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1. Introduction.

The Fibonacci sequence

1; 1; 2; 3; 5; 8; 13; 21; : : :

de�ned by

f0 = 1; f1 = 1; fr = fr�1 + fr�2 for r � 2;

is certainly one of the best known sequences of mathematics. In this paper we consider its use

as a basis for representing integers. For any string anan�1 � � �an of zeroes and ones, the integer

represented by the string is
Pn

r=1 arfr. For example, 010110 represents 2 + 3 + 8 = 13. We call

such a representation a Fibonacci representation. We consider this representation as a code and

ask for the value of the information-theoretic entropy of this code, especially its asymptotic (in n)

behavior. The question is phrased more precisely in the next section.

Some integers have more than one such representation | for example 13 can also be written

100000. There have been a number of investigations of the number of Fibonacci representations

for integers; see for example Carlitz [1968]. Entropy measures in some sense the lumpiness of the

representation | whether the integers are more or less uniformly represented or whether some

numbers have many more representations than others. If Fibonacci representations are considered

as a code, asking for the value of the entropy is rather natural, yet it seems not to have been

investigated. In fact, the entropy is asymptotically strictly smaller than it needs to be for general

reasons, and the reason seems to be associated in some mysterious way with the behavior of the

Euclidean algorithm.

That the entropy is smaller than it might be has been proved earlier in another context | the

study of certain probability measures on the real line called ICBMs, which have to do with �-adic

expansions of real numbers for 1
2
< � < 1 | however without any more precise estimate on its

value or any indication of how to compute it. In turn these measures are naturally associated with

certain dynamical systems on the square called baker's transformations, and the entropy is related

to a metric dimension of the attractor. The fact that the entropy is asymptotically smaller than

it might be means that the attractor is a strange attractor in some sense. The author's interest in

the problem came from trying to estimate the value of the dimension in some way.

In section 2, we de�ne entropy and phrase the question more precisely. In section 3, we discuss

some of the combinatorics of the problem. Here there is a connection with another fascinating,

but lesser-known, sequence of elementary number theory | Stern's diatomic sequence, which is

discussed in section 4. It is here the connection with the Euclidean algorithm appears. In section 5,

we develop a generating function for the entropy. In section 6, using the generating function, we

make some asymptotic numerical estimates, and in particular, establish rigorous bounds on the

entropy. These �rst sections of the paper are self-contained and elementary. For the interested

reader, the connection with probability measures is discussed in section 7. In this context, the

fact that the entropy is small is a consequence of the fact that the golden ratio is what is called

a PV (Pisot-Vijayarghavan) number. In section 8, we mention some relations with other areas of

mathematics and discuss the generalization to hyper-Fibonacci numbers.
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The author would like to acknowledge the help of Don Zagier, who taught him how to manip-

ulate the generating functions of sections 5 and 6 and who gave the manuscript a critical reading.

2. Entropy.

The entropy of a code was introduced by Claude Shannon in his seminal papers on information

theory. Any introductory text on information theory will have a complete exposition. Here we

need only �rst de�nitions. Consider �rst a �nite probability space X , which is a �nite set of

points x1; x2; : : : ; xN weighted with non-negative numbers (probabilities) p1; p2; : : : ; pN such thatPN
i=1 pi = 1. The information of xi is � log2 pi. Conventionally 2 is chosen as the base of loga-

rithms, but in fact our main concepts are independent of the choice of base. The entropy is the

expectation of the information:

H(x) = �
NX
i=1

pi log2 pi

(where 0 � log2 0 = 0).

It is a standard fact, proved for example with Lagrange multipliers, that H(x) � log2N and

that this bound is obtained precisely when all the pi are equal. At the other extreme, if one pi = 1

and all the others are 0, then H(x) = 0. The entropy measures the uniformity of X ; the more

evenly the points are weighted, the larger the entropy.

We next de�ne the entropy of a code C of length n. For simplicity we consider only binary

codes. A codeword is one of the 2n strings of length n of zeroes and ones. Each such codeword

represents a (plaintext) word . The set of words is �nite. Each word xi is weighted by the number

of di�erent representations it has by codewords. Thus if xi is represented by ri di�erent codewords,

set pi = 2�nri. The entropy H(C) of the code is H(X).

If a word xi has several representatives, C has redundancy. The more redundancy, the smaller

the entropy. If there are N words represented by the code, H(C) � log2N . To take into account

this crudest of constraints, we de�ne the relative entropy

HR(C) = H(C)= log2N;

which is bounded by 1 and is independent of the choice of base for logarithms.

Consider some examples:

1. Binary code Binn. This is the usual representation of integers in binary notation. We consider

representations of length n where we �ll in with zeroes on the left if necessary. The N = 2n integers

from 0 through 2n � 1 are the plaintext words. Each is represented once, so HR(Binn) = 1, the

maximum possible.

2. Half-binary code 1
2
Binn. For a string of length n, the odd positions (counting from the right)

are the binary representations of an integer. The even positions are �llers and mean nothing. Thus

N = 2[
n+1

2 ] and each word has 2[
n

2 ] representations. Thus H(1
2
Binn) =

�
n+1
2

�
, and HR(

1
2
Binn) =

1. The redundancies are evenly distributed.

3. Fibonacci code Fibn. Recall that
Pn

r=1 fr = fn+2 � 2. Thus the number of integers that

can be represented by the length n Fibonacci code is fn+2 � 1. Clearly there is redundancy in
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the representations and it is unevenly distributed. For example, with strings of length 3, the

number 3 has 2 representations 011 and 100. The other 6 numbers from 0 through 6 each have one

representation. Thus

H(Fib3) = �6

8
log2

1

8
� 1

4
log2

1

4
=

11

4
;

and

HR(Fib3) =
11

4

�
log2 7 � :98:

In the Fibonacci representation, any occurrence of 011 in a string can be replaced with 100

and vice-versa, leading to redundancies. For example, considering 13,

010110 � 011000� 100000:

It is true, and is shown in the next section, that two strings in Fibn represent the same integer if

and only if one can be obtained from the other by a sequence of interchanges of substrings 011 and

100.

