
JavaHelp
TM

 2.0
System User's Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 U.S.A.
650−960−1300

Copyright 2004 Sun Microsystems, Inc. All rights reserved. Use is subject to license terms. Sun, Sun
Microsystems, the Sun Logo, Solaris, Java, the Java Coffee Cup Logo, J2SE, Java Foundation Classes
(J.F.C.), Java Plug−in and JavaHelp are trademarks or registered trademarks of Sun Microsystems, Inc. in the
U.S. and other countries.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON−INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
Clause at DFARS 252.227−7013 (Oct. 1988) and FAR 52.227−19 (c) (June 1987).

Table of Contents
1 JavaHelp TM System User's Guide JavaHelp 2.0 − December 2004...1

1.1 Keeping in Touch..1
1.1.1 Feedback...1
1.1.2 Mailing List...2
1.1.3 Discussion group (JAVAHELP−INTEREST)..2

2 The JavaHelp 2.0 Release..3
2.1 Contents of the Release...3
2.2 Requirements...4
2.3 New Features and Changes in JavaHelp 2.0...4

2.3.1 Native Browser Support..4
2.3.2 Installation Packages..4
2.3.3 Running the JavaHelp Viewer...4
2.3.4 JDK 1.1 is no longer supported...5
2.3.5 Change to API for Accessing Frames...5
2.3.6 Multi−Topic Printing...5
2.3.7 Comprehensive Merging Options..5
2.3.8 New Views in Help Viewer..5
2.3.9 Specifying View (Navigator) Icons or Text..5
2.3.10 Presentation Controls..6
2.3.11 Customizable Toolbar Support in Helpset File..6
2.3.12 Server−Based JavaHelp...6
2.3.13 Helpset File has an Implementation Section...6
2.3.14 Dynamic Context−Sensitive Help for Components...6

2.4 Demonstration Programs..7
2.4.1 IDE Demo..7
2.4.2 Object Demo...9
2.4.3 API Viewer..9
2.4.4 Merge Demo...9
2.4.5 Newmerge Demo..9
2.4.6 Browser Demo..9
2.4.7 Search Example..10
2.4.8 Localized Helpsets..10

2.5 Sample Helpsets...10
2.5.1 JavaHelp System User's Guide...10
2.5.2 History of the Holidays..10
2.5.3 IDE Demo..11
2.5.4 ..11
2.5.5 Localized Helpsets..11
2.5.6 ..11
2.5.7 ..12

2.6 The JavaHelp Libraries and Tools..12
2.6.1 Libraries..12
2.6.2 Tools...12

2.7 Limitations and Bugs..12
2.7.1 HTML Viewer..12
2.7.2 Full−text Search..14
2.7.3 Context Sensitive Help..15
2.7.4 Other Bugs..15

2.8 List of Files in the JavaHelp 2.0 Release..16

3 JavaHelp System Overview ...19
3.1 Introduction...19
3.2 JavaHelp System Features...20

JavaHelp System User's Guide i

JavaHelp System User's Guide i

Table of Contents
3 JavaHelp System Overview

3.2.1 Help Viewers...20
3.2.2 Table of Contents..21
3.2.3 Index...21
3.2.4 Full−Text Search...21
3.2.5 Compression and Encapsulation..21
3.2.6 Embeddable Help Windows..21
3.2.7 Context−Sensitive Help...21
3.2.8 Flexible Packaging..21
3.2.9 Customization...22
3.2.10 Merging...22
3.2.11 JavaBeans Support...22

3.3 Descriptive Scenarios...22
3.4 Invocation Mechanisms..22

3.4.1 Menus and Buttons...22
3.4.2 Tooltips..23
3.4.3 Context−Sensitive Help...23
3.4.4 Viewer Initiated Help...23
3.4.5 System Initiated Context−Sensitive Help..23

3.5 Deploying and Presenting JavaHelp Helpsets..23
3.5.1 Standalone Application...23
3.5.2 Network Application..24
3.5.3 Embedded Help..25
3.5.4 Component Help...25
3.5.5 Help Server...26
3.5.6 Browser−Based Applications (Applets)...26

3.6 Server−based JavaHelp Helpsets..28
3.7 Full−text Search..29

3.7.1 Standalone..29
3.7.2 Client−Side..30
3.7.3 Server−Side..31

3.8 JavaHelp System Lightweight Components...31

4 Authoring Help Information ...33
4.1 Viewing Helpsets..33

4.1.1 Displaying a Helpset with hsviewer.jar..34
4.1.2 Displaying a Helpset in Windows by Clicking the .hs File...34
4.1.3 Displaying a Helpset by Using an Executable JAR File..35

4.2 Accessibility and JavaHelp Viewer Shortcut Keys..36
4.2.1 Traversing the Viewer...37
4.2.2 Traversing and Using the Toolbar Buttons..37
4.2.3 Traversing and Using the Navigators..37
4.2.4 Traversing and Using the Content Pane...38
4.2.5 Shortcut Key Table..38

4.3 Setting Up Your JavaHelp Project..40
4.3.1 Authoring...40
4.3.2 Packaging...41
4.3.3 Packaging a Helpset into a JAR File...42

4.4 Helpset File...44
4.4.1 Helpset File Format...45

4.5 The Map File...51
4.6 JAR Files..52

4.6.1 Using JAR Files...52
4.6.2 Sample Help Hierarchy...52

ii JavaHelp System User's Guide

ii JavaHelp System User's Guide

Table of Contents
4 Authoring Help Information

4.6.3 The jar Command...53
4.6.4 Creating JAR Files..53
4.6.5 Listing JAR Files...54
4.6.6 Extracting Files from JAR Files...54
4.6.7 The JAR: Protocol...54

4.7 Table of Contents File...55
4.8 Index File..58
4.9 Glossary Navigator and File...60
4.10 Favorites Navigator and File...62
4.11 Context−Sensitive Help..64

4.11.1 Types of Context−Sensitive Help..65
4.11.2 User−Initiated Help..65
4.11.3 System−Initiated Help...66

4.12 Full−Text Search..66
4.12.1 How Searching Works...66

4.13 Creating the Full−Text Search Database...68
4.13.1 Example..68

4.14 The jhindexer Command..69
4.14.1 Stop Words...70
4.14.2 Config File...70

4.15 The jhsearch Command...72
4.16 Opening Popup and Secondary Windows From an HTML Topic...72

4.16.1 Differences Between Popups and Secondary Windows...73
4.16.2 Working with Popups and Secondary Windows..74
4.16.3 ..74
4.16.4 Window Type (viewerStyle)...75
4.16.5 Content or ID...75
4.16.6 Activation (viewerActivator)...75
4.16.7 Window Size (viewerSize>, Location (viewerLocation) , and Name (viewerName)............76
4.16.8 Text...77

4.17 Merging Helpsets..78
4.17.1 The Master Helpset...79
4.17.2 Understanding Merge Types...79
4.17.3 Using Merge Types...83
4.17.4 Merging Helpsets Statically...84

5 Programming with the JavaHelp System...87
5.1 Supplemental Information...87
5.2 Adding the JavaHelp System to Applications...87

5.2.1 Helpset..89
5.2.2 HelpBroker..89

5.3 Implementing Context−Sensitive Help..89
5.3.1 Summary...90
5.3.2 Basic Elements...90
5.3.3 Implementing Context−Sensitive Help..92
5.3.4 Dynamic Map ID Assignment..98
5.3.5 Using Statically Defined Help IDs...100

5.4 Merging Helpsets Dynamically...101
5.5 Embedding JavaHelp Components..102
5.6 Creating Lightweight Java Components...103

5.6.1 Lightweight Components for HTML Topics...103
5.6.2 Using the <OBJECT> Tag..105
5.6.3 Supplemental Information...105

JavaHelp System User's Guide iii

JavaHelp System User's Guide iii

Table of Contents
5 Programming with the JavaHelp System

5.7 Server−Based JavaHelp Helpsets..106
5.7.1 Java Server Pages..106
5.7.2 Server−Based JavaHelp Architecture...106
5.7.3 JavaHelp Server Components..106
5.7.4 JavaHelp JSP Tag Extensions..108
5.7.5 Navigator Scripting Variables..109

6 Localizing Help Information ...113
6.1 Localizing the Help Presentation..113

6.1.1 Data Input in the Viewer..113
6.2 Localizing Helpsets...114

6.2.1 The Helpset File..115
6.3 Localizing XML Data...117

6.3.1 Character Encoding..117
6.3.2 Setting the Language..117

6.4 Localizing HTML Data..118
6.4.1 Character Encoding..118
6.4.2 Specifying a Language..119

6.5 Localization and Fonts..120
6.6 Localizing the Full−Text Search Database...121

7 Index..123

iv JavaHelp System User's Guide

iv JavaHelp System User's Guide

1 JavaHelp
TM

 System User's Guide
JavaHelp 2.0 − December 2004

This user's guide contains the following sections:

Release Information

A description of the contents of the JavaHelp release.

JavaHelp System Overview

A general overview of the JavaHelp system. Describes features, usage scenarios, and other technical details.

Authoring Help Information

A guide for help authors. Describes how to: set up a help system, use popups and secondary windows, use
context−sensitive help, use full−text search, and package help information for delivery to users.

Programming with the JavaHelp System

A guide for developers. Describes how to: add JavaHelp to applications, implement context−sensitive help,
embed JavaHelp components into applications, and develop lightweight Java components that can be added
to help topics.

Localizing Help Information

A guide for localizers of JavaHelp systems.

This guide is available in PDF format at:
 doc\jhug.pdf

The JavaHelp helpset for this guide can be found at:
 doc\jhug

1.1 Keeping in Touch

The following is a list of ways to obtain and share information about the JavaHelp system.

1.1.1 Feedback

Comments and questions about how the JavaHelp system software works are welcome. Please review the
FAQ at our home page, and if your question is not covered, send email by using the following web page:

http://java.sun.com/docs/forms/javahelp−sendusmail.html

If you have comments on the JavaHelp specification, instead of the web page above, please send comments
to:

jsr−97−comments@jcp.org

Your email messages will be read. However, due to the large volume of email, we might not be able to
respond personally.

1 JavaHelpTM System User's Guide JavaHelp 2.0 − December 2004 1

http://java.sun.com/docs/forms/javahelp-sendusmail.html
mailto:jsr-97-comments@jcp.org

1.1.2 Mailing List

The JavaHelp team maintains a mailing list for disseminating information about JavaHelp system updates and
events.

To subscribe:

Send mail to listserv@javasoft.com.1.

In the body of the message type: SUBSCRIBE JAVAHELP−INFO.2.

1.1.3 Discussion group (JAVAHELP−INTEREST)

Sun maintains a mailing list as a JavaHelp community resource where interested parties can post and
exchange information and inquiries about the JavaHelp system in a public forum. Subscribers to this list can
receive inquiries either as they are posted or in regular digest versions.

To subscribe:

Send mail to: listserv@javasoft.com.1.

In the body of the message type: SUBSCRIBE JAVAHELP−INTEREST.2.

To view archives, manage your subscription, or to unsubscribe, go to:

http://archives.java.sun.com/archives/javahelp−interest.html

Web Site

Other information can be obtained at our web site at:

http://java.sun.com/products/javahelp

We hope to hear from you!

JavaHelp System User's Guide

2 1.1.2 Mailing List

mailto:listserv@javasoft.com
mailto:listserv@javasoft.com
http://archives.java.sun.com/archives/javahelp-interest.html
http://java.sun.com/products/javahelp

2 The JavaHelp 2.0 Release
This chapter describes the contents of the JavaHelp 2.0 release. In addition to the JavaHelp system libraries,
the release contains a variety of demos, examples, and documentation.

How you explore and use the release depends on your interests. For example:

If you are a developer interested in adding the JavaHelp system to an application, you might:

Run the demonstration programs and examine the source code for those programs.•
Read the chapters of the JavaHelp System User's Guide that pertain to developers,
especially Programming with the JavaHelp System.

•

Review the specification and the APIs.•

If you are an online help author you might:

Run the demonstration programs.•
Read the chapters of the JavaHelp System User's Guide that pertain to help authors,
especially Authoring Help Information.

•

Examine the sample helpsets.•
Create a helpset and view it using the hsviewer command.•

2.1 Contents of the Release

The single zip file installation contains the following files:

README file Information about this release (text document).

LICENSE.html The JavaHelp license agreement (html document).

JavaHelp System User's
Guide (this document)

Available in both PDF (doc\jhug.pdf) and JavaHelp/HTML format
(doc\jhug).

Specification Defines the API between the application and the help system and the formats
of the underlying files used by the JavaHelp system.
(doc\spec\JavaHelp_V2_0_Specification.pdf)

API javadoc generated documentation of the JavaHelp API. Can be viewed by
using the JavaHelp API viewer or using a web browser
(doc\api\index.html)

Libraries and tools The libraries (javahelp\lib) and tools (javahelp\bin) used to create
online help systems.

Demonstration programs Programs that demonstrate JavaHelp system functionality. Source code for
these programs illustrate how you can implement these features in your
JavaHelp systems. (demos\bin and demos\src)

Sample Helpsets Helpsets that you can use to familiarize yourself with the capabilities of the
JavaHelp system. You can also use these helpsets as templates for creating
your own help systems. (demos\hs and demos\hsjar)

JavaHelp source files Source files for the JavaHelp system (except the full−text search engine).
(src.jar)

DTDs The DTDs (Document Type Definitions) that define the XML−based metadata
files (helpset, map, TOC, Index) are included in javahelp\lib\dtd.

2 The JavaHelp 2.0 Release 3

Default Style Sheet The default style sheet for the J2SE 2.0 viewer is included in doc\css.

For a detailed list of the files included in the release, see List of Files in the Release.

2.2 Requirements

You must install the JavaTM 2 Platform, Standard Edition SDK (J2SE SDK) to be able to use JavaHelp 2.0.

The JavaHelp 2.0 release is an optional package of the J2SE SDK (JDK 1.2.2 and later). As a result, it works
well with all versions of the J2SE. JavaHelp 2.0 does not work with JDK 1.1.x. We have tested this release
against J2SE 1.2.2, 1.3.1, and 1.4.1 on the following systems:

Windows 2000•
Solaris 2.6/SPARC•
Solaris 7/SPARC•
Solaris 8/SPARC•
Solaris 9/SPARC•

2.3 New Features and Changes in JavaHelp 2.0

This page describes the most significant changes since the JavaHelp 1.1.3 release.

2.3.1 Native Browser Support

Release 2.0_02 enables you to use a native browser to display your help topics in the topic pane of the help
window. This alternate content viewer uses the Java Desktop Integrated Component (JDIC) browser
component BasicNativeContentViewerUI to render content by using the native browser. The use of
BasicNativeContentViewerUI requires that the JDIC libraries be installed. See http://jdic.dev.java.net for
details on how to integrate the JDIC components into your application.

In your applications, you use this browser by adding the following import statement and then putting the call to
setContentViewerUI before the code that creates the HelpBroker or JHelp component (for a code
example that creates a HelpBroker, see Adding the JavaHelp System to Applications).

import javax.help.SwingHelpUtilities;
...
SwingHelpUtilities.setContentViewerUI("BasicNativeContentViewerUI");

Additionally, you can use the command−line parameters −ID and −contentViewer to cause hsviewer to
use the alternate browser and display a given ID in the helpset, as follows:

java −jar hsviewer.jar −helpset HolidayHistory −classpath\
../hsjar/holidays.jar −ID easter −contentViewer BasicNativeContentViewerUI

2.3.2 Installation Packages

JavaHelp is now released in a single zip file installation package. You must uninstall prior releases before
unpacking V2.0 into a directory.

2.3.3 Running the JavaHelp Viewer

The JavaHelp viewer is now in the JAR file hsviewer.jar. To run it you must use a command similar to the
following one:

 java −jar c:\jh20\demos\bin\hsviewer.jar

JavaHelp System User's Guide

4 2.2 Requirements

http://jdic.dev.java.net

For more information, see Viewing Helpsets.

2.3.4 JDK 1.1 is no longer supported

The earliest version of the JDK that is supported is the Java
TM

 2 Platform, Standard Edition (J2SE
TM

) JDK
1.2.2.

2.3.5 Change to API for Accessing Frames

In previous versions of JavaHelp, you could directly access the frame in which JavaHelp is displayed if you
extended the DefaultHelpBroker. After extending DefaultHelpBroker, you were able access the protected
JFrame frame field.

In JavaHelp 2, the frame field is no longer accessible. In applications that use JavaHelp 2, you will have to
rewrite code that does this kind of frame access. Use the following methods:

WindowPresentation DefaultHelpBroker.getWindowPresentation();
Window WindowPresentation.getHelpWindow();

You will still be able to access the frame with the following method calls:

WindowPresentation pres = hb.getWindowPresentation();
Window win = pres.getHelpWindow();

2.3.6 Multi−Topic Printing

It is now possible to print more than one help page at a time. You can select a group of topics in a navigation
pane, such as the TOC or index, and then choose the Print option to print them all out.

2.3.7 Comprehensive Merging Options

When helpsets are merged, there are new merge options available: UniteAppendMerge and SortMerge.
UniteAppendMerge causes like items to be merged, making it possible, for example, to produce fully merged
TOCs. SortMerge allows you to produce fully merged and canonically sorted indexes. For more information,
see Merging Helpsets.

2.3.8 New Views in Help Viewer

In addition to the existing TOC, Index, and Search navigators, there are two new navigators that can be added
to the navigation pane of the help viewer:

Glossary. Short technical descriptions of terms can be put in an XML−based file with a format similar
to the index file.

•

Favorites. An XML−based collapsible and expandable display of the user's favorite topics.•

2.3.9 Specifying View (Navigator) Icons or Text

When you specify a navigator by using the <view> tag in the helpset file, you can also specify the icon that
displays in the tab above the navigator by using the <image> tag. For more information on setting view
images, see the description of the <view> tags in The Helpset File.

You can display text instead of icons in the navigator tabs by setting the presentation tag's
displayviewimage attribute to "false". For more information on setting this attribute, see the description
of the <presentation> tag in The Helpset File.

JavaHelp System User's Guide

2.3.4 JDK 1.1 is no longer supported 5

2.3.10 Presentation Controls

It is now possible to display help in various kinds of windows (called presentations) from a Java application or
from a helpset's table of contents. There are presentation controls in the helpset file and navigator files, a
Presentation class, and context−sensitive help changes that support the class. These features provide you
with more options for displaying your help content in the JavaHelp Viewer, in a secondary window, or in a
popup window.

Not only can you specify the type of presentation window, but for each type of window you can designate the
buttons that appear in the toolbar. In addition to the standard Back, Forward, and Print buttons, you can
display buttons like the Reload button (reloads the current topic) and the Home button (goes to the main topic
defined for the helpset).

For more information, see the Presentation feature in Helpset File and Implementing Context−Sensitive Help.

2.3.11 Customizable Toolbar Support in Helpset File

When you define a presentation window, you can specify if it has a toolbar, and, if so, which controls appear
on the toolbar. For more information, see the <toolbar> tag in Helpset File.

2.3.12 Server−Based JavaHelp

The JavaHelp V1.0 API provided an initial foundation for developing online help for server−based
applications. JavaHelp 2 extends support for server−based applications with a standard for a JavaHelp bean
and a Java Server PagesTM (JSP) tag library for accessing helpset data. For more information, see
Server−Based JavaHelp.

2.3.13 Helpset File has an Implementation Section

The implementation section of the helpset, enclosed in the <impl> tag, enables you to use special viewers
based on a MIME type. It can also simplify using an external browser to display your helpsets rather than
using the default helpset viewer included in the JavaHelp system.

Specifying an <impl> section in a helpset file creates a registry that provides key data mapping to define the
HelpBroker class to use in the HelpSet.createHelpBroker method. The registry also determines the
content viewer to user for a given MIME type.

JEditorPane uses this mechanism to link a given MIME type with an editor kit.

For example, the JavaHelp system gets its default content pane viewer for HTML by linking the text/html
MIME type to com.sun.java.help.impl.CustomKit, which is an extension of the Swing
HTMLEditorKit. If you wanted to display PDF in the content pane, you could write your own PDF editor kit,
and then you could map the MIME type for PDF (application/pdf) to your new editor kit.

Another use for this feature might be to replace the current HTMLEditorKit (the content viewer) with a web
browser without having to change code as you do in JavaHelp 1.

To see how to declare the tag, see the <impl> tag in Helpset File.

2.3.14 Dynamic Context−Sensitive Help for Components

You can assign help IDs based on cursor position, selection, or some other mechanism inherent in an object.
For more information, see Dynamic Map ID Assignment in "Implementing Context Sensitive Help."

JavaHelp System User's Guide

6 2.3.10 Presentation Controls

2.4 Demonstration Programs

This release includes a number of demo programs (including source code) and examples. These programs
demonstrate JavaHelp system functionality and provide code examples that illustrate how you can implement
these features in your JavaHelp systems. Many of these demonstration programs use the sample helpsets.

IDE demo A mockup of an Integrated Development Environment application. The application
includes a complete, functional help system.

Object demo A demonstration of how the <OBJECT> tag can be used to embed Java
components directly into HTML topic pages. The JavaHelp system includes two
components, a popup window and a secondary window.

API viewer A specialized help viewer that includes a navigator that displays JavaHelp system
API documentation.

Merge demo A small application that demonstrates the dynamic merging of helpset information.

Newmerge demo An application and a set of help files that demonstrate new features for merging of
helpset information, including SorteMerge merging for indexes and glossaries and
UniteAppendMerge merging for TOCs.

Browser demo A demonstration of the JavaHelp viewer running in an applet on a web browser.

Search example Source file that describes a simple, alternate implementation of a full−text search
engine.

Localized Helpsets Localized demonstration helpsets (English, German, Japanese.

Demo source files Source files for all of the demos can be found in:

JavaHelp_Home/demos/src

In addition to the locations described below, most of the demo programs are available by executing the
JAR files. Depending on your operating system, you might execute a JAR file from the command line
or by double−clicking the file's icon in the Windows Explorer. For instance, if your JAR files are set to
execute with the Java runtime program java.exe on a Windows operating system, you can double
click the jar file in the Explorer to run it.

The demo programs' jar files are located in the demos/bin folder.

2.4.1 IDE Demo

The IDE Demo is a mockup of an IDE (Integrated Development Environment) application that contains a
complete, fully−featured help system.

The IDE demo demonstrates the following functionality:

Standard navigators TOC, keyword index, and full−text search navigators.

Synchronization The TOC display is synchronized with the content pane. The topic
displayed in the content pane is always highlighted in the TOC.

JavaHelp System User's Guide

2.4 Demonstration Programs 7

Content pane Help topics displayed in the content pane contain images,
hyperlinks, and other 3.2 HTML tags.

Lightweight Java components The top−level topic "Building Projects" uses the
JHSecondaryViewer lightweight component to implement a popup
window, and a secondary window. In this topic, click on the blue
term "project" to see the popup window and click on the button at
the end of the first paragraph to see the secondary window. These
components are also demonstrated and described in the Object
demo.

Presentation settings The IDE demo has code in its helpset file (IdeHelp.hs) that sets
up two presentation windows. It also has entries in its TOC file
(IdeHelpTOC.xml) and its index file (IdeHelpIndex.xml) that
specify the type of window (the presentation) in which to display
the help topic. (For example, see the TOC entry "Beans In JDE − in
SecondaryWindow".) For more information on presentations, see
the presentation feature in Helpset File and in Implementing
Context−Sensitive Help.

Context Sensitive Help The JavaHelp system supports three types of context−sensitive
help:

Window−Level Help Place the cursor in different areas of the
application and press the F1 key. This
activates the help viewer and displays
help that describes the GUI object that
currently has focus.

Field−Level Help Click the button, then move the

field−level cursor over an object in

the GUI and click select.

Help Button Choose Edit > Find. Click on the Help
button in the dialog box to display a
topic about the dialog box.

Custom Navigator Choose Help > Java API Reference to activate the help viewer and
load a helpset that includes the customized ClassViewer
navigator. The ClassViewer is an example of a navigator that is
customized to assist in navigating through javadoc−generated
API documentation. The behavior of the ClassViewer is
described at API Viewer. It is a fully functional navigator with its
own specialized format.

Embedded Help Choose Window > Class Inspector to activate the custom
ClassViewer navigator described above and embed it in the
application. Note that as you navigate, the corresponding topic is
displayed in the lower pane of the application.

To run the IDE demo, enter the following command at the command line:

 java −jar JavaHelp_Home/demos/bin/idedemo.jar

JavaHelp System User's Guide

8 2.4 Demonstration Programs

After the demo starts, choose Help > Demo JDE − Help to activate the help viewer.

2.4.2 Object Demo

Lightweight Java components can be added to HTML topic pages using the <OBJECT> tag. The JavaHelp
system includes popup and secondary windows implemented using the JHSecondaryViewer component. The
object demo shows how popup and secondary windows work.

To run the Object demo, enter the following command at the command line

 java −jar JavaHelp_Home/demos/bin/object.jar

2.4.3 API Viewer

The JavaHelp release includes an API Viewer. This simple application is similar to the helpset viewer, except
that the CLASSPATH includes a special ClassViewer navigator. The API Viewer presents javadoc−generated
information derived from the JavaHelp source files.

The TOC in the API Viewer (the ClassViewer navigator) includes a top pane and a bottom pane. The top pane
displays a list of the classes, interfaces, and exceptions that comprise the JavaHelp system. The bottom pane
displays a hierarchy of components of a selected class, interface, or exception. Select a class in the top pane
to view its constituent components in the bottom pane. Choose a component in the bottom pane to view it in
the content viewer.

The data used by the ClassViewer Navigator is generated using a doclet (doclets are a feature of the JavaTM

2 SDK). The API doclet is not included in this release of the JavaHelp system.

To run the API Viewer demo, enter the following command at the command line:

 java −jar JavaHelp_Home/demos/bin/apiviewer.jar

2.4.4 Merge Demo

Demonstrates JavaHelp system helpset merging capabilities. For details, see the online help available from
the Help menu in the merge demo program.

To run the Merge demo, enter the following command at the command line:

 java −jar JavaHelp_Home/demos/bin/merge.jar

2.4.5 Newmerge Demo

Demonstrates JavaHelp system helpset merging capabilities. For details, see the online help available from
the Help menu in the newmerge demo program.

To run the Newmerge demo, enter the following command at the command line:

 java −jar JavaHelp_Home/demos/bin/newmerge.jar

2.4.6 Browser Demo

Demonstrates how the JavaHelp system can be used with applet−based applications running in web
browsers. You can run demonstration by using either Netscape Navigator or Internet Explorer. The demo
creates an applet button on an HTML page. When you click the button, the JavaHelp viewer displays the
Holiday helpset. This demo requires some setup. You can find instructions for the demo in the file

JavaHelp System User's Guide

2.4.2 Object Demo 9

demos/browser/demo_instructions.

2.4.7 Search Example

The file demos/src/sunw/demo/searchdemo/ClientSearch.java shows how to extend the
HelpSearch class to implement an alternate search engine.

2.4.8 Localized Helpsets

Localized demonstration helpsets (English, German, Japanese) for the IDE demo are included in the
demos/hsjar folder. Be sure to choose the appropriate font in the JavaHelp viewer's Set Fonts dialog box
(choose Options > Set Font).

You must have installed the appropriate Unicode fonts to be able to view the Japanese helpset.

Also, you use a different command to run helpsets. The command is:

 java −jar hsviewer.jar [−helpset hs_name]

For example (on a Windows system):

 C:\> java −jar c:\JavaHelp\demos\bin\hsviewer.jar
 −helpset c:\JavaHelp\demos\hs\newmerge\MergeHelp.hs

2.5 Sample Helpsets

This release includes a variety of helpsets packaged in different ways. Many of these helpsets are used by the
demonstration programs, but you can also use the hsviewer executable jar file to view them.

Helpsets are described in detail in Authoring Help Information.

You can view these helpsets to familiarize yourself with the capabilities of the JavaHelp system. You can also
use these helpsets as templates for creating your own help systems. The helpsets are described below.

2.5.1 JavaHelp System User's Guide

The JavaHelp System User's Guide (this document) is also available as a JavaHelp helpset. It is located in
doc\jhug.

2.5.2 History of the Holidays

This helpset is interesting because it shows how a help system can be set up with two different TOCs. This
helpset can be found in the following location:

JavaHelp_Home/demos/hsjar/holidays.jar

To view this helpset on a UNIX system, use the following command:

 java −jar JavaHelp_Home/demos/bin/hsviewer.jar \
 −helpset JavaHelp_Home/demos/hsjar/holidays.jar

To view this helpset on a Windows system, use the following command in a Command window:

 java −jar JavaHelp_Home\demos\bin\hsviewer.jar −helpset JavaHelp_Home\demos\hsjar\holidays.jar

JavaHelp System User's Guide

10 2.4.7 Search Example

2.5.3 IDE Demo

This helpset is used in the IDE Demo demonstration program. It is located in

 demos/hsjar/idehelp.jar

To view this helpset on a UNIX system, enter the following command at the command line:

 java −jar JavaHelp_Home/demos/bin/hsviewer.jar \
 −helpset JavaHelp_Home/demos/hsjar/idehelp.jar

To view this helpset on a Windows system, use the following command in a Command window:

 java −jar JavaHelp_Home\demos\bin\hsviewer.jar −helpset JavaHelp_Home\demos\hsjar\idehelp.jar

2.5.4

2.5.5 Localized Helpsets

Two localized helpsets, one in German and another in Japanese, are included in the release. For more
information about localizing helpsets, see Localizing Help Information.

