

 Linking Documents by Distinctive Phrases

Heike Johannsen
H_Johannsen@web.de

Eberhard-Karls Universität Tübingen

Seminar für Sprachwissenschaft

Thesis submitted for the academic degree
Bachelor of Arts

March 2007

Supervisor:
Dr. Dale Gerdemann

Abstract

This essay will explore a very simplistic way of
linking a collection of documents by a set of
statistically calculated key phrases. Deviating from
standard linking strategies in the field of automatic
hypertext generation, the present study will
challenge the monopoly of semantic similarity as
the exclusive indicator of document relatedness
and examine an alternative criterion provisionally
named document intersection. Documents will be
assumed to intersect if, at least at some point,
they refer to the same entity. The suitability and
the utility of intersection as a connection condition
will be tested in an experiment, where, on the
premise that entities are represented by keywords,
documents are trivially linked if they share at least
one key term.

Acknowledgements

Thanks a lot to Dale Gerdeman for supervising this thesis
and helping with implementation problems and scientific
research! Thanks also to Oda Limbach, Sabine Kupper,
Isabelle Lehn and Peter Johannsen for spending hours with
link evaluation, thus making this study possible in the first
place!
Thank you!!!

mailto:H_Johannsen@web.de

Contents

1. Introduction ..4

1.1. Topic ...4
1.2. Outline ..4
1.3. Motivation ...5

2. Theoretical Foundations and Related Work ...9
2.1. Keyword-Extraction...9

2.1.1. Standard Conception of Distinctive Phrases....................................10
2.1.2. Term-Weighting ...11

2.2. Methods in the field of automatic hyperlink generation15
2.3. Structural Characteristics of Hyperlink Networks19
2.4. Established Evaluation Methodology ..20

3. An Experiment ...22
3.1. Aim and Expectations ...22
3.2. Design Decisions and Setup...22

3.2.1. The Corpus..22
3.2.2. Selection of Distinctive Phrases...23
3.2.3. Advantages of RIDF ..24
3.2.4. Implementation Details ..24
3.2.5. Evaluation..25

3.3. Results and Discussion...27
4. Conclusions ...30
References..32

Bibliography...32
Examples...36

Texts ..36
Websites ..36

Perl Textbooks...37
Further Weblinks ...37

Appendices ...38

 1

Appendices

A. Citation Conventions Notation and Abbreviations ..38
A.a Citation conventions ...38
A.b Notation and abbreviations...38
B. Probabilistic Motivation for IDF ..39
C. Allan's Hyperlink Taxonomy ...41
D. Graph-Related Terminology ...42
E. Experimental Results ...43
E.a Results of comparisons to Wikipedia Link Structures.................................43
E.b Top Key N-Grams ..46
E.c Example of n-grams with high MI- and high RIDF-values...........................49
F. Perl Code: CrossRef.pm ..50

 2

Figures

Figure 1: Amazon's SIPs for the book Dogs for Dummies8
Figure 2: Amazon books linked by the SIP canine competitions8
Figure 3: a small-world graph between the regular and the random extreme19
Figure 4: HTML layout of a CrossRef-linked article for human evaluation26
Figure 5: excerpt from an evaluation sheet ...26
Figure 6: Wikipedia-related scores for distinct ridf values of (category VT)...........27
Figure 7: scores for distinct ridf values (category Bibel) ..43
Figure 8: scores for distinct ridf values (category Handball)..................................44
Figure 9: scores for distinct ridf values (category Privatrecht)...............................44
Figure 10: scores for distinct ridf values of (category Sexualität)45
Figure 11: scores for distinct ridf values (category Verschwörungstheorie)45
Figure 12: scores for distinct ridf values (category VT + B)...................................46

Tables

Table 1: possible results in retrieval systems..21
Table 2: result specification nr. 1 for CrossRef evaluation25
Table 3: result specification nr. 2 for CrossRef evaluation25
Table 4: best f-values of CrossRef link structures vs. Wikipedia link graphs27
Table 5: results of human reassessment of Wikipedia related false positives.......28
Table 6: examples of interesting CrossRef links ...29
Table 7: parameters of individuation ...29
Table 8: Notation and abbreviations..38
Table 9: Allan's link types ...41
Table 10: Graph-related terminology...42
Table 11: top 20 n-grams for category Bibel ...46
Table 12: top 20 n-grams for category Handball ...47
Table 13: top 20 n-grams for category Privatrecht ..47
Table 14: top 20 n-grams for category Sexualität..48
Table 15: top 20 n-grams for category Verschwörungstheorie..............................48
Table 16: top 20 n-grams for categories Verschwörungstheorie + Bibel49
Table 17: top 20 n-grams sorted by MI with ridf ≥ 2.2 (category VT).....................49

 3

1. Introduction

1.1. Topic

This essay will explore a very simplistic way of linking a collection of documents by

a set of statistically calculated key phrases. Deviating from standard linking

strategies in the field of automatic hypertext generation, the present study will

challenge the monopoly of semantic similarity as the exclusive indicator of

document relatedness and examine an alternative criterion provisionally named

document intersection. Documents will be assumed to intersect if, at least at some

point, they refer to the same entity – represented by a key term. The suitability and

the utility of intersection as connection condition will be tested in an experiment

where documents (sampled from the German Wikipedia) are trivially linked if they

share at least one keyword.

For introductory purposes, this essay will also provide a summary of standard

term-weighting methods for keyword-extraction and give an overview of

established techniques in the field of automatic hyperlink generation.

1.2. Outline

Section 1.3 will elaborate the motivation for the regression to a very basic linking

tactic as an alternative device for the detection of subtle relations between

documents. Chapter 2 will introduce a sample of prominent term-weighting

methods for keyword-extraction, including IDF, TF.IDF and RIDF, and it will give

an overview of established similarity-based techniques in the field of automatic

hyperlink generation. Chapter 3 will present the design, the evaluation and the

results of an experiment in which documents were linked entirely on the basis of

common key terms selected according to a high ridf-value. Finally, chapter 4 will

summarize the conclusions drawn from the previous experimental results.

Additional information concerning notation and citation conventions, terminology,

experimental results and the concrete implementation source-code is included in a

set of appendices, attached at the end of this paper.

 4

1.3. Motivation

"Here's where things get interesting. We're at an inflection point in the
evolution of findability. We're creating all sorts of new interfaces and devices
to access information, and we're simultaneously importing tremendous
volumes about people, places, products, and possessions into our ubiquitous
digital networks" (Morville, 2005:2).

This survey departs from the hypothesis that, entirely on the basis of semantic

similarity1, certain relations among documents are just not findable.

Imagine you're an enthusiastic student of Latin-American literature and you plan to

write an essay on Alejo Carpentier's famous novel Los pasos perdidos ('The Lost

Steps'). From your lectures you already know that the protagonist is obsessed with

the creation of an opus called el treno2, that the novel implicitly but steadily alludes

to The Myth of Sisyphus by Albert Camus and that one of the most significant

passages is the following:

“Ella no Penélope. Mujer joven, fuerte, hermosa, necesita marido. Ella no
Penélope. Naturaleza mujer aquí necesita varón”3 (Carpentier 1956:329).

In search of established literature on the issue you intuitively consult Google

(http://www.google.com/) with the following query: ["Ella no Penélope"

"Naturaleza mujer aquí necesita varón" treno camus]. But, as a result, you

merely obtain the shocking message that there has been no match. Of course,

you're smart and you guess that the search string might be too long. So you

decompose it into the smaller units ["Ella no Penélope"], ["Naturaleza mujer

aquí necesita varón"], [treno] and [camus] and google each one separately.