In Table 1, we list HR(Fibn) for n from 1 to 38. For n = 38, there are 238 � 2:75 � 1011

codewords representing 165,580,140 integers. The table is computer generated, not by formulae,

but by counting aided by the combinatorics of the next section.

Table 1: Entropy and Relative Entropy

Number of Relative Number of Relative

Represented Entropy Entropy Represented Entropy Entropy

Level Numbers H(Fibn) HR(Fibn) Level Numbers H(Fibn) HR(Fibn)

1 2 1.0000000000 1.0000000000 21 46 367 15.2805148110 .9857881012

2 4 2.0000000000 1.0000000000 22 75 024 15.9717806490 .9862128420

3 7 2.7500000000 .9795697645 23 121 392 16.6630464471 .9866029267

4 12 3.5000000000 .9763003098 24 196 417 17.3543122453 .9869623656

5 20 4.2028195311 .9724408733 25 317 810 18.0455780344 .9872945925

6 33 4.9056390622 .9724932165 26 514 228 18.7368438236 .9876025608

7 54 5.5992384298 .9729535856 27 832 039 19.4281096107 .9878888190

8 88 6.2928377974 .9742092136 28 1 346 268 20.1193753978 .9881555757

9 143 6.9845854170 .9755182864 29 2 178 308 20.8106411844 .9884047526

10 232 7.6763330366 .9768836348 30 3 524 577 21.5019069711 .9886380289

11 376 8.3677002066 .9781534042 31 5 702 886 22.1931727576 .9888568774

12 609 9.0590673766 .9793270408 32 9 227 464 22.8844385441 .9890625954

13 986 9.7503548474 .9803840842 33 14 930 351 23.5757043306 .9892563294

14 1 596 10.4416423183 .9813347701 34 24 157 816 24.2669701171 .9894390964

15 2 583 11.1329128094 .9821859627 35 39 088 168 24.9582359036 .9896118019

16 4 180 11.8241833006 .9829496193 36 63 245 985 25.6495016901 .9897752543

17 6 764 12.5154501207 .9836359343 37 102 334 154 26.3407674766 .9899301777

18 10 945 13.2067169408 .9842549083 38 165 580 140 27.0320332631 .9900772226

19 17 710 13.8979829569 .9848150911

20 28 656 14.5892489730 .9853240185
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For n � 3, HR(Fibn) < 1. Some integers have more representations than others. However, it

may be that the redundancies even out as n!1. We de�ne the asymptotic relative entropy

HR(Fib) = lim inf
n!1

HR(Fibn);

and ask in particular whether HR(Fib) < 1. Is the Fibonacci code terminally lumpy? Or are the

entries in Table 1 converging to 1? It turns out that HR(Fib) exists as a limit (not just lim inf)

and that HR(Fib) < 1.

This value is a number as intimately attached to the Fibonnaci sequence as the golden ratio.

One can reasonably ask if it can be expressed in some more-or-less closed form. In section 6,

HR(Fib) is expressed as the sum of an in�nite series. With this series, we can estimate HR(Fib) �
:995713126686. In fact, we set the bounds

:997161165488> HR(Fib) > :995458787137:

3. The Fibonacci graph.

We would like to represent the Fibonacci code in graphical form to get an overall view of it. The

node (vertices) of the graph are in levels n = 0; 1; 2; : : : and the edges connect nodes in level n with

nodes in level n+ 1. The nodes represent words (integers). The level is the length of a string. We

de�ne the graph inductively, starting with a single node at level 0 (the empty) string. From each

node two edges descend to nodes at the next level, a right edge and a left edge, subject to the

following rule. The node obtained by one right descent followed by two left descents is the same as

the node obtained by one left descent followed by two right descents.

The nodes are labelled with codewords as follows. The node at level zero is labelled with the

empty string and called the root node. Inductively, if a node is labelled `s,' it right descendent is

labelled `s1' and its left descendent is labelled `s0.' The rule above means that some nodes have

more than one label. Alternatively, there is an equivalence of labels; that equivalence is generated

by the relation: any substring 011 � 100. The level is the length of the codeword.

In Table 2, the graph is pictured through level 8. The labelling is indicated above the nodes

through level 3. We call this graph the Fibonacci graph. We claim that if we number the nodes at

level n from left to right with integers 0; 1; 2; : : : , the node numbered k is labelled with the set of

length-n Fibonacci representations of k (in Table 2, the number k, as a decimal number, is not shown

| only the Fibonacci representations). In particular, the number of Fibonacci representations of

length n of an integer k is the number of descending paths from the root node to the node in level

n numbered k. The number of such paths is called the count at the node; it is indicated in Table 2

below each node through level 5.

The claim above requires proof. By construction the graph represents strings subject to the

equivalence relations generated by 011 � 100. There is thus a well-de�ned set map

fnodesg ! fnon-negative integersg
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Table 2: The Fibonacci graph

The strings above each node are the Fibonacci representations corresponding to that node. The

number below each node is the number of such representations, equivalently, the number of paths

from the top (root) node to the particular node. The level (length of string) is indicated at the left.
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given by

node ! integer with Fibonacci representation given by label:

The claim is that at each level this map is one to one. If not, at some level n, there are less than

fn+2 � 1 nodes. Let gn denote the number of nodes at level n. The claim is proved if we show

gn = fn+2 � 1. To this end, note that gn = 2gn�1 � gn�3 since there is one equivalence for each

node in level n � 3. Note that fn+2 � 1 satis�es this di�erence equation, and since gn = fn+2 � 1

for n = 1; 2; 3 (by inspection), gn = fn+2 � 1 for all n. Thus the claim is proved.