To view these helpsets, you must have installed the correct fonts on your system.

2.5.5.1 German

This helpset is a portion of the IDE demo helpset that has been localized in German. It is located in

JavaHelp_Home/demos/hsjar/idehelp_de.jar

To view this helpset on a UNIX system, enter the following command at the command line:

 java −jar JavaHelp_Home/demos/bin/hsviewer.jar \
 −helpset JavaHelp_Home/demos/hsjar/idehelp_de.jar

To view this helpset on a Windows system, use the following command in a Command window:

 java −jar JavaHelp_Home\demos\bin\hsviewer.jar −helpset JavaHelp_Home\demos\hsjar\idehelp_de.jar

2.5.6

2.5.6.1 Japanese

This helpset is a portion of the IDE demo helpset that has been localized in Japanese. To view the Japanese
helpset, you must have installed the correct Unicode fonts. This helpset is located in

JavaHelp_Home/demos/hsjar/idehelp_ja.jar

To view this helpset, enter the following command at the UNIX command line:

 java −jar JavaHelp_Home/demos/bin/hsviewer.jar \
 −helpset JavaHelp_Home/demos/hsjar/idehelp_ja.jar

To view this helpset on a Windows system, use the following command in a Command window:

 java −jar JavaHelp_Home\demos\bin\hsviewer.jar −helpset JavaHelp_Home\demos\hsjar\idehelp_ja.jar

JavaHelp System User's Guide

2.5.3 IDE Demo 11

2.5.7

2.6 The JavaHelp Libraries and Tools

The JavaHelp libraries and tools are located in the javahelp folder of the release. All classes work with the
Java 2 Platform, Standard Edition (J2SE) and use Swing 1.2 or later (included in the J2SE).

2.6.1 Libraries

The JavaHelp classes are distributed in the following four JAR files located in the javahelp\lib folder:

jh.jar The standard library, which includes everything needed to use the standard
navigator types (TOC, index, full−text search).

jhbasic.jar A subset of jh.jar that does not include support for the full−text search engine.
This subset might be useful for very simple help systems that do not require a
full−text search database or for help systems in which size is critical.

jhall.jar Contains all the JavaHelp system classes, including the tools required to create a
search database.

jsearch.jar Contains the default full−text search engine used in the JavaHelp system.

2.6.2 Tools

The JavaHelp tools are used to view helpsets and to build and query the full−text search database. These
tools are located in the javahelp\bin folder.

jhindexer Command−line program that creates the full−text search database used by the JavaHelp
system full−text search navigator to locate matches.

jhsearch Command−line program that queries the JavaHelp system full−text search database that is
created with the jhindexer command. You can use jhsearch to test a search database
without invoking the help viewer.

2.7 Limitations and Bugs

This release of JavaHelp has the following limitations and bugs.

2.7.1 HTML Viewer

The JavaHelp HTML viewer is based on the Swing JEditorPane component. HTML rendering can differ
depending on which version of Swing your application uses. Differences between versions are noted below.

2.7.1.1 Images Distorted

Occasionally, images are distorted (stretched). Redisplaying the page corrects the problem.

You can sometimes avoid this problem by explicitly specifying "height" and "width" attributes with the
tag. For example,

JavaHelp System User's Guide

12 2.5.7

2.7.1.2 Classpath Limitations

Due to Java security protocols, it is not possible to reference images and files from your topics that are
outside the CLASSPATH of your application (or hsviewer).

For example, you start hsviewer with the following command:

 java −jar c:\JavaHelp\demos\bin\hsviewer.jar −helpset
C:\my_app\help\myhelpset.hs

The hsviewer application sets the CLASSPATH to be:

 C:\my_app\help

You cannot reference files above the C:\my_app\help folder. For example, in the following code an image
in C:\my_app\images referenced as follows cannot be displayed:

You can work around this problem by using the −classpath parameter of hsviewer.jar. The parameter
allows you to specify a CLASSPATH separately from the helpset file, enabling you to set the CLASSPATH to
include the folder that contains the image and specify the helpset file relative to that folder. For example, you
could enter the following command (all on one line) at the command line:

 java −jar c:\JavaHelp\demos\bin\hsviewer.jar −helpset C:\my_app\help\myhelpset.hs
 −classpath C:\my_app

2.7.1.3 Duplicate Lines Displayed (J2SE 1.2.2)

If a TOC, or index entry points to an anchor target specified at or near the top of the page (in the first scroll
zone), the viewer can position the lines incorrectly, resulting in lines' being displayed twice.

2.7.1.4 Anchor Targets

There are two problems with anchors:

On J2SE 1.2.2 systems only, if the TOC or index is used to access a topic file that contains anchor
targets in the first scroll zone in the viewer, text will be duplicated in the display.

•

Named anchors cause a space to be added at the beginning of the object that follows them.•

The best way to work around this problem is to nest the text of the target within the anchor tag. For example:

 <H2>Working With Widgets</H2>

2.7.1.5 Cascading Style Sheets

Tag names in styles and style sheets must be specified with lowercase letters or they will be ignored.

2.7.1.6 <sup> and <sub> Tags (J2SE 1.2.2)

The <sup> <sub> tags are ignored on J2SE 1.2.2 systems.

JavaHelp System User's Guide

2.7.1 HTML Viewer 13

2.7.1.7 The Width Attribute of the <td> Tag

The width attribute of the <td> tag is ignored in J2SE 1.2. That version of the viewer assigns its own width to
table columns.

On J2SE 1.2.2, the width attribute works when specified in absolute pixels (px). The use of percentages (%) is
not supported in that version of J2SE.

2.7.1.8 Named Anchors in Ordered and Unordered Lists

If the first item after a list tag (, , or <dl>) is a named anchor (<a name>), the list shown in the
following example is rendered incorrectly:

 Transmitter reports

 Channel reports

The following list is rendered correctly:

 Transmitter reports
 Channel reports

2.7.1.9 TABS in <pre> Tag not Recognized

TABS used in text enclosed in <pre> tags are not recognized. Space characters are recognized correctly.

2.7.1.10 Viewer Cannot Load Image Files Directly

The help viewer aborts if you attempt to load a graphic file (*.gif, *.jpg) directly. You must include the images
in an HTML file by using the tag.

2.7.1.11 Page Setup Settings not Preserved (Printing)

Changes made to the default settings in the Page Setup dialog box are not preserved between activations.
The default settings are always set upon activation.

2.7.2 Full−text Search

The text search feature, implemented by running jhindexer on your helpset, has the following limitations
and bugs.

2.7.2.1 Parsing of Asian Languages

The J2SE word−break iterator that the JavaHelp search indexer and search navigator use to parse Asian
(Japanese, Chinese, Korean, Thai) languages uses a heuristic that is not well suited to searching. As a result,
topic files are not parsed into words that users are likely to enter into the Find input field.

However, because the parser works on the same model used to highlight words when the user double−clicks
in the content pane, as a workaround (albeit an inconvenient one), the Asian language user can conduct a
full−text search as follows:

Double−click a word in the content pane.1.
Copy and paste the word into the search navigator Find field.2.

JavaHelp System User's Guide

14 2.7.1 HTML Viewer

Press Return.3.

2.7.2.2 Match Limit

To enhance full−text search performance, the search navigator reports the 100 most relevant matches. For
example, in the idedemo program, if you search for the word "build", you see that different forms of the word
(builder, built, builds) are not highlighted because the 100 match limit was met with the exact match "build".
This limit should not be a problem with more complex, multi−word, natural language queries.

2.7.2.3 jhindexer Does Not Parse "." Correctly

The jhindexer does not treat the "." character correctly. As as result, a search for "javax.help" in the
apiviewer returns no matches.

2.7.3 Context Sensitive Help

2.7.3.1 F1 Help (Solaris OpenWindows)

On Solaris OpenWindows manager the F1 key does not get help on the the component with focus.

2.7.4 Other Bugs

2.7.4.1 Copy/Paste on Solaris

On Solaris systems, follow these steps to copy and paste text from the help viewer:

Highlight text in the viewer.1.
Type Control−C to copy the text.2.
With focus in the target Solaris window, press the Paste key.3.

2.7.4.2 jar: Protocol

Due to a bug, the JavaTM 2 SDK jar: protocol does not permit relative references to JAR files. Instead, they
must be fully qualified. For example, the following code works correctly:

 jar:file://c:/my_app/help.jar!map.jhm

There is no way to make that reference relative from the location of a helpset file. For that reason, you must
include the helpset and map files in the JAR file with the rest of the helpset.

2.7.4.3 Index Navigator

If an index entry contains more that two hierarchical levels, a "turner" mechanism (like the one used in the
TOC) is added to the second +n levels.

2.7.4.4 Popup Window Accessibility

JavaHelp popup windows are not as accessible as they should be due to a bug in the underlying AWT classes
that prevents the popups from obtaining focus. Popup windows can be dismissed by pressing the F10 key −
the Esc key does not work because the window cannot obtain focus. In addition, this same bug prevents
scrollbars in popup windows from being accessible from the keyboard; therefore, it is important to set the size
of popups to enable all the information to be displayed in a single scroll zone.

JavaHelp System User's Guide

2.7.2 Full−text Search 15

2.7.4.5 Fonts and Localization

There are limitations in this release on the ability to display fonts in the help viewer content pane. Due to a
bug in the J2SE, the only character encoding that can be displayed in the HTML content pane is the system
default. Different locales that use that encoding are rendered correctly. `

2.8 List of Files in the JavaHelp 2.0 Release

The libraries included in this release support the JavaTM 2 Platform. They run on any Java platform that is
compliant with Java 2 . Executable JAR files are included for tools and demonstration programs. They can be
executed only on the Java 2 Platform. They will not work with JDK 1.1 systems.

 README − Initial README file
 LICENSE.html − License file
 src.jar − JavaHelp system source files

 doc\ − Documentation
 doc\images − Images used in documentation
 doc\jhug − Helpset folder for the JavaHelp System User's Guide
 doc\jhug.pdf − PDF version of the JavaHelp System User's Guide

 doc\api − JavaHelp 1.1 javadoc API documentation
 doc\css\default.css − JEditorPane default stylesheet
 doc\spec\JavaHelp_V2_0_Specification.pdf − Latest version of the spec

 javahelp\ − JavaHelp system binaries and libraries system release
 javahelp\lib\ − JavaHelp libraries
 javahelp\lib\jh.jar − Standard JavaHelp libraries
 javahelp\lib\jhbasic.jar − Subset of jh.jar that does not include search engine
 javahelp\lib\jhall.jar − Everything
 javahelp\lib\jsearch.jar − The default search engine only

 javahelp\lib\dtd − DTDs for JavaHelp system XML metadata files
 javahelp\lib\dtd\helpset_2_0.dtd − Helpset file DTD
 javahelp\lib\dtd\index_2_0.dtd − Index file DTD
 javahelp\lib\dtd\map_2_0.dtd − Map file DTD
 javahelp\lib\dtd\toc_2_0.dtd − TOC file DTD

 javahelp\bin\ − JavaHelp executable programs
 javahelp\bin\jhindexer − Creates the search database
 javahelp\bin\jhsearch − Queries the search database

 demos\ − Demos
 demos\browser − JavaHelp viewer running in an applet on a web browser
 demos\README − Instructions for building the demos
 demos\bin − Demonstration programs
 demos\bin\apiviewer.jar − JavaHelp API viewer
 demos\bin\hsviewer.jar − Helpset viewer
 demos\bin\idedemo.jar − Starts a mockup of an IDE
 demos\bin\merge.jar − JH v1 helpset merging demo
 demos\bin\newmerge.jar − Demonstrates new features of helpset merging
 demos\bin\object.jar − Demonstrates popup and secondary window functionality
 demos\bin\UserGuide.jar − Displays the JavaHelp System User's Guide

 demos\lib − JARs containing different extensions
 demos\lib\classviewer.jar − Classviewer (used in apiviewer and idedemo)

JavaHelp System User's Guide

16 2.7.4 Other Bugs

 demos\lib\searchdemo.jar − Alternate search engine (includes documentation)

 demos\hs − Expanded (unJARed) helpsets
 demos\hs\merge − For the merge demo
 demos\hs\newmerge − For the newmerge demo

 demos\hsjar − Demo helpsets in JARs
 demos\hsjar\animals.jar − animals.hs helpset used by newmerge demo
 demos\hsjar\apidoc.jar − api.hs helpset
 demos\hsjar\holidays.jar − HolidayHistory.hs helpset
 demos\hsjar\idehelp.jar − IdeDemo helpset
 demos\hsjar\idehelp_de.jar − Localized helpset (German)
 demos\hsjar\idehelp_en.jar − Localized helpset (English)
 demos\hsjar\idehelp_ja.jar − Localized helpset (Japanese)
 demos\hsjar\invertebrates.jar − invertebrates.hs helpset used by newmerge demo
 demos\hsjar\object.jar − Object demo helpset
 demos\hsjar\vertebrates.jar − vertebrates.hs helpset used by newmerge demo

 demos\serverhelp − Server help demo

 demos\src − Sources for the demos (J2SE 1.2)
 demos\src\sunw\demo\browser − Browser demo
 demos\src\sunw\demo\classviewer − Classviewer Navigator used in apiviewer
 demos\src\sunw\demo\idedemo − Mockup of an IDE using JavaHelp
 demos\src\sunw\demo\jhdemo − hsviewer demo .java files
 demos\src\sunw\demo\merge − JH v. 1 example of how to merge helpsets
 demos\src\sunw\demo\newmerge − Uses new merge features to merge helpsets
 demos\src\sunw\demo\object − Object demo
 demos\src\sunw\demo\searchdemo − Alternative search engine

JavaHelp System User's Guide

2.7.4 Other Bugs 17

JavaHelp System User's Guide

18 2.7.4 Other Bugs

3 JavaHelp System Overview
This overview consists of the following sections:

Introduction

General introduction to the JavaHelp system.

JavaHelp System Features

A brief overview of the main features of the JavaHelp system.

Descriptive Scenarios

Scenarios that illustrate many ways the JavaHelp system can be used with different
applications in a variety of network environments.

JavaHelp System Lightweight Components

A brief description of the lightweight component functions provided with the JavaHelp system.

3.1 Introduction

Most interactive applications require online help and Java applications are no exception. The JavaHelp
TM

system is specifically tailored to the Java
TM

 platform. The JavaHelp system provides developers and authors a
standard, fully−featured, easy−to−use system for presenting online information to Java application users.
Providing a help system that is a standard extension to the Java

TM
 2 Software Development Kit, Standard

Edition (the J2SE
TM

 SDK), relieves developers and authors of having to implement their own proprietary help
systems.

The JavaHelp system consists of a fully featured, extensible specification and API, and a reference
implementation of that specification and API that is written entirely in the Java language.

The JavaHelp reference implementation, based on the Java Foundation Classes (JFC, also known as
Swing), provides a standard interface that enables both application developers and authors to add
online help to their applications.

•

The specification and API enable developers to customize and extend the help system to fit the style
and requirements of their applications.

•

In addition, the JavaHelp system has been designed to work especially well in a variety of network
environments. The JavaHelp system is platform independent and works in all browsers that support the Java
platform.

The JavaHelp system enables Java developers to provide online help for:

Applications (both applet and standalone)•
JavaBeansTM components•
Applets in HTML pages•
Server−based Java applications•

Authoring support for the JavaHelp system is available through online help authoring tool vendors. Tool
vendors, including Software 7, Quadralay, eHelp, Brown Inc, Paradigm Systems, SolutionSoft,
ComponentOne, and Oracle, have products that provide authoring support for the JavaHelp system.

Next Overview Topic: JavaHelp System Features

3 JavaHelp System Overview 19

http://www.software7.biz/
http://www.quadralay.com/
http://www.ehelp.com/
http://www.html-indexer.com/
http://paradigmindia.tripod.com/jhelp.htm
http://www.solutionsoft.com/javahelp.htm
http://www.componentone.com/helptools.aspx?helptoolscode=1
http://otn.oracle.com/tech/java/help/content.html

3.2 JavaHelp System Features

This section describes the main features of the JavaHelp system. For a list of new features in this release, see
New Features in JavaHelp 2.0.

3.2.1 Help Viewers

There are three types of windows in which you can display your help topics. These windows can be specified
in the Java program when it makes a call to the help system. The help author can set various attributes of
these windows in the helpset (.hs) file. These windows cannot be invoked from a link in a help topic
(although there is a way to link to a popup window that uses a different technique, described in Opening
Popup and Secondary Windows From an HTML Topic). However, it is possible to open a topic in one of these
windows from the table of contents in the tri−paned viewer (see the Presentation feature in Helpset File, the
presentationtype and presentationname descriptions in the sections on the TOC, index, and glossary
navigators, and the section Implementing Context−Sensitive Help.

The windows are:

Main window (by default, a tri−paned help viewer)•
Secondary window•
Popup window•

3.2.1.1 Main Window

The standard JavaHelp system main window has three panes, is not destroyed when you exit the window,
and is configurable (see the presentation feature in Helpset File). By default, a main window has the following
three panes:

Toolbar A bar over the navigation and content panes that can be configured to display various
toolbar buttons, such as Back, Forward, and Print.

Navigation pane A tabbed interface appearing on the left that allows users to switch between the table of
contents, index, and full text search displays.

Content pane A pane on the right that displays help topics formatted with HTML 3.2 or later, plus
embedded lightweight Java components.

The following figure shows a help window with a toolbar that has three buttons in it, a table of contents in the
navigation pane on the left, and in the content pane, a help topic, "Debugging in the Source Editor":

JavaHelp System User's Guide

20 3.2 JavaHelp System Features

3.2.1.2 Secondary Window

By default, this window contains a single pane, a help content viewer that shows a help topic. It is similar to
the content pane of the tri−paned viewer. A secondary window has a name and can be configured to have a
navigation pane and a toolbar. If the window is already open, its contents are replaced if the Java program
uses it again. When the user closes a secondary window, it is destroyed (unlike the main window, which is not
destroyed on exit).

3.2.1.3 Popup Window

This type of window stays open as long as it has focus. When the user clicks elsewhere, the window is
destroyed. A popup has only one pane, a content viewer.

3.2.2 Table of Contents

Provides a collapsible and expandable display of topics in the help system. Supports unlimited levels and
merging of multiple TOCs. The underlying file format follows World Wide Web Consortium (W3C) Extended
Markup Language (XML) standards. The TOC display is synchronized with the content viewer: The topic
being displayed is highlighted in the TOC. For more information, see Table of Contents File.

3.2.3 Index

Supports merging of multiple indexes. The underlying file format follows W3C XML standards. The index
display is synchronized with the content viewer: The topic being displayed is highlighted in the index. For
more information, see Index File.

3.2.4 Full−Text Search

The full−text search engine can be used in a variety of network environments. Matches returned from
searches are ranked for relevancy by using "relaxation rules." For more information, see Full−Text Search.

3.2.5 Compression and Encapsulation

The standard JAR format is used to encapsulate the help information into a single, compressed file. The
JavaHelp system works equally well with help information that is not compressed into JAR files − this flexibility
allows authors to view files during development without taking the time to compress them.

3.2.6 Embeddable Help Windows

Help windows (individually or in combination) can be embedded directly into application interfaces.

3.2.7 Context−Sensitive Help

Help can be activated from Java programs through a number of different mechanisms. For more information,
see the help authoring section Context−Sensitive Help and the Java developer section Implementing
Context−Sensitive Help.

3.2.8 Flexible Packaging

Flexible packaging of help information for product delivery makes it easy to incrementally update help
information in the field.

JavaHelp System User's Guide

3.2.1 Help Viewers 21

3.2.9 Customization

The JavaHelp system is designed to permit great flexibility in customizing both the user interface and
functionality.

3.2.10 Merging

Help information from different sources can be combined and presented to the end user. For more
information, see Merging Helpsets.

3.2.11 JavaBeans Support

The JavaHelp API enables a JavaBeans component to specify help information that can be presented to the
end user (perhaps merged with additional information).

Next Overview Topic: Descriptive Scenarios

3.3 Descriptive Scenarios

The following scenarios illustrate some of the many ways the JavaHelp system can be used to provide online
help for different types of Java programs in a variety of network environments. These scenarios attempt to
illustrate the JavaHelp system's flexibility and extensibility.

Scenarios are presented in three areas:

Invocation mechanisms Scenarios that describe different ways that the JavaHelp system can be
invoked from applications.

Presentation and
deployment

Scenarios that describe different ways that the JavaHelp system can be used
to present help information. These scenarios also illustrate different methods
for deploying the JavaHelp system classes and help data.

Full−text search Scenarios that describe different ways that full−text search of help information
can be implemented.

Next Overview Topic: Invocation Mechanisms

3.4 Invocation Mechanisms

Users invoke online help from within applications in a number of ways. This section describes invocation
methods available through the JavaHelp system.

3.4.1 Menus and Buttons

Online help is often invoked when a user chooses an item from a Help menu or clicks on a Help button in an
application GUI.

The JavaHelp system provides a simple interface by which an application requests that a topic ID be
displayed. The JavaHelp system then associates the topic ID with the appropriate URL and displays it. IDs are
mapped to URLs in a JavaHelp system metadata file called the map file.

For example, when coding a file chooser dialog box, a developer requests that the topic ID fc_help be
displayed when the Help button at the bottom of the dialog box is clicked. In the map file the ID fc_help is
defined to be a file named FileChooser.html using the following XML syntax:

JavaHelp System User's Guide

22 3.2.9 Customization

<mapID target="fc_help" url="html/help/FileChooser.html" />

Separating the specification of file names (or URLs) from the program code provides content authors the
freedom to control the information that is associated with the topic ID.

3.4.2 Tooltips

A tooltip is a brief message presented to the user when the cursor remains over a button for an interval longer
than a given threshold.

Although tooltip information could be included in the JavaHelp system data, it will usually be delivered as part
of the application and will be co−located with the code. Tooltip functionality is provided as a component in
Swing.

3.4.3 Context−Sensitive Help

The JavaHelp system provides the ability to invoke online help that describes graphical components in an
application GUI. The user makes gestures that activate context−sensitive help and then specifies the
component in question. The ID associated with the component is displayed.

3.4.4 Viewer Initiated Help

You can display help topics from a TOC or index navigator or from the content pane of the main window. By
default, an index entry and a TOC entry display help in the main window's content viewer. You can also define
an entry that displays help in a popup or a secondary window. In the content pane, you can define an
<object> tag that displays help in a separate popup or secondary window. If you use a standard HTML link in
the content pane, the linked help topic replaces the current one in the content pane.

3.4.5 System Initiated Context−Sensitive Help

The following invocation would display system−initiated help in a main window.

mainHelpBroker.setCurrentID(helpID);

Next Overview Topic: Presentation and Deployment

3.5 Deploying and Presenting JavaHelp Helpsets

The JavaHelp system is designed to be deployed in a number of different types of applications and in a
variety of different network environments. The following scenarios illustrate some of the different ways that the
JavaHelp system can be used to present and deploy information.

3.5.1 Standalone Application

A standalone Java application runs independently of a web browser. In this scenario the Java application runs
locally and accesses help data installed on the same machine.

JavaHelp System User's Guide

3.4.2 Tooltips 23

The application:

Requests the creation of a JavaHelp instance.1.
Loads the help data in that instance.2.
Presents the requested help topic.3.

3.5.2 Network Application

The JavaHelp system enables an application to transparently load help data from networks (intranet and
Internet). When the help data is accessed across a network, the scenario is essentially the same as in the
standalone scenario − the location of the data is transparent to the application.

The application:

Requests the creation of a JavaHelp instance1.
Loads the help data from the network2.
Presents the requested help topic3.

JavaHelp System User's Guide

24 3.5.2 Network Application

3.5.3 Embedded Help

Both navigational and content information can be embedded directly in application windows. Embedding is
accomplished by adding the JFC components that implement JavaHelp system components directly into the
application frame.

In this illustration, the content viewer is embedded along the bottom of the application window, and the
navigation viewer is embedded in a different portion of the window.

The application can directly control the contents of the content viewer by programmatic means. Likewise,
JavaHelp system navigators can be used to control information displays other than the JavaHelp system
content viewer.

3.5.4 Component Help

Many modern applications are composed of a collection of interacting components. Examples range from
large applications like Netscape Navigator

TM
 (with plugins), to applications where JavaBeans components are

connected together using JavaScript
TM

 or Visual Basic
TM

.

In the case of JavaBeans, each component can be shipped with its own help data. The following illustrates
such a case.

JavaHelp System User's Guide

3.5.3 Embedded Help 25

In this case, the help information from the red JavaBean (Bean1) and from the green JavaBean (Bean2) is
merged in the help viewer table of contents. The merge operation can be performed by the developer ahead
of time, or completed when the application or JavaBeans component is installed by the user.

In version 1 of the JavaHelp software, merging is accomplished by appending TOC and index information and
searching merged full−text search databases.

3.5.5 Help Server

In some environments, it is useful to separate the process that presents the help information from the
application. For example:

Applications that are written in a language other than the Java language (for example, C, C++, Visual
Basic) can use the JavaHelp system to display online help when deployed on diverse computing
platforms.

•

A suite of applications might be installed together or separately. In this case the help server can be
used to display help for the entire suite, rather than each of the constituent applications providing their
own help system.

•

In the following scenario, applications not written in the Java language make requests to a JavaHelp system
process (help server) through an RPC mechanism (the RPC might be wrapped in a library and be invisible to
the application developer).

3.5.6 Browser−Based Applications (Applets)

Applications that run in browsers have a number of unique deployment issues that the JavaHelp system
addresses. The following three scenarios illustrate how the JavaHelp system can be used in three of the most
common cases. In the following scenarios an applet or some other triggering entity on an HTML page
requests the JavaHelp system to display help information.

3.5.6.1 Applet(1)

In the first scenario, the browser contains a customized implementation of the JavaHelp system and an
appropriate version of the JRE (Java Runtime Environment). This JRE might have been delivered with the
browser, or it might have been downloaded by the client into the CLASSPATH. The implementation can use
the JavaHelp system content pane, or it can use the HTML viewer that is part of the web browser.

JavaHelp System User's Guide

26 3.5.5 Help Server

The HTML page that contains the applet tag is loaded into the browser.1.
The applet is downloaded from the server and executed.2.
The user requests help.3.
The applet forwards the request to the JavaHelp system.4.
Help data is downloaded from the server and displayed in the JavaHelp system viewer (or browser
window).

5.

3.5.6.2 Applet(2)

In the second scenario, the JavaHelp system classes are downloaded along with the applet. Because the
JavaHelp system is an optional package of the Java release, it is possible that a fully compliant JavaTM 2 SDK
browser might not have the the JavaHelp system classes in its CLASSPATH. In this case the JavaHelp system
classes must be downloaded from the server. Since the JavaHelp system is quite small, this approach is often
practical. Browsers might provide additional means for installing extensions downloaded through this
mechanism.

The HTML page that contains the applet tag is loaded into the browser.1.
The applet is downloaded from the server and executed.2.
JavaHelp system classes are downloaded from the server.3.
The user requests help.4.
The applet forwards the request to the JavaHelp system.5.

JavaHelp System User's Guide

3.5.6 Browser−Based Applications (Applets) 27

Help data is downloaded from the server and displayed in the JavaHelp system viewer (or browser
window).

6.

3.5.6.3 Applet(3)

The third scenario describes the case in which the applet is downloaded to a browser environment that has
neither the appropriate JRE nor the Javahelp system installed.

In this case, the Java
TM

 Plug−in can be used to download the required JRE and the JavaHelp system
standard extension classes. The Java Plug−in allows developers to specify a specific JRE on the HTML page
that is required to run their applet. If the correct JRE is not present on the user's system, the Java Plug−in
software downloads the correct JRE and installs it on the user's system. The new JRE is subsequently
available to any applet that requires it. Because the JavaHelp system is a standard extension to the Java
platform, the JavaHelp system classes can be downloaded along with the JRE.

The HTML page that contains the applet tag is loaded into the browser1.
The Java Plug−in is downloaded. It prompts user to download appropriate JRE and JavaHelp system
classes.

2.

JRE and JavaHelp system classes are downloaded from the server.3.
Java Plug−in starts the JRE.4.
The applet is downloaded from the server and executed.5.
The user requests help.6.
The applet forwards the request to the JavaHelp system.7.
Help data is downloaded from the server and displayed in the JavaHelp system viewer (or browser
window).

8.

