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1 Languages and structures

Language: alphabet, terms, formulas. The alphabet of a language
L consists of, by definition, the following symbols:

(i) relation symbols Pi, (i ∈ I), function symbols fj, (j ∈ J), and constant
symbols ck, (k ∈ K) with some index sets I, J,K. Further, to each i ∈ I and
j ∈ J is assigned a positive integer ρi, µj , respectively, called the arity of
the relation symbol Pi or the function symbol fj .
The symbols in (i) are called non-logical symbols and their choice deter-
mines L. In addition any language has the following symbols:
(ii) l - the equality symbol;
(iii) v1, . . . , vn, . . . - the variables;
(iv) ∧, ¬ - the connectives;
(v) ∃ - the existential quantifier;
(vi) (, ), , - parentheses and comma.

Words of the alphabet of L constructed in a specific way are called L-terms
and L-formulas:

L-terms are given by recursive definition as follows:
(i) vi is an L-term (any i ≥ 1);
(ii) c is an L-term (any constant symbol c of L);
(iii) if f is a function symbol of L of arity µ, and τ1, . . . τµ are L-terms, then
f(τ1, . . . , τµ) is an L-term;
(iv) nothing else is an L-term.

We define the complexity of a term τ to be just the length of τ as a word in
the alphabet of L. It is obvious from the definition that any term of complex-
ity l > 1 is obtained by an application of (iii) to terms of lower complexity.

We sometimes refer to a term τ as τ(vi1, . . . , vin) to mark the fact that the
variables occurring in τ are among vi1 , . . . , vin . It may happen that no vari-
ables occur in τ, such terms are called closed.

Atomic L-formulas are the words of the form
(i) τ1 l τ2 for any L-terms τ1 and τ2
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or
(ii) P (τ1, . . . , τρ) for any relational L-symbol P of arity ρ and L-terms τ1, . . . , τρ.

Notice, that (i) can be seen as a special case of (ii) if we view l as a relational
symbol of arity 2.

We sometimes refer to an atomic formula ϕ of the form P (τ1, . . . , τρ) as
ϕ(vi1, . . . , vin) to mark the fact that all the variables occurring in τ1, . . . , τρ
are among vi1 , . . . , vin .

An L-formula is defined by the following recursive definition:
(i) any atomic L-formula is an L-formula;
(ii) if ϕ is an L-formula, so is ¬ϕ;
(iii) if ϕ, ψ are L-formulas, so is (ϕ ∧ ψ);
(iv) if ϕ is an L-formula, so is ∃vϕ for any variable v;
(v) nothing else is an L-formula.

We define the complexity of an L-formula ϕ to be just the number of
occurrences of ∧, ¬ and ∃ in ϕ. It is obvious from the definition that an
atomic formula is of complexity 0 and that any formula of complexity l > 0 is
obtained by an application of (ii),(iii) or (iv) to formulas of lower complexity.

For an atomic formula ϕ(vi1 , . . . , vin) the distinguished variables are said to
be free in ϕ. The variables which are free in ϕ and ψ in (ii) and (iii) are,
by definition, also free in ¬ϕ and (ϕ ∧ ψ). The variable v in (iv) is called
bounded in ∃vϕ and the list of free variables for this formula is given by
the free variables of ϕ except v.
An L-formula with no free variables is called also an L-sentence.

We define a language L to be the set of all L-formulas. Thus |L| is the
cardinality of the set.

Exercise 1.1 Show that

|L| = max{ℵ0, card (I), card (J), card (K)}.
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To give a meaning or interpretation of symbols of a language L we intro-
duce a notion of an L-structure. An L-structure A consists of

(i) a non-empty set A, called a domain of the L-structure;
(ii) an assignment of an r-ary relation (subset) PA ⊆ Ar to any relation
symbol P of L of arity r;
(iii) an assignment of an m-ary function fA : Am → A to any function symbol
f of L of arity m;
(iv) an assignment of an element cA ∈ A to any constant symbol c of L.

Thus an L-structure is an object of the form

A =
〈
A; {PA

i }i∈I ; {f
A
j }j∈J ; {c

A
k }k∈K

〉
.

{PA
i }i∈I , {f

A
j }j∈J and {cAk }k∈K are called the interpretations of the pred-

icate, function and constant symbols correspondingly.
We write A = dom (A).

Example Groups can be considered L-structures where L is having one con-
stant symbol e, one binary and one unary operation symbols · and −1 and
no relation symbols.

If A and B are both L-structures we say that A is isomorphic to B, written
A ∼= B, if there is a bijection π : dom (A) → dom (B) which preserves
corresponding relation, function and constant symbols, i.e. for any i ∈ I,
j ∈ J and k ∈ K :
(i) ā ∈ PA

i iff π(ā) ∈ P B
i ;

(ii) π(fA
j (ā)) = fB

j (π(ā));
(iii) π(cAk ) = cBk .
The map π is then called an isomorphism. If π is only assumed being in-
jective but still satisfies (i)-(iii), then it is called an embedding and can be
written as π : A → B or A ⊆π B.
An isomorphism π : A → A of the structure onto itself is called an auto-
morphism.

Interpretation of terms in a structure.
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Given an L-structure A, we assign to each L-term τ(v1, . . . , vn) a function

τA : An → A

by the following natural rule:
(i) if τ(v1, . . . , vn) is just a variable vj then τA is the corresponding coordinate
function 〈a1, . . . an〉 7→ aj ;
(ii) if τ(v1, . . . , vn) is a constant symbol c then τA(a1, . . . , an) = cA;
(iii) if τ(v1, . . . , vn) is f(τ1(v1, . . . , vn), . . . , τm(v1, . . . , vn)) then
τA(a1, . . . , an) = fA(τA1 (a1, . . . , an), . . . , τ

A
m(a1, . . . , an)).

Exercise 1.2 Prove that if π : A → B is an embedding then π preserves
L-terms, that is for any term τ(v̄)

π(τA(ā)) = τB(π(ā)).

Assigning truth values to L-formulas in an L-structure.
Suppose A is an L-structure with domain A, ϕ(v1, . . . , vn) an L-formula
with free variables v1, . . . , vn and ā = 〈a1, . . . , an) ∈ An. Given these data
we assign a truth value true, written A � ϕ(ā), or false, A 2 ϕ(ā), by the
following rules:
(i) A � τ1(ā) l τ2(ā) iff τA1 (ā) = τA2 (ā);
(ii) A � P (τ1(ā), . . . , τr(ā)) iff 〈τA1 (ā), . . . , τAr (ā)〉 ∈ PA

i ;
(iii) A � ϕ1(ā) ∧ ϕ2(ā) iff A � ϕ1(ā) and A � ϕ2(ā);
(iv) A � ¬ϕ(ā) iff A 2 ϕ(ā);
(v) A � ∃vnϕ(a1, . . . , an−1, vn) iff there is an an ∈ A such that A �

ϕ(a1, . . . , an).

Given an L-structure A and an L-formula ϕ(v1, . . . , vn) we can define the set

ϕ(A) = {ā ∈ An : A � ϕ(ā)}.

Sets of this form are called definable.

Since any subset of An can be viewed as an n-ary relation, ϕ(v̄) determines
also an L-definable relation. If ϕ(A) coincides with a graph of a function
f : An−1 → A, we say then that f is an L-definable function.

5



Lemma 1.1 An embedding π : A → B of L-structures preserves atomic
L-formulas, i.e. for any atomic ϕ(v1, . . . , vn) for any ā ∈ An

(∗) A � ϕ(ā) iff B � ϕ(π(ā)).

Proof By exercise 1.2 π preserves terms.
Let ϕ be an atomic formula of the form P (τ1(v̄), . . . , τr(v̄), P a relation
symbol. Denote

αi = τAi (ā), βi = τBi (π(ā)) i = 1, . . . , r.

Since terms are preserved, π(αi) = βi. By the definition of an isomorphism

〈α1, . . . , αr〉 ∈ PA iff 〈β1, . . . , βr〉 ∈ PB.