This gives you two results for the first string, one for the second (actually one of

the previous), about 7.480.000 for the third and roughly 9.780.000 for the fourth.

Here you are! Since one of the first two results actually points to a discussion of

the novel (Pezzella 2006), you can go ahead and write your paper on the poetics

of failure.

Now assume you are not a student of literature but a linguist interested in the

findability of documents. Then the most important observation about the given

1 Semantic similarity is informally defined as the extent to which two documents treat the same
topic, usually measured in terms of the amount of (key-)words they have in common. For a more
detailed treatise see section 2.2.
2 Archaic Greek lyrical composition (Wikipedia.org 2006:http://es.wikipedia.org/wiki/Treno).
3 'She not Penelope. Young woman, strong, beautiful, needs a husband. She not Penelope. Nature
woman here needs man'.

 5

http://www.google.com/
http://es.wikipedia.org/wiki/Treno

example is that the very first query failed to return a result because there was no

sufficiently similar document (containing all query terms) available. Consequently,

Google's requirement of a high semantic similarity prevented the delivery of a very

relevant link. The second interesting phenomenon is that the search string ["Ella

no Penélope"] delivered two documents but that the search string ["Naturaleza

mujer aquí necesita varón"] delivered just one. Looking at the results more

closely reveals that the link missed with the latter query points to a document

containing the original novel text itself. This peculiar omission is probably brought

about by the Fact that Google uses term frequency (see section 2.1.2.1) to score

the relevance of page content4. If so, the string ["Ella no Penélope"] succeeds to

retrieve the novel because it appears twice therein, whereas the string

["Naturaleza mujer aquí necesita varón"] is inapplicable because it appears

just once5. The example thus clarifies an important corollary: The most important

fragments of a text need not be the most frequent ones and accordingly, semantic

similarity (usually relying on frequent terms) may occasionally fail to retrieve the

most relevant documents6.

But is there an alternative to high semantic similarity as relation detector?

Obviously, the alternative is to extend connectivity to documents with low (but

nonzero) similarity. Of course, in the light of a permanently increasing information

overload in the world wide web, this is clearly a counterintuitive objective, and for

commonplace browsing situations, imposing high similarity thresholds is doubtless

the right policy. Nevertheless, there are domains in which the least evident

relations can be the most interesting ones. The set of inclined fields includes

literary criticism, history, comparative religion studies, journalism and virtually

every kind of interdisciplinary research. Hence, it seems worthwhile to offer

mechanisms that optionally provide additional links, thus bridging superficially

discrete but implicitly related documents.

4 The Google content score is the product over the summed frequency variants of document-
contained query words (Langville/Meyer 2006:22).
5 Possibly the decisive frequencies are not those of the exact search strings but those of key
phrases contained therein, f.e. Penélope and the ungrammatical Naturaleza mujer, of which the
former appears three times in the novel, whereas the latter occurs only once, both in the novel and
in the review. Presumably, if Google normalizes scores by text length, the low frequency of the
second term does not have such a severe impact in retrieval of the review, because the review is a
lot shorter than the novel.
6 Note that there can also be the opposite effect. Given that THIS document contains six
ocurrences of the string Naturaleza mujer aquí necesita varón, it is highly inclined to be ranked as
the most relevant document for a conforming query, according to similarity.

 6

The most naïve approach to detect such low but nonzero similarity is by means of

a common key term, here designated intersection. As Zeng and Bloniarz

(2004:pdf:1) point out, "keywords are succinct descriptions of important topics and

characterize document content", which makes them also a central element in

similarity-based approaches (see section 2). The distinction between intersection

and similarity thus reduces to the requirement that an intersection must be large in

order to substantiate high similarity7. From a more philosophical point of view, the

difference is essential: The larger an intersection between two or more documents,

the larger the amount of information they have in common. And vice versa: The

smaller the intersection, the more complementary information. Escalated to the

extreme, a minimal document intersection should come along with a maximum of

new information, whereas high document similarity – ideally – retrieves information

that is already known8.

Still, the most obvious disadvantage of intersection-based linking is that it is very

susceptible to noise. So, a major question is whether there is a way to

compensate for an inevitable contamination with irrelevant material9. In this

respect, a very promising conception is realized in Amazon's Statistically

Improbable Phrases (SIPs). SIPs are characteristic key phrases that reflect book

content and distinguish among books from the same domain:

"SIPs are not necessarily improbable within a particular book, but they are
improbable relative to all books in Search Inside!. For example, most SIPs for
a book on taxes are tax related. But because we display SIPs in order of their
improbability score, the first SIPs will be on tax topics that this book mentions
more often than other tax books. For works of fiction, SIPs tend to be
distinctive word combinations that often hint at important plot elements"
(Amazon.com 2007:http://www.amazon.com/gp/search-inside/sipshelp.html).

Figure 1 shows the SIPs associated with the book Dogs for Dummies (Spadafori

2001).

7 This characterization neglects approaches involving synonyms or LSA (see section 2.2).
8 Paradoxically, similarity-based information retrieval works so well, because, in practice, the ideal
is hardly ever reached. To put it in Golovchinsky's (1997) diction: Queries? Documents? Is there a
difference? Obviously, the difference is substantial and relates to length: A query is typically much
shorter than the retrieved document, thus leaving room for a large complement. For documents of
equal size, however, maximal similarity implies identity.
9 The notion of non-relevance is subjective. As frequently stressed in the discourse of automatic
hypertext generation, different users prefer different links (Tebutt 1998, Golovchinsky 1998, El-
Beltagy et al. 2001).

 7

http://www.amazon.com/gp/search-inside/sipshelp.html

Figure 1: Amazon's SIPs for the book Dogs for Dummies (Spadafori 2001)

Figure 2: Amazon books linked by the SIP canine competitions

 8

As expected, all of the SIPs exhibit a strong relation to the domain 'dog

husbandry'. Moreover, all of them constitute anchors of hyperlinks that guide the

user to a selection of other containing books, as those in Figure 2. Not

surprisingly, these books also stem from the domain of dogs.

In sum, SIPs perform multiple functions. First of all, they serve to characterize their

source book. Secondly, they (re)direct the user to other presumably attractive

books. Thirdly, and most importantly here, they characterize the relation that holds

between the connected books, namely the joint involvement of a common subtopic

expressed by the SIP itself. In this sense, Amazon provides a highly efficient

solution for relevance assessment: Let the individual user decide whether the

concept of interest is reputable breeder or flat collar.

Inspired by Amazon's SIPs, this survey will describe a highly resembling method

for document linking via key phrases, in which distinctive n-grams are identified by

means of a high ridf-value (see section 2.1.2.4) and in which documents receive a

connection in case they have at least one common key term.

2. Theoretical Foundations and Related Work

This chapter will provide an overview of the theoretical foundations of corpus-

based keyword-extraction via term-weighting methods such as IDF, TF.IDF and

RIDF and it will give a summary of established approaches to automatic hyperlink

generation based on vector-space models. Moreover, it will address some

structural properties of hyperlink networks and introduce a standard evaluation

methodology for retrieval systems.

2.1. Keyword-Extraction

There are two primary ways to associate a document with a set of keywords

(Montejo-Ráez/Steinberger 2004:htm). The first is to resort to a controlled keyword

vocabulary and to assign a selection thereof to the target document – possibly

manually. The second is to extract a register of key terms from the documents

themselves – preferentially automatically. This latter approach presupposes the

availability of a sufficiently large text corpus which constitutes "a representative

sample of the population of interest" (Manning/Schütze 1999:119). Given such a

corpus, good keywords can be identified by their distributional properties.