3.6 Server−based JavaHelp Helpsets

By combining the JavaHelp software API with new JavaHelp JSP tag libraries, web developers are now able
to provide help for server−based applications that provide HTML pages to a browser. The diagram below
illustrates the architecture.

JavaHelp System User's Guide

28 3.5.6 Browser−Based Applications (Applets)

.

A browser initiates a JSP request. Examples of a JSP request are displaying the help content in the helpset,
the navigators, or the data for a given navigator. Typically, the JSP request contains JavaBeansTM

components as well as JSP tag extensions. The JavaTM server turns the request into a Java Servlet. The
servlet access the appropriate information from the helpset by using the classes in the JavaHelp library
(jh.jar) and the JavaHelp tag library (jhtags.jar) and returns HTML and possibly JavaScript or dynamic
HTML (DHTML) to the browser.

Next Overview Topic: Full−text Search

3.7 Full−text Search

The JavaHelp system includes a full−text search facility that is fully−featured, compact, fast, and extremely
flexible. The JavaHelp system is shipped with a search database indexer. Help authors use the search
database indexer to create a compact database that is distributed with the application's help data. When a
user initiates a search, the search engine searches the database to determine matches. Alternative search
engines can be substituted for the standard JavaHelp system search engine.

The following scenarios illustrate some of the different ways that the full−text search can be used. Three
scenarios are presented:

Standalone•
Client−side•
Server−side•

3.7.1 Standalone

In a standalone search, all of the components (search engine, search database, and help topics) are local to
the application.

JavaHelp System User's Guide

3.7 Full−text Search 29

3.7.2 Client−Side

From an implementation point−of−view, the client−side search is identical to the previously described
standalone search except that the components are downloaded from a server. This arrangement is common
with browser−based applications (applets), where the help data usually resides on the same server as the
applet code. When a search is initiated, the search data is downloaded from the server, read into the
browser's memory, and searched. The topic files are downloaded only when they are presented.

During the initial search, time is required to download the search database. Once downloaded, the data can
be kept in memory or in a temporary file on the client machine and the searches are quite fast.

JavaHelp System User's Guide

30 3.7.2 Client−Side

3.7.3 Server−Side

In a server−side search, the search data, topic files, and the search engine are all located on the server side −
only the results of the search are downloaded to the client.

This option also works well for applets. It permits developers to use alternate search engines (for example,
AlltheWeb, Google, or Lycos) and can be quicker to start because the search database is not downloaded. (It
is especially fast if the search engine is already running on the server). Note that this approach works very
well with Java servlets.

Next Overview Topic: JavaHelp System Lightweight Components

3.8 JavaHelp System Lightweight Components

Lightweight components can add functionality to help topics. They are similar to Java applets, but load and
execute more quickly.

A help author can use a lightweight component that is already implemented in the JavaHelp system. This
component implements popup windows and secondary windows. To use this lightweight component in an
HTML topic file, you use the HTML <object> tag as described in Calling Popup and Secondary Windows
From an HTML Topic.

In addition, it is possible to call popup and secondary windows from Java programs and from the TOC and
index views of the JavaHelp viewer. For more information on this technique, see Opening Popup and
Secondary Windows with the Presentation Manager.

A Java developer can create new lightweight components as well. For example, a such a component might
add functionality like animation and multimedia to help topics. The JavaTM 2 Platform includes high quality
audio as well as a video viewer that supports the common formats. For more information see Creating
Lightweight Components.

JavaHelp System User's Guide

3.7.3 Server−Side 31

JavaHelp System User's Guide

32 3.7.3 Server−Side

4 Authoring Help Information
The topics in this chapter of the JavaHelp System User's Guide describe the aspects of the JavaHelp
software that are of primary interest to online help authors. These topics assume that the author is responsible
for creating the metadata files that the JavaHelp software uses to present information, as well as the topics
that inform the application's users. Together the metadata and topic files are referred to as a helpset.

If you use a help authoring tool to create your help system, some of the details described in this
chapter are managed for you by the tool.

The following list summarizes the tasks required to create a helpset. All these tasks are described in this
chapter of the JavaHelp System User's Guide:

Create HTML topics•
Create a helpset file•
Create a map file•
Create a table of contents file•
Create an index file•
Create a full−text search database•
Compress and encapsulate the help files into a JAR file for delivery to customers•

Consider the following strategy as a way to get started:

Use the demonstration programs included with the release to acquaint yourself with JavaHelp system
features. The most useful demo for this purpose is idehelp. This program demonstrates a fully
functional help system.

1.

Read the remainder of this chapter of the JavaHelp System User's Guide, and explore the helpset
files created for the idehelp demo (extract the files in demos\hsjar\idehelp.jar).

2.

Create your own helpset as follows:
Create HTML topics using an editor of your choosing.1.
Copy the metadata files you extracted from demos\hsjar\idehelp.jar (IdeHelp.hs,
IdeHelpIndex.xml, IdeHelpTOC.xml, and Map.jhm) to the folder that contains your
topic files and rename them appropriately.

2.

Edit the metadata files to match your help information.3.
Optionally create a full−text search database.4.
Use the hsviewer command to display your helpset.5.

3.

4.1 Viewing Helpsets

A helpset viewer is provided with the release to enable you to view your helpsets. If the path to the java
executable file is in your PATH variable, you can enter the following command in your operating system's
command−line shell to run the helpset viewer (where JavaHelp_home is the JavaHelp system installation
directory):

java −jar JavaHelp_home/demos/bin/hsviewer.jar

On a Windows system, you can configure a shortcut to run the viewer. For example, if your J2SE
installation is in C:\j2sdk1.4.1 and your JavaHelp system installation is in C:\JavaHelp, you can
configure the shortcut as follows:

If necessary, create a shortcut on your desktop.
Open the file Explorer and navigate to a folder containing an executable file (for
example, c:\j2sdk1.4.1\bin\java.exe).

1.

Right−click the file and choose Create Shortcut.2.

1.

4 Authoring Help Information 33

Drag the newly created shortcut to your desktop.3.
Right−click the shortcut and choose Properties.2.
In the Shortcut dialog, type the following command in the Target field:

c:\j2sdk1.4.1\bin\java −jar c://JavaHelp//demos//bin//hsviewer.jar

3.

Save the shortcut.4.
You can then double−click the shortcut to open the viewer in the Java virtual machine.5.

All helpsets are displayed in the JavaHelp system help viewer—the same viewer used to provide help in
applications.

If you want the viewer to find the default helpset, add its path to the CLASSPATH system
variable.

For the purpose of running the examples, the JRE you use to run hsviewer does not
have to be the same version as the JRE on which your application is deployed. For
example, you can use J2SE 1.4.1 to run the demo programs (including hsviewer)
even if your application is deployed on J2SE 1.3.1.

For a list of limitations, bugs, and "idiosyncrasies" that pertain to the JavaHelp system
HTML viewer, see Limitations and Bugs.

The viewer toolbar does not include a reload button. The easiest way to reload a file
after you change it is to click the viewer's "previous" and "next" buttons.

4.1.1 Displaying a Helpset with hsviewer.jar

To display a specific helpset, start the helpset viewer hsviewer.jar as described above. When the viewer
opens, either click the Browse button to navigate to a helpset or, in the URL field, type the full path to the
helpset file. When the helpset has loaded, click Display to view the helpset in the viewer.

Alternatively, you can specify the helpset by using a command−line switch with hsviewer.jar. You can do
this on the command line itself, in a batch file, in a script file, in a JAR file, or in a shortcut. The command−line
syntax of the hsviewer.jar command−line interface is:

 java −jar hsviewer.jar [−helpset hs_name]

−helpset Specifies the helpset name:

hs_name The full path to a helpset file. For example (on a Windows system):

C:\> java −jar c:\JavaHelp\demos\bin\hsviewer.jar
 −helpset c:\JavaHelp\demos\hs\newmerge\MergeHelp.hs

4.1.2 Displaying a Helpset in Windows by Clicking the .hs File

In Windows, you can open a file in a program by double−clicking the file in the Explorer. For example, if you
double−click an HTML file, it opens in your default web browser. This technique works because Windows can
associate a file extension (like .html) with a program that displays the file. You can use this technique to
open a helpset file in the helpset viewer (hsviewer.jar). Here is how to do it.

Create a batch file that runs hsviewer.jar and accepts a command−line parameter.

For example, if the JavaHelp system is installed in c:\JavaHelp and java.exe is in your PATH,
you would put the following line in the file:

1.

JavaHelp System User's Guide

34 4.1.1 Displaying a Helpset with hsviewer.jar

java −jar c://JavaHelp//demos//bin//hsviewer.jar −helpset %1

Save the file as hsviewer.bat.2.

Open Windows Explorer, navigate to a directory containing a helpset (.hs) file, and double−click the
file.

Windows displays the Open With dialog, which enables you to associate the helpset file with a
program that opens the file.

3.

Click the Other button, navigate to the directory where you saved the hsviewer.bat file, and
choose that file as the one that will open .hs files.

4.

Click OK in the Open With dialog.5.

The helpset opens in the helpset viewer.

In the future, when you double−click a helpset file in the Explorer, it will open in the helpset viewer.

6.

4.1.3 Displaying a Helpset by Using an Executable JAR File

You can display a specific helpset in a standalone environment by using the sunw.demo.jhdemo.Runner
class available in hsviewer.jar, specifying that class and some other information in a manifest file, and
creating an executable JAR file from the manifest file.

To create a JAR file that can display a single helpset:

Create a manifest file for the helpset.

For example, shown below is the manifest file that displays the JavaHelp System User's Guide. (See
the UserGuide.jar file in the JavaHelp−Home/demos/bin directory.)

 Main−Class: sunw.demo.jhdemo.Runner
 Run−Class: sunw.demo.jhdemo.JHLauncher
 Class−Path: ../../javahelp/lib/jh.jar hsviewer.jar ../../doc/jhug/
 Arguments: −helpset jhug.hs

The syntax of the manifest file is as follows:

 Main−Class: sunw.demo.jhdemo.Runner
 Run−Class: sunw.demo.jhdemo.JHLauncher
 Class−Path: jar−file | directory
 Arguments: −javahelp helpset−filename

Main−Class: The main class to execute when running this JAR file. This class is a standard
argument for executable JAR files, and in this case it must always be
sunw.demo.jhdemo.Runner. For example:

 Main−Class: sunw.demo.jhdemo.Runner

Run−Class: The class that the sunw.demo.jhdemo.Runner executes. This class is usually
sunw.demo.jhdemo.JHLauncher, but it could be another class that launches a
JavaHelp viewer. The following code is the typical Run−Class entry:

 Run−Class: sunw.demo.jhdemo.JHLauncher

Class−Path:

1.

JavaHelp System User's Guide

4.1.3 Displaying a Helpset by Using an Executable JAR File 35

Files to use with the Run−Class. Specify them as a series of space−separated
JAR files or directories to be added to existing CLASSPATH environment variable.

Note: The files must be relative to the location of the executable JAR file. For
example, if the JAR file is in the demos/bin directory of the JavaHelp installation
directory, this entry would be::

 Class−Path: ../../javahelp/lib/jh.jar hsviewer.jar
../../doc/jhug/

Arguments: Arguments to be passed to the Run−Class when Run−Class is executed. These
arguments are specific to the Run−Class. For example:

−helpset jhug.hs

Create an executable JAR file by using the jar command. The JAR file contains only one file, the
manifest file. Other files are specified in the Class−Path argument and must be relative to the JAR
file. The command to create the manifest file is:

 jar cmf manifest_file jar_file

For example:

 jar cmf manifest.mf UsersGuide.jar

2.

Run the JAR file by opening it in java.exe or executing it from the Windows Explorer (if you have
set up java.exe as the application that executes JAR files). For example:

In the command shell, change to the JavaHelp−home/demos/bin directory and enter the
following command:

java −jar UserGuide.jar

•

In Windows Explorer, navigate to the directory containing the JAR file and double−click it to
display the help file.

Note: If double−clicking the file opens it in WinZip or some other zip utility, right−click the file,
choose Open, and then navigate to the java.exe program in your J2SE installation's bin
directory.

•

3.

4.2 Accessibility and JavaHelp Viewer Shortcut Keys

The JavaHelp
TM

 system tri−pane viewer is designed to be accessible. Most features in the help viewer are
accessible from the keyboard.

The first time you open the help viewer, the focus should be on the default entry in the TOC navigator.
Sometimes you cannot tell where the focus is because of a bug that can occur when the Back button is
unselected. If you cannot tell where the focus is, use the following procedure to establish focus again:

Press Ctrl−F1 to display alternate text for a toolbar button. This action works only if the current focus
is on a toolbar button.

1.

If no alternate text displays, press F6 to see if the focus moves to an item in the current navigator.2.
If the focus does not move to the navigator, press F6 once more (because focus might have moved to
the Content pane). Focus should now be in the Navigation pane.

3.

With focus in the Navigation pane, if you want to be absolutely sure where you are, you can
repeatedly press Shift−Tab followed by Ctrl−F1 until alternate text displays for a toolbar button.

4.

JavaHelp System User's Guide

36 4.2 Accessibility and JavaHelp Viewer Shortcut Keys

4.2.1 Traversing the Viewer

If the focus is in the toolbar buttons and you press the Tab key to traverse through the viewer, the traversal
order is as follows:

The toolbar buttons from left to right1.
The currently open tab in the Navigation (left) pane2.
The contents of that navigator

Behavior in the navigator varies depending on whether or not the navigator has a Search field. It will
take up to four more presses of the Tab key to move to the Content pane. Pressing F6 instead will
move focus directly to the Content (right) pane.

3.

The topic in the Content (right) pane4.

When focus is in the Content pane, pressing the Tab key has no effect. The Tab key does not wrap from the
Content pane back to the toolbar. You can traverse backwards from the Content pane by pressing F6 to move
to the Navigation pane, and then pressing Shift−Tab repeatedly.

4.2.2 Traversing and Using the Toolbar Buttons

You can move the focus between the toolbar buttons by pressing either the Left Arrow and Right Arrow keys
or the Tab and Shift−Tab keys. If you want to stay in the toolbar and move from button to button, the Arrow
keys are the best choice. If you want to be able to move focus out of the toolbar, use the Tab and Shift−Tab
keys.

When a button has focus, you can perform two actions:

Pressing Spacebar activates the button (for example, activating the Print button prints the currently
selected topic or topics).

•

Pressing Ctrl−F1 displays the button's alternate text.•

4.2.3 Traversing and Using the Navigators

The Navigation pane has a tabbed interface. If focus is on the last toolbar button, pressing the Tab key takes
you to the currently selected Navigator tab. At that point, you can either press the Tab key to enter the
navigator or press Right Arrow or Left Arrow to select a different navigator. The behavior of the focus depends
on the type of navigator, as follows:

4.2.3.1 TOC, Favorites, and Glossary Navigators

If you use an Arrow key to move to the navigator from another Navigator tab, the focus moves
automatically to an entry in the navigator.

•

If you use a Tab key to move to the navigator (for example, from a toolbar button), the focus remains
on the Navigator tab. If you press the Tab key, the focus moves to an entry in the navigator.

•

In the navigator list, if you want to move to the Content pane, using the F6 key produces the most
predictable results. The Tab key has varying results depending on whether or not there are scrollbars.
Pressing the Tab key once changes focus to the vertical scrollbar if there is one. Pressing the Tab key
again changes focus to the horizontal scrollbar if there is one. Pressing Tab again changes focus to
the Content (right) pane. If you want to move to the Content pane, pressing the F6 key produces the
most predictable results.

•

In any Navigator list the following keys move focus from item to item and change the corresponding
topic in the Content (right) pane:

The Up Arrow and Down Arrow keys move the focus from item to item in the navigator.♦
The Page Up and Page Down keys move the focus through the navigator a page at a time.♦
The Home and End keys move the focus to the beginning and end of the list.♦
The Right Arrow key opens a folder and the Left Arrow key closes a folder.♦

•

JavaHelp System User's Guide

4.2.1 Traversing the Viewer 37

Ctrl−Right Arrow scrolls left and Ctrl−Left Arrow scrolls right.♦
F8 selects the splitter bar between the Navigator pane and the Content pane. With the splitter
bar selected, you can move it right and left with the Right Arrow and Left Arrow keys.

♦

The F6 key changes focus to the Content pane.•

4.2.3.2 Index and Search Navigators

These navigators have a text field for the search entry at the top of the navigator content pane, so they
behave differently from the other navigators.

If you use an Arrow key to move to the navigator from another Navigator tab, the focus moves
immediately to the Search field.

•

If you use a Tab key to move to the navigator (for example, from a toolbar button), the focus remains
on the Navigator tab. If you press the Tab key again, the focus moves to the Search field.

•

In the Search field, if you press the Tab key, the focus moves to the navigator list.•
In the navigator list, if you want to move the focus to the Content pane, using the F6 key produces the
most predictable results. The Tab key has varying results depending on whether or not there are
scrollbars. Pressing the Tab key once changes the focus to the vertical scrollbar if there is one.
Pressing the Tab key again changes the focus to the horizontal scrollbar if there is one. Pressing Tab
again changes the focus to the Content (right) pane.

•

In any Navigator list the following keys move the focus from item to item and change the
corresponding topic in the Content (right) pane:

The Up Arrow and Down Arrow keys move the focus from item to item in the navigator.♦
The Page Up and Page Down keys move the focus through the navigator a page at a time.♦
The Home and End keys move the focus to the beginning and end of the list.♦
The Right Arrow key opens a folder and the Left Arrow key closes a folder.♦
Ctrl−Right Arrow scrolls left and Ctrl−Left Arrow scrolls right.♦
F8 selects the splitter bar between the Navigator pane and the Content pane. With the splitter
bar selected, you can move it right and left with the Right Arrow and Left Arrow keys.

♦

•

The F6 key changes the focus to the Content pane.•

4.2.4 Traversing and Using the Content Pane

The Content pane, on the right side of the viewer, displays the current help topic. You can get to this pane by
navigating to the Navigation (left) pane and pressing F6. When you are in the Content pane, you can use the
following keys to move around and perform actions:

Right Arrow and Left Arrow move the focus left or right one letter at a time. You cannot see the focus
change.

•

Ctrl−Right Arrow and Ctrl−Left Arrow move the focus left or right one word at a time. You cannot see
the focus change.

•

Up Arrow and Down Arrow move the focus up and down one line at a time. You cannot see the focus
change.

•

Page Up and Page Down move the the topic up and down a page at a time.•
Ctrl−Home and Ctrl−End move focus to the beginning and end of the topic.•
Ctrl−T selects the next link. Ctrl−Shift−T selects the previous link.•
Shift−Spacebar activates the selected link and goes to the linked topic.•
F8 selects the splitter bar between the Navigator pane and the Content pane. With the splitter bar
selected, you can move it right and left with the Right Arrow and Left Arrow keys.

•

F6 changes the focus to the Navigation (left) pane.•

4.2.5 Shortcut Key Table

The following table lists the keystrokes you can use to navigate through the help viewer.

JavaHelp System User's Guide

38 4.2.3 Traversing and Using the Navigators

Keys Action

Tab Shifts focus to the next component. Does not work if the current focus is the Content
pane.

Shift−Tab Shifts focus to the previous component. Does not work if the current focus is the Content
pane.

Up Arrow Selects the previous item in a Navigator list.

Moves the focus to the previous line in a topic in the Content pane.

Moves the splitter bar left.

Down Arrow Selects the next item in a Navigator list.

Moves the focus to the next line in a topic in the Content pane.

Moves the splitter bar right.

Left Arrow Shifts focus to the previous tab or the previous button.

Closes a folder in a Navigator list.

Moves one character to the left in a topic in the Content pane.

Moves the splitter bar left.

Right Arrow Shifts focus to the next tab or the next button.

Opens a folder in a Navigator list.

Moves one character to the right in a topic in the Content pane.

Moves the splitter bar right.

Ctrl−Left Arrow Scrolls to the left in a Navigator list or in the Content pane.

Moves one word to the left in a topic in the Content pane.

Ctrl−Right Arrow Scrolls to the right in a Navigator list or in the Content pane.

Moves one word to the right in a topic in the Content pane.

Home Selects the first item in a Navigator list.

End Selects the last item in a Navigator list.

Ctrl−Home Selects the first line in a topic in the Content pane.

Ctrl−End Selects the last line in a topic in the Content pane

Page Up Scrolls up one page.

Page Down Scrolls down one page.

Ctrl−T Shifts focus to the next link in a topic in the Content pane.

Ctrl−Shift−T Shifts focus to the previous link in a topic in the Content pane.

Ctrl−Spacebar Follows a link in a topic in the Content pane.

Spacebar Activates the toolbar button that has focus.

JavaHelp System User's Guide

4.2.3 Traversing and Using the Navigators 39

Ctrl−F1 Displays alternate text for a toolbar button.

F6 Shifts focus between the Navigation (left) pane and the Content (right) pane.

F8 Selects the splitter bar if focus is in the Content pane or the Navigation pane.

4.3 Setting Up Your JavaHelp Project

There are two primary things to consider when you set up your help projects:

How best to organize help information files to organize them logically and conveniently for authoring•
How to organize help information to best package it for delivery to your users.•

4.3.1 Authoring

The JavaHelp system is file−based − topics are contained in files that are displayed in the help viewer one file
at a time. It is a good idea to group related topics together to keep them organized and to make it as easy as
possible to link the topics together.

The JavaHelp system uses URLs. A URL can resolve to the contents of a file in a file system, a file on the
web, or a portion of a JAR file, or it can even be generated dynamically by a server.

You might also consider organizing topics to make it easy to package them into a compressed JAR file for
delivery to your users.

For both these reasons, it is usually best to organize your topics in a folder hierarchy that you can "tear off"
and place in the JAR file.

The following diagram shows such a hierarchy:

4.3.1.1 Links

The destination of a link to another topic in the helpst should be specified relative to the file that contains the
link. The following is an example of such a relative link:

 new topic

Do not specify links to other topics by using an absolute link. For example, the following link uses a full path
name to the destination of the link:

 new topic

JavaHelp System User's Guide

40 4.3 Setting Up Your JavaHelp Project

Only relative links remain valid when the topic hierarchy is packaged into a JAR file and then installed on the
user's computer.

4.3.1.2 File Separators ("/" vs. "\")

All files in a JavaHelp system are specified as URLs, which use the forward slash ("/") as the separator
between elements (files) in a hierarchy. Although in some cases a backslash ("\") works on Windows
platforms, if files that contain such references are installed on a different platform, the references no longer
work.

4.3.2 Packaging

In addition to the topic files, the help information includes metadata files that contain information about the
help system. Where you locate these metadata files can affect how you package, deliver, and update the help
information for your users.

In JavaHelp systems there are two kinds of metadata:

Navigational data•
Helpset data•

4.3.2.1 Navigational Data

Navigational data files contain information that is used by the JavaHelp system navigators. The standard
JavaHelp system navigators are:

Table of contents•
Index•
Full−text search•
Glossary•

Each of these navigators has a metadata file associated with it that contains navigational data. These
metadata files should be located in close proximity to the topic files to make it easier to package them into
JAR files with the topic files for delivery to customers. The following diagram displays an example.

4.3.2.2 Helpset Data

Helpset data is information that the JavaHelp system needs to run your help system. It is contained in two
files:

JavaHelp System User's Guide

4.3.1 Authoring 41

Helpset file•
Map file•

When the JavaHelp system is activated by your application, the first thing it does is read the helpset file. The
helpset file contains all the information needed to run the help system. As you can imagine, your application
must be able to find the helpset file after the product is installed on your user's system.

The helpset file contains the location of the map file and in most cases, the map file is read when the helpset
is initialized. The map file is used to associate topic IDs with URLs (paths to HTML topic files).

The following diagram shows how a help hierarchy might be set up to include the helpset file and map file.

4.3.3 Packaging a Helpset into a JAR File

You can package your help information into JAR files for delivery to your users. Usually, you package the
helpset file and map file in the JAR file along with the topic files and navigational files.

On the JavaTM 2 Platform, the jar: protocol makes various packaging options available. Including the
helpset and map files in or or excluding them from the JAR file has an effect on how you deliver the help
information and how you can later update it. The following two sections describe some of the issues to
consider when making that decision.

4.3.3.1 Helpset File

Under some installation conditions, the helpset file could be excluded from the JAR file, while the map file is
included. The following diagram illustrates this arrangement:

JavaHelp System User's Guide

42 4.3.3 Packaging a Helpset into a JAR File

Note that the map file is referenced with the jar: protocol.

The helpset file is the only help system file referenced explicitly by the application. The JavaHelp system
derives all information about the help system from that file. If the helpset file is outside the JAR file, the
installation program can update the helpset file so the JAR files can be installed anywhere in the user's file
system. This is not possible if the helpset file is included in the JAR file.

Another advantage of locating the helpset file outside the JAR file is that it can be updated independently of
the rest of the helpset. For example, additional help information can be added to the user's help system by
adding more JAR files and updating the helpset file.

4.3.3.2 Map File

Excluding the map file from the JAR file is possible, but is usually not useful.

JavaHelp System User's Guide

4.3.3 Packaging a Helpset into a JAR File 43

If the map file is located outside of the JAR file, all URLs in the map must use the jar: protocol. For example:

jar:file:/c:/product/help/Ajar.jar!/File1.html

See also:

The Helpset File
Map File
JAR Files
Table of Contents File
Index File
Glossary File
Creating the Full−Text Search Database

4.4 Helpset File

When the JavaHelp system is activated by your application, the first thing it does is read the helpset file
specified by the application. The helpset file defines the helpset for that application. A helpset is the set of
data that comprises your help system. The helpset file includes the following information:

Map file The map file is used to associate topic IDs with the URL or path name of HTML topic
files.

View information Information that describes the navigators being used in the helpset. The standard
navigators are: table of contents, index, and full−text search. Additional navigators are
the glossary and the favorites navigators. Information about custom navigators is
included here as well.

Helpset title The <title> defined in the helpset (.hs) file. This title appears at the top of the main
window and any secondary windows defined in your helpset file.

Home ID

JavaHelp System User's Guide

44 4.4 Helpset File

The name of the (default) ID that is displayed when the help viewer is called without
specifying an ID.

Presentation The windows in which to display the help topics. This is a new feature of the JavaHelp 2
software that is described in more detail below under <presentation>.

Sub−helpsets This optional section statically includes other helpsets by using the <subhelpset> tag.
The helpsets indicated by this tag are merged automatically into the helpset that contains
the tag. More details about merging can be found in Merging Helpsets.

Implementation This optional section creates a registry that provides key data mapping to define the
HelpBroker class to use in the HelpSet.createHelpBroker method. The registry also
determines the content viewer to user for a given MIME type. See <impl> below.

After your product is installed on your user's system, your Java program must be able to find the helpset file.
The application specifies the path to the helpset file when it starts the JavaHelp system. By convention, the
name of the helpset file ends with the .hs extension.

4.4.1 Helpset File Format

The format of the helpset file is based on the World Wide Web Consortium Extended Markup Language (XML
1.0) proposed recommendation:

http://www.w3.org/TR/PR−xml−971208

The following is an example of a helpset file (description follows):

<?xml version='1.0' encoding='ISO−8859−1' ?>
<!DOCTYPE helpset
 PUBLIC "−//Sun Microsystems Inc.//DTD JavaHelp HelpSet Version 2.0//EN"
 "http://java.sun.com/products/javahelp/helpset_2_0.dtd">
<helpset version="2.0">
 <!−− title −−>
 <title>Java Development Environment − Help</title>

 <!−− maps −−>
 <maps>
 <homeID>top </homeID>
 <mapref location="Map.jhm" />
 </maps>

 <!−− views −−>
 <view xml:lang="en" mergetype="javax.help.UniteAppendMerge">
 <name>TOC</name>
 <label>Table Of Contents</label>
 <type>javax.help.TOCView</type>
 <data>IdeHelpTOC.xml</data>
 </view>

 <view xml:lang="en" mergetype="javax.help.SortMerge">
 <name>Index</name>
 <label>Index</label>
 <type>javax.help.IndexView</type>
 <data>IdeHelpIndex.xml</data>
 </view>

 <view xml:lang="en">
 <name>Search</name>
 <label>Search</label>
 <type>javax.help.SearchView</type>
 <data engine="com.sun.java.help.search.DefaultSearchEngine">
 JavaHelpSearch
 </data>

JavaHelp System User's Guide

4.4.1 Helpset File Format 45

 </view>

 <!−− A glossary navigator −−>
 <view mergetype="javax.help.SortMerge">
 <name>glossary</name>
 <label>Glossary</label>
 <type>javax.help.GlossaryView</type>
 <data>glossary.xml</data>
 </view>

 <!−− A favorites navigator −−>
 <view>
 <name>favorites</name>
 <label>Favorites</label>
 <type>javax.help.FavoritesView</type>
 </view>

<!−− presentation windows −−>

 <!−− This window is the default one for the helpset.
 * Its title bar says "Project X Help". It
 * is a tri−paned window because displayviews, not
 * defined, defaults to true and because a toolbar is defined.
 * The toolbar has a back arrow, a forward arrow, and
 * a home button that has a user−defined image.
 −−>
 <presentation default=true>
 <name>main window</name>
 <size width="400" height="400" />
 <location x="200" y="200" />
 <title>Project X Help</title>
 <toolbar>
 <helpaction>javax.help.BackAction</helpaction>
 <helpaction>javax.help.ForwardAction</helpaction>
 <helpaction image="homeicon">javax.help.HomeAction</helpaction>
 </toolbar>
 </presentation>

 <!−− This window is simpler than the main window.
 * It's intended to be used a secondary window.
 * It has no navigation pane or toolbar.
 −−>
 <presentation displayviews=false>
 <name>secondary window</name>
 <size width="200" height="200" />
 <location x="200" y="200" />
 </presentation>

 <!−− subhelpsets −−>
 <subhelpset location="file:/c:/Foobar/HelpSet2.hs" />

 <!−− implementation section −−>
 <impl>
 <helpsetregistry helpbrokerclass="javax.help.DefaultHelpBroker" />
 <viewerregistry viewertype="text/html"
 viewerclass="com.sun.java.help.impl.CustomKit />
 <viewerregistry viewertype="text/xml"
 viewerclass="com.sun.java.help.impl.CustomXMLKit />
 </impl>
</helpset>

4.4.1.1 The Helpset Tags

The following table describes the helpset tags:

<helpset> Defines the helpset. It can contain all the following tags.