This means that (∗) holds for our formula.
Since l can be treated as a binary relation symbol, the above proves (∗) for
all atomic formulas. 2

Proposition 1 An isomorphism π : A → B between L-structures preserves
any L-formula ϕ(v1, . . . , vn) (n ≥ 0), i.e. for any ā ∈ An

(∗) A � ϕ(ā) iff B � ϕ(π(ā)).

Proof By induction on the complexity of ϕ.
For atomic formulas we have Lemma 1.1.
Suppose now that the complexity of ϕ is l > 0, and for all formulas of
complexity less than l (*) holds. Then ϕ is obtained by applying either (ii),
(iii) or (iv) of the definition of formula to formulas of lower complexities.
Consider e.g. case (iv). Then ϕ(v̄) = ∃vn+1ψ(v̄, vn+1) and

A � ϕ(ā) iff A � ∃vn+1ψ(ā, vn+1) iff there is an an+1 such that A � ψ(ā, an+1).

The latter by the induction hypothesis is equivalent to B � ψ(b̄, bn+1) where
b̄ = π(ā) and bn+1 = π(an+1). Continuing in the reverse order we come to the
equivalent statement B � ϕ(b̄), which proves (∗) in this case. Similarly (∗)
holds in cases (ii) and (iii) and this completes the proof.2
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Corollary 1 For definable subsets (relations)

π(ϕ(A)) = ϕ(B),

in particular, when π : A → A is an automorphism (an isomorphism onto
itself),

π(ϕ(A)) = ϕ(A).

The latter is very useful in checking non-definability of some subsets or rela-
tions.

Exercise 1.3 The multiplication is not definable in 〈R,+〉.

Agreement about notations. The proposition above about the properties
of isomorphic structures says that there is no harm in identifying elements
of A with its images under an isomorphism. Correspondingly, when speak-
ing about embedding π : A → B we identify A = dom A with its image
π(A) ⊆ B = dom B element-wise. And so, by default, A ⊆ B assumes
A ⊆ B.

Given two L-structures A and B we say that A is elementarily equivalent
to B, written A ≡ B, if for any L-sentence ϕ

A � ϕ iff B � ϕ.

Two typical model-theoretic problems:
I. Given A, what are the definable subsets of A, or An?
II. Given A, what are the B such that

A ≡ B?

Some abbreviations
Let φ and ψ be L-formulas.
(φ ∨ ψ) is an abbreviation for the formula ¬(¬φ ∧ ¬ψ);
(φ→ ψ) is an abbreviation for the formula ¬(φ ∧ ¬ψ);
(φ↔ ψ) is an abbreviation for the formula ((φ→ ψ) ∧ (ψ → φ));
∀vψ is an abbreviation for the formula ¬∃v¬ψ.
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2 The Compactness Theorem

Let Σ be a set of L-sentences. We write A � Σ if, for any σ ∈ Σ, A � σ.
An L-sentence σ is said to be a logical consequence of a finite Σ, written
Σ � σ, if A � Σ implies A � σ for every L-structure A. For Σ infinite, Σ � σ
means that there is a finite Σ0 ⊂ Σ such that Σ0

� σ.

σ is called logically valid, written � σ, if A � σ for every L-structure A.

A set Σ of L-sentences is said to be satisfiable if there is an L-structure A
such that A � Σ. A is then called a model of Σ.
Σ is said to be finitely satisfiable (f.s.) if any finite subset of Σ is satisfi-
able.

Σ is said to be complete if, for any L-sentence σ, σ ∈ Σ or ¬σ ∈ Σ.

Exercise 2.1 Let α, α1, . . . , αn, β, β1, . . . , βn, γ be closed L-terms, P, f L-
symbols for n-ary predicate and n-ary function, correspondingly, and ψ(v0, v1, . . . , vn)
an L-formula with free variables v0, v1, . . . , vn. Prove that

1. α l β � β l α;

2. α l β, β l γ � α l γ;

3. � α l α;

4. α1 l β1, . . . , αn l βn, P (α1, . . . , αn) |= P (β1, . . . , βn);

5. α l β, α1 l β1, . . . , αn l βn, f(α1, . . . , αn) l α |= f(β1, . . . , βn) l β;

6. ψ(β, α1, . . . , αn) |= ∃v0ψ(v0, α1, . . . , αn).

A set of L-sentences Σ is said to be deductively closed if

Σ � σ implies σ ∈ Σ.

Exercise 2.2 (i) If Σ′ ⊆ Σ and Σ′
� σ then Σ � σ;

(ii) A complete f.s. Σ is deductively closed.
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Proposition 2 (Lindenbaum’s Theorem) For any f.s. set of L-sentences
Σ there is a complete f.s. set of L-sentences Σ# such that Σ ⊆ Σ#.

Proof Let
S = {Σ′ : Σ ⊆ Σ′ a f.s. set of L-sentences }.

Clearly S satisfies the hypothesis of Zorn’s Lemma, so it contains a maximal
element Σ# say. This is complete for otherwise, say σ /∈ Σ# and ¬σ /∈ Σ#.
By maximality neither {σ} ∪ Σ# nor {¬σ} ∪ Σ# is f.s.. Hence there exist
finite S1 ⊆ Σ# and S2 ⊆ Σ# such that neither {σ} ∪ S1 nor {¬σ} ∪ S2 is
satisfiable. However, S1 ∪ S2 ⊆ Σ#, finite, so has a model, A say. But either
A � σ, so A � {σ} ∪ S1, or A � ¬σ, so A � {¬σ} ∪ S2, a contradiction.2

A set Σ of L-sentences is said to be full if for any sentence in Σ of the form
∃vϕ(v) there is a closed L-term λ such that ϕ(λ) ∈ Σ.

Exercise 2.3 If there exists a complete f.s. full set of L-sentences then there
exists a closed L-term.
Hint: Consider the L-sentence ∃v v l v.

An L-structure A is called canonical if for every a ∈ A there is a closed
L-term λ such that λA = a.

Proposition 3 For any complete, full, f.s. set Σ of L-sentences there is a
canonical model A of Σ.

Proof Let Λ be the set of closed terms of L. This is nonempty by 2.3. For
α, β ∈ Λ define α v β iff α l β ∈ Σ.
This is an equivalence relation by 2.1.1- 2.1.3. and 2.2.
For α ∈ Λ, let α̃ denote the v-equivalence class containing α. Let

A = {α̃ : α ∈ Λ}.

This will be the domain of our model A.We want to define relations, functions
and constants of L on A.
Let P be an n-ary relation symbol of L and α1, . . . , αn ∈ Λ. Define

〈α̃1, . . . , α̃n〉 ∈ PA iff P (α1, . . . , αn) ∈ Σ.
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By 2.1.4 the definition does not depend on the choice of representatives in
the v-classes.
For a unary function symbol f of L of arity m and α1, . . . , αm ∈ Λ define

fA(α̃1, . . . , α̃m) = τ̃ , where τ = f(α1, . . . , αm).

By 2.1.5 this is well-defined.
Finally, for a constant symbol, cA is just c̃.
We now prove by induction on complexity of an L-formula ϕ(v1, . . . , vn) that

(∗) A � ϕ(α̃1, . . . , α̃n) iff ϕ(α1, . . . , αn) ∈ Σ.

