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It has been thought1–3 that the capture of irregular moons—with
non-circular orbits—by giant planets occurs by a process in
which they are first temporarily trapped by gravity inside the
planet’s Hill sphere (the region where planetary gravity dom-
inates over solar tides4). The capture of the moons is then made
permanent by dissipative energy loss (for example, gas drag3) or
planetary growth2. But the observed distributions of orbital
inclinations, which now include numerous newly discovered
moons5–8, cannot be explained using current models. Here we
show that irregular satellites are captured in a thin spatial region
where orbits are chaotic9, and that the resulting orbit is either
prograde or retrograde depending on the initial energy. Dissipa-
tion then switches these long-lived chaotic orbits10 into nearby
regular (non-chaotic) zones from which escape is impossible. The
chaotic layer therefore dictates the final inclinations of the
captured moons. We confirm this with three-dimensional
Monte Carlo simulations that include nebular drag3,4,11, and
find good agreement with the observed inclination distributions
of irregular moons at Jupiter7 and Saturn8. In particular, Saturn
has more prograde irregular moons than Jupiter, which we can
explain as a result of the chaotic prograde progenitors being
more efficiently swept away from Jupiter by its galilean moons.

The recent discoveries of large numbers of irregular satellites at
Jupiter5–7 and Saturn8 are helping to shed new light on how planets
capture other bodies1–3,12–22. It has been widely held, for example,
that the observed preponderance of retrograde irregular moons at
Jupiter is due mainly to the well known enhanced stability of
retrograde orbits with large semimajor axis, a (refs 2, 20–22).
However, Saturn’s family of irregulars is now known to contain a
much more even mix of prograde and retrograde satellites than that
of Jupiter5–8. Further, Saturn’s irregulars have similarly large semi-
major axes (as compared to Jupiter’s moons) when expressed in
planetary radii8. This rules out simple stability arguments as
explanations for the markedly different distributions of moons
observed at the two planets.

Here we study capture in the three-dimensional (3D) ‘spatial’
circular restricted three-body problem (CRTBP), taking the Sun–
Jupiter–moon system as our primary example4. In a coordinate
system rotating with the mean motion, but with the origin trans-
formed to the planet, the spatial CRTBP hamiltonian4 becomes:
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where m¼m1=ðm1þm2Þ; and m 1 and m 2 are the masses of the
primaries; a is a collection of inessential constants; the total energy
in the non-inertial frame, E, is related to the Jacobi constant through
CJ ¼22E; and r¼ ðx;y; zÞ and p¼ ðpx;py;pzÞ are the coordinate
and momentum vectors of the test particle. Angular momentum,
h¼ ðhx;hy;hzÞ where hz ¼ xpy 2 ypx; is now defined with respect to
the planet, as is most natural in a study of capture23.

Figure 1a and b shows surfaces of zero velocity4 at two energies for
the 3D Sun–Jupiter system, together with the Hill sphere. Surfaces
of zero velocity limit the motion in the rotating frame, and so serve
to define an energetically accessible ‘bubble’ that may intersect the
Hill sphere4. At both energies in Fig. 1, the two Lagrange saddle
points, L1 and L2, are ‘open’, and act as gateways between the interior
energy bubble and heliocentric orbits2,4. Figure 1c and d shows
orbital inclination distributions4, i ¼ cos21 ðhz=jhjÞ; of test par-
ticles as they pass through the Hill sphere at the same two energies
(see Methods). The key finding is that at energies slightly above the
Lagrange points, only prograde orbits can enter (or leave) the
capture zone. At higher capture energies, the distribution shifts to
include both senses of hz. The statistics of inclination distributions
will, therefore, be expected to depend strongly on energy, that is, the
geometry of how (and if) the curves of zero velocity intersect the
Hill sphere.

Figure 2 portrays the structure of phase space in the planar limit
ðz ¼ pz ¼ 0Þ in a series of Poincaré surfaces of section9 (SOS) at four
energies. At the lowest energy (Fig. 2a), many of the prograde orbits
are chaotic, whereas all the retrograde orbits are regular9. Because
incoming orbits cannot penetrate the regular Kolmogorov–Arnold–
Moser (KAM) regions9, prograde orbits must remain prograde.
Although KAM tori in 3D cannot ‘block’ trajectories in this manner,
orbits can only enter nearly integrable volumes of phase space by
Arnold diffusion, which, by the Nekhoroshev theorem, is expected
to occur exponentially slowly9,10. In essence, the chaotic layer selects
for the sense of the angular momentum of incoming and outgoing
particles.