JavaHelp System User's Guide

46 4.4.1 Helpset File Format

<title> Names the helpset. This string can be accessed by the
application and used in the presentation (for example, in the
viewer header stripe).

<maps> Specifies the default topic and URL of the map file used in the
helpset.

<maps> Tags

<homeID>

Specifies the name of the (default) ID that is displayed
when the help viewer is called if an ID is not explicitly
specified.

•

<mapref>

Specifies the URL of the map file relative to the helpset.

•

<view> Defines the navigators used in the helpset. Each navigator is
defined by its own <view>.

<view> Attributes

xml:lang="lang"

Language for the view. Use the standard
locale−country−variant format. Some examples:

xml:lang="de"
xml:lang="en"
xml:lang="en−US"

•

mergetype="class"

Specifies the path to the merge class. The merge classes
are:

javax.help.UniteAppendMerge
javax.help.SortMerge
javax.help.AppendMerge
javax.help.NoMerge

For more information, see Merging Helpsets.

•

<view> Tags

<name>

Names the view.

•

<label>

Specifies a label associated with the view. This string is
displayed in the navigator's tab if the presentation's
displayviewimages attribute is "false".

•

<type>•

JavaHelp System User's Guide

4.4.1 Helpset File Format 47

Specifies the path to the navigator class.

<data>•

Specifies the path to the data used by the navigator.
When used with the search navigator, this tag contains
the following attribute:

engine A String indicating the path
to the search engine class.

<image>

Specifies the image displayed for the navigator in the tab
bar at the top of the navigator pane. The argument to this
attribute is an ID defined in the map file. The ID must be
associated with a GIF or JPEG file. If this attribute is not
specified, the default navigator image is displayed.

•

<presentation> Defines the windows used in the helpset. Each window is defined
by its own <presentation> tag. See the helpset example
above for sample code for this tag and its attributes.

<presentation> Attributes

xml:lang="lang"

Language for the view. Use the standard
locale−country−variant format. Some examples:

xml:lang="de"
xml:lang="en"
xml:lang="en−US"

•

default="true|false"

This presentation is the default one for this helpset. The
default value of this attribute is "false". (In other words,
if you do not specify this attribute, the presentation is not
the default one.)

If more than one presentation is specified as default,
the last one specified is the default presentation.

•

displayviews="true|false"

Show the navigational views of this helpset in a pane on
the left side of the window (like the tri−paned viewer).
The default value is "true".

•

displayviewimages="true|false"

The default value "true" displays the image for each
navigator in the navigator's tab. If set to "false", the text
defined in each view's <label> tag is displayed instead.

•

JavaHelp System User's Guide

48 4.4.1 Helpset File Format

<presentation> Tags

<name>

Names the window, allowing it to be called by name from
the Java program or from the TOC. If you define a
presentation, be sure to tell the Java programmer its
name and when you expect it to be called from the
program.

•

<size>

Specifies the size of the window with the following
attributes:
width="nnn" Width in pixels.
height="nnn" Height in pixels.

•

<location>

Specifies the position of the window with the following
attributes:
x="nnn" Horizontal (x) coordinate.
y="nnn" Vertical (y) coordinate.

•

<title>

Specifies the text that appears in the title bar at the top of
the window.

•

<image>•

Specifies the image displayed on the left side of the help
window's title bar. The argument to this attribute is an ID
defined in the map file. The ID must be associated with a
GIF or JPEG file. If this attribute is not specified, the
default JavaHelp image is displayed.

<toolbar>

Indicates that the window is to have a toolbar.

You define buttons on the toolbar by using a
<helpaction> tag for each button and a Java class
name for the action.

<helpaction>
javax.help.HelpAction
</helpaction>

HelpAction is any of the following default class names,
each of which defines an action and a button image:

BackAction
Goes to previous topic.

FavoritesAction

•

JavaHelp System User's Guide

4.4.1 Helpset File Format 49

Adds current map ID (currently displayed topic)
to Favorites navigator.

ForwardAction
Goes to next topic.

HomeAction
Loads the home topic in the content pane

PrintAction
Prints the topics selected in the navigator.

PrintSetupAction
Runs print setup before printing.

ReloadAction
Reloads the current topic page in the content
viewer.

SeparatorAction
Creates a separator between action buttons.

Each action button has a default button image. If you
want to use a different image, you must define a map ID
for the image file in the map file and reference the map
ID inside the <helpaction> tag by using the image
attribute.

<helpaction> Attribute

image="mapID"

For example:

<helpaction
image="images_backbutton">
javax.help.BackAction
</helpaction>

<subhelpset> This optional tag can be used to specify helpsets you want
merged with the helpset that contains the tag. See Merging
Helpsets for more information. Contains the following attribute:
location URL of the helpset file to be merged.

<impl> The implementation section creates a registry that provides key
data mapping to define the HelpBroker class to use in the
HelpSet.createHelpBroker method. The registry also
determines the content viewer to user for a given MIME type.

<impl> Tags

<helpsetregistry>

Registers the default HelpBroker class. Uses the
following attribute:
helpbrokerclass="class" − Required. Name of a
class that implements HelpBroker.

•

<viewregistry>

Registers a viewer class for a given MIME type. Uses the
following attributes:
viewertype="mine/type" − Required. MIME type.
viewerclass="class" − Required. Class name.

•

JavaHelp System User's Guide

50 4.4.1 Helpset File Format

See also:

Map File
Table of Contents File
Index File
Glossary File
Favorites File
Creating the Full−Text Search Database

4.5 The Map File

When the JavaHelp system is activated by your application, the first thing it does is read the application's
helpset file. The next thing it does is read the map file listed in the helpset file. The map file is used to
associate topic IDs with URLs (paths to HTML topic files) and to define the window that can display help
topics. By convention, map file names use the .jhm suffix.

The format of the map file is based on the World Wide Web Consortium Extended Markup Language (XML).

The following code listing is an example of a short map file:

<?xml version='1.0' encoding='ISO−8859−1' ?>
<!DOCTYPE map
 PUBLIC "−//Sun Microsystems Inc.//DTD JavaHelp Map Version 2.0//EN"
 "http://java.sun.com/products/javahelp/map_2_0.dtd">
<map version="2.0">
<mapID target="toplevelfolder" url="images/toplevel.gif" >
 <mapID target="hol_intro" url="hol/hol.html" />
 <mapID target="halloween" url="hol/hall.html"/>
 <mapID target="jackolantern" url="hol/jacko.html" />
 <mapID target="jacko_carving" url="hol/jacko.html#carving" />
 <mapID target="mluther" url="hol/luther.html" />
 <mapID target="reformation" url="hol/inforefo.html" />
 <mapID target="fawkes" url="hol/guy.html" />
 <mapID target="thanksgiving" url="hol/thanks.html" />
 <mapID target="thanksgiving_turkey" url="hol/thanks.html#turkey" />
 <mapID target="1thanksproc" url="hol/thanks2.html" />
 <mapID target="gwthanksproc" url="hol/thanks3.html" />
 <mapID target="althanksproc" url="hol/thanks4.html" />
 <mapID target="valentine" url="hol/val.html" />
 <mapID target="onlove" url="hol/love.html" />
</mapID>
</map>

Note that images referred to as IDs (for example, in the TOC) can also be associated with an ID. In this
example, toplevelfolder is associated with the GIF image toplevel.gif.

4.5.0.1 The Map Tags

The following table describes the tags that can be used in the map file:

<map> Defines the map. It contains <mapID> tags and the following optional attributes.

xml:lang="lang" Language for the map file. Use the standard locale−country−variant
format.

Some examples:

xml:lang="de"

JavaHelp System User's Guide

4.5 The Map File 51

xml:lang="en"
xml:lang="en−US"

version="1.0"|"2.0" Version of JavaHelp software.

<mapID> Defines a map entry. Uses the following attributes:

xml:lang="lang" Language for the map ID. Use the standard locale−country−variant
format.

Some examples:

xml:lang="de"
xml:lang="en"
xml:lang="en−US"

target Specifies the ID to associate with the URL specified in the url attribute.

url Specifies the URL to associate with the ID specified in the target
attribute.

See also:

The Helpset File
JAR Files
Table of Contents File
Index File
Creating the Full−Text Search Database

4.6 JAR Files

This topic describes how JAR files are used in the JavaHelp system.

Using JAR files•
The jar command•
Creating JAR files•
Listing JAR files•
Extracting files from JAR files•
The JAR protocol•

4.6.1 Using JAR Files

After you create your help information, you will usually encapsulate it into a single file and compress it for
delivery to your users. The JavaHelp system uses the JAR (Java ARchive) format for encapsulation and
compression. The JAR file format is based on the popular ZIP file format. The JavaHelp system automatically
extracts information from the JAR file when it is required.

Until support is available from GUI−base help authoring tools, the jar command (located in the J2SE

bin folder) must be used from a command−line prompt to create, read, and extract data from JAR files.

4.6.2 Sample Help Hierarchy

The following sections refer to this sample help hierarchy:

JavaHelp System User's Guide

52 4.6 JAR Files

4.6.3 The jar Command

The jar command syntax is:

 jar [ctxvfm] [jar−file] [manifest−file] files ...
 Option flags are:
 c create new archive
 t list table of contents for archive
 x extract named (or all) files from archive
 v generate verbose output on standard error
 f specify JAR file name
 m include manifest information from specified
 manifest file

For more detailed information about the jar command or format, please refer to
http://java.sun.com/beans/jar.html.

 The jar command is located in the bin directory of the J2SE.

4.6.4 Creating JAR Files

To create a JAR file from your help files, make the top level help folder the current folder. The jar command
descends recursively through the different directories and copies all of the files to the JAR file.

Use the following steps to create a JAR file named my_help.jar from the hierarchy example above:

C:\> cd ...\help (where "..." is the path above the \help folder)1.
C:...\help> jar −cvf my_help.jar *2.

The jar −cvf command copies all the files in the \help folder and in all folders hierarchically beneath it into
a JAR file named my_help.jar. As the command creates the JAR file, it reports its progress with output like
the following:

 adding: my_helpset.hs (in=5757) (out=2216) (deflated 61%)

This indicates that the file my_helpset.hs was added to the JAR file and compressed 61% (from 5272
bytes to 2150 bytes).

When you create a JAR file, the jar command automatically creates a manifest file for you. The manifest file

JavaHelp System User's Guide

4.6.3 The jar Command 53

consists of a list of files present within the archive itself.

4.6.5 Listing JAR Files

Use the t option to list the files included in a JAR file:

C:\> jar −tvf my_help.jar
 5272 Fri Apr 03 14:48:04 PST 1998 META−INF/MANIFEST.MF
 5757 Fri Apr 03 12:21:04 PST 1998 my_helpset.hs
 1345 Wed Feb 18 14:40:16 PST 1998 my_map.jhm
 1478 Wed Feb 18 14:40:16 PST 1998 my_toc.xml
 4678 Thu Mar 12 07:28:54 PST 1998 my_index.xml
 2345 Thu Mar 12 07:28:32 PST 1998 JavaHelpSearch/DOCS
 3456 Thu Mar 19 11:26:56 PST 1998 JavaHelpSearch/DOCS.TAB
 1457 Fri Mar 13 13:30:06 PST 1998 JavaHelpSearch/OFFSETS
 1465 Thu Mar 19 11:26:56 PST 1998 JavaHelpSearch/POSITIONS
 1234 Thu Mar 19 11:26:56 PST 1998 JavaHelpSearch/SCHEMA
 3214 Thu Mar 19 11:26:56 PST 1998 JavaHelpSearch/TMAP
 3113 Thu Mar 12 07:28:36 PST 1998 topics/topic1/subtopicA/topic.html
 230 Thu Mar 19 11:26:56 PST 1998 topics/topic1/subtopicB/topic.html
 1661 Wed Feb 18 14:40:46 PST 1998 topics/topic2/subtopicA/topic.html
 3181 Wed Feb 18 14:40:46 PST 1998 topics/topic2/subtopicB/topic.html
 1667 Thu Mar 19 11:26:56 PST 1998 topics/topic3/subtopicA/topic.html
 9072 Thu Mar 12 07:28:36 PST 1998 topics/topic3/subtopicB/topic.html
 3673 Thu Mar 19 11:26:56 PST 1998 topics/topic3/subtopicC/topic.html
 551 Fri Mar 13 13:30:12 PST 1998 topics/topic3/subtopicD/topic.html

4.6.6 Extracting Files from JAR Files

Use the x option to extract files from the JAR file:

C:\> jar −xvf my_help.jar
 extracted: META−INF/MANIFEST.MF
 extracted: my_helpset.hs
 extracted: my_map.jhm
 extracted: my_toc.xml
 extracted: my_index.xml
 extracted: JavaHelpSearch/DOCS
 extracted: JavaHelpSearch/DOCS.TAB
 extracted: JavaHelpSearch/OFFSETS
 extracted: JavaHelpSearch/POSITIONS
 extracted: JavaHelpSearch/SCHEMA
 extracted: JavaHelpSearch/TMAP
 extracted: topics/topic1/subtopicA/topic.html
 extracted: topics/topic1/subtopicB/topic.html
 extracted: topics/topic2/subtopicA/topic.html
 extracted: topics/topic2/subtopicB/topic.html
 extracted: topics/topic3/subtopicA/topic.html
 extracted: topics/topic3/subtopicB/topic.html
 extracted: topics/topic3/subtopicC/topic.html
 extracted: topics/topic3/subtopicD/topic.html

Note that it is not necessary to extract files from the JAR file to use them with the JavaHelp system. The
JavaHelp system reads files directly from the JAR file as they are required.

4.6.7 The JAR: Protocol

The JavaTM 2 SDK implements a protocol for referring explicitly to files within JAR files. The syntax of the
jar: protocol is:

 jar:<url>!/{entry}

JavaHelp System User's Guide

54 4.6.5 Listing JAR Files

The jar: protocol can be used to refer to entries within JAR files, the entire JAR file, or a directory as base
URLs (JAR directory).

Examples:

An entry within a JAR file:

jar:http://www.foo.com/bar/baz.jar!/COM/foo/Quux.class

A JAR file:

jar:file://www.foo.com/bar/baz.jar!/

A JAR directory:

jar:file://www.foo.com/bar/baz.jar!/COM/foo/

 "!/" is called the separator.

For more information, refer to the JavaTM 2 SDK documentation.

See also:

The Helpset File
Map File
Table of Contents File
Index File
Creating the Full−Text Search Database

4.7 Table of Contents File

The table of contents (TOC) file describes for the TOC navigator the content and layout of the TOC. The
format of the TOC file is based on the World Wide Web Consortium (W3C) Extended Markup Language
(XML). Following is a very small example of a TOC file:

<?xml version='1.0' encoding='ISO−8859−1' ?>
<!DOCTYPE toc
 PUBLIC
 "−//Sun Microsystems Inc.//DTD
 JavaHelp TOC Version 2.0//EN"
 "http://java.sun.com/products/javahelp/toc_2_0.dtd">
<toc version="2.0">
 <tocitem image="toplevelfolder"
 text="Java Development Environment">
 <tocitem target="jde.intro">Introduction to JDE Online Help />
 <tocitem text="IDE Tutorial" target="tut.starttoc">
 <tocitem text="Introducing JDE" target="tut.intro" />
 <tocitem text="Tutorial One" target="tut.quickstart" / >
 <tocitem text="Tutorial Two" target="tut.edit" />
 <tocitem text="Tutorial Three" target="tut.errors" />
 </tocitem>
 <tocitem text="Beans in JDE" target="bean.jbeanstory" />
 <tocitem text="Tips on Using Beans Effectively"
 target="bean.beantips"
 mergetype="javax.help.SortMerge"
 presentationtype="javax.help.SecondaryWindow
 presentationname="mainsw" />
 </tocitem>
</toc>

This example produces the following TOC display:

JavaHelp System User's Guide

4.7 Table of Contents File 55

4.7.0.1 The TOC Tags

The following table describes the TOC tags:

<toc> Defines the TOC. This tag contains <tocitem> tags and the following optional
attributes.

xml:lang="lang" Language for the TOC. Use the standard
locale−country−variant format.

Some examples:
xml:lang="de"
xml:lang="en"
xml:lang="en−US"

version="1.0"|"2.0" Version of JavaHelp software.

categoryclosedimage (optional) Specifies the image displayed to the left of a
closed TOC folder. A TOC folder is any entry in the
TOC that has subnodes. The argument to this attribute
is an ID defined (associated with a GIF or JPEG
image) in the map file. If this attribute is not specified,
the default folder image is displayed.

You can override this setting for any single TOC folder
by setting the folder's image attribute (see
<tocitem> below).

categoryopenimage (optional) Specifies the image displayed to the left of
an open TOC folder. A TOC folder is any entry in the
TOC that has subnodes. The argument to this attribute
is an ID defined (associated with a GIF or JPEG
image) in the map file. If this attribute is not specified,
the default folder image is displayed.

You can override this setting for any single TOC folder
by setting the folder's image attribute (see
<tocitem> below).

topicimage (optional) Specifies the image displayed to the left of a
TOC topic. A TOC topic is an entry in the TOC that
has no subnodes and links to a help topic. The
argument to this attribute is an ID defined (associated

JavaHelp System User's Guide

56 4.7 Table of Contents File

with a GIF or JPEG image) in the map file. If this
attribute is not specified, the default topic image is
displayed.

You can override this setting for any single TOC topic
by setting the topic's image attribute (see <tocitem>
below).

<tocitem> Defines a TOC entry. Nesting entry1 in entry2 defines entry2 to be hierarchically
contained within entry1. Uses the following attributes:

xml:lang="lang" Language for the TOC item. Use the standard
locale−country−variant format.

Some examples:
xml:lang="de"
xml:lang="en"
xml:lang="en−US"

text Specifies the text that displays in the TOC.

target (optional) Specifies the ID to display when the entry is
chosen by the user. IDs are defined (associated with a
URL) in the map file. If this attribute is not used, the
entry does not link to a topic

image (optional) Specifies the image displayed to the left of a
TOC item. The argument to this attribute is an ID
defined (associated with a GIF or JPEG image) in the
map file. If this attribute is not specified, the default
open folder, closed folder, or topic image is displayed.

This image overrides the global image, if any,
specified for the <toc> tag's
categoryclosedimage, categoryopenimage, or
topicimage attributes (see <toc> above).

mergetype="class" (optional) Path to a valid merge class for the view. The
default merge class for a TOC is
javax.help.AppendMerge.

The merge classes are:
javax.help.UniteAppendMerge
javax.help.SortMerge
javax.help.AppendMerge
javax.help.NoMerge

For more information, see Merging Helpsets.

expand="true|false" (optional) Specifies whether to expand the TOC item
and its subitems when the TOC initially opens. The
default setting is "none", a setting that expands only
the top level items.

presentationtype (optional) Specifies the type of window in which the
topic will be displayed (defined in the
<presentation> section of the .hs file). For more
information, see the presentation feature in Helpset

JavaHelp System User's Guide

4.7 Table of Contents File 57

File.

presentationname (optional) Specifies the name of the window in which
the topic will be displayed.

See also:

The Helpset File
JAR Files
Map File
Index File
Glossary File
Favorites File
Creating the Full−Text Search Database

4.8 Index File

The index file describes to the index navigator the content and layout of the index. The format of the index file
is based on the World Wide Web Consortium Extended Markup Language (XML). The following is a very
small example of an index file:

<?xml version='1.0' encoding='ISO−8859−1' ?>
 <!DOCTYPE index
 PUBLIC
 "−//Sun Microsystems Inc.//DTD
 JavaHelp Index Version 2.0//EN"
 "http://java.sun.com/products/javahelp/index_2_0.dtd">

 <index version="2.0">
 <indexitem text=".prof extension (profile data)"
 target="prof.profile" />
 <indexitem text="accelerators (keyboard), see 'keyboard commands'" />
 <indexitem text="adding existing portfolio" target="proj.import" />
 <indexitem text="adding existing project">
 <indexitem text="naming project" target="proj.importdirectory" />
 <indexitem text="naming storage directory"
 target="proj.importdirectory" />
 <indexitem text="procedures for" target="proj.importproject2" />
 </indexitem>
 <indexitem text="analyzing program performance, see 'profiler'" />
 <indexitem text="Java Applets">
 <indexitem text="overview" target="applet_over"
 presentationtype="javax.help.SecondaryWindow
 presentationname="mainsw">
 <indexitem text="editing in content page"
 target="applet_editing">
 <indexitem text="inserting in content page"
 target="applet_insert">
 </indexitem>
 </index>

4.8.0.1 The Index Tags

The following table describes the index tags:

<index> Defines the index. It can contains <indexitem> tags and the following optional
attributes.

JavaHelp System User's Guide

58 4.8 Index File

xml:lang="lang" Language for the index. Use the standard
locale−country−variant format.

Some examples:
xml:lang="de"
xml:lang="en"
xml:lang="en−US"

version="1.0"|"2.0" Version of JavaHelp software.

.

<indexitem> Defines an index entry. Nesting entry1 within entry2 defines entry2 to be hierarchically
contained within entry1. Uses the following attributes:

xml:lang="lang" Language for the index item. Use the standard
locale−country−variant format.

Some examples:
xml:lang="de"
xml:lang="en"
xml:lang="en−US"

text="string" Specifies the text that displays in the index.

target="string" (optional) Specifies the map ID of the topic that displays
when the entry is chosen by the user. IDs are defined
(associated with a URL) in the map file. If this attribute is not
used, the index entry does not link to a topic (probably
because it's being used to group sub−entries).

mergetype="class" (optional) The path to a valid merge class for the view. The
default merge type for an index is
javax.help.AppendMerge.

The merge classes are:
javax.help.UniteAppendMerge
javax.help.SortMerge
javax.help.AppendMerge
javax.help.NoMerge

For more information, see Merging Helpsets.

expand="true|false" (optional) Specifies whether to expand the index item and its
subitems when the index initially opens. The default setting
is "none", a setting that expands only the top level items.

presentationtype (optional) Specifies the type of window in which the topic will
be displayed (defined in the <presentation> section of
the .hs file). For more information, see the presentation
feature in Helpset File.

presentationname (optional) Specifies the name of the window in which the
topic will be displayed.

See also:

The Helpset File
Map File

JavaHelp System User's Guide

4.8 Index File 59

JAR Files
Table of Contents File
Glossary File
Favorites File
Creating the Full−Text Search Database

4.9 Glossary Navigator and File

The glossary file describes for the glossary navigator the content and layout of the glossary. The format of a
glossary file is the same as that of an index file. The glossary file format, as with the index file format, is based
on the World Wide Web Consortium Extended Markup Language (XML).

The following XML code shows a sample definition of a glossary navigator in the helpset file:

 <view xml:lang="en" mergetype="javax.help.SortMerge">
 <name>glossary</name>
 <label>Glossary</label>
 <type>javax.help.GlossaryView</type>
 <data>glossary.xml</data>
 </view>

The following XML code shows a small example of a glossary file:

<?xml version='1.0' encoding='ISO−8859−1' ?>
 <!DOCTYPE index
 PUBLIC
 "−//Sun Microsystems Inc.//DTD
 JavaHelp Index Version 2.0//EN"
 "http://java.sun.com/products/javahelp/index_2_0.dtd">

 <index version="2.0">
 <indexitem text="applet" target="applet_def"/>
 <indexitem text="application" target="application_def"/>
 <indexitem text="application server"
 target="appServer_def"/>
 <indexitem text="AWT" target="awt_def"/>
 <indexitem text="beans" target="bean_def"/>
 </index>

4.9.0.1 The Glossary Tags

The following table describes the glossary tags:

<index> Defines the glossary. It can contains <indexitem> tags and the following optional
attributes.

xml:lang="lang" Language for the glossary. Use the standard
locale−country−variant format.

Some examples:
xml:lang="de"
xml:lang="en"
xml:lang="en−US"

JavaHelp System User's Guide

60 4.9 Glossary Navigator and File

version="1.0"|"2.0" Version of JavaHelp software.

.

<indexitem> Defines a glossary entry. Nesting entry1 within entry2 defines entry2 to be hierarchically
contained within entry1. Uses the following attributes:

xml:lang="lang" Language for the glossary item. Use the standard
locale−country−variant format.

Some examples:
xml:lang="de"
xml:lang="en"
xml:lang="en−US"

text="string" Specifies the text that displays in the glossary.

target="string" Specifies the map ID of the topic that displays when the entry
is chosen by the user. IDs are defined (associated with a
URL) in the map file.

mergetype="class" (optional) Specifies the path to a valid merge class for the
glossary. The default merge class for a glossary is
javax.help.AppendMerge.

The merge classes are:
javax.help.UniteAppendMerge
javax.help.SortMerge
javax.help.AppendMerge
javax.help.NoMerge

For more information, see Merging Helpsets.

expand="true|false" (optional) Specifies whether to expand the glossary item and
its subitems when the glossary initially opens. The default
setting is "none", a setting that expands only the top level
items.

presentationtype (optional) Specifies the type of window in which the topic will
be displayed (defined in the <presentation> section of
the .hs file). For more information, see the presentation
feature in Helpset File.

presentationname (optional) Specifies the name of the window in which the
topic will be displayed.

See also:

The Helpset File
Map File
JAR Files
Table of Contents File
Index File
Favorites File
Creating the Full−Text Search Database

JavaHelp System User's Guide

4.9 Glossary Navigator and File 61

4.10 Favorites Navigator and File

Favorites are links to helpset topics that the user wants to save and reuse. The favorites file describes the
content and layout of these links in the favorites navigator. Unlike other navigational views that store the
view's metadata in the helpset directories, favorites are stored in the user's directory in the file
userdir/.JavaHelp/Favorites.xml.

The favorites file format is based on the World Wide Web Consortium Extended Markup Language (XML).
The DTD for this syntax is dtd/favorites_2_0.dtd. The top level tag is <favorites>. A version
attribute is optional. When present, its value must be "2.0".

The JavaHelp system specifies one favorites navigator view: javax.help.FavoritesView. Favorites do
not require a data definition as part of the navigator view definition. Also, the mergetype tag is ignored.

The following XML code shows a sample definition of a favorites navigator in the view section of a helpset file:

 <view>
 <name>Favorites</name>
 <label>Favorites</label>
 <type>javax.help.FavoritesView</type>
 </view>

The following figure shows how the Favorites navigator looks in the helpset for the JavaHelp System Users
Guide. As the figure shows, when you add a Favorites navigator to a helpset, the JavaHelp system also adds
a Favorites button to the default toolbar. Clicking the Favorites button enables the user to add the currently
displayed help topic to the list of favorites in the navigator.

If you have defined your own windows (presentations) in the helpset file, the favorites button is not added
automatically. To display a favorites button on the presentation's toolbar, you must add the following help
action to the <presentation> tag's <toolbar> tag:

 <helpaction>javax.help.FavoritesAction</helpaction>

For more information, see the toolbar tag description in the Helpset File section.

JavaHelp System User's Guide

62 4.10 Favorites Navigator and File

The following XML code is an example of a favorites file, which is created for you by the JavaHelp system:

 <?xml version="1.0" encoding="UTF−8"?>
 <!DOCTYPE favorites
 PUBLIC "−//Sun Microsystems Inc.//DTD JavaHelp Favorites Version 2.0//EN"
 "http://java.sun.com/products/javahelp/favorites_2_0.dtd">
 <favorites version="2.0">
 <favoriteitem text="Love Holidays" >
 <favoriteitem text="On Love" target="onlove" hstitle="History of the Holidays"/>
 <favoriteitem text="Valentines" target="valentine" hstitle="History of the Holidays"/>
 </favoriteitem>
 <favoriteitem text="Numbers" >
 <favoriteitem text="Zero" target="0" hstitle="Master"/>
 <favoriteitem text="Zero − note "
 url="file:/usr/test/hs/Zeronote.html"
 hstitle="Master"/>
 </favoriteitem>

4.10.0.1 The Favorites Tags

The following table describes the favorites tags:

<favorites> Defines the user favorites list. It contains <favoriteitem> tags and the following
optional attributes.

xml:lang="lang" Language for the favorites list. Use the standard
locale−country−variant format.