As a corollary, we have shown that two Fibonacci representations of an integer di�er by the

equivalence generated by 011 � 100, as mentioned in section 2. The counts on the Fibonacci graph

can be matched up with tables in Carlitz [1968]. Elementary facts about Fibonacci representations

can be deduced from the graph. For example, by induction one can show there are 2n integers with

one Fibonacci representation of length n.

4. The Stern graph.

At level 38 of the Fibonacci graph, there are 165,580,140 nodes. For numerical calculation, even

with a computer it is not a good strategy to run through all these nodes to count; some shortcuts

are needed. We turn now to some factor graphs of the Fibonacci graph which provide us with the

shortcuts. The structure we discuss does not show up well until level 7 or so. It is suggested the

reader continue the counts on the Fibonacci graph through at least level 7.

Suppose we erase all nodes from the Fibonacci graph with count 1 together with the the two

edges descending from each such node. The remainder of the graph falls apart into disjoint, but

isomorphic graphs. Each such subgraph has a top node (the one with the least level) with a count

of 2. In Table 2, 11 such tops are visible through level 8; the �rst is in the center position of level 3.

For each level larger than 3, there are two tops. Suppose the top of such a subgraph is at level r.

At level r + 2, there are two nodes with count 3. At level r + 4, there are two nodes with count 4

and two with count 5. We want to understand the structure of these counts.

Table 3: Stern Diatomic Series

Level

0 1 1

1 1 2 1

2 1 3 2 3 1

3 1 4 3 5 2 5 3 4 1

4 1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1

5 1 6 5 9 4 11 7 10 3 11 8 13 5 12 7 9 2 9 7 12 5 13 8 11 3 10 7 11 4 9 5 6 1
...

In the mid-1800's, M. Stern introduced the \diatomic series" of Table 3. Starting with two

1's at level 0, an entry is made at level n either as (i) a copy of an entry in level n � 1 in the

same column or (ii) the sum of two adjacent entries in level n� 1 in an intermediate column. This
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series has a number of interesting properties. Any integer r appears precisely �(r) times in each

level � r � 1; here �(r) is Euler's totient function. The largest entry in level n is fn+1. Any two

adjacent elements are coprime; conversely any two ordered coprime numbers appear adjacently

exactly once in the series. For more complete discussions, the reader is referred to Lehmer [1929],

Williams & Browne [1947], Lind [1969]. An equivalent construction appears in Knuth [1969] under

the name Stern-Pierce tree, where it is used to analyze a numerical rounding procedure. This is

related to a connection between the nth level of the Stern series and the (n� 1)st Farey series.

Stern called the entries at the top of any column dyads. The dyads are precisely the numbers

occurring as counts in the subgraphs of the Fibonacci graph discussed above. By induction, or

by known results (see Lehmer [1929]), the sum of the dyads at level n is 2 � 3n�1. For descriptive
purposes, we construct the following labelled and rooted tree (in close analogy with the construction

in Knuth [1969]), which we call the Stern dyad tree. It has one node (the root) at level 0, and one

edge from this node to a node at level 3 which has label 2 (the �rst dyad). Starting from this

node we have a binary tree (two edges descend from each node and their bottom nodes are disjoint

from all other nodes); each edge is two levels long and the nodes are labelled with the Stern dyads.

This is the Stern dyad tree. The Stern dyad tree is obtained from Table 3 as follows: (i) erase the

columns of 1's at the edges, (ii) erase all of each column except the dyad at the top, (iii) from each

dyad draw an edge to the two nearest dyads in the next level, (iv) draw an edge from the 2 at

level 1 to an unlabelled root at level 0, (iv) change the levels from 0; 1; 2; 3; 4; : : : to 0; 3; 5; 7; 9; : : :

The result looks like a mobile with a hanger. Finally we multiply all the labels of a Stern dyad tree

by the positive integer d; we call this a Stern d�dyad tree.

We next make a connection between the Stern dyad graph and the Euclidean algorithm. The

simple Euclidean algorithm is the Euclidean algorithm without division. Given a pair ha; bi of
positive integers with a � b, let ha(1); b(1)i = �

max(a � b; b);min(a � b; b)
�
. This is iterated until

a(n) = b(n), which is then the greatest common divisor of a and b. The number n is the length of

the pair. For example

h11; 3i 7! h8; 3i 7! h5; 3i 7! h3; 2i 7! h2; 1i 7! h1; 1i

(length 5). The length is denoted e(a; b). The length is extended to pairs hb; ai with b < a by

e(b; a) = e(a; b). The length function can be de�ned inductively by:

e(a; a) = 0; e(a; b) = e(b; a); e(a+ b; a) = e(a+ b; b) = e(a; b) + 1:

Conversely, we can make a binary tree labelled with pairs of integers as follows: Start with one

node at level 0 labelled with the pair h1; 1i and one node at level 1 labelled with the pair h2; 1i.
Inductively, given a node at level n labelled with the pair ha; bi, there are two descending edges

(left and right) to nodes at level n+ 1 labelled with pairs ha+ b; ai and ha+ b; bi. At level n, there
are 2n�1 nodes. For example, at level 3, the pairs are

h5; 3i; h5; 2i; h4; 3i; h4; 1i:

Start with any pair ha; bi at level n. The labels on the nodes of the unique path up the tree to the

node at level 1 are precisely those of the simple Euclidean algorithm of ha; bi, up to the last step.
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The length of the pair is n. Conversely, given the expansion of the simple Euclidean algorithm

for any pair of coprime integers ha; bi, it is routine to locate the pair in the tree. Thus each pair

of coprime integers ha; bi appears exactly once in this tree at level e(a; b). We call this tree the

Euclidean tree. Consider this tree labelled with the �rst of the pair of integers, for each node. It is

not hard to see by induction that the tree with these labels is precisely the Stern dyad tree, although

the labels are not in the same order. Any dyad d which appears in the Stern dyad tree as the sum

d1 + d2 of dyads, also appears as the sum d2 + d1. In the correspondence with the Euclidean tree,

these nodes correspond to nodes labelled hd; d1i and hd; d2i. The Euclidean algorithm is encoded in

the Stern tree. Note that this correspondence \explains" a number of the results in the references

on the Stern series.

