code. For example, suppose you
wanted to create a method that retrieved values from a database for later tem-
plate substitution. Although slightly more complicated than the file_parser()
method, which just substitutes globally-accessible variable values, an SQL-based
file parser can be written with just a few lines and encapsulated in its own
method. In fact, I create one of these parsers in the address book project  at the
conclusion of this chapter.

Templates

309

Gilmore_12  12/4/00  1:08 PM  Page 309



Several modifications could be made to this template class, the first likely
being the consolidation of register_file() and register_variables(). This would
automatically add the variables in each registered file. Of course, you will also
want to insert error-checking functionality to ensure that invalid file and variable
names are not registered.

You are also likely to begin thinking about how this system could be
enhanced. Consider the following enhancement questions. How would you create
a method that worked with entire arrays? Included Files? I think that you’ll find it
easier than it first seems. As a reference, check out the implementation I created
for an SQL-parser  in the address book project at the end of this chapter. You can
easily transform this general methodology into whatever implementation you
desire.

This basic templating strategy has been implemented in several languages
and is certainly not a new concept. Therefore, you can find a wealth of informa-
tion on the Web pertaining to template implementations. Two particularly inter-
esting resources are this set of related articles, written with JavaScript in mind:

• http://developer.netscape.com/viewsource/long_ssjs/long_ssjs.html

• http://developer.netscape.com/viewsource/schroder_template
/schroder_template.html

The following article touches upon templates as it applies to Java Server
Pages:

• http://www-4.ibm.com/software/webservers/appserv/doc/guide
/asgdwp.html

There are also quite a few PHP implementations that follow this templating
strategy. Several of the more interesting ones include:

• PHPLib Base Library (http://phplib.netuse.de)

• Richard Heyes’s Template Class (http://www.heyes-computing.net)

• Fast Template (http://www.thewebmasters.net/php/)

The PHP resource site PHPBuilder (http://www.phpbuilder.com) also contains
a few interesting tutorials regarding template manipulation. Also check out PHP
Classes Repository (http://phpclasses.UpperDesign.com). Several similar tem-
plating implementations are there.

Chapter 12

310

Gilmore_12  12/4/00  1:08 PM  Page 310



Drawbacks to This Templating System

While this form of templating fulfills its purpose of completely separating the
code from the design, it is not without its disadvantages. I’ll highlight these disad-
vantages here.

Resulting Unfounded Belief in “Silver Bullet” Solution

While templates can aid in clearly defining the boundaries of a project in terms of
coding and design, they are not a substitute for communication. In fact, they
won’t even operate correctly without concise communication between both par-
ties about exactly what information will be templated in the application. As is the
case with any successful software project, a thorough survey of the application
specifications should always be drawn up before even one line of PHP is coded.
This will greatly reduce the possibility for later miscommunication, resulting in
unexpected template parsing results.

Performance Degradation

The dependence on file parsing and manipulation will cause the templating sys-
tem to suffer a loss in performance in terms of speed. Exactly what the degree of
this loss is depends on a number of factors, including page size, SQL query size (if
any), and machine hardware. In many cases, this loss will be negligible; however
there may be instances where it will be noticeable if it becomes necessary to
simultaneously manipulate several template files in high-traffic situations.

Designer Is Still PHP-Impaired

One of the main reasons for creating this system at all lies in the fact that it could
be problematic if the designer comes into contact with the code when editing the
look and feel of the page. In an ideal environment, the designer would also be a
programmer or at least know general programming concepts, such as a variable,
loop, and conditional. A designer who is not privy to this information stands to
gain nothing from using templates except education in a relatively useless syntax
(the syntax used to delimit variable keywords). Therefore, regardless of what your
final verdict is on using this form of page templating, I strongly recommend tak-
ing time to begin educating the designer on the finer points of the PHP language
(or better, buy the designer a copy of this book!). This results in a win-win situa-
tion for both parties, as the designer will learn an extra skill, and in doing so,
become an even more valuable member of the team. The programmer wins, as
this person will be an extra brain to pick for new programming ideas, perhaps
even a particularly valuable one, since chances are that the designer will look at
things from a different perspective than the typical programmer would.

Templates

311

Gilmore_12  12/4/00  1:08 PM  Page 311



Project: Create an Address Book

Although templating systems are well suited for a variety of Web applications,
they are particularly useful in datacentric applications in which formatting is
important. One such application is an address book. Think about what a conven-
tional (paper-based) address book looks like: each page looks exactly the same,
save for perhaps a letter denoting which set of last names the particular page is
reserved for. The same kind of idea could apply to a Web-based address book. In
fact, formatting is even more important in this case, since it might be necessary to
export the data to another application in a particularly rigorous format. This kind
of application works great with the templating system, since the designer is left to
create a single page format that will be used for all 26 letters of the alphabet. 

To begin, you must decide what kind of data you want to store in the address
book and how this data is to be stored. Of course, the most plausible choice for a
storage media would be a database, since this also facilitates useful features such
as searching and ordering data. I’ll use a MySQL database to store the address
information. The table looks like this:

mysql>CREATE table addressbook (

last_name char(35) NOT NULL,

first_name char(20) NOT NULL,

tel char(20) NOT NULL,

email char(55) NOT NULL );

Of course, you can add street address, city, and state columns. I’ll use this
abbreviated table for sake of illustration.

Next, I’ll play the role of designer and create the templates. For this project,
two templates are required. The first template, shown in Listing 12-8, could be
considered the “parent” template. 

Listing 12-8: Parent address book template, entitled “book.html”
<html>

<head>

<title>:::::{page_title}:::::</title>

</head>

<body bgcolor="white">

<table cellpadding=2 cellspacing=2 width=600>

<h1>Address Book: {letter}</h1>

<tr><td>

<a href="index.php?letter=a">A</a> | <a href="index.php?letter=b">B</a> | 

<a href="index.php?letter=c">C</a> | <a href="index.php?letter=d">D</a> | 

<a href="index.php?letter=e">E</a> | <a href="index.php?letter=f">F</a> | 

Chapter 12

312

Gilmore_12  12/4/00  1:08 PM  Page 312



<a href="index.php?letter=g">G</a> | <a href="index.php?letter=h">H</a> | 

<a href="index.php?letter=i">I</a> | <a href="index.php?letter=j">J</a> | 

<a href="index.php?letter=k">K</a> | <a href="index.php?letter=l">L</a> | 

<a href="index.php?letter=m">M</a> | <a href="index.php?letter=n">N</a> | 

<a href="index.php?letter=o">O</a> | <a href="index.php?letter=p">P</a> | 

<a href="index.php?letter=q">Q</a> | <a href="index.php?letter=r">R</a> | 

<a href="index.php?letter=s">S</a> | <a href="index.php?letter=t">T</a> | 

<a href="index.php?letter=u">U</a> | <a href="index.php?letter=v">V</a> | 

<a href="index.php?letter=w">W</a> | <a href="index.php?letter=x">X</a> | 

<a href="index.php?letter=y">Y</a> | <a href="index.php?letter=z">Z</a>

</td></tr>

{rows.addresses}

</table>

</body>

</html>

As you can see, the bulk of this file is given to the links displaying each letter
of the alphabet. Clicking a particular letter, the user will be presented with all per-
sons stored in the address book having a last name beginning with that letter.

There are also three delimited variable names: page_title, letter, and
rows.addresses. The purpose of the first two variables should be obvious: the title
of the page and the letter of the address book currently used to retrieve address
information, respectively. The third variable refers to the child template and is
used to specify which table configuration file should be inserted into the parent. I
say “table configuration file” because, in a complex page, you might be simultane-
ously using several templates, each employing HTML tables for formatting data.
Therefore, “rows” specifies that a table template will be inserted, and “addresses”
tells us that it is the table used to format addresses.

The second template, shown in Listing 12-9, is the “child” template, because
it will be embedded in the parent. Why this is necessary will soon become clear.

Listing 12-9: Child address book template, entitled “rows.addresses”
<tr><td bgcolor="#c0c0c0">

<b>{last_name},{first_name}</b>

</td></tr>

<tr><td>

<b>{telephone}</b>

</td></tr>

<tr><td>

<b><a href = "mailto:{email}">{email}</a></b>

</td></tr>

Templates

313

Gilmore_12  12/4/00  1:08 PM  Page 313



There are four delimited variable names in Listing 12-9: last_name,
first_name, telephone, and email. The meanings of each should be obvious. It is
important to notice that this file only contains table row (<tr>…</tr>) and table
cell (<td>…</td>) tags. This is because this file will be repeatedly inserted into the
template, one time for each address retrieved from the database. Since the
rows.addresses variable name is enclosed in table tags in Listing 12-8, the HTML
formatting will parse correctly. To illustrate how this works, take a look at Figure
12-1, which is essentially a screenshot of the completed address book in address.
Then examine Listing 12-10, which contains the source code for that screen shot.
You’ll see that the rows.addresses file is used repeatedly in the source code.

Chapter 12

314

Figure 12-1. Screenshot of the address book in action

Listing 12-10: Source code for Figure 12-1
<html>

<head>

<title>:::::Address Book:::::</title>

</head>

<body bgcolor="white">

<table cellpadding=2 cellspacing=2 width=600>

<h1>Address Book: f</h1>

<tr><td><a href="index.php?letter=a">A</a> | <a href="index.php?letter=b">B</a> |

<a href="index.php?letter=c">C</a> | 

<a href="index.php?letter=d">D</a> | <a href="index.php?letter=e">E</a> | <a

href="index.php?letter=f">F</a> | <a href="index.php?letter=g">G</a> | <a

href="index.php?letter=h">H</a> | <a href="index.php?letter=i">I</a> | <a

href="index.php?letter=j">J</a> | <a href="index.php?letter=k">K</a> | <a

Gilmore_12  12/4/00  1:08 PM  Page 314



href="index.php?letter=l">L</a> | <a href="index.php?letter=m">M</a> | <a

href="index.php?letter=n">N</a> | <a href="index.php?letter=o">O</a> | <a

href="index.php?letter=p">P</a> | <a href="index.php?letter=q">Q</a> | <a

href="index.php?letter=r">R</a> | <a href="index.php?letter=s">S</a> | <a

href="index.php?letter=t">T</a> | <a href="index.php?letter=u">U</a> | <a

href="index.php?letter=v">V</a> | <a href="index.php?letter=w">W</a> | <a

href="index.php?letter=x">X</a> | <a href="index.php?letter=y">Y</a> | <a

href="index.php?letter=z">Z</a></td></tr>

<tr><td bgcolor="#c0c0c0">

<b>Fries,Bobby</b>

</td></tr>

<tr><td>

<b>(212) 563-5678</b>

</td></tr>

<tr><td>

<b><a href = "mailto:bobby@fries.com">bobby@fries.com</a></b>

</td></tr>

<tr><td bgcolor="#c0c0c0">

<b>Frenchy,Pierre</b>

</td></tr>

<tr><td>

<b>002-(30)-09-7654321</b>

</td></tr>

<tr><td>

<b><a href = "mailto:frenchy@frenchtv.com">frenchy@frenchtv.com</a></b>

</td></tr>

</table>

</body>

</html>

As you can see, there are apparently two persons having a last name that
begins with F stored in the address book, Bobby Fries and Pierre Frenchy. There-
fore, two table rows have been inserted in the table.

The design process for the address book project is complete. Now, I’ll don the
hat of a coder. You’ll be surprised to know that there are no changes to the tem-
plate.class file in Listing 12-7, save for one new method, address_sql(). This
method is displayed in Listing 12-11.

Templates

315

Gilmore_12  12/4/00  1:08 PM  Page 315



Listing 12-11: SQL parsing method, address_sql()
class template {

VAR $files = array();

VAR $variables = array();

VAR $sql = array();

VAR $opening_escape = '{';

VAR $closing_escape = '}';

VAR $host = "localhost";

VAR $user = "root";

VAR $pswd = "";

VAR $db = "book";

VAR $address_table = "addressbook";

. . . 

function address_sql($file_id, $variable_name, $letter) {

// Connect to MySQL server and select database

mysql_connect($this->host, $this->user, $this->pswd) 

or die("Couldn't connect to MySQL server!");

mysql_select_db($this->db) or die("Couldn't select MySQL database!");

// Query database

$query = "SELECT last_name, first_name, tel, email 

FROM $this->address_table WHERE last_name LIKE '$letter%'";

$result = mysql_query($query);

// Open "rows.addresses" file and read contents into variable.

$fh = fopen("$variable_name", "r");

$file_contents = fread($fh, filesize("rows.addresses") );

// Perform replacements of delimited variable names with table data

while ($row = mysql_fetch_array($result)) :

$new_row = $file_contents;

$new_row = str_replace(

$this->opening_escape."last_name".$this->closing_escape,

$row["last_name"],

$new_row);

Chapter 12

316

Gilmore_12  12/4/00  1:08 PM  Page 316



$new_row = str_replace(

$this->opening_escape."first_name".$this->closing_escape,

$row["first_name"],

$new_row);

$new_row = str_replace(

$this->opening_escape."telephone".$this->closing_escape,

$row["tel"],

$new_row);

$new_row = str_replace(

$this->opening_escape."email".$this->closing_escape,

$row["email"],

$new_row);

// Append new table row onto complete substitution string

$complete_table .= $new_row;

endwhile;

// Assign table substitution string to SQL array key

$sql_array_key = $variable_name;

$this->sql[$sql_array_key] = $complete_table;

// add the key to the variables array for later lookup

$this->variables[$file_id][] = $variable_name;

// Close the filehandle

fclose($fh);

} // end address_sql

. . . 

} // end template.class

The comments  in Listing 12-11 should suffice for understanding the
mechanics of what is taking place. However, there are still a few important points
to make. First, notice that the rows.addresses file is opened only once. An alterna-
tive way to code this method would be to repeatedly open and close the
rows.addresses file, replacing information each time and appending it to the
$complete_table variable. However, this would be highly inefficient coding prac-
tice. Therefore, take some time to review how the loop is used to continuously
append new table information to the $complete_table variable.

Templates

317

Gilmore_12  12/4/00  1:08 PM  Page 317



A second point to make about Listing 12-11 is that five new class attributes
are used: $host, $user, $pswd, $db, and $address_table. Each of these pertains to
information that the MySQL server requires, and the meaning of each should be
obvious. If it isn’t obvious, take a moment to read through Chapter 11, “Data-
bases.”

All that’s left to do now is code the file that triggers the template parsing. This
file is shown in Listing 12-12. By clicking one of the letter links
(index.php?letter=someletter) in book.html (Listing 12-8), this file will be called,
in turn regenerating the book.html file with appropriate information.

Listing 12-12: Template parser index.php
<?

include("template.class");

$page_title = "Address Book";

// The default page will retrieve persons having last name beginning with 'a'

if (! isset($letter) ) :

$letter = "a";

endif;

$tpl = new template;

$tpl->register_file("book", "book.html");

$tpl->register_variables("book", "page_title,letter");

$tpl->address_sql("book", "rows.addresses","$letter");

$tpl->file_parser("book");

$tpl->print_file("book");

?>

There you have it: a practical example of how templates can be used to effi-
ciently divide labor between coder and designer. Take some time to think about
how you can use templates to further streamline your development process. I’ll
bet that you find a number of different implementations for templates.

What’s Next?

This chapter introduced a particularly useful concept of both PHP and Web pro-
gramming in general: advanced template usage. It began with a synopsis of the
two templating systems covered thus far, simple variable substitution via PHP
embedding, and the use of INCLUDE files to separate page components. I then
introduced the third and most advanced template strategy, which completely
separates the code from the design of the page. The remainder of the chapter was

Chapter 12

318

Gilmore_12  12/4/00  1:08 PM  Page 318



spent examining a class built to implement this type of template, concluding with
a practical implementation of the template system, using a Web-based address
book as an example. This example also built on the simple template class, imple-
menting an SQL parser.

In particular, the following topics were discussed in this chapter: 

• Why templates?

• Simple template #1: embedding PHP in HTML

• Simple template #2: using INCLUDE files to separate components

• Advanced templating through the complete division of design and code

• The template class

• File registration

• Variable registration

• File parsing

• File printing

• Disadvantages to using templates

• Address book project that expands on the default class, implementing an
SQL parser

Next chapter, I continue the discussion of dynamic Web application develop-
ment, introducing how cookies and session tracking can add a new degree of user
interactivity to your Web site!

Templates

319

Gilmore_12  12/4/00  1:08 PM  Page 319



Gilmore_12  12/4/00  1:08 PM  Page 320



CHAPTER 13

Cookies and Session
Tracking

The ability to track users and customize user information based on personal pref-
erences has become both one of the hottest and most debated features to be
offered on the Web. While the advantages of being able to offer users services
based on exactly what they desire are obvious, many questions have been raised
regarding privacy in terms of the ramifications of being able to “follow” a user as
that user navigates from page to page, and even from site to site.

Barring privacy concerns, the process of tracking user information through
cookies or other technologies can be immensely beneficial to both the user and
the site offering these services. It is to the user’s benefit that these services provide
the opportunity to customize content, weeding out any information that may be
uninteresting or useless. This capability is also highly beneficial to the site admin-
istrators, as tracking user preferences and habits opens up a whole new realm of
possibilities for user interaction, including targeted marketing and a vastly supe-
rior analysis of the popularity of their onsite content. On the commerce-domi-
nated Web, these capabilities are by now practically the de facto standard. 

This idea of tracking a user while navigating through your site can be defined
as session tracking. Given the vast amount of knowledge that could be gained
from introducing session tracking into your site architecture, it could be said that
the advantages of session tracking and providing customized content far out-
weigh the disadvantages. With that said, this could hardly be considered a com-
plete PHP textbook without devoting a chapter to PHP’s session-tracking capabili-
ties. In this chapter, I introduce several concepts closely intertwined with session
tracking, namely, session cookies and their uses, unique session identification
numbers, before concluding the chapter with a synopsis of PHP’s predefined ses-
sion-tracking configuration and predefined functions. 

What Is a Cookie?

A cookie is nothing more than a small parcel of information that is sent by a Web
server and stored on a client browser. This can be advantageous to the developer
because useful data regarding the user session can be stored and then later
retrieved, resulting in the creation of a state of persistence between the client and

321

Gilmore_13  12/4/00  1:09 PM  Page 321



server. Cookies are commonly used by many Internet sites as a means to enhance
both user experience and site efficiency, providing a way to track user navigation,
actions, and preferences. The ability to store this information is a key feature for
sites offering such services as online shopping, site personalization, and targeted
advertising.

Due to the usercentric purpose of cookie usage, the key piece of information
stored is likely to be a unique user identification number (UIN). This ID is subse-
quently stored in a database and is used as the key for retrieving any information
stored in the database that is mapped to this UIN. Of course, it is not mandatory
that the cookie is used to store a UIN; you could store anything you like in the
cookie, provided that its total size does not surpass four kilobytes (4096 bytes).

Cookie Components

Interestingly, other pieces of information are also stored in the cookie, enabling
the developer to tailor its usage in terms of domain, time frame, path, and secu-
rity. Here are descriptions of the various cookie components:

• name—The cookie name is a mandatory parameter because the name is
the parameter from which the cookie is referenced. The cookie name can
be essentially thought of in terms of a variable name. 

• value—A cookie value is simply a piece of data mapped to the cookie name.
This could be a user identification number, background color, date, any-
thing.

• expiration date—This date defines the lifetime of the cookie. Once this
timestamp equals the current date and time, the cookie will expire and be
rendered unusable. According to cookie specifications, inclusion of the
expiration date is optional. However, PHP’s cookie-setting functionality
requires that this expiration date is set. According to the cookie specifica-
tions, if an expiration date is not included, the cookie will expire at the end
of the user session (that is, when the user exits the site).

• domain—This is the domain that both created and can read the cookie. 
If a domain has multiple servers and would like all servers to be able to 
access the same cookie, then the domain could be set in the form of  
.phprecipes.com. In this case all potential third-level domains falling under
the PHPrecipes site, such as wap.phprecipes.com or news.phprecipes.com,
would have access to the cookie. For security reasons, a cookie cannot be
set for any domain other than the one mapped to the server attempting to

Chapter 13

322

Gilmore_13  12/4/00  1:09 PM  Page 322



set the cookie. This parameter is optional. If it is not included, it will default
to the domain name from which the cookie is emanating.

• path—The path setting specifies the URL path from which the cookie is
valid. Any attempt to retrieve a cookie from outside of this path will fail.
Setting path is optional. If it is not set, then the path will be set to the path
of the document from which the cookie is created.

• security—This determines whether or not the cookie can be retrieved in a
nonsecure setting. Because the cookie will be primarily used in a nonsecure
setting, this optional parameter will default to FALSE.

Although all cookies must abide by the same set of syntax rules when they are
set, the cookie storage format is browser dependent. For example, Netscape Com-
municator stores a cookie in a format similar to the following:

.phprecipes.com    FALSE    /    FALSE    971728956    bgcolor    blue

In Internet Explorer, the same cookie would be stored as:

bgcolor

blue

localhost/php4/php.exe/book/13/

0

2154887040

29374385

522625408

29374377

*

To correctly view a cookie stored by Internet Explorer, just open it up using a
text editor. Keep in mind that certain text editors do not properly process the
newline character found at the end of each line, causing them to appear as
squares in the cookie document.

Cookies and Session Tracking

323

NOTE Internet Explorer stores its cookie information in a folder aptly enti-
tled “Cookies,” while Netscape Communicator stores it in a single file enti-
tled “cookies.” Just perform a search on your drive to find these files.

Gilmore_13  12/4/00  1:09 PM  Page 323



Cookies and PHP

OK, enough background information. By now, I’m sure you’re eager to learn how
you can begin using PHP to store and retrieve your own cookies. You’ll be happy
to know that it is surprisingly easy, done with a simple call to the predefined func-
tion setcookie().

The function setcookie() stores a cookie on a user’s machine. Its syntax is:

int setcookie (string name [, string val [, int date [, string path [, string

domain [, int secure]]]]])

If you took a moment to read the introduction to cookies, you are already
familiar with the parameters in the setcookie() syntax. If you’ve skipped ahead
and are not familiar with the mechanics of persistent cookies, I suggest that you
return to the beginning of this section and read through the introduction, as all of
the setcookie() parameters are introduced there.

Before proceeding, I ask that you read the following sentence not once, not
twice, but three times. A cookie must be set before any other page-relevant infor-
mation is sent to the browser. Write this 500 times on a blackboard, get a tattoo
stating this rule, teach your parrot to say it: I don’t care, just get it straight. In other
words, you cannot just set a cookie where you wish in a Web page. It must be sent
before any browser-relevant information is sent; otherwise it will not work.

Another important restriction to keep in mind is that you cannot set a cookie
and then expect to use that cookie in the same page. Either the user must refresh
the page (don’t count on it), or you will have to wait until the next page request
before that cookie variable can be used.

This example illustrates how setcookie() is used to set a cookie containing a
user identification number:

$userid = "4139b31b7bab052";

$cookie_set = setcookie ("uid", $value, time()+3600, "/", ".phprecipes.com", 0);

After analyzing this code, you’ll notice these results of setting the cookie:

• After reloading or navigating to any subsequent page, the variable $userid
becomes available, producing the user id 4139b31b7bab052.

• This cookie will expire (thus be rendered unusable) exactly one hour (3600
seconds) after it has been sent.

• The cookie is available for retrieval in all directories on the server.

Chapter 13

324

Gilmore_13  12/4/00  1:09 PM  Page 324



• This cookie is only accessible via the phprecipes.com domain.

• This cookie is accessible via a nonsecured protocol. 

The next example, shown in Listing 13-1, illustrates how a cookie can be used
to store page-formatting preferences, in this case the background color. Notice
how the cookie will only be set if the form action has been executed.

Listing 13-1: Storing a user’s favorite background color
<?

// If the variable $bgcolor exists…

if (isset($bgcolor)) :

setcookie("bgcolor", $bgcolor, time()+3600);

?>

<html>

<body bgcolor="<?=$bgcolor;?>">

<?

// else, $bgcolor is not set, therefore show the form

else :

?>

<body bgcolor="white">

<form action="<? print $PHP_SELF; ?>" method="post">

What's your favorite background color?

<select name="bgcolor">

<option value="red">red

<option value="blue">blue

<option value="green">green

<option value="black">black

</select>

<input type="submit" value="Set background color">

</form>

<?

endif;

?>

</body>

</html>

On loading of this page to the browser, the script will verify whether the
cookie entitled “bgcolor” has been set. If it has, then the background color of the
page will be set to the value specified by the variable $bgcolor. Otherwise, an

Cookies and Session Tracking

325

Gilmore_13  12/4/00  1:09 PM  Page 325



HTML form will appear, prompting the user to specify a favorite background
color. Once the color is specified, subsequent reloading of the page or traversal to
any page using the cookie value $bgcolor will be recognized.

Interestingly, you can also use array notation to specify cookie names. You
could specify cookie names as uid[1], uid[2], uid[3], and so on, and then later
access these values just as you would a normal array. Check out Listing 13-2 for an
example of how this works.

Listing 13-2: Assigning cookie names according to array index value
<?

setcookie("phprecipes[uid]", "4139b31b7bab052", time()+3600);

setcookie("phprecipes[color]", "black", time()+3600);

setcookie("phprecipes[preference]", "english", time()+3600);

if (isset ($phprecipes)) {     

while (list ($name, $value) = each ($phprecipes)) {         

echo "$name = $value<br>\n";     

} 

}

?>

Executing this script results in the following output, in addition to three cookies
being set on the user’s computer:

uid = 4139b31b7bab052

color = black

preference = english

Perhaps the most common use of cookies is for storage of a user identifica-
tion number that will be later used for retrieving user-specific information. This
process is illustrated in the next listing, where a UIN is stored in a MySQL data-
base. The stored information is subsequently retrieved and used to set various
pieces of information regarding the formatting of the page.

To set the stage for the next listing, assume that a table entitled user_info
resides on a database named user. The user_info table contains three pieces of

Chapter 13

326

NOTE Although the use of array-based cookies may seem like a great idea
for storing all kinds of information, keep in mind that certain browsers
(such as Netscape Communicator) limit the number of cookies to 20 per
domain.

Gilmore_13  12/4/00  1:09 PM  Page 326



information: a user ID, first name, and email address. This table was created using
the following syntax:

mysql>create table user_info (

->user_id char(18),

->fname char(15),

->email char(35));

Listing 13-3 actually picks up about halfway through what would be a com-
plete “registration” script, starting where the user information (user ID, first
name, and email address) has already been inserted into the database. To elimi-
nate the need for the user to later log in, the user ID (set to 15 in Listing 13-3 for
the sake of illustration) is stored on the user’s computer by way of a cookie.

Listing 13-3: Retrieving user information from a database
<?

if (! isset($userid)) :

$id = "15";

setcookie ("userid", $id, time()+3600);

print "A cookie containing your userID has been set on your machine. Please

refresh the page to retrieve your user information";

else:

@mysql_connect("localhost", "web", "4tf9zzzf") 

or die("Could not connect to MySQL server!");

@mysql_select_db("user") or die("Could not select user database!");

// declare query

$query = "SELECT * FROM user_info WHERE user_id = '$userid'";

// execute query

$result = mysql_query($query);

$row = mysql_fetch_array($result);

print "Hi ".$row["fname"].",<br>";

print "Your email address is ".$row["email"];

mysql_close();

endif;

?>

Listing 13-3 highlights just how useful cookies can be for identifying users.
The above scenario could be applied to any number of situations, ranging from
eliminating the need to log in to effectively tracking user preferences.

Cookies and Session Tracking

327

Gilmore_13  12/4/00  1:09 PM  Page 327



The listing in the next section, “Unique Identification Numbers,” illustrates
the complete process of user registration and subsequent storage of the unique
user ID.

Unique Identification Numbers

By now you are probably curious just how easy it is to create a unique UIN. Put
your college calculus books away; there is no need for funky 17th-century algo-
rithms. PHP provides an easy way to create a unique UIN through its predefined
function uniqid().