 9

2.1.1. Standard Conception of Distinctive Phrases

A 'good keyword' for information retrieval typically has to meet two requirements: It

should be representative of the containing document's content and it should be

pertinent to discriminate or associate documents within a collection (Montejo-

Ráez/Steinberger 2994:htm). The former constraint implies that key n-grams

should comprise lexical words and has motivated numerous preprocessing

procedures in various extraction systems, such as the employment of stopword-

lists10, stemming or lemmatization11, POS tagging12 or chunking13. The latter

constraint requires that a key term should be stereotypical for a (sub-)domain of

discourse. Notably, there is no entailment relation between these two

prerequisites. To give an example, an n-gram such as let x be is perfectly

applicable to distinguish a scientific article from fiction but it doesn't tell much

about the article's specific topic. Conversely, a word like penis gives a significant

clue about the containing document's content. Nevertheless, especially in the

ambience of the world wide web, penises are discussed from an enormous variety

of perspectives, including eroticism, humor, medical science and yellow press

articles14, which renders the term highly inappropriate for the differentiation of

genres15.

As stated earlier, there are various statistical techniques to identify phrases that,

though possibly to different extents, comply with both criteria. The next section will

introduce a subset thereof.

10 Stopwords are usually irrelevant function words. A stopword-list is a list of items to be ignored.
11 "Stemming is the process for reducing inflected (or sometimes derived) words to their stem, base
or root form — generally a written word form" (Wikipedia.org 2006:http://en.wikipedia.org/wiki/
Stemming). "[L]emmatisation is the process of determining the [base-form] for a given word"
(wikipedia.org 2006:http://en.wikipedia.org/wiki/Lemmatization). In the context of term extraction,
both lemmatization and stemming aim at collapsing several morphological realizations of the same
paradigm into a single representative form.
12 Part-of-Speech (POS) tagging "is the process of marking up the words in a text as corresponding
to a particular [word class], based on both its definition, as well as its context" (Wikipedia.org 2006:
http://en.wikipedia.org/wiki/Part_of_speech_tagging). POS information is essential in frameworks
where certain grammatical categories are considered more accurate than others. For instance,
Heyer et al. (2006:223) claim that the best keywords are always nouns.
13 "Chunking, also called shallow or partial parsing, applies shallow processing techniques (typically
regular expressions and finite automata) to group together words to larger syntactic and meaning-
bearing constituents" (Cimiano 2006:39).
14 For an example see http://www.krone.at/index.php?http://wcm.krone.at/krone/C12/S22/A7/
object_id__10152/hxcms/.
15 Of course, both terms used in the example could be beneficial if interacting in the surroundings
of an entire indexing vocabulary. For a brief discussion of indexing norms see Soergel (1999).

 10

http://en.wikipedia.org/wiki/Stemming
http://en.wikipedia.org/wiki/Stemming
http://en.wikipedia.org/wiki/Lemmatization
http://en.wikipedia.org/wiki/Part_of_speech_tagging
http://www.krone.at/index.php?http://wcm.krone.at/krone/C12/S22/A7/object_id__10152/hxcms/
http://www.krone.at/index.php?http://wcm.krone.at/krone/C12/S22/A7/object_id__10152/hxcms/

2.1.2. Term-Weighting

Term-weighting is a technique to assess the significance of a term within a

document or collection, taking advantage of the fact that eminent keyword

candidates tend to exhibit a non-random distribution within or across documents.

2.1.2.1. Term Frequency (TF), Collection Frequency (CF) and Document
Frequency (DF)

Each of the statistical term-weighting measures to follow exploits at least one of

three relevant quantities: term frequency, collection frequency and document

frequency, which are (informally) defined as follows (Manning/Schütze 1999:541-

544) 16:

(1) The term frequency tfij of a term wi in a document dj is the number of
occurrences of wi in dj.

(2) The collection frequency cfi of a term wi is the total number of occurrences of
a term wi in a collection of documents.

(3) The document frequency dfi of a term wi is the number of documents in the
collection in which wi occurs at least once.

According to Manning and Schütze (1999:542), term frequency roughly reflects the

prominence of a term in a document: the more frequent, the more salient.

Document frequency, on the other hand, expresses the degree of informativeness

of a term within a collection, where semantically unfocussed terms spread out

evenly, while focussed words tend to agglomerate in a potentially very small

subset of documents. Still, none of these frequency counts is by itself a good

indicator of the extent to which a term is representative or distinctive of document

content, especially since the most frequent words in natural language are function

words, and therefore bad keyword candidates (Heyer et al. 2006:87).

2.1.2.2. IDF

The measure known as inverse document frequency (IDF) was first proposed by

Karen Spärck Jones in 1972 (Spärck Jones 2004:pdf:6) and is based on the

intuition that terms occurring in few documents are more distinctive than terms that

16 Note that there is a difference in terminology between Manning/Schütze (1999) and
Yamamoto/Church (1998). The quantity referred to as collection frequency by Manning and
Schütze is called term frequency by Yamamoto and Church, who relinquish the concept of term
frequency as defined in (11) altogether.

 11

widely disperse across documents (Robertson 2004:pdf:1). A formal definition is

given in (4) (Manning/Schütze 1999:553, Robertson 2004:pdf:2):

(4) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

i
ii df

DwIDFidf log)(

where D is the total number of documents in the collection.

Hence 0 ≤ idfi ≤ log(D), such that idf is minimized for those terms that occur in all

documents and maximized for terms that occur in a single document.

Consequently, IDF assigns more weight to specialized elitist expressions than to

prevalent common terms and function words17. Up to the present, IDF has been an

enormous success in the field of information retrieval, incorporating into almost

every weighting scheme (Robertson 2004:pdf:1).

2.1.2.3. TF.IDF

The term TF.IDF designates a whole family18 of weighting schemes that combine a

tf factor with an idf factor. The simplest form of a TF.IDF weighting scheme is the

following (Salton 1989:280):

(5) ijij
i

ijijij idftf
df
DtfwIDFTFidftf ⋅=⋅== log)(..

However, as stated by Salton and Buckley (1988:pdf:5), the formula in (5)

unwarrantedly penalizes short documents and should therefore be normalized –

for example by the total document vocabulary weight:

(6)
∑

=

k
kj

ij
ij idftf

idftf
idftf

.
.

'.

Baeza-Yates and Ribeiro-Neto (1999:29) suggest an alternative normalization

strategy using the term frequency of the most frequent term in the document as a

normalization factor:

(7) ij
kj

ij
ij idf

tf
tf

idftf ⋅=
)max(arg

'.

17 According to Robertson (2004:pdf:1-2), there have been many approaches to replace the
heuristic motivation of IDF by a theoretically more profound one. Manning and Schütze (1999:551-
553) present a probabilistic derivation of IDF which is summarized in Appendix B.
18 Examples of various TF.IDF weighting schemes are listed in Manning/Schütze (1999:544).

 12

Normalization aside, TF.IDF as defined in (5)-(7) reinstates the idea originally

associated with tf that lexical words with a high document-internal frequency are

good representatives of the document's topic. The idf factor, on the other hand,

correctively suppresses non-distinctive items, especially function words.

Consequently, only those terms that are both prominent and distinctive receive a

high tf.idf value19. Until today, TF.IDF has turned out to be extremely robust and

hard to beat in the field of document-related keyword-identification20

(Salton/Buckley 1988, Baeza-Yates/Ribeiro-Neto 1999).