After L2 has opened up (Fig. 2b), the chaotic ‘sea’ of prograde
orbits quickly ‘evaporates’, except for a thin, advancing front of
chaos which clings to the KAM tori, buffering them from the
expanding basin of direct scattering. With increasing energy, this

Figure 1 The intersection of the Hill sphere in 3D with the surfaces of zero velocity, and

histograms of inclination distributions for 108 test particles originating at the Hill sphere.

Data are shown for two energies (a and c, b and d) for the Sun–Jupiter system with

m ¼ 9.5358 £ 1024. In a and c the Jacobi constant C J ¼ 3.0380, and in b and d

C J ¼ 3.0100. The Lagrange saddle points are L1 and L2. The coordinate system is

centred on Jupiter (small pink sphere, not to scale, labelled ‘j’). The Hill sphere is the large

grey sphere.
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front smoothly shifts from prograde to retrograde motion. The
surviving frontier tori are ‘sticky’, and chaotic orbits near them can
become trapped in almost regular orbits for very long times10. Note
that the KAM tori in Fig. 2 exist at energies above L1 and L2, and so
dissipation need only be sufficient to switch chaotic orbits into the
nearest KAM region for permanent capture to happen. At high
energy, permanent capture is almost exclusively into retrograde
KAM tori surrounding the almost circular, retrograde orbit, labelled
R in Fig. 2a (refs 20, 21). The relative stability of prograde and
retrograde orbits in two dimensions (2D) can be understood using
Kapitza averaging (see Methods).

Figure 3 shows the normalized probability distribution of orbits
from 3D Monte Carlo simulations which survive a cut-off time of
20,000 years; the distribution is shown as a function of the Jacobi
constant and final inclination of the orbits. A clear trend from
prograde to retrograde trapping with increasing total energy is
found, which is consistent with Fig. 2. The three main structures
visible in Fig. 3 correspond to low (prograde), intermediate and
high (retrograde) inclinations. The large island at i < 100–1208 is
related to librational motion around the argument of perijove
q ¼ ^908, that is, the Kozai resonance16,24. We confirmed numeri-
cally that these distributions are similar for all the giant planets.

To understand further the role of chaos in shaping capture, we
consider Hill’s approximation, which is valid (as here) for m ,, 1; in
appropriately scaled units, Hill’s equations contain no parameters,
and so test-particle trajectories will scale accordingly for all the giant

planets4. This is confirmed by a comparison of SOS for the giant
planets. Thus, the observed differences between Jupiter’s and Saturn’s
families of irregulars probably cannot be explained using hamiltonian
dynamics alone. However, significant differences may arise when a

Figure 2 Poincaré surfaces of section showing regions of chaotic (‘shotgun’ pattern) and

regular (nested curves) dynamics. The surfaces are shown for randomly chosen initial

conditions, and for the four indicated values of C J; units have been rescaled to R H ¼ 1

(ref. 4). Points on the surface are coloured according to the sign of their angular

momentum h z as they penetrate the x–y plane; purple, prograde (h z . 0); red,

retrograde (h z , 0). In a, P1, P2 and R indicate two prograde and one retrograde periodic

orbit, respectively.

Figure 3 The normalized probability distribution of 3D orbits that survived in Monte Carlo

simulations (without dissipation) for 20,000 years. Data are shown as a function of their

final inclination and initial value of the Jacobi constant. 80 million test particles were

integrated, of which ,38,000 survived for 5,000 years and ,23,000 survived for

20,000 years. Using time-averaged inclinations with moving windows of 100–1,000

years produces essentially identical distributions. In these simulations, test particles were

removed if they came within two planetary radii of the planet.
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particle’s motion is dependent on additional perturbations that do
not follow Hill’s scaling (for example, nebular gas-drag4,11).

In addition, the local environment at each planet is different; one
such variable is the volume of the Hill sphere occupied by the
massive, regular moons. This observation is important, because
prograde orbits penetrate much deeper towards the planet than do
most of the retrograde orbits (Fig. 2b and d). Therefore, to be
permanently captured, prograde orbits (especially) must survive
close encounters or collisions with the massive regular moons.
Orbits in the chaotic layer may be very long lived, and so can
cross the orbits of the inner satellites many times; and because
chaotic orbits are rather sensitive to perturbations9, such passages
will strongly perturb their orbital elements. Therefore, in our
simulations with dissipation, we eliminated test particles that
crossed the outermost massive regular moons of Jupiter and Saturn.
We decided to use Saturn’s moon Titan (which is similar in mass to
Jupiter’s outermost moon Callisto), rather than Saturn’s actual
outermost, but significantly smaller, regular moon Iapetus4.