The function uniqid() generates a 13-character unique identification num-
ber based on the current time. Its syntax is:

int uniqid (string prefix [, boolean lcg])

The input parameter prefix can be used to begin the UIN with a particular string
value. Since prefix is a required parameter, you must designate at least an empty
value. If set to TRUE, the optional input parameter lcg will cause uniqid() to pro-
duce a 23-character UIN. To quickly create a unique ID, just call uniqid() using an
empty value as the sole input parameter:

$uniq_id = uniqid("");

// Some 13 character value such as ' 39b3209ce8ef2' will be generated.

Another way to create a unique ID is to prepend the derived value with a
string, specified in the input parameter prefix, as shown here:

$uniq_id = uniqid("php", TRUE);

// Some 16 character value such as 'php39b3209ce8ef2' will be generated.

Given the fact that uniqid() creates its UIN based on the current time of the
system, there is a remote possibility that it could be guessed. Therefore, you may
want to ensure that its value is truly random by first randomly choosing a prefix
using another of PHP’s predefined functions, rand(). The following example
demonstrates this usage:

srand ((double) microtime() * 1000000);

$uniq_id = uniqid(rand());

Chapter 13

328

NOTE The MySQL functions used in Listing 13-3 are introduced in Chap-
ter 11, “Databases.”

Gilmore_13  12/4/00  1:09 PM  Page 328



The function srand() acts to initiate the random number generator. If you
want to ensure that rand() consistently produces a random number, you must
execute srand() first. Placing rand() as an input parameter to uniqid() will result
in rand() first being executed, returning a prefix value to uniqid(), which will
then execute, producing a UIN that would be rather difficult to guess.

Armed with the knowledge of how to create unique user IDs, you can now
create a practical user registration scheme. On first request of the script in Listing
13-4, the user is greeted with a short form requesting a name and email address.
This information will be then inserted along with a generated unique ID into the
table user_info, first described along with Listing 13-3. A cookie containing this
unique ID is then stored on the user’s computer. Any subsequent visit to the page
will prompt the script to query the database based on the unique user ID stored
in the cookie, displaying the user information to the screen.

Listing 13-4: A complete user registration process
<?

// build form

$form = "

<form action=\"Listing13-4.php\" method=\"post\">

<input type=\"hidden\" name=\"seenform\" value=\"y\">

Your first name?:<br>

<input type=\"text\" name=\"fname\" size=\"20\" maxlength=\"20\" value=\"\"><br>

Your email?:<br>

<input type=\"text\" name=\"email\" size=\"20\" maxlength=\"35\" value=\"\"><br>

<input type=\"submit\" value=\"Register!\">

</form>

";

// If the form has not been displayed and the user does not have a cookie.

if ((! isset ($seenform)) && (! isset ($userid))) :

print $form;

// If the form has been displayed but the user information 

// has not yet been processed

elseif (isset ($seenform) && (! isset ($userid))) :

srand ((double) microtime() * 1000000);

$uniq_id = uniqid(rand());

// connect to the MySQL server and select the users database

@mysql_pconnect("localhost", "web", "4tf9zzzf") 

or die("Could not connect to MySQL server!");

@mysql_select_db("user") or die("Could not select user database!");

Cookies and Session Tracking

329

Gilmore_13  12/4/00  1:09 PM  Page 329



// declare and execute query

$query = "INSERT INTO user_info VALUES('$uniq_id', '$fname', '$email')";

$result = mysql_query($query) or die("Could not insert user information!");

// set cookie "userid" to expire in one month.

setcookie ("userid", $uniq_id, time()+2592000);

print "Congratulations $fname! You are now registered! Your user information   

will be displayed on each subsequent visit to this page.";

// else if the cookie exists, use the userID to extract 

// information from the users database

elseif (isset($userid)) :

// connect to the MySQL server and select the users database

@mysql_pconnect("localhost", "web", "4tf9zzzf") 

or die("Could not connect to MySQL server!");

@mysql_select_db("user") or die("Could not select user database!");

// declare and execute query

$query = "SELECT * FROM user_info WHERE user_id = '$userid'";

$result = mysql_query($query) or die("Could not extract user information!");

$row = mysql_fetch_array($result);

print "Hi ".$row["fname"].",<br>";

print "Your email address is ".$row["email"];

endif;

?>

The judicious use of several if conditionals makes it possible to use one script
to take care of each step of the registration and subsequent user recognition pro-
cess. There are three scenarios involved in this script:

• The user has not seen the form and does not have a valid cookie. This is the
step where the user is presented with the form.

• The user has filled in the form and does not yet have a valid cookie. This is
the step where the user information is entered into the database, and the
cookie is set, due to expire in one month.

• The user returns to the script. If the cookie is still valid (has not expired),
the cookie is read in and the relevant information is extracted from the
database.

Chapter 13

330

Gilmore_13  12/4/00  1:09 PM  Page 330



The general process shown in Listing 13-4 could of course be applied to any data-
base. This illustrates, on a very basic level, how many of the larger sites are able to
apply user-specified preferences to their site, resulting in a “tailor-made” look for
each user.

This ends the introduction to PHP and cookies. If you are interested in learn-
ing more about the cookie mechanism, check out the online resources that I’ve
cited in the sidebar “Relevant Links.”

Relevant Links

For more information regarding cookies and their usage, take a moment to read
through a few of the resources that I’ve gleaned from the Web:

• http://www.cookiecentral.com

• http://home.netscape.com/newsref/std/cookie_spec.html

• http://builder.com/Programming/Cookies/ss01.html

• http://www.w3.org/Protocols/rfc2109/rfc2109

As you have learned, cookies can be very useful for “remembering” user-spe-
cific information that can be retrieved in subsequent visits to your site. However,
cookies can not be solely relied on since users can set their browsers to refuse to
accept cookies. Thankfully, PHP offers an alternative methodology for storing per-
sistent information; This method is called session tracking and is the subject of
the next section.

Session Handling

A session is best defined as the period of time beginning when a user enters your
site and ending when the user exits. Throughout this session, you may wish to
assign various variables that will accompany the user while navigating around
your site, without having to manually code a bunch of hidden forms or appended
URL variables. This otherwise tedious process becomes fairly easy with session
handling.

Consider the following scenario. Using session handling, a user entering your
site would be assigned a unique session id (SID). This SID is then sent to the user’s
browser in a cookie entitled PHPSESSID. If cookie support is disabled or not sup-
ported, this SID can be automatically appended to all local URLs throughout the
user session. At the same time, a file with the same name as the SID is stored on

Cookies and Session Tracking

331

Gilmore_13  12/4/00  1:09 PM  Page 331



the server. As the user navigates throughout the site, you may wish to record cer-
tain variables as session variables. These variables are stored in that user’s file.
Any subsequent call to any of those variables deemed to be of the “session” type
will cause the server to grab that user’s session file and search it for the session
variable in question. And voilà! The session variable is displayed. In a nutshell,
this is the essence of session handling. Of course, you can also direct this user
information to be stored in databases or other files, whatever you wish.

Sounds interesting? You bet it does. Armed with this information, you will
surely have a better understanding of the various configuration issues at hand,
which I will now discuss. There are three particularly important configuration
flags. The first, entitled —enable-trans-id, must be included in the configuration
process if you wish to take advantage of its features (described below). The other
two, entitled track_vars and register_globals, can be enabled and disabled as
necessary in the php.ini file. The ramifications of activating these three flags are
discussed next.

—enable-trans-sid

When PHP is compiled with this flag, all relative URLs will automatically be
rewritten with the session ID attached. This appendage of the session ID is writ-
ten in the form session-name=session-id, where session-name is defined in the
php.ini file (explained later in this section). If you decide not to do so, you can use
the constant SID.

track_vars

Enabling track_vars allows $HTTP_*_VARS[] arrays, where * is one of the EGPCS
(Environment, Get, Post, Cookie, Server) values. This must be enabled in order for
the SID to propagate from one page to another. As of PHP 4.03, this setting is
always enabled.

register_globals

Enabling this option will result in all EGCPS variables being globally accessible.
You want this disabled if you don’t want your global array filling with perhaps
unnecessary data. If this is disabled and track_vars is enabled, all GPC variables
can be accessed through the $HTTP_*_VARS[] arrays. As an example, if
register_globals is disabled, you would have to refer to the predefined variable
$PHP_SELF as $HTTP_SERVER_VARS["PHP_SELF"].

There are also a number of preferential configuration issues that you should
take care of. These directives are described in Table 13-1, shown in their default
form as seen in the php.ini file. They are introduced in the order that they actually
appear in the file.

Chapter 13

332

Gilmore_13  12/4/00  1:09 PM  Page 332



Table 13-1. Session-handling directives in the php.ini file

DIRECTIVE DESCRIPTION 

session.save_handler = files Specifies how the session information

will be stored on the server. There are

three ways to do so: in a file (files),

shared memory (mm), or through user-

defined functions (User). The user-

defined functions allow you to easily

store the information in any format you

wish, for example, in a database. 

session.save_path = /tmp Designates the directory in which the

PHP session files will be stored. On the

Linux platform, the default setting

('/tmp') is probably just fine. On the

Windows platform, you will need to

change this to some Windows path;

otherwise errors will occur.

session.use_cookies = 1 When enabled, cookies are used to store

the session ID on the user’s computer.

session.name = PHPSESSID If session.use_cookies is enabled, then

session.name will be used as the cookie

name. The characters comprising the

name can only be alphanumeric.

session.auto_start = 0 When enabled, session.auto_start will

automatically initiate a session when a

client makes an initial request.

session.cookie_lifetime = 0 If session.use_cookies is enabled, then

session.cookie_lifetime will determine

the lifetime of the sent cookies. If it is set

to 0, then any sent cookies will expire on

the termination of the user session. 

session.cookie_path = / If session.use_cookies is enabled, then

session.cookie_path determines the

parent path directory for which sent

cookies are valid.

session.cookie_domain = If session.use_cookies is enabled, then

session.cookie_domain determines the

domain for which sent cookies are valid.

session.serialize_handler = php This specifies the name of the handler

that will be used to serialize data. There

are currently two possible values for

this: php and WDDX.

Cookies and Session Tracking

333

Gilmore_13  12/4/00  1:09 PM  Page 333



Table 13-1. (Continued)

DIRECTIVE DESCRIPTION 

session.gc_probability = 1 This specifies the percentual probability

that PHP’s garbage collection routine

will be activated. 

session.gc_maxlifetime = 1440 Specifies the time (in seconds) before

session data is considered invalid and

will be destroyed. This timer begins

counting down after the last access to

the session.

session.referer_check = When set to a string, each request to a

session-enabled page will begin with a

verification that the specified string is in

the global variable $HTTP_REFERER. If it is

not found, any accompanying session

ID will be ignored.

session.entropy_file = Points to an external file that supplies

additional random information used

during the creation of the session ID.

There are typically two devices on UNIX

systems made for this purpose,

/dev/random and /dev/urandom. The

/dev/random device collects random data

from inside the kernel, while the

/dev/urandom device relies on the MD5

hashing algorithm to produce a random

string. In short, /dev/random is faster, but

/dev/urandom produces a more

“random” string.

session.entropy_length = 0 Assuming session.entropy_file is set,

session.entropy_length specifies the

number of bytes to be read from the file

specified by session.entropy_length.

session.cache_limiter = nocache Determines the cache control method

for session pages. There are three

possible values for this setting: nocache,

public, and private.

session.cache_expire = 180 Determines the TTL (time to live) in

minutes for cached session pages.

Chapter 13

334

Gilmore_13  12/4/00  1:09 PM  Page 334



Now that you have presumably made any necessary configuration adjust-
ments to your server, I will turn attention toward the mechanics of how you can
implement session handling on your site. It is actually a rather simple process,
made possible through the use of several predefined functions. The first concept
that you need to know is that a session is initiated with the function
session_start(). Of course, you could eliminate the need to use this function if
you had enabled session.auto_start in the php.ini file as discussed earlier in this
section. However, for the remainder of this section, I will assume that you have
not done this so to ensure consistency in my examples. The syntax of
session_start() is simple, as it requires no input parameters and returns only a
boolean informing the developer as to its success.

session_start()

The function session_start() is twofold in purpose. Once called, it checks to see
if the user has already started a session, and if the user has not, it starts one. Its
syntax is:

boolean session_start()

If it starts a session, it performs three functions, assigning the user a SID,
sending a cookie (if session.use_cookies is enabled in the php.ini file), and creat-
ing the session file on the server. Its second purpose is that it informs the PHP
engine that other session variables may be used in the script from which it (ses-
sion_start()) is executed.

A session is started simply by calling session_start() like this:

session_start();

Just as a session can be created, it can be destroyed. This is accomplished via
the function session_destroy().

Cookies and Session Tracking

335

NOTE The configuration directive session.save_handler is so useful that I
felt an entire section should be devoted to it. It is located at the conclusion
of this chapter under “Specifying User Callbacks as Storage Modules”.

TIP The session_start() function returns TRUE no matter what the
actual outcome is. Therefore, it does no good to use it in if conditionals or
in conjunction with die() statements.

Gilmore_13  12/4/00  1:09 PM  Page 335



session_destroy()

The function session_destroy() will destroy all persistent data corresponding to
the current user session. Its syntax is:

boolean session_destroy()

Keep in mind that this will not destroy any cookies on the user’s browser. How-
ever, if you are not interested in using the cookie beyond the end of the session,
just set session.cookie_lifetime to 0 (its default value) in the php.ini file. An
example of the function’s usage is:

<?

session_start();

// do some session stuff

session_destroy();

?>

Now that you know how to create and destroy sessions, you are ready to begin
working with the various session variables. Perhaps the most important one is the
SID. This is easily obtainable through using the session_id() function.

session_id()

The function session_id() returns the user’s SID originally created by
session_start(). This is its syntax:

string session_id([string sid])

If you supply a session ID as the optional input parameter sid, the user’s ses-
sion ID will be changed. Keep in mind, however, that this will not resend the
cookie. Executing this example:

<?

session_start ();

print "Your session identification number is ".session_id();

session_destroy();

?>

results in output similar to the following being displayed to the browser:

Your session identification number is 967d992a949114ee9832f1c11cafc640

Chapter 13

336

Gilmore_13  12/4/00  1:09 PM  Page 336



So how can you begin creating your own session variables? The function ses-
sion_register() takes care of this job handily.

session_register()

The function session_register() registers one or more variable names with the
user’s current session. Its syntax is:

boolean session_register (mixed varname1 [, mixed varname2 …])

Keep in mind that you are not registering variables, but rather the names of
the variables. Session_register() will also call session_start() internally,
implicitly beginning a new session if one does not already exist. 

Before exemplifying the usage of session_register(), I would like to intro-
duce another session-oriented function that can verify whether or not a particu-
lar variable has been registered. The function is entitled
session_is_registered().

session_is_registered()

It is often useful to determine whether or not a variable has already been regis-
tered. This task can be accomplished with session_is_registered(). Its syntax is:

boolean session_is_registered (string varname)

To illustrate the usage of session_register() and session_is_registered(),
I’ll refer to what seems to be everyone’s favorite basic session example: a hit
counter. This is illustrated in Listing 13-5.

Listing 13-5: A user-specific hit counter
<?

session_start();

if (! session_is_registered('hits')) :

session_register('hits');

endif;

$hits++;

print "You've seen this page $hits times";

?>

Just as you can create session variables, you can destroy them. This is accom-
plished with session_unregister().

Cookies and Session Tracking

337

Gilmore_13  12/4/00  1:09 PM  Page 337



session_unregister()

A session variable can be destroyed with a call to session_unregister(). Its syntax
is:

boolean session_unregister (string varname)

The input parameter varname is the name of the session variable that you
would like to destroy.

<?

session_start();

session_register('username');

// ...use the variable $username as needed, then destroy it.

session_unregister('username');

session_destroy();

?>

As is the case with session_register(), remember that you do not specify the
input parameter varname as an actual variable (that is, with a preceding dollar sign
[$]). Instead, you just use the name of the variable.

session_encode()

The function session_encode() offers a particularly convenient method for for-
matting session variables for storage, for example in a database. Its syntax is:

boolean session_encode()

Executing this function will result in all session data being formatted into a
single string. This string can then be inserted into a database for storage pur-
poses.

Consider Listing 13-6 for an example of how session_encode() is used.
Assume that a “registered” user has a cookie containing that user’s unique ID
stored on a computer. When the user requests the page containing Listing 13-6,
the user ID is retrieved from the cookie. This value is then assigned to be the ses-
sion ID. Certain session variables are created and assigned values, and then all of
this information is encoded using session_encode() and inserted into a MySQL
database.

Chapter 13

338

Gilmore_13  12/4/00  1:09 PM  Page 338



Listing 13-6: Using session_encode() to store data in a MySQL database
<?

// Initiate session and create a few session variables

session_register('bgcolor');

session_register('fontcolor');

// assume that the variable $usr_id (containing a unique user ID)

// is stored in a cookie on the user's machine.

// use session_id() to set the session ID to be the user's 

// unique user ID stored in the cookie and In the database

$id = session_id($usr_id);

// these variables could be set by the user via an HTML form

$bgcolor = "white";

$fontcolor = "blue";

// encode all session data into a single string

$usr_data = session_encode();

// connect to the MySQL server and select users database

@mysql_pconnect("localhost", "web", "4tf9zzzf") or die("Could not connect to MySQL

server!");

@mysql_select_db("users") or die("Could not select user database!");

// update the user's page preferences

$query = "UPDATE user_info set page_data='$usr_data' WHERE user_id= '$id'";

$result = mysql_query($query) or die("Could not update user information!");

?>

As you can see, the capability to quickly convert all of the session variables
into a single string eliminates the need to keep track of several column names
when storing and retrieving data and eliminates several lines of code that would
otherwise be needed to store and retrieve this data.

session_decode()

Any session data previously encoded with session_encode() can be decoded with
session_decode(). Its syntax is:

string session_decode(string session_data)

Cookies and Session Tracking

339

Gilmore_13  12/4/00  1:09 PM  Page 339



The input parameter session_data is the encoded string of session variables,
presumably returned from a file or database retrieval. The string is decoded, and
all session variables  in the string are regenerated back to their original variable
format.

Listing 13-7 illustrates how previously encoded session variables are regener-
ated by using session_decode(). Assume that a MySQL table entitled “user_info”
is built from just two columns: user_id and page_data. The user’s UID, stored in a
cookie on the user’s computer, is used to retrieve encoded session data stored in
the page_data column. The page_data column stores an encoded string of vari-
ables, one of which is the user’s preferential background color, stored in the vari-
able $bgcolor.

Listing 13-7: Decoding session data stored in a MySQL database
<?

// assume that the variable $usr_id (containing a unique user ID)

// is stored in a cookie on the user's machine.

$id = session_id($usr_id);

// connect to the MySQL server and select user's database

@mysql_pconnect("localhost", "web", "4tf9zzzf") or die("Could not connect to MySQL

server!");

@mysql_select_db("users") or die("Could not select company database!");

// select data from the MySQL table

$query = "SELECT page_data FROM user_info WHERE user_id= '$id'";

$result = mysql_query($query);

$user_data = mysql_result($result, 0, "page_data");

// decode the data

session_decode($user_data);

// output one of the regenerated session variables

print "BGCOLOR: $bgcolor";

?>

As you can see from the previous two listings, session_encode() and ses-
sion_decode() are enormously useful and efficient for storing and retrieving ses-
sion data.

Chapter 13

340

Gilmore_13  12/4/00  1:09 PM  Page 340



Specifying User Callbacks as Storage Modules

While storing session information in files works pretty well, you may be interested
in storing data using other mediums, probably a database. Or perhaps you are
interested in reusing the same scripts on different sites, but  with different data-
bases. Another common dilemma is the need to share session data across various
servers, something that is rather difficult when using PHP’s default routines of
storing session data in a file. You’ll be happy to know that realizing all of these
extensions to PHP’s session handling is really an easy task, given PHP’s capability
to allow users to specify their own storage routines via a predefined function
called session_set_save_handler().

The function session_set_save_handler() defines the user-level session stor-
age and retrieval functions. Its syntax is:

void session_set_save_handler (string open, string close, string read, string

write, string destroy, string gc)

The six input parameters correspond to the six functions that are transpar-
ently called by PHP’s session-handling functions. The function
session_set_save_handler() allows you to redefine these functions without
affecting the scripts that call PHP’s predefined session functions. Although you
can change the names of the functions to be whatever you wish, each must take
as input a specified set of parameters. Before proceeding to an example, take a
look at Table 13-2 to understand the roles of these six functions and their input
parameters.

Cookies and Session Tracking

341

NOTE In order to make use of session_set_save_handler(), you must set
session.save_handler to user in the php.ini file.

Gilmore_13  12/4/00  1:09 PM  Page 341



Table 13-2: Six input parameters for the function session_set_savehandler()

PARAMETER DESCRIPTION

sess_close() Called when a script implementing the session

functions finishes. This is not the same as

sess_destroy(), which is used to actually

destroy the session variables. There aren’t any

input parameters for sess_close().

sess_destroy($session_id) Deletes all session data. The input parameter

$session_id specifies which session is to be

destroyed.

sess_gc($maxlifetime) Deletes any sessions that have expired. The

expiration time is denoted by the input

parameter $maxlifetime, specified in

seconds. This parameter is read from the

php.ini file and corresponds to

session.gc_lifetime.

sess_open($sess_path, $sess_name) Called when a new session is initialized, either

by session_start() or session_register().

The two input parameters $sess_path and

$sess_name are read from the php.ini file and

correspond to the session.save_path and

session.name parameters, respectively.

sess_read($key) Used to retrieve the value corresponding to a

session variable, denoted by the input

parameter $key. 

sess_write($key, $value) Used to write the session data. Any data saved

by sess_write() can later be retrieved by

sess_read(). The input parameter $key

corresponds to a session variable name, and

$value corresponds to the value assigned to

$key.

Now that you know more about the functions that you need to define, I’ll pro-
vide an example of a MySQL-based implementation of the session-handling func-
tions. This example is given in Listing 13-8.

Chapter 13

342

Gilmore_13  12/4/00  1:09 PM  Page 342



Listing 13-8: MySQL implementation of the session-handling functions
<?

// MySQL implementation of session-handling functions 

// mysql server host, username, and password values

$host = "localhost";

$user = "web";

$pswd = "4tf9zzzf";

// database and table names

$db = "users";

$session_table = "user_session_data";

$SESS_TBLNAME = "user_session_data";

// retrieve sess.gc_lifetime value from php.ini file

$sess_life = get_cfg_var("sess.gc_lifetime");

// Function: mysql_sess_open()

// mysql_sess_open() connects to the MySQL server

// and selects the database.

function mysql_sess_open($save_path, $session_name) {

GLOBAL $host, $user, $pswd, $db;

@mysql_pconnect($host, $user, $pswd) 

or die("Can't connect to MySQL server!");

@mysql_select_db($SESS_$db) or die("Can't select session database!");

}

// Function: mysql_sess_close()

// mysql_sess_close() is not needed in the MySQL implementation. 

// *However*, it still must be defined.

function mysql_sess_close() {

return true;

}

// Function: mysql_sess_read()

// mysql_sess_read() reads the information from the MySQL database.

function mysql_sess_read($key) {

GLOBAL $session_table;

Cookies and Session Tracking

343

Gilmore_13  12/4/00  1:09 PM  Page 343



$query = "SELECT value FROM $session_table WHERE sess_key = '$key' AND

sess_expiration >". time();

$result = mysql_query($query);

// If session value Is found, return it

if (list($value) = mysql_fetch_row($result)) :

return $value;

endif;

return false;

}

// Function: mysql_sess_write()

// mysql_sess_write() writes the information to the MySQL database.

function mysql_sess_write($key, $val) {

GLOBAL $sess_life, $session_table;

// set expiration time

$expiration = time() + $sess_life;

$query = "INSERT INTO $session_table VALUES('$key', '$expiration',    

'$value')";

$result = mysql_query($query);

// if the insert query failed because of the primary key already exists,

// perform an update instead.

if (! $result) :

$query = "UPDATE $session_table SET sess_expiration = '$expiration', 

sess_value='$value' WHERE sess_key = '$key'";

$result = mysql_query($result);

endif;

}

// Function: mysql_sess_destroy()

// mysql_sess_destroy() deletes all table rows having the session key = $sess_id

function mysql_sess_destroy($sess_id) {

GLOBAL $session_table;

$query = "DELETE FROM $session_table WHERE sess_key = '$sess_id'";

$result = mysql_result($query);

Chapter 13

344

Gilmore_13  12/4/00  1:09 PM  Page 344



return $result;

}

// Function: mysql_sess_gc()

// mysql_sess_gc() deletes all table rows 

// having an expiration < current time - session.gc_lifetime

function mysql_sess_gc($max_lifetime) {

GLOBAL $session_table;

$query = "DELETE FROM $session_table WHERE sess_expiration < " . time();

$result = mysql_query($query);

return mysql_affected_rows();

}

session_set_save_handler("mysql_sess_open", "mysql_sess_close", "mysql_sess_read",

"mysql_sess_write", "mysql_sess_destroy", "mysql_sess_gc");

?>

Once you have defined these six functions, you are then free to execute each
through its abstract name (sess_close(), sess_destroy(), sess_gc(),
sess_open(), sess_read(), or sess_write()). The convenience in this lies in the
fact that you could then build as many implementations as necessary and then
redefine session_set_save_handler() whenever necessary.

Project: Create a Visitor Log

It’s often useful to record information about your site’s visitors. As you already
know, this is a common practice among Web advertising agencies, portals, and
any of a number of other sites interested in learning more about their visitors.
While these systems can get enormously complicated, there are still a number of
benefits that can be obtained from the creation of a relatively simple logging sys-
tem. I’ll show you how to build just such a simple system using PHP, MySQL, and
cookies.

Cookies and Session Tracking

345

CAUTION This project incorporates the Chapter 8 browser detection proj-
ect. If you skipped over either Chapter 8 or the project, I would strongly rec-
ommend at least reviewing the project code before proceeding.

Gilmore_13  12/4/00  1:09 PM  Page 345



As I’ve already said, our system will be relatively simple, monitoring only vis-
its to the site index page. When the visitor arrives, the PHP script checks to see
whether or not a valid cookie resides on the visitor’s computer. If one does, this
signifies that the user has previously visited in a specified time frame (preset by
the site administrator in an initialization file), and the script will not count this
visit. If there is no cookie (or there is a previously set cookie that has expired),
then either the user has never visited or the preset time frame between visits has
been surpassed, and the information is recorded to the MySQL table. Further-
more, a new cookie is sent to the visitor’s computer.

How can this script be constructed using PHP? First, you need to create the
MySQL table that holds the information:

mysql>create table visitors (

->browser char(85) NOT NULL,

->ip char(30) NOT NULL,

->host char(85) NOT NULL,

->timeOfVisit datetime NOT NULL

->);

What is the purpose of each column? The column browser contains informa-
tion directly relating to the user’s browser. This information is supplied by the
PHP variable $HTTP_USER_AGENT. The column ip contains the user’s IP address. The
column host contains ISP information from where the IP address emanates.
Finally, the column timeOfVisit specifies the date and time that the visitor arrived
at the site.

Next, create the application initialization file, init.inc, as shown in Listing 13-
9. It holds both the global variables and core functions. Notice that the functional-
ity of the Chapter 8 project script sniffer.php is used in the viewStats() function.
This script will be included along with the init.inc file when necessary. Take a
moment to review this script and its comments.

Chapter 13

346

NOTE A powerful visitor-logging application is available for free down-
load from the PHP resource site phpinfo.net (http://www.phpinfo.net). You
can also check out a live implementation onsite. However, you’ll need to
dust off that French textbook before going there!

Gilmore_13  12/4/00  1:09 PM  Page 346



Listing 13-9: Creating the application initialization file (init.inc)

<?