2.1.2.4. RIDF

The statistical measure finally chosen to extract the linking key phrases in the

experiment conducted here (for reasons discussed in section 3.2.3) is the so-

called residual inverse document frequency (RIDF). The ridf value of a word wi is

defined as the difference between the logs21 of the actual sample idf and the idf

expected if wi was Poisson distributed (Manning/Schütze 1999:545,553-554):

(8)));0(1(loglog)(22 D
cfkp

df
DwRIDFridf i

i
i

ii ==−−== λ

where p(k;λi) is the Poisson distribution of k with parameter λi:

!
);(

k
ekp

k
i

i
i
λλ λ−=

In (8), the random variable k models the probability of a document having exactly k

occurrences of wi, given that the average number of occurrences of wi per

document is λi. The term 1 – p(0;cfi/D) is the Poisson probability of a document

having at least 1 occurrence of the term wi. With k = 0 and λi = cfi/D the equation in

(8) reduces to (9):

19 Since IDF can be derived from a probabilistic model (see Appendix B), Salton and Buckley
(1988:pdf:5) assume that the same is true for TF.IDF. However, Robertson (2004:pdf:11) stresses
that this conjecture is problematic, because the tf factor alters the event space on which the
probabilistic model used to justify IDF operates.
20 Though the selection criteria for Amazon's SIPs are essentially a black box, the following
statement by Amazon.com strongly suggests the involvement of a TF.IDF weighting scheme:
"Amazon.com's Statistically Improbable Phrases, or "SIPs", show you the interesting, distinctive, or
unlikely phrases that occur in the text of books in the Search Inside!™ program. Our computers
scan the text of all books in the Search Inside! program. If they find a phrase that occurs a large
number of times in a particular book relative to how many times it occurs across all Search Inside!
books, that phrase is a SIP in that book" (Amazon.com 2007:http://www.amazon.com/gp/search-
inside/sipshelp.html).
21 Note that the base of the log used in IDF is not vitally important (Robertson 2004:pdf:4).
Therefore, the different bases used in (4) and in (8)-(9) do not manifest a contradiction.

 13

http://www.amazon.com/gp/search-inside/sipshelp.html
http://www.amazon.com/gp/search-inside/sipshelp.html

(9))1(log)1(loglog)(222
D
cf

i
D
cf

i
ii

ii

eidfe
df
DwRIDFridf

−−
−−=−−==

Crucially, assuming a Poisson distribution for a word implies that occurrences of

that word are independent (Manning/Schütze 1999:546). Since this condition is

approximately true for functional categories but not for content words, high

deviation from Poisson is a good indicator of lexical vocabulary (Manning/Schütze

1999: 547,554). Yamamoto and Church (1998:pdf:1) confirm that

"[...] RIDF tends to highlight technical terminology, names, and good
keywords for information retrieval (which tend to exhibit nonrandom
distributions over documents)".

2.1.2.5. MI

Mutual information (MI) is a measure from information theory frequently used in

the identification of collocations22 (Church/Hanks 1990, Yamamoto/Church 1998).

In its general form, MI is defined as follows (Manning/Schütze 1999:67):

(10) ∑=
yx ypxp

yxpyxpYXI
,

2)()(
),(log),(),(where X and Y are random variables.

MI can be thought of as a measure of the degree of (in-)dependence between the

two variables X and Y. MI is minimal (mi = 0) exactly when the variables are

independent. It raises with increasing dependency, according to the entropy23 of

the variables. In this sense, MI measures the amount of shared information in the

random variables (Manning/Schütze 1999:67).

Yamamoto and Church (1998:pdf:18) redefine MI as a function of the probability of

certain substrings (with length ≥ 2) in a corpus:

(11)
)()(
)()(log

)|()(
)(log)(

YztfxYtf
YtfxYztf

YzpxYp
xYzpxYzwIi ii ====

where x and z are tokens, Y is a sequence of tokens and tf(Y) = C iff Y is
empty, and where C is the size of the corpus.

22 "A COLLOCATION is an expression consisting of two or more words that correspond to some
conventional way of saying things. [...] Collocations are characterized by limited compositionality.
We call a natural language expression compositional if the meaning of the expression can be
predicted from the meaning of its parts. Collocations are not fully compositional in that there is
usually an element of meaning added to the combination" (Manning/Schütze 1999:151).
23 While MI is a measure of the common information of two random variables, entropy can be
thought of as the amount of information contained in a single random variable. The entropy H of a
random variable X is defined below (Manning/Schütze 1999:61, Shannon 1948:pdf:11):

∑ ∈
−=

Xx
xpxpXH)(log)()(2

 14

Yamamoto and Church (1998:pdf:26) then propose that MI as defined in (11)24

"looks for n-grams whose internal structure cannot be attributed to

compositionality". However, this claim has not been confirmed in the course of the

conducted experiment, as emphasized in section 3.2.2.

2.1.2.6. Other term-weighting approaches

The term-weighting schemes discussed above are by no means the only

techniques for keyword-extraction. A laconic summary of other popular term-

weighting methods from information retrieval, information filtering and text

classification, such as information gain (IG), χ2 chi square (CHI) and relative

document frequency (RelDF) is given in Nanas et al. (2003). Yet another approach

using pointwise Kullback-Leibler divergence comes from Tomokiyo and Hurst

(2003). Tomokiyo and Hurst construct four language models, viz. a unigram model

and an n-gram model on a foreground and a background corpus25, in order to

determine the 'phrasiness' and the informativeness of an n-gram as a means of

KL-divergence between the respective models. In the present context, the

interesting point about this approach is that it compels the extracted n-grams to be

genuine cohesive phrases in the syntactic sense. Though the experiment

conducted here will not enforce syntactic phrasiness, phrasiness might be a highly

desirable property, as pointed out in section 3.3.

2.2. Methods in the field of automatic hyperlink generation

The classical approach to content-based hyperlink generation26 is to employ a

vector-space model for similarity calculation (Salton/Allan 1993, Salton et al. 1994,

Goffinet/Noirhomme-Fraiture 1995, Allan 1996, Allan 1997, Green 1998,

Zeng/Bloniarz 2004). Documents and queries can be modelled as feature-vectors,

where features correspond to the collection vocabulary (or alternatively to the

collection inventory of key terms) and values correspond to some type of term-

related frequency data – in the simplest case, the binary information on presence

24 Note that definition (11) does not preserve certain properties of MI as defined in (10). In
particular, if defined as in (11), MI can be negative.
25 The foreground corpus is the (domain-specific) source corpus for keyword-extraction. The
background corpus is a (general) control corpus.
26 As opposed to structure-based link generation that utilizes internal document organization into
coherent subunits such as headlines and paragraphs as the connection criterion.

 15

or absence of a term within the document or query, in more complex models, term

frequency or term weights. In this sense, a document or query can be pictured as

a point in a multidimensional space27 (Jurafsky/Martin 2000:647-651). Since the

most popular weighting scheme in automatic hyperlink generation appears to be

TF.IDF (Salton/Allan 1993, Salton et al. 1994, Goffinet/Noirhomme-Fraiture 1995,

Allan 1997, Green 1998), most linking systems use document vectors as in (12):

(12)).....,.(21 Djjjj idftfidftfidftfd =
→

Once the document vectors have been compiled, the next step is to compute

similarities between pairs of documents and to link those documents whose

similarity value exceeds a given threshold. A well-established measure of

document similarity is the cosine of the angle between the vectors28

(Goffinet/Noirhomme-Fraiture 1995, Allan 1997), defined in (13)29 (Jurafsky/Martin

2000:651):

(13)
∑∑

∑
==

=
→→

=
D

i i
D

i i

D

i ii

vu

vu
vu

1
2

1
2

1),cos(

The cosine is minimal for orthogonal non-intersecting documents and maximal for

identical documents (Jurafsky/Martin 2000:650). In this sense, semantic proximity

is reproduced by spatial proximity (Manning/Schütze 1999:539).