For atomic formulas we have this by definition.
If ϕ = (ϕ1 ∧ ϕ2) then
A � (ϕ1(α̃1, . . . , α̃n)∧ϕ2(α̃1, . . . , α̃n)) iff A � ϕ1(α̃1, . . . , α̃n) and A � ϕ2(α̃1, . . . , α̃n)
iff (by induction hypothesis) ϕ1(α1, . . . , αn), ϕ2(α1, . . . , αn) ∈ Σ iff (by 2.2)
(ϕ1(α1, . . . , αn) ∧ ϕ2(α1, . . . , αn)) ∈ Σ. Which proves (*) in this case.
The case ϕ = ¬ψ is proved similarly.
In case ϕ = ∃vψ
A � ∃vψ(v, α̃1, . . . , α̃n) iff there is β ∈ Λ such that A � ψ(β̃, α̃1, . . . , α̃n) iff
there is β ∈ Λ such that ψ(β, α1, . . . , αn) ∈ Σ. The latter implies, by 2.1.6
and 2.2, that ∃vψ(v, α1, . . . , αn) ∈ Σ, and the converse holds because Σ is
full. This proves (*) for the formula and finishes the proof of (*) for all
formulas.
Finally notice that (*) implies that A � Σ.2

We sometimes need to expand or reduce our language.
Let L be a language with non-logical symbols {Pi}i∈I ∪ {fj}j∈J ∪ {ck}k∈K
and L′ ⊆ L with non-logical symbols {Pi}i∈I′ ∪ {fj}j∈J ′ ∪ {ck}k∈K′ (I ′ ⊆ I,
J ′ ⊆ J, K ′ ⊆ K). Let

A = 〈A; {PA
i }i∈I ; {f

A
j }j∈J ; {c

A
k }k∈K〉

and
A′ = 〈A; {PA

i }i∈I′ ; {f
A
j }j∈J ′ ; {cAk }k∈K′〉.

Under these conditions we call A′ the L′-reduct of A and, correspondingly,
A is an L-expansion of A′.
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Remark Obviously, under the notations above for an L′-formula ϕ(v1, . . . , vn)
and a1, . . . , an ∈ A

A′
� ϕ(a1, . . . , an) iff A � ϕ(a1, . . . , an).

Exercise 2.4 Let, for each i ∈ N, Σi denote a set of L sentences. Suppose

Σ0 ⊆ Σ1 ⊆ . . .Σi . . .

and each Σi is finitely satisfiable.
Then the union of the chain,

⋃

i∈N
Σi, is finitely satisfiable.

Theorem 1 (Compactness Theorem) Any finitely satisfiable set of L-
sentences Σ is satisfiable. Moreover, Σ has a model of cardinality less or
equal to |L|, the cardinality of the language.

Proof We introduce new languages Li and complete set of Li-sentences Σi

(i = 0, 1, . . .). Let L0 = L. By Lindenbaum’s Theorem there exists Σ0 ⊇ Σ,
a complete set of L0-sentences.
Given f.s. Σi in language Li, introduce the new language

Li+1 = Li ∪ {cφ : φ a one variable Li-formula}

and the new set of Li+1 sentences

Σ∗
i = Σi ∪ {(∃vφ(v) → φ(cφ)) : φ a one variable Li-formula}.

Claim. Σ∗
i is f.s. Indeed, for any finite S ⊆ Σ∗

i let S1 = S ∩ Σi and take
a model A of S1 with domain A, which we assume well-ordered. Assign
constants to symbols cφ as follows:

cφ =

{
the first element in φ(A) if φ(A) 6= ∅
the first element in A if φ(A) = ∅

.

Denote the expanded structure A∗. By the definition, for all φ(v),
A∗

� ∃vφ(v) → φ(cφ). So A∗
� S. This proves the claim.

Let Σi+1 be a complete f.s. set of Li+1-sentences containing Σ∗
i .

Take Σ∗ =
⋃

i∈N
Σi. This is finitely satisfiable by 2.4. By construction one

sees immediately that Σ∗ is also full and complete set of sentences in the
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language
⋃
Li = L+ { new constants}. Proposition 3 gives us the canonical

model, A∗, of Σ∗. The reduct of A∗ to language L is a model of Σ.
The cardinality of the model we constructed is less or equal to |L| (see also
Exercise 1.1). 2
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3 Method of diagrams and elementary em-

beddings

An embedding of L structures π : A → B is called elementary if π preserves
any L-formula ϕ(v1, . . . , vn), i.e. for any a1, . . . , an ∈ dom A

A � ϕ(a1, . . . , an) iff B � ϕ(π(a1), . . . , π(an)).

We write the fact of elementary embedding as

A 4 B.

We usually identify A = dom A with the subset π(A) of B = dom B. Then
π(a) = a for all a ∈ A and so A 4 B usually mean

A � ϕ(a1, . . . , an) iff B � ϕ(a1, . . . , an).

Example Let Z = 〈Z; +, 0〉 be the additive group of integers. Then, given
an integer m > 1, the embedding

[m] : Z → Z,

defined as [m](z) = m · z, is not elementary.

For an L-structure A let LA = L∪{ca : a ∈ A} be the expansion of the lan-
guage, A+ the natural expansion of A to LA assigning to ca the element a, and

Diag(A) = {σ : σ an atomic LA-sentence or negation of
an atomic LA-sentence, such that A+

� σ}.

CDiag(A) = {σ : σ LA-sentence such that A+ |= σ}.

Theorem 2 (Method of Diagrams) For an L structure B,
(i) there is an expansion B+ to the language LA such that B+ |= Diag(A)
iff A ⊆ B.
(ii) there is an expansion B+ to the language LA such that B+ |= CDiag(A)
iff A 4 B.
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Proof Indeed, by definitions and Lemma 1.1, a → cB
+

a is an embedding iff
B+ |= Diag(A).
The elementary embedding case is straightforward by definition.2

Corollary 2 Given an L-structure A and a set of L-sentences T, (i) the set
T ∪ Diag(A) is f.s. iff there is a model B of T such that A ⊆ B.
(ii) the set T ∪CDiag(A) is f.s. iff there is a model B of T such that A 4 B.

Theorem 3 (Upward Lowenheim-Skolem Theorem) For any infinite
L-structure A and a cardinal κ ≥ max{|L|, ||A||} there is an L-structure B
of cardinality κ such that A 4 B.

Proof Let M be a set of cardinality κ. Consider an extension LA,M of lan-
guage L obtained by adding to LA constant symbols ci for each i ∈ M.
Consider now the set of LA,M -sentences

Σ = CDiag(A) ∪ {¬ci l cj : i 6= j ∈M}.

We claim that Σ is f.s. Indeed, consider a finite subset S ⊆ Σ. Obviously

S ⊆ S0 ∪ {¬ci l cj : i 6= j ∈M0}

for some S0 ⊆ CDiag(A) and M0 ⊂ M, both finite. By definition A+
� S0.

Now, since A is infinite, we can expand A+ to the model of S by assigning
to ci (i ∈M0) distinct elements of A. This proves the claim.
It follows from the compactness theorem that Σ has a model of cardinality
|LA,M |, which is equal to κ. Let B∗ be such a model. The L-reduct B of B∗,
by the method of diagrams, satisfies the requirement of the theorem. 2

Lemma 3.1 (Tarski-Vaught test) Suppose A ⊆ B are L-structures with
domains A ⊆ B. Then A 4 B iff the following condition holds:
for all L-formulas ϕ(v1, . . . , vn) and all a1, . . . , an−1 ∈ A, b ∈ B such that
B � ϕ(a1, . . . , an−1, b) there is a ∈ A with B � ϕ(a1, . . . , an−1, a)
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Proof Obviously, given ā = 〈a1, . . . , an−1〉 the existence of b ∈ B as above is
equivalent to B � ∃vϕ(ā, v).