// file: init.inc

// purpose: initialization file for Visitor Logging project

// Database connection variables

$host = "localhost";

$user = "web";

$pswd = "4tf9zzzf";

// database name

$database = "myTracker";

// polls table name

$visitors_table = "visitors";

// Connect to the MySQL Server

@mysql_pconnect($host, $user, $pswd) or die("Couldn't connect to MySQL server!");

// Select the database

@mysql_select_db($database) or die("Couldn't select $database database!");

// Number of recent visitors to display in table

$maxNumVisitors = "5";

// Cookie Name. You can set this to whatever you wish. 

// However, the current setting will work just fine.

$cookieName = "visitorLog";

// Value stored in the cookie.

$cookieValue="1";

/*

Timeframe between acknowledgement of subsequent visit by same user

If $timeLimit is set to 0, every user visit to that page will be recorded

regardless of the frequency. All other integer settings will be regarded as number

of SECONDS that must pass between visits in order to be recorded.

*/

$timeLimit = 3600;

Cookies and Session Tracking

347

Gilmore_13  12/4/00  1:09 PM  Page 347



// How would you like the table displayed?

$header_color = "#cbda74";

$table_color = "#000080";

$row_color = "#c0c0c0";

$font_color = "#000000";

$font_face = "Arial, Times New Roman, Verdana";

$font_size = "-1";

// function: recordUser

// purpose: Record user Information in the MySQL table $visitors_table

function recordUser() {

GLOBAL $visitors_table, $HTTP_USER_AGENT, $REMOTE_ADDR, $REMOTE_HOST;

/*

If the visitor is operating on the internal site server, set the $REMOTE_HOST to

'localhost'. Alternatively, you may want to eliminate the recording of all

internal visitors, since it's likely to be yourself or another development team

member.

/*

if ($REMOTE_HOST == "") :

$REMOTE_HOST = "localhost";

endif;

// format a valid MySQL datetime format

$timestamp = date("Y-m-d H:i:s");

// Insert the user data into the MySQL table

$query = "INSERT INTO $visitors_table VALUES

('$HTTP_USER_AGENT', '$REMOTE_ADDR', 

'$REMOTE_HOST', '$timestamp')";

$result = @mysql_query($query);

} // recordUser

// function: viewStats

// purpose: Extract and format information  in the MySQL table $visitors_table

function viewStats() {

// Include some global variables

GLOBAL $visitors_table, $maxNumVisitors, $table_color, $header_color;

Chapter 13

348

Gilmore_13  12/4/00  1:09 PM  Page 348



GLOBAL $row_color, $font_color, $font_face, $font_size;

// Select the most recent $maxNumVisitors from the MySQL table.

$query = "SELECT browser, ip, host, timeOfVisit FROM $visitors_table 

ORDER BY timeOfVisit desc LIMIT 0, $maxNumVisitors";

$result = @mysql_query($query);

// format and print the retrieved data

print "<table cellpadding=\"2\" cellspacing=\"1\" width = \"800\" border = 

\"0\" bgcolor=\"$table_color\">";

print "<tr bgcolor= \"$header_color\">

<th>Browser</th><th>IP</th><th>Host</th><th>TimeofVisit</th>

</tr>";

while($row = mysql_fetch_array($result)) :

// These functions are in 'sniffer.inc'

list ($browse_type, $browse_version) = browser_info ($row["browser"]);

$op_sys = opsys_info ($row["browser"]);

print "<tr bgcolor=\"$row_color\">";

print "<td><font color=\"$font_color\" face=\"$font_face\"

size=\"$font_size\">";

print "$browse_type $browse_version - $op_sys</font></td>";

print "<td><font color=\"$font_color\" face=\"$font_face\"

size=\"$font_size\">".$row["ip"]."</font></td>";

print "<td><font color=\"$font_color\" face=\"$font_face\"

size=\"$font_size\">".$row["host"]."</font></td>";

print "<td><font color=\"$font_color\" face=\"$font_face\"

size=\"$font_size\">";

print $row["TimeofVisit"]."</font></td>";

print "</tr>";

endwhile;

print "</table>";

} // viewStats

?>

Next, insert the script you see in Listing 13-10; it will be used to check for a
valid cookie and call the recordUser() function when necessary. I’ll include this
code along with a very simple index file entitled “index.php.”

Cookies and Session Tracking

349

Gilmore_13  12/4/00  1:09 PM  Page 349



Listing 13-10: Checking for a valid cookie (index.php)
<?

include("init.inc");

// If no valid cookie is found

if (! isset($$cookieName)) :

// Set a new cookie

setcookie($cookieName, $cookieValue, time()+$timeLimit);

// Record the visitor information

recordUser();

endif;

?>

<html>

<head>

<title>Welcome to My Site!</title>

</head>

<body bgcolor="#c0c0c0" text="#000000" link="#808040" vlink="#808040"

alink="#808040">

Welcome to my site. <a href = "visitors.php">Check out who else has recently

visited</a>.

</body>

</html>

How is the information that is stored in the MySQL database viewed in the
browser? This is accomplished simply by placing the function viewStats()in a
separate file(visitors.php), as shown here:

<html>

<?

// Include browser detection functionality

include("sniffer.inc");

// Include the initialization file

include("init.inc");

?>

<head>

<title>Most recent <?=$maxNumVisitors;?> visitors</title>

</head>

<body bgcolor="#ffffff" text="#000000" link="#808040" vlink="#808040"

alink="#808040">

<?

viewStats();

?>

</body>

</html>

Chapter 13

350

Gilmore_13  12/4/00  1:09 PM  Page 350



Alternatively, you could place the entire HTML code in the viewStats() func-
tion and then just include sniffer.inc, init.inc, and a call to viewStats() in a sepa-
rate file. It depends on how much you would like to consolidate the formatting of
the page. Using the current table format settings  in init.inc, a sample output pro-
duced by viewStats() is shown in Figure 13-1.

There are many modifications that you could make to this script to expand its
practicality. One commonly used way to track visitors is to assign an identification
number to each page that you would like to log and then track users as they navi-
gate from page to page. This could be accomplished using the above project by
simply expanding your MySQL table to include a column that stores a page iden-
tification number. Then modify the recordUser() function to have an input
parameter from which this ID number could be passed in for recording. You could
then vary each cookie to hold that page ID and check for that specific cookie as
the visitor requests each logged page.

What’s Next?

This chapter introduced one of the most exciting features of the PHP language:
session handling. In particular, the following topics were covered:

• Cookie basics

• Cookies and PHP

• Unique identification numbers

• User registration scenarios

• Introduction to sessions

• The php.ini session parameters

Cookies and Session Tracking

351

Figure 13-1. Sample output produced by viewStats()

Gilmore_13  12/4/00  1:09 PM  Page 351



• PHP’s predefined session functions

• The session_set_save_handler() function

• A visitor-logging application

Sessions offer an enormous administrative advantage to developers inter-
ested in creating truly user-oriented Web sites. I strongly urge you to experiment
with PHP’s session-handling functionality, as I think you will find it particularly
useful.

This chapter concludes Part II of this book. Part III, “Advanced PHP,” begins
with a survey of PHP and XML integration. Stay tuned, as things are about to get
really interesting.

Chapter 13

352

Gilmore_13  12/4/00  1:09 PM  Page 352



Gilmore_14  12/5/00  10:25 AM  Page 353





Gilmore_14  12/5/00  10:25 AM  Page 354



CHAPTER 14

PHP and XML

It can hardly be argued that the Web has not vastly changed the landscape on
which we share information. The sheer vastness of this electronic network has
made the establishment of certain standards not only a convenience, but a re-
quirement if organizations are ever going to exploit the Web to its fullest capabil-
ity. XML (eXtensible Markup Language) is one such standard, providing a means
for the seamless interchange of data between organizations and their applica-
tions. The implications of this are many, resulting in the facilitation of media-in-
dependent publishing, electronic commerce, customized data retrieval, and
many other data-oriented services.

In the first part of this chapter, I provide a general introduction to XML, high-
lighting the general syntactical elements that comprise the language. The second
half of this chapter is dedicated to PHP’s XML-parsing capabilities, elaborating on
its predefined XML functionality and the language’s general XML-parsing process.
This material is geared toward providing you with a better understanding of both
why XML is so useful and how you can begin coming to terms with how PHP can
be used to develop useful and interesting XML-based applications.

Before delving directly into the issue of XML, many newcomers to this subject
may find it useful to learn more about the history behind the concepts that ulti-
mately contributed to the development of the XML standard.

A Brief Introduction to Markup

As its name so implies, HTML (HyperText Markup Language) is what is known as
a markup language. The term markup is defined as the general description for the
document annotation that, instead of being displayed to whatever media the doc-
ument is destined for, is used for describing how parts of that document should
be formatted. For example, you may want a particular word to be boldfaced and
another italicized. You may wish to use a particular font for one paragraph and a
larger font size for a header. As I type this paragraph, my word processor is using
its own form of markup in order to properly present the formatting as I specify it
to be. Therefore, the word processor is using its own particular formatting
markup language implementation. In short, the markup language used by my
word processor is a means for specifying the visual format of the text in my 
document. 

355

Gilmore_14  12/5/00  10:25 AM  Page 355



There are many types of markup languages  in the world today. For example,
communication applications use a form of markup to specify the meaning of
each group of 1’s and 0’s sent over the Internet. Humans use a sort of markup lan-
guage when underlining or crossing out words in a textbook. Regardless of its for-
mat, a markup language accomplishes two important tasks:

• It defines what is considered to be valid markup syntax. In the case of the
HTML specification, <b>text</b> would be a valid markup statement, but
<xR5t>text</x4rt> would be invalid, due to mismatching opening and clos-
ing tags.

• It defines what is meant by a particular valid markup syntax. Surely you
know that <b>text</b> is an HTML command to format in boldface the
word text. That is an example of the markup defining what is to result when
a particular markup document component is declared.

HTML is a particularly popular markup language, as is obvious when watch-
ing the explosive growth of the Web over the past few years. But how was this lan-
guage derived? Who thought to use tags such as <b> and </b> to specify meaning
in a document? The answer to this lies in HTML’s forefather, SGML (Standard
Generalized Markup Language).

The Standard Generalized Markup Language (SGML)

SGML is an internationally recognized standard for exchanging electronic infor-
mation between varied hardware and software implementations. Judging from its
name, you would think that SGML is some sort of language. This is perhaps a bit
misleading, since SGML is actually defined as a formalized set of rules from which
languages can be created. Two particularly popular languages derived from SGML
are HTML and XML. As you already know, HTML is a platform- and hardware-in-
dependent language used to format and display text. The same is true of XML.

SGML was born out of the necessity to share data between different applica-
tions and operating systems. As far back as the 1960s, this was already fast becom-
ing a problem for computer users. Realizing the constraints of the many nonstan-
dard markup languages, three IBM researchers, Charles Goldfarb, Ed Mosher, and
Ray Lorie, began unearthing three general concepts that would make it possible
to begin sharing documents across operating systems and applications:

• The document-processing programs must all be able to communicate
using a common formatting language. This makes sense, since we know
from our own experiences that communication among individuals speak-
ing different languages is difficult. However, if we are all provided with the
same set of syntax and semantics, communication becomes much easier.

Chapter 14

356

Gilmore_14  12/5/00  10:25 AM  Page 356



• The formatting language should be specific to its purpose. The ability to
custom-build a language based on a particular set of predefined rules frees
the developer from having to depend on a third-party implementation of
what is assumed that the end user requires.

• The document format must closely follow a set of specific rules. These
rules relate to such things as the number and label of the language con-
structs used in the document. A standard document format ensures that all
users know exactly what the structural outline of that document contains.
This last pillar of document sharing is particularly important because it
does not specify how the document is displayed. Rather, it specifies how the
document is structurally formatted. The set of rules used to create this doc-
ument format is better known as a document type definition, or DTD.

These three rules form the basis for SGML’s predecessor, Generalized Markup
Language, or GML. Research and development of GML continued over the next
decade or so, until SGML was born out of an agreement made by an international
group of developers.

As the need for a common ground for information exchange became increas-
ingly prevalent in the 1980s, SGML soon became the industry standard (1986 was
the year that SGML became an ISO standard) for making it happen. In fact, the
standard is still going strong today, with agencies in charge of maintaining enor-
mous amounts of information relying on SGML as a dependable and convenient
means for data storage. To put it in perspective, the U.S. Patent and Trademark
Office (http://www.uspto.gov), U.S. Internal Revenue Service
(http://www.irs.gov), and Library of Congress (http://lcweb.loc.gov) are all promi-
nent users of SGML in their mission-critical applications. Just imagine the
amount of documentation that each of these agencies handles each year!

The idea of passing hypertext documents via a Web browser, as was envi-
sioned by Tim Berners-Lee, did not require many of the features offered by the ro-
bust SGML implementation. This resulted in the creation of a well-known markup
language called HTML.

PHP and XML

357

TIP Arguably the best resource on the Internet for learning more about
SGML, XML, and various other markup languages is the Robin
Cover/OASIS XML Cover Pages  at http://www.oasis-open.org/cover/.

Gilmore_14  12/5/00  10:25 AM  Page 357



The Advent of HTML

Interestingly, the concept of the World Wide Web fit only too perfectly in the idea
of using a generalized markup language to facilitate information exchange in an
environment harboring a multitude of different hardware, operating system, and
software implementations. And in fact, Berners-Lee must have had this matter in
mind, as he modeled the first version of HTML after the SGML standard. HTML
shares several of SGML’s characteristics, including a simple generalized tag set
and the angled bracket convention. These simple documents could be effectively
read on any computer system, offering a means for viewing text documents. And
the rest is history.

However, HTML suffers from the major drawback that it does not offer devel-
opers the capability of creating their own document types. This resulted in the
onset of the “browser wars,” where browser developers begin building their own
enhancements to the HTML language. These HTML add-ons severely detracted
from the idea of working with a unique HTML standard, not to mention wreaking
havoc for developers wishing to create cross-browser Web sites. Furthermore,
years of a lax definition standard resulted in developers greatly stretching the
boundaries of the original intent of the language. I would not be surprised if the
vast majority of Web pages on the Internet today failed to comply with the current
HTML specification. 

The W3C’s (http://www.w3.org) reaction to this rapidly worsening situation
began with a concerted attempt to steer HTML development back toward the
right path: that is, a return to the underlying foundations of SGML. The result of
their concentrated efforts? XML.

Irrefutable Evidence of Evolution: XML

XML is essentially the culmination of the efforts of the W3C to offer an Internet-
based standard that is in conformance with the three major principles of SGML,
first introduced in the previous section, “The Standard Generalized Markup Lan-
guage (SGML).” Like SGML, XML is not in itself a language; it too is composed of a
standard set of guidelines from which other languages can be derived. More
specifically, XML is the product of the conglomeration of three separate specifica-
tions:

• XML (Extensible Markup Language): This specification defines the core
XML syntax.

• XSL (Extensible Style Language): XSL is a specification geared toward sepa-
rating page style from page content through the practice of applying sepa-
rate style sheets to documents to satisfy specific formatting requirements.

Chapter 14

358

Gilmore_14  12/5/00  10:25 AM  Page 358



• XLL (Extensible Linking Language): XLL specifies how links between re-
sources are represented.

XML not only makes it possible for developers to create their own custom
languages for Internet application production; it also allows for the validation of
these documents for conformance to the XML specification. Furthermore, XML
truly promotes the idea of implementation-independent data, since the XSL can
be used to specify exactly how the document will be displayed. For example, as-
sume that you have reformatted your Web site to be stored as XML source. You
could use a “wireless” style sheet to format the XML source for use on a PDA, such
as a Palm Pilot, and another “”personal computer” style sheet to format it for dis-
play on a regular computer monitor. Remember, it’s the same XML source, just
formatted differently to suit the user’s device.

An Introduction to XML Syntax

Those of you already familiar with SGML or HTML will find the structure of an
XML document to be nothing new. Consider Listing 14-1, which illustrates a sim-
ple XML document.

Listing 14-1: A simple XML document
<?xml version="1.0"?>

<!DOCTYPE cookbook SYSTEM "cookbook.dtd">

<cookbook>

<recipe category="italian">

<title>Spaghetti alla Carbonara</title>

<description>This traditional Italian dish is sure to please even the most

discriminating critic.</description>

<ingredients>

<ingredient>2 large eggs</ingredient>

<ingredient>4 strips of bacon</ingredient>

<ingredient>1 clove garlic</ingredient>

<ingredient>12 ounces spaghetti</ingredient>

<ingredient>3 tablespoons olive oil</ingredient>

</ingredients>

<process>

<step>Combine oil and bacon in large skillet over medium heat. Cook until bacon is

brown and crisp.</step>

<step>Whisk eggs in bowl. Set aside.</step>

PHP and XML

359

NOTE The Wireless Markup Language (WML) is an example of a popular
language derived from XML.

Gilmore_14  12/5/00  10:25 AM  Page 359



<step>Cook pasta in large pot of boiling water to taste, stirring occasionally.

Add salt as necessary.</step>

<step>Drain pasta and return to pot, adding whisked eggs. Stir over medium-low

heat for 2-3 minutes.</step>

<step>Mix in bacon. Season with salt and pepper to taste.</step>

</process>

</recipe>

</cookbook>

There you have it! Your first XML document. Now turn your attention toward
the following components of just such a document, elaborating on parts of Listing
14-1 to illustrate their usage:

• XML prolog

• Tag elements

• Attributes

• Entity references

• Processing instructions

• Comments

XML Prolog

All XML documents must begin with a document prolog. This line basically says
that XML will be used to build the document and which version of XML will be
used to do so. Since the current XML version is 1.0, all of your XML documents
should begin with:

<?xml version="1.0">

The next line of Listing 14-1 points to an external DTD. Don’t worry too much
about this right now. I introduce DTDs in detail in the upcoming section “The
Document Type Definition (DTD).”

<!DOCTYPE cookbook SYSTEM "cookbook.dtd">

The rest of Listing 14-1 contains elements very similar to those of an HTML
document. The first element, cookbook, is what is known as the root element,
since its tag set encloses all of the other tags in the document. Of course, you can

Chapter 14

360

Gilmore_14  12/5/00  10:25 AM  Page 360



name your root element whatever you like. The important thing to keep in mind
is that its tag set encloses all other elements. 

There are other instructions that could be placed in the prolog. For example,
you could extend the first above-described declaration by specifying that the doc-
ument is complete by itself:

<?xml version="1.0" standalone="yes">

Setting standalone to “yes” tells the parser that no other files should be im-
ported into this document, such as a DTD.

Although this extension and others are certainly useful, I’ll keep document
syntax to a minimum in order to better illustrate the central topic of this chapter:
how PHP and XML work together. 

Elements

The rest of the document consists largely of varied elements and corresponding
data. Elements are easily identified, as they are enclosed within angle brackets
like those in HTML markup. An element may be empty, consisting of only one tag
set, or it may contain information, in which case it must have an opening and
closing tag. If it is not empty, then the tag names describe the nature of the infor-
mational data (also known as CDATA) enclosed in the tags. As you can see from
Listing 14-1, these tags are very similar to those  in an HTML document. However,
there are a few important distinctions to keep in mind:

• All XML elements must consist of both an opening and closing tag. 

• Those elements that are not empty consist of both opening and closing
tags. Those tags that would not logically have a closing tag can use an alter-
native form of syntax <element />. At first, you may wonder what tag would
not have a complement. Keep in mind that certain HTML formatting tags
like <br>, <hr>, and <img> don’t have closing tags. Tags of the same format
can be created in XML documents.

• XML elements must be properly nested. Listing 14-1 illustrates an XML
document that is properly nested; that is, no element tags appear where
they shouldn’t. For example, you couldn’t do the following:

<title>Spaghetti alla Carbonara

<ingredients></title>

PHP and XML

361

Gilmore_14  12/5/00  10:25 AM  Page 361



Other than not making sense, it just doesn’t make for good form. Subse-
quent parsing of this XML document would fail.

• XML elements are case-sensitive Those of you used to cranking out HTML
at 3 a.m. won’t like this rule too much. In XML, the tag <tag> is different
from <Tag> is different from <TAG>. Get used to it, or this will soon drive
you crazy.

Attributes

Just as HTML tags can be assigned attributes, so can XML tags. In short, attributes
provide further information about the content that could later be used for format-
ting or processing the XML. These attributes are assigned in name-value pairs,
and unlike in HTML, XML attributes must be properly enclosed in either single or
double quotation marks, or subsequent parsing will fail. Listing 14-1 contains one
such element attribute:

<recipe category="italian">

This attribute basically says that the category of this particular recipe is ital-
ian. This could facilitate subsequent grouping and organizational operations.

Entity References

Entities are a way to facilitate document maintenance by referencing some con-
tent through the use of some keyword. This keyword could point to something as
simple as an abbreviation expansion or as complicated as an entirely new piece of
XML content. The convenience in entities lies in the fact that they can be used re-
peatedly throughout an XML document. When this document is later parsed, all
references to that entity will be replaced with the content referred to in the entity
declaration. The entity declaration is placed in the DTD referred to by the XML
document.

You can refer to an entity in your XML document by calling its name, pre-
ceded by an ampersand (&), and followed by a semicolon (;). For example, assume
that you had declared an entity that pointed to copyright information. Through-
out the XML document, you could then refer to this entity by using the following
syntax:

&Copyright;

Chapter 14

362

Gilmore_14  12/5/00  10:25 AM  Page 362



Using this in an applicable manner, a line of the XML document might read:

<footer>

…various other footer information…

&Copyright;

</footer>

Like variables or templates, entities are useful when a certain piece of infor-
mation may change in the future or continued explicit referencing of that infor-
mation is too tedious a process to repeat. I’ll delve further into the details of refer-
encing and declaring entities in the upcoming section “The Document Type
Definition (DTD).”

Processing Instructions

Processing instructions, commonly referred to as PIs, are external commands that
are used by the application that is working with the XML document. The general
syntax for a PI is:

<?PITarget instructions?>

PITarget specifies which application should make use of the ensuing in-
structions. For example, if you wanted PHP to execute a few commands in an
XML document, you could make use of a PI:

<?php print "Today's date is: ".date("m-d-Y");?>

Processing instructions are useful because they make it possible for several
applications to work with the same document in unison.

Comments

Comments are always a useful feature of any language. XML comment syntax is
exactly the same as that of HTML comment syntax:

<!— Descriptive comments go here —>

Okay, so you’ve seen your first XML document. However, there is another very
important aspect of creating valid XML documents: the document type defini-
tion, or DTD.

PHP and XML

363

Gilmore_14  12/5/00  10:25 AM  Page 363



The Document Type Definition (DTD)

A DTD is a set of syntax rules that form the basis for validation of an XML docu-
ment. It explicitly details an XML’s document structure, elements, and element at-
tributes, in addition to various other pieces of information relevant to any XML
document derived from that DTD.

Keep in mind that it is not a requirement that an XML document has an ac-
companying DTD. If a DTD does exist, then the XML system can use this DTD as a
reference for how to interpret the XML document. If a DTD is not present, it is as-
sumed that the XML system will be able to apply its own rules to the document.
However, chances are that you want to include a DTD with your XML document
to verify its structure and interpretation.

A DTD may be placed directly in the XML document itself, referenced via a
URL or via some combination of both methods. If you wanted to place the DTD
directly in the XML document, you would do this by defining the DTD directly
after the prolog as follows:

<!DOCTYPE root_element_name [

…various declarations…

] >

The reference to root_element_name will correspond to the name of the root
element surrounding your XML document. The section specified by “various
declarations” is where the element, attribute, and various other declarations are
defined.

Chances are you will want to place your DTD in a separate file to facilitate
modularity. Therefore, let’s begin by showing how a DTD can be referenced from
within an XML document. This is accomplished with a simple command:

<!DOCTYPE root_element_name SYSTEM "some_dtd.dtd">

As was the case with the internal DTD declaration, root_element_name refers
to the name of the root element surrounding your XML document. The keyword
SYSTEM refers to the fact that some_dtd.dtd is located on the local server. You
could also point to some_dtd.dtd by referring to its absolute URL. Finally, the URL
referenced in quotations points to the external DTD. This DTD could reside either
locally or on some other server.

So how would you create a DTD for Listing 14-1? First of all, you want to call
the DTD from within the XML document. As discussed in the previous section,
the DTD is referenced with the following command:

<!DOCTYPE cookbook SYSTEM "cookbook.dtd">

Chapter 14

364

Gilmore_14  12/5/00  10:25 AM  Page 364



Looking back to Listing 14-1, you see that cookbook is the root_element_name.
The name of the DTD being referenced is cookbook.dtd. The DTD itself is shown
in Listing 14-2. A line-by-line description of the listing ensues.

Listing 14-2: DTD for Listing 14-1, entitled “cookbook.dtd”
<?xml version="1.0"?>

<!DOCTYPE cookbook [

<!ELEMENT cookbook (recipe+)>

<!ELEMENT recipe (title, description, ingredients, process)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT ingredients (ingredient+)>

<!ELEMENT ingredient (#PCDATA)>

<!ELEMENT process (step+)>

<!ELEMENT step (#PCDATA)>

<!ATTLIST recipe category CDATA  #REQUIRED>

] >

So what does this rather strange-looking document mean? Although seem-
ingly cryptic at first, it is actually rather simple. Let’s go over Listing 14-2 line by
line:

<?xml version="1.0"?>

The first line is essentially the XML prolog. You have already been introduced
to this.

<!DOCTYPE cookbook [

The second line states that a DTD is beginning, and the DTD title is cook-
book.

<!ELEMENT cookbook (recipe+)>

The third line refers to an actual tag element in the XML document, in this
case the root element, which is cookbook. Immediately following is the word
recipe enclosed in parentheses. This means that enclosed in the cookbook tags
will be a child tag element named recipe. The plus sign following recipe means
that there will be at least one set of the recipe tags  in the parent cookbook tags.

<!ELEMENT recipe (title, description, ingredients, process)>

PHP and XML

365

Gilmore_14  12/5/00  10:25 AM  Page 365



The fourth line defines the recipe tag. It states that in the recipe tag, four dis-
tinct child tags will be found: title, description, ingredients, and process. Since no
occurrence indicators (more about occurrence indicators in the following section,
“DTD Components”) follow any of the tag declarations, it is assumed that one set
of each will appear in the recipe tag.

<!ELEMENT title (#PCDATA)>

Here we happen on the first tag definition that does not contain any nested
tags. Instead it is said to hold #PCDATA. The keyword #PCDATA stands for charac-
ter data, that is, any data that is not considered to be markup oriented.

<!ELEMENT description (#PCDATA)>

The element definition of description, like title, states that the description
tags will not hold anything else except character data.

<!ELEMENT ingredients (ingredient+)>

The definition of the ingredients element states that it will contain one or
more tags named ingredient. Check out Listing 14-1, and you will realize how log-
ical this is.

<!ELEMENT ingredient (#PCDATA)>

Since the tag element ingredient refers to a single ingredient  in the list, it only
makes sense that this element will contain character data.

<!ELEMENT process (step+)>

The element process is expected to contain one or more instances of the ele-
ment step.

<!ELEMENT step (#PCDATA)>

The element step, like ingredient, is a component of a larger list. Therefore, it
is expected to contain character data.

<!ATTLIST recipe category CDATA  #REQUIRED>

Notice that the recipe element in Listing 14-1 contains an attribute. This at-
tribute, category, refers to a general category in which the recipe would fall, in this
case Italian. Note that both the element name and the attribute name are speci-

Chapter 14

366

Gilmore_14  12/5/00  10:25 AM  Page 366



fied in this ATTLIST definition. Furthermore, because of the fact that for referen-
tial purposes it would be useful to categorize every single recipe, we specify that
this attribute is #REQUIRED.

] >

This final line simply closes the DTD definition. You must always properly en-
close the definition, or an error will occur.