We next embed the Stern tree in the Fibonacci graph. Start with a graph consisting of the

outer edges of the Fibonacci graph. That is, it has one node at level 0 and two nodes at each

succeeding level, all with count 1. From each of these nodes a Stern dyad tree is hung from its

root. There is more. From each node in each hanging Stern dyad tree labelled by a dyad d, a Stern

d�dyad tree is hung. This process is continued to exhaustion (at any level the process is �nite).

At this point we have a tree with three edges descending from each node except the original nodes

which were labelled 1. One of the edges drops straight down three levels to a new Stern tree, the

other two go down two levels to the left and right. Add more nodes. For each node of level r in

this tree with label l > 1, two nodes of label l are appended at each level > r. Finally add 2n � 2

nodes with label 1 at each level > 2. We have not kept track of the edge structure, but we claim

the labelled nodes we have constructed match up with the nodes of the Fibonacci graph labelled

with their counts and the isomorphism respects levels.

Like many combinatorial constructions, this one is best understood by drawing pictures in

private. Once the construction is understood, the claim can be formally veri�ed using for example

the generating function for the Stern series developed in Lind [1969] and the generating functionQn
r=1(1 + xfr) for the nth level of the Fibonacci graph.

The point is that the Stern tree is the irreducible part of the Fibonacci graph; everything

about Fibonacci representations is somehow encoded in the Stern tree. For example, the dyads

can be computed in terms of continuants of continued fractions. The formulae in Carlitz [1968]

involving continuants can be derived from those coming from the Stern tree. For direct numerical

calculations, the Stern dyads can be computed directly and combined combinatorially to determine

the labels of the Fibonacci graph. This is how Table 1 was generated. A frequency table was

constructed. Let Fn(k) denote the number of integers with k Fibonacci representations of length

n. Then

H(Fibn) = �
X
k

kFn(k)2
�n log2 2

�nk = n�
X
k

kFn(k)2
�n log2 k:

The number Fn(k) is the number of nodes of the Fibonacci graph at level n with count k. Let

Sn(k) denote the corresponding frequency count of Stern dyads. The discussion above shows that

Fn(k) can be derived in a simple manner from Sn(k). To calculate H(Fib38) requires Sn(k) through

n = 18 (218 = 262; 144), not several hundred million.
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5. A generating function.

In this section, we develop a generating function for the frequency count of the Fibonacci graph,

and the entropy.

Let Fn(k) equal the number of integers having exactly k Fibonnaci expansions of length n |

the frequency count. Let Hn = H(Fibn). Note that

1X
k=1

Fn(k) = fn+2 � 1;

1X
k=1

kFn(k) = 2n;

1X
k=1

k

2n
Fn(k) log2

2n

k
= Hn:

Let fk(x) =
P1

n=1 Fn(k)x
n. Let �̂k(n) be the number of times the integer k appears in the Stern

dyad tree at level n, and let �̂k(x) =
P1

n=1 �̂k(n)x
n. From the description of the Euclidean graph

given in section 4, it is apparent that

�̂k(x) =
X

i=1;:::;1
i�k

(k;i)=1

xe(k;i):

When the Stern graph is embedded in the Fibonacci graph, the levels are shifted; this shift leads

us to de�ne

�k(x) =

1X
i=1

x1+2e(k;i):

Starting from l1(x) = 1, inductively de�ne

lk(x) =
X
djk
d6=1

�d(x)lk=d(x):

A short list of �k(x) and lk(x) is given in Table 4. Next de�ne functions of two variables x and s:

L(x; s) = 1 +

1X
k=2

kslk(x);

A(x; s) = 1�
1X
k=2

ks�k(x);

�(x; s) = 1 +

1X
k=2

ksfk(x):

The formulae above imply

L(x; s) = A(x; s)�1:
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Note also that

�(x; 0) =

1X
n=0

(fn+2 � 1)xn =
1

(1� x)(1� x� x2)
;

�(x; 1) =

1X
n=0

2nxn =
1

1� 2x
;

@�(x; s)

@s

���
s=1

=
X
k�1
n�1

kFn(k) ln k x
n;

so that

H(x) =
1X
n=0

Hnx
n =

x

(1� x)2
� 1

ln 2

@�(x=2; s)

@s

���
s=1

:

Since the sum of the Stern dyads at level n is 2 � 3n�1,

A(x; 1) = 1�
X

k>i>0
(k;i)=1

kx1+2e(k;i) = 1� 2x

1X
n=1

3n�1x2n =
(1 + x)2(1� 2x)

1� 3x2
:

Contemplation of the Fibonacci graph as a union of Stern d�dyad trees leads to the expression

fk(x) =

8<
:

2x
(1�x)2 ; if k = 1,�
1+x
1�x

�2
lk(x); if k > 1.