The results of these simulations (see Methods) are shown in Fig. 4.
Saturn has a clear tendency to capture a higher ratio of prograde to
retrograde moons as compared to Jupiter. This can be traced to the
fact that Callisto’s semimajor axis is a larger fraction of the Hill
radius for Jupiter (3.55%) than is the case for Titan, whose orbit is
only 1.84% of Saturn’s Hill radius. This effect was confirmed in the
simulations by moving Titan’s orbit out to the same relative distance
(as a fraction of the Hill radius) as Callisto, which resulted in a
prograde-poor distribution at Saturn, similar to that at Jupiter.
Thus, the relative scarcity of jovian prograde irregulars may be due
to their chaotic prograde progenitors having been swept away more
efficiently by Jupiter’s galilean moons.

The inclinations of captured test particles (Fig. 4) compare well
with observed inclinations, and similarly seem to occur in definite
clusters and sub-clusters. All of these clusters originated in initially
chaotic orbits, which originated on the Hill sphere. Remarkably,
these orbits nevertheless tend to preserve their initial inclinations.
This phenomenon of ‘inclination memory’ suggests that the
observed clusters of irregular moons might be relics of the capture
dynamics, rather than being necessarily the result of post-capture
fragmentation through collisions3,8,12. For example, whereas average
satellite inclinations are clustered, other orbital elements such as
average eccentricity may be more widely dispersed; this is more

difficult to explain in a collision model5–8. A test of the fragmenta-
tion hypothesis will come from more detailed observations of the
physical characteristics of irregular moons. These observations will
also be a test of our model, which provides a single, unified,
mechanism for the capture of both prograde and retrograde
moons2,15,20–22.

Chaos-assisted capture may be involved in the formation of
asteroid or Kuiper-belt binaries25, and also has implications for
the feasibility of the capture of massive bodies such as Neptune’s
retrograde moon Triton26. Figure 3 indicates that a moon captured
into a high-inclination orbit would probably have first been trapped
in the chaotic layer close to an almost-circular orbit (labelled R in
Fig. 2); this provides a possible clue to the origin of Triton’s circular,
highly inclined orbit26. A

Methods
Monte Carlo simulations
An isotropic flux of test particles was originated in 3D on the Hill sphere (radius RH ¼

apðm=3Þ1=3 where ap is the planet’s semimajor axis), and integrated until one of the
following occurred: the particle left the Hill sphere; it penetrated a sphere, centred on the
planet, of a given radius (see figure captions and text); or it survived for a predetermined
cut-off time. Initial conditions were generated as follows: the vector r was chosen
uniformly and randomly on the surface of the Hill sphere. Velocities were also chosen
uniformly and randomly in accordance with the value of the Jacobi constant. This
constant was chosen randomly and uniformly: CJ [ ð2:995;Cð1ÞJ Þ;where Cð1ÞJ is the value of
C J at L1. Figure 1c and d show the resulting distributions of initial inclinations for these
initial conditions. Numerical integrations were done using a Bulirsch–Stoer procedure27.
Choosing particles on the Hill sphere, where the motion is chaotic or scattering22,
minimizes the risk of accidentally starting orbits deep inside impenetrable KAM regions18.
Although permanently bound, such orbits could never in fact have been trapped, because
KAM regions cannot be penetrated in 2D and only exponentially slowly in 3D. It is only in
the thin chaotic layer between scattering and stability that capture can happen. This
method of selecting initial conditions thus specifically selects for these particles.

Surfaces of section
The SOS9 were computed by integrating randomly chosen ensembles of test particles with
initial conditions chosen inside the Hill radius (R H) and integrated using Levi–Civita
regularizing coordinates28. The SOS chosen is the x–y plane with px ¼ 0 and ẏ . 0; points
have been coloured in Fig. 2 according to the sign of their angular momentum as they
intersect that surface. In almost all cases the sign of h z is well conserved.