Let’s finish this section with a synopsis of the major components of a typical
DTD: 

• Element type declarations

• Attribute declarations

• ID, IDREF, and IDREFS

• Entity declarations

You were introduced to several of these components in the preceding review of
Listing 14-2. Now I’ll cover each component in further detail.

Element Declarations

All elements used in an XML document must be properly defined if a DTD ac-
companies the document. You’ve already seen two commonly used element defi-
nition variations: defining an element to contain other elements, and defining an
element to contain character data. To recap, the following definition of the tag el-
ement description specifies that it will contain only character data:

<!ELEMENT description (#PCDATA)>

The following definition of the element process specifies that it will contain
exactly one occurrence of the element named step:

<!ELEMENT process (step)>

Of course, it might not make too much sense to just have one step in a pro-
cess, and chances are you would have more. Therefore you can use the occurrence
indicator to specify that there will be at least one occurrence of the element step:

<!ELEMENT process (step+)>

PHP and XML

367

Gilmore_14  12/5/00  10:25 AM  Page 367



You can specify the frequency of occurrence of elements in several different
ways. A listing of available element operators is shown in Table 14-1.

Table 14-1. Element Operators

INDICATOR MEANING

? Zero or one occurrences

* Zero or more occurrences

+ One or more occurrences

[none] Exactly one time

| Either element

, The first element must follow the second element.

If you intended on including several different tags in a specific tag element,
you delimit each with a comment in the element definition:

<!ELEMENT recipe (title, description, ingredients, process)>

Since there are no occurrence indicators, each of these tags must appear only
once.

You can also use Boolean logic to further specify the definition of an element.
For example, assume that you were dealing with recipes that always specified
pasta accompanied with one or more types of either cheese or meat. You could
define the ingredient element as follows:

<!ELEMENT ingredient (pasta+, (cheese | meat)+)>

Since you always want the pasta tag to appear, you place the plus (+) occur-
rence indicator after it. Then, either the cheese or meat element is expected;
therefore you separate them with a vertical bar and proceed the parentheses
block with a plus (+), since one or the other is always expected.

There are many other element definition variations. This is only the begin-
ning. However, what has been covered thus far should suffice for you to effectively
follow the examples presented throughout the rest of this chapter.

Attribute Declarations

Element attributes describe what kind of value an element may have. Like HTML
tag elements, XML elements may have zero, one, or several attributes. The general
syntax for an attribute declaration is:

Chapter 14

368

Gilmore_14  12/5/00  10:25 AM  Page 368



<!ATTLIST element_name

attribute_name1 datatype1 flag1

…

>

Where element_name is the name of the tag element. The attributes for this tag
element then ensue. There are three main components of each attribute, the
name, specified by attribute_name1; its datatype, specified by datatype1; and a
flag specifying how that attribute value is handled, specified by flag1. The ellipsis
(…) signifies that more than one attribute declaration can be placed here.

You’ve already seen a simple example of an attribute declaration in 
Listing 14-2:

<!ATTLIST recipe category CDATA  #REQUIRED>

However, as you can see from the general syntax definition, you can also si-
multaneously declare multiple attributes. For example, suppose that you wanted
to assign the recipe element not only a category attribute, but a difficulty (in
preparation) attribute as well. This would be a multiple-attribute declaration. You
could declare both of these attributes in the same list:

<!ATTLIST recipe category CDATA  #REQUIRED

difficulty CDATA  #REQUIRED>

You are not required to format the declaration as I’ve done; However, it im-
proves readability over just letting the declarations run together on a single line.
Also, since both attributes are required, you cannot just use the recipe tag with
only one or the other; both must be used. For example, this would be wrong:

<recipe difficulty="hard">

Why? Because the category attribute is not present. However, this would be
correct:

<recipe category="Italian" difficulty="hard">

There are actually three different flags that can be used to indicate how an 
attribute value is handled. These flags and their descriptions are shown in 
Table 14-2.

PHP and XML

369

Gilmore_14  12/5/00  10:25 AM  Page 369



Table 14-2. Attribute Flags

FLAG DESCRIPTION

#FIXED Specifies that the attribute can only be assigned one specific value 

for every element instance  in the document.

#IMPLIED Specifies that a default attribute value can be used if the attribute

is not included with the element.

#REQUIRED Specifies that the attribute is not optional and must always be

present with each element instance.

Attribute Types

An element attribute can be declared as one of a number of types. Each type is de-
scribed in further detail in this chapter.

CDATA Attributes

Many times, you will be interested in just ensuring that the attributes contain
general character data. These are known as CDATA attributes. The following ex-
ample was already shown at the beginning of this section:

<!ATTLIST recipe category CDATA  #REQUIRED>

ID, IDREF, and IDREFS Attributes

Throughout several chapters of this book I introduced the idea of using identifica-
tion numbers to uniquely identify data, such as user or product information
stored in a database table. The use of unique IDs is also particularly useful in the
world of XML, since cross-referencing information  across documents is common
not only in general information management but also on the World Wide Web (via
hyperlinks). 

Element IDs are assigned the ID attribute. For example, assume that you
want to assign each recipe a unique identification number. The DTD syntax might
look like the following:

…

<!ELEMENT recipe (title, description, ingredients, process)>

<!ATTLIST recipe recipe-id ID #REQUIRED>

<!ELEMENT recipe-ref EMPTY>

<!ATTLIST recipe-ref go IDREF #REQUIRED>

…

Chapter 14

370

Gilmore_14  12/5/00  10:25 AM  Page 370



You could then declare the recipe element in a document as follows:

<recipe recipe-id="ital003">

<title>Spaghetti alla Carbonara</title>

…

The identifier ital003 uniquely identifies this recipe. Keep in mind that since
recipe-id is of type ID, the same identifier cannot be used in any other recipe
recipe-id value, or the document will be invalid. Now suppose that later on you
want to reference this recipe somewhere else, for example, in a user’s list of fa-
vorite recipes. This is where the element cross-reference and the IDREF attribute
come into play. IDREF can be assigned an ID value for referring to the element
specified by ID, kind of like a hyperlink refers to a page specified by a particular
URL. Consider the following XML snippet:

<favoriteRecipes>

<recipe-ref go="ital003">

</favoriteRecipes>

Once the XML document is parsed, the recipe-ref element would be re-
placed with a more user-friendly reference pointing to the recipe having that ID,
such as the recipe title. Also, it would probably be formatted as a hyperlink to fa-
cilitate navigation to that recipe.

Enumerated Attributes

You can also specify a restricted list of potential values for an attribute. This would
actually work quite well to improve the above declaration, since you could as-
sume that you would have a specific list of recipe categories and could limit the
levels of difficulty to a select few adjectives. Let’s refine the previous declaration to
read:

<!ATTLIST recipe category (Italian | French | Japanese | Chinese)  #REQUIRED

difficulty (easy | medium |  hard) #REQUIRED>

Notice that when using restricted value sets, you are no longer required to in-
clude CDATA. This is because all of the values are already of CDATA format.

Default Enumerated Attributes

It is sometimes useful to declare a default value. Chances are you have probably
done this in the past when building forms that have drop-down lists. For exam-
ple, if the majority of your recipe submissions are from Italians, chances are the

PHP and XML

371

Gilmore_14  12/5/00  10:25 AM  Page 371



majority of the recipes will be of the Italian category. You could set Italian as the
default category like this:

<!ATTLIST recipe category (Italian | French | Japanese | Chinese) "Italian">

In the above declaration, if no other category value has been set, then the 
category will automatically default to Italian.

Entities and Entity Attributes

Not all of the data in an XML document is necessarily text based. Binary data such
as graphics may appear as well. This data can be referred to by using entity attrib-
utes. You could specify that a (presumably) graphic named recipePicture will ap-
pear within the description element as follows:

<!ATTLIST description recipePicture ENTITY #IMPLIED>

Similarly, you could simultaneously declare several entities by using the enti-
ties attribute in place of the entity attribute. Each ENTITY value is separated by
white space.

NMTOKEN and NMTOKENS Attributes

An NMTOKEN, or name token, is a string composed of a restricted range of char-
acters. Therefore, declaring an attribute to be of type NMTOKEN would suggest
that the attribute value be in accordance with the restriction posed by NMTO-
KEN. Typically, an NMTOKEN attribute value consists of only one word:

<!ATTLIST recipe category NMTOKEN  #REQUIRED>

Similarly, you could simultaneously declare several entities by using the NM-
TOKENS attribute in place of the NMTOKEN attribute. Each NMTOKEN value is
separated by white space

Entity Declarations

An entity declaration works similarly to the define command  in many program-
ming languages, PHP included. I briefly introduced entity references in the pre-
ceding section, “An Introduction to XML Syntax.” To recap, an entity reference
acts as a substitute for another piece of content. When the XML document is
parsed, all occurrences of this entity are replaced with the content that it repre-
sents. There are two types of entities: internal and external.

Chapter 14

372

Gilmore_14  12/5/00  10:25 AM  Page 372



Internal Entities

Internal entities are used much like string variables are, correlating a name with a
piece of text. For example, if you wanted to associate a name that pointed to your
company’s copyright statement you would declare the entity as follows:

<!ENTITY Copyright "Copyright 2000 YourCompanyName. All Rights Reserved.">

When the document is parsed, all occurrences of &Copyright are replaced
with “Copyright 2000 YourCompanyName. All Rights Reserved.” Any XML in the
replacement content would be parsed as if it had originally appeared in the docu-
ment!

An internal reference works fine when you plan on using an entity for a spe-
cific or limited number of XML documents. However, if your company is process-
ing quite a few XML documents, then perhaps using an external entity is your
best bet.

External Entities

External entities also can be used to reference content  in another file. This
entity type can reference text, but it can also reference binary data, such as a
graphic. Referring back to the previous copyright example, you may want to store
this information in another file to facilitate its later modification. You could de-
clare an external entity pointing to it as follows:

<!ENTITY Copyright SYSTEM http://yoursite.com/administration/copyright.xml">

When the XML document is later parsed, any references to &Copyright; will
be substituted with the content in the copyright.xml document. This information
will be parsed just as if it originally appeared in the document. 

It is also useful to use external entities to point to graphics. For example, if
you wanted to place a logo in certain XML documents, you could declare an ex-
ternal entity pointing to it, as shown here:

<!ENTITY food_picture SYSTEM http://yoursite.com/food/logo.gif>

Just as is the case with the copyright example, any reference to &food_picture
will be replaced with the graphic to which the external entity points. However,
since this data is binary and not text, it will not be parsed.

PHP and XML

373

Gilmore_14  12/5/00  10:25 AM  Page 373



XML References

Although the preceding XML introduction is sufficient for understanding the
basic framework of XML documents, there is still quite a bit more to be learned.
The following links point to some of the more comprehensive XML resources
available on the Internet:

• http://www.w3.org/XML/

• http://www.xml.com/pub/ArticlesbyTopic

• http://www.ibm.com/developer/xml/

• http://www.oasis-open.org/cover/

The remainder of this chapter is devoted to how PHP can be used to parse
XML documents. Although it seems complicated (parsing any type of document
can be a daunting task), I think you’ll be rather surprised at how easy it is once
you’ve learned the basic strategy used by PHP for doing so. 

PHP and XML

PHP’s XML functionality is implemented using James Clark’s Expat (XML Parser
Toolkit) package, at http://www.jclark.com/xml/. Expat comes packaged with
Apache 1.3.7 and later, so you won’t need to specifically download it if you are
using a recent version of Apache. To use PHP’s XML functionality, you’ll need to
configure PHP using –with-xml.

Although at first the idea of parsing XML data using PHP (or any language)
seems intimidating, much of the work is already done for you by PHP’s predefined
functionality. All that you are left to do is define new functions tailored to your
own DTD definitions and then apply these functions to PHP’s easy-to-follow XML
parsing process.

Before I begin introducing PHP’s XML function set, take a moment to recon-
sider the very basic pieces that comprise an XML document. This will help you
understand the mechanics behind why certain functions are an indispensable
part of any XML parser. On the most general level, there are nine components of
an XML document:

Chapter 14

374

NOTE Expat 2.0 is currently being developed by Clark Cooper. More infor-
mation is  at http://expat.sourceforge.net/.

Gilmore_14  12/5/00  10:25 AM  Page 374



• Opening tags

• Attributes

• Character data

• Closing tags

• Processing instructions

• Notation declarations

• External entity references

• Unparsed entities

• Other components (comments, XML declaration, etc.)

Given these nine components, in order to effectively parse an XML docu-
ment, functions need to be defined that handle each of these components. Once
they are defined, you use PHP’s various predefined callback functions that act to
integrate your custom handler functions into the overall XML parsing process.
You can think of PHP’s general XML parsing process as a series of five steps:

1. Create your customer handler functions. Of course, if you intend on
working with XML documents in a consistent fashion, you will only need
to create these functions once and subsequently concentrate on main-
taining them.

2. Create the XML parser that will be used to parse the document. This is
accomplished by calling xml_parser_create().

3. Use the predefined callback functions to register your handler functions
with the XML parser.

4. Open the XML file, read the data contained in it, and pass this data to the
XML parser. Note that to parse the data, you only need to call
xml_parse()!  This function is responsible for implicitly calling all of the
previously defined handler functions. 

5. Free up the XML parser, essentially clearing the data from it. This is ac-
complished by calling xml_parser_free(). 

PHP and XML

375

Gilmore_14  12/5/00  10:25 AM  Page 375



The purpose of each of these steps will become apparent as you read the next
section, “PHP’s Handler Functions.”

PHP’s Handler Functions

There are eight predefined set functions that act to register the functions that will
be used to handle the various components of an XML document:

Keep in mind that you must define the functions that will be tied into the
handler functions; otherwise an error will occur. Each predefined register func-
tion and the specifications for the corresponding handler functions are presented
in this section. 

xml_set_character_data_handler()

This function registers the handler function that works with character data. Its
syntax is:

int xml_set_character_data_handler(int parser, string characterHandler)

The input parameter parser refers to the XML parser handler. The input pa-
rameter characterHandler refers to the name of the function created to handle
the character data. The function specified by characterHandler is defined here:

function characterHandler(int parser, string data) {

…

}

The input parameter parser refers to the XML parser handler, and data to the
character data that has been parsed.

xml_set_default_handler()

This function specifies the handler function that is used for all components of the
XML document that do not need to be registered. Examples of these components
include the XML declaration and comments. Its syntax is:

int xml_set_default_handler(int parser, string defaultHandler)

The input parameter parser refers to the XML parser handler. The input pa-
rameter defaultHandler refers to the name of the function created to handle the
XML element. The function specified by defaultHandler is defined here:

Chapter 14

376

Gilmore_14  12/5/00  10:25 AM  Page 376



function defaultHandler(int parser, string data) {

…

}

The input parameter parser refers to the XML parser handler, and data to the
character data that will be handled by default.

xml_set_element_handler()

This function registers the handler functions that work with the parse starting and
ending element tags. Its syntax is:

int xml_set_element_handler(int parser, string startTagHandler, string

endTagHandler)

The input parameter parser refers to the XML parser handler. The input pa-
rameters startTagHandler and endTagHandler refer to the names of the functions
created to handle the starting and ending tag elements, respectively. The function
specified by startTagHandler is defined as:

function startTagHandler(int parser, string tagName, string attributes[]) {

…

}

The input parameter parser refers to the XML parser handler, tagName to the
name of the opening tag element being parsed, and attributes to the array of at-
tributes that may accompany the tag element.

The function specified by endTagHandler is defined as:

function endTagHandler(int parser, string tagName) {

…

}

The input parameter parser refers to the XML parser handler, tagName to the
name of the closing tag element being parsed.

xml_set_external_entity_ref_handler()

This function registers the handler function that works with external entity refer-
ences. Its syntax is:

int xml_set_external_entity_ref_handler(int parser, string externalHandler)

PHP and XML

377

Gilmore_14  12/5/00  10:25 AM  Page 377



The input parameter parser refers to the XML parser handler. The input pa-
rameter externalHandler refers to the name of the function created to handle the
external entity. The function specified by externalHandler is defined here:

function externalHandler(int parser, string entityReference, string base, string

systemID, string publicID) {

…

}

The input parameter parser refers to the XML parser handler, entityRefer-
ence to the name of the entity reference, systemID to the system identifier of the
entity reference, and publicID to the public identifier of the entity reference. The
parameter base is currently not used by the function, but needs to be declared
anyway.

xml_set_notation_declaration_handler()

This function registers the handler function that works with notation declara-
tions. Its syntax is:

int xml_set_notation_declaration_handler(int parser, string notationHandler)

The input parameter parser refers to the XML parser handler. The input pa-
rameter notationHandler refers to the name of the function created to handle the
notation declaration. The function specified by notationHandler is defined here:

function notationHandler(int parser, string notationDeclaration, string base,

string systemID, string publicID) {

…

}

The input parameter parser refers to the XML parser handler, notationDecla-
ration to the name of the notation declaration, systemID to the system identifier
of the notation declaration, and publicID to the public identifier of the notation
declaration. The parameter base is currently not used by the function, but needs
to be declared anyway.

xml_set_object()

This function makes it possible to use the XML parser from within an object. Its
syntax is:

Chapter 14

378

Gilmore_14  12/5/00  10:25 AM  Page 378



void xml_set_object(int parser, object &object)

The input parameter parser refers to the XML parser handler, and the object
reference refers to the object containing the methods used to handle the XML
components. The specific purpose of this function is to identify the parser with
that specific object. Typically you’ll use this function in an object’s constructor
method, following it with the various handler function definitions:

class xmlDB { 

VAR $xmlparser; 

function xmlDB() { 

$this->xmlparser = xml_parser_create(); 

// associate the parser with the object

xml_set_object($this->xmlparser,&$this);

// define the callback functions

xml_set_element_handler($this->xmlparser,"startTag","endTag"); 

xml_set_character_data_handler($this->xmlparser,"characterData"); 

}

. . . The handler functions startTag, endTag, characterData and others are created

here

} // end class xmlDB

As an exercise, try commenting out the call to xml_set_object(). You’ll see that
subsequent execution results in error messages regarding the inability to call the
handler methods belonging to the object.

xml_set_processing_instruction_handler()

This function registers the handler function that works with processing instruc-
tions. Its syntax is:

xml_set_processing_instruction_handler(int parser, string processingIntHandler)

The input parameter parser refers to the XML parser handler. The input pa-
rameter processingHandler refers to the name of the function created to handle
the processing instruction. The function specified by processingIntHandler is de-
fined here:

PHP and XML

379

Gilmore_14  12/5/00  10:25 AM  Page 379



function processingIntHandler(int parser, string processingApp, string

instruction) {

…

}

The input parameter parser refers to the XML parser handler, processingApp
to the name of the application that should process the instruction, and instruc-
tion to the instruction that is passed to the application.

xml_set_unparsed_entity_decl_handler()

This function registers the handler function that works with external entity refer-
ences. Its syntax is:

int xml_set_unparsed_entity_decl_handler(int parser, string unparsedEntityHandler)

The input parameter parser refers to the XML parser handler. The input pa-
rameter unparsedEntityHandler refers to the name of the function created to han-
dle the unparsed entity. The function specified by unparsedEntityHandler is de-
fined here:

function unparsedEntityHandler(int parser, string entDec, string base, string

sysID, string pubID, string NName) {

…

}

The input parameter parser refers to the XML parser handler, entDec to the
name of the entity being defined, sysID to the system identifier of the notation
declaration, and pubID to the public identifier of the notation declaration. The pa-
rameter base is currently not used by the function, but needs to be declared any-
way. Finally, NName refers to the name of the notation declaration.

This concludes the introduction of the register and handler functions. How-
ever, these are not the only functions you need to effectively parse XML docu-
ments. The remainder of PHP’s predefined XML functionality is presented next.

PHP’s Parsing Functions

While it is not necessary to implement each one of PHP’s handler functions (an
XML document does not have to use every type of element), there are three func-
tions that should be in every parsing script. These functions are described below.

Chapter 14

380

Gilmore_14  12/5/00  10:25 AM  Page 380



xml_parser_create()

Before parsing an XML document, you must first create a parser. The syntax for
doing so is:

int xml_parser_create([string encoding])

The optional input parameter encoding can be used to specify the source en-
coding. Currently, there are three supported source encodings:

• UTF-8

• US-ASCII

• ISO-8859-1 (Default)

Much like fopen() returns a handle to an opened file, xml_parser_create()
returns a parser handle. This handle will then be passed into the various other
functions throughout the parsing process. If you are simultaneously parsing sev-
eral documents, you can also define multiple parsers.

xml_parse()

This function does the actual parsing of the document. Its syntax is:

int xml_parse(int parser, string data [int isFinal])

The parameter parser specifies which XML parser to use. This is the variable
returned by xml_parser_create(). The optional input parameter isFinal, when
set and true, tells the parser to stop. Typically this would be when the end of the
file being parsed is reached. 

xml_parser_free()

This function frees the resources devoted to the parser. Its syntax is:

int xml_parser_free(int parser)

The input parameter parser refers to the XML parser handler.

PHP and XML

381

Gilmore_14  12/5/00  10:25 AM  Page 381



Useful Functions

PHP also offers a number of other functions that can further facilitate XML pars-
ing. These functions are presented here.

utf8_decode()

This function will convert data to ISO-8859-1 encoding. It is assumed that the
data being converted is of the UTF-8 encoding format. Its syntax is:

string utf8_decode(string data)

The input parameter data refers to the UTF-8-encoded data that is to be con-
verted.

utf8_encode()

This function will convert data from the ISO-8859-1 encoding format to the UTF-
8 encoding format. Its syntax is:

string utf8_encode(string data)

The input parameter data refers to the ISO-8859-1-encoded data that is to be
converted.

xml_get_error_code()

The function xml_get_error_code() retrieves the error value specific to an XML
parsing error. This can then be passed to xml_error_string() (introduced next)
for interpretation. Its syntax is:

int xml_error_code(int parser)

The input parameter parser refers to the XML parser handler. An example of
usage is shown below, in the introduction to the function
xml_get_current_line_number().

Chapter 14

382

Gilmore_14  12/5/00  10:25 AM  Page 382



xml_error_string()

When a parsing error occurs, it is assigned an error code. The function
xml_error_string() can be passed this code, returning the text description of the
code. Its syntax is:

string xml_error_string(int code)

The input parameter code refers to the error code assigned to the respective
error. This error code can be retrieved from the function xml_get_error_code().
An example of usage is shown below, in the introduction to the function
xml_get_current_line_number().

xml_get_current_line_number()

This function retrieves the line currently being parsed by the XML parser. Its syn-
tax is:

int get_current_line_number(int parser)

The input parameter parser refers to the XML parser handler. An example 
follows:

while ($line = fread($fh, 4096)) :

if (! xml_parse($xml_parser, $line, feof($fh))) :

$err_string = xml_error_string(xml_get_error_code($xml_parser));

$line_number = xml_get_current_line_number($xml_parser);

print "Error! [Line $line_number]: $err_string";

endif;

endwhile;

If a parsing error occurred in line six of the file pointed to by $fh, you would
see an error message similar to the following in the parsed output:

Error! [Line 6]: mismatched tag

xml_get_current_column_number()

The function xml_get_current_column_number() can be used in conjunction with
xml_get_current_line_number() to pinpoint the exact location of an error in an
XML document. Its syntax is:

PHP and XML

383

Gilmore_14  12/5/00  10:25 AM  Page 383



int get_current_column_number(int parser)

The input parameter parser refers to the XML parser handler. Reconsider the
previous example:

while ($line = fread($fh, 4096)) :

if (! xml_parse($xml_parser, $line, feof($fh))) :

$err_string = xml_error_string(xml_get_error_code($xml_parser));

$line_number = xml_get_current_line_number($xml_parser);

$column_number = xml_get_current_column_number($xml_parser);

print "Error! [Line $line_number, Column $column_number]: $err_string";

endif;

endwhile;

If a parsing error occurred in line six of the file pointed to by $fh, you would
see an error message similar to the following in the parsed output:

Error! [Line 6 Column 2]: mismatched tag

XML Parser Options

PHP currently offers two parser options:

• XML_OPTION_CASE_FOLDING, which is nothing more than converting
tag element names to uppercase.

• XML_OPTION_TARGET_ENCODING, which specifies the document en-
coding output by the XML parser. Currently, UTF-8, ISO-8859-1, and US-
ASCII encoding support is available.

These options can be both retrieved and modified using the functions
xml_parser_get_option() and xml_parser_set_option(), respectively.

xml_parser_get_option()

The function xml_parser_get_option() retrieves the XML parser’s options. Its syn-
tax is:

int xml_parser_get_option(int parser, int option)

Chapter 14

384

Gilmore_14  12/5/00  10:25 AM  Page 384



The input parameter parser refers to the XML parser handler. The parameter
option specifies the option that will be retrieved, its value specified by the param-
eter value. An example follows:

$setting = xml_parser_get_option($xml_parser, XML_OPTION_CASE_FOLDING);

print "Case Folding: $setting";

Assuming that the XML_OPTION_CASE_FOLDING option has not been al-
ready explicitly modified, its default option of enabled will be retrieved. There-
fore, executing this code would result in the outcome:

CASE FOLDING: 1

xml_parser_set_option()

The function xml_parser_set_option() configures the XML parser’s options. Its
syntax is:

int xml_parser_set_option(int parser, int option, mixed value)

The input parameter parser refers to the XML parser handler. The parameter
option specifies the option that will be set, its value specified by the parameter
value. An example follows:

xml_parser_set_option($xml_parser, XML_OPTION_TARGET_ENCODING, "UTF-8");

Execution of this command changes the target encoding option from the de-
fault of ISO-8859-1 to UTF-8.

XML-to-HTML Conversion

Suppose that you had an XML document containing a list of bookmarks, entitled
bookmarks.xml. It looks similar to the following:

<?xml version="1.0"?>

<website>

<title>Epicurious</title>

<url>http://www.epicurious.com</url>

<description>

Epicurious is a great online cooking resource, providing tutorials, recipes,

forums and more.

</description>

</website>

PHP and XML

385

Gilmore_14  12/5/00  10:25 AM  Page 385



Now assume that you wanted to parse bookmarks.xml, displaying its contents
in a format readable from within a PC browser. Listing 14-3 will parse this file and
reformat as necessary.

Listing 14-3: XML-to-HTML conversion parser
<?

class XMLHTML {

VAR $xmlparser;

VAR $tagcolor = "#800000";

VAR $datacolor = "#0000ff";

function XMLHTML() {

$this->xmlparser = xml_parser_create();

xml_set_object($this->xmlparser, &$this);

xml_set_element_handler($this->xmlparser, "startTag", "endTag");

xml_set_character_data_handler($this->xmlparser, "characterData");

}

// This function is responsible for handling all starting element tags.

function startTag($parser, $tagname, $attributes) {

GLOBAL $tagcolor;

print "<font size=\"-2\" color=\"$this->tagcolor\" face=\"arial,

verdana\">&lt;$tagname&gt;</font> <br>";

}

// This function is responsible for handling all character data.

function characterData($parser, $characterData) {

GLOBAL $datacolor;

print "<font size=\"-2\" color=\"$this->datacolor\" face=\"arial,  

verdana\">&nbsp;&nbsp;&nbsp;$characterData</font> <br>";

}

// This function is responsible for handling all ending element tags.

function endTag($parser, $tagname) {

GLOBAL $tagcolor;

print "<font size=\"-2\" color=\"$this->tagcolor\" face=\"arial,

verdana\">&lt;/$tagname&gt;</font> <br>";

}

function parse($fp) {

// xml_parse($this->xmlparser,$data); 

// Parse the XML file

while ( $line = fread($fp, 4096) ) :

Chapter 14

386

Gilmore_14  12/5/00  10:25 AM  Page 386



// If something goes wrong, stop and print an error message.

if ( ! xml_parse($this->xmlparser, $line, feof($fp))) :

die(sprintf("XML error: %s at line %d", 

xml_error_string(xml_get_error_code($this->xmlparser)), 

xml_get_current_line_number($this->xmlparser))); 

endif;

endwhile;

}

} // end class

// Open the XML file for parsing

$xml_file = "bookmarks.xml";

$fp = fopen($xml_file, "r");

// create new object

$xml_parser = new XMLHTML;

// parse $xml_file

$xml_parser->parse($fp);

?>

Once bookmarks.xml is parsed, you would see it displayed in the browser as
shown below. 