A common problem for the determination of document similarity via vectors arises

from keyword synonymy and polysemy30. As a solution for polysemy, Salton et al.

suggest the use of local and global vectors to resolve ambiguities: Only

documents that exhibit a high global similarity but also contain some locally

matching passages are connected (Salton/Allan 1993:ps:3, Salton et al.

1994:pdf:3). Local similarity thus improves precision (see section 2.4). Tebutt

(1998) describes a slightly different strategy, which first identifies significant

passages in a document and subsequently takes these passages as query for

retrieval of similar passages or documents. Green (1998) proposes the use of

27 Note that the underlying conception of a document, also called a bag-of-words model, completely
disregards linear ordering of constituents and syntactic constraints (Jurafsky/Martin 2000:647).
28 Other similarity measures include the simple scalar product and the Euclidean distance
(Heyer/Quasthoff/Wittig 2006:206). Green (1998:pdf:4) uses the z-score.
29 In the denominator, vectors are normalized by vocabulary size (Jurafsky/Martin 2000:650).
30 Polysemy "is the capacity for a sign (e.g. a word, phrase, etc.) or signs to have multiple
meanings" (Wikipedia.org 2007:http://en.wikipedia.org/wiki/Polysemy).

 16

http://en.wikipedia.org/wiki/Polysemy

lexical chains31 rather than key phrases as vector features, where a lexical chain is

identified by the affiliation of its members to a WordNet32 synset33. Macedo et al.

(2002), on the other hand, promote the integration of latent semantic analysis

(LSA)34 to overcome the complications due to synonymy and polysemy.

Another topic in the field of automatic hypertext generation is hyperlink typing.

Allan (1996, 1997) describes several techniques to reduce graph complexity by

link merging. Furthermore, he introduces a taxonomy in which the remaining links

are subdivided into three classes: automatic, pattern-matching and manual35. The

automatic class is further subdivided into revision, summary/expansion,

equivalence, comparison, tangent and aggregate. The most interesting of these

types seem to be the tangential and aggregate links. Aggregate links are those

that interconnect a cluster of documents, associated with the same target

document. A tangential link can be identified by its non-connectedness to a cluster

of aggregate documents relating to the same document or passage. Tangential

links thus reflect upon unusual relations between documents (Allan 1997:pdf:9).

The idea of including a type with a link reappears in Macedo et al. (2002:pdf:5)

who store typed semantic relations such as explanation or comment along with the

link. Apparently, the display of linking key phrases manifested in the Amazon SIPs

also constitutes an implicit way of link typing, though a very lax one.

A slightly more recent approach to automatic link augmentation, settled within

open hypermedia environments36, is to decouple hyperlinks from documents and

to store them in so-called linkbases. More precisely, abstract links are derived

31 "[A lexical chain] is a list of words that captures a portion of the cohesive structure of the text"
(Wikipedia.org 2007:http://en.wikipedia.org/wiki/Lexical_chain). For example, a list of words that
refer to the same entity within a given context.
32 "WordNet is a semantic lexicon for the English language. It groups English words into sets of
synonyms called synsets, provides short, general definitions, and records the various semantic
relations between these synonym sets" (Wikipedia.org 2007:http://en.wikipedia.org/wiki/WordNet).
33 "According to WordNet, a synset or synonym set is defined as a set of one or more synonyms
that are interchangeable in some context without changing the truth value of the proposition in
which they are embedded" (Wikipedia.org 2007:http://en.wikipedia.org/wiki/Synset).
34 LSA is a technique that reduces vector dimensionality, thereby projecting semantically similar
terms into the same dimensions, where semantic similarity is determined by common co-
occurrence patterns. Hence, in the reduced space, two semantically similar documents (documents
that have synonymous vocabulary) have a high cosine similarity even in case they don't share any
key terms (Manning/Schütze 1999:556).
35 The complete taxonomy is reproduced in Table 9 in Appendix C.
36 "Hypermedia is a term [...] used as a logical extension of the term hypertext, in which graphics,
audio, video, plain text and hyperlinks intertwine to create a generally non-linear medium of
information" (Wikipedia.org 2007:http://en.wikipedia.org/wiki/Hypermedia).

 17

http://en.wikipedia.org/wiki/Lexical_chain
http://en.wikipedia.org/wiki/WordNet
http://en.wikipedia.org/wiki/WordNet
http://en.wikipedia.org/wiki/Synset
http://en.wikipedia.org/wiki/Hypermedia

from existing links (f.e. contained in a collection of web-pages previously visited),

such that details about the source anchor selection (but not the source anchor

location) and the link destination are saved in the linkbase. Whenever a new web-

page is visited, these generic links are retrieved from the database and added to

the new document iff there is either an exact match or sufficient similarity between

a text fragment and the stored source anchor content (Lewis et al. 1996:html). El-

Beltagy et al. (2001) further condition link augmentation on the user-context, which

is defined as a coherent collection of relevant documents (f.e. a set of bookmarked

documents) and represented as the cluster centroid37 of the respective document

vectors. Links are extracted from the user-context-documents and the user-

context-representative is stored along with the set of extracted links. Given that

there is an unlimited number of dynamically changing user-contexts, each time a

new document is to be link-augmented, the system first determines the user

context closest to document content and subsequently selects the appropriate set

of links. After all, these systems still rely on vector similarity, though they don't

exactly compare documents. For further details about adaptive link augmentation

see Bailey et al. (2001) and Camacho-Guerrero et al. (2004).

In sum, the standard is to take semantic similarity, represented as spatial

similarity, as the decisive criterion for document linking. Yet, there are

counterexamples whereof one comes from Cleary and Bareiss (1996) who

severely criticize the employment of spatial similarity as link induction controller.

Their first objection to similarity is that it does not specify the nature of a relation

that holds between similar documents. Their second objection is that similarity

might fail to link conceptually related documents due to a lack of identical key

terms (Cleary/Bareiss 1996:pdf:3). As an alternative, they suggest a linking

procedure via manually annotated concepts (Cleary/Bareiss 1996:pdf:5-8).

Though, in the present study, manual annotation is rejected as infeasible and

much of the argumentation against similarity becomes invalid in the light of the

work presented above, the distrust in the thoroughness of similarity reflects a

major question in the present survey: Is spatial similarity a necessary premise for

document-relatedness? As stated earlier, this study advocates for 'no'.

37 In a vector-space model, the centroid of a cluster of points (each represented by a vector), is
another vector, where each value corresponds to the average over the values of the cluster vectors
in the respective dimension (Manning/Schütze 1999:499).

 18

2.3. Structural Characteristics of Hyperlink Networks

Every hyperlink structure can be represented as a graph38. In the case of a linked

text collection, documents correspond to vertices and links to edges or arcs.

Steyvers and Tenenbaum (2005:pdf:4-9) suggest four statistical features of

graphs39, to characterise three network types: random graphs, scale-free networks

and small-world structures40. In a random graph, for each pair of vertices, the

probability of being connected is equal. A small-world structure, on the other hand,

is typified as a highly clustered non-random network with a short average path

length, supposedly arising from a scale-free formation, which exhibits an uneven

degree distribution and therefore manifests all shades of connectivity

simultaneously41. Figuratively, in a small-world graph most vertices interweave

around highly prominent hubs. However, connections between peripheral vertices

pertaining to distinct hubs are sparse. As shown by Watts and Strogatz (1998),

small-world models capture a wide range of network-related phenomena in nature,

social life and technology, including properties of the world wide web and semantic

networks (Steyvers/Tenenbaum 2005).