Some examples:
xml:lang="de"
xml:lang="en"
xml:lang="en−US"

version="2.0" Version of JavaHelp software.

.

JavaHelp System User's Guide

4.10 Favorites Navigator and File 63

<favoriteitem> Defines a favorites link. You can nest favorites links to create hierarchies of favorites.
Uses the following attributes:

xml:lang="lang" (optional) Language for the favorites link. Use the standard
locale−country−variant format.

Some examples:
xml:lang="de"
xml:lang="en"
xml:lang="en−US"

text="string" Specifies the text that displays in the list.

target="string" (optional) Specifies the map ID of the topic that displays
when the link is chosen by the user. IDs are defined
(associated with a URL) in the map file.

url="string" (optional) Specifies the URL of the topic that displays when
the link is chosen by the user. IDs are defined (associated
with a URL) in the map file.

hstitle="string" Specifies the title of the helpset.

image="string" (optional) Specifies the image displayed before a favorites
link. The argument to this attribute is a mapID defined
(associated with a GIF or JPEG image) in the map file. If this
attribute is not specified, the default images are displayed.

presentationtype (optional) Specifies the type of window in which the favorite
topic will be displayed (defined in the <presentation>
section of the Hs file). For more information, see the
presentation feature in Helpset File.

presentationname (optional) Specifies the name of the window in which the
favorites topic will be displayed.

See also:

The Helpset File
Map File
JAR Files
Table of Contents File
Index File
Glossary File
Creating the Full−Text Search Database

4.11 Context−Sensitive Help

The JavaHelp system provides a number of features that enable you to provide context−sensitive help to your
users. Context−sensitive help is information provided to users based on the context of the task in which they
are involved.

Implementing context−sensitive help involves associating help topics with objects in the application's graphical
user interface (GUI) such as menu items, buttons, text boxes, and windows. Help authors generally work with
developers to determine which topics are assigned to each object. The developer assigns map IDs to the
application's GUI objects, then the help author associates those IDs with topic URLs in the map file. The fact
that hard URL addresses are not embedded in the application code allows the author to change topics without
requiring the developer to change the application.

JavaHelp System User's Guide

64 4.11 Context−Sensitive Help

For details about how context−sensitive help is implemented for an application, see Implementing
Context−Sensitive Help.

4.11.1 Types of Context−Sensitive Help

The JavaHelp system provides mechanisms for two types of context−sensitive help: user−initiated help and
system−initiated help.

4.11.2 User−Initiated Help

User initiated help delivers information to users when they explicitly ask for it. The JavaHelp system includes
the following user−initiated mechanisms:

Window−Level Help•
Field−Level Help•
Help Menu•
Help Button•

4.11.2.1 Window−Level Help

Users can obtain help about container objects such as application windows and dialog boxes that have focus
by pressing the F1 function key (on systems with a Help key, the Help key also works). An object is
considered to have focus when it is in a state that allows the user to interact with it. By default, help
information is displayed in the help viewer.

4.11.2.2 Field−Level Help

Users can use field−level help to obtain help about any GUI object. To use field−level help, the user:

Clicks the field−level help button or chooses the Help > Field−Level Help menu item to change the

cursor to the special field−level help cursor ()

1.

Selects a GUI object2.

By default, help information is displayed in the help viewer and the cursor returns to its original state.

4.11.2.3 Help Menu

The Help menu can be used to provide help to users about specific tasks or objects. The following Help menu
contains a submenu of items that provide help about completing various tasks.

JavaHelp System User's Guide

4.11.1 Types of Context−Sensitive Help 65

4.11.2.4 Help Button

It is common for dialog boxes to contain a Help button that provides help information about how to use the
dialog box. Clicking the Help button is usually equivalent to pressing the F1 key while the dialog box has
focus.

4.11.3 System−Initiated Help

Most applications provide information automatically when the user performs a particular action. Most
commonly, this information consists of status, warning, or error messages. It is also possible for the
application to use the help viewer to provide more detailed help based on user actions.

See also:

Implementing Context−Sensitive Help

4.12 Full−Text Search

The JavaHelp system full−text search engine uses a natural language search technology that not only
retrieves documents, but locates specific passages within those documents where answers to queries are
likely to be found. The technology involves a conceptual indexing engine that analyzes documents to produce
an index of their content and a query engine that uses this index to find relevant passages in the material.

As the help author, you create the search database that is searched by the JavaHelp system full−text search
engine. The process of creating the search database is described in Creating the Full−Text Search Database.

4.12.1 How Searching Works

To initiate a search the user enters a natural language query in the search navigator Find text box. The results
are reported back to the user in the following display:

JavaHelp System User's Guide

66 4.11.2 User−Initiated Help

The circle in the first column indicates the ranking of the matches for that topic. The more filled−in the
circle is, the higher the ranking. There are five possible rankings (from highest to lowest):

•

The number in the second column indicates the number of times the query was matched in the listed
topic.

•

The text specifies the name of the topic (as specified in the topic's <TITLE> tag) in which matches
are found.

To avoid confusion, ensure that the <TITLE> tag corresponds to the title used in the table of
contents.

•

4.12.1.1 Relaxation Ranking

The search engine uses a technique called relaxation ranking to identify and score specific passages of text
that are likely to answer the user's query. The relaxation ranking algorithm compares the user's query terms
with occurrences of the same or related terms in the help topics. The search engine attempts to find passages
in the help topics in which as many as possible of the query terms occur in the same form and the same
order. The search engine automatically relaxes these constraints to identify passages in which:

Not all of the terms occur•
The terms occur in different forms•
The terms occur in a different order•
The terms occur with intervening words•

The search engine assigns appropriate penalties (that lower the ranking) to the passages for these deviations
from the specified query.

The ranking process improves as queries become more complex and include more information.

4.12.1.2 Morphing

The JavaHelp search engine uses "morphing" technology to find words with common roots. For example,
when the term "build" is included in a search string, matches that contain "built", "builder", "building", and
"builds" are returned.

See also:

Creating the Full−Text Search Database
The jhindexer Command

JavaHelp System User's Guide

4.12.1 How Searching Works 67

The jhsearch Command
Localizing the Full−Text Search Database

4.13 Creating the Full−Text Search Database

When a user initiates a full−text search, the JavaHelp system full−text search engine searches a special
search database to find matches quickly. You use the jhindexer command to create the search database
for your help topics.

The search database created by the jhindexer command consists of six files located in a folder named
JavaHelpSearch. As described in Setting Up a JavaHelp System, the search database folder is usually
located in the same folder as the rest of the help metadata files.

4.13.1 Example

The following example describes how to use the jhindexer command in its simplest form. For details about
other features of the jhindexer command, see The jhindexer Command.

The example assumes that your help information is arranged in the following hierarchy:

To create a full−text search database:

Make the ...\help folder the current folder1.
Specify the top−level folders as arguments to the jhindexer command, as follows:

jhindexer topic1 topic2 topic3

The jhindexer command is located in the javahelp\bin folder of the JavaHelp system
release.

2.

The jhindexer command recursively descends the help hierarchy, indexing all the files it encounters. When
finished, jhindexer places the search database files in a folder named JavaHelpSearch in the current
folder:

JavaHelp System User's Guide

68 4.13 Creating the Full−Text Search Database

To verify the validity of a full−text search database:

Make the ...\help folder the current folder1.
Specify the JavaHelpSearch folder as the argument to the jhsearch command:

jhsearch JavaHelpSearch

2.

See also:

The jhindexer Command
The jhsearch Command
Localizing the Full−Text Search Database
Full−Text Search

4.14 The jhindexer Command

The jhindexer creates a full−text search database used by the JavaHelp system full−text search engine to
locate matches. You can use the jhsearch command to verify the validity of the database.

To build a full−text search database use the following commands:

Win32

jhindexer [options] [file | folder]*

Solaris/SPARC

jhindexer [options] [file | folder]*

If the argument is a folder, the folder is searched recursively for JavaHelp system content files.

The following options are available:

−c file A configuration file name. See Config File below.

−db dir The name of the database output folder. By default the output
folder is named JavaHelpSearch and is created in the
current folder.

JavaHelp System User's Guide

4.14 The jhindexer Command 69

−locale lang_country_variant The name of the locale as described in java.util.Locale.
For example: en_US (English, United States) or en_US_WIN
(English, United States, Windows variant).

−logfile file Captures jhindexer messages in a specified file. You can
use this option to preserve jhindexer output on Win32
machines where the console window is dismissed after
execution terminates.

−nostop words Causes stop words to be indexed in the full−text search
database.

−verbose Displays verbose messages while processing.

4.14.1 Stop Words

You can direct the JavaHelp system's full−text search indexer to exclude certain words from the database
index. These words are called stop words. By default, the indexer ignores (does not index) the following stop
words when it encounters them in your help topics:

a all am an and any are as
at be but by can could did do
does etc for from goes got had has
have he her him his how if in
is it let me more much must my
nor not now of off on or our
own see set shall she should so some
than that the them then there these this
those though to too us was way we
what when where which who why will would
yes yet you

You can override the indexer's default stop word behavior in two ways:

Use the −nostopwords option with the jhindexer command to force the indexer to ignore stop
words and to index every word in your help topics.

•

Use the config file to specify your own list of stop words.•

4.14.2 Config File

You can use the config file to:

Change the path names of the files as they are stored in the search database. Use this option when
you create the search database with paths to topic files that are different from the paths the help
system will later use to find them.

•

Explicitly specify the names of the topic files you want indexed.•
Specify your own list of stop words.•

Each of these options is described below.

4.14.2.1 Changing Path Names

You can remove and prepend portions of the topic file names as they are stored in the search database. This
is useful when the path to the topic files you use during development is different from the path the help system
will later use to find the topic files during searches.

To remove a portion of the path name from all of the indexed files:

JavaHelp System User's Guide

70 4.14.1 Stop Words

Add the following line to the config file:

 IndexRemove path

where path is the portion of the path you want removed.

For example, to change:

 /public_html/JavaHelp/demo/docs/file.html

to:

 docs/file.html

add the following line to the config file:

 IndexRemove /public_html/JavaHelp/demo/

To prepend a different path to the indexed files:

Add the following line to the config file:

 IndexPrepend path

For example, to change:

 docs/file.html

to:

 my_product/install/docs/file.html

add this line to the config file:

 IndexPrepend my_product/install/

4.14.2.2 Specifying Files for Indexing

You can explicitly specify the names of the files you want indexed. In the config file, specify the names in a
list in the following format:

 File filename
 File filename
 File filename
 .
 .
 .

 Be sure to use "/" as the file separator when specifying files for indexing.

4.14.2.3 Specifying Stop Words

You can specify your own list of stop words in the config file. When you specify your own list, the indexer
does not use the default stop word list. You can specify a list of stop words in two ways:

Add the list of words directly to the config file. Use the following format:

 StopWords word, word, word...

•

In the config file, specify the name of a file that contains a list of stop words:•

JavaHelp System User's Guide

4.14.2 Config File 71

 StopWordsFile filename

The stop words file must list each stop word on its own line.

See also:

Creating the Full−Text Search Database
The jhsearch Command
Localizing the Full−Text Search Database

4.15 The jhsearch Command

The javahelp\bin\jhsearch command is a command−line program that you can use to query the
JavaHelp system full−text search database created with the jhindexer command. The jhsearch
command can be used to verify the validity of a search database without invoking the help viewer.

To use jhsearch:

Win32

jhsearch database_folder

Solaris/SPARC

jhsearch database_directory

By default, the jhindexer command creates the database files in a database folder named
JavaHelpSearch.

See also:

Creating the Full−Text Search Database
The jhindexer Command

4.16 Opening Popup and Secondary Windows From an HTML Topic

In an HTML topic, you can link to any help topic in your help system and display it in a number of different
windows.

You can link to the help topic by using the standard syntax. The help topic opens in
the current help viewer as another topic.

•

You can use the <object> tag to open a popup window.•
You can use the <object> tag to open a secondary window.•

Secondary windows and popups are implemented by a the lightweight component class
JHSecondaryViewer. You use this class in an HTML topic by defining an <object> tag with the
appropriate parameters. This topic describes how these windows look and how to use this tag to display
popup and secondary windows.

Popups and secondary windows are not used in this JavaHelp System User's Guide because they
cannot be included in the PDF version. To see actual examples of how these windows can be
used, experiment with the object demo located in the following directory:

 demos\bin

JavaHelp System User's Guide

72 4.15 The jhsearch Command

You can also launch the object demo program by using shortcuts (program groups, desktop icons,
links) that you might have created during the installation of the JavaHelp system.

4.16.1 Differences Between Popups and Secondary Windows

Popups and secondary windows are functionally similar. They are both fully capable HTML windows that can
include graphics, links, and lightweight components. Most of the features described in this topic apply to both
types of windows. The following lists describe their differences:

Popups:

Are always displayed directly adjacent to the object the user clicks to activate the popup.•
Cannot be resized or moved by the user.•
Are dismissed whenever focus is changed to another part of the help viewer.•
Have only a content viewer.•

Secondary windows:

Can be displayed anywhere on the screen.•
Can be iconified, resized, and moved by the user.•
Persist until they are dismissed or the help viewer is dismissed.•
Can contain a navigation pane and a toolbar, but by default have a content viewer only.•

JavaHelp System User's Guide

4.16.1 Differences Between Popups and Secondary Windows 73

4.16.2 Working with Popups and Secondary Windows

You define the characteristics of a popup or secondary window by using a set of parameters with the
<object> tag. For example, the following <object> tag definition creates a secondary window that uses the
presention named "secondary window" defined in the helpset file. The secondary window is activated by
clicking the text object "Click here".

<object classid="java:com.sun.java.help.impl.JHSecondaryViewer">
 <param name="content" value="../topicB/task_topic.html">
 <param name="viewerActivator" value="javax.help.LinkLabel">
 <param name="viewerStyle" value="javax.help.SecondaryWindow">
 <param name="viewerSize" value="300,400">
 <param name="viewerName" value="secondary window">
 <param name="text" value="Click here">
 <param name="textFontFamily" value="SansSerif">
 <param name="textFontSize" value="x−large">
 <param name="textFontWeight" value="plain">
 <param name="textFontStyle" value="italic">
 <param name="textColor" value="red">
</object>

This popup object has the following characteristics:

The content of the window is the file at the location ../topicB/glossary_def.html.•
The object that the user clicks (viewerActivator) is a link.•
The type of window (viewerStyle) is a popup.•
The size of the window (viewerSize) is 300 pixels wide by 400 pixels high.•
The text that the user sees in the link is "Click here".•
The remaining param values define the font, font size, weight, style, and color of the text that the user
sees.

•

The <param> element specifies parameters to the JHSecondaryViewer component. The <param> element
takes two attributes: name, and value. Parameters can be specified in any order. If parameters conflict, the
one specified last is used. Valid parameter names are:

viewerStyle•
content•
viewerActivator•
viewerSize•
viewerLocation•
viewerName•
iconByName•
iconByID•
text•
textFontFamily•
textFontSize•
textFontWeight•
textFontStyle•
textColor•

4.16.3

The following sections describe each element of the object tag definition and provide examples of a parameter
that performs a particular function.

JavaHelp System User's Guide

74 4.16.2 Working with Popups and Secondary Windows

4.16.4 Window Type (viewerStyle)

The type of window, popup or secondary, is defined by the following parameter:

 <param name="viewerStyle"
 value="javax.help.Popup"|"javax.help.SecondaryWindow">

If you omit this parameter, the window defaults to a secondary window.

For example, the following parameter specifies a popup:

 <param name="viewerStyle" value="javax.help.Popup">

4.16.5 Content or ID

The content of the object is defined by one of the following parameters:

 <param name="content" value="URL >
 <param name="id" value="MapID >

The content of popups and secondary windows is rendered by the same HTML engine used in the main help
viewer. Anything that is rendered in the main help viewer can be used in a popup or secondary window,
including links, graphics, and lightweight components (for example, popup/secondary windows). You can
specify the topics displayed in a window by using a URL or a JavaHelp system map ID.

If you use a link in a popup or secondary window, whatever you link to will also be displayed in that
same window. Therefore, links are not often used in these kinds of windows because it is
preferable to keep users in the main viewer where they have access to the TOC, index, and other
navigational tools.

4.16.6 Activation (viewerActivator)

You indicate the object that the user clicks to activate the window with the following parameter:

 <param name="viewerActivator"
 value="javax.help.LinkButton"|"javax.help.LinkLabel">

Users activate popup/secondary windows by clicking one of the following objects:

4.16.6.1 Button ()

This object is a standard button provided as part of the popup or secondary window component. You can use
the button as pictured to the left or you can specify a string of text or an image to replace the ">" character on
the button.

The following sample code defines a button with the text "ClickMe":

 <param name="viewerActivator" value="javax.help.LinkButton">
 <param name="text" value="ClickMe">

Here's what this button looks like:

The following sample code defines a button that has a GIF image on it:

 <param name="viewerActivator" value="javax.help.LinkButton">
 <param name="text" value="../images/popup_icon.gif">

JavaHelp System User's Guide

4.16.4 Window Type (viewerStyle) 75

Here's what this button looks like:

4.16.6.2 Text object

This object is a specified string of text inserted inline with the text of the topic. You can control font
characteristics of the text to make it stand out.

For example, following parameters define the text object "Click here" to be SanSerif, medium in size, bold,
italic, and blue:

 <param name="viewerActivator" value="javax.help.LinkLabel">
 <param name="text" value="Click here">
 <param name="textFontFamily" value="SansSerif">
 <param name="textFontSize" value="medium">
 <param name="textFontWeight" value="bold">
 <param name="textFontStyle" value="italic">
 <param name="textColor" value="blue">

Here's what this text looks like: Click here

4.16.6.3 Graphic object

This object is a GIF or JPG image.

The following sample code defines a GIF image from the file rel_topic_button.gif:

 <param name="viewerActivator" value="javax.help.LinkLabel">
 <param name="iconByName"
 value="../images/rel_topic_button.gif">

Here's what this button looks like:

4.16.7 Window Size (viewerSize>, Location (viewerLocation) , and Name
(viewerName)

You can specify the height and width of a popup or secondary window. When content exceeds the size of the
window, scroll bars are automatically added to the window. For example, to specify a width of 300 pixels and
a height of 400 pixels, use the following parameter:

 <param name="viewerSize" value="300,400">

For secondary windows, you can also specify the window's position and name.

Window Location

You can specify the position of secondary windows on the screen. The parameter specifies the x,y position (in
pixels) of the upper left corner of the secondary window on the screen, with 0,0 being the upper left corner of
the screen. Popups ignore this parameter. For example, the following parameter specifies a window whose
top left corner is 300 pixels from the left side of the screen and 400 pixels from the top:

 <param name="viewerLocation" value="300,400">

Named Windows (secondary windows only)

You can name secondary windows. Doing so enables you to reuse an already active window. Popups ignore
this parameter.

JavaHelp System User's Guide

76 4.16.6 Activation (viewerActivator)

For example, the following parameter defines a window with the name glossary_window:

 <param name="viewerName" value="glossary_window">

4.16.8 Text

When you add text to a button or use a text object as an activator, you can control the following font
characteristics:

Font family

Parameter name:
textFontFamily

You can set the font family to:

Serif
SansSerif
Monospaced
Dialog
DialogInput
Symbol
For example,

<param name="textFontFamily" value="SansSerif">

Font size

Parameter name:
textFontSize

You can set the size of the font to:

xx−small
x−small
small
medium
large
x−large
xx−large
bigger (Increases the current base font size by 1)
smaller (Decreases the current base font size by 1)
nnpt (Sets the font size to a specific point value of nn)
+n (Increases the current base font size by a value of n)
−n (Decreases the current base font size by a value of n)
n (Sets the font size to the point size associated with the index n)
For example,

<param name="textFontSize" value="x−large">

Font weight

Parameter name:
textFontWeight

You can set the weight of the font to:

plain
bold
For example,

<param name="textFontWeight" value="plain">

Font style

Parameter name:
textFontStyle

You can set the style of the font to:

plain
italic
For example,

<param name="textFontStyle" value="italic">

JavaHelp System User's Guide

4.16.8 Text 77

Font color

Parameter name:
textColor

You can set the color of the font to:

black
blue
cyan
darkGray
gray
green
lightGray
magenta
orange
pink
red
white
yellow
For example,

<param name="textColor" value="red">

See also:

Creating Lightweight Java Components

4.17 Merging Helpsets

The JavaHelp system provides a mechanism for merging multiple helpsets into a single helpset. You use the
merge functionality to merge a helpset's views (TOC, index, glossary, favorites, and full text search) into those
of an existing helpset, known as the master helpset.

An example of this functionality is a suite of applications, each with its own helpset. Each time the customer
installs a new application that is part of the suite, its help information is merged with the help information in the
currently installed applications in the suite.

Merging of helpsets can be done statically, by specifying helpsets in the XML code of a master helpset's
helpset (.hs) file, or dynamically, by writing code in a Java program that uses the JavaHelp software API. The
type of merge your software performs depends on the structure of your applications. For example:

If you know which helpsets could be available, as you would in a suite of applications, you might
prefer to perform a static merge, which merges specific, named helpsets if they are installed.

•

If you do not know which helpsets might be available, as might be the case with a developer platform
that could have any number of modules or plugins, you might prefer to do a dynamic merge.

•

When a helpset is merged, there are four types of merges that can be performed for each view: SortMerge,
UniteAppendMerge, AppendMerge, and NoMerge. Each type of view has its own default merge type. The
help author can override a view's default merge type in the helpset (.hs) file by setting a view's mergetype
property. (For example, see the TOC and Index views defined in the example under Helpset File Format.) The
help writer can also set a specific merge type for an element of a TOC, an index, or a glossary. (For example,
see the sample TOC in Table of Contents File.)

For more information on dynamic merging of helpsets, see the Developer topic Merging Helpsets
Dynamically.

The rest of this section covers various aspects of setting up helpsets for merging, which can be done by a
help author without the need for Java programming.

JavaHelp System User's Guide

78 4.17 Merging Helpsets

4.17.1 The Master Helpset

When merging helpsets, there must be an initial helpset into which all other helpsets are merged. This initial
helpset is called the master helpset. This helpset can simply be the first one installed, or it can be a specially
designed dataless master helpset. All other helpsets are merged into the master helpset.

The master helpset controls which views can be merged. For example, if the master helpset does not have a
Glossary view, but a helpset being merged does have such a view, the Glossary view is not displayed in the
merged helpset.

The master helpset can be an actual, functioning helpset or it can be empty (dataless). A dataless master
helpset defines a set of views that do not contain data (there is no <data> tag specified for the views). The
dataless master helpset serves as a container into which subhelpsets can be merged. You might use a
dataless master to ensure that a set of views is shown in the merged helpset.

For example, the following code defines a dataless master helpset for a suite of applications. The helpset
does a static merge: it declares a series of subhelpsets and the JavaHelp system merges those helpsets if
they are installed on the user's system.

<?xml version='1.0' encoding='ISO−8859−1' ?>
 <!DOCTYPE helpset
 PUBLIC
 "−//Sun Microsystems Inc.//DTD
 JavaHelp HelpSet Version 2.0//EN"
 "http://java.sun.com/products/javahelp/helpset_2_0.dtd">

 <helpset version="2.0">
 <!−− title −−>
 <title>JavaHelp System User's Guide</title>

 <!−− views −−>
 <view>
 <name>TOC</name>
 <label>Table Of Contents</label>
 <type>javax.help.TOCView</type>
 </view>

 <view>
 <name>Index</name>
 <label>Index</label>
 <type>javax.help.IndexView</type>
 </view>

 <view>
 <name>Search</name>
 <label>Search</label>
 <type>javax.help.SearchView</type>
 </view>

<subhelpset location="app1.hs" />
 <subhelpset location="app2.hs" />
 <subhelpset location="app3.hs" />
 <subhelpset location="app4.hs" />

 </helpset>

4.17.2 Understanding Merge Types

The JavaHelp system provides four merge types that control how helpsets are merged:
javax.help.UniteAppendMerge, javax.help.SortMerge, javax.help.AppendMerge, and
javax.help.NoMerge. Each view of a helpset (TOC, index, search, glossary, and favorites) has a default
merge type that can be overridden by the help author in the helpset's Helpset (.hs) file by setting the

JavaHelp System User's Guide

4.17.1 The Master Helpset 79

mergetype attribute for that view, as described later in Using Merge Types. (As also described in that
section, it is possible to set a merge type for an element of a view, such as an index entry.)

When a helpset is merged into a master helpset, each view is merged according to the merge type that has
been set for it.

4.17.2.1 javax.help.UniteAppendMerge

This merge type preserves the hierarchy of the master view by merging matching elements at the same level
into one element, and then merging and sorting any sub−elements of the matching elements. Any remaining
elements are appended to the end of the view. This type of merging works well for TOC views.

Merged elements can be united into a single element only if they are identical. For example, if there is a folder
in the master TOC that has a target (a link to a help topic) and a folder in a helpset being merged that has the
same name but a different target, these two folders will appear separately in the merged TOC, with the
helpset in parentheses after the folder name. If you want the folders to merge into a single element, they must
match exactly (have the same targets or no targets at all).

UniteAppendMerge is slower than SortMerge and is much slower than AppendMerge. If you do
UniteAppend merges with the TOCs of multiple helpsets, you might want to test the merge speed of
helpsets that have large TOCs to ensure that the speed is adequate for your users.

UniteAppendMerge cannot detect if a navigator (for example, a TOC) that is being merged has entries
in it that duplicate each other. If you do not want duplicate entries in the merged TOC, you must ensure
that the TOC for each helpset is constructed properly and has no entries that duplicate each other. (An
example of duplicated entries is a TOC that lists the same entry in more than one place for
organizational purposes).

In the following example from the New Merge sample helpset, there is a master TOC with place holders for
specific topics in the TOCs of the helpsets that the help writer expected to be merged. The master helpset is
dataless. Its purpose is to ensure that the views of the subhelpsets appear in a particular order. The
unmerged TOCs look like this:

Master TOC Vertebrates TOC Invertebrates TOC

Animal
Categories
 Vertebrates

Invertebrates

Animal Categories
 Vertebrates
 Fish
 Amphibians
 Reptiles
 Birds
 Mammals
 Marsupials
 Primates
 Rodents
 Cetaceans
 Animals Like Seals
 Pictures [Sort merge]
 Bat
 Bears
 Black Bear
 Grizzly
 Koala
 Bird
 Crocodile
 Dolphin
 Elephant

Animal Categories
 Invertebrates
 Protozoa
 Echnioderms
 Annilids
 Mollusks
 Arthropods
 Crustaceans
 Arachnids
 Insects
 Pictures [Sort merge]
 Butterfly
 Clam
 Crab
 Dragon
 Sea Star
 Spider
 Sponge
 Worms

JavaHelp System User's Guide

80 4.17.2 Understanding Merge Types

 Fish
 Frog
 Giraffe
 Kangaroo
 Leopard
 Lizard
 Monkey
 Orca
 Seal
 Shark
 Snake
 Wolves
 Arctic Wolf
 Timber Wolf

By applying the UniteAppendMerge rules to the the TOCs being merged, the JavaHelp system produces a
merged helpset with the following characteristics:

The Vertebrates and Invertebrates TOC items appear in the same order as in the master TOC.•
There is a new Pictures TOC item that is appended after the Invertebrates TOC item.•
The invertebrate and vertebrate sub−elements of the Pictures TOC element are sorted canonically.
(The Pictures subnode is defined to use Sort and not UniteAppendMerge, which is why all the picture
subitems are sorted in the merged TOC below.)

•

The following table shows the entire merged helpset:

Merged TOC

Animal Categories
 Vertebrates
 Fish
 Amphibians
 Reptiles
 Birds
 Mammals
 Marsupials
 Primates
 Rodents
 Cetaceans
 Animals Like Seals
 Invertebrates
 Protozoa
 Echnioderms
 Annilids
 Mollusks
 Arthropods
 Crustaceans
 Arachnids
 Insects
Pictures
 Bat
 Bears
 Black Bear
 Grizzly
 Koala
 Bird

JavaHelp System User's Guide

4.17.2 Understanding Merge Types 81

 Butterfly
 Clam
 Crab
 Crocodile
 Dragon
 Dolphin
 Elephant
 Fish
 Frog
 Giraffe
 Kangaroo
 Leopard
 Lizard
 Monkey
 Orca
 Seal
 Sea Star
 Shark
 Snake
 Spider
 Sponge
 Wolves
 Arctic Wolf
 Timber Wolf
 Worms

4.17.2.2 javax.help.SortMerge

View data is collated at each level of the view according to the helpset's locale collation rules. (The view is
sorted canonically.) If there is an entry in the current master or merged helpset that has the same name and
ID as an entry being merged, the merged entry is ignored (the two entries become one entry in the merged
view). If the names are the same, the helpset title is added in parentheses to the end of the entry.