<WEBSITE>

<TITLE>

Epicurious

</TITLE>

<URL>

http://www.epicurious.com

</URL>

<DESCRIPTION>

Epicurious is a great online cooking resource, providing tutorials, recipes,

forums and more.

</DESCRIPTION>

</WEBSITE>

Of course, this doesn’t accomplish too much; it merely makes the XML view-
able within the browser. With just a few modifications to Listing 14-3, you could
begin parsing links to ensure that they are displayed as working hyperlinks, con-
vert the data found within the <TITLE>…</TITLE> tags to boldface, etc. As you
can see, I also declared two font colors as object attributes to show that you can
easily format the data being output to the browser.

PHP and XML

387

Gilmore_14  12/5/00  10:25 AM  Page 387



A Final Note About PHP and XML

Throughout this chapter I introduced XML and the various functions that PHP
uses to parse XML documents. However, as it applies to PHP, I’ve only actually
covered one of the three specifications that define XML and did not delve into is-
sues regarding XSL or XLL. Of course, to truly take advantage of separating con-
tent from presentation, all three of these components need to be fully exploited,
or at the very least, XML and XSL.

Unfortunately, at the time of this writing, PHP does not provide a complete
solution for those wishing to work with XML using PHP as the sole handling lan-
guage. Of course, as PHP’s capabilities continue to expand, I’m fairly confident
that these issues will be resolved.

What’s Next?

This chapter covered quite a bit of ground regarding XML and PHP’s XML parsing
functionality. I began with a brief synopsis of the history of markup languages and
subsequently introduced you to XML, its advantages, and a primer of its syntacti-
cal constructs. The remainder of the chapter was devoted to introducing the
many predefined XML functions offered by PHP, finally concluding with several
examples of how PHP can be used to parse and output XML data. In particular,
the following topics were covered:

• A brief introduction to markup languages

• SGML

• An introduction to XML

• XML syntax

Chapter 14

388

NOTE One particularly promising development in this area is an XSLT
(XSL transformation) processor named Sablotron, developed by Ginger Al-
liance Ltd. (http://www.gingerall.com). On October 12, 2000, it was an-
nounced that PHP 4.03 is now available with the Sablotron module exten-
sion on both the Linux and Windows platforms. Be sure to check this out
for further developments.

Gilmore_14  12/5/00  10:25 AM  Page 388



• The document type definition (DTD)

• PHP and XML

Chapter 15 switches gears, covering two prominent technologies, namely,
JavaScript and the Component Object Model (COM), and how PHP can interact
with them.

PHP and XML

389

Gilmore_14  12/5/00  10:25 AM  Page 389



Gilmore_14  12/5/00  10:25 AM  Page 390



CHAPTER 15

JavaScript and COM

As I’ve already stated several times throughout this book, one of the greatest as-
pects of the PHP language is the ease with which it can be integrated with other
technologies. To this point, you’ve seen this in the discussions regarding databas-
ing, ODBC, and XML, for example. In this chapter I introduce two more such pos-
sibilities for integration, namely, the ease with which PHP can work alongside
JavaScript and COM-based applications.

Brief introductions to each of these technologies are provided in this chapter,
in addition to practical examples of how PHP can interact with them. By the con-
clusion of this chapter, you will have gained useful knowledge about two particu-
larly powerful technologies and how they can be further used through PHP.

JavaScript

JavaScript is a particularly powerful scripting language used to develop both
client- and server-oriented Internet applications. One of the most interesting as-
pects of the language is the fact that it is capable of manipulating not only data
but also events. An event is defined as any action that takes place in the realm of
the browser, such as a mouse click or loading of a page.

For anyone who has experience working with programming languages such
as PHP, C, Pascal, or C++, JavaScript will not be too much of a chore to learn. If
you are a novice to these languages, do not be dismayed; JavaScript, like PHP, is a
language that can be quickly learned. Like with PHP, its developers were content
with creating a language geared toward one thing: getting the job done.

For those of you interested in retaining the event-driven capabilities of
JavaScript while implementing the multitude of advantages offered by PHP, have
no fear; PHP is as easily integrable with JavaScript as it is with HTML. In fact, it
complements PHP unusually well, as it is capable of performing functions that
PHP is not well suited for, and vice versa.

However, before attempting to integrate PHP and JavaScript, keep in mind
that some users may have JavaScript turned off in their browsers or (gasp!) use a
browser that does not even support JavaScript. PHP offers a simple solution for
making this judgment.

391

Gilmore_15  12/5/00  10:26 AM  Page 391



JavaScript Detection

Correctly determining a browser’s capabilities is essential to providing users a
hassle-free visit to your site. After all, what could cause a user to leave a site faster
than when annoying “JavaScript error” messages begin jumping out at them, or if
the site functionality does not work properly due to the fact that the user’s
browser does not even support the technologies you are using? Fortunately, PHP
offers an easy way to discern many of the capabilities supported by the user’s
browser, by way of a predefined function named get_browser().

get_browser()

The function get_browser() retrieves browser capabilities, returning them in ob-
ject format. The syntax is:

object get_browser([string user_agent])

The optional input parameter user_agent can be used to retrieve characteris-
tics about a particular browser. Generally you will probably want to call
get_browser() without any input parameter, since by default it uses the PHP
global variable $HTTP_USER_AGENT as input.

A predefined list of browser capabilities is stored in the browscap file, its path
directory specified by the browscap parameter in the php.ini file. The default set-
ting of this parameter is shown here: 

;browscap = extra/browscap.ini

The browser.ini file is developed by cyScape, Inc. The most recent version can
be downloaded from http://www.cyscape.com/browscap/. Download and unzip
the file, storing it in some logical location on the server. Take note of this location,
as you will need to update the browscap setting in the php.ini file to reflect this lo-
cation.

Once you have downloaded browscap.ini and configured your php.ini file,
you are ready to begin incorporating browser-detection capabilities into your
code. However, before doing so I would suggest opening the browser.ini file and
scanning through it to get a better idea of how it is structured. After doing this,
take a moment to experiment with Listings 15-1 and 15-2. Listing 15-1 is a very
simple example that shows how all of a browser’s characteristics can be output to
the browser. Listing 15-2 focuses on the detection of just one of the browser’s
characteristics, JavaScript.

Chapter 15

392

Gilmore_15  12/5/00  10:26 AM  Page 392



Listing 15-1: Showing all browser attributes
<?

// retrieve browser information

$browser = get_browser();

// typeset $browser to an array

$browser = (array) $browser;

while (list ($key, $value) = each ($browser)) :

// clarify which of the browser elements are empty

if ($value == "") :

$value = 0;

endif;

print "$key : $value <br>";

endwhile;

?>

Executing Listing 15-1 in the Microsoft 5.0 browser yields the following out-
put:

browser_name_pattern : Mozilla/4\.0 (compatible; MSIE 5\..*)

parent : IE 5.0

browser : IE

version : 5.0

majorver : #5

minorver : #0

frames : 1

tables : 1

cookies : 1

backgroundsounds : 1

vbscript : 1

javascript : 1

javaapplets : 1

activexcontrols : 1

win16 : 0

beta : 0

ak : 0

sk : 0

aol : 0

crawler : 0

cdf : 1

JavaScript and COM

393

Gilmore_15  12/5/00  10:26 AM  Page 393



Listing 15-2 is a very short yet effective script that uses the browscap.ini file to
verify whether or not JavaScript is enabled for a particular browser.

Listing 15-2: Ensuring JavaScript availability
<?

$browser = get_browser();

// typeset $browser to an array

$browser = (array) $browser;

if ($browser["javascript"] == 1) :

print "Javascript enabled!";

else :

print "No javascript allowed!";

endif;

?>

Basically, Listing 15-2 checks to verify whether the JavaScript key is listed for
the given browser. If it is and is set to 1, then a message stating that JavaScript is
enabled is displayed to the browser. Otherwise, an error message is displayed. Of
course, in a practical situation you would likely get rid of the messages and per-
form other functions better suiting the user’s browser capabilities.

The following two examples show just how easily PHP can be integrated with
JavaScript. Listing 15-3 illustrates how the screen resolution and color depth can
be determined using JavaScript and then subsequently displayed using PHP. The
listing in the next section, “Building a Dynamic Pop-Up Window,” illustrates how
a PHP template can be used in a JavaScript-initiated pop-up window to display
information based on the link the user clicks.

Listing 15-3: Detecting Color and Screen Resolution
<html> 

<head> 

<title>Browser Information</title> 

</head> 

<body> 

<script language="Javascript1.2"> 

<!—// 

document.write('<form method=POST action ="<? echo $PHP_SELF; ?>">');

document.write('<input type=hidden name=version value=' + navigator.appVersion +

'>'); 

document.write('<input type=hidden name=type value=' + navigator.appName + '>'); 

document.write('<input type=hidden name=screenWidth value=' + screen.width + '>'); 

Chapter 15

394

Gilmore_15  12/5/00  10:26 AM  Page 394



document.write('<input type=hidden name=screenHeight value=' + screen.height +

'>'); 

document.write('<input type=hidden name=browserHeight value=' + window.innerWidth

+ '>'); 

document.write('<input type=hidden name=browserWidth value=' + window.innerHeight

+ '>'); 

//—> 

</script> 

<input type="submit" value="Get browser information"><p> 

</form>

<? 

echo "<b>Browser:</b> $type Version: $version<br>"; 

echo "<b>Screen Resolution:</b> $screenWidth x $screenHeight pixels.<br>"; 

if ($browserWidth != 0) : 

echo "<b>Browser resolution:</b> $browserWidth x $browserHeight

pixels.";

else : 

echo "No JavaScript browser resolution support for this browser!"; 

endif; 

?> 

</body> 

</html>

Building a Dynamic Pop-Up Window

One of the interesting capabilities of JavaScript is the ease with which it can be
used to manipulate browser windows. A useful application of this feature is small
pop-up windows to display various parcels of information that perhaps are brief
enough that they do not warrant the time taken to request and render another full
page. Of course, you may be interested in creating a single template that will be
used for each parcel of information. And thus the need for PHP. Listing 15-3 illus-
trates how a PHP file, window.php, is called from JavaScript. This file provides a
very simple template, also incorporating a PHP INCLUDE call to the file ID as
passed to window.php by the JavaScript in Listing 15-4.

For those of you not familiar with JavaScript, I have included descriptive
comments in the code. The important point to keep in mind is that the variable
winID will be passed to the PHP script, window.php This variable is assigned in the
actual link, in the body of the HTML. Clicking it will trigger the function newWin-
dow(), specified in the JavaScript. To illustrate how this is done, consider this link:

<a href="#" onClick="newWindow(1);">Contact Us</a><br>

JavaScript and COM

395

Gilmore_15  12/5/00  10:26 AM  Page 395



As you can see, I simply place a ‘#’ in the href, since the link will be generated
by the JavaScript onClick event handler. This event handler causes the function
newWindow() to be called when the user clicks the link. Finally, notice that the
input parameter for the function is 1. This is the identification number that the
PHP script will use to display the corresponding contact information. You can use
any number you please, as long as it correctly corresponds to the file that will be
displayed in the PHP script.

Take a moment to review Listing 15-4. As a guide, I have also built three sim-
ple files that correspond to each of the links in Listing 15-4.

Listing 15-4: Building dynamic pop-up windows
<html>

<head>

<title>Listing 15-4</title>

<SCRIPT language="Javascript">

<!—

// declare a new JavaScript variable

var popWindow;

// declare a new function, newWindow

function newWindow(winID) {

// declare variable winURL, setting it to the name of the PHP file 

// and accompanying data.

var  winURL = "window.php?winID=" + winID;

// If the popup window does not exist, or it is currently closed, 

// open it.

if (! popWindow || popWindow.closed) {

// open new window having width of 200 pixels, height of 300 

// pixels, positioned

// 150 pixels left of the linking window, and 100 pixels from the 

// top of the linking window.

popWindow = window.open(winURL, 'popWindow', 

'dependent,width=200,height=300,left=150,top=100'); 

}

// If the popup window is already open, make it active and update 

// its location to winURL.

else {

popWindow.focus();

popWindow.location = winURL;

}

}

//—>

</SCRIPT>

Chapter 15

396

Gilmore_15  12/5/00  10:26 AM  Page 396



</head>

<body bgcolor="#ffffff" text="#000000" link="#808040" vlink="#808040"

alink="#808040">

<a href="#" onClick="newWindow(1);">Contact Us</a><br>

<a href="#" onClick="newWindow(2);">Driving Directions</a><br>

<a href="#" onClick="newWindow(3);">Weather Report</a><br>

</body>

</html>

Again, once the user has clicked one of the links in Listing 15-4, a pop-up
window is created and window.php is displayed in this window. The variable
winID is passed to window.php and is in turn used to identify the file that should
be included in the PHP script. Listing 15-5 contains window.php:

Listing 15-5: window.php
<html>

<head>

<title>Popup Window Fun</title>

</head>

<body bgcolor="#ffffff" text="#000000" link="black" vlink="gray" alink="#808040"

marginheight="0" marginwidth="0" topmargin="0" leftmargin="0">

<table width="100%" border="0" cellpadding="0" cellspacing="0">

<tr>

<td>

<?

// Include file specified by input parameter

INCLUDE("$winID.inc");

?>

</td>

</tr>

<tr>

<td>

<a href="#" onClick="parent.self.close();">close window</a>

</td>

</tr>

</table>

</body>

</html>

JavaScript and COM

397

Gilmore_15  12/5/00  10:26 AM  Page 397



The final piece to this puzzle is the creation of the files that correspond to the
links in Listing 15-4. Since there are three unique IDs (1, 2, and 3), I need to create
three separate files. These files are shown here. The first file, which holds the con-
tact information, should be saved as 1.inc.

<table>

<tr>

<td>

<h4>Contact Us</h4>

<ul>

<li>email: <a href="mailto:wj@wjgilmore.com">wj@wjgilmore.com</a>

<li>phone: (555) 867 5309

<li>mobile: (555) 555 5555

</ul>

</td>

</tr>

</table>

The next file, which holds the driving directions, should be saved as 2.inc.

<table>

<tr>

<td>

<h4>Driving Directions</h4>

<ol>

<li>Turn left on 1st avenue.

<li>Enter the old Grant building.

<li>Take elevator to 4th floor.

<li>We're in room 444.

</ol>

</td>

</tr>

</table>

And the final file, which holds the weather report, should be saved as 3.inc. To
further illustrate the easy integration of PHP and JavaScript, notice how I make
use of a call to PHP’s date function:

Chapter 15

398

Gilmore_15  12/5/00  10:26 AM  Page 398



<table>

<tr>

<td>

<h4>Weather Report <?=date("m-d-Y");?></h4>

<b>Today:</b> Brrr... Brisk, with blowing and drifting snow.<br><br>

<b>Tonight:</b> Winter Weather Advisory. 7-10 inches snow expected.

</td>

</tr>

</table>

An example of what a pop-up window would look like if the user clicked the
weather report is shown in Figure 15-1.

And thus ends this ever-so-brief introduction to PHP and JavaScript integra-
tion. Also both examples are relatively simple, and both are useful and can be eas-
ily built on to suit more complex needs. Perhaps most important when combining
PHP with JavaScript, or any other server-side-oriented technology, is that you
must provide adequate means for detecting the capabilities of the user’s browser

JavaScript and COM

399

Figure 15-1. Displaying weather information in a pop-up window

Gilmore_15  12/5/00  10:26 AM  Page 399



so as not to cause any ugly errors. In summary, it is always a good idea to experi-
ment with other technologies in an attempt to incorporate them into your PHP
code; just take heed so as not to scare the user away from your site due to unus-
able features or nonviewable content.

The next section discusses COM, another technology that can be easily inter-
faced using PHP.

The Component Object Model

COM, an acronym for Component Object Model, is essentially a specification that
makes it possible for language- and platform-specific applications to communi-
cate with each other. This capability greatly promotes the idea of building
reusable, maintainable, and adaptable programming components, three ideas
widely revered in the field of computer science. Although COM support is gener-
ally regarded as a Microsoft-centric specification, COM communication capabil-
ity has actually been built into a number of languages (PHP, Java, C++, and Del-
phi, for example) and is used on a wide variety of platforms (Windows, Linux, and
Macintosh, for example).

So what can COM and PHP do for you? Well, for one thing PHP’s COM func-
tionality makes it possible to directly communicate with many Microsoft applica-
tions. One interesting application is the formatting and display of Web database
information to a Microsoft Word document. In fact, I’ll show you just how easily
this is accomplished in a later section.

PHP has several predefined COM functions. Keep in mind that these func-
tions are only available for the Windows version of PHP! Before moving on to
some concrete examples of how they are used, please take a moment to review
each as they are introduced below.

PHP’s COM Functionality

PHP’s predefined COM functionality is used to instantiate COM objects and sub-
sequently make use of the objects’ properties and methods. Remember that this
support is only offered in the Windows version of PHP. 

Chapter 15

400

NOTE These few pages devoted to COM barely, and I mean barely, scratch
the surface of the technology. To make matters worse, it is also largely 
underdocumented as it relates to the PHP language. Therefore, if you are
interested in learning more about the mechanics of COM, I would suggest
checking out “Further Reading” at the end of this section.

Gilmore_15  12/5/00  10:26 AM  Page 400



The accompanying examples will be based on working with Microsoft Word
2000. The objects, methods, and events referenced can be found at the Microsoft
MSDN Web site (http://msdn.microsoft.com/library/officedev/off2000
/wotocobjectmodelapplication.htm).

Instantiating a COM Object

To instantiate a COM object, just call new, just like you do to instantiate an object
when programming the object-oriented way. The syntax is:

object new COM("object.class" [, string remote_address])

The parameter object.class refers to some COM module present on the
server machine. The optional input parameter remote_address is used if you
would like to create a COM object on some remote machine. For example, sup-
pose that you want to instantiate an object that points to the MS Word applica-
tion. This will actually start the Microsoft Word application just as if you had done
so manually (of course, you must have MS Word installed on the machine in order
for it to open). The syntax for doing so is shown here:

$word=new COM("word.application") or die("Couldn't start Word!");

Once you have instantiated a new COM object, you can begin working with
the various methods and properties comprising that object. In regard to the above
example, you may want to make the Word interface the active window. The fol-
lowing line enables the object’s visibility attribute, resulting in the display of the
application’s interface:

$word->visible = 1;

Don’t worry if you don’t completely understand this command. Implementa-
tion of COM object methods is the subject of the next section.

Implementing a COM Object’s Methods

You implement a COM object’s methods in typical OOP format, using the object
as a referring variable. The syntax for doing so is:

object->method_name([method_value, …]);

JavaScript and COM

401

Gilmore_15  12/5/00  10:26 AM  Page 401



The object refers to a COM object that has been instantiated using the new
instantiation process described previously. The parameter method_name refers to a
method that is part of the class represented by object. The optional parameter
space specified by method_value can be used to input parameters to those meth-
ods that allow or require input. Its syntax is just like that of a normal function,
with each input parameter separated by a comma. 

If you wanted to open a new MS Word document after instantiating a new
COM object pointing to the application, as seen in the previous example, you
could simply reference the method that accomplishes this. This is the add()
method  in the Documents subclass of $word:

$word->Documents->Add();

Notice how this follows a very logical, OOP-style syntax. Executing this will re-
sult in a new document being displayed to the MS Word application window.

com_get()

The function com_get() is used to retrieve COM object properties. Its syntax is:

mixed com_get(resource object, string property)

The input parameter object points to an instantiated COM object, and prop-
erty refers to an attribute  in the class represented by the instantiated object.

<?

// Instantiate a new object pointing to the MS Word application

$word=new COM("word.application") or die("Couldn't start Word!"); 

// The CapsLock property is either 0 for No, or 1 for Yes.

$flag = com_get($word->Application,CapsLock);

// Turn $flag value (0 or 1) into human-readable format

if ($flag == 1) :

$flag = "YES";

else :

$flag = "NO";

endif;

// display appropriate message

print "CAPS Lock activated: $flag";

$word->Quit();

?>

Chapter 15

402

Gilmore_15  12/5/00  10:26 AM  Page 402



Alternatively, you could retrieve the CapsLock attribute value by calling it just
as you would call an object’s attribute via OOP syntax. To use this alternative for-
mat in the above example, simply replace this line  in the above example:

$flag = com_get($word->Application,CapsLock);

with this line: 

$flag = $word->Application->CapsLock;

Making use of these object attributes, you can retrieve any variety of informa-
tion about the characteristics of an application. Furthermore, you can also set val-
ues for many characteristics. This is accomplished with the function com_set().

com_set()

The function com_set() is used to set an object attribute to a specified value.

void com_set(resource object, string property, mixed value)

The input parameter object points to an instantiated COM object, and prop-
erty refers to an attribute  in the class represented by the instantiated object. The
parameter value is the value to which you would like to set property.

In Listing 15-6, the Microsoft Word application is started and made the active
window. A new document is then created, and one line of text is added to it. Next,
I set the default document format (the attribute is called DefaultSaveFormat) to
Text. This will become apparent once the Save As prompt is displayed, as you will
see that the Save As Type setting is set to Text Only. Once you save the document,
the Microsoft Word application is closed.

Listing 15-6: Setting the default document type
<?

// Instantiate a new object pointing to the MS Word application

$word=new COM("word.application") or die("Couldn't start Word!"); 

// Make MS Word the active window.

$word->visible =1; 

// Create a new document

$word->Documents->Add(); 

// Insert some text into the document

JavaScript and COM

403

Gilmore_15  12/5/00  10:26 AM  Page 403



$word->Selection->Typetext("php's com functionality is cool\n"); 

// Set the default document format to Text

$ok = com_set($word->Application, DefaultSaveFormat, "Text");

// Prompt the user to name and save the document.

// Notice that the default document format is Text!

$word->Documents[1]->Save;

// Quit MS Word

$word->Quit();

?>

Alternatively, you could set the DefaultSaveFormat attribute by directly calling
it almost like you would a variable. To achieve the same results as Listing 15-6
using this alternative format, simply replace the line:

$ok = com_set($word->Application, DefaultSaveFormat, "Text");

with the line:

$word->Application->DefaultSaveFormat = "Text";

At this point, you have been introduced to all of the functionality necessary to
manipulate Windows applications via PHP’s COM functionality. Now I’ll move on
to a rather interesting example that illustrates just how useful and cool the COM
features can be.

Writing Information to a Microsoft Word Document

This example demonstrates just how useful PHP’s COM functionality can be. Sup-
pose some of your users wanted to format some database information in a Mi-
crosoft Word document for a presentation. Just a few lines of PHP code can auto-
mate this entire process. To illustrate this, I’ll use the table addressbook first used
in the address book project at the end of Chapter 12. The process executed by the
script flows as follows:

1. Connect to the MySQL server and select the necessary database.

2. Select all of the data  in the table, ordering it by last name. 

3. Open the Microsoft Word application and create a new document.

Chapter 15

404

Gilmore_15  12/5/00  10:26 AM  Page 404



4. Format and output each row of table data to this document.

5. Prompt the user for a name under which the document will be saved. 

6. Close Microsoft Word

The code is shown in Listing 15-7.

Listing 15-7: Interacting with Microsoft Word through PHP’s COM
functionality
<?

// Connect to the MySQL server

$host = "localhost";

$user = "root";

$pswd = "";

$db = "book";

$address_table = "addressbook";

mysql_connect($host, $user, $pswd) or die("Couldn't connect to MySQL server!");

mysql_select_db($db) or die("Couldn't select database!");

// Query the company database for all 'addresses' rows

$query = "SELECT * FROM $address_table ORDER BY last_name";

$result = mysql_query($query);

// Instantiate a new COM object. In this case, one pointing to the MS Word

application

$word=new COM("word.application") or die("Couldn't start Word!"); 

// Make MS Word the active Window

$word->visible =1; 

// Declare a new, empty document.

$word->Documents->Add(); 

// Cycle through each address table row.

while($row = mysql_fetch_array($result)) :

$last_name = $row["last_name"];

$first_name = $row["first_name"];

$tel = $row["tel"];

$email = $row["email"];

// Output table data to the open Word document.

JavaScript and COM

405

Gilmore_15  12/5/00  10:26 AM  Page 405



$word->Selection->Typetext("$last_name, $first_name\n"); 

$word->Selection->Typetext("tel. $tel\n");

$word->Selection->Typetext("email. $email:\n"); 

endwhile;

// Prompt the user for a document name

$word->Documents[1]->Save;

// Quit the MS Word Application

$word->Quit();

?>

Although this example is very simple, it illustrates in a very practical sense
how you could write PHP applications that synchronize database information
with a user’s favorite Windows application. A more complicated application could
be written that would allow users to sync Web-viewable information with Mi-
crosoft Outlook. All you would need to do is obtain a reference of Outlook’s ob-
jects, properties, and methods, and you can begin experimentation. (An introduc-
tion to the object model of all applications comprising Office is at
http://www.microsoft.com/officedev/articles/Opg/toc/PGTOC.htm).

Further Reading

The following links point to several of the more useful COM-related resources that
I have found on the Internet:

• http://msdn.microsoft.com/library/techart/msdn_comppr.htm

• http://www.microsoft.com/Com/news/drgui.asp

• http://www.microsoft.com/com/default.asp

• http://www.comdeveloper.com/

What’s Next

This chapter further introduced just how easy it is to integrate PHP with third-
party technologies, namely, JavaScript and the Component Object Model (COM).
In particular, I introduced the following topics:

Chapter 15

406

Gilmore_15  12/5/00  10:26 AM  Page 406



• What is JavaScript?

• Detecting JavaScript-capable browsers

• Detecting browser properties

• Using pop-up windows in conjunction with PHP 

• What is the Component Object Model (COM)?

• PHP’s predefined COM functionality

• Using PHP’s COM functionality to send database data to Microsoft Word

Integrating these technologies with PHP can expand the functionality of your
applications in many ways. Working with JavaScript opens up the possibility of
performing certain functions on the client side, such as window and browser ma-
nipulation and forms error checking. COM provides you with the possibility to
create applications that communicate directly with such popular applications as
the Microsoft Office suite, further enhancing the value and user-friendliness of
your PHP applications.

In our final chapter (Did it really go by that quickly?), I cover a topic that
should be constantly on the minds of every programmer and administrator: secu-
rity. Important security-related issues such as script protection, encryption, and
ecommerce data solutions are introduced.

JavaScript and COM

407

Gilmore_15  12/5/00  10:26 AM  Page 407



Gilmore_15  12/5/00  10:26 AM  Page 408



CHAPTER 16

Security

“Non sum qualis eram.” (“I am not as I used to be.”)
—Horace

When I happened across this quotation from Horace some time ago, I thought it
so fittingly described the true essence of network security that I tucked it into the
depths of my harddrive in hopes of being able to later use it. Of course, many of
you are scratching your heads wondering what Horace, the ancient Roman poet,
could possibly have to say that could be related to network security. In fact, net-
work security is one of those subjects that spews forth a never-ending amount of
information and is always changing to the tune of emerging technology. Thus, it is
never what it used to be. You can never rely solely on what you already know
about the subject, as it became most likely outdated the moment it hit the main-
stream information market or is soon doomed to become so. The only way to feel
the sense of being relatively secure in building reliable server-based applications
is either to constantly stay abreast of the latest developments regarding the sub-
ject or to hire a reliable third party capable of effectively handling the problem 
for you.