To see this, note that lk(x) is the generating function for the tree constructed by the process which

starts with the Stern dyad tree and iteratively hangs Stern d�dyad trees from each node with label

d. One of these trees is hung from each of the node at level 0 and 2 nodes at each level � 1. This

leads to the generating function

(1 + 2x+ 2x2 + +2x3 + � � �)lk(x) =
1 + x

1� x
lk(x):

For each of these nodes, there are two nodes with the same label at every larger level. This involves

multiplying the generating function by another (1 + x)=(1 � x). The count for k = 1 is handled

separately, giving the above expression. Hence

�(x; s) =
1 + x2

(1� x)2
+

�
1 + x

1� x

�2 1X
k=2

kslk(x) =

�
1 + x

1� x

�2

L(x; s)� 2x

(1� x)2
:

Thus

@�(x; s)

@s

���
s=1

=

�
1 + x

1� x

�2
@L(x; s)

@s

���
s=1

= �
�
1 + x

1� x

�2

A(x; 1)�2@A(x; s)
@s

���
s=1

= � (1� 3x2)2

(1� x2)2(1� 2x)2
@A(x; s)

@s

���
s=1

:
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On the other hand

@A(x; s)
@s

���
s=1

= �
X

k>i>0
(k;i)=1

x2e(k;i)+1k ln k =

1X
n=1

� X
k>i>0
(k;i)=1

e(k;i)=n

k ln k
�
x2n+1:

Hence

H(x) = x

(1� x)2
� (4� 3x2)2

(4� x2)2(1� x)2

1X
n=1

� X
k>i>0
(k;i)=1

e(k;i)=n

k log2 k
��x

2

�2n+1

=
x

(1� x)2
T
�
x2

4

�
(1)

where

T (x) = 1� 1

2

�
1� 3x

1� x

�2 1X
n=1

�nx
n; (2)

with

�n =
X

k>i>0
(k;i)=1

e(k;i)=n

k log2 k: (3)

This is the generating function for the entropy. Note that �n is the sum of k log2 k over the dyads

at level n in the Stern dyad tree.

As a formal corollary of (1), note that (1�x)2
P1

n=0H(Fibn)x
n is an odd function of x. Thus

for n odd

H(Fibn�1)� 2H(Fibn) +H(Fibn+1) = 0: (4)

This may be checked in Table 1.

The series (2), as written, converges too slowly for worthwhile estimates. It is not hard to see

that 2 � 3n�1 log2(n+1) < �n < 2 � 3n�1n log2 �, where � is the golden ratio. Accordingly we de�ne

coe�cients �n and �n by the formulae

1� 3x

(1� x)2

1X
n=1

�nx
n =

1

2

�
1� 3x

1� x

�2 1X
n=1

�nx
n; (5)

1X
n=1

�nx
n =

1

2

�
1� 3x

1� x

�2 1X
n=1

�nx
n: (6)

We can put useful bounds on the �n. We claim that

3n�1 log2 1:5 < �n < 2 � 3n�2 (7)

(and in particular, �n > 0 and it grows geometrically). That is

1:75 � 3n�2 < �n < 2 � 3n�2:
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To prove (6), we consider a node at level n > 1 with label ha; bi, a > b in the Stern dyad tree.

It has a \sibling" pair ha; a� bi (both descending from the pair ha� b; ai). These two spawn pairs

labelled

ha+ b; ai; ha+ b; bi; h2a� b; ai; h2a� b; a� bi

at level n+ 1. Accordingly �n+1 =
1
2
(�n+1 � 3�n) can be written

X
k>i>0
(k;i)=1

e(k;i)=n

1
2

�
(a+ b) log2(a+ b) + (2a� b) log2(2a� b)� 3a log2 a

�

=
X

k>i>0
(k;i)=1

e(k;i)=n

1
2
a

�
a+ b

a
log2

�
a+ b

a

�
+

2a� b

a
log2

�
2a� b

a

��
:

By the convexity of the function x 7! x log2 x for x > 0, this expression is greater than

X
k>i>0
(k;i)=1

e(k;i)=n

3a

2
log2 1:5 = 3n log2 1:5:

This proves the �rst inequality of (7). On the other hand, the function x 7! x log2 x+(3�x) log2(3�
x) is convex on the interval [1; 2] and thus takes it maximum at one or both endpoints. Letting

x = (a+ b)=a, we �nd that �n+1 is bounded by

X
k>i>0
(k;i)=1

e(k;i)=n

a log2 2 = 2 � 3n�1:

This proves the second inequality of (7).

The behavior of H(x) as a meromorphic function depends on the rate of growth of the coef-

�cients. From (7) we see that
P1

n=1 �nx
n < 2x=3(1� 3x), so that T (x) converges is some disk of

radius larger than 1/3. Consequently, (1� x)2H(x) converges in the disk of radius at least
p
4=3;

in particular at x = 1. Thus H(x) has a double pole at x = 1, a fact consistent with the known

rate of growth of H(Fibn). In a disk of radius larger than
p
4=3,

H(x) = H1
x

(1� x)2
+

Ĥ

1� x
+ O(1); (8)

where O(1) is standard notation for a bounded function. Equivalently, as n! 1,

H(Fibn) = nH1 + Ĥ + O(c�n) (9)

for some c >
p
4=3.
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6. The asymptotic relative entropy.

In this section, we prove the asymptotic relative entropy exists and express it as the sum of an

in�nite series. We make the computations to establish the estimates stated at the end of section 2.