This merge type is the default type for the Search view. This type of merge is useful when you have
information that is collated, such the elements of an Index or Glossary view. It is not useful when you have
information that is in hierarchical form, such as a TOC. To use this merge type for the Index and Glossary
views, you must override the default type of those views. The previous example does a SortMerge for the
Pictures subitems.

SortMerge is slower than AppendMerge, but faster than UniteAppendMerge. If you do sort merges with
the indexes of multiple helpsets, you might want to test the merge speed of helpsets that have large
indexes to ensure that the speed is adequate for your users.

SortMerge cannot detect if a navigator (for example, an index) that is being merged has entries in it that
duplicate each other. If you do not want duplicate entries in the merged index, you must ensure that the
index for each helpset is constructed properly and has no entries that duplicate each other. (An example
of duplicate entries is an index with multiple "space" entries added for vertical spacing.)

In the example below, the Edit, File, and Help Menu entries have the same text, but point to different IDs.
When the JavaHelp system merges the two, it distinguishes them by adding by the helpset titles (Java
Workshop)and (Java Studio).

Java Workshop
Index

Java Studio Index Merged Index

JavaHelp System User's Guide

82 4.17.2 Understanding Merge Types

Menus
 Build Menu
 Debug Menu
 Edit Menu
 File Menu
 Help Menu
Toolbars
 Edit/Debug Toolbar
 Main Toolbar

Developer Resources
Examples
 List of Additional Examples
 Step−by−step Example
Menus
 Edit Menu
 File Menu
 Help Menu
 View Menu
Toolbars
 Composition Toolbar
 Main Toolbar

Developer Resources
Examples
 List of Additional Examples
 Step−by−step Example
Menus
 Build Menu
 Debug Menu
 Edit Menu (Java Workshop)
 Edit Menu (Java Studio)
 File Menu (Java Workshop)
 File Menu (Java Studio)
 Help Menu (Java Workshop)
 Help Menu (Java Studio)
 View Menu
Toolbars
 Composition Toolbar
 Edit/Debug Toolbar
 Main Toolbar (Java Workshop)
 Main Toolbar (Java Studio)

4.17.2.3 javax.help.AppendMerge

This merge type appends the new view data (data in the view being merged) to the end of the existing view
data. No attempt is made to merge identical entries or sort the results.

This type of merge was the only one available in version 1 of the JavaHelp software for the TOC and Index
views. To maintain compatibility with this earlier version of JavaHelp software, this merge type is the default
for these two views. It is also the default merge type for the Glossary view. If you want the resulting merged
Index and Glossary views to be sorted canonically, you must set the mergetype attribute for these views to
javax.help.SortMerge in the Helpset file.

4.17.2.4 javax.help.NoMerge

No merging is performed: the view does not appear in the merged helpset. This merge type applies to an
entire view, not to elements of a view. It is the default merge type for the Favorites view because that view is
user−dependent and is stored in a single file in the user's directory.

4.17.3 Using Merge Types

As described in the previous section, the JavaHelp system provides four merge types that control how
helpsets are merged: UniteAppendMerge, SortMerge, AppendMerge, and NoMerge. Each view of a helpset
(TOC, index, search, glossary, and favorites) has a default merge type.

The default merge types for each type of view are:

TOC. javax.help.AppendMerge•
Index. javax.help.AppendMerge•
Search. javax.help.SortMerge•
Glossary. javax.help.AppendMerge•
Favorites. javax.help.NoMerge•

You can override these merge types for an entire view in the Helpset file, or you can specify a merge type for
an element of a view, such as an index entry.

JavaHelp System User's Guide

4.17.2 Understanding Merge Types 83

4.17.3.1 Specifying Merge Types in the Helpset File

You can override the default merge type for each view in a helpset. For example, you can merge the TOC
views by using UniteAppendMerge and the Index views by using SortMerge. To override a view's merge type,
you set the mergetype attribute for that view in the view's Helpset (Hs) file.

When a helpset is merged into a master helpset, each view is merged according to its default merge type or
the merge type that you have set for it.

For example, a merge type that works well with indexes is SortMerge. The following code shows how to
specify this merge type for an index:

<view mergetype="javax.help.SortMerge">
 <name>Index</name>
 <label>Index</label>
 <type>javax.help.IndexView</type>
 <data>AnimalsIndex.xml</data>
 </view>

4.17.3.2 Specifying Merge Types in the View Files

You can override the view's merge type for each element of a TOC or Index view. Unless overridden again,
the merge type definition applies to any subitems of the entry.

In a TOC, the <tocitem> tag supports the mergetype attribute.

In the following example, the Release Information entry and its three subitems all have the
javax.help.SortMerge merge type:

<tocitem text="Release Information" mergetype="javax.help.SortMerge">
 image="chapter" target="rel.release">
 <tocitem text="Contents of the Release"
 image="topic" target="rel.contents"/>
 <tocitem text="Requirements"
 image="topic" target="rel.requirements"/>
 <tocitem text="Changes Since the 1.0 Release"
 image="topic" target="rel.changes"/>
</tocitem>

•

In an index, the <indexitem> tag supports the mergetype attribute.

In the following example, the context sensitive help entry and its three subitems all have the
javax.help.UniteAppendMerge merge type:

<indexitem text="context sensitive help"

 mergetype="javax.help.UniteAppendMerge">
 <indexitem text="window−level help"
 target="auth.csh.window−level" />
 <indexitem text="field−level help"
 target="auth.csh.field−level" />
 <indexitem text="menu help"
 target="auth.csh.menu" />
</indexitem>

•

4.17.4 Merging Helpsets Statically

You can specify which help sets to merge in two ways:

JavaHelp System User's Guide

84 4.17.3 Using Merge Types

Dynamically. You can write Java code that searches for helpsets and uses the JavaHelp software
APIs to merge any that finds. Since this is a programming task and not something a help author is
expected to do, this technique is described separately in the Developer topic Merging Helpsets
Dynamically.

•

Statically. You can add a <subhelpset> tag to the master helpset file to explicitly add helpsets. If
the IDE does not find a specified subhelpset, it ignores the tag.

•

To merge helpsets statically, add <subhelpset> tags to a master helpset file to specify other helpsets that
you want to merge with the original helpset. The merge operation is performed whenever the containing
helpset is instantiated.

In the following simple example, HelpSet2 is merged with HelpSet1 to produce the unified TOC display
shown below the code sample:

−HelpSet1.hs−
 <?xml version='1.0' encoding='ISO−8859−1' ?>
 <!DOCTYPE helpset
 PUBLIC
 "−//Sun Microsystems Inc.//DTD
 JavaHelp HelpSet Version 2.0//EN"
 "http://java.sun.com/products/javahelp/helpset_2_0.dtd">
 <helpset version="2.0">
 <title>HelpSet 1</title>
 <maps>
 <homeID>hs1_file</homeID>
 <mapref location="hs1.jhm" />
 </maps>
 <view mergetype="javax.help.UniteAppendMerge">
 <name>TOC</name>
 <label>Table Of Contents</label>
 <type>javax.help.TOCView</type>
 <data>hs1TOC.xml</data>
 </view>

<subhelpset location="HelpSet2.hs" />
 </helpset>

−HelpSet2.hs−
 <?xml version='1.0' encoding='ISO−8859−1' ?>
 <!DOCTYPE helpset
 PUBLIC
 "−//Sun Microsystems Inc.//DTD
 JavaHelp HelpSet Version 2.0//EN"
 "http://java.sun.com/products/javahelp/helpset_2_0.dtd">
 <helpset version="2.0">
 <title>HelpSet 2</title>
 <maps>
 <homeID>hs2_file</homeID>
 <mapref location="hs2.jhm" />
 </maps>
 <view mergetype="javax.help.UniteAppendMerge">
 <name>TOC</name>
 <label>Table Of Contents</label>
 <type>javax.help.TOCView</type>
 <data>hs2TOC.xml</data>
 </view>
 </helpset>

Unified TOC Display

JavaHelp System User's Guide

4.17.3 Using Merge Types 85

A static merge has the following special features:

The helpset that contains the <subhelpset> tag is considered to be the master helpset. All
helpsets are merged with the master helpset.

•

When helpsets are merged, only views with the same name (<name> tag) as a view in the
master helpset file are merged. Note that in the example above, both views are named "TOC".
Any views in the subhelpsets that do not match the views in the master helpset are not
displayed.

•

Multiple <subhelpset> tags can be included in a helpset file. Helpsets are appended in the
order in which they occur in the helpset file. If a helpset specified in a <subhelpset> tag is not
found, it is ignored and no error is issued.

•

The <subhelpset> location attribute takes a URL as its argument.•

JavaHelp System User's Guide

86 4.17.3 Using Merge Types

5 Programming with the JavaHelp System
The topics in this chapter of the JavaHelp System User's Guide describe the aspects of the JavaHelp system
of primary interest to application developers.

The JavaHelp system classes are distributed in the following JAR files. The following redistributable JAR files
are located in the javahelp\lib folder:

jh.jar The standard library that includes everything needed to use the help
viewer and the standard navigator types (TOC, index, full−text search).

jhbasic.jar A subset of jh.jar that does not include support for the full−text
search engine. This subset might be useful for simple help systems that
do not require a full−text search database or for help systems whose
size is important.

jhall.jar Includes all the JavaHelp system classes, including the tools required to
create a search database.

jsearch.jar The default full−text search engine used in the JavaHelp system.

5.1 Supplemental Information

You will probably find the following supplemental documentation and source code useful:

API The javadoc generated documentation of the JavaHelp software API is
included with this release. You can view the API by using the JavaHelp
software API viewer (demos\bin\apiviewer) or by using a web
browser (doc\api\index.html).

Specification The specification for version 2.0 of the JavaHelp system is included in
this release and can be found at:

doc\spec\JavaHelp_V2_0_Specification.pdf

Sample Source Files This release includes demo programs that demonstrate JavaHelp system
functionality. Sources for the demo programs are included in the release
at:

demos\src

See also:

Adding the JavaHelp System to Applications
Implementing Context−Sensitive Help
Embedding JavaHelp Components
Creating Lightweight Java Components

5.2 Adding the JavaHelp System to Applications

The following code sample adds a JavaHelp system to an application. It is followed by a series of steps
explaining more about what is happening in the code:

5 Programming with the JavaHelp System 87

import javax.help.*;
// Find the HelpSet file and create the HelpSet object:
 String helpHS = "myHelpSet.hs";
 ClassLoader cl = ApiDemo.class.getClassLoader();
 try {
 URL hsURL = HelpSet.findHelpSet(cl, helpHS);
 hs = new HelpSet(null, hsURL);
 } catch (Exception ee) {
 // Say what the exception really is
 System.out.println("HelpSet " + ee.getMessage());
 System.out.println("HelpSet "+ helpHS +" not found")
 return;
 }
// Create a HelpBroker object:
 hb = hs.createHelpBroker();
// Create a "Help" menu item to trigger the help viewer:
 JMenu help = new JMenu("Help");
 menuBar.add(help);
 menu_help = new JMenuItem("Launch Help");
 menu_help.addActionListener(new CSH.DisplayHelpFromSource(hb));

The folllowing steps explain more about the preceding code sample:

Import the JavaHelp system classes:

import javax.help.*;

Be sure to add one of the JavaHelp system libraries (for example, jh.jar) to your application's
CLASSPATH.

1.

Find the helpset file and create the helpset object:

String helpHS = "myHelpSet.hs";
ClassLoader cl = ApiDemo.class.getClassLoader();
try {
 URL hsURL = HelpSet.findHelpSet(cl, helpHS);
 hs = new HelpSet(null, hsURL);
} catch (Exception ee) {
 System.out.println("HelpSet " + ee.getMessage());
 System.out.println("HelpSet "+ helpHS +" not found")
 return;
}

In this code sample, findHelpSet() takes a ClassLoader object as its first parameter. If
you add your helpset's directory to the CLASSPATH, findHelpSet() will find it because it calls
ClassLoader.getResource(), which searches the directories in the CLASSPATH for the
helpset file. If getResource()finds a .jar file under a directory, it opens the .jar file and
searches in it for the helpset file.

For more information on setting the class path, see
http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/classpath.html.

2.

Create a HelpBroker object:

hb = hs.createHelpBroker();

3.

Create a "Help" menu item to trigger the help viewer:

JMenu help = new JMenu("Help");
menuBar.add(help);
menu_help = new JMenuItem(("Launch Help");
menu_help.addActionListener(new CSH.DisplayHelpFromSource(hb));

4.

JavaHelp System User's Guide

88 5 Programming with the JavaHelp System

http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/classpath.html

5.2.1 Helpset

The first thing your application does is read the helpset file specified by the application. The helpset file
defines the helpset for that application. A helpset is the set of data that constitutes your help system. The
helpset file includes the following information:

Map file The map file is used to associate topic IDs with the URL or path name of
HTML topic files.

View information Information that describes the navigators being used in the helpset. The
standard navigators are: table of contents, index, and full−text search.
Information about custom navigators is included here as well.

Helpset title The title of the helpset as defined in the helpset file's <title> tag.

Home ID The name of the (default) ID that is displayed when the help viewer is
called without specifying an ID.

Sub−helpsets This optional section can be used to statically include other helpsets by
using the tag. The helpsets indicated by this tag are merged automatically
into the helpset that contains the tag. More details about merging can be
found in Merging Helpsets.

For more information about the helpset file, see Helpset File.

5.2.2 HelpBroker

The HelpBroker is an agent that negotiates and manages the display of help content for your application. The
HelpBroker also provides "convenience" methods that you can use to implement context−sensitive help. See
Implementing Context−Sensitive Help for details.

You can implement a help system without using the HelpBroker. However, without the HelpBroker you have to
write code to directly manage the HelpViewer and JHelp objects, navigators, and context−sensitive help
functionality (F1 key on dialogs, help button activation, and on item help button/menu activation).

For a list and description of the HelpBroker methods, see the API at: doc\api\javax\help\HelpBroker.html.

See also:

Programming with the JavaHelp System
Implementing Context−Sensitive Help
Embedding JavaHelp Components

5.3 Implementing Context−Sensitive Help

The JavaHelp system provides classes and methods that help you implement context−sensitive help in your
applications. The following sections:

Summarize the context−sensitive help system•
Describe the basic elements of the system•
Describe how to implement context−sensitive help•
Describe the APIs that support dynamic ID assignment•

JavaHelp System User's Guide

5.2.1 Helpset 89

5.3.1 Summary

The following table summarizes the context−sensitive help system.

CSH Type Activation Mechanism
Object for Which Help

Is Provided
Implementation Steps

Window−Level Press F1 (or Help) key. Window with focus
Set helpIDs for components•
Capture F1 key press•
Get window that has focus•
Get helpID for window•
Display help (optionally in a specific
presentation)

•

Field−Level
Activate
field−level
help.

1.

Navigate with
mouse or
keyboard.

2.

Select object.3.

Selected object
Set helpIDs for components•
Activate field−level help (button or menu item)•
Track context−sensitive events•
Get helpID for selected object•
Display help (optionally in a specific
presentation)

•

Help Button
Menu Item

Click button or choose
menu item.

Topic associated with
button or menu item Create button or menu object•

Set helpID on object•
Get helpID on object•
Display help•

System Initiated Internal, varies. Internal, varies
Display help (optionally in a specific
presentation)

•

5.3.2 Basic Elements

This section describes the low−level elements used in implementing context−sensitive help.

If you use the "convenience" methods in the HelpBroker object to implement context−sensitive
help, these low−level elements are managed for you.

The basic steps for implementing context−sensitive help are:

Set and get Component help properties for GUI objects1.
Track context−sensitive events2.

5.3.2.1 Setting and Getting Component Help Properties

To provide context−sensitive help for GUI Components and menu items, you must associate a help ID with
that Component or menu item. To make that association, you set the helpID property and (if you use
multiple helpsets) the HelpSet for the Component or MenuItem The JavaHelp system CSH class provides
the following convenient methods for setting and getting the helpID for Components and MenuItems:

5.3.2.2 setHelpIDString Component

 public static void setHelpIDString(Component comp, String helpID);

Sets the helpID for a component.

JavaHelp System User's Guide

90 5.3.1 Summary

5.3.2.3 getHelpIDString Component

 public static String getHelpIDString(Component comp);

Returns the helpID for a component.

5.3.2.4 setHelpSet Component

 public static void setHelpSet(Component comp, HelpSet hs);

Sets the HelpSet for a component.

5.3.2.5 getHelpSet Component

 public static HelpSet getHelpSet(Component comp);

Returns the HelpSet of a component.

5.3.2.6 setHelpIDString MenuItem

 public static void setHelpIDString(MenuItem comp,
 String helpID);

Sets the helpID for a menu item.

5.3.2.7 getHelpIDString MenuItem

 public static String getHelpIDString(MenuItem comp);

Returns the helpID for a menu item.

5.3.2.8 setHelpSet MenuItem

 public static void setHelpSet(MenuItem comp, HelpSet hs);

Sets the helpset for a menu item.

5.3.2.9 getHelpSet MenuItem

 public static HelpSet getHelpSet(MenuItem comp);

Returns the helpset of a menu item.

5.3.2.10 Tracking Context−Sensitive Events

The context−sensitive help class provides the CSH.trackCSEvents method, which you can use to easily
track context−sensitive events. This method traps all non−navigational events until an object is selected. It
returns the selected object. Following is the declaration for the method:

 public static Component CSH.trackCSEvents()

JavaHelp System User's Guide

5.3.2 Basic Elements 91

5.3.3 Implementing Context−Sensitive Help

The sections that follow describe how to use the JavaHelp system to implement various forms of
context−sensitive help.

5.3.3.1 The HelpBroker

The JavaHelp system defines a HelpBroker interface that provides convenience methods that greatly
simplify the job of implementing context−sensitive help. HelpBroker methods hide much of the underlying
implementation details. In exchange, using the HelpBroker limits the flexibility of your implementation. For
example, if you use the DefaultHelpBroker, you must display help information in the standard help viewer.

You can implement context−sensitive help without using the HelpBroker, or you can use the
HelpBroker for some tasks and not for others. For example, if your implementation requires
something not provided in the HelpBroker, such as displaying context−sensitive help in a different
viewer, you must use the basic classes (CSH, JHelp) directly. For information about those classes,
use the JavaHelp system apiviewer command.

With some of these methods, you can specify the presentation type, the type of window in which the
help topics is displayed. The examples show generic names for popup windows and secondary
windows that will always work. However, it is possible that specific presentation definitions have
been provided in the helpset file by the help author. Since the help author can define attributes of
presentations, including their size, their position, and the number and type of panes, if presentations
are defined in the helpset file, you might want to use their names in help calls.

A HelpBroker's convenience methods enable:

Window−level help for a dialog box•
Help buttons for dialog boxes•
Buttons and menu items that activate field−level help•

The following illustration shows how the HelpBroker and its context−sensitive methods (hb.*) are used with
other JavaHelp system components:

5.3.3.2 HelpBroker Context−Sensitive Methods

A HelpBroker provides the following context−sensitive methods:

JavaHelp System User's Guide

92 5.3.3 Implementing Context−Sensitive Help

5.3.3.3 setHelpSet

 public void setHelpSet(HelpSet hs);

Sets the HelpSet for the current HelpBroker (there can be only one HelpSet per HelpBroker). If you
use this method to change helpsets, the displays in the corresponding JHelp component and
JHelpNavigator are changed.

5.3.3.4 getHelpSet

 public HelpSet getHelpSet();

Gets the current HelpSet for the HelpBroker.

5.3.3.5 setCurrentID

 public void setCurrentID(Map.ID id) throws BadIDException;

Sets the current ID that is to be displayed in the help viewer. If hs is null, the HelpBroker's current HelpSet
is used. If hs is different from the current HelpSet (and not contained in the current HelpSet), the
setHelpSet method is executed.

5.3.3.6 setCurrentURL

 public void setCurrentURL(URL url, HelpSet hs) throws BadIDException;

Displays the specified URL in the help viewer. If hs is null, the HelpBroker's current HelpSet is used. If hs
is different from the current HelpSet (and not contained in the current HelpSet), the setHelpSet method
is executed.

5.3.3.7 enableHelpKey

public void enableHelpKey(Component comp, String id, HelpSet hs,
 String presentationType, String presentationName);

Enables the Help key on a Component (the F1 key on Windows machines). This method works best when the
component is the rootPane of a JFrame in Swing−based applications, or a java.awt.Window (or subclass
thereof) in AWT−based applications. This method sets the default helpID and HelpSet for the Component
and registers keyboard actions to trap the "Help" keypress. If the object with the current focus has a helpID,
the helpID is displayed when the Help key is pressed; otherwise, the default helpID is displayed. You can
optionally specify the type of help window in which a help topic is displayed.

For example, the following code specifies that the help presentation is a secondary window named mainSW:

 JTextArea newText = new JTextArea();

 hb.enableHelp(newText, "debug.overview", hs);
 . . .
 rootpane = frame.getRootPane();
 mainHelpBroker.enableHelpKey(rootpane,
 "top",
 null,
 "javax.help.SecondaryWindow",
 "mainSW");

JavaHelp System User's Guide

5.3.3 Implementing Context−Sensitive Help 93

5.3.3.8 enableHelp Component

public void enableHelp(Component comp, String id, HelpSet hs);

Enables help activation for a help component (for example, a Help button). This method:

Registers the helpID and HelpSet on comp•
Sets the HelpBroker's HelpActionListener on comp•

5.3.3.9 enableHelp MenuItem

public void enableHelp(MenuItem comp, String id, HelpSet hs)

Enables help activation for a MenuItem. This method:

Registers the helpID and HelpSet on comp•
Sets the HelpBroker's HelpActionListener on comp•

5.3.3.10 enableHelpOnButton Component

 public void enableHelpOnButton(
 Component comp, String id, HelpSet hs,
 String presentationType,
 String presentationName);

Enables help for a Component. This method sets the helpID and HelpSet for the Component and adds an
actionListener. When an action is performed it displays the Component's helpID and HelpSet in the
default viewer. If the Component is not a javax.swing.AbstractButton or a java.awt.Button, an
IllegalArgumentException is thrown. You can optionally specify the type of help window in which a help
topic is displayed.

For example, the following code specifies that the help presentation is a secondary window named mainSW:

 JButton helpButton = new JButton("Help",
 "javax.help.SecondaryWindow",
 "mainSW");

 mainHelpBroker.enableHelpOnButton(helpButton,
 "browse.strings",
 null,
 "javax.help.SecondaryWindow",
 "mainSW");

5.3.3.11 enableHelpOnButton MenuItem

 public void enableHelpOnButton(MenuItem comp, String id, HelpSet hs,
 String presentationType,
 String presentationName);

Enables help for a MenuItem. This method sets the helpID and HelpSet for the Component and adds an
actionListener. When an action is performed it displays the helpID and HelpSet in the default viewer.
You can optionally specify the type of help window in which a help topic is displayed.

5.3.3.12 CSH Inner Classes

The CSH class contains three inner classes that provide support for context−sensitive help.

JavaHelp System User's Guide

94 5.3.3 Implementing Context−Sensitive Help

5.3.3.13 CSH.DisplayHelpAfterTracking

 CSH.DisplayHelpAfterTracking(HelpSet hs,
 String presentationType,
 String presentationName)

This class defines an ActionListener that displays help for a selected object after tracking
context−sensitive events. Its constructor takes a HelpBroker object. You can optionally specify the type of
help window in which the help topic is displayed. For example, you could display help for a toolbar button in a
popup window as follows:

 JToolBar toolbar=new JToolBar();
 . . .
 helpbutton= addButton(toolbar, "images/help.gif", "help");
 helpbutton.addActionListener(
 new CSH.DisplayHelpAfterTracking (mainHS,
 "javax.help.Popup",
 null));

5.3.3.14 CSH.DisplayHelpFromFocus

 CSH.DisplayHelpFromFocus(HelpSet hs,
 String presentationType,
 String presentationName)

An ActionListener that displays the help of the object that currently has focus. This method is used to
enable a HelpKey action listening for components other than the RootPane or window. This listener
determines if the object with the current focus has a helpID, and if it does the helpID is displayed. If the
object does not have a helpID, the helpID on the action's source is displayed (if one exists). You can
optionally specify the type of help window in which the help topic is displayed.

5.3.3.15 CSH.DisplayHelpFromSource

 CSH.DisplayHelpFromSource(HelpSet hs,
 String presentationType,
 String presentationName)

An actionListener that gets the helpID for the action source and displays the helpID in the help viewer. Its
constructor takes a HelpBroker object. You can optionally specify the type of help window in which the help
topic is displayed.

5.3.3.16 Window−Level Help

Start your window−level help implementation by setting the helpID and (if you use multiple helpsets) the
HelpSet for each component for which you want help. If you do not set help for a given component,
CSH.getHelpID() recursively searches through the component's ancestors until it finds the first ancestor
with a helpID, or until it reaches the last ancestor. For example:

:
 JTextArea newText = new JTextArea();
 hb.enableHelp(newText, "debug.overview", hs);

:

After you set the helpID and helpset for all components, use the HelpBroker enableHelpKey()
method to enable the F1 key for the frame's RootPane. The hb.getHelpKeyActionListener()
method enables the F1 key on ActionListener objects other than root panes. For example, the

JavaHelp System User's Guide

5.3.3 Implementing Context−Sensitive Help 95

following code displays the help in the default viewer:

:
 rootpane = frame.getRootPane();
 mainHelpBroker.enableHelpKey(rootpane, "top", null);

:

If you want to display help in a popup window, substitute the following line of code:

 mainHelpBroker.enableHelpKey(rootpane, "top", null,
 "javax.help.Popup", null);

If you want to display help in a secondary window named mainSW, substitute the following line of
code:

 mainHelpBroker.enableHelpKey(rootpane, "top", null,
 "javax.help.SecondaryWindow",
 "mainSW");

5.3.3.17 Field−Level Help

Start your field−level help implementation by setting the helpID and (if you use multiple helpsets) helpset for
each component for which you want help. If you do not set help for a given component, CSH.getHelpID()
recursively searches through the component's ancestors until it finds the first ancestor with a helpID, or until it
reaches the last ancestor.

After you set the helpID and helpset for all components, create a field−level help button or menu item. Set an
ActionListener on the button or menu item with a HelpBroker object using
getOnItemActionActionListener. For example:

JToolBar toolbar=new JToolBar();
CSH.setHelpID(toolbar,"toolbar.main");

:
helpbutton= addButton(toolbar, "images/help.gif", "help");
helpbutton.addActionListener(
 new CSH.DisplayHelpAfterTracking(mainHelpBroker));

The following invocation would display the field−level help in a popup window:

JToolBar toolbar=new JToolBar();
CSH.setHelpID(toolbar,"toolbar.main");

:
helpbutton= addButton(toolbar, "images/help.gif", "help");
helpbutton.addActionListener(
 new CSH.DisplayHelpAfterTracking(mainHelpBroker,
 "javax.help.Popup",
 null));

The following invocation would display the field−level help in a secondary window:

JToolBar toolbar=new JToolBar();
CSH.setHelpID(toolbar,"toolbar.main");

:
helpbutton= addButton(toolbar, "images/help.gif", "help");
helpbutton.addActionListener(
 new CSH.DisplayHelpAfterTracking(mainHelpBroker,
 "javax.help.SecondaryWindow",
 "mainSW"));

JavaHelp System User's Guide

96 5.3.3 Implementing Context−Sensitive Help

5.3.3.18 Help Menu and Help Button Help

To implement Help menu or Help button help:

Create a menu item or button.1.
Set the helpID and (if you use multiple helpsets) the helpset on the object.2.
Enable help on the object with the HelpBroker.3.

The CSH class provides the CSH.DisplayHelpFromSource class to enable help on objects with types other
than AbstractButton, Button, or MenuItem. For example:

JButton helpButton = new JButton("Help");
mainHelpBroker.enableHelpOnButton(helpButton, "browse.strings", null);

HelpBroker.enableHelpOnButton uses CSH.DisplayHelpFromSource and also sets the
appropriate ID on the Button and the ActionListener on the Button. If this example used
CSH.DisplayHelpFromSource instead, it would have to set the ID and ActionListener explicitly.
Using HelpBroker in this example simplifies the code.

5.3.3.19 System Initiated Help

All the other help activations discussed in this section result from the user's clicking a button, pressing a key,
or selecting an item in the navigator or content viewer. With system initiated help, the action is not initiated by
the user, but rather by the application, which recognizes that the user is need of help and automatically calls
the help system. For example, the user might have repeatedly tried an operation that failed every time or
canceled a task midway through an operation.