Suppose A 4 B. Then B � ∃vϕ(ā, v) is equivalent to A � ∃vϕ(ā, v) which
is equivalent to the existence of an a ∈ A with A � ϕ(ā, a). The latter by
A 4 B implies B � ϕ(ā, a).
For the converse, we assume that for all ϕ

(∗) B � ∃vϕ(ā, v) implies that for some a ∈ A B � ϕ(ā, a)

and want to prove that

(∗∗) A � ψ(ā) iff B � ψ(ā)

for all L-formulas ψ(v̄).
Induction on the complexity of ψ. For ψ atomic (**) is given by Lemma 1.1
and the definition of the embedding A ⊆ B. The cases of ψ = ψ1 ∧ ψ2 and
ψ = ¬ψ1 are easy. In the case ψ = ∃vϕ the ⇒ side of (**) follows immediately
from the induction hypothesis and the meaning of ∃.
Proof of ⇐:
B � ∃vϕ(ā, v) implies B � ϕ(ā, b), some b ∈ B, implies B � ϕ(ā, a), some a ∈
A, implies, by the induction hypothesis, A � ϕ(ā, a), implies A � ∃vϕ(ā, v).
2

Theorem 4 (Downward Lowenheim-Skolem Theorem) Let B be an L-
structure, S a subset of B = dom (B). Then there exists A 4 B such that
S ⊆ A = dom (A) and ||A|| ≤ max{card (S), |L|}. In particular, given B
and a cardinal ||B|| ≥ κ ≥ |L| we can have A 4 B of cardinality κ.

Proof Fix some b0 ∈ B. For each L-formula φ(v1, . . . , vn) define a function
gφ : Bn−1 → B by

gφ(b1, . . . , bn−1) =







an element b ∈ B : B � φ(b1, . . . , bn−1, b)
if such one exists

b0 if not

(gφ are called Skolem functions).
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Notice that for φ of the form τ(v1, . . . , vn−1) l vn, where τ is an L-term, gφ
coincides with the function τB.
Let A be the closure of S under all the gφ, i.e.

A =
⋃

i∈N

Si : S0 = S and

Si+1 = {gφ(b1, . . . , bn−1) : b1, . . . , bn−1 ∈ Si, φ(v1, . . . , vn) L− formulas}.

Notice that card A ≤ card S + |L|.
Define an L-structure A on the domain A interpreting the relation, function
and constant symbols of L on A as induced from B :
(i) for an n-ary relation symbol P or the equality symbol,
PA = PB ∩ An;
(ii) for an m-ary function symbol f and ā ∈ Am, a ∈ A,
fA(ā) = a iff fB(ā) = a;
(iii) for a constant symbol c, cA = cB.
(ii) and (iii) are possible since A is closed under L-terms.

Clearly then A ⊆ B and the condition of Tarski Lemma is satisfied, for if
B � ∃vφ(ā, v) then B � φ(ā, gφ(ā)). Thus the lemma finishes the proof. 2

Corollary 3 Let Σ be a set of L-sentences which has an infinite model. Then
for any cardinal κ ≥ |L| there is a model of Σ of cardinality κ.

Example Let M be a model of a set theory in the language with one binary
predicate symbol ∈ . Then there is a countable elementary submodel

M0 4 M.
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4 Axiomatizable classes and preservation the-

orems

A formula of the form ∃v1 . . . ∃vmθ, where θ is a quantifier-free formula, is
called an existential formula (or an E-formula). The negation of an exis-
tential formula is called a universal (A-formula) formula.

Exercise 4.1 Let φ1, . . . , φn be existential formulas. Prove that
(i) (φ1 ∨ . . . ∨ φn) and (φ1 ∧ . . . ∧ φn) are logically equivalent to existential
formulas;
(ii) (¬φ1∧. . .∧¬φn) and (¬φ1∨. . .∨¬φn) are logically equivalent to universal
formulas.

Given a set of sentences Σ denote Σ∃ its subset consisting of all existential
formulas in Σ. Correspondingly, Σ∀ are the universal formulas of Σ.
Thus Th∃(A) is the set of all existential L-sentences which hold in A.

Lemma 4.1 Suppose A ⊆ B and a1, . . . , an ∈ A.
(i) If A |= ϕ(a1, . . . , an), for an existential formula ϕ(v1, . . . , vn), then
B |= ϕ(a1, . . . , an).
(ii) If B |= ψ(a1, . . . , an), for an universal formula ψ(v1, . . . , vn), then
A |= ψ(a1, . . . , an).

Proof (i) Let ϕ(v1, . . . , vn) be ∃vn+1, . . . , vmθ(v1, . . . , vn, vn+1, . . . , vn) and θ
quantifier-free. Under this notation A |= ϕ(a1, . . . , an) means that there are
an+1, . . . , am ∈ A such that A |= θ(a1, . . . , am). To prove the statement of
the lemma it is enough to show that for quantifier-free θ

A |= θ(a1, . . . , am) ⇔ B |= θ(a1, . . . , am).

For θ atomic it is proved in Lemma 1.1. If the equivalence holds for θ1 and
θ2, it holds by definitions for ¬θ1 and (θ1 ∧ θ2). The statement (i) follows by
induction.
(ii) Follows immediately from (i). 2
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Lemma 4.2 Σ ∪ Diag(A) is satisfiable iff Σ ∪ Th∃(A) is satisfiable.

Proof Any model of a finite part of Σ∪Diag(A) can be reduced to a model of
a corresponding finite part of Σ∪Th∃(A) and vice-versa, since for θ quantifier-
free, by definitions,
∃v1, . . . vnθ(v1, . . . , vn) ∈ Th∃(A) iff A |= ∃v1, . . . vnθ(v1, . . . , vn) iff A |=
θ(a1, . . . , an) for some a1, . . . an iff Diag(A) � θ(ca1

, . . . can
).2

A class C of L-structures is called axiomatizable if there is a set Σ of
L-sentences such that

A ∈ C iff A � Σ.

We also write equivalently

C = Mod (Σ).

Σ is then called a set of axioms for C.
C is called finitely axiomatizable iff there is a finite set Σ of axioms for
C.
An axiomatizable class C is said to be ∃-axiomatizable (∀-axiomatizable)
if Σ can be chosen to consists of existential (universal) sentences only.

Conversely, we call the theory of class C the set

Th(C) = {σ : L-sentence, A � σ for all A ∈ C}.

If C consists of a one structure A then we denote Th(A) the theory of this
class and call it the theory of structure A.

Exercise 4.2 Show that
Th(C) is deductively closed, for every class C;
Th(A) is complete, for every structure A.

Exercise 4.3 Show that
if Th∀(C) � σ, for an ∀-L-sentence σ, then σ ∈ Th∀(C);
if Th∃(C) � σ, for an ∃-L-sentence σ, then σ ∈ Th∃(C).
That is, the universal and the existential parts of Th(C) are deductively closed
in the corresponding classes of formulas.
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Examples-exercises
1. The class of groups in the language with one binary function symbol ·,
one unary function symbol −1 (taking the inverse) and one constant symbol
e is ∀-axiomatizable.
2. The class of finite groups is not axiomatizable.
3. The class of fields of characteristic zero is axiomatizable but not finitely
axiomatizable.

Theorem 5 Let C be an axiomatizable class. Then the following conditions
are equivalent:
(i) C is ∀-axiomatizable;
(ii) If B ∈ C and A ⊆ B then A ∈ C.

Proof (i) implies (ii) by Lemma 4.1(ii).
To prove the converse consider Th(C), the theory of class C, and Th∀(C), its
universal part. Let A |= Th∀(C). We need to show that A ∈ C which would
yield Mod (Th∀(C)) = Mod (Th(C)) = C, as required.

Claim. Th(C) ∪ Th∃(A) is finitely satisfiable.
Indeed, otherwise, Th(C) |= ¬σ1 ∨ . . . ∨ ¬σn, for some σ1, . . . , σn ∈ Th∃(A).
Also ¬σ1 ∨ . . . ∨ ¬σn ≡ ¬(σ1 ∧ . . . ∧ σn) and A |= σ1 ∧ . . . ∧ σn. On the
other hand ¬(σ1 ∧ . . . ∧ σn) is equivalent to an ∀-formula, and is a logical
consequence of Th(C). So A |= ¬(σ1 ∧ . . . ∧ σn), the contradiction. Claim
proved.