Figure 3: a small-world graph between the regular and the random extreme (Watts/Strogatz

1998:pdf:2)

38 For an overview of the graph-related terminology used here, see Appendix D.
39 Namely the average distance, the diameter, the clustering coefficient and the degree distribution.
40 The so-called small-world phenomenon relates to the fact that the chain of acquaintances
connecting two randomly selected persons on earth is on average very short (Watts 1999:11-12).
41 More precisely, the degree distribution is determined by a power-law relationship. A power-law
relationship between two quantities x and y can be formalized as y=axk, where a and k are
constants (Wikipedia.org 2007:http://en.wikipedia.org/wiki/Power_law).

 19

http://en.wikipedia.org/wiki/Power_law

Interestingly, Steyvers and Tenenbaum (2005:pdf:24) claim that small-world

properties hardly arise in semantic models based on vector-space similarity such

as LSA (see chapter 2.2). As a reason, they suggest that semantic, self-organized

networks subsist in a temporal dimension and grow according to the principle of

preferential attachment, which states that the probability that a new vertex will

connect to an existing one depends on the connectivity of the target vertex

(Barabási et al. 2000:ps:6). In other words, nodes with a high degree are more

likely to acquire new connections than nodes with a low degree. In contrast to

such growing networks, the creation of links based on vector-space models is an

instantaneous operation on a static set of vertices in which all links emerge

simultaneously. This contrast indicates a fundamental difference between growing

network and spatial representations of semantic knowledge (Steyvers/Tenenbaum

2005:pdf:23). After all, link structures derived from document intersection should

exhibit complete components wherever key terms are shared. Average path

lengths should presumably be short. Unfortunately, an experimental or empirical

verification of this conjecture is beyond the scope of this study.

2.4. Established Evaluation Methodology

"The evaluation of information retrieval or text linking operations is a major
unsolved problem [...] The concept of document relevance must be settled
outside the retrieval environment" (Salton et al. 1994:pdf:9).

The standard evaluation measures used in information retrieval are precision and

recall, where precision measures how much of the extracted information is actually

valid and where recall captures the total coverage of the system (Jurafsky/Martin

2000:578). Manning and Schütze (1999:268-269) provide the following definitions:

(14)
||||

||
tivesfalse posiivestrue posit

ivestrue positprecision
+

=

(15)
||||

||
tivesfalse negaivestrue posit

ivestrue positrecall
+

=

Since there is generally a trade-off between precision and recall, it can be useful to

combine them into a third score called f-measure (Manning/Schütze 1999:269):

 20

(16)

recallprecision

measuref
1)1(1

1

αα −+
=−

where α (0 ≤ α ≤ 1) is a constant factor that weights precision and recall
equally if set to 0.5.

A less widely used metric is fallout, the proportion of items mistakenly selected

(Manning/Schütze 1999:270):

(17)
||||

||
ivestrue negattivesfalse posi

tivesfalse posifallout
+

=

Soergel (1999:pdf:4) suggests a further measure, discrimination, which is the

complement of fallout. Discrimination is the fraction of irrelevant items correctly

rejected. However, discrimination is hardly ever used in the evaluation of retrieval

systems.

(18)
|| ||

||
ivestrue negattivesfalse posi

ivestrue negattiondiscrimina
+

=

In the context of automatic document linking, true and false positives or negatives

respectively correspond to correctly or incorrectly generated or non-generated

hyperlinks, as schematized in Table 1:

 relevant link irrelevant link

generated true positive false positive

not generated false negative true negative
Table 1: possible results in retrieval systems

Still, the main problem in the evaluation of retrieval systems is to determine what is

relevant and what is not, especially since relevance is a notion eventually

depending on the individual user. The classical strategy for relevance estimation is

thus to employ human assessors or to take a human-evaluated reference corpus

as the comparison standard. The current study is no exception.

 21

3. An Experiment

This chapter will describe an experiment in which a set of key n-grams extracted

from a sample of German Wikipedia articles on the basis of a high ridf value was

used to establish hyperlinks on the same sample, such that two documents were

connected if they contained at least one common key term. Link generation was

performed by a program with the working title CrossRef. In particular,

innercategorial hyperlinks have been created for the Wikipedia categories

Verschwörungstheorie ('conspiracy theory', henceforth occasionally abbreviated

VT), Bibel ('Bible', henceforth occasionally abbreviated B), Handball ('handball'),

Privatrecht ('civil law') and Sexualität ('sexuality'). Intercategorial links have been

generated between documents of the category VT and the category B. All created

link structures have been compared to the Wikipedia gold-standard. A subset has

been evaluated manually.

3.1. Aim and Expectations

The goal of the experiment was to explore whether hyperlinks created between

non-similar but intersecting documents can be relevant. Given the linking strategy

described above, the prior prospect was that – on the premise of prioritized recall

– a minor proportion of the created links would be non-distinct from those

originating from similarity-based linking methods or human creation. A second

extensive portion of the resultant links was simply expected to be noise. Thus, the

target was to confirm the existence of a third fraction of links that were potentially

relevant but not envisioned in traditional linking ideologies.

3.2. Design Decisions and Setup

3.2.1. The Corpus

The test corpus consisted of a set of German Wikipedia articles spanning several

categories, namely Verschwörungstheorie ('conspiracy theory'), Bibel ('Bible'),

Handball ('handball'), Privatrecht ('civil law') and Sexualität ('sexuality') 42.

42 The sample set of Wikipedia articles has been downloaded via the Wikipedia API developed at
the TU Darmstadt (http://www.ukp.tu-darmstadt.de/software/WikipediaAPI). An alternative tool for
downloading Wikipedia articles is the module WWW::Wikipedia available at the CPAN
(http://search.cpan.org/~bricas/WWW-Wikipedia-1.92/lib/WWW/Wikipedia.pm).

 22

http://www.ukp.tu-darmstadt.de/software/WikipediaAPI
http://search.cpan.org/~bricas/WWW-Wikipedia-1.92/lib/WWW/Wikipedia.pm

Wikipedia (http://wikipedia.org) is a free multiauthor online encyclopedia43. It was

chosen as reference corpus, because it constitutes a free repository of pertinent

texts, and comparison link graphs. With respect to its contents, Wikipedia was

especially suitable for the CrossRef experiment, because articles are grouped into

categories44, thus providing access to heterogeneous samples of different

subjects. Moreover, Wikipedia hyperlinks are created manually, which allows for

the inference that all of them express a relevant relation. More formally speaking,

most Wikipedia links correspond to what Allan (1996) calls pattern-matching links,

connecting a term to an article that explains the same term (see Appendix C,

Table 9). As a network, Wikipedia corresponds to a mixed graph (see Appendix D,

Table 10) presumably exhibiting small-world properties (see section 2.3) (Voss

2005:pdf:61).

3.2.2. Selection of Distinctive Phrases

The CrossRef experiment employed a very lax conception of a distinctive phrase,

namely that of a simple n-gram with an ridf value beyond a certain threshold (ridf ≥

1.5 for the link structures evaluated manually)45. Hence CrossRef neglected

syntactic constituent structure and morphological variation. This relinquishment of

expensive preprocessing such as stemming or POS-tagging has chiefly been due

to a limitation of time and resources, and not to any theoretical considerations.