Although system initiated help is rarely implemented with the help viewer, it is simple to do so. When help is
presented internally within an application, pass a valid helpID to a HelpBroker object. For example:

 :
 try {
 mainHelpBroker.setCurrentID(helpID);
 } catch (Exception ee) {
 System.err.println("trouble with visiting id; "+ee);
 }

:

If you wanted the help to display in a popup window, you could use the following code instead:

:
 try {
 Popup popup = (Popup)Popup.getPresentation(mainHS,null);
 popup.setInvoker (component);
 popup.setCurrentID (helpID);
 popup.setDisplayed(true);
 } catch (Exception ee) {
 System.err.println("trouble with visiting id; "+ee);
 }

:

If you wanted the help to display in a secondary window, you could use the following code:

:
 try {
 mainHelpBroker.showID(helpID,
 "javax.help.SecondaryWindow",
 "main");
 } catch (Exception ee) {
 System.err.println("trouble with visiting id; "+ee); }

JavaHelp System User's Guide

5.3.3 Implementing Context−Sensitive Help 97

 }
:

5.3.3.20 Sample Code

The following example shows the code required for the different types of context−sensitive help using a
default helpset:

:
 try {
 ClassLoader cl = ApiDemo.class.getClassLoader();
 URL url = HelpSet.findHelpSet(cl, helpsetName);
 mainHS = new HelpSet(cl, url);
 } catch (Exception ee) {
 System.out.println ("Help Set "+helpsetName+" not found");
 return;
 } catch (ExceptionInInitializerError ex) {
 System.err.println("initialization error:");
 ex.getException().printStackTrace();
 }
 mainHB = mainHS.createHelpBroker();

:
 // Enable window−level help on RootPane
 rootpane = frame.getRootPane();
 mainHB.enableHelpKey(rootpane, "top", null);

:
 // Enable field−level help on various components
 JToolBar toolbar=new JToolBar();
 CSH.setHelpIDString(toolbar,"toolbar.main");

:
 //Enable Menu/Button help on Help menu item
 helpbutton= addButton(toolbar, "images/help.gif", "help");
 mainHelpBroker.enableHelpButton(helpbutton, "browser.strings", null);

 sourceIFrame = new JInternalFrame("Source", true, true, true, true);
 CSH.setHelpIDString(sourceIFrame, "edit.editsource");

 JTextArea newtext=new JTextArea();
 CSH.setHelpIDString(newtext, "build.build");

 newtext = new JTextArea();
 CSH.setHelpIDString(newtext, "debug.overview");

 newtext = new JTextArea();
 CSH.setHelpIDString(newtext, "browse.strings");

:
 // System Level help somewhere within the code
 try {
 mainHelpBroker.setCurrentID(helpID);
 } catch (Exception ee) {
 System.err.println("trouble with visiting id; "+ee);
 }

:

5.3.4 Dynamic Map ID Assignment

For certain objects, such as a JTable, having a single map ID per object is not sufficient. A technique is
needed to determine programmatically the map ID based on cursor position, selection, or some other
mechanism inherent to the object. For example a Canvas object might determine the map ID based on the
object currently selected on the canvas or, alternatively, from the mouse cursor position.

The following APIs in the CSH class support dynamic ID assignment:

Name Description

JavaHelp System User's Guide

98 5.3.3 Implementing Context−Sensitive Help

addManager(CSH.Manager) Registers the specified manager to handle dynamic
context−sensitive help.

addManager(index,CSH.Manager) Registers the specified manager to handle dynamic
context−sensitive help at the specified position in the list of
managers.

getManager(index) Returns the manager at the specified position in list of managers.

getManagerCount() Returns the number of managers registered.

getManagers() Returns array of managers registered.

removeAllManagers() Remove all the dynamic context−sensitive help managers.

removeManager(CSH.Manager) Remove the specified manager from the list of managers.

removeManager(index) Remove the manager at the specified position in the list of
managers.

Additionally the following interface has been defined in CSH.Manager:

Name Description

getHelpSet(Object, AWTEvent) Returns the String representing the mapID of the
object based on the AWTEvent.

getHelpIDString(Object, AWTEvent) Returns the HelpSet of the object based on the
AWTEvent.

Instances of CSH.Manager work as filters. CSH.getHelpIDString(comp) and CSH.getHelpSet(comp)
must call each registered CSH.Manager's getHelpIDString or getHelpSet methods. If the
CSH.Manager does not handle the component, it returns null. If no CSH.Manager provides a HelpSet or
HelpIDString for the component, the CSH methods use the statically defined HelpSet and
HelpIDString described in Using Statically Defined Help IDs. As with the statically defined HelpSet and
HelpIDString, a failure in a request for a HelpSet and a HelpIDString is propagated to the
component's parent.

5.3.4.1 Example: Dynamic Map ID Assignment

The following example shows how to use a component with a dynamically assigned HelpSet or a
dynamically generated HelpIDString:

 class MyCSHManager implements CSH.Manager {
 HelpSet hs;
 JEditorPane editor;
 MyCSHManager(JEditorPane editor, HelpSet hs) {
 this.editor = editor;
 this.hs = hs;
 }
 public HelpSet getHelpSet(Object comp) {
 if (comp == editor) {
 return hs;
 }
 return null;
 }
 public String getHelpIDString(Object comp) {

JavaHelp System User's Guide

5.3.4 Dynamic Map ID Assignment 99

 if (comp == editor) {
 return getHelpIDFromCaretPostion(editor);
 }
 return null;
 }
 }

You add the CSH.Manager to the CSH list of managers as follows:

 CSH.AddCSHManager(new MyCSHManager(editor, hs));

5.3.5 Using Statically Defined Help IDs

Context−sensitive help in the JavaHelp system is organized around the notion of the ID−URL map referred by
the <map> section of a helpset file. The key concept is that of the Map.ID, which is comprised of a
String−HelpSet instance pair. The String is intended to be unique in the local map of the helpset. This is
very important when considering helpset merging; otherwise, IDs would be required to be unique over all
helpsets that might ever be merged.

There are three tasks involved in assigning context−sensitive help to an application:

Defining the appropriate String ID−URL map1.
Assigning an ID to each desired visual object2.
Enabling a user action to activate the help3.

5.3.5.1 Defining the ID−URL Map

The Map interface provides a means for associating IDs (HelpSet.string) with URLs. One such map is
constructed from one or more map files that provide a simpler String ID to URL mapping, with the HelpSet
being given either explicitly or implicitly.

The JavaHelp system has two classes that implement the Map interface: FlatMap and TryMap. A FlatMap
does not support nesting of other maps into it, while a TryMap does. A FlatMap is a simple implementation
while TryMap should support inverse lookups (for example, getIDFromURL) more efficiently. The
implementation of TryMap in version 1.0 of the JavaHelp system is not particularly efficient.

Both FlatMap and TryMap have public constructors. The constructor for FlatMap takes two arguments:

A URL to a property file providing a list of String and URL pairs•
A HelpSet•

The HelpSet is used together with each String−URL pair to create the actual Map.ID objects that
comprise the FlatMap. The constructor for TryMap has no arguments. Its Map is created empty, and other
Maps are added or removed from it.

The Map interface can also be implemented by some custom class. One such class could, for example, be
used to programmatically generate the map.

5.3.5.2 Assigning an ID to Each Visual Object

The next step is to assign to each desired GUI object an ID that will lead to the desired help topic. There are
two mechanisms that can be involved:

An explicit ID, either a plain String or a Map.ID, is assigned to the GUI object.

The two basic methods used to assign IDs are setHelpIDString(Component, String) and
setHelpSet(Component, String). If both are applied to a Component, then a Map.ID is

•

JavaHelp System User's Guide

100 5.3.5 Using Statically Defined Help IDs

assigned to that Component. If only setHelpIDString() is applied, then the HelpSet instance is
obtained implicitly, as explained below in the next list item. A method overload is also provided for
MenuItem objects.

These methods take a Component as an argument. The implementation can vary depending on
whether the argument is a JComponent or a plain AWT Component.

A rule is used to infer the Map.ID for a GUI object based on the object's container hierarchy.

The methods getHelpIDString(Component) and getHelpSet(Component) recursively
traverse up the container hierarchy of the component trying to locate a Component that has been
assigned a String ID. When found, the methods return the appropriate value. As before there is also
an overloaded method for MenuItem.

•

5.3.5.3 Enabling a Help Action

The final step is to enable an action to trigger the presentation of the help data. CSH currently provides several
ActionListener classes that can be used, described above under CSH Inner Classes. In addition,
HelpBroker also provides some convenience methods that interact with these ActionListeners, as
described above under HelpBroker Context−Sensitive Methods.

Since these methods are from a specific HelpBroker, if a HelpSet is not associated with the GUI object,
the HelpSet of the HelpBroker is used automatically.

See also:

Programming with the JavaHelp System
Adding the JavaHelp System to Applications
Embedding JavaHelp Components

5.4 Merging Helpsets Dynamically

In addition to the static merging of helpsets described in Merging Helpsets, helpsets can be merged
dynamically. To merge helpsets dynamically, you use the JavaHelp software API in your Java applications.

The basic API consists of the HelpSet.add(HelpSet) method and its corresponding
HelpSet.remove(HelpSet)method. These methods fire HelpSetEvent events for the
HelpSetListeners that have registered interest in them. The Component UIs for the TOC, index, search,
and glossary views register for these events and react to changes.

The semantics of merging is implemented by individual NavigatorView objects and JHelpNavigator
objects. There are three basic methods:

canMerge(NavigatorView)•
merge(NavigatorView)•
remove(NavigatorView)•

The canMerge(NavigatorView) method is present in both NavigatorView and JHelpNavigator. The
JHelpNavigator method just calls into its corresponding NavigatorView method. The other two methods
are present only in JHelpNavigator.

For more information about these classes and methods, refer to the JavaHelp software API documentation.
API information can be viewed using a web browser (doc/api/overview−summary.html) or by using the
sample API viewer in demos\bin\apiviewer.

JavaHelp System User's Guide

5.3.5 Using Statically Defined Help IDs 101

Two demonstration programs, demos\bin\merge and demos\bin\newmerge are included with the
JavaHelp system release. These programs demonstrate how helpsets can be merged and removed
dynamically. The newmerge program demonstrates what happens with a UniteAppendMerge of TOCs and a
SortMerge of indexes.

The sources for these programs are available under demos\src\sunw\demo\.

5.5 Embedding JavaHelp Components

JavaHelp system components can be embedded directly into the application. The following pared down steps
are taken from the idedemo sample program included with the JavaHelp software release. A TOC navigator is
added to the main application frame and the content pane is added to a tabbed display at the bottom of the
main application frame. You can find the complete sources for the sample program at:

 demos\src\sunw\demo\idedemo

Find the helpset file and create the HelpSet object:

try {
 ClassLoader cl = ApiDemo.class.getClassLoader();
 URL url = HelpSet.findHelpSet(cl, "api");
 apiHS = new HelpSet(cl, url);
 } catch (Exception ee) {
 System.out.println ("API Help Set not found");
 return;
 }

1.

Create the content pane:

JHelpContentViewer viewer1 = new JHelpContentViewer(apiHS);

2.

Add the content pane to a container:

messages.setComponentAt(miscTabIndex, viewer1);
messages.setSelectedIndex(miscTabIndex);

3.

Create a navigator (TOC):

xnav = (JHelpNavigator) apiHS.getNavigatorView("TOC").createNavigator(viewer1.getModel());

4.

Use the same model for both the content pane and navigator components (viewer1) to ensure that
changes generated by one component are reflected in the other component. Note that the TOC can
be created by using either the HelpSet.getNavigatorView() method or the
JavaHelpNavigator.getNavigatorView() method. Both methods produce the same results;
however, using HelpSet reduces the dependency on the GUI.

5.

Add the navigator to the container:

content.add(xnav, "Center");
classViewerIFrame.setContentPane(content);

6.

See also:

Programming with the JavaHelp System
Adding the JavaHelp System to Applications
Implementing Context−Sensitive Help

JavaHelp System User's Guide

102 5.5 Embedding JavaHelp Components

5.6 Creating Lightweight Java Components

This topic describes how you can create lightweight Java components and add them to HTML topics using the
HTML <OBJECT> tag. The last section in this topic contains references to supplemental information about
lightweight components and the HTML <OBJECT> tag.

 References to supplemental information are included at the end of this topic.

5.6.1 Lightweight Components for HTML Topics

Components intended for HTML topic pages are very similar to generic lightweight components. Components
that do not require information about the View, or have parameters that can be set, can be used without
modification.

5.6.1.1 View Information

Lightweight components that require information about the View must implement
javax/javahelp/impl/ViewAwareComponent. These components implement the method
setViewData(). The component can determine information from the View about the environment in which it
is executing. For example, in the code snippet below the Document object is derived from the View:

 private View myView;
 static private URL base;

 public void setViewData(View v) {
 myView = v;
 Document d = myView.getDocument();
 // System.err.println("myDocument is: "+d);

 base = ((HTMLDocument) d).getBase();
 // System.err.println(" base is: "+base);

 }

For more information about the Document interface see the following Swing API:

 http://java.sun.com/j2se/1.4.1/docs/api/javax/swing/text/Document.html

Text formatting information can be derived from the View by querying its attribute set. Use the method
getAttributes as shown below:

 AttributeSet as = v.getAttributes();

Format attributes can be used by the component when the AttributeSet is passed as a parameter to a
StyleConstants method. There are methods that can be used to determine a number of attributes,
including the font family, font size, font weight, font style, underlining, background color, and foreground color.
For example, to determine the default background color of an object, you can do the following:

 Color color=StyleContants.getBackground(as)

For a full list of formatting attributes and corresponding methods see:

 http://java.sun.com/j2se/1.4.1/docs/api/javax/swing/text/StyleConstants.html

5.6.1.2 Using Parameters

If your component takes parameters, you should follow these two additional steps:

Add accessor methods for each parameter that can be set.1.

JavaHelp System User's Guide

5.6 Creating Lightweight Java Components 103

Create a BeanInfo class that corresponds to the lightweight component class.2.

 The component must accept parameter elements in any order.

5.6.1.3 Accessor Methods

Add accessor methods that enable the component to access the parameters through the Java reflection
mechanism. In the following example, the AButton class has implemented accessor methods for the
parameter "data" in the methods getData and setData:

 private String data = "";

 public void setData(String s) {
 data = s;
 }

 public String getData() {
 return data;
 }

Even if the internal representation is not a String, both the returned value for the getter method
and the parameter in the setter method must be a String.

5.6.1.4 BeanInfo Class

Create a BeanInfo class that provides explicit information about the lightweight component. The only
method used by the ContentViewer from the BeanInfo classes is getPropertyDescriptors. In the
complete example below, JHSecondaryViewerBeanInfo defines the property data accessible through the
getData() and setData() methods in JHSecondaryViewer:

public class JHSecondaryViewerBeanInfo extends SimpleBeanInfo {

 public JHSecondaryViewerBeanInfo() {
 }

 public PropertyDescriptor[] getPropertyDescriptors() {
 PropertyDescriptor back[] = new PropertyDescriptor[15];
 try {
 back[0] = new PropertyDescriptor("content", JHSecondaryViewer.class);
 back[1] = new PropertyDescriptor("id", JHSecondaryViewer.class);
 back[2] = new PropertyDescriptor("viewerName", JHSecondaryViewer.class);
 back[3] = new PropertyDescriptor("viewerActivator", JHSecondaryViewer.class);
 back[4] = new PropertyDescriptor("viewerStyle", JHSecondaryViewer.class);
 back[5] = new PropertyDescriptor("viewerLocation", JHSecondaryViewer.class);
 back[6] = new PropertyDescriptor("viewerSize", JHSecondaryViewer.class);
 back[7] = new PropertyDescriptor("iconByName", JHSecondaryViewer.class);
 back[8] = new PropertyDescriptor("iconByID", JHSecondaryViewer.class);
 back[9] = new PropertyDescriptor("text", JHSecondaryViewer.class);
 back[10] = new PropertyDescriptor("textFontFamily", JHSecondaryViewer.class);
 back[11] = new PropertyDescriptor("textFontSize", JHSecondaryViewer.class);
 back[12] = new PropertyDescriptor("textFontWeight", JHSecondaryViewer.class);
 back[13] = new PropertyDescriptor("textFontStyle", JHSecondaryViewer.class);
 back[14] = new PropertyDescriptor("textColor", JHSecondaryViewer.class);
 return back;
 } catch (Exception ex) {
 return null;
 }
 }
 }

5.6.1.5 Parameter Names

When naming parameters, be sure to avoid names reserved in the HTML 4.0 specification for use as
<OBJECT> tag attributes. For a complete list of <OBJECT> attributes see the HTML 4.0 specification:

JavaHelp System User's Guide

104 5.6.1 Lightweight Components for HTML Topics

 http://w3c.org/TR/REC−html40/

5.6.2 Using the <OBJECT> Tag

You add lightweight components to JavaHelp topics by means of the <OBJECT> tag and its classid
attribute. The help viewer only recognizes classid values prefixed with the "java:" tag. All other classid
tags are ignored. The following example creates an ALabel within the HTML topic:

 <OBJECT CLASSID="java:sunw.demo.object.ALabel"</OBJECT>

You can use standard <OBJECT> tag attributes (see the HTML 4.0 specification for more details), but to be
recognized the lightweight component must have getter and setter methods for those attributes. A getter or
setter method must operate on a String. For example, in the following example width and height for the
ALabel are set if there are getWidth/setWidth and getHeight/setHeight methods in ALabel:

 <OBJECT
 CLASSID="java:sunw.demo.object.ALabel"
 width="400" height="500">
 </OBJECT>

Parameters are passed to lightweight components by using the <param> tag. A parameter is only recognized
if the component has getter and setter methods for that parameter. A getter or setter method must operate on
a String. In the example below, the help viewer passes a number of parameters and their values to a the
JHSecondaryViewer component:

 <OBJECT classid="java:com.sun.java.help.impl.JHSecondaryViewer">
 <param name="content" value="../topicB/glossary_def.html">
 <param name="viewerActivator" value="javax.help.LinkLabel">
 <param name="viewerStyle" value="javax.help.Popup">
 <param name="viewerSize" value="300,400">
 <param name="text" value="Click here">
 <param name="textFontFamily" value="SansSerif">
 <param name="textFontSize" value="x−large">
 <param name="textFontWeight" value="plain">
 <param name="textFontStyle" value="italic">
 <param name="textColor" value="red">
 </OBJECT>

5.6.3 Supplemental Information

The following information supplements the information in this topic.

Lightweight Java Components

For general information about lightweight Java components see:

http://java.sun.com/j2se/1.4.1/docs/guide/awt/demos/lightweight/index.html

JavaHelp Components

As a reference, the sources to the lightweight components that implement JavaHelp system popups and
secondary windows (JHSecondaryViewer.java and JHSecondaryViewerBeanInfo.java) can be
found in src.jar at:

com\sun\java\javahelp\impl

For a description of how the <OBJECT> tag is used to implement popups and secondary windows, see Using
Popup and Secondary Windows.

JavaHelp System User's Guide

5.6.2 Using the <OBJECT> Tag 105

http://java.sun.com/j2se/1.4.1/docs/guide/awt/demos/lightweight/index.html

HTML 4.0 Specification

You can find a detailed description of the <OBJECT> tag as part of the HTML 4.0 specification:

http://w3c.org/TR/REC−html40/

5.7 Server−Based JavaHelp Helpsets

Server−based applications have the same need for online help as client based applications, but they require
that the helpset runs in a web browser, as the applications do, and that it be accessed from a server. Version
1.0 of the JavaHelp software API provided a foundation for developing online help for server−based
applications. However, the specification did not define standards for a JavaHelp bean or for a Java Server
PagesTM (JSP) tag library to access helpset data. Version 2 of the JavaHelp software does define these
standards and provides a tag library for server−based applications.

5.7.1 Java Server Pages

JSP enables web developers to develop dynamic web pages. JSP uses XML−like tags to encapsulate the
logic that generates web content. JSP pages separate the page logic from its design and display, which
prevents the overlapping of roles between web designers and programmers. Designers design the web pages
and programmers add the logic and code to them.

For more information and tutorials on JavaServer Pages technology, see
http://java.sun.com/products/jsp/docs.html.

5.7.2 Server−Based JavaHelp Architecture

By combining the JavaHelp software API with new JavaHelp JSP tag libraries, web developers are now able
to provide help for server−based applications. The diagram below illustrates the architecture.

.

A browser initiates a JSP request. Examples of a JSP request are displaying the help content in the helpset,
the navigators, or the data for a given navigator. Typically, the JSP request contains JavaBeansTM

components as well as JSP tag extensions. The JavaTM server turns the request into a Java Servlet. The
servlet access the appropriate information from the helpset by using the classes in the JavaHelp library
(jh.jar) and the JavaHelp tag library (jhtags.jar) and returns HTML and possibly JavaScript or dynamic
HTML (DHTML) to the browser.

5.7.3 JavaHelp Server Components

Access to helpset data on a server is accomplished through a combination of JavaBeans components specific
to the JavaHelp system and JSP tag extensions. This section defines the standard JavaHelp JavaBeans and
JSP tag extensions and scripting variables.

JavaHelp System User's Guide

106 5.7 Server−Based JavaHelp Helpsets

http://w3c.org/TR/REC-html40/
http://java.sun.com/products/jsp/docs.html

5.7.3.1 JavaHelp Server Bean

ServletHelpBroker is the JavaBean component that stores help state information, such as the helpset in
use, the current ID, the current navigator and other pieces of help information. While it implements the
javax.help.HelpBroker interface, some of the methods are either not implemented or throw
UnsupportedOperationExceptions if called. The javax.help.HelpBroker methods that are not
implemented in this component are listed below:

Method Result

initPresentation() No Operation

setDisplayed(boolean) Ignored

boolean isDisplayed() Always returns true

enableHelpKey(
 Component,
 String id, HelpSet)

No Operation

enableHelp(
 Component|MenuItem,
 String id, HelpSet)

No Operation

enableHelpOnButton(
 Component| MenuItem,
 String id, HelpSet)

No Operation

One new method is added to ServletHelpBroker:

Method Result

NavigatorView
getCurrentNavigatorView()

Returns the current navigator as a NavigatorView.

5.7.3.2 Using ServletHelpBroker

The ServletHelpBroker is used in the JSP request with a session scope. With this scope, the help broker
remains in existence for the duration of a session. The following code defines the help broker:

<jsp:useBean id="helpBroker" class="ServletHelpBroker" scope="session" />

The ServletHelpBroker methods can be called in two ways:

In tag libraries:

<jh:validate helpBroker="<%= helpBroker %>" />

•

Directly in the JSP:

<FRAME SRC=
"<jsp:getProperty name="helpBroker" property="currentURL" />"

•

JavaHelp System User's Guide

5.7.3 JavaHelp Server Components 107

NAME="contentsFrame" SCROLLING="AUTO">

5.7.4 JavaHelp JSP Tag Extensions

While you could retrieve all the helpset information required for displaying online help or documentation by
using JavaBeans components and JSP scriptlets, you can instead avoid the appearance of programming and
use a standard set of tag extensions in the JavaHelp tag library to invoke application functionality. The
JavaHelp tag library is a common set of building blocks that perform the following functions:

Concealing the complexity of access to helpset data•
Introducing new scripting variables into a page•
Handling iterations without the need for scriptlets•

The JavaHelp JSP tags are defined below:

Tag Tag Class
TEI Class

Description Attributes

validate ValidateTag Validates a HelpBroker with
various parameters. Enables easy
setup of a help broker with a new
helpset. Also enables merging of
helpsets and setting the current ID.

helpbroker
required
HelpBroker object

setInvalidURL
not required
String representing the URL for
InvalidHelpSet message.

helpSetName
not required
String representing the URL for the
helpset name.

currentID
not required
String id of desired currentID.

merge
not required
Boolean value. If true then merge
helpset into current helpset if one
exists. Otherwise do not merge
helpset.

navigators NavigatorsTag
NavigatorsTEI

Returns NavigatorView
information for a given HelpBroker. helpbroker

required
HelpBroker object

currentNav
not required
String name of the current navigator.

tocItem TOCItemTag
TOCItemTEI

Provided with a TOCView, returns
TOCItem information. tocView

required
TOCView object

helpbroker
required
HelpBroker object

baseID
not required
Determined by expression. String text
for the base identification of the
TOCItem.

indexItem IndexItemTag
IndexItemTEI

Provided with an IndexView,
returns IndexItem information. IndexView

required

JavaHelp System User's Guide

108 5.7.4 JavaHelp JSP Tag Extensions

Determined by expression.
IndexView object.

helpbroker
required
HelpBroker object

baseID
not required
Determined by expression. String text
for the base identification of the
IndexItem.

searchItem SearchItemTag
SearchItemTEI

Provided with a SearchView,
returns SearchItem information. SearchView

required
Determined by expression.
SearchView object.

helpbroker
required
HelpBroker object

baseID
not required
Determined by expression. String text
for the base identification of the
SearchItem.

Unless otherwise specified, all attribute values are determined by expression. Also, with the exception of the
validate tag, the body of all tags are JSP.

5.7.4.1 Using the validate Tag

The validate tag is designed to be used once in a JSP, as shown below:

<jh:validate helpBroker="<%= helpBroker %>" />

The preceding code verifies that a valid HelpBroker exists and then loads the helpset that has been defined
either in the validate tag with the helpSetName attribute or as an HTTP POST request.

5.7.5 Navigator Scripting Variables

The navigator, tocItem, indexItem, and searchItem tag extensions introduce a predefined set of
scripting variables into a page. These variables enable the calling JSP to control the presentation without
having to perform processing to determine the content. Unless otherwise specified, each scripting variable
creates a new variable, and the scope is set to NESTED. NESTED variables are available to the calling JSP
only within the body of the defining tag.

5.7.5.1 Navigator Variables

The navigator variables are defined in the table below.

Variable Data Type Description

classname java.lang.String Name of the
NavigatorView
class.

name java.lang.String Name of the view
as defined in the
helpset.

tip java.lang.String Tooltip text for

JavaHelp System User's Guide

5.7.4 JavaHelp JSP Tag Extensions 109

the view.

iconURL java.lang.String URL for the icon
if set with the
imageID
attribute in the
helpset.

5.7.5.2 Using the Navigator Variables

The navigator tag is used to return information about the current navigator. In the illustration below the
navigator tag is used to determine the navigators that are used in the helpset and sets an HTML tag
based on the navigator name.

<jh:navigators helpBroker="<%= helpBroker %>" >
 <A HREF="navigator.jsp?nav=<%= name %>">
 <IMG src="<%= iconURL!=""?
 iconURL : "images/" + className +".gif" %>"
 Alt="<%= tip %>"
 BORDER=0>
</jh:navigators>

5.7.5.3 tocItem Variables

The tocItem variables are defined in the table below.

Variable Data Type Description

name java.lang.String tocItem text as defined in the name attribute.

target java.lang.String tocItem target as defined in the target attribute.

parent java.lang.String Hex value identifying the parent node.

parentID java.lang.String String identifying the parent node.

node java.lang.String Hex value identifying this node.

nodeID java.lang.String String identifying this node.

iconURL java.lang.String URL for the icon if set with the imageID attribute in the
tocItem.

contentURL java.lang.String URL for the content represented by this item.

isCurrentNav java.lang.Boolean True if current navigator, false if not.

5.7.5.4 Using tocItem

The tocItem tag returns information about the TOC items defined in a TOCView. In the sample code below,
the TOCView returns tocItem scripting variables that are added to the JavaScript tag
tocTree.addTreeNode.

tocTree = new Tree("tocTree", 22, "ccccff", true, false);
<% TOCView curNav = (TOCView)helpBroker.getCurrentNavigatorView(); %>
<jh:tocItem helpBroker="<%= helpBroker %>" tocView="<%= curNav %>" >
 tocTree.addTreeNode("<%= parentID %>",
 "<%= nodeID %>",
 "<%= iconURL!=""?iconURL:"null" %>",
 "<%= name %>","<%= helpID %>",
 "<%= contentURL!=""?contentURL:"null" %>",
 "<%= expansionType%>");

JavaHelp System User's Guide

110 5.7.5 Navigator Scripting Variables

</jh:tocItem>
tocTree.drawTree();
tocTree.refreshTree();
 <%
 ID id = helpBroker.getCurrentID();
 if (id != null) {
 %>
 tocTree.selectFromHelpID("<%= id.id%>");
 <%
 }
 %>

5.7.5.5 indexItem Variables

The indexItem variables are defined in the table below.

Variable Data Type Description

name java.lang.String indexItem text as defined in the name attribute.

target java.lang.String indexItem target as defined in the target attribute.

parent java.lang.String Hex value identifying the parent node.

parentID java.lang.String String identifying the parent node.

node java.lang.String Hex value identifying this node.

nodeID java.lang.String String identifying this node.

iconURL java.lang.String URL for the icon if set with the imageID attribute in the indexItem.

contentURL java.lang.String URL for the content represented by this item.