Security considerations as applicable to PHP take many faces, some of which
tie into the security of the server itself. After all, the degree of vulnerability built
into the server is paramount in many ways to determining that of the data han-
dled by the PHP scripts I strongly suggest that you read as much as you can about
your Web server and be on the watch for upgrades and recommended fixes. Pro-
vided that many readers will likely be using the Apache server, I recommend
checking out the Apache site (http://www.apache.org) and the great Apache re-
source Apache Week (http://www.apacheweek.com). Beyond your server, PHP can
be also held accountable for providing some degree of security through its config-
uration options and cautious coding.

This final chapter, devoted to introducing many of these issues to you, is di-
vided into five sections:

• Configuration Issues

• Coding Issues

• Data Encryption

409

Gilmore_16  12/4/00  1:10 PM  Page 409



• Ecommerce Solutions

• User Authentication

Although none of these sections will provide you with all of the answers regarding
how to build an impregnable PHP application system, they will provide you with
the basis from which you can begin your own investigation into this important
topic. 

Configuration Issues

There are several configuration options you should consider immediately after in-
stalling PHP to begin safeguarding your system. Of course, your configuration
choices should depend on your particular situation. For example, if solely you or
your development team are going to be programming PHP, then your security
configuration may be vastly different from an ISP that has decided to allow all
clients to develop PHP scripts for use on the server. Regardless of your situation, it
is a good idea to evaluate all of the configuration options and implement only
those that you deem necessary. These options are in the php.ini file.

safe_mode boolean

Enabling safe_mode places restrictions on several potentially dangerous PHP op-
tions. It can be enabled by setting safe_mode to the Boolean value of on, or dis-
abled by setting it to off Its restriction scheme is based on the comparison of the
UID (user ID) of the executing script and the UID of the file that that script is at-
tempting to access. If the UIDs are the same, the function can execute; otherwise,
the function fails. 

It isn’t possible to use safe_mode when PHP is compiled as an Apache module.
This is because, when run as an Apache module, all PHP scripts run under the
same user as Apache, making it impossible to differentiate between script owners.
Please see the section “Safe_mode and the PHP Apache Module,” later in this
chapter, for more information.

Specifically, when safe_mode is enabled, several restrictions come into effect:

• Use of all input/output functions (fopen(), file(), and include(), for ex-
ample) is restricted to usage only with files that have the same owner as the
script that is calling these functions. For example, assuming that safe_mode
is enabled, fopen() called from a script owned by Mary calling will fail if 
it attempts to open a file owned by John. However, if Mary owns the 
script calling fopen() and the file called by fopen(), the function will be
successful.

Chapter 16

410

Gilmore_16  12/4/00  1:10 PM  Page 410



• Attempts by a user to create a new file will be restricted to creating the file
in a directory in which the user is the owner.

• Attempts to execute external scripts via functions like popen(), system(), or
exec() are only possible when the external script resides in the directory
specified by safe_mode_exec_dir. This directive is discussed later in this
section.

• HTTP authentication is further strengthened because the UID of the owner
of the authentication script is prepended to the authentication realm. User
authentication is discussed in further detail in the later section “User Au-
thentication.”

• The username used to connect to a MySQL server must be the same as the
username of the owner of the file calling mysql_connect().

Table 16-1 provides a complete list of functions that are affected when
safe_mode is enabled.

Table 16-1. Functions restricted by safe_mode

chgrp include require

chmod link rmdir

chown passthru symlink 

exec popen system 

fopen readfile unlink

file rename

safe_mode_exec_dir string

This directive specifies the residing directory in which any system programs re-
side that can be executed by functions such as system(), exec(), or passthru().
Safe_mode must be enabled for this to work.

Security

411

TIP The PHP documentation for safe_mode has unfortunately not been
updated since PHP2.0, although its functionality remains largely un-
changed. This documentation is at
http://www.php.net/manual/phpfi2.html.

Gilmore_16  12/4/00  1:10 PM  Page 411



disable_functions string

You can set this directive equal to a comma-delimited list of function names that
you want to disable. Note that this directive is not in any way related to safe_mode
For example, if you wanted to just disable fopen(), popen(), and file(), just set
disable_functions as follows:

disable_functions = fopen,popen,file

doc_root string

This directive can be set to a path that specifies the root directory from which
PHP files will be served. If doc_root is set to nothing (empty), it will be ignored,
and the PHP scripts are executed exactly as the URL specifies. If safe_mode is en-
abled and doc_root is not empty, no PHP scripts lying outside of this directory will
be executed.

max_execution_time integer

This directive specifies how many seconds a script can execute before being ter-
minated. This can be useful to prevent users’ scripts from eating up CPU time. By
default, this is set to 30 seconds. If you set it to zero, no time limit will be set.

memory_limit integer

This directive specifies, in bytes, how much memory a script can use. By default,
this is set to 8 megabytes (8,388,608 bytes).

sql.safe_mode integer

When enabled, sql.safe_mode ignores all information passed to mysql_connect()
and mysql_pconnect(), allowing connection only under the user the Web server is
running as.

user_dir string

This directive specifies the name of the directory in a user’s home directory where
PHP scripts must be placed in order to be executed. For example, if user_dir is set
to scripts and user Alessia wants to execute somescript.php, then that user must
create a directory named scripts in her home directory and place somescript.php

Chapter 16

412

Gilmore_16  12/4/00  1:10 PM  Page 412



in it. This script can then be accessed via the URL
http://www.yoursite.com/~alessia/somescript.php. Notice that the URL does not
include the directory scripts. This directive is typically used in conjunction with
Apache’s UserDir configuration directive.

safe_mode and the PHP Module

Keep in mind that safe_mode is not useful when using PHP as a server module.
This is because the PHP module runs as a part of the Apache server, and therefore
all PHP scripts are executed under the same UID as the Apache server itself. Since
safe_mode operates under the premise of comparing UIDs to restrict use of cer-
tain functions, it can only really be useful when the CGI version of PHP is used in
conjunction with SuExec (http://www.apache.org/docs/suexec.html). This is be-
cause the CGI version of PHP runs as a separate process, and therefore the UID
can be changed dynamically through the suExec functionality. If you are particu-
larly interested in making use of PHP’s safe_mode features, running PHP as a CGI
along with suExec is probably your best bet, although it will be at a cost of speed
and overall performance.

Another important configuration strategy is the prevention of certain files
from being viewed in the browser. Certainly you wouldn’t want those secret pass-
words or other configuration information to be viewed by an outside user, would
you? That is the topic of this next section.

Hiding Data Files and Configuration Files

This is an extremely important security-oriented procedure to keep in mind, re-
gardless of the programming language. I will use the Apache server configuration
to illustrate just how easily your security can be compromised if sufficient steps
aren’t taken to “hide” files not meant to be viewed by the user.

In Apache’s httpd.conf file is a configuration directive named DocumentRoot.
This is set to the path from which you would like the server to consider to be the
public HTML directory. Any file in this path is considered fair game in terms of
being served to a user’s browser, even if the file does not have a recognized exten-
sion. It is not possible for a user to view a file that resides outside of this path.
Therefore, it is a very good idea to always place your configuration files outside of
the DocumentRoot path!

As an exercise, create a file and inside this file type “my secret stuff.” Save this
file into your public HTML directory under the name of secrets with some really
strange extension like .zkgjg. Obviously, the server isn’t going to recognize this ex-
tension, but it’s going to attempt to serve up the data anyway. Now, go to your
browser and request that file, using the URL pointing to that file. Scary, isn’t it?
Fortunately, there are two simple ways to correct this problem.

Security

413

Gilmore_16  12/4/00  1:10 PM  Page 413



Maintain the Document Outside of the Document Root

The first solution is to simply place any files that you do not want the user to view
outside of document root. Then use include() to include those files into any PHP
files. For example, assume that you set your document root to:

DocumentRoot C:/Program Files/Apache Group/Apache/htdocs  # Windows

DocumentRoot /www/apache/home     # non-Windows

Suppose you have a file containing access information (hostname, username,
password) for your MySQL database. You certainly wouldn’t want anyone to view
that file, so it would be a good idea to place it outside of the document root.
Therefore, in Windows, you could save that file to:

C:/Program Files/mysecretdata/

or

/usr/local/mysecretdata/

for UNIX.
When you need to use this access information, just include these files using

the full pathname where needed. For example:

INCLUDE("C:/Program Files/mysecretdata/mysqlaccess.inc");

for Windows, or 

INCLUDE("/usr/local/mysecretdata/mysqlaccess.inc");

for UNIX.
Of course, if you have safe_mode disabled (see the previous section, “Configu-

ration Issues”), this may not prevent other users with the capability to execute
PHP scripts on the machine from attempting to include that file into their own
scripts. Therefore, in a multiuser environment it would be a good idea to couple
this safeguard with the enabling of safe_mode.

Chapter 16

414

Gilmore_16  12/4/00  1:10 PM  Page 414



Configure httpd.conf File 
to Deny Certain File Extension Access

A second way to prevent users from viewing certain files is to deny access to cer-
tain extensions by configuring the httpd.conf file FILES directive. Assume that
you don’t want anyone to access files having the extension .inc. Simply place the
following in your httpd.conf file:

<Files *.inc>

Order allow,deny

Deny from all

</Files>

After making this addition, restart the Apache server, and you will find that
access is denied to any user making a request to view a file having the extension
.inc via the browser. However, you can still include these files in your scripts. Inci-
dentally, if you search through the httpd.conf file, you will see that this is the same
premise used to protect access to .htaccess files. These files are used to password-
protect certain directories and are discussed at the conclusion of this chapter.

Coding Issues

Even if you have a solid server configuration, you still must be constantly wary of
introducing security holes into your PHP code. It’s not that PHP is not a secure
language. It is possible to introduce potentially dangerous holes in practically any
programming language. However, given PHP’s propensity to be used in a large-
scale distributed environment (that is, the Web), the opportunity for users to at-
tempt to “break” your code increases substantially. It’s up to you to make sure that
this does not happen. 

Accepting User Input

While the ability to accept user input is an important part of practically any useful
application, you must constantly be wary of the introduction of malicious data,
both accidental and intentional. The danger involved in regard to a Web applica-
tion is even more pronounced, since it is possible for a user to execute system
commands through the use of functions such as system() or exec().

One of the easiest ways to combat malicious user input is by using the prede-
fined function escapeshellcmd().

Security

415

Gilmore_16  12/4/00  1:10 PM  Page 415



escapeshellcmd()

The function escapeshellcmd() will escape any questionable characters entered
by the user that could result in the execution of a potentially damaging system
command. Its syntax is:

string escapeshellcmd(str command)

To illustrate just how ugly things could get if you were not to control user
input, suppose that you offered users the ability to execute system commands
such as 'ls –l'. However, what if the user entered something like `rm –rf * `
you were to then either echo this input or insert it into exec() or system(), it
could potentially recursively delete files and directories from your server! 
You can eliminate these problems by first cleaning up the command with 
escapeshellcmd(). Reconsidering the input `rm –rf * `, if you were to first pass it
through escapeshellcmd(), the string would be converted to \`rm –rf \*\`.

Another problem that arises from user input is the introduction of HTML
content. This can be particularly problematic when the information is displayed
back to the browser, as is the case with a message board. The introduction of
HTML tags into a message board could alter the display of the page, causing it to
be displayed incorrectly or not at all. This problem can be eliminated by passing
the user input through strip_tags().

strip_tags()

The function strip_tags() will remove all HTML tags from a string. Its syntax is:

string strip_tags(str string [, str allowed_tags])

The input parameter string is the string that will be examined for tags, while
the optional input parameter allowed_tags specifies any tags that you would like
to be allowed in the string. For example, italic tags (<i></i>) might be allowable,
but table tags such as <td></td> could potentially wreak havoc on a page. An ex-
ample of usage of the function follows:

Chapter 16

416

NOTE Backticks are an execution operator, telling PHP to attempt to exe-
cute the contents found between backticks. The output can be echoed di-
rectly to the screen, or it can be assigned to a return variable.

Gilmore_16  12/4/00  1:10 PM  Page 416



$input = "I <i>really</i> love PHP!";

$input = strip_tags($input);

// $input now equals "I really love PHP!"

This sums up the brief synopsis of the two more widely used functions for
sanitizing user input. Next I introduce data encryption, highlighting several of
PHP’s predefined functions capable of encrypting data.

Data Encryption

Encryption can be defined as the translation of data into a format that is, in the-
ory, unreadable by anyone except the intended party. The intended party can
then decode, or decrypt, the encrypted data through the use of a secret key or
password. PHP offers support for several encryption algorithms. Several of the
more prominent ones are described here.

General Encryption Functions

It is important to realize that encryption over the Web is largely useless unless the
scripts running the encryption schemes are operating via a secured server. Why?
Since PHP is a server-side scripting language, information must first be sent to
the server in plain text format before it can be encrypted. There are many ways
that an unwanted third party can watch this information as it is transmitted from
the user to the server if the user is not operating via a secured connection. For
more information about setting up a secure Apache server, check out
http://www.apache-ssl.org. For those readers implementing a different Web
server, refer to your documentation. Chances are that there exists at least one, if
not several different, security solutions for your particular server.

md5()

Md5 is a third-party hash algorithm used for creating digital signatures (among
other things), which can be used to uniquely identify the sending party. PHP pro-
vides support to it:

string md5(string string)

It is considered to be a “one-way” hashing algorithm, which means there is no
way to dehash data that has been hashed using md5().

The Md5 algorithm can also be used as a password verification system. Since
it is in theory extremely difficult to retrieve the original string that has been

Security

417

Gilmore_16  12/4/00  1:10 PM  Page 417



hashed using the Md5 algorithm, you could hash a given password using Md5 and
then compare that encrypted password against those that a user enters in order to
gain access to restricted information. 

For example, assume that our secret password toystore has an Md5 hash of
745e2abd7c52ee1dd7c14ae0d71b9d76. You store this hashed value on the server
and compare it to the Md5 hash equivalent of the password the user attempts to
enter. Even if an intruder were to get hold of the encrypted password, it wouldn’t
make much difference, since that intruder couldn’t (in theory) decrypt it. An ex-
ample of hashing a string follows:

$val = "secret";

$hash_val = md5 ($val);

// $hash_val = "c1ab6fb9182f16eed935ba19aa830788";

Now I’ll introduce another way to secure a data string, that is, through an-
other one of PHP’s predefined functions: crypt().

crypt()

Crypt() offers a convenient way to one-way encrypt a piece of data. By one-way
encrypt, I mean that the data can only be encrypted; there is no known algorithm
to decrypt the data once it is encrypted using crypt(). Its syntax is:

string crypt(string string [, salt])

The input parameter string is the string that will be encrypted by the crypt()
algorithm. The optional input parameter, salt, determines the type of encryption
that will be used to encrypt string. Specifically, the encryption type is determined
by the length of the salt. The various encryption types and their determinant salt
lengths are shown in Table 16-2.

Table 16-2. Encryption Types and Corresponding Salt Lengths

ENCRYPTION TYPE LENGTH

CRYPT_STD_DES 2

CRYPT_EXT_DES 9

CRYPT_MD5 12 (starting with first character of unencrypted password)

CRYPT_BLOWFISH 12 (starting with first two characters of  unencrypted password)

Not all encryption formats are available on each system, but you can easily
determine which of the formats listed in Table 16-2 are available by printing the
encryption type to the browser. A 1 will be displayed if it is available, 0 otherwise.

Listing 16-1 illustrates the use of crypt() to create and compare encrypted
passwords.

Chapter 16

418

Gilmore_16  12/4/00  1:10 PM  Page 418



Listing 16-1: Using crypt() (STD_DES) to store and compare passwords
$user_pass = "123456";

// extract the first two characters of $user_pass for use as salt.

$salt = substr ($user_pass, 0, 2);

// encrypt and store password somewhere

$crypt1 = crypt($user_pass, $salt);

// $crypt1 = "12tir.zIbWQ3c";

// . . . user enters password

$entered_pass = "123456";

// get the first two characters of the stored password

$salt1 = substr ($crypt, 0, 2);

// encrypt $entered_pass using $salt1 as the salt.

$crypt2 = crypt ($entered_pass, $salt1);

// $crypt2 = "12tir.zIbWQ3c";

// Therefore, $crypt1 = $crypt2

As you can see in Listing 16-1, $crypt1 equals $crypt2, but only because I cor-
rectly used the first two characters of $crypt1 as the salt for the encryption of 
$entered_pass. I suggest that you experiment with this example, inserting differ-
ent salt values so that you can see firsthand that $crypt1 and $crypt2 will only
end up equivalent using this procedure.

mhash()

The function mhash() offers support for a number of hashing algorithms, allowing
developers to implement checksums, message digests, and various other digital
signatures into their PHP application. Hashes are also used for storing passwords.
Integrating the mhash() module into your PHP distribution is rather simple:

1. Go to http://mhash.sourceforge.net and download the source.

2. Extract the contents of the compressed distribution and follow the in-
structions as specified in the INSTALL document.

3. Compile PHP with the –with-mhash option.

Security

419

TIP When choosing between crypt() and md5() to carry out your site en-
cryption procedures, go with md5(). It’s more secure.

Gilmore_16  12/4/00  1:10 PM  Page 419



Easy enough. There is, however, one quirk that tends to cause trouble when
compiling mhash into a PHP/Apache system. Apparently, many find that they
have to configure mhash as follows: "./configure –disable-pthreads". (You’ll un-
derstand what I’m talking about when you read the mhash INSTALL document.)
Keep this in mind when compiling your distribution.

On completion of the installation process, you have the functionality offered
by mhash at your disposal. Mhash currently supports the hashing algorithms listed
in Table 16-3.

Table 16-3. Hashing Algorithms Currently Supported by mhash()

SHA1 RIPEMD160 MD5

GOST TIGER SNEFRU

HAVAL CRC32

RIPEMD128

CRC32B

mcrypt()

Mcrypt is a popular data-encryption package available for use with PHP, providing
support for two-way encryption (that is, encryption and decryption). The mcrypt
module offers support for the four types of encryption modes discussed here:

CBC: Cipher Block Chaining

CBC mode is typically the encryption mode that is the most frequently used of the
four. Unlike ECB (described below), using CBC results in different encryption pat-
terns of identical plain text blocks, making it more difficult for an attacker to dis-
cern patterns. If you don’t know which of the four modes you should be using, use
this one. However, I would suggest learning more about each mode before mak-
ing a final decision.

Chapter 16

420

TIP For more information about encryption modes, I recommend the
textbook Applied Cryptography Second Addition, by Bruce Schneier (John
Wiley & Sons, 1996).This is a fantastic resource for learning more about
cryptographic protocols, techniques, and algorithms.

Gilmore_16  12/4/00  1:10 PM  Page 420



CFB: Cipher Feedback

CFB combines certain characteristics of the stream cipher, resulting in the elimi-
nation of the need to amass blocks of data before enciphering takes place. Typi-
cally, you won’t need to use this mode.

ECB: Electronic Code Book

ECB mode encrypts each plain text block independently with the block cipher,
making it susceptible to attack when used to encrypt relatively small block sizes
of language text. This is because ECB will encrypt two plain text blocks with iden-
tical encipherments, providing an attacker with a means to base a decipherment
strategy. Therefore, unless you have a valid reason for using ECB, you’ll probably
want to use CBC mode instead.

OFB: Output Feedback

OFB mode has many of the same characteristics as the CFB mode. Like CFB, you
typically won’t need to use this mode.

A Final Note About Data Encryption

The methods in this section are only those that are in some way incorporated into
the PHP extension set. However, you are not limited to these encryption/hashing
solutions. Keep in mind that you can use functions like popen() or exec() to work
with any of your favorite third-party encryption technologies, PGP
(http://www.pgpi.org) or GPG (http://www.gnupg.org), for example.

You might find the following links particularly useful for learning more about
cryptography and information privacy:

• http://jya.com/crypto-free.htm

• http://www.io.com/~ritter/LEARNING.HTM

• http://www.rsasecurity.com/rsalabs/faq/

• http://www.cs.auckland.ac.nz/~pgut001/links.html

• http://www.thawte.com/support/crypto/contents.html

Security

421

NOTE To use the functionality offered by mcrypt, you must first download
the mcrypt package from ftp://argeas.cs-net.gr/pub/unix/mcrypt/.

Gilmore_16  12/4/00  1:10 PM  Page 421



To close out this section, I would like to throw caution into the wind by saying
that before you begin implementing mission-critical applications involving en-
cryption, take some time to really learn about the mechanics of data encryption.
Remember that in the world of data security, ignorance is certainly not bliss. For
those new to the subject, take a moment to check out the links that I’ve included.
They are widely regarded as great introductions to the many facets of encryption
and data security.

E-Commerce Functions

One can hardly deny the frenzy that the advent of ecommerce has instilled into
the populations of the world, not to mention the advantages and conveniences
that have resulted from it. Thankfully, those of you who are interested in develop-
ing your own ecommerce sites have a number of trusted third-party applications
that you can easily integrate into PHP scripts. I make brief note of some of the
more popular ones in this section.

Verisign

Verisign, Inc. (http://www.verisign.com) offers a wide array of ecommerce-related
products and services. PHP provides support for interfacing with Verisign’s
Payflow Pro service.

PHP’s Payflow Pro functionality is extremely easy to use and requires a mini-
mum of time and knowledge to begin performing transactions. However, just be-
cause you compile Verisign support into your PHP installation does not mean that
you are capable of using the Verisign services! To do so, you must first register at
the Verisign site and download Verisign’s SDK package. At the time of this writing,
setup of Payflow Pro involved a one-time fee of $249, in addition to a monthly fee
of $59.95 for a maximum of 5,000 monthly transactions, or a monthly fee of $995
for unlimited transactions.

One further note to keep in mind: Before you purchase a Verisign account,
you can test your script interface with Verisign’s test account, offered free of
charge. Performing test transactions with this test account will eliminate unnec-
essary expenditures when debugging your code. Check out the Verisign site for
more information.

Chapter 16

422

NOTE To use the Verisign functionality, PHP must be compiled with 
the —with-pfpro [=DIR] directive. Also, there are several Payflow Pro con-
figuration directives available in the php.ini file.

Gilmore_16  12/4/00  1:10 PM  Page 422



You can find more information regarding Verisign at:

• http://www.verisign.com

• http://www.php.net/manual/ref.pfpro.php

Cybercash

Cybercash, Inc. (http://www.cybercash.com) offers a variety of credit card author-
ization and transaction services and software to those wishing to incorporate
these services into their Web application. 

Cybercash provides C and Perl scripts capable of interfacing with the Cyber-
cash transaction service. With this in mind, PHP users generally choose one or a
combination of the following methods for incorporating Cybercash into their site:

• Make use of the cyberlib.php API, included in the PHP distribution. This
provides you with the functionality necessary to perform the transactions.
(Recommended.)

• Use the existing Perl and C scripts to interface with the Cybercash service,
calling them from your own PHP scripts. (Recommended.)

• Rewrite the existing Perl and C scripts in PHP. (Not recommended.)

As with Verisign, keep in mind that just because you compile Cybercash into
your PHP installation does not mean that you can use the service! Cybercash inte-
gration services are not free and can be rather costly. (The setup for the Cybercash
ecommerce CashRegister service currently runs $495, in addition to a $20/month
fee plus $0.20 per transaction.) However, despite these costs, many PHP develop-
ers feel that Cybercash is one of the best solutions available.

One further note: Before you purchase a Cybercash account, you can test
your script interface with the Cybercash test account, offered free of charge. Per-
forming test transactions with this test account will eliminate unnecessary expen-
ditures when debugging your code. Check out the Cybercash site for more infor-
mation.

Security

423

NOTE To make use of the Cybercash functionality, PHP must be compiled
with the —with-cybercash=[DIR] directive.

Gilmore_16  12/4/00  1:10 PM  Page 423



Further information regarding Cybercash is at:

• http://www.cybercash.com

• http://www.php.net/manual/ref.cybercash.php

CCVS

CCVS, or the Credit Card Verification System, is a technology developed by Red-
Hat (http://www.redhat.com) that allows you to independently process credit
card transactions, directly accessing the credit card agencies rather than going
through a third party (such as Cybercash). CCVS is compatible with many of the
major Linux/UNIX platforms and can be easily modified since RedHat provides
you with the source code to make changes as you wish.

You can find more information regarding CCVS at:

• http://www.php.net/manual/ref.ccvs.php

• http://www.redhat.com/products/ccvs/support/CCVS3.3docs/
ProgPHP.html

• http://www.redhat.com/products/ccvs/

User Authentication

Just like knowing the “secret handshake” will get a person into the treehouse,
knowing the correct username and password can grant a user the right to enter
otherwise unauthorized server directories. These authentication systems are typi-
cally known as “challenge and response.” The challenge is the prompt for the
username and password, and the response is the input of a username and pass-
word combination. If the combination is correct, the user is permitted to enter
the restricted directory; otherwise, the user is denied, and an appropriate mes-
sage is displayed.

A pop-up authentication prompt is often used to query the user for a user-
name and password. This prompt can be activated via calling an authentication
header, shown in Listing 16-2.

Chapter 16

424

NOTE Note: To make use of the CCVS functions, PHP must be compiled
with the —with-ccvs=[DIR] directive.

Gilmore_16  12/4/00  1:10 PM  Page 424



Listing 16-2: Basic authentication prompt
<?

header('WWW-Authenticate: Basic realm="Secret Family Recipes"');

header('HTTP/1.0 401 Unauthorized');

exit;

?>

Executing the code  in Listing 16-2 will only produce the pop-up window. The
two calls to the header() function prompt the browser to display this window.
This window will look similar to the one in Figure 16-1.

Now that you can set up the necessary interface, it is time to turn your atten-
tion to processing the username and password. In PHP, the login and password
are stored in two global variables, namely, $PHP_AUTH_USER (username) and
$PHP_AUTH_PW (password). Listing 16-3 shows how these variables can be checked
for values. If they are not set, the authentication window is again displayed.

Security

425

Figure 16-1. User authentication window

TIP As you experiment with the scripts in this section, you may find that
the authentication window does not always pop up as expected after you
refresh the page. This does not necessarily imply a problem with the code;
rather it is a function of the browser’s implementation of the authentica-
tion window. You will need to close and relaunch the browser in order to
receive the prompt.

Gilmore_16  12/4/00  1:10 PM  Page 425



Listing 16-3 Checking PHP’s global authentication variables
if ( (! isset ($PHP_AUTH_USER)) || (! isset ($PHP_AUTH_PW)) ):  

header('WWW-Authenticate: Basic realm="Secret Family Recipes"');

header('HTTP/1.0 401 Unauthorized');

print "You are attempting to enter a restricted area. Authorization is

required.";

exit;

endif;  

An easy albeit rather restrictive way to set up a restricted page is to simply
hardcode the username and password into the authentication script. Consider
Listing 16-4, which builds on the previous example.

Listing 16-4 Hardcoding the username and password into a script
if ( (! isset ($PHP_AUTH_USER)) || (! isset ($PHP_AUTH_PW)) ||

($PHP_AUTH_USER != 'secret') || ($PHP_AUTH_PW != 'recipes') ) :

header('WWW-Authenticate: Basic realm="Secret Family Recipes"');

header('HTTP/1.0 401 Unauthorized');

print "You are attempting to enter a restricted area. Authorization is

required.";

exit;

endif;  

Multiple User Authentication

Although the code in Listing 16-4 may be your solution when dealing with a small,
static group of people, chances are you will be interested in a more robust and
flexible solution to granting access to restricted areas of your Web site. Most likely,
this involves granting a separate username and password for each user that you
expect to visit the restricted area. There are several methods used to accomplish
this, perhaps the most common being checking authentication information
against a text file or database.

Storing Information in a Text File

A very simple yet effective solution for storing user authentication information is
in a text file. Each line of this text file would contain a username/password pair
that can be read in and tested one by one. A text file used for these purposes
might look like the one shown in Listing 16-5.