Originally, it has been intended to identify coherent key phrases by means of a

high mi-value as a second criterion besides a high ridf-value. However, MI, as

defined in (11), mostly picked combinations of a lexical category with a functional

one such as a noun phrase and a determiner (see Appendix E.c, Table 17 for

examples). Therefore, the venture to combine RIDF and MI has been abandoned

at a very early stage46. Since functional categories were considered harmless, as

long as combined with a lexical category, they were eventually admitted to the key

n-gram sequences. After all, markup chunks were removed from the corpus and

43 For a detailed description of Wikipedia see Voss (2005).
44 The category system of Wikipedia can be regarded as a kind of thesaurus, where a category is
realized as a keyword, manually associated with a set of articles. Wikipedia categories form a
hierarchy, though not a very strict one (Voss 2005:pdf:22,51,64).
45 A further practical restriction was a df ≥ 2. Obviously, terms appearing in only one document are
useless for intersection-based linking of the same collection.
46 It has also been tried to use MI as a filter to reduce lexicon size. However, MI also selected for
valuable items such as compounds and proper names. Therefore, the issue has been dispensed
with.

 23

http://wikipedia.org/

particularly noisy lexical categories were designated as stopwords47. Moreover, n-

gram length was restricted to values between 2 and 5. The reason to require at

least bigrams consisted in the fact that a lot of bad links were induced by the

ambiguous first names of persons.

3.2.3. Advantages of RIDF

The main reason to choose RIDF instead of the standard TF.IDF as the term-

weighting scheme for keyword-extraction was that the term-weights calculated via

TF.IDF are always related to a particular document. As already indicated in section

2.1.2.3, the primary purpose of the tf factor in TF.IDF is to grade terms as better

keywords for particular subsets of documents than for other subsets, which is the

ideal behaviour if the measurement of interest concerns semantic similarity.

However, as pointed out earlier, this study doesn't require documents to be

semantically similar, but rather to intersect at some point. Mere intersection does

not presuppose that the common key terms are salient in the respective

documents. Thus, for purposes of the CrossRef experiment, RIDF seemed

conceptually superior to TF.IDF, because it derives keywords from the entire

collection rather than from individual documents. Moreover, the parameter

frequencies for RIDF, are easy to obtain (see also section 3.2.4).

3.2.4. Implementation Details

Key term extraction and hyperlink generation have been performed by a Perl script

called CrossRef.pm, which implemented a suffix array as described by Yamamoto

and Church (1998) to calculate the parameter frequencies for RIDF – collection

frequency and document frequency – from corpus data. With a suffix array, all

C(C+1)/2 substrings contained in a corpus can be grouped into a convenient set of

equivalence classes, thus facilitating a calculation of frequencies in O(C·logC) time

(Yamamoto/Church 1998:pdf1,3). Other implementation features are trivial. The

complete source-code is given in Appendix F48.

47 In fact, the only domain-neutral stopwords were ISBN and Kategorie.
48 Besides the code presented in Appendix F, there has been a Java program to obtain the
Wikipedia data (see Footnote 42) and a Visual Basic macro to compute the final scores of human
evaluation.

 24

3.2.5. Evaluation

The evaluation of experiment results took place in two phases. In a first step, the

link structure created by CrossRef was compared to a derivate of the original

Wikipedia link graph, in which all potentially reproducable hyperlinks had been

converted into symmetric edges49. For this comparison, true and false positives

and negatives were defined as in Table 2:

 present in Wikipedia not present in Wikipedia

CrossRef generated true positive false positive

not CrossRef generated false negative true negative
Table 2: result specification nr. 1 for CrossRef evaluation

In a second phase, a subset of the generated link structures has been re-

evaluated manually. Four test persons were asked to asses the links generated on

the domain VT50 previously classified as false positives and two persons evaluated

the set of false positives generated between the domain VT and B. In particular,

assessors were asked to tag the link with a 1 in case it met two requirements:

(19) At least one of the linking keywords refers to the same entity, concept or
circumstance in both documents.

(20) There is a potentially relevant relation between the two documents.

Otherwise, the link was to be tagged with a 0. All items tagged with a 1 were

subsequently subtracted from the false positives and apportioned to the true

positives. Since manual evaluation was considerably time-consuming, the

assessors were not forced to assess all of the questionable links. Hence, the

results of phase two are percental projections based on the definitions in Table 3:

present in Wikipedia or
manually assessed
relevant

not present in Wikipedia
or manually assessed
irrelevant

CrossRef generated true positive false positive

not CrossRef generated (false negative) (true negative)
Table 3: result specification nr. 2 for CrossRef evaluation

49 Given that the linking strategy described above produces undirected graphs, it seemed
reasonable to compare the output to another undirected graph. From a theoretical point of view,
this means that also incoming links are considered to express relevant relations, which is entirely
consistent with the philosophy put forward here.
50 This category was chosen because it is thematically one of the domains in which non-obvious
relations are potentially interesting. Moreover, it was considered more entertaining than other
candidate categories. Finally, with a total of 143 articles, it appeared to have a manageable size.

 25

Figure 4: HTML layout of a CrossRef-linked article for human evaluation51

Figure 5: excerpt from an evaluation sheet52

51 In Figure 4, the article text is followed by a set of links, followed by a list of linking keywords, here
Robert Anton, wich refers to the same Robert Anton Wilson in all the linked articles. A 1 preceding
the link indicates that the link is present in Wikipedia, a 0 indicates absence in Wikipedia.
52 Figure 5 shows an evaluation sheet, where TP stands for true positive, TN for true negative and
FN for false negative. The fields containing numbers correspond to the re-evaluated false positives.

 26

3.3. Results and Discussion

Not surprisingly, as direct functions of RIDF, precision and recall turned out to be

highly converse, such that low ridf favoured recall while high ridf preferred

precision. In the comparison to Wikipedia, the combined f-measure was always

very low, as exemplarily illustrated in Figure 6 and in Table 4 (see Appendix E for

more result details).

B

 'B
ib

le
'

H
an

db
al

l
'h

an
db

al
l'

P
riv

at
re

ch
t

'c
iv

il
la

w
'

S
ex

ua
lit

ät

's
ex

ua
lit

y'

V
T 'c
on

sp
ira

cy

th
eo

ry
'

V
T

+
B

'c

on
sp

ira
cy

th

eo
ry

' +

'B
ib

le
'

best f-value 0.14 0.34 0.15 0.17 0.40 0.13

ridf 1.3 0.9 1.3 1.6 2.2 1.3
number of
documents D 965 204 1949 1752 143 1108

Table 4: best f-values of CrossRef link structures in comparison to Wikipedia link graphs

Figure 6: Wikipedia-related scores for distinct ridf values of (category VT)

 27

If the original Wikipedia link graphs are taken to be the exclusive gold-standard for

link quality, the values in Table 4 are extremely poor. However, as stated earlier,

the main goal of the CrossRef experiment was not to approximate the original

graphs but rather to discover supplementary links that might be relevant to a

subgroup of users. For this reason, the links generated on the category VT and the

links between the categories VT and B have been reassessed manually.

Comprehensive trials as in Figure 6 suggested an ridf value of 1.5 for link creation

for human assessment. With ridf = 1.5, the category VT still had a considerably

high recall, leaving a sufficient amount of false positives for manual re-evaluation.