Recall that
HR(Fibn) = H(Fibn)= log2(fn+2 � 2)

= H(Fibn)
.
log2

�
�n+3 + (�1)n+2��n�3p

5

�

=
H(Fibn)

(n+ 3)
�
�+O(��2n)

�� 1
2
log2 5

;

which is asymptotic to H(Fibn)=n�. Thus from equation (9),

HR(Fib) = ��1H1: (10)

Table 5: Evaluation of asymptotic relative entropy

N �N ��1
�
4
9
4�N�N

�
��1

h
1� 4

9

PN
n=1 4

�n�n

i

1 1.3862943611 .0770163534 1.2803734137

2 2.4327906486 .0337887590 1.2101574355

3 7.4097128173 .0257281695 1.1566920630

4 22.296725925 .0193547968 1.1164711129

5 66.933951273 .0145255971 1.0862856596

6 200.83142955 .0108958024 1.0636432351

7 602.51491583 .0081721316 1.0466608354

8 1807.5595075 .0061291487 1.0339239316

9 5422.6893160 .0045968707 1.0243712348

10 16268.075992 .0034476547 1.0172067086

11 48804.234074 .0025857414 1.0118333133

12 146412.706916 .0019393061 1.0078032667

13 439238.124411 .0014544796 1.0047807317

14 1317714.37613 .0010908597 1.0025138304

15 3953143.13070 .0008181448 1.0008136545

16 11859429.39400 .0006136086 .9995385225

17 35578288.18347 .0004602064 .9985821736

18 106734864.5517 .0003451548 .9978649119

To obtain an expression for HR(Fib), we multiply equation (8) by (1� x)2 to obtain

(1� x)2H(x) = xT
�
x2

4

�
= H1 + (1� x)Ĥ + (1� x)2O(c�n):

This is convergent at x = 1, so setting x = 1, we obtain

HR(Fib) = ��1T
�
1

4

�
: (11)
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Note that since T converges for x <
p
1=3, this series converges. We can evaluate it in several

ways, depending on how we expand T . Thus we obtain

HR(Fib) = ��1
�
1� 1

18

1X
n=1

�n

4n

�
(12)

= ��1
�
1� 4

9

1X
n=1

�n

4n

�
(13)

= ��1
�
1�

1X
n=1

�n

4n

�
(14)

The series (12) converges too slowly for e�ective computation. We use series (13). The partial

sums of the series are exhibited in Table 5. Since each �n > 0, the values in the third column are

upper bounds for HR(Fib); hence HR(Fib) is clearly seen to be less than 1. However, using (7), we

can bound HR(Fib). If we truncate at step N , the error EN is bounded by

1
9

�
3
4

�N�1
log2 1:5

log2 �
< EN <

2
9

�
3
4

�N�1
log2 �

:

These bounds lead to the stated bounds of section 2.

Table 6: Asymptotic relative entropy

N �N ��1
h
1�PN

n=1 4
�n�n

i
N �N ��1

h
1�PN

n=1 4
�n�n

i

1 1.000000000000 1.080315067809 10 .186750168736 .995713200862

2 .754887502163 1.012355372552 11 .167131013759 .995713143466

3 .590090465783 .999074463770 12 .150897353618 .995713130510

4 .474047485496 .996407168762 13 .137306231932 .995713127563

5 .389580409352 .995859161488 14 .125804507821 .995713126888

6 .326447711849 .995744361234 15 .115974644527 .995713126733

7 .278194391267 .995719903422 16 .107496997512 .995713126697

8 .240588130845 .995714615519 17 .100125510671 .995713126688

9 .210767793089 .995713457400 18 .093668993028 .995713126686

It is also interesting to consider the computations from (14). This series seems to converge

much more rapidly; the results are exhibited in Table 6. There are a couple of surprises in this

table. The �n are obtained by summing and di�erencing large numbers. There is no reason to

expect them to (a) be positive and (b) be small and decreasing. There is obviously something

deeper occurring here. If (a) and (b) are true for all N , the series of Table 6 converges faster

than O(4�n). From the tabulations, it is converging faster than O(4:5�n). Also (6) converges for

jxj < C for some C > 2. This is surprising, since there is ostensibly a pole of T (x) at x = 1. Other

calculations indicate that the full set of digits of Table 6 is uncontaminated by machine roundo�

error. If the indicated convergence is valid, the last entry is the value of HR(Fib), except possibly

for the the last digit, which may be a 5.
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7. ICBM's and their probability theory.

In this section, we develop the context in which the question of the value of the relative entropy

�rst arose. It has nothing to do with codes per se; but rather certain probability measures on

the real line, called in�nitely convolved Bernoulli measures (ICBMs). The question is whether

these measures are continuous or singular. This problem is over 50 years old and the entropy was

introduced over 25 years ago by A. Garsia in an investigation of that question. The question has

arisen again in the context of dynamical systems; 1 plus the relative entropy is a certain metric

dimension of the attractor of a dynamical system on the plane.

We begin by considering how the Fibonacci graph of Table 2 was generated. Let � = ��1 =
1
2
(
p
5� 1). At each level, consider a horizontal line | a copy of the reals | so that the nodes of

the graph at that level are a �nite set of real numbers. For normalization, suppose the point at

level 0 is at the origin and the two points at level 1 are at �1. If x is a node at level n, the two

nodes descending from it are at points x� �n�1. Thus the four points at level 2 are at �1� � and

the seven points at level 3 are at �1� � � �2. Note that since �1 + � + �2 = 1� � � �2 = 0, the

point 0 at level three is a \double point;" this is precisely the relation 011 � 100 in the Fibonacci

representation. Here the relation might be better phrased `�1; 1; 1' � `1;�1;�1' in terms of the

coe�cients of powers of �.