5.7.5.6 Using indexItem

The indexItem tag returns information about the index item defined in an IndexView. In the sample code
below, the IndexView returns indexItem scripting variables that are added to the JavaScript tag addNode.

indexTree = new Tree("indexTree", 22, "ccccff", false, true);
<% IndexView curNav = (IndexView)helpBroker.getCurrentNavigatorView(); %>
<jh:indexItem indexView="<%= curNav %>" helpBroker="<%= helpBroker %>" >
 indexTree.addTreeNode("<%= parentID %>",
 "<%= nodeID %>", "null",
 "<%= name %>","<%= helpID %>",
 "<%= contentURL!=""?contentURL:"null" %>",
 "<%= expansionType%>");
</jh:indexItem>
indexTree.drawTree();
indexTree.refreshTree();
<%
 ID id = helpBroker.getCurrentID();
 if (id != null) {
 %>
 indexTree.selectFromHelpID("<%= id.id%>");
 <%
 }
 %>

5.7.5.7 searchItem Variables

The SearchItem variables are defined in the table below.

JavaHelp System User's Guide

5.7.5 Navigator Scripting Variables 111

Variable Data Type Description

name java.lang.String Unique name of the searchItem.

helpID java.lang.String String ID associated with this searchItem.

confidence java.lang.String The quality of the hits as returned by the search engine.

hits java.lang.String Number of hits.

contentURL java.lang.String URL for the content represented by this item.

hitBoundries java.lang.String A list of boundaries. Returns in the format of {begin, end},...

5.7.5.8 Using searchItem

The searchItem tag returns information about the search items defined in a SearchView. In the sample
code below, the SearchView returns searchItem scripting variables that are added to the JavaScript tag
addNode.

searchList = new SearchList("searchList", 22, "ccccff");
<jh:searchTOCItem searchView="<%= curNav %>"
 helpBroker="<%= helpBroker %>"
 query="<%= query %>" >
 searchList.addNode("<%= name %>",
 "<%= confidence %>",
 "<%= hits %>",
 "<%= helpID %>",
 "<%= contentURL %>");
</jh:searchTOCItem>
searchList.drawList();
searchList.refreshList();
searchList.select(0);

See also:

Context−Sensitive Help
Programming with the JavaHelp System
Adding the JavaHelp System to Applications
Embedding JavaHelp Components

JavaHelp System User's Guide

112 5.7.5 Navigator Scripting Variables

6 Localizing Help Information
This chapter contains information useful to localizers of JavaHelp systems. The following topics describe how
to localize the various components of the JavaHelp system:

Localizing the Help Presentation

Describes how the presentation aspects of the JavaHelp system (primarily the help viewer)
are localized.

Localizing Helpsets

Describes how to localize helpsets.

Localizing XML Data

Describes how to localize XML−based metadata files.

Localizing HTML Data

Describes how to localize HTML−base topic files.

Localization and Fonts

Describes the interaction of fonts with the localization of help information.

Localizing the Full−Text Search Database

Describes how to create localized full−text search databases.

6.1 Localizing the Help Presentation

The JavaHelp system viewer generally inherits the locale from the application. For information about how
applications are internationalized, see the internationalization section of The Java Tutorial at:

http://java.sun.com/docs/books/tutorial/i18n/index.html

The culturally dependent data (for example, messages and labels) for the presentation components is
contained in the property file named javahelp.properties in the javax.help.resources package.

If the locale of the help viewer is different from the locale of the application, the locale of the HelpBroker can
be set using the HelpBroker.setLocale() method. Setting the locale of the HelpBroker sets the locale for
all subordinate components. If you do not use the HelpBroker, set the locale of the JHelp* components
directly using their setLocal() methods.

6.1.1 Data Input in the Viewer

There are two places in the JavaHelp system GUI where culturally dependent input is required: Index Find
and Search Query.

In both cases, platform−specific input methods are used. Once text is entered in the Index Find or Search
Query text boxes, additional locale−based processing is activated (usually by pressing the Enter key).

In the Index Find case, the input text is searched for within the index entries using locale−based comparisons.
The locale used in Index Find is the locale of the Index navigator − usually the locale of the application, unless

6 Localizing Help Information 113

overridden using the JHelpIndexNavigator.setLocale() method.

In the Search Query case, the input text and the locale of the Search navigator are passed to a HelpSearch
class. The HelpSearch class tokenizes the query text into words using the locale−specific tokenizer. The
locale used in Search Query is the locale of the Search navigator − usually the locale of the application,
unless overridden using the HelpBroker.setLocale or JHelpSearchNavigator.setLocale methods.

See also:

Localizing Help Information
Localizing Helpsets
Localizing XML Data
Localizing HTML Data
Localization and Fonts
Localizing the Full−Text Search Database

6.2 Localizing Helpsets

The portal to all JavaHelp system help information is the helpset file which defines the helpset. The helpset is
the set of data that constitutes your help system and includes:

Helpset file (XML)•
Map file (XML)•
TOC definition file (XML)•
Index definition file (XML)•
Topic files (HTML)•
Full−text search database•

All helpset data can be localized, often in multiple ways. The process of localizing helpsets can be viewed as
a cascading process, where each level of the cascade becomes more specific and takes precedence over the
levels above it.

The following diagram shows the different levels in the JavaHelp system where the locale can be set and
localization can occur, starting with the host application and moving into the helpset. Changes to locale are
propagated down the hierarchy, with a change at each level overriding the locale set above it.

JavaHelp System User's Guide

114 6.2 Localizing Helpsets

Legend:
 Described in Localizing Help Presentation

 Described in the following sections

 Described in Localizing XML Data

 Described in Localizing HTML Data

6.2.1 The Helpset File

The locale of a helpset is usually set through the helpset file. The locale for the entire helpset can be specified
through the helpset file, although portions of it can be be selectively overridden in the data files.

6.2.1.1 Finding the Helpset File

When the application activates the JavaHelp system, the application uses the HelpSet.findHelpSet
method to find the correct helpset file and return its location (URL). The full name of the helpset file is
constructed based on the name of the helpset file specified as an argument to HelpSet.findHelpSet, and
the locale based on either the system default locale or a locale specified as an optional argument.

The name of the locale−specific helpset file is constructed and then searched for in the following order (from
most to least specific):

name_language_country_variant.hs1.
name_language_country.hs2.
name_language.hs3.
name.hs4.
name_defaultlanguage_defaultcountry_defaultvariant.hs5.
name_defaultlanguage_defaultcountry.hs6.
name_defaultlanguage.hs7.

The defaults are derived from the system with the Locale.getDefault method.

6.2.1.2 Setting Locales in the Helpset File

The helpset file can be used to control the locale of different aspects of the help system. The XML language
controls used to set locale are discussed in more detail in Localizing XML Data.

The xml:lang attribute can be used within the <helpset> tag to specify the locale of the entire helpset (the
other elements in the helpset file automatically inherit the locale). For example:

 <helpset xml:lang="fr">

The locale specified for the helpset in this manner overrides any locale acquired from the system or the
application. For this reason, it is the most reliable means for setting the helpset locale.

The locale of the <title> element is always the same as locale of the helpset. Any xml:lang attributes
specified for the <title> element are ignored.

JavaHelp System User's Guide

6.2.1 The Helpset File 115

6.2.1.3 Navigation View Locale

The xml:lang attribute can also be used to change the locale of the navigator views specified in the <view>
elements (for example, the TOC and index). Note, however, that this locale is overridden by any locale
settings specified by xml:lang attributes in the TOC and index XML definition files, as described in XML
Data.

The locale of the <label> element is always the same as the locale of the containing view. Any xml:lang
attributes specified for <label> elements are ignored.

6.2.1.4 Shipping Multiple Locales

The JavaHelp software makes it possible to simultaneously distribute multiple localized helpsets (for example,
German, French, and English). As described above, the HelpSet.findHelpSet method determines the
correct helpset file based on the system's locale or as set by the application using
HelpBroker.setLocale(). You can include multiple, localized helpset files and locate the appropriate
version using this naming convention.

If you ship multiple locales, you will probably organize your help information a little differently than is described
in Setting Up a JavaHelp System. The following diagram shows one way you can organize the help
information by locale:

Note that the paths specified in the <data> sections of the localized helpset files must point to the
appropriate locations. For example:

<maps>
 <mapref> location="de/Map.jhm" />
 </maps>
 <view>
 <name>TOC</name>
 <label>Holidays</label>
 <type>javax.help.TOCView</type>
 <data>de/HolidayTOC.xml</data>
 </view>

6.2.1.5 Merging Localized Helpsets

JavaHelp system helpsets can be merged. The locale of a helpset is maintained in a merge operation. For
instance, if the master helpset (locale en_US) is merged with another Helpset (locale fr_FR), the locale of
both helpsets is maintained.

JavaHelp System User's Guide

116 6.2.1 The Helpset File

6.2.1.6 Map Data

Map data should not be localized. If IDs (target attribute) are localized they will no longer match the IDs
used internally in the application.

See also:

Localizing Help Information
Localizing Help Presentation
Localizing XML Data
Localizing HTML Data
Localization and Fonts
Localizing the Full−Text Search Database
Helpset File
Table of Contents File
Index File

6.3 Localizing XML Data

The XML data that defines the TOC, index, and helpset files can be localized as specified in the XML 1.0
specification (http://w3c.org/XML/). Both the character encoding and language can be set for these files.

6.3.1 Character Encoding

Character encoding is an unambiguous mapping of the members of a character set (letters, ideographs,
digits, symbols, or control functions) to specific numeric code values. The specified encoding applies to the
entire file. Character encoding can be set for XML files using the following methods (listed in order of
precedence):

The HTTP protocol•
The XML prolog declaration•

 Only one encoding can be specified for any file.

6.3.1.1 HTTP Protocol

If the XML file is provided by a server via the HTTP protocol, the server can specify the character set using
the charset parameter in the HTTP Content−Type field.

6.3.1.2 XML Prolog Declaration

Typically, the encoding attribute in the prolog to all of the XML metadata files is used to specify the encoding
used for its character set. For example, the following prolog specifies the Latin−1 (ISO−8859−1) character set:

<?xml version='1.0' encoding='ISO−8859−1' standalone='yes' ?>

6.3.2 Setting the Language

The language can be set for the XML files using the following methods (listed in order of precedence):

The xml:lang attribute, which can be set for any XML element (tag)•
By inheritance from the closest parent element (tag)•
The HTTP protocol Content−Language header•
The default locale of the helpset•
The default locale of the application•

JavaHelp System User's Guide

6.2.1 The Helpset File 117

http://w3c.org/XML/)

It is possible to mix languages in these files. A different language can be specified for each tag;
however, only one character encoding can be specified for each file.

6.3.2.1 The xml:lang Attribute

The language for any element (tag) in XML files can be set using the xml:lang attribute. For example, the
following code sets the language for that table of contents entry to German. Any elements (<tocitem> tags)
nested in that tag automatically inherit that language:

<tocitem xml:lang="de" target="jde.intro">Homepage der JDE Online−Hilfe</tocitem>

Typically, the xml:lang attribute is set in the opening tag (for example, <toc xml:lang="de">), so all of
the other elements in the TOC inherit the attribute. In this case the entire TOC is in German.

The syntax of the lang attribute is:

lang = language−code

language−code = primarycode ('−' subcode)

primarycode = ISO639 | IonaCode | UserCode

ISO639 = 2 alpha characters

IonaCode = (i | I) '−' (alpha characters)

UserCode = (x | X) '−' (alpha characters)

subcode = (alpha characters)

For more information about the lang attribute, please refer to the XML recommendation at the World Wide
Web Consortium web site (http://w3c.org/XML/).

6.3.2.2 HTTP Protocol

If the XML file is provided by a server via the HTTP protocol, the server can specify the language for that file
using the HTTP Content−Language header (for example, Content−Language:en−US).

See also:

Localizing Help Information
Localizing Help Presentation
Localizing Helpsets
Localizing HTML Data
Localization and Fonts
Localizing the Full−Text Search Database

6.4 Localizing HTML Data

The HTML data contained in topic files can be localized as specified in the HTML 4.0 specification
(http://w3c.org/TR/REC−html40/). Both the character encoding and the language can be set.

6.4.1 Character Encoding

Character encoding is an unambiguous mapping of the members of a character set (letters, ideographs,
digits, symbols, or control functions) to specific numeric code values. Character encoding can be set for HTML
files in the following ways (listed in order of precedence):

JavaHelp System User's Guide

118 6.3.2 Setting the Language

http://w3c.org/XML/

HTTP protocol•
HTML <META> declaration•
HTML charset attribute on an external source (not recognized by the JavaHelp system)•

 Only one encoding can be specified for any file.

6.4.1.1 HTTP Protocol

If the HTML file is provided by a server via the HTTP protocol, the server can specify the character set using
the charset parameter in the HTTP Content−Type field.

6.4.1.2 <META> Declaration

The HTML <META> declaration can be used to specify the character encoding. Encoding is specified using
the charset parameter, as follows:

<META HTTP−EQUIV="Content−Type" CONTENT="text/html;charset=x−euc−jp">

6.4.2 Specifying a Language

The language can be set in HTML files in the following ways (listed in order of precedence):

The lang attribute•
Inheritance from the closest element (tag)•
The <META> declaration•
The HTTP protocol Content−Language header•
The default locale of the helpset•
The default locale of the application•

6.4.2.1 The HTML lang Attribute

The lang attribute specifies the language of a specific element (tag>. It can be applied to every HTML
element except the following: <APPLET>, <BASE>, <BASEFONT>,
, <FRAME>, <FRAMESET>, <HR>,
<IFRAME>, <PARAM>, and <SCRIPT>.

The following is an example of the lang attribute being used with the <P> tag:

 <P lang="en−US">

Any elements (tags) nested within a tag automatically inherit the parent tag's language.

The syntax of the lang attribute is:

lang = language−code

language−code = primarycode ('−' subcode)

primarycode = ISO639 | IonaCode | UserCode

ISO639 = 2 alpha characters

IonaCode = (i | I) '−' (alpha characters)

UserCode = (x | X) '−' (alpha characters)

subcode = (alpha characters)

JavaHelp System User's Guide

6.4.1 Character Encoding 119

For more information about the lang attribute, please refer to the HTML 4.0 specification at the World Wide
Web Consortium web site (http://w3c.org/TR/REC−html40/).

6.4.2.2 <META> Declaration

The HTML <META> declaration can be used to specify the file's language. Language is specified using the
Content−Language parameter:

<META http−equiv="Content−Language" content="en−US">

6.4.2.3 HTTP Protocol

If the HTML file is provided by a server via the HTTP protocol, the server can specify the language for that file
using the HTTP Content−Language header (for example, Content−Language:en−US).

See also:

Localizing Help Information
Localizing Help Presentation
Localizing Helpsets
Localizing XML Data
Localization and Fonts
Localizing the Full−Text Search Database

6.5 Localization and Fonts

The JavaHelp system displays information using the host's default fonts. If a helpset contains information that
cannot be presented using the default fonts, an alternate font glyph (usually a square) is displayed in its place.

The JavaHelp presentation font can be changed either by modifying the font.properties file in the JRE or
by setting the font in the HelpBroker or JHelp* components.

The HelpBroker.setFont(Font f) method sets the font for a JavaHelp presentation and propagates the
font to all of the presentation components. JHelp* components can set their fonts using the setFont()
method.

For more information about Unicode font support and adding fonts to the JRE, please refer to the Fonts
section in the following documents:

(JDK 1.1)

http://java.sun.com/products/jdk/1.1/docs/guide/intl/

•

(Java 2 Platform)

http://java.sun.com/products/
/1.2/docs/guide/internat/

•

See also:

Localizing Help Information
Localizing Help Presentation
Localizing Helpsets
Localizing XML Data
Localizing HTML Data
Localizing the Full−Text Search Database

JavaHelp System User's Guide

120 6.4.2 Specifying a Language

6.6 Localizing the Full−Text Search Database

The JavaHelp system full−text search database is constructed using the jhindexer command. The
jhindexer command parses HTML topic files according to each file's character encoding. If the document
format (HTML, GIF, text) supports a language attribute, the document text is tokenized according to the
language attributes for its elements.

By default, jhindexer assumes the default locale − use the locale option to specify the locale directly to
the jhindexer command. The syntax for the locale option is:

 jhindexer −locale language_country_variant

The argument to the option is the name of the locale as described in java.util.Locale, for example,
en_US (English, United States) or en_US_WIN (English, United States, Windows variant).

See also:

Localizing Help Information
Localizing Help Presentation
Localizing Helpsets
Localizing XML Data
Localizing HTML Data
Localization and Fonts
Creating the Full−text Search Database
The jhindexer Command

JavaHelp System User's Guide

6.6 Localizing the Full−Text Search Database 121

JavaHelp System User's Guide

122 6.6 Localizing the Full−Text Search Database

7 Index
Symbol

/ vs. \ (URL file separators)

A

accessibility
action buttons
API viewer demo
API, JavaHelp location
AppendMerge
authoring help information

B

Back button
bookmarks
browser demo
browser, server based JavaHelp
bug list
button help

C

changes since the 1.0 release
class libraries, JavaHelp
ClassLoader class
CLASSPATH

adding helpsets to
deploying helpsets
external references, and
JAR file manifest setting

config file (jhindexer command)
content pane, accessibility
content pane, bugs and limitations
contents, JavaHelp 2.0 release
context sensitive help

button help
field−level help
help (F1) key, enabling
implementing in Java programs
menu help
window−level help

CSS1 style sheets

D

<data> tag (helpset file)
demo programs
dialog boxes (modal), using with JavaHelp
discussion group, JavaHelp
distributing helpsets
download packages

7 Index 123

E

email address, JavaHelp
embedding JavaHelp components
environment variables
example helpsets

F

F1 help key
Favorites button
Favorites navigator and file
feature list, JavaHelp
features, new
feedback to JavaHelp team
field−level help
file separators−−URL (/ vs. \)
files, distributable
fonts, changing in popups
Forward button
full−text search

creating search database
how it works
localizing database
scenarios
testing the search database with the jhsearch command

G

getting started
authoring helpsets
JavaHelp 2.0 release
programming JavaHelp system

Glossary navigator and file

H

HelpBroker
context−sensitive help
general use

helpsets
adding to application
helpset file
CLASSPATH, and
distributable library files
localizing
localized examples
merging
packaging helpset data for delivery
samples of
viewing

help key, enabling
help viewer
helpset viewer
Home button
<homeID> tag (helpset file)

JavaHelp System User's Guide

124 7 Index

hsviewer

I

IDE demo (application help)
index file
<index> tag (index file)
<indexitem> tag (index file)
indexItem tag (JSP tag library)
installation

setting environment variables
PATH environment variable
JHHOME environment variable

introduction, JavaHelp

J

J2SE
JAR (Java ARchive)
Java components (lightweight)
Java Server Pages
JDK
JHHOME environment variable
JHSecondaryViewer Component
jh.jar
javahelp−comments@eng.sun.com
jhall.jar
jhbasic.jar
jhindexer command
jhtools.jar
jhsearch command
jhsearch.jar
JSP

K

keyboard shortcuts, viewer

L

<label> tag (helpset file)
libraries

distributing helpsets
JavaHelp
tag library

lightweight Java components
limitations, JavaHelp
linking topics
links, favorites
localization

help viewer
helpsets
XML data
HTML data
fonts
full−text search

JavaHelp System User's Guide

7 Index 125

localized sample helpsets

M

mailing list
map file

map file, including in JAR file
<map> tag (map file)

<mapID> tag (map file)
<maps> tag (helpset file)
master helpset file (merging)
menu help
merge demo
merging helpsets

dynamic merging
master helpset
static merging
<subhelpset> tag
types of merges

modal dialogs, using with JavaHelp
multi−topic printing

N

<name> tag (helpset file)
navigating with shortcut keys
Navigation pane, accessibility
navigators tag
new features
NoMerge

O

object demo (popups/secondary windows)
<object> HTML tag

popup and secondary windows
<object> HTML tag (lightweight Java components)

overview, JavaHelp

P

PATH environment variable
packaging help information for delivery
<param> HTML tag

popup and secondary windows
lightweight Java components

platforms, supported
platforms, tested
popup and secondary windows

adding to topics
JHSecondaryViewer Component
presentation, specifying
calling from Java program

<presentation> (helpset file)
Print button

JavaHelp System User's Guide

126 7 Index

printing topics
programming JavaHelp system

R

ranking (full−text search)
redistributable helpsets
relaxation ranking (full−text search)
release contents
Reload button

S

sample helpsets
scenarios for using JavaHelp
search (full−text), see 'full−text search'
searchItem tag
secondary windows, see 'popup and secondary windows'
separators (URL) (/ vs. \)
server−based JavaHelp
ServletHelpBroker
shortcut keys, viewer
SortMerge
source code

demo programs
JavaHelp source files
JavaHelp components (popups and secondary windows)

specification, JavaHelp
stop words (jhindexer command)
style sheets (CSS1)
<subhelpset> tag (helpset file)
support (email questions)
Swing requirements

T

table of contents (TOC) file
tag library
tags (XML metadata)

<data> (helpset file)
<homeID> (helpset file)
<index> (index file)
<indexitem> (index file)
<label> (helpset file)
<name> (helpset file)
<map> (map file)
<mapID> (map file)
<maps> (helpset file)
<presentation> (helpset file)
<subhelpset> (helpset file)
<title> (helpset file)
<toc> (table of contents file)
<tocitem> (table of contents file)
<view> (helpset file)

<title> tag (helpset file)
<toc> tag (table of contents file)

JavaHelp System User's Guide

7 Index 127

tocItem JSP tag (server−based help)
<tocitem> tag (table of contents file)
toolbars, specifying
tools, JavaHelp
topic hierarchy
tracking F1 help key

U

URL file separators (/ vs. \)
UniteAppendMerge

V

validate tag
variables, environment
<view> tag (helpset file)
viewer, accessibility
viewer (helpset), see 'hsviewer'
viewing helpsets

W

web site, JavaHelp
window−level help
windows

popup/secondary from topic
type, specifying

JavaHelp System User's Guide

128 7 Index

	Table of Contents
	1 JavaHelpTM System User's Guide JavaHelp 2.0 - December 2004
	1.1 Keeping in Touch
	1.1.1 Feedback
	1.1.2 Mailing List
	1.1.3 Discussion group (JAVAHELP-INTEREST)

	2 The JavaHelp 2.0 Release
	2.1 Contents of the Release
	2.2 Requirements
	2.3 New Features and Changes in JavaHelp 2.0
	2.3.1 Native Browser Support
	2.3.2 Installation Packages
	2.3.3 Running the JavaHelp Viewer
	2.3.4 JDK 1.1 is no longer supported
	2.3.5 Change to API for Accessing Frames
	2.3.6 Multi-Topic Printing
	2.3.7 Comprehensive Merging Options
	2.3.8 New Views in Help Viewer
	2.3.9 Specifying View (Navigator) Icons or Text
	2.3.10 Presentation Controls
	2.3.11 Customizable Toolbar Support in Helpset File
	2.3.12 Server-Based JavaHelp
	2.3.13 Helpset File has an Implementation Section
	2.3.14 Dynamic Context-Sensitive Help for Components

	2.4 Demonstration Programs
	2.4.1 IDE Demo
	2.4.2 Object Demo
	2.4.3 API Viewer
	2.4.4 Merge Demo
	2.4.5 Newmerge Demo
	2.4.6 Browser Demo
	2.4.7 Search Example
	2.4.8 Localized Helpsets

	2.5 Sample Helpsets
	2.5.1 JavaHelp System User's Guide
	2.5.2 History of the Holidays
	2.5.3 IDE Demo
	2.5.4
	2.5.5 Localized Helpsets
	2.5.6
	2.5.7

	2.6 The JavaHelp Libraries and Tools
	2.6.1 Libraries
	2.6.2 Tools

	2.7 Limitations and Bugs
	2.7.1 HTML Viewer
	2.7.2 Full-text Search
	2.7.3 Context Sensitive Help
	2.7.4 Other Bugs

	2.8 List of Files in the JavaHelp 2.0 Release

	3 JavaHelp System Overview
	3.1 Introduction
	3.2 JavaHelp System Features
	3.2.1 Help Viewers
	3.2.2 Table of Contents
	3.2.3 Index
	3.2.4 Full-Text Search
	3.2.5 Compression and Encapsulation
	3.2.6 Embeddable Help Windows
	3.2.7 Context-Sensitive Help
	3.2.8 Flexible Packaging
	3.2.9 Customization
	3.2.10 Merging
	3.2.11 JavaBeans Support

	3.3 Descriptive Scenarios
	3.4 Invocation Mechanisms
	3.4.1 Menus and Buttons
	3.4.2 Tooltips
	3.4.3 Context-Sensitive Help
	3.4.4 Viewer Initiated Help
	3.4.5 System Initiated Context-Sensitive Help

	3.5 Deploying and Presenting JavaHelp Helpsets
	3.5.1 Standalone Application
	3.5.2 Network Application
	3.5.3 Embedded Help
	3.5.4 Component Help
	3.5.5 Help Server
	3.5.6 Browser-Based Applications (Applets)

	3.6 Server-based JavaHelp Helpsets
	3.7 Full-text Search
	3.7.1 Standalone
	3.7.2 Client-Side
	3.7.3 Server-Side

	3.8 JavaHelp System Lightweight Components

	4 Authoring Help Information
	4.1 Viewing Helpsets
	4.1.1 Displaying a Helpset with hsviewer.jar
	4.1.2 Displaying a Helpset in Windows by Clicking the .hs File
	4.1.3 Displaying a Helpset by Using an Executable JAR File

	4.2 Accessibility and JavaHelp Viewer Shortcut Keys
	4.2.1 Traversing the Viewer
	4.2.2 Traversing and Using the Toolbar Buttons
	4.2.3 Traversing and Using the Navigators
	4.2.4 Traversing and Using the Content Pane
	4.2.5 Shortcut Key Table

	4.3 Setting Up Your JavaHelp Project
	4.3.1 Authoring
	4.3.2 Packaging
	4.3.3 Packaging a Helpset into a JAR File

	4.4 Helpset File
	4.4.1 Helpset File Format

	4.5 The Map File
	4.6 JAR Files
	4.6.1 Using JAR Files
	4.6.2 Sample Help Hierarchy
	4.6.3 The jar Command
	4.6.4 Creating JAR Files
	4.6.5 Listing JAR Files
	4.6.6 Extracting Files from JAR Files
	4.6.7 The JAR: Protocol

	4.7 Table of Contents File
	4.8 Index File
	4.9 Glossary Navigator and File
	4.10 Favorites Navigator and File
	4.11 Context-Sensitive Help
	4.11.1 Types of Context-Sensitive Help
	4.11.2 User-Initiated Help
	4.11.3 System-Initiated Help

	4.12 Full-Text Search
	4.12.1 How Searching Works

	4.13 Creating the Full-Text Search Database
	4.13.1 Example

	4.14 The jhindexer Command
	4.14.1 Stop Words
	4.14.2 Config File

	4.15 The jhsearch Command
	4.16 Opening Popup and Secondary Windows From an HTML Topic
	4.16.1 Differences Between Popups and Secondary Windows
	4.16.2 Working with Popups and Secondary Windows
	4.16.3
	4.16.4 Window Type (viewerStyle)
	4.16.5 Content or ID
	4.16.6 Activation (viewerActivator)
	4.16.7 Window Size (viewerSize>, Location (viewerLocation) , and Name (viewerName)
	4.16.8 Text

	4.17 Merging Helpsets
	4.17.1 The Master Helpset
	4.17.2 Understanding Merge Types
	4.17.3 Using Merge Types
	4.17.4 Merging Helpsets Statically

	5 Programming with the JavaHelp System
	5.1 Supplemental Information
	5.2 Adding the JavaHelp System to Applications
	5.2.1 Helpset
	5.2.2 HelpBroker

	5.3 Implementing Context-Sensitive Help
	5.3.1 Summary
	5.3.2 Basic Elements
	5.3.3 Implementing Context-Sensitive Help
	5.3.4 Dynamic Map ID Assignment
	5.3.5 Using Statically Defined Help IDs

	5.4 Merging Helpsets Dynamically
	5.5 Embedding JavaHelp Components
	5.6 Creating Lightweight Java Components
	5.6.1 Lightweight Components for HTML Topics
	5.6.2 Using the <OBJECT> Tag
	5.6.3 Supplemental Information

	5.7 Server-Based JavaHelp Helpsets
	5.7.1 Java Server Pages
	5.7.2 Server-Based JavaHelp Architecture
	5.7.3 JavaHelp Server Components
	5.7.4 JavaHelp JSP Tag Extensions
	5.7.5 Navigator Scripting Variables

	6 Localizing Help Information
	6.1 Localizing the Help Presentation
	6.1.1 Data Input in the Viewer

	6.2 Localizing Helpsets
	6.2.1 The Helpset File

	6.3 Localizing XML Data
	6.3.1 Character Encoding
	6.3.2 Setting the Language

	6.4 Localizing HTML Data
	6.4.1 Character Encoding
	6.4.2 Specifying a Language

	6.5 Localization and Fonts
	6.6 Localizing the Full-Text Search Database

	7 Index