Chapter 16

426

Gilmore_16  12/4/00  1:10 PM  Page 426



Listing 16-5: A typical authentication text file (authenticate.txt)
brian:snaidni00

alessia:aiggaips

gary:9avaj9

chris:poghsawcd

matt:tsoptaes

As you can see, each line consists of a username, followed by a password, with
a colon (:) separating the two. This means that there are five potential user-
name/password combinations that can be used to enter the restricted area for
which this text file is intended. Each time a user enters a username and password
via the authentication window, the text file is opened and searched methodically
for a matching pair. If a match is found, the user is permitted to enter the re-
stricted area; otherwise, the user is denied access. This authentication procedure
is displayed in Listing 16-6.

Listing 16-6 Text file–based user authentication
$file = "authenticate.txt";

$fp = fopen($file, "r");

$auth_file = fread ($fp, filesize($fp));

fclose($fp);

// assign each line of file as array element 

$elements = explode ("\n", $auth_file);

foreach ($elements as $element) {

list ($user, $pw) = split (":", $element);

if (($user == $PHP_AUTH_USER) && ($pw == $PHP_AUTH_PW)) :

$authorized = 1;

break;     

endif;

} // end foreach

if (! $authorized) :

header('WWW-Authenticate: Basic realm="Secret Family Recipes"');

header('HTTP/1.0 401 Unauthorized');

print "You are attempting to enter a restricted area. Authorization is

required.";

exit;

Security

427

Gilmore_16  12/4/00  1:10 PM  Page 427



else :

print "Welcome to the family's secret recipe collection";

endif;

Storing Information in a Database

Storing user authentication information in a database is advantageous for many
reasons, many of them discussed in detail in Chapter 11, “Databases.” Easy up-
dating, scalability, and flexibility are just a few reasons why using a database is the
logical choice for storing large amounts of user authentication data. Table 16-4 il-
lustrates a sample database table used to store this data. After authentication
lookup has successfully taken place, the user ID can then be used to tie into other
tables hosting various other forms of user data and preferences. The idea of effec-
tively quarantining related data to separate, smaller tables, rather than just group-
ing it all into one massive table, is known as database normalization and was
briefly discussed in Chapter 11.

Table 16-4. A sample user authentication table (user_authenticate)

USER ID USERNAME PASSWORD

ur1234 brian 2b877b4b825b48a9a0950dd5bd1f264d

ur1145 alessia 6f1ed002ab5595859014ebf0951522d9

ur15932 gary 122a2a1adf096fe4f93287f9da18f664

ur19042 chris 6332e88a4c7dba6f7743d3a7a0c6ea2c

ur18930 matt 9252fe5d140e19d308f2037404a0536a

Listing 16-7 will first check to see whether or not the $PHP_AUTH_USER variable
has been set. If it has not, the authentication window will pop up, prompting the
user to enter the necessary information. Otherwise, a connection to the MySQL
server is established and the user_authenticate table is queried using the user-
name and password entered by the user. If no match is found, the authentication
window will be displayed again. Otherwise, $userid is assigned the matching user
ID, essentially authenticating the user.

Listing 16-7: Authenticating a user via database lookup
if (!isset($PHP_AUTH_USER)):

header('WWW-Authenticate: Basic realm="Secret Family Recipes"');

header('HTTP/1.0 401 Unauthorized');

exit;

Chapter 16

428

NOTE MySQL syntax is used to illustrate the examples in this section. The
code is simple enough to be easily converted to other database servers.

Gilmore_16  12/4/00  1:10 PM  Page 428



else :

// connect to the mysql database

mysql_connect ("host", "user", "password") or die ("Can't connect to

database!");

mysql_select_db ("user_info") or die ("Can't select database!");

// query the user_authenticate table for authentication match

$query = "select userid from user_authenticate where 

username = '$PHP_AUTH_USER' and 

password = '$PHP_AUTH_PW'";

$result = mysql_query ($query);

// if no match found, display authentication window

if (mysql_numrows($result) != 1) :

header('WWW-Authenticate: Basic realm="Secret Family Recipes"');

header('HTTP/1.0 401 Unauthorized');

exit;

// else, retrieve user-Id

else :

$userid = mysql_result (user_authenticate, 0, $result);

endif;

endif;

Conclusion

This chapter introduced a wide array of topics relating to security. As you’ve
learned throughout this chapter, properly securing your PHP applications re-
volves around a combination of properly configuring your server and PHP instal-
lation, and employing prudent coding to prevent user input from wreaking havoc.
Other variables such as encryption, credit card verification, and user authentica-
tion play important roles when applicable. To recap, I briefly introduced the fol-
lowing topics:

• PHP’s configuration issues

• Safe mode and the PHP module

• Coding issues

• Data encryption

Security

429

Gilmore_16  12/4/00  1:10 PM  Page 429



• Ecommerce functions

• User authentication

In closing, I would like to state that properly planning the level of security
that your PHP application will require is as important as, if not more so than,
planning the other features of your application that will make it a success. There-
fore, always take time to properly outline the security features that you must em-
ploy before you begin coding. In the long run, it will save you time and aid in the
prevention of potential security holes in your application.

Chapter 16

430

Gilmore_16  12/4/00  1:10 PM  Page 430





NUMBERS AND SYMBOLS

[0-9] character range for POSIX regular
expressions, 177

1.inc, 2.inc, and 3.inc files for
window.php example, 400–401

[[:alnum:]] character class for POSIX
regular expressions, 178

[[:alpha:]] character class for POSIX
regular expressions, 178

& (ampersand)
converting to HTML, 201
using with assignment of variables

by reference, 49
in XML entity references, 364

* (asterisk)
escaping, 160
flag after character sequences in

POSIX regular expressions, 177
operator in DTDs, 370

*/ (asterisk slash) used in comments,
28–29

@ (at sign) operator, 56
[a-z], [A-Z], and [a-Z] character ranges

for POSIX regular expressions,
177

\ (backslash), 34, 184
using to link to PHP-enabled pages,

216
using with POSIX regular

expressions, 178
`` (backticks), enclosing commands

with, 158, 418
\[0-7]{1,3} character sequence, 34
\\ character sequence, 34
\$ character sequence, 34
: (colon) in authentication text file, 429
, (comma)

operator in DTDs, 370
using with initialization variables,

70–71
{} (curly brackets)

referencing multidimensional arrays
with, 97–98

in sample template file, 302
[[:digit:]] character class for POSIX

regular expressions, 178
$ (dollar sign) string delimiter, 41
“ (double quotation mark) string

delimiter, 33-34
“” (double quotation marks), 

converting to HTML, 201
using to link to PHP-enabled pages,

216
// (double slash) used in comments, 28
= (equals) sign used with ASP-style

escape tag, 24–25
> (greater than) operator, 56, 62
>= (greater than or equal to) operator,

56, 62
< (left angle bracket) character,

converting to HTML, 201
< (less than) operator, 56, 62
<= (less than or equal to) operator, 56, 62
* (multiplication) operator, 56–57
! ~ operator, 56
%=&= |= ^= operator, 56
&& || operator, 56
&^| operator, 56
+ - . operator, 56
++ –– operator, 56
/ * % operator, 56
<<< operator in Here doc syntax, 34–35
= += *= / = .= operator, 56
==!= === <> operator, 56

Index

431

Gilmore_17_IDX  12/5/00  2:26 PM  Page 431



?: operator, 56
() (parentheses)

operator, 56
used in DTDs, 367

| (pipe) operator
in DTDs, 370
using with POSIX regular

expressions, 176–177
+ (plus)

flag after character sequences in
POSIX regular expressions, 177

operator in DTDs, 370
# (pound symbol)

placing in href for JavaScript,
397–398

used in comments, 28
? (question mark)

flag after character sequences in
POSIX regular expressions, 177

operator in DTDs, 370
> (right angle bracket) character,

converting to HTML, 201
; (semicolon) in XML references, 364
‘’ (single quotation) marks, using with

strings, 33
/ (slash), using with Perl style regexp

metacharacters, 184
/* (slash asterisk) used in comments, 29
[[:space:]] character class for POSIX

regular expressions, 178
[] (square brackets)

using with indexed arrays, 93
using with POSIX regular

expressions, 177
\x[0-9A-Fa-f]{1,2} character sequence,

34
| (vertical bar), using with list() language

construct, 95

A

a file mode, 146
a+ file mode, 146
About This Site static page, 228
absolute value of integers, 103
Access and PHP, 288–291
access counter project, 168

Adabas D database servers, support for,
283

add_bookmark.php file, 295–296
add_guest.php file, 257–259
addition operator, 56
address-book creation project, 314–320
address_sql() SQL parsing method,

317–319
Advertising Information static page, 228
ampersand (&)

converting to HTML, 201
using with assignment of variables

by reference, 49
in XML entity references, 364

AND operator, 60
AND XOR OR operator, 56
Apache module

installing PHP as, 13–14
restriction from using

safe_mode_boolean security
configuration option with, 412

Apache server, downloading, 10–11
Apache Web site, 11, 19, 411
Apache Week Web site, 411
Application-level security safeguards, 7
(array) cast operator, conversion for, 47
array data type, 35–38
array elements

creating HTML table from, 105–106
definition of, 93
locating, 98–100

array indexes, impact of asort() function
of, 113

array keys, assigning file contents to,
303–304

array() language construct, creating
arrays with, 94–95

array_count_values() function, 110–111
array_flip() function, 109, 203
array_keys() function, locating array

elements with, 99–100
array_merge() function, using with

arrays, 117
array_pad() function, 102–103
array_pop() function, 101–102
array_push() function, 101
array_reverse() function, 108

Index

432

Gilmore_17_IDX  12/5/00  2:26 PM  Page 432



array_shift() function, 102
array_slice() function, 117–118
array_sorting.inc function library, 90–91
array_splice() function, 118–119
array_unshift() function, 102
array_values() function, locating array

elements with, 100
array_walk() function, using with arrays,

107–108
arrays

adding elements to, 100–103
advancing pointers to next elements

in, 104–108
counting frequency of values

appearing in, 110–111
creating, 93–96
expanding to precise sizes, 102–103
flipping values in, 109
managing sizes of, 109–111
merging, 117
padding, 102–103
popping values from end of, 101–102
pushing values to end of, 101
reading files into, 153
removing elements from, 100–103
removing elements from beginnings

of, 102
returning key-value pairs for current

pointer positions, 104–108
returning number of elements in,

109–110
returning slices of, 117–118
rewinding pointers of, 104
shortening lengths of, 101–102
sorting, 111–117
sorting based on predefined criteria,

116–117
sorting elements in reverse order in,

112–115
sorting randomly, 119
traversing, 103–109
using array_flip() function with, 109,

203
using array_merge() function with,

117
using array_reverse() function with,

108

using array_splice() function with,
118–119

using array_walk() function with,
107–108

using arsort() function with,
113–114

using asort() function with, 113
using count() function with, 110
using each() function with, 104–106
using krsort() function with, 115
using ksort() function with, 114–115
using next() function with, 107
using prev() function with, 107
using reset() function with, 104
using rsort() function with, 112–113
using shuffle() function with, 119
using sort() function with, 111–112
using uasort() function with, 117
using uksort() function with, 117
using usort() function with, 

116–117
arsort() function, using with arrays,

113–114
asort() function, using with arrays, 113
ASP-style tags for escaping to PHP, 24–25
asp_tags [on | off] configuration

directive, 21
assignment of variables by value and

reference, 48–49
assignment operators, 58–59
associative and indexed array indexes,

mixing, 38
associative arrays, 36–38

creating, 94
using foreach control structure with,

72–73
using mysql_fetch_array() function

with, 276–277
associativity of operators, 57
asterisk (*)

escaping, 160
flag after character sequences in

POSIX regular expressions, 177
operator in DTDs, 370

asterisk slash (*/) used in comments,
28–29

at sign (@) operator, 56

Index

433

Gilmore_17_IDX  12/5/00  2:26 PM  Page 433



attribute 
declarations in DTDs, 370–372
types for DTDs, 372–374

attributes
manipulating in classes with OOP,

124
of XML documents, 364

authenticate.txt file, 428–429
authentication variables, checking,

427–428
auto_start session-handling directive,

335
autoincrement and autodecrement

operators, 56, 60
Automation Technologies database

drivers for ODBC, 282

B

backslash (\), 34, 184
linking to PHP-enabled pages with,

216
using with POSIX regular

expressions, 178
backticks (``), enclosing commands

with, 158, 418
Bakken, Stig user affirmation, 8
basename() function

using with server files, 160–161
versus dirname() function, 165–166

bill against credit limit example, 86–87
binary representations of decimal

integers, 62
binary tar files, downloading PHP as,

10–11
bitwise AND operator, 56
bitwise operators, 62–63
bitwise OR operator, 56
bitwise XOR operator, 56
block allocation used with stat()

function, indexed value for, 161
body, header, and footer example,

224–226
body section example, 223
book.html template, 314–315
bookmark repository project, 291–299
bookmarks.xml example, 387–389

boolean AND operator, 56
Boolean logic, using with DTDs, 370
boolean NOT and bitwise NOT, operator

for, 56
boolean OR operator, 56
boolean values, 39–40
<br> tags, converting newline (\n)

characters to, 200
brackets ([]), using with POSIX regular

expressions, 177
break statement control structure, 74–76
browscap.ini file, 396
browser, displaying information about, 52
browser attributes, displaying, 394–395
browser capabilities, retrieving with

get_browser() function, 394
browser detection example, 207–211
browser.ini file, 394
byte size used with stat() function,

indexed value for, 161

C

-c 5 (-n 5 for Windows) parameter, using
with ping, 158

cache_expire session-handling directive,
336

cache_limiter session-handling
directive, 336

calendar project, 77–80
carriage return string delimiter, 34
case sensitivity of identifiers, 41
cast operators for variables, 47
CBC: Cipher Block Chaining mode, for

mcrypt() data-encryption
package, 422

CCVS (Credit Card Verification System),
426

CDATA attribute type for DTDs, 372
CDATA in XML documents, 363
CFB: Cipher Feedback mode, for

mcrypt() data-encryption
package, 423

character classes for POSIX regular
expressions, 178

character data, indicating in DTDs,
368–369

Index

434

Gilmore_17_IDX  12/5/00  2:26 PM  Page 434



character handling, 34–35
character ranges and sequences for

POSIX regular expressions, 177
characters, restricting ranges in DTDs,

374
chdir() function, changing file

directories with, 167
checkbox mouse-oriented form entity,

234–235
chgrp() function, changing groups of

files with, 163
chmod() function, changing mode of

filename to permissions with,
163

chop() function, returning strings minus
whitespace and newlines with,
189

chown() function, changing ownership
of filenames with, 163

Clark Cooper, 376
Clark, James, 376
class abstraction, role in OOP (object-

oriented programming),
132–133

classes
definition of, 122–123
relationship to objects, 38–39
role in OOP (object-oriented

programming), 122–123
client operating system and browser,

determining, 209–211
closedir() function, closing directory

streams with, 166
cnet Web site as example of table sorter,

280
code volume, limiting with variable

functions, 88–89
coding issues associated with security,

417–419
colon (:) in authentication text file, 429
color and screen resolution, detecting

with JavaScript, 396–397
COM (Component Object Model),

402–408
COM (Component Object Model)

functionality, using to interact
with Microsoft Word, 406–408

COM (Component Object Model)
objects

implementing methods for, 403–404
instantiating, 403

com_get() function, retrieving COM
object properties with, 404–405

com_set() function, setting object
attributes with, 405–406

comma (,)
operator in DTDs, 370
using with initialization variables,

70–71
command output, returning in

unformatted form, 159
commenting code, 28–29
comments in XML documents, 365
company sample database, 263
comparison operators, 61–62
concatenating strings, 59
concatenation operator, 56
conditional expressions, omitting

components of, 71
conditional if statement, using with

one-script form processing, 
242

conditional/iterative statements,
building functions into, 86

conditional statements, using in_array()
function with, 98–99

conditionals, components of, 69
configuration files, hiding, 415–417
configuration issues associated with

security, 412–417
constants, defining, 53
constructors, role in OOP (object-

oriented programming), 126
Contact Us static page, 228
continue statement control structure,

76–77
control statements, using in_array

function with, 98–99
control structures, definition of, 63
cookbook.dtd file, 366–367
cookie_domain session-handling

directive, 335
cookie_lifetime session-handling

directive, 335, 338

Index

435

Gilmore_17_IDX  12/5/00  2:26 PM  Page 435



cookie_path session-handling directive,
335

cookie_serialize_handler session-
handling directive, 335

cookies
checking for, 351–352
components of, 324–335
definition of, 323–324
determining domains for, 335
determining lifetimes of, 335
determining parent path directory

for, 335
and PHP, 326–330
resources for, 333
retrieving user information from

databases with, 329
setting, 326
specifying names for, 328
storage format details of, 325
storing page-formatting preferences

with, 327–328
using session.name directive with,

335
using variables for, 326

Cooper, Clark, 376
copy() function, copying files with, 164
Cosby, Randy user affirmation, 8–9
count() function, using with arrays, 110
Credit Card Verification System (CCVS),

426
crypt() predefined function, securing

data strings with, 420–421
curly brackets ({})

referencing multidimensional arrays
with, 97–98

in sample template file, 302
Cybercash ecommerce functions,

425–426
cyberlib.php API, using with Cybercash,

425
cyScape, Inc. browser.ini file, 394

D

data
retrieving with mysql_fetch_array()

function, 276–277

retrieving with mysql_fetch_row()
function, 275–276

storing in MySQL databases, 340–341
data encryption, 419–424
data files, hiding, 415–417
data sets, producing with mysql_query()

function, 273–275
data type casting, 47–48
data type juggling, 46–47
database drivers, for ODBC, 282
database normalization, 430
database querying, providing functional

interface for, 271
database servers, PHP support of, 265
database table, for creating address

book, 314
database tools, for SQL, 262
databases

selecting from servers, 269–270
storing multiple user authentication

in, 430–431
date() function, 26
date.php sample page, 215–216
decimal integers and binary

representations, 62
default document type, setting with

com_set() function, 405–406
default enumerated attributes, for DTDs,

373–374
default tags, for escaping to PHP, 23
defined classes, retrieving with

get_declared_classes() function,
141

DELETE FROM command in SQL, 264
destroy() function, using with

destructors, 127
destructors, role in OOP, 127
device used with stat() function, indexed

value for, 161
Dézélus, Jean-Pierre, 348
die() command

using with class abstraction,
132–133

using with fopen() function, 146
directories

specifying in user’s home directory
for PHP scripts, 414–415

Index

436

Gilmore_17_IDX  12/5/00  2:26 PM  Page 436



working with, 165–167
directory structure, example of, 165
dirname() function, determining paths

with, 165–166
disable_functions string security

configuration option, 414
display_errors [on | off] configuration

directive, 22
division operator, 56
doc_root string security configuration

option, 414
document type, setting default with

com_set() function, 405–406
DocumentRoot file in Apache’s

httpd.conf file, 415
documents

obtaining outside document roots
as security measure, 416

parsing with xml_parse() function,
383

dollar sign ($) string delimiter, 41
domain component of cookies, 324–325
(double) cast operator, conversion for, 47
double quotation (“”) marks

converting to HTML, 201
using to link to PHP-enabled pages,

216
double quotation mark (“) string

delimiter, 33–34
double slash (//) used in comments, 28
do..while control structure, 68–69
DTD (document type definition)

attribute declarations in, 370–372
attribute types for, 372–374
closing, 369
components of, 369–376
creating for XML documents,

366–376
element operators for, 370
entity declarations in, 374–375
indicating character data in,

368–369
role in SGML, 359
in XML prologs, 362

Dynamic Apache Module, installing PHP
as, 15–17

dynamic date insertion example, 25–26

dynamic forms construction, 252–254
dynamic HTML tag example, 26
dynamic pop-up windows, building,

397–402
dynamic pull-down menu, generating,

253–254

E

each() function, using with arrays,
104–108

Easysoft database drivers, for ODBC, 282
ECB: Electronic Code Book mode, for

mcrypt() data-encryption
package, 423

ecommerce functions, 424–426
EGPCS (Environment, Get, Post, Cookie,

Server) values, 334
element attributes in DTDs, 370–372
element declarations in DTDs, 369–370
element operators in DTDs, 370
elements

removing from arrays, 101–103
returning number of in arrays,

190–110
of XML documents, 363–364

elseif statement control structure, 65
-enable-trans-sid configuration flag, role

in session handling, 334
encapsulation

advisory about, 125–126
definition of, 121–122

enclosure bracketing, 67
encryption, 419–424
encryption modes, resource for, 422
encryption types, for crypt() predefined

function, 420
end() function, using with arrays, 107
entities and entity attributes, for DTDs,

374
entity declarations, in DTDs, 374–375
entity references, in XML documents,

364–365
entropy_file session-handling directive,

336
entropy_length session-handling

directive, 336

Index

437

Gilmore_17_IDX  12/5/00  2:26 PM  Page 437



enumerated attributes, for DTDs, 373
equality operators, 61
equals (=) sign, used with ASP-style

escape tag, 24–25
ereg() POSIX-extended regexp function,

searching strings with, 179–180
ereg_replace() POSIX-extended regexp

function, searching strings
with, 180–181

eregi() POSIX-extended regexp function,
searching strings with, 181

eregi_replace() POSIX-extended regexp
function, searching strings
with, 182

error concealment, operator for, 56
error values, retrieving with

xml_get_error_code() function,
384

error_log [filename] configuration
directive, 22

error_reporting [1-8] configuration
directive, 21

errors, configuring logging of, 22
escape tags, configuring, 20
escapeshellcmd() function security

feature, 160, 417–418
events calendar project, 77–80
events.txt file

displaying contents to browser, 79
using to send user information via

email, 246–247
exec() function, executing external

programs with, 157–158
Expat 2.0 parser, 376
expiration date component of cookies,

324
explode() function, dividing strings with,

195
expressions, 55, 66
external entity declarations in DTDs, 375

using with
xml_set_external_entity_ref_ha
ndler() function, 379–380

using
xml_set_unparsed_entity_decl_
handler() function for, 382

F

factorial example, 67–69
fclose() function, closing files with,

146–147
fgets() function, reading from files with,

150–151
fgetss() function, reading from files with,

151–152
file characteristics, displaying and

modifying, 162–164
file() function, reading files into indexed

arrays with, 153
file I/O (input/output), opening and

closing, 145–147
file modes, 145–146
file parsing, role in developing advanced

templates systems, 303,
305–307

file pointers, opening with popen()
function, 154–155

file printing, role in developing
advanced template systems,
303, 307–311

file registration, role in developing
advanced template system,
303–304

file system I/O block size used with stat()
function, indexed value for, 161

file system, working with, 160–162
file_exists() function, verifying existence

of files with, 143–144
filegroup() function, managing file

characteristics with, 163
filenames, configuring error logging to, 22
fileowner() function, returning user ID

with, 164
fileperms() function, returning

permissions of files with, 163
files

building components of, 221
converting to HTML, 200–205
copying and renaming, 164
deleting, 165
including in templates, 217–221
outputting line by line, 151

Index

438

Gilmore_17_IDX  12/5/00  2:26 PM  Page 438



reading from, 148–152
reading into arrays, 153
redirecting to output, 153–154
registering, 303–304
verifying existence and sizes of,

143–144
writing to, 147–148

filesize() function, determining file size
with, 144, 149

#FIXED attribute flag, for DTDs, 372
flags after character sequences, in POSIX

regular expressions, 177–178
(float) cast operator, conversion for, 47
floating-point data type, 32
footer file example, 222–223
footer, header, and body example,

224–226
fopen() function, opening files with, 145
for loop control structure, 69–71
foreach control structure, 71–73, 76
form entities

checkbox mouse-oriented type of,
234–235

enclosing in HTML tags, 231–232
keyboard-oriented type of, 232–234
mouse-oriented type of, 234–238
password text box type of, 233
pull-down menu mouse-oriented

type of, 236
radio button mouse-oriented type

of, 235
Reset button mouse-oriented type

of, 238
Submit button mouse-oriented type

of, 237
text area box keyboard-oriented

type of, 233–234
text box keyboard-oriented type of,

232–233
form fields, displaying missing and erred

types of, 250–252
form information

adding to text files, 248–249
error checking, 250–252
passing from one script to another,

55, 240–243

sending to email addresses, 243–245
sending via email, 246–247

form interface for add_browser.php file,
296

form processing with one script, 242–243
forms

constructing dynamically, 252–254
example of, 238–240
resource for, 232

fpassthru() function, executing external
programs with, 159

fputs() function, comparing to fwrite()
function, 148

fread() function, reading from files with,
149–150

freeware drivers, for ODBC, 282
fsockopen() function, opening socket

connections with, 155–156
ftp:// files, opening, 145
func_get_art() function, using with

method overloading, 134
func_num_args() function, using with

method overloading, 134
function declarations, nesting, 83–84
function definitions, 82
function libraries, building, 90–91
function names, 82, 414
function parameters, declaring, 43
functional iteration, 88
functions

applying to elements in arrays,
107–108

building into conditional/iterative
statements, 86

definition of, 81
nested type of, 83–84
recursive type of, 88
restricting with safe_mode_boolean

security configuration option,
413

returning values from, 85–88
role in OOP (object-oriented

programming), 122–123
storing templates as, 226–227
using lists with, 87
variable type of, 88–89

Index

439

Gilmore_17_IDX  12/5/00  2:26 PM  Page 439



fwrite() function, writing to files with,
147–148

G

gc_maxlifetime session-handling
directive, 336

gc_probability session-handling
directive, 336

get method, using with forms, 232
get_browser() function, retrieving

browser capabilities with, 394
get_class() function, role in OOP, 139
get_class_methods() function, role in

OOP, 134
get_class_vars() function, role in OOP,

135
get_declared_classes() function, role in

OOP, 141
get_html_translation_table() function,

using to translate text to HTML
equivalent of, 202–203

get_meta_tags() function, searching
HTML files for META tags with,
204

get_object_vars() function, role in OOP,
136–137

get_parent_class() function, role in OOP,
139–140

getlastmod() function, using with server
files, 161

global authentication variables,
checking, 427–428

global variables, accessing, 44
gpc (get/post/cookie) in configuration

directive, 22
graphics, using external entities in DTDs

for pointing to, 375
greater than (>) operator, 62
greater than or equal to (>=) operator, 62
guestbook-creation project, 254–260

H

handler functions, for PHP and XML
documents, 378–382

handlers, specifying to serialize data for
cookies, 335

hashing algorithms for security, 
421–423

header file example, 221–222
header, footer, and body example,

224–226
header() function, using with dynamic

pull-down menus, 253–254
Here doc syntax, 34–35
hexadecimal integers, 32
hexadecimal notation regular expression

pattern string delimiter, 34
Heyes, Richard, 312
hidden form values, 236–237
hit counter example, 339
horizontal tab string delimiter, 34
htdocs directory, testing Dynamic

Apache Module with, 16
HTML (HyperText Markup Language)

advent of, 360
converting from XML to, 387–389
converting strings and files to,

200–205
converting to plain text, 203–205
embedding in PHP, 25–27
embedding PHP in, 5
integrating PHP with, 9–10