It follows from the claim and Lemma 4.2 that Th(C) ∪ Diag(A) is satisfi-
able. Let B+ be a model of Th(C) ∪ Diag(A) and B its reduct to the initial
language. In particular, B ∈ C and, by Theorem 2, A ⊆ B. It follows by
assumptions that A ∈ C.2

Exercise 4.4 Let C be an axiomatizable class. Then the following conditions
are equivalent:
(i) C is ∃-axiomatizable;
(ii) If A ∈ C and A ⊆ B then B ∈ C.
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Definition Let
A0 ⊆ A1 ⊆ . . . ⊆ Ai ⊆ . . . (1)

be a sequence of L-structures, i ∈ N, forming a chain with respect to embed-
dings.
Denote A∗ =

⋃

nAn the L-structure with:
the domain A∗ =

⋃

nAn,
predicates PA∗

=
⋃

n P
An, for each predicate symbol P of L,

operations fA∗

: (A∗)m → A∗ sending ā to b iff ā is in An for some n and
fAn(ā) = b, for each function symbol f of L,
and cA

∗

= cA0, for each constant symbol from L.

By definition An ⊆ A∗, for each n.
A formula equivalent to one of the form ∀v1 . . . ∀vm∃vm+1 . . . ∃vk+mθ, where
θ is a quantifier-free formula, is called an AE-formula.
The negation of an AE-formula is called an EA-formula.

Exercise 4.5 Given a chain of the form (1) and an AE-sentence σ assume
that An � σ for every n ∈ N. Prove that

A∗
� σ.

Exercise 4.6 If, for each n,

An 4 An+1

that is, the chain is elementary, then An 4 A∗, for each n.

We state without proof

Theorem 6 Let C be an axiomatizable class. Then the following conditions
are equivalent:
(i) C is AE-axiomatizable;
(ii) For any chain of the form (1) with An ∈ C for all n ∈ N, the union A∗

is in C.
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5 Categoricity in powers

We continue the study of axiomatizable classes, but now our interest is mainly
in those which are axiomatised by a complete set of axioms.
From now on an L-theory will stand for a satisfiable deductively closed set
T of L-sentences.
It follows from definitions that the theory of a non-empty class of structures
is deductively closed, so it is a theory in the above sense.
A theory T is said to be categorical in power κ (κ-categorical) if there is
a model A of T of cardinality κ and any model of T of this cardinality is
isomorphic to A.

Theorem 7 (R.Vaught) Let κ ≥ |L| and T be a κ-categorical L-theory
without finite models. Then T is complete.

Proof Let σ be an L-sentence and A the unique, up to isomorphism, model
of T of cardinality κ. The either σ or ¬σ holds in A, let it be σ. Then
T ∪ {¬σ} does not have a model of cardinality κ, which by the Lowenheim-
Skolem theorems means T ∪{¬σ} does not have an infinite model, which by
our assumption means it is not satisfiable. It follows that T � σ. 2

Example 0 The trivial theory T= axiomatised by the axiom ∀v v l v in
the language L= with no non-logical symbols is categorical in every power.
Indeed, any set A determines a model A = 〈A〉 of T= and any other model
of T= of the same cardinality is isomorphic to A by a bijection. So T= is
categorical in every power.
Note that T= is not complete.

Example 1 LetK be a field and LK be the language with alphabet {+, λk, 0}k∈K
where + is a symbol of a binary function and λk symbols of unary functions,
0 constant symbol. Define VK to be the theory of vector spaces over K, i.e.
VK is axiomatised by:
∀v1∀v2∀v3 (v1 + v2) + v3 l v1 + (v2 + v3);
∀v1∀v2 v1 + v2 l v2 + v1;
∀v v + 0 l v;
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∀v1∃v2 v1 + v2 l 0;
∀v1∀v2 λk(v1 + v2) l λk(v1) + λk(v2) an axiom for each k ∈ K;
∀v λ1(v) l v;
∀v λ0(v) l 0;
∀v λk1(λk2(v)) l λk1·k2(v) an axiom for each k1, k2 ∈ K;
∀v λk1(v) + λk2(v) l λk1+k2(v) an axiom for each k1, k2 ∈ K.

Mod VK is exactly the class of vector spaces over K.
To discuss the theory further let us recall the basic facts and definitions of
the theory of vector spaces.
A basis of a vector space A is a maximal linearly independent subset of
A. By Zorn’s Lemma any independent subset can be extended to a basis, so
a basis exists in any vector space (and in general can be infinite).
If B1 and B2 are bases of the same vector space, then card B1 = card B2.
This allows to define the dimension of a vector space to be the cardinality
of a basis of the vector space.
If B1 is a basis of A1 and B2 a basis of A2, vector spaces over K, and
π : B1 → B2 a bijection, then π can be extended in a unique way (linearly) to
an isomorphism between the vector spaces. In other words the isomorphism
type of a vector space over a given field is determined by its dimension.
Let A be a model of VK of cardinality κ > |LK | = max{ℵ0, card K}. Then
||A|| = dimA, the dimension of the vector space (check it). It follows that,
if B is another model of VK of the same cardinality, A ∼= B. Thus we have
checked the validity of the following statement.

Theorem 8 VK is categorical in any infinite power κ > card K.

Example 2 Let L be the language with one binary symbol < and DLO be
the theory of dense linear order with no end elements:
∀v1∀v2 (v1 < v2 → ¬ v2 < v1);
∀v1∀v2 (v1 < v2 ∨ v1 l v2 ∨ v2 < v1)
∀v1∀v2∀v3 (v1 < v2 ∧ v2 < v3) → v1 < v3;
∀v1∀v2 (v1 < v2 → ∃v3 (v1 < v3 ∧ v3 < v2));
∀v1∃v2∃v3 v1 < v2 ∧ v3 < v1.

Cantor’s Theorem Any two countable models of DLO are isomorphic. In
other words DLO is ℵ0-categorical.
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To prove that any two countable models of DLO are isomorphic we enumerate
the two ordered sets and then apply the famous back-and-forth construction
of a bijection preserving the orders.

Exercise 5.1 Show that DLO is not κ-categorical
(i) for κ = 2ℵ0;
(ii) for any κ > ℵ0.

Example 3 ACFA0, the theory of algebraically closed fields of characteristic
zero is given by the following axioms in the language of fields Lfields with
binary operations +, · and constant symbols 0 and 1 :

Axioms of fields:
∀v1∀v2∀v3

(v1 + v2) + v3 l v1 + (v2 + v3)
(v1 · v2) · v3 l v1 · (v2 · v3)
v1 + v2 l v2 + v1

v1 · v2 l v2 · v1

(v1 + v2) · v3 l v1 · v3 + v2 · v3

v1 + 0 l v1

v1 · 1 l v1.

∀v1∃v2 v1 + v2 l 0
∀v1(¬v1 l 0 → ∃v2 v1 · v2 l 1).

Axioms stating that the field is of characteristic zero, one for each positive
integer n :

¬ 1 + . . . + 1
︸ ︷︷ ︸

n

l 0,

Solvability of polynomial equations axioms, one for each positive integer n :

∀v1 . . . ∀vn∃v vn + v1 · v
n−1 + . . .+ vi · v

i + . . .+ vn l 0.

Basic facts and definitions of dimension theory in algebraically
closed fields is similar to the dimension theory in vector spaces. We give
below a loose survey of it.
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Any field F of characteristic zero contains a copy of rational numbers Q.
Indeed,

1F + . . .+ 1F
︸ ︷︷ ︸

n

∈ F,

is an element representing integer n, denote it nF . Then the additive inverse
of nF represents −n, and correspondingly we can represent n−1 and in gen-
eral any rational number m/n by a unique element of F. So we may just
assume Q ⊆ F.

A finite subset {x1, . . . , xn} of a field F is said to be algebraically inde-
pendent if, for any nonzero polynomial in n variables P (v1, . . . , vn) with
integer coefficients,

P (x1, . . . , xn) 6= 0.

A transcendence basis of a field F is a maximal algebraically independent
subset of F.
By Zorn’s Lemma any independent subset can be extended to a basis, so a
basis exists in any field.
If B1 and B2 are bases of the same field, then card B1 = card B2.
This allows to define the transcendence degree of a field F to be the
cardinality of a basis of the field, denoted tr.d.F.