At level n, the nodes are at points
Pn�1

r=0 ar�
r, ar = �1. The count at a node is the number of

ways it can be represented as such a sum, due to the relation �1+�+�2 = 1����2 . Note that the
width of the graph is compressed into the interval [�(1� �)�1; (1� �)�1]. We have converted the

Fibonacci code into \�-adic" expansions. In fact, it is equivalent to consider expansions
Pn�1

r=0 �r�
r,

�r = 0; 1, by letting �r = 2ar � 1. The count at each node de�nes a measure. We normalize this

measure by dividing through by 2n at level n, so the total measure is 1. More precisely, for any

interval E on the real line, let

�
(n)
� (E) =

1

2n
#fx 2 E: x =

n�1X
r=0

ar�
r; ar = �1g;

where the \#" means the cardinality, counted with multiplicity. The graph of Table 2 is drawn

to scale and it is not hard to visualize that there is some kind of limit measure space as the level

n ! 1, which measures somehow the density of in�nite �-adic expansions
P1

r=0 ar�
r , ar = �1

(or
P1

r=0 �r�
r , �r = 0; 1).

From this point of view, there is no reason to restrict to � = 1
2
(
p
5� 1). We can use any value

of �, 0 < � < 1, and construct a graph of �-adic expansions. The individual levels of the graphs

can be constructed with a simple computer program. We denote the counting measure at each level

by �
(n)

� , and the limiting measure (which is known to exist) by �� . Consider some other examples.

1. Suppose � is transcendental, so that it satis�es no algebraic equation. Then there are no

nodes with count > 1, and at each level n, there are 2n nodes, each of count 1. Of course, the

distribution of the points on the real line is di�erent and the limit measure spaces need not

be the same. (More generally, there can be nodes of count > 1 only if � satis�es an equationPn
r=0 ar�

r = 0, ar = 0;�1.)
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2. Suppose � = 1
2
. As above, we can make a translation of the measure �

(n)
� to ~�

(n)
� by letting

�r =
1
2
(ar+1). We consider points y =

Pn�1
r=0 �r

�
1
2

�r
where �r = 0; 1. Thus we are considering

ordinary binary expansions, and the measure ~�1
2

is the uniform probability measure on the

unit interval and the measure �1=2 is the uniform probability measure on the interval [�1; 1].
3. Let � = 1

3
. We make the translation �r = ar + 1. Thus we consider points y =

Pn�1
r=0 �r

�
1
3

�r
where �r = 0; 2. We are considering triadic expansions without coe�cient 1. Such expansions

lead to the Cantor set and �1=3 is (a translate of) the classical Cantor measure. For any � < 1
2
,

the support of �� is a Cantor type set, and in fact all the �� for � < 1
2
are isomorphic.

A measure with support two points each of which has measure 1
2
is called a Bernoulli measure

(choosing a point from this space is a Bernoulli trial | a ip of a fair coin). Convolution of measures

on the line amounts to adding the supports. Thus the measure �
(n)

� is the convolution �n�1r=0 �
(n)

� and

�� = �1r=0�
(n)

� . Accordingly �� is an in�nitely convolved Bernoulli measure or ICBM. In this form,

these measures are interesting from the point of view of harmonic analysis. The characteristic

function (Fourier transform) �̂
(n)

� (!) of �
(n)

� is easily seen to be cos(�n�1!). The characteristic

function of a convolution is the product of the characteristic functions of the components. Thus

�̂
(n)

� (!) =

nY
r=1

cos(�r�1!); �̂�(!) =

1Y
r=1

cos(�r�1!):

Among other things, this shows that �� is well-de�ned. For a general discussion of these matters,

the reader could see for example Kawata [1972].

These measures and some variants were studied in the 1930s, because their characteristic

functions have interesting asymptotic properties. Recall that a measure � on the reals is absolutely

continuous is it has a density f so that �(E) =
R
E
f dx. At the other extreme, a measure is

totally singular if it is supported on a Lebesgue null set, e. g., the Cantor measure. In general, a

measure is the (essentially unique) sum of an absolutely continuous and a totally singular measure.

A measure is continuous if every single point has measure 0. The following facts were proved about

the �� . They are continuous and pure, i. e., either absolutely continuous or totally singular (Jessen

& Wintner [1938]). For � a root of 1
2
, �� is absolutely continuous (Wintner [1935]). For � < 1

2
,

�� is totally singular (since its support is a Cantor set). For � > 1
2
, every interval contained in

[�(1� �)�1); (1� �)�1)] has strictly positive measure (the measure is dense).

Thus it was generally supposed that for � > 1
2
, the �� are absolutely continuous. However

P. Erd�os, who was at the Institute for Advanced Study, visited Johns Hopkins, where A. Wintner

was, learned of the question, and using number theory, showed that there are � > 1
2
for which ��

is totally singular (Erd�os [1939]). The property he needed was that ��1 is an algebraic integer |

that is it satis�es an integral polynomial with lead coe�cient 1 | all of whose conjugates (the other

roots) lie inside the unit circle. Such numbers ��1 are called Pisot-Vijayarghavan (PV) numbers.

This property allowed him to estimate �̂�(!) as j!j ! 1 and show it does not converge to zero.

By the Riemann-Lebesgue lemma, such a measure cannot be absolutely continuous. The simplest

such ��1 (the only quadratic one) is 1
2
(
p
5 + 1), a root of z2 � z � 1, since its conjugate is ��. In

fact, this was the explicit example of Erd�os. Thus for � = 1
2
(
p
5� 1), �� is totally singular.
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Some years later A. Garsia turned to this question of which �� are totally singular (Garsia

[1963]). He introduced an entropy. Let hn(�) denote the entropy of the �nite probability space

de�ned by �
(n)
� . Garsia considered the quantities

Gn(�) =
hn(�)

�n log2 �
and showed inter alia that

G(�) = lim
n!1

Gn(�) = lim inf
n!1

Gn(�)

exists and that for ��1 a PV number, G(�) < 1. This result depended on the earlier results

about singularity. Note that if there are no multiplicities in the �-adic expansions, then G(�) =

�(log2 �)�1 > 1 for 1
2
< � < 1. The proof is rather technical, and we do not discuss it here; the

interested reader is referred to the original paper. Garsia's method does not give a precise estimate

of the value. This in fact was the motivation for the present paper | to independently estimate

the value of G(��1), the \simplest" case where Garsia's entropy is known to be less than 1.