Simulations with dissipation
We integrated trajectories including a dissipative force representing nebular drag4, Fdrag ¼

2gv ¼2gð _x; _y; _zÞ; where g is the drag parameter. This form was chosen not only for its
simplicity, but also because it scales in the Hill approximation, which allowed for a more
even-handed comparison of Jupiter and Saturn. This is true even in the CRTBP, for which

Figure 4 Comparison of the orbital properties of the known irregular satellites of Jupiter5,6

(to 20027) and Saturn8 with dissipative Monte Carlo simulations. The radial distance from

the origin represents the moon’s orbital semimajor axis, a, as a fraction of R H. The length

of each line shows the pericentre-to-apocentre distance of the orbit. Time-averaged

orbital elements are used. The green lines show the total excursion in inclination

undergone by each moon. In most cases, a strong correlation between initial and final

inclination is observed. In some cases, initial and final inclinations are indistinguishable on

this scale.
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Hill’s scaling is only approximate. Experimental simulations revealed that, for fixed
integration times, the main effect of changing g was to influence the final average values of
the semimajor axes of captured moons with respect to the planet; in contrast, the final
inclination distributions were quite robust to the precise value of this parameter. Thus we
chose g heuristically so that the captured moons ended up roughly in the observed
semimajor axis ranges; we set g ¼ 7 £ 1025 in units scaled for Jupiter, and g ¼ 2 £ 1024

in units scaled for Saturn.
Integrations were performed for both Jupiter and Saturn for a maximum of 10,000 years

for each test particle. Integrations were stopped, as explained in the text, if test particles
crossed the orbit of Callisto (at Jupiter) or Titan (at Saturn), or if they left the Hill sphere.
The simulations reported in Fig. 4 were stopped when 50 moons had been captured, but
computations in which several thousand moons were captured produce similar results. We
have also performed parallel simulations in the elliptic restricted three-body problem for
Jupiter and Saturn, and also used different forms of dissipation—for example, nebular gas-
drag, Fdrag ¼2gjvjv (ref. 11). All of these variations produced comparable results.

Kapitza averaging
The relative stability of prograde and retrograde orbits in 2D can be understood
qualitatively by Taylor expansion of the solar part of the CRTBP hamiltonian, followed by
Kapitza averaging in plane polar coordinates over the angle J conjugate to h z. This is
similar to the analogous problem of ionization (escape) of an electron from a hydrogen
atom in a rotating field29,30. As in the atomic problem, this strategy produces an effective
potential whose saddle point is higher for one sense of angular momentum: in this case,
the retrograde orbits, which are therefore more stable than the prograde orbits. Further,
using methods similar to those in ref. 23, it is possible to show that h z is the lowest-order
term in an approximate ‘third-integral’ valid inside the Hill sphere.
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Insights into the dynamics of a complex system are often gained
by focusing on large fluctuations. For the financial system, huge
databases now exist that facilitate the analysis of large fluctua-
tions and the characterization of their statistical behaviour1,2.
Power laws appear to describe histograms of relevant financial
fluctuations, such as fluctuations in stock price, trading volume
and the number of trades3–10. Surprisingly, the exponents that
characterize these power laws are similar for different types and
sizes of markets, for different market trends and even for
different countries—suggesting that a generic theoretical basis
may underlie these phenomena. Here we propose a model, based
on a plausible set of assumptions, which provides an explanation
for these empirical power laws. Our model is based on the
hypothesis that large movements in stock market activity arise
from the trades of large participants. Starting from an empirical
characterization of the size distribution of those large market
participants (mutual funds), we show that the power laws
observed in financial data arise when the trading behaviour is
performed in an optimal way. Our model additionally explains
certain striking empirical regularities that describe the relation-
ship between large fluctuations in prices, trading volume and the
number of trades.

Define pt as the price of a given stock and the stock price ‘return’
r t as the change of the logarithm of stock price in a given time
interval Dt; rt ; ln pt 2 ln pt2Dt :The probability that a return has an
absolute value larger than x is found empirically to be (see Fig. 1)4,8:

Pðjrt j. xÞ, x2zr ð1Þ

with z r < 3. Empirical studies also show that the distribution of
trading volume V t obeys a similar power law9:

PðVt . xÞ, x2zV ð2Þ

with zV < 1:5; while the number of trades Nt obeys10:

PðNt . xÞ, x2zN ð3Þ

with zN < 3.4.
The ‘inverse cubic law’ of equation (1) is rather ‘universal’,

holding over as many as 80 standard deviations for some stock
markets, with Dt ranging from one minute to one month, across
different sizes of stocks, different time periods, and also for different
stock market indices4,8. Moreover, the most extreme events—includ-
ing the 1929 and 1987 market crashes—conform to equation (1),
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