Steinitz Theorem If B1 is a basis of F1 and B2 a basis of F2, algebraically
closed fields of same characteristic, and π : B1 → B2 a bijection, then π can
be extended to an isomorphism between the fields.

In other words the isomorphism type of an algebraically closed field of a
given characteristic is determined by its transcendence degree. Also, the
transcendence degree of a field F is equal to the cardinality of the field
modulo ℵ0. In other words, for uncountable fields tr.d.F = card F.
It follows that, if F1 and F2 are two models of ACFA0 of an uncountable
cardinality κ, then F1

∼= F2. Thus ACFA0 is categorical in any such power κ.

It is also useful to consider the following simle example.
Example The theory of successor, TS.
The language contains a unary function symbol s and a constant symbol 0.
The axioms are:
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(a) ∀v1∀v2 (s(v1) l s(v2) → v1 l v2);
(b) ∀v1∃v2 (¬v1 l 0 → v1 l s(v2));
(c)n ∀v ¬ sn(v) l v for any positive integer n, where sn(v) = s(...(s(v))...),
n times;
(d) ∀v ¬s(v) l 0.

Exercise Prove that the theory TS is categorical in all uncountable cardi-
nalities.
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6 ℵ0-categoricity

Fix a countable language L. Henceforce T denotes a complete L-theory hav-
ing an infinite model, say A. By the Lowenheim-Skolem downward Theorem
we may assume A is countable. Also, by the definition, T = Th(A).

Denote Fn the set of all L-formulas with free variables v1 . . . vn (abbreviated
v̄). Denote En(T ) the binary relation on Fn defined by

ϕ(v̄) En ψ(v̄) iff T |= ∀v̄(ϕ(v̄) ↔ ψ(ϕ)).

Equivalently, since T is complete, ϕ(A) = ψ(A).

Thus, En is an equivalence relation respecting the Boolean operations ∧, ∨
and ¬.

Given a theory T and a number n, Fn/En(T ) is called the nth Lindenbaum
algebra of T. As was mentioned above, its elements are in a one-to-one
correspondence with definable subsets of A and ∧, ∨ and ¬ correspond to
the usual Boolean operations ∩, ∪ and the complement, on the sets.

Theorem 9 (Ryll-Nardzewski) T is ℵ0-categorical iff Fn/En(T ) is finite
for all n ∈ N.

Proof of the theorem will follow from intermediate statements.

Lemma 6.1 Assume that Fn/En is finite. Then for any ā ∈ An there is
ϕ(v̄) such that
(i) A |= ϕ(ā)
and
(ii) whenever ψ(v̄) is such that A |= ψ(ā),

T |= ∀v̄(ϕ(v̄) → ψ(v̄)).

Proof By the finiteness assumption we can find the minimal definable sub-
set of An containing ā, say ϕ(A). Then for any ψ(A) containig ā we have
necessarily ϕ(A) ⊆ ψ(A). 2

Call ϕ as above principal [for ā].
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Lemma 6.2 [⇐ of the Theorem] The finiteness of all Fn/En(T ) implies ℵ0-
categoricity of T.

Proof Suppose B is another countable model of T. Enumerate

A = {a1, a2, . . .}, B = {b1, b2, . . .}.

We will construct new enumerations {a′1, a
′
2, . . .} and {b′1, b

′
2, . . .} of the sets so

that the enumerations establish a correspondence between the sets preserving
L-formulas, by the back-and-forth method:
Suppose a′1, . . . , a

′
n−1 ∈ A and b′1, . . . , b

′
n−1 ∈ B satisfy for all ψ ∈ Fn−1

A |= ψ(a′1, . . . , a
′
n−1) iff B |= ψ(b′1, . . . , b

′
n−1). (2)

Notice that (2) is true for n = 1 since A ≡ B. Let n be odd and a′n be
the first member in A = {a1, a2, . . .} not occurring among a′1, . . . a

′
n−1. Let

ϕ be a principal formula for a′1, . . . , a
′
n. Then A |= ϕ(a′1, . . . , a

′
n) and so,

A |= ∃vϕ(a′1, . . . , a
′
n−1, v). By (2) B |= ∃vϕ(b′1, . . . , b

′
n−1, v). Hence we may

choose b′n ∈ B such that B |= ϕ(b′1, . . . , b
′
n).

Now suppose ψ ∈ Fn and A |= ψ(a′1, . . . , a
′
n). Since ϕ is principal

T |= ∀v̄(ϕ(v̄) → ψ(v̄)).

Hence B |= ψ(b′1, . . . , b
′
n).

Thus (2) is satisfied for a′1, . . . a
′
n and b′1, . . . b

′
n, too.

Similarly, when n + 1 is even, b′n+1 is the first element in B = {b1, b2, . . .}
not occurring among b′1, . . . b

′
n. Then we can find a′n+1 ∈ A such that (2) is

satisfied for a′1, . . . a
′
n+1 and b′1, . . . b

′
n+1.

Hence we may inductively construct in this way A = {a′1, a
′
2, . . . a

′
n . . .},

B = {b′1, b
′
2, . . . b

′
n . . .} satisfying (2) for all n. Our construction guarantees

that we get all of A and all of B. Now it follows from (2) that a′i → b′i is an
isomorphism. 2
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A subset p ⊂ Fn is called an n-type (over T ) if
(i) for all ϕ ∈ p T |= ∃v̄ϕ(v̄);
(ii) if ϕ, ψ ∈ p then (ϕ ∧ ψ) ∈ p.

Type p is called complete if also the following is satisfied:
(iii) for any ϕ ∈ Fn either ϕ ∈ p or ¬ϕ ∈ p.

Suppose ā ∈ An. Then we define the L-type of ā in A.

tpA(ā) = {ϕ ∈ Fn : A |= ϕ(ā)}.

Clearly, tpA(ā) is a complete n-type.

When A ⊆ B then tpA(a) and tpB(a) may be different. But it follows imme-
diately from definitions that

A 4 B implies tpA(a) = tpB(a).

We say that an n-type p is realised in A if there is ā ∈ An such that
p ⊆ tpA(ā).
If there is no such ā in A we say that p is omitted in A.

Lemma 6.3 Given a set P = {pα : α < κ} of n-types p, a model A of T
and a cardinal κ ≥ |A|, there is B < A of cardinality κ such that all types
from P are realised in B. In particular, given a type p there is a countable
model B of T which realises p.

Proof Consider the expansion L+ of LA by new constants

{cα1 , . . . , c
α
n : α < κ},

and the theory

T+ = CDiag(A) ∪ {ϕ(cα1 , . . . , c
α
n) : ϕ ∈ pα, α < κ}

We claim that T+ is f.s. in A. Indeed, any finite subset S of T+ contains
only finitely many formulas ϕ from the types. Since types are closed under
conjunction, we may assume that there is at most one formula of the form
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ϕ(cα1 , . . . , c
α
n) in S for a type pα. Since ∃v̄ϕ(v̄) holds in A, we can find in A for

ϕ(cα1 , . . . , c
α
n) an interpretation of cα1 , . . . , c

α
n which makes each such formula

true in the corresponding expansion of A.
By the Compactness Theorem there is a model B+ |= T+ of cardinality κ.
Since B+ |= CDiag(A) the L-reduct B of B+ is an elementary extension of
A. Let, for each α, aα1 , . . . , a

α
n be the elements assigned to cα1 , . . . , c

α
n in B+.

By the construction 〈aα1 , . . . , a
α
n〉 realize pα in B.

If we start with a countable model A of T and κ ≤ ℵ0, then B can be chosen
countable. 2

Corollary 4 For any n-type there is p′ ⊇ p which is a complete n-type.

Indeed, put p′ = tpB(ā) for ā in B realising p.