8. Comments.

1. Algebraic integers, all of whose conjugates lie inside the unit circle, are called Pisot-Vijayargha-

van (PV) numbers, although the concept evidently goes back to G. Hardy (Vijayarghavan was

a student of Hardy). There is an extensive literature on them, mostly in the context of number

theory. There are an in�nite number of PV numbers between 1 and 2, so by Erd�os' result, there

are an in�nite number of �� ,
1
2
< � < 1 for which �� is totally singular. For an introduction to

PV numbers, Salem [1963] is particularly recommended. For a recent application of PV numbers

to a di�erent coding problem, see Wilf [1987].

2. The Euclidean tree has occurred in other studies; in particular in estimates of Markov

numbers (Cohn [1979]; Zagier [1982]). These numbers have to do with how well irrational numbers

can be approximated by rationals.

3. It is a standing question to determine for which �, 1
2
< � < 1, the ICBM �� is absolutely

continuous or totally singular. Of course, for � < 1
2
, �� is totally singular because it is a Cantor

measure. Erd�os' method establishes that if ��1 is a PV number, then �� is totally singular. It

can be seen directly that if � is a root of 1
2
, then �� is absolutely continuous. Erd�os established

(again by estimating limj!j!1 �̂�(!)) that �� is absolutely continuous for lots of �: namely that

�� is absolutely continuous for almost all � near 1 (Erd�os [1940]). Salem (see Salem [1963]) showed

that Erd�os' original technique works only for � the inverse of a PV number; limj!j!1 �̂�(!) 6! 0

only for such �. Garsia determined some other algebraic values of � for which �� is absolutely

continuous (Garsia [1962]). However to this date, there is no e�ective characterization of which ��

are totally singular and which are absolutely continuous. In particular, the only �, 1
2
< � < 1 for

which �� is known to be totally singular are the inverses of PV numbers.

4. More recently, these measures have appeared in some examples in dynamics, concerned with

metric dimensions and strange attractors. We de�ne the following piecewise-linear (discontinuous)

map T� on the unit square

f(x; y): jxj � 1; jyj � 1g
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for any � between 0 and 1. Cut the square in half vertically at the line y = 1
2
. The lower half

is stretched double vertically and compressed by � horizontally with the right edge remaining on

the edge of the square. Thus (x; y)! (�x + (1� �); 2y + 1). The same is true of the upper half,

except the left edge remains on the edge of the square: (x; y) ! (�x � (1 � �); 2y � 1). When

� = 1
2
, this is the classical bakers' transformation. It so happens that there is a natural invariant

measure on the square. The measure is uniform in the vertical direction and is the ICBM �� (up to

scale) in the horizontal direction (Alexander & Yorke [1984]). The entropy is some kind of metric

dimension of the attractor. In particular, the fact that HR(Fib) < 1 means that the \essential

attractor" for � = 1
2
(
p
5 � 1) is some kind of strange attractor | in some sense it has a fractal

structure. In fact, Table 6 appears in Alexander & Yorke [1984], but with no theory to back it up.

We might also mention that there is another measure associated with �-adic expansions (Gel'fond

[1959]; Parry [1960]), and that this measure and �� have some relation to each other in the context

of dynamics (Alexander & Parry [1988]). The book Billingsley [1979] discusses relations between

measure theory and metric dimensions.

5. The rth hyper-Fibonacci numbers are de�ned by the recursion

fl =

�
2l�1 for l = 1; : : : ; r+ 1,

fl�1 + � � �+ fl�r+1 for l > r + 1,

and a code exists based on such numbers. The graph for such a code is similar to that of Table 2. The

Stern graphs sit inside the graph analogously. In terms of �-adic expansions, the code corresponds

to expansions for � = �r, a root of the polynomial

xr + xr�1 + xr�2 + � � �+ x� 1 = 0:

Indeed the analogy goes further; the inverse of �r is a PV number, and so ��r is totally singular. In

fact, Garsia's result works for any � with ��1 a PV number, and so the asymptotic relative entropy

of this code is strictly less than one. Here we indicate how to show that ��1r is a PV number (a

result which is probably well known).

The proof is based on Rouche's theorem which counts how many roots a function has inside a

simple closed curve in the complex plane. Note that ��1r satis�es the polynomial

xr � xr�1 � xr�2 � � � � � x� 1 = 0:

We claim this polynomial has r � 1 roots inside the unit circle. Append a further root x = 1 by

multiplying the polynomial by the factor x� 1 to obtain the polynomial

xr+1 � 2xr + 1:

Consider the unit circle. We claim that for x on this circle

j � 2xr + 1j > jxr+1j = 1;

except for x the rth roots of 1. To see this, let x = ei� , and compute

j � 2xr + 1j2 � jxr+1j2 = 4� 4 cos r�;
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which is positive unless cos r� = 1. By direct substitution, the only rth root of 1 which is a root

of xr+1 � 2xr + 1 is 1 itself. By a corollary of Rouche's theorem, the polynomial xr+1 � 2xr + 1

has one less root inside the unit circle as does the polynomial �2xr + 1, namely r � 1. Hence

xr � xr�1 � xr�2 � � � � � x� 1 = 0 has r � 1 roots inside the unit circle, as claimed.

It is left to the reader to estimate the value of the asymptotic relative entropy.
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