HTML files, stripping tags from, 151–152
HTML tables, creating from array

elements, 105–106
HTML tags, enclosing forms entities in,

231–232
htmlentities() function, converting

characters to HTML entities
with, 201

htmlspecialchars() function, converting
special characters to HTML
with, 201–202

http:// files, opening, 145
httpd.conf file

configuring to deny file extension
access, 417

modifying in Apache module, 15, 18
modifying in Dynamic Apache

module, 15–16

Index

440

Gilmore_17_IDX  12/5/00  2:26 PM  Page 440



I

i modifier, using with Perl style regular
expressions, 185

I/O (input/output), opening and closing,
145–147

IBM DB2 database servers, support for,
283

ID, IDREF, and IDEREFS attributes, for
DTDs, 372–373

identical to operator, 56
identifiers, 40–41
if statement control structure, 64
if statements, nesting, 65–66
#IMPLIED attribute flag, for DTDs, 372
implode() function, using with arrays to

form strings, 195
in_array() function, locating array

elements with, 98–99
include() function, using with templates,

217–219
include_once() function, using with

templates, 219
included files, preventing viewing of, 222
increment component of conditionals, 69
index values of arrays, retrieving, 99–100
indexed and associative array indexes,

mixing, 38
indexed arrays, 35–38

assigning cookie names with, 328
creating, 93
returning with stat() function,

161–162
using file() function with, 153
using mysql_fetch_row() function

with, 275–276
index.php file, 224–226

for bookmark repository project,
297–298

for template parser, 320
for visitor log project, 351–352

information hiding, definition of,
121–122

inheritance, role in OOP (object-
oriented programming),
127–132

initialization component, of
conditionals, 69

initialization file, creating for bookmark
repository project, 292–295

init.inc file
creating for bookmark repository

project, 292–295
creating for guestbook-creation

project, 254–257
creating for visitor log project,

348–351
init.tpl filename, 219–220
Inode device type used with stat()

function, indexed value for, 161
input files, forms of, 145
INSERT command, in SQL, 264
instantiation class, returning name of,

139
(int) or (integer) cast operator,

conversion for, 47
integer data type, 31–32
integer set, summing with recursive

function, 88
integers, absolute value of, 103
internal entity declarations, in DTDs,

375
{int.range} flag after character sequences

in POSIX regular expressions,
177

IODBC database servers, support for, 283
is equal to operator, 56, 61
is identical to operator, 61
is not equal to operator, 56, 61
is_dirname() function, verifying files as

directories with, 166
is_file() function, verifying existence of

files with, 144
is_readable() function, reading from files

with, 149
is_subclass_of() function, role in OOP,

140–141
is_writeable() function, writing to files

with, 147
ISO-8859-1 encoding

changing to UTF-8 encoding, 387
converting data to and from, 384

Index

441

Gilmore_17_IDX  12/5/00  2:26 PM  Page 441



J

James Clark’s Expat (XML Parser Toolkit)
package, 376

JavaScript
detecting color and screen

resolution with, 396–397
introduction to, 393–402
specifying newWindow() function

in, 397–398
verifying whether enabled for

particular browser, 396
JavaScript key, verifying existence of, 396
JavaScript templating strategies, 312
join() function, 196

K

key-value pair, returning with each()
function, 104–108

key values, sorting arrays by, 114–115
keyboard-oriented form entities,

232–234. See also mouse-
oriented form entities

keys for input array, returning with
array_keys() function, 99–100

keywords, using with entity references in
XML documents, 364–365

krsort() function, using with arrays, 115
ksort() function, using with arrays,

114–115

L

last access time used with stat()
function, indexed value for, 161

last change time used with stat()
function, indexed value for, 161

last modification time used with stat()
function, indexed value for, 161

latorre.txt example, 154
left angle bracket (<) character,

converting to HTML, 201
Lerdorf, Rasmus, 3
less than (<) operator, 62
less than or equal to (<=) operator, 62
less than and greater than, operator for, 56

linking, to PHP-enabled pages, 215–216
links, displaying for browsers, 216
list() language construct

creating arrays with, 95–96
using with each() function, 105

lists, using with functions, 87
local variables, declaring, 42–43
log_errors configuration directive, 22
logical operators, 60–61
login, location of, 427
looping alternatives, 70
looping through statements, 67–68
ltrim() function, removing whitespace

and special characters from
strings with, 190

M

m modifier, using with Perl style regular
expressions, 185

magic number used in example, 76
magic_quotes_qpc configuration

directive, 22, 216
mail() function, using to send form

information to email addresses,
243–245

majordomo mailer Web site, 244
mapping arrays associatively, 94–95
markup, introduction to, 357–361
max_execution_time configuration

directive, 21, 414
mcrypt() data-encryption package,

422–423
md5() third-party hash algorithm

comparing to crypt() predefined
function, 421

encrypting data with, 419–420
memory

conserving when making query
calls, 271

specifying for scripts, 414
memory_limit integer security

configuration option, 414
META tags, searching HTML files for,

204–205
metacharacters, using with Perl style

regular expressions, 184

Index

442

Gilmore_17_IDX  12/5/00  2:26 PM  Page 442



method overloading, 133–135
method_exists() function, role in OOP,

138
methods

retrieving with get_class_methods()
function, 134

role in OOP (object-oriented
programming), 122–123, 124

mhash() module, 421–423
Microsoft Access, and PHP, 288–291
Microsoft Word documents

opening after instantiating new
COM objects, 404

writing information to, 406–408
mkdir() function, creating directories

with, 166
modifiers, using with Perl style regular

expressions, 185
modulus operator, 56
mouse-oriented form entities, 234–238.

See also keyboard-oriented
form entities

MSDN Web site, 403
msql_selct_db() function, selecting

databases with, 269–270
multidimensional arrays

associative, 38
creating, 96–97
indexed, 37
referencing, 97–98

multilevel inheritance, 130–132
multiline comments, 28–29
multiple expression evaluation, 66
multiple inheritance, 130
multiple user authentication, 428–431
multiplication (*) operator, 56–57
MySQL

configuring, 267
implementing session-handling

functions with, 345–347
installation of, 266–267

MySQL database server Web site, 12, 261,
266

MySQL databases
decoding session data stored in, 342
retrieving and formatting data in,

273–275

using session_encode() function to
store data in, 340–341

MySQL predefined functions, 267–268
MySQL server

closing connection to, 270
connecting to, 267–269

MySQL table
for bookmark repository project,

291
for visitor log project, 347–353

mysql_affected_rows() function, 271–272
mysql_close() function, closing

connections with, 270, 273–275
mysql_connect() predefined function

connecting to MySQL server with,
268–269

ignoring information passed to, 414
mysql_fetch_array() function, using with

associative arrays, 276–277
mysql_fetch_row() function, assigning

rows to indexed arrays with,
275–276

mysql_free_result() function, conserving
memory with, 271

mysql_num_rows() function, 272–273
mysql_pconnect() function, 269

ignoring information passed to, 414
mysql_query() function, 271

using with mysql_result() function,
273–275

mysql_result() function, producing data
sets with, 273–275

mySQL’s MyODBC database drivers, 282

N

\n (newline) character, 34, 200
name component of cookies, 324
name session-handling directive, 335
nested functions, 83–84
nested if statement control structure,

65–66
Netcraft Web site, 4
new operator, 56
newline character string delimiter, 34
newline characters, removing from

strings, 189

Index

443

Gilmore_17_IDX  12/5/00  2:26 PM  Page 443



newWindow() function, specifying in
JavaScript, 397–398

next() function, using with arrays, 107
nl2br() function, converting newline (\)

characters to <br> tags with,
200

NMTOKEN and NMTOKENS attributes,
for DTDs, 374

[none] element operator, in DTDs, 370
normalization of databases, 430
NOT operator, 60
notation declarations, using

xml_set_notation_declaration_
handler() function with, 380

O

(object) cast operator, conversion for, 47
object data type, 38–39
object instantiation, operator for, 56
object/method mapping, verifying with

method_exists() function, 138
object-orented programming (OOP). See

OOP (object-oriented
programming)

object variables, obtaining with
get_object_vars() function,
136–137

object.class parameter, of COM objects,
403

objects
casting data types as, 48
creating and working with, 125
determining mode of creation for,

140–141
role in OOP (object-oriented

programming), 123
octal integers, 32
octal notation regular expression pattern

string delimiter, 34
ODBC (Open Data Base Connectivity)

introduction to, 261, 282–283
support by PHP, 283–288

ODBC functions, using to interface with
Microsoft Access, 290–291

odbc_close() function, closing
connections with, 284–285

odbc_connect() function, establishing
connections with, 283–284

odbc_exec() function, 286
odbc_execute( ) function, executing

queries with, 285–286
odbc_free_result() function, restoring

resources with, 287–288
odbc_pconnect() function, 284
odbc_prepare() function, using before

executing queries, 285
odbc_result_all() function, formatting

and displaying rows with, 287
OFB: Output Feedback mode for

mcrypt() data-encryption
package, 423

OOP (object-oriented programming),
38–39

advantages of, 121
case convention for classes in, 124
and PHP (Hypertext Preprocessor),

122
role of class abstraction in, 132–133
role of constructors in, 126
role of destructors in, 127
role of get_class function in, 139
role of get_class_methods() function

in, 134
role of get_class_vars() function in,

135
role of get_declared_classes()

function in, 141
role of get_object_vars() function in,

136–137
role of get_parent_class() function

in, 139–140
role of inheritance in, 127–132
role of is_subclass_of() function in,

140–141
role of method_exists() function in,

138
role of methods in, 124
role of objects in, 123

opendir() function, opening directory
streams with, 166

OpenLinkSoftware database drivers for
ODBC, 282

operands in expressions, 55

Index

444

Gilmore_17_IDX  12/5/00  2:26 PM  Page 444



operating system, displaying
information about, 52

operator associativity, 57
operator precedence, 57
operators in expressions, 55–63
OR operator, 60
owner group ID used with stat()

function, indexed value for, 161

P

page-formatting preferences, storing
with cookies, 327–328

page-generation project, 227–229
parent path directory, determining for

valid cookies, 335
parentheses (())

operator, 56
used in DTDs, 367

parenthesized substrings, back-
referencing, 181

parse_str() function, parsing strings into
variables with, 194

parser resources, freeing with
xml_parser_free() function, 383

parsers, creating with
xml_parser_create() function,
383

parsing
files, 303, 305–307
functions, 382–383

passthru() function, executing external
programs with, 159

password text box form entity, 233
password verification system, using

md5() hash algorithm as,
419–420

passwords
hardcoding in scripts, 428
location of, 427
storing and comparing with crypt()

predefined function, 420–421
path component of cookies, 325
pathnames, specifying for directories, 166
pattern matching, definition of, 175
Payflow Pro service, 424
pclose() function, closing files with, 155

Perl style regular expression syntax,
183–188

pfsockopen() function, using with socket
connections, 157

php:// files, opening, 145
PHP Classes Repository templating

strategies, 312
PHP (Hypertext Preprocessor)

characteristics of, 5–9
checking global authentication

variables for, 427–428
class declaration structure of, 123
COM functionality for, 402–406
commenting code, 28–29
configuring, 20–23
configuring frequency of script

execution in, 21
and cookies, 326–330
database support by, 265–266
decompressing distributions of,

12–13
designating directory of session files

for, 335
development of, 3–5
downloading, 10–11
as embedded language, 7
embedding HTML in, 25–27
escaping to, 23
handler functions for XML

documents, 378–382
installing and configuring on UNIX,

12–13
installing as Apache module, 13–14
installing as Dynamic Apache

Module, 15–17
installing on Windows 95/98/NT,

17–19
introductory example, 9–10
manual for, 283
and Microsoft Access, 288–291
and OOP (object-oriented

programming), 122
parsing functions for, 382–383
Perl compatible regexp functions,

185–188
POSIX-extended regexp functions,

179–183

Index

445

Gilmore_17_IDX  12/5/00  2:26 PM  Page 445



PHP (continued )
specifying probability of activating

garbage collection routine for,
336

Web site, 10
PHP (Hypertext Preprocessor) module,

and safe_mode security
configuration option, 415

PHP (Hypertext Preprocessor) scripts,
embedding in documents, 27

phpinfo.net Web site, 348
php.ini file

location of, 20
security configuration options in,

412–417
session-handling directives in,

335–336
PHPLib Base Library templating

strategies, 312
PI (processing instructions), in XML

documents, 365
pipe (|) operator

in DTDs, 370
using with POSIX regular

expressions, 176–177
plain text

converting HTML to, 203–205
converting to HTML, 200–203

plus (+)
flag after character sequences in

POSIX regular expressions, 177
operator in DTDs, 370

pointers of arrays
advancing to next elements,

104–108
moving back on position, 107
moving to last position in, 107
rewinding, 104

pointers, opening with popen() function,
154–155

pop-up windows, building dynamic type
of, 397–402

popen() function, opening process file
pointers with, 154–155

POSIX regular expression syntax,
176–183

post method, using with forms, 232
pound symbol (#)

placing in href for JavaScript,
397–398

used in comments, 28
precedence of operators, 57
precedence ordering, operator for, 56
precision [integer] configuration

directive, 21
predefined character ranges, for POSIX

regular expressions, 178
predefined variables, 50–52
preg_grep() Perl style regexp, searching

strings with, 188
preg_match() Perl compatible regexp

function, searching strings
with, 186

preg_match_all() Perl style regexp
function, matching patterns in
strings with, 186–187

preg_replace Perl style regexp, replacing
elements of arrays with, 187

preg_split Perl style regexp, dividing
strings with, 187–188

prev() function, using with arrays, 107
privilege tables, in MySQL, 267
procedure, definition of, 85
process file pointers, opening with

popen() function, 154–155
processing instructions in XML

documents, 365
programs, executing externally, 

157–160
projects

access counter, 168
building page generators, 227–229
creating a visitor log, 347–353
creating address books, 314–320
creating bookmark repository,

291–299
creating guestbooks, 254–260
setting up browser detection,

207–211
site map generator, 169–172

pull-down menu mouse-oriented form
entity, 236, 252–254

Index

446

Gilmore_17_IDX  12/5/00  2:26 PM  Page 446



Q

quantifiers, for POSIX regular
expressions, 177

queries, executing with mysql_query()
function, 271

queries, executing with odbc_execute()
function, 285–286

query calls, conserving memory for, 271
question mark (?)

flag after character sequences in
POSIX regular expressions, 177

operator in DTDs, 370
queue, definition of, 101

R

\r character sequence, 34
r file mode, 146, 150
r+ file mode, 146
radio button mouse-oriented form

entity, 235
rand() function, using with cookies and

UINs, 330–331
range() language construct, creating

arrays with, 96
read only file mode, 146
readdir() function, returning directory

elements with, 167
readfile() function, redirecting files

directly to output with, 153–154
reading and writing file mode, 146
(real) cast operator, conversion for, 47
recursive functions, 46, 88
referer_check session-handling

directive, 336
regexp functions (POSIX extended),

179–183
register_globals flag, role in session

handling, 334–342
registering files, 303–304
regular expressions (regexps), 176–178

alternatives for, 193–199
resources for, 185

relational databases, definition of,
262–263

rename() function, renaming files with,
164

require() function
using templates, 217
using with templates, 219

require_once() function, using with
templates, 220–221

#REQUIRED attribute flag for DTDs, 372
Reset button mouse-oriented form

entity, 238
reset() function, using with arrays, 104
rewinddir() function, resetting directory

pointers with, 167
Richard Heyes’s Template Class

templating strategy, 312
right angle bracket (>) character,

converting to HTML, 201
Robin Cover/OASIS XML Cover Pages

Web site, 359
root directory for PHP files, specifying,

414
root_element_name in DTDs, 366–367
rows affected by SQL queries, returning

number of, 271–272
rows

assigning to indexed arrays with
mysql_fetch_row() function,
275–276

formatting and displaying with
odbc_result_all() function, 287

rows returned by SELECT query
statement, determining,
272–273

rows.addresses template, 315–316
RPM (RedHat Package Manager),

downloading PHP as, 10–11
rsort() function, using with arrays,

112–113

S

s modifier, using with Perl style regular
expressions, 185

Sablotron XSLT (XSL transformation)
processor, 390

safe mode, running PCP in, 6–7, 21

Index

447

Gilmore_17_IDX  12/5/00  2:26 PM  Page 447



safe_mode_boolean security
configuration option, 412–413

safe_mode_exec_dir string security
configuration option, 413

safe_mode [on | off] configuration
directive, 21

safe_mode security configuration option
and PHP module, 415–416

sales tax function example, 85–86
salt lengths for crypt() predefined

function, 420
save_handler session-handling directive,

335–336, 343
save_path session-handling directive,

335
save_use_cookies session-handling

directive, 335
scalar attributes, 48
science.html file, 151–152
scientific notation for floating-point

numbers, 32
scope of variables, 42–46
script embedding, 27
script tags for escaping to PHP, 24
scripts

hardcoding username and password
in, 428

specifying directories for, 414–415
specifying execution time of, 414
specifying memory for, 414

search engines, building, 277–279
searchengine.php file, 278–279
security, 6–7

coding issues associated with,
417–419

configuration issues associated
with, 412–417

role of escapeshellcmd() function
in, 160

security component of cookies, 325
seenform hidden variable, using with

one-script form processing, 
242

SELECT command in SQL, 264
SELECT query statement, determining

number of rows returned by,
272–273

semicolon (;) in XML references, 364
server directory, displaying structure of,

169–172
server files, viewing and manipulating,

160–162
server processes

opening file pointers to, 154–155
retrieving information about,

156–157
servers

executing programs on, 157–160
pinging with exec() function,

157–158
session data

decoding in MySQL databases, 342
deleting for

session_set_savehandler()
function, 344

specifying time for destruction of,
336

writing for
session_set_savehandler()
function, 344

session handling, 333–336
session-handling directives, 335, 338
session-handling functions,

implementing with MySQL,
345–347

session information, storing on servers,
335

session pages, determining cache
control method for, 336

session tracking, 333
session variable values, retrieving for

session_set_savehandler()
function, 344

session_decode() function, decoding
session data with, 341–342

session_destroy() function, destroying
sessions with, 337–338

session_encode() function, formatting
session variables with, 340–341

session_id() function, returning user’s
SID with, 338–339

session_is_registered() function,
determining registration of
variables with, 339

Index

448

Gilmore_17_IDX  12/5/00  2:26 PM  Page 448



session_register() function, registering
variable names with, 339

session_set_save_handler() function,
defining user-level session
storage and retrieval functions
with, 343–347

session_start() function, initiating
sessions with, 337

session_unregister() function, destroying
session variables with, 
339–340

session.name, using as cookie name, 335
sessions

deleting for
session_set_savehandler()
function, 344

destroying, 337
initiating, 337

sessions, initiating with initial client
requests, 335

set_socket_blocking() function, using
with socket connections,
155–156

setcookie() function, 326
SGML (Standard Generalized Markup

Language), 358–359
shift left or shift right, operator for, 56
short tags for escaping to PHP, 23–24
short_open_tag [on | off] configuration

directive, 20
shortcut assignment operators, 58
shuffle() function, using with arrays, 119
single-dimension indexed and

associative arrays, 35–37
single-line comments, 28
single quotation (‘’) marks, using with

strings, 33
site map generator project, 169–172
site visitors, creating log of, 347–353
site_init.tpl file, 226–227
site.txt file, using to send user

information via email, 246–247
sizeof() function, using with arrays,

109–110
slash (/), using with Perl style regexp

metacharacters, 184
slash asterisk (/*) used in comments, 28

sniffer.php file, 209–211
socket connections, opening, 155–157
Solid database servers, support for, 283
sort() function, using with arrays,

111–117, 119
split() and spliti() POSIX-extended

regexp functions, dividing
strings with, 181–182

split() POSIX-extended regexp function,
dividing strings with, 195

SQL parsing method, address_sql(),
317–319

SQL (Structured Query Language),
262–265

SQL queries, determining number of
rows affected by, 271–272

sql_regcase() POSIX-extended regexp
functions, converting
characters into bracketed
expressions with, 183

sql.safe_mode integer security
configuration option, 414

square brackets ([])
using with indexed arrays, 93
using with POSIX regular

expressions, 177
srand() function, using with cookies and

UINs, 331
standard notation for floating-point

numbers, 32
stat() function, using with server files,

161–162
static variables, declaring, 45–46
static.php file, 229
str_pad() function, padding strings with,

189–190
str_replace() function

replacing occurrences in strings
with, 196–197

using to add user information to
text files, 249

str_replace() function, replacing
occurrences in strings with, 
199

strcasecmp() function, performing case-
insensitive string comparisons
with, 192

Index

449

Gilmore_17_IDX  12/5/00  2:26 PM  Page 449



strcmp() function
performing case-sensitive string

comparisons with, 191–192
using with one-script form

processing, 242–243
strcspn() function, comparing strings

with, 193
(string) cast operator, conversion for, 47
string concatenation operator, using to

reference multidimensional
arrays, 97

string conversion for cast operators, 47
string data type, 33–35
string operators, 59
strings

comparing, 191–193
converting into uppercase and

lowercase letters, 205–207
converting to HTML, 200–205
finding out lengths of, 190–191
padding and compacting, 189–190

strip_tags() function
using to convert special characters

to HTML, 201
using to remove HTML and PHP

tags from strings, 203–204
using to remove HTML tags from

strings, 418–419
strlen() function, determining string

lengths with, 190–191
strpos() function, finding position of first

occurrence in strings with, 196
strrpos() function, locating first

occurrence of characters in
strings with, 196

strspn() function, comparing strings
with, 192–193

strstr() function, returning remainder of
strings with, 197

strtok() function, tokenizing strings with,
193–194

strtolower() function, converting strings
to lowercase letters with, 206

strtoupper() function, converting strings
to uppercase letters with, 206

strtr() function, converting characters to
HTML with, 203

Submit button mouse-oriented form
entity, 237

substr() function, returning parts of
strings with, 197–198

substr_count() function, using with
strings, 198

substr_replace() function, replacing
portions of strings with, 197

subtraction operator, 56
SuExec Web site, 415
switch statement control structure, 73–75
Sybase SQL Anywhere servers, support

for, 283
system commands, executing, 158
system() function, executing external

programs with, 159
system-level security safeguards, 6–7
system setup, viewing predefined

variables offered on, 50–52

T

\t character sequence, 34
table sorters, building, 280–282
tables in databases, purpose of, 262
tablesorter.php file, 280–281
tagName XML parser handler, using with

xml_set_element_handler()
function, 379

tags
role in DTDs, 368–369
using in tag elements, 370

team.txt file, using to send user
information via email, 246–247

template class, expanding, 311–312
template parser, 320
template.class file, 309–311
templates, 217

book.html example of, 314–315
including files in, 217–221
optimizing for sites, 226–227
role of file parsing in development

of, 303, 305–307
role of file registration in

development of, 303–304
role of variable registration in

development of, 303–305

Index

450

Gilmore_17_IDX  12/5/00  2:26 PM  Page 450



rows.addresses, 315–316
sample file for, 302
using include() function with,

218–219
using include_once() function with,

219
using require_once() function with,

220–221
templating strategies, 312–314
ternary operator, 56
text area box keyboard-oriented form

entity, 233–234
text box keyboard-oriented form entity,

232–233
text files, storing multiple user

authentication information in,
428–430

.tpl extension, preventing viewing of files
with, 222

track_vars configuration directive, 22
track_vars flag, role in session handling,

334
trim() function, removing whitespace

from characters with, 190
trinary operator, 62
true/false evaluation, using control

structures for, 63
true/false values, 39–40
TTL (time to live), determining for

cached session pages, 336
type casting, 47–48
type juggling, 46–47

U

uasort() function, using with arrays, 117
ucfirst() function, capitalizing first

letters of strings with, 206–207
ucwords() function, capitalizing first

letters of each word in strings
with, 207

UDP (User Datagram Protocol), using
fsocket() function with, 155–156

UIN (user identification number) stored
in cookies, 324, 330–333

uksort() function, using with arrays, 117
Unified ODBC Functions, 283–288

uniqid() function, creating UINs with, 330
unique IDs, creating for window.php file,

400–401
UNIX file system, resource for, 162
UNIX, installing PHP on, 12–13
unlink() function, deleting files with, 165
unset() function, using with destructors,

127
use_include_path parameter, using with

fopen() function, 145–146
user affirmations, 8–9
user authentication, 426–431
user callbacks, specifying as storage

modules, 343–347
user feedback form example, 238–240
user information

adding to text files, 248–250
redirecting with mail() function,

244–245
retrieving from databases with

cookies, 329
sending via email, 246–247

user input
accepting, 417–419
escaping, 160

user registration process, creating with
UINs, 331–333

user-requested information, sending
with forms, 246–247

user_dir string security configuration
option, 414–415

username, hardcoding in scripts, 428
usort() function, using with arrays,

116–117
UTF-8 encoding, changing from ISO-

8859-1 to, 387
utf8_decode() function, converting data

to ISO-8859-1 encoding with,
384

V

value component of cookies, 324
values

denoting position of, 35–36
pushing to end of arrays, 101–102
returning from functions, 85–88

Index

451

Gilmore_17_IDX  12/5/00  2:26 PM  Page 451



values for input arrays, returning with
array_values() function, 100

variable arrays, configuring, 22
variable assignments, 48–49
using list () language construct for, 95
variable functions, 88–89
variable registration, role in developing

advanced template systems,
303–305

variable scope, 42–46
variables, 41–46, 50

cast operators for, 47
predefined type of, 50–52

vehicle types example of inheritance,
128–130

Vehicles superclass, multilevel
inheritance model of, 130–132

Verisign ecommerce functions, 424–425
vertical bar (|), using with list() language

construct, 95
view_bookmark.php file, 296–297
view_guest.php file, 257–258
viewStats() function, using with visitor

log project, 353
visitor log project, 347–353
visitors to sites, tracking with

identification numbers, 353

W

w file mode, 146
w+ file mode, 146
W3 Web site, 207, 360
weather information, displaying in pop-

up window, 401
while control structure, 67–68
whitespace, removing from strings,

189–190
Widenius, Michael “Monty” user

affirmation, 8
window.php file, 399–400
Windows 95/98/NT database drivers for

ODBC, 282
Windows 95/98/NT, installing PHP on,

17–19
WML (Wireless Markup Language), 361
write only file mode, 146

X

XLL (Extensible Linking Language), 361
XML (Extensible Markup Language),

360–361
components of documents, 

376–377
converting to HTML from, 387–389
parser options for, 386–387
parsing process for, 377–378
resources for, 376
sample document in, 361–362

XML documents
attributes in, 364
comments in, 365
creating DTDs for, 366–376
elements of, 363–364
entity references in, 364–365
PHP handler functions for, 378–382
processing instructions in, 365

XML parser, changing target encoding
options from ISO-8859-1 to
UTF-8, 387

XML prologs, 362–363, 367
xml_error_string() function, returning

text description of error codes
with, 385

xml_get_current_column_number()
function, pinpointing location
of errors with, 385–486

xml_get_current_line_number()
function, retrieving line being
currently parsed with, 385

xml_get_error_code() function,
retrieving error values with, 384

xml_parse() function, parsing
documents with, 383

xml_parser_create() function, creating
parser with, 383

xml_parser_free() function, freeing
parser resources with, 383

xml_parser_get_option() function,
retrieving XML parser options
with, 386–387

xml_parser_set_option() function,
configuring XML parser options
with, 386–387

Index

452

Gilmore_17_IDX  12/5/00  2:26 PM  Page 452



xml_set_character_data_handler()
function, using with XML-
document character data, 378

xml_set_default_handler() function,
unregistered components of
XML documents, 378–379

xml_set_element_handler() function,
using with parse starting and
ending element tags, 379

xml_set_external_entity_ref_handler()
function, using with external
entity references, 379–380

xml_set_notation_declaration_handler()
function, using with notation
declarations, 380

xml_set_object() function, using with XML
parser within objects, 380–381

xml_set_processing_instruction_handler(
) function, using with processing
instructions, 381–382

xml_set_unparsed_entity_decl_handler()
function, using with external
entity references, 382

XOR operator, 60
XSL (Extensible Style Language), 360
XSLT (XSL transformation) processor, 390

Z

Zend Web site, 4

Index

453

Gilmore_17_IDX  12/5/00  2:26 PM  Page 453




	A Programmer's Introduction to PHP 4.0
	Introduction
	An Introduction to PHP
	Variables and Data Types
	Expressions, Operators, and Control Structures
	Functions
	Arrays
	Object-Oriented PHP
	File I/O and the File System
	PHP and Dynamic Site Development
	Forms
	Databases
	Templates
	Cookies and Session Tracking
	PHP and XML
	JavaScript and COM
	Security
	Index