Remark If π : A → B is an isomorphism, ā ∈ An, b̄ ∈ Bn, and π : ā → b̄
then tpA(ā) = tpB(b̄).

Example There is a countable elementary extension of the group of integers
Z = (Z; +; 0) which is not isomorphic to Z.
Given n > 0 denote n|v the formula ∃w(v = w + . . .+ w) (n summands).
Let

p = {1|v& . . .&n|v : n ∈ N}.

p clearly is a type, thus it is realised in some countable elementary extension.
But p is obviously omitted in Z.

A type p is called principal if there is ϕ ∈ Fn such that T |= ∃v̄ϕ(v̄) and
for any ψ ∈ p T |= ∀v̄(ϕ(v̄) → ψ(v̄)).
ϕ is called then a principal formula for type p.
A type which is not principal is called non-principal.

Exercise 6.1 (i) A principal type p is realised in any model A of T.
(ii) If p is a complete type then a principal formula for p is a principal
formula.
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Lemma 6.4 If Fn/En(T ) is infinite then there exists a non-principal com-
plete n-type in T.

Proof Take p = {¬ϕ1 ∧ . . . ∧ ¬ϕk ∈ Fn : ϕi principal formulae }. We claim
that p is an n-type.
Suppose not. Then

T |= ∀v̄(ϕ1(v̄) ∨ . . . ∨ ϕk(v̄))

for some principal formulas ϕ1, . . . , ϕk ∈ Fn.
Define for ψ ∈ Fn

Wψ = {i ∈ {1, . . . , k} : T |= ∃v̄(ϕi(v̄) ∧ ψ(v̄)}

Notice that since ϕi’s are principal formulas
T |= ∃v̄(ϕi(v̄) ∧ ψ(v̄)} iff T |= ∀v̄(ϕi(v̄) → ψ(v̄)}.
It follows that for any ψ, χ ∈ Fn ψEnχ iff Wψ = Wχ. Thus card Fn/En(T ) =
2k. This contradicts the assumtions and proves the claim.
Take now a complete n-type extending p. It is non-principal by the construction.2

Theorem 10 (Omitting Type Theorem) Let p be a non-principal n-type
in a complete theory T of a countable language L. Then there is a countable
model of T which omits p.

Proof Let L′ = L ∪ C, C a set of countably many new constant symbols.
Let c̄1, . . . , c̄k, . . . be an enumeration of all n-tuples of constant symbols of L′

and φ1, . . . , φl, . . . an enumeration of all sentences in L′.
We construct a chain of finite sets of L′-sentences

S0 ⊆ . . . Sm ⊆ . . .

by induction on m ≥ 1 so that
(i) T ∪ Sm are satisfiable,
(ii) for m ≥ 1 either φm or ¬φm is in Sm, ,
(iii) if φm is in Sm and has the form ∃v ϕ(v), for some 1-variable L′-formula
ϕ(v), then ϕ(c) ∈ Sm for some c ∈ C
(iv) for m ≥ 1 there is a formula ψ ∈ p such that ¬ψ(c̄m) ∈ Sm.

30



Start with S0 = ∅.
Suppose S0 ⊆ . . . Sm−1 are constructed.
If T ∪ Sm−1 ∪ {φm} is satisfiable then put S ′

m = Sm−1 ∪ {φm}. Otherwise
S ′
m = Sm−1 ∪ {¬φm}. It is easy to see that T ∪ S ′

m is satisfiable.

Claim. There exists ψ ∈ p such that T ∪ S ′
m ∪ {¬ψ(c̄m)} is satisfiable.

Proof of Claim. Suppose for all ψ ∈ p the converse holds. Let Φ =
∧
S ′
m. We

can represent Φ as ϕ(cm,1, . . . , cm,n, d1, . . . , dp), where ϕ(v1, . . . vn, u1, . . . , up)
is an L-formula with free variables v1, . . . vn, u1, . . . , up and 〈cm,1 . . . , cm,n〉 =
c̄m, d1, . . . , dp constant symbols not in L and different from cm,i’s. We write
corresponding formulas in the short form ϕ(c̄m, d̄) and ϕ(v̄, ū).
Then, by our assumption, for any ψ ∈ p

T |= (ϕ(c̄m, d̄) → ψ(c̄m)).

Since no component of c̄m and d̄ do occur in T, it follows

T |= ∀v̄∀ū(ϕ(v̄, ū) → ψ(v̄)).

The formula can be equivalently rewritten as ∀v̄(∃ūϕ(v̄, ū) → ψ(v̄)), so

T |= ∀v̄(∃ūϕ(v̄, ū) → ψ(v̄))

for every ψ ∈ p. This means that ∃ūϕ(v̄, ū) is a principal formula for p. The
contradiction, which proves the claim.

Now take S ′′
m = S ′

m ∪ {¬ψ(c̄m)}.
Suppose φm is in S ′′

m and has the form ∃v ϕ(v). Choose c ∈ C which does not
occur in S ′′

m. Then T ∪ S ′′
m ∪ {ϕ(c)} has a model: any model A of T ∪ S ′′

m in
the language L ∪ { constants of S ′′

m} can be expanded by assigning to c the
values of v for ∃vϕ(v).
Denote Sm = S ′′

m ∪{ϕ(c)}. If φm does not have this form then put Sm = S ′′
m.

This Sm satisfies (i)-(iv) by the construction.
To finish the proof of the theorem consider now

T ∗ = T ∪
⋃

m∈N

Sm.

By the properties (i)-(iii) T ∗ is satisfiable, complete and full set of sentences.
By Theorem 3 T ∗ has a canonical model A. Notice that by (iii) for any
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closed term λ T ∗ says λ = c for some c ∈ C. Thus all elements of the
canonical model A are named by symbols from C. Consequently, (iv) says
that no n-tuple in A realises type p.2

End of the proof of the Ryll-Nardzewski Theorem: If Fn/En(T ) is
infinite then T is not ℵ0-categorical.
Indeed, from Lemma 6.4 it follows, under the assumption, that there is a
non-principal n-type in T. By the Omitting Type Theorem there is a count-
able model A that omits p. On the other hand, by Lemma 6.3, there is a
countable model B which realises p. It follows A is non-isomorphic to B and
thus T is not ℵ0 categorical. 2

Remark Slight changes in the proof of the Omitting Type Theorem yield

Theorem 11 (Omitting Types Theorem of R.Vaught) Let P be a count-
able set of non-principal n-types in a complete theory T of a countable lan-
guage L. Then there is a countable model of T which omits every type in
P.
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7 Spaces of types. Theories with few types

Let T be a complete theory of a countable language L.
We denote Sn(T ) the set of all complete n-types in T, the (Stone) space
of n-types of T.

The Stone spaces are closely connected with the Lindenbaum algebras of T.
For T as before, T is called 0-stable if card Sn(T ) ≤ ℵ0 for all n ∈ N.

A structure A is called atomic if for all n ∈ N, every complete n-type re-
alised in A is principal.

Remark We can equivalenly say in the definition: every n-tuple in A satis-
fies a principal formula.

Warning ’Atomic’ here is connected with the notion of atoms of the Boolean
algebra Fn/En(T ). Nothing to do with atomic formulas.

A model A of T is called prime if for any model B of T there is an elemen-
tary embedding π : A → B.

Theorem 12 (i) Any countable atomic model of a complete theory T is
prime.
(ii) Any two countable atomic models of T are isomorphic.
(iii) Assume T is 0-stable. Then T has a countable atomic model.

Proof (i) and (ii) are left to the reader (Problem sheet 6). Use an inductive
construction similar to the one in the proof of Lemma 6.2.
(iii) Since T is 0-stable, there are only countably many non-principal types
in

⋃

n Sn(T ). By the Omitting Types Theorem of Vaught there is a countable
model A of T which omits all the non-principal types. This A is atomic by
definition. 2

A structure A is called ℵ0-saturated if, for any expansion Ac1,...,cm of A by
finitely many contant symbols c1, . . . , cm, every 1-type in Th(Ac1,...,cm) is
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realised in Ac1,...,cm .

A model A of T is called ℵ0-universal if, for any countable model B of T,
there is an elementary embedding π : B → A.

Theorem 13 (i) Any countable ℵ0-saturated model of a complete theory T
is ℵ0-universal.
(ii) Any two countable ℵ0-saturated models of T are isomorphic.
(iii) Assume T is 0-stable. Then T has a countable ℵ0-saturated model.

Proof (i) and (ii) are exercises (Problem sheet 7). Use an inductive con-
struction similar to the one in the proof of Lemma 6.2.

Proof of (iii). We start with

Lemma 7.1 Let T ′ = T (c1, . . . , cm) be a complete theory extending T in the
language L(c1, . . . , cm), the extension of L by finitely many extra constants
symbols c1, . . . , cm, and suppose T is 0-stable. Then T ′ is 0-stable too.

Proof Fix n. For each p ∈ Sn(T
′) define

p∗ = {φ(v1, . . . , vn+m) ∈ Fn+m : φ(v1, . . . , vn, c1, . . . , cm) ∈ p}.

It follows from the definition that p∗ ∈ Sn+m(T ), and if p1 6= p2 then
p∗1 6= p∗2. Hence we have mapping Sn(T

′) → Sm+n(T ), which is injective.
Since card Sm+n(T ) ≤ ℵ0, by the hypothesis, we have Sn(T

′) ≤ ℵ0. 2

End of the proof of (iii). Let A be a countable model of T. Enumerate
{a1, . . . , an, . . .} elements of A. Let C = {c1, . . . , cn, . . .} be a set of new con-
stant symbols, AC the structure in the language LC obtained by assigning
ai to ci, TC the theory of the structure, and T{c1,...,cm} the fragment of the
theory containing formulas with at most the first m constants symbols of C.
By Lemma above the set of 1-types

⋃

m S1(T{c1,...,cm}) is countable. By
Lemma 6.3 we can construct a countable BC � AC which realises all the
types of

⋃

m S1(T{c1,...,cm}). Clearly B has the property that any 1-type of an
expanded theory Th(A{c1,...,cm}) is realised in BC .
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Repeating this construction we get an elementary chain

A(0)
4 A(1)

4 . . . 4 A(n) . . .

of countable models of T with A(0) = A and the property that any 1-type in
Th(A

(n)
{c1,...,cm}) is realised in A

(n+1)
c1,...,cm for any assignment of constant symbols

c1, . . . , cm, any m.
Then the union A∗ =

⋃

nA
(n) of the elementary chain, by Exercise 4.6, is

an elemenary extension of A and indeed of each A(n). It follows that A∗ is a
countable saturated model of T. This proves (iii). 2
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8 Theories with many types

Theorem 14 Suppose card Sn(T ) = κ > ℵ0. Then T has at least κ non-
isomorphic countable models.

Proof For any n-type there is a countable model that realises the type, and in
a countable model at most countably many complete types can be realized.2

Theorem 15 Suppose Sn(T ) is uncountable. Then card Sn(T ) = 2ℵ0.

We start the proof of the theorem by introducing a new notion and proving
an intermediate lemma.
A formula ϕ ∈ Fn is called fat (in T ) if

Uϕ = {p ∈ Sn(T ) : ϕ ∈ p}

is uncountable.

Lemma 8.1 For any fat ϕ there are fat ϕ0 and ϕ1 such that ϕ ≡ ϕ0∨ϕ1 and
there is no n-type containing both of the formulas, that is T � ¬∃v̄(ϕ0 ∧ ϕ1).

Proof Suppose not. Define

qϕ = {ψ ∈ Fn : (ψ ∧ ϕ) is fat }.

This is a complete type. Indeed, (i) of the definition of type follows from the
fact that every ψ in qϕ belongs to a type, since ψ is fat.
(ii) follows from the assumption that ϕ can not be divided into two fat parts:
ψ1 ∧ ψ2 ∧ ϕ is fat, if ψ1, ψ2 ∈ q.
(iii) is immediate from the same assumption.
Now notice that

Uϕ = {qϕ} ∪
⋃

{U¬ψ∧ϕ : ψ ∈ qϕ}.

By assumptions U¬ψ∧ϕ is at most countable, for every ψ ∈ qϕ, contradicting
the fact that ϕ is fat. 2
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Proof of the theorem. Notice first that the number of n-types is not greater
than 2ℵ0 since each type is just a subset of the countable set F n. So we want
to show that the number is not less than 2ℵ0.
Let M = {µ : N → {0, 1}} be the set of all {0, 1}-sequences. For each µ and
n ∈ N define µ|n, the initial n-cut of µ, to be the reduction of µ to {1, . . . , n}.
Define a fat formula ϕµ,n by induction on n :
For n = 0 let it be the formula v1 = v1.
If ϕµ,n is defined then ϕµ,n+1 is either one of the two fat formulas that divide
ϕµ,n+1, as given by the lemma above, depending on whether µ(n+ 1) is 0 or
1. So if µ|n = ν|n and µ|n+1 6= ν|n+1, then ϕµ,n = ϕν,n, and ϕµ,n+1 but ϕν,n+1

can not belong to a common type. Also T � ∀v̄(ϕµ,n+1 → ϕµ,n).
Let now for each µ

qµ = {ϕµ,i1 ∧ . . . ∧ ϕµ,in : i1, . . . , in ∈ N}.

This, by definition, is a type. So, there is an extension pµ ⊇ qµ which is a
complete type. If µ 6= ν, say n is the first number such that µ(n) 6= ν(n),
then ϕµ,n ∈ pµ, ϕν,n ∈ pν are the two mutually inconsistent formulas dividing
ϕµ,n, and so pµ 6= pν .
Thus the number of complete types is not less then the number of infinite
{0, 1}-sequences, which is 2ℵ0. 2

Remark In fact, the theorem is a special case of the classical topological
fact: An uncountable compact Hausdorff space with countable basis is of car-
dinality continuum.
Our Uφ’s form a basis of such a topology on Sn(T ).

Applying Theorem 14 and taking into account that, given a countable lan-
guage L, there is at most 2ℵ0 countable L-structures, we have:

Corollary 5 Suppose for some n, Sn(T ) is uncountable. Then T has exactly
2ℵ0 non-isomorphic countable models.

37



Glossary

alphabet section 1,
assignement section 1
atomic formula section 1
atomic model section 7
axiom section 4
axiomatisable class section 4
back-and-forth method section 6
bounded variable section 1
canonical L-structure section 2
Cantor Theorem section 5
categorical (theory) in power section 5
CDiag section 3
closed term section 1
complexity section 1
complete set of sentences section 2
complete theory section 5
complete type section 6
consequence (logical) section 2
definable set section 1
——– relation section 1
——– function section 1
diagram section 3
Diag section 3
dimension of a vector space section 5
DLO (dense linear order) section 5
domain section 1
dom section 1
∃-formula section 4
∃-axiomatizable section 4
elementary equivalence section 1
elementary embedding section 3
embedding section 1
expansion section 2
existential formula section 4
fat formula section 8

38



f.section (finitely satisfiable) section 2
formula section 1
free variable section 1
full set of sentences section 2
interpretation section 1
isomorphism section 1
Lindenbaum Theorem section 2
Lindenbaum algebra section 6
Lowenheim-Skolem Theorem section 3
non-logical symbol sectionrefs1
omit a type section 6
Omitting types theorem section 6
reduct section 2
Ryll-Nardzevski Theorem section 6
prime model section 7
principal (type, formula) section 6
realise a type section 6
satisfiable set of sentences section 2
saturated model section 7
sentence section 1
space of types section 7
0-stable theory section 7
structure section 1
Tarski Lemma section 3
term section 1
theory section 5
theory of a class section 4
truth value section 1
type section 6
universal formula section 4
universal model section 7
valid (logically) sentence section 2
Vaught’s Theorem section 5

39