At the same time, the f-measure was slightly below its maximum, indicating a high

optimality degree for precision and recall53. For the sake of uniformity, this value

has also been adopted for link generation bridging VT and B. The results of human

re-evaluation are presented in Table 5:

false false
positives54

re-evaluated
precision

(re-
evaluated
recall)55

Wikipedia-
related
precision

Wikipedia-
related
recall

VT 40.8% 54.1% (85.0%) 23.6% 71.1%
VT – B56 29.9% 32.7% (80.3%) 4.1% 33.9%
Table 5: results of human reassessment of Wikipedia related false positives

Though far away from vindicating the CrossRef linking method as qualified for real-

world applications, the figures in Table 5 strongly suggest that there are latent but

interesting relations besides those encoded manually in form of a hyperlink

(usually involving high document similarity57). A sample of beneficial CrossRef

links is given in Table 6:

53 Random samples across categories indicated that choosing ridf according to maximal Wikipedia
approximation was not a bad idea, after all. Notably, with respect to the ridf producing the best f-
score (weighting precision and recall equally), the category VT diverges from the other tested
categories which mostly exhibit a maximal f-value for ridf ≈ 1.5. VT reaches its best f-value at ridf =
2.2. Figure 6 indicates that this phenomenon might be due to the elimination of a few extremely
productive key terms between idf = 2.2 and idf = 2.3.
54 The term 'false false positives' here designates false positives manually classified as relevant.
55 Since the portion of true negatives has not been inspected manually, the reassessed recall
values in Table 5 do not reflect on potential 'false true negatives'. Hence, these values are upper
bounds and not necessarily appropriate empirically.
56 Recall that for VT – B, human evaluation has been restricted category-bridging links.
57 Almost all inspected CrossRef links that were motivated by several common key terms conformed
to links in the original. Neglecting the original link directionality, this fact allows for the conclusion
that, in Wikipedia, links coming along with high document similarity roughly form a subset of the
manually created links. CrossRef links absent from Wikipedia thus usually revealed low similarity.

 28

domain article 1 article 2 linking term

B
(ridf = 1.3)

Gewalt in der Bibel
('violence in the
Bible')

Opferung Isaaks
('sacrifice of Isaac')

Brandopfer
('burnt offering')

Handball
(ridf = 0.9)

Iñaki Urdangarin
(Basque handball
player)

Olympische
Sommerspiele 1996
Handball
('Olympic Summer
Games 1996 handball')

Olympische
Sommerspiele 1996
('Olympic Summer
Games 1996')

Privatrecht
(ridf = 1.3)

Shimpū Tokkōtai
(Kamikaze troop in
World War II)

Selbstmordattentat
('suicide assassination') Tokkōtai

Sexualität
(ridf = 1.6)

Lymphopatia
Venerea
(venereal disease)

Epididymitis (other
venereal disease)

Chlamydia
Trachomatis
(bacteria species)

VT
 (ridf = 1.5)

UFO Absturz von
Roswell
('UFO crash of
Roswell')

Reichsflugscheibe
(mythical flying saucer
built by the National
Socialists in the Third
Reich)

fliegende
Untertasse
('flying saucer')

VT – B
(ridf = 1.5)

Bibelcode
('Bible code')

Attentat auf John F.
Kennedy
('assassination of John
F. Kennedy')

John F. Kennedy

Table 6: examples of interesting CrossRef links

But what about all the noise? Is there a prototype for good keywords and

respectively one for bad keywords? The human assessors consistently reported

that the valid key terms were almost exclusively noun phrases, predominantly

proper names, denoting very concrete entities. A superficial survey of the key term

data indicated that good key n-grams were approximately those that exhibited a

high degree of individuation, defined by Hopper and Thompson (1980) as a

parameter of cross-linguistic transitivity58, namely the distinctness of objects. The

parameters of individuation are summarized in Table 7:

individuated non-individuated
proper common
human, animate inanimate
concrete abstract
count mass
referential, definite non-referential
Table 7: parameters of individuation (Hopper/Thompson 1980:252-253)

58 “Transitivity is traditionally understood as a global property of an entire clause, such that an
activity is ‘carried-over’ from an agent to a patient” (Hopper/Thompson 1980:251). Notably,
transitivity is frequently marked syntactically or morphologically across languages.

 29

On the other hand, massive pollution was induced by ambiguous fragments of

proper names such as Theodor von or John F. and by terms that did not actually

belong to the article text itself but rather to bibliographical references or frame

elements. Crucially, a very small fraction of terms such as historisch-kritische

('historic-critical') or v. Chr ('B.C.') caused a major portion of undesirable links.

The above observations thus imply that the CrossRef linking strategy, as it stands,

is insufficient, but that a lot of ground could be covered by a supplementation with

standard subsidiary NLP procedures, such as named entity recognition, (partial)

parsing, stopword elimination or lemmatization, to make sure key phrases are

unambiguous noun phrases (or at least cohesive syntactic constituents) and to

obtain inflection-neutral term-weights. Another promising modification could

consist in the normalization of term weights by n-gram length to corroborate less

ambiguous longer strings. Alternatively, totally different extraction methods, as f.e.

the one by Tomokiyo and Hurst (2003), clearly deserve a trial.

Finally, the test persons unanimously appreciated the display of the linking key

phrases along with the link itself, testifying that there was a strong correlation

between key term relevance and link relevance. Hence, the linking key terms

qualified as an effective device to estimate the a priori link relevance.

4. Conclusions

This essay has described an experimental method of document linking based on

document intersection, where documents were linked in case they had a common

key term, determined by a high ridf value. The method has been evaluated both

against a gold-standard and manually. The outcome has been twofold: It has been

shown that a lot of potentially interesting relations can be detected, even if the

connected documents do not exhibit a high degree of spatial similarity. On the

other hand, the method employed has turned out to be premature for practical

applications, due to a great amount of noise. With respect to the linking key terms

themselves, results suggest that key n-grams dedicated to document linking by

mere intersection should comply with distinct requirements than key phrases

dedicated to similarity-based document linking: While keywords intended for the

latter should primarily reflect on document content as a whole, keywords qualified

for the former should designate concrete, unambiguous and highly individuated

 30

entities that manifest interesting and possibly document-independent subtopics

themselves. Finally, it has been confirmed that the individual relevance of an

intersection-based hyperlink is transparent to the user if the linking key term is

exposed along with the link.

In sum, this study concludes that, besides document linking based on spatial

similarity, there is room for a supplementary possibly dynamic document linking

method based on document intersection, intended to detect non-obvious

connections, relevant for any subgroup of users interested in text relations beyond

the surface.

 31

References

Bibliography

AGOSTI, Maristella / CRESTANI, Fabio / MELUCCI, Massimo (1997). "On the Use of
Information Retrieval Techniques for the Automatic Construction of Hypertext". In:
Information Processing & Management. Vol. 33, No. 2, p.133-144.
http://www.cs.strath.ac.uk/~fabioc/papers/97-ipem.ps (03/2007).

ALLAN, James (1996): "Automatic Hypertext Link Typing". In: Proceedings of the
Seventh ACM Conference on Hypertext. P. 42-52.
http://typhon.perseus.tufts.edu/typhon/Flashy/Documents/Documents.current/DL%
20Notes/allan.dl.96.pdf (03/2007).

ALLAN, James (1997). "Building Hypertext Using Information Retrieval". In:
Information Processing & Management. Vol. 33, No./Issue 2, p. 145-159.
http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6VC8-
3SWVHFP-3-2&_cdi=5948&_user=1634476&_orig=search&_coverDate=03
%2F31%2F1997&_sk=999669997&view=c&wchp=dGLbVzW-zSkzV&md5
=4ddb01cf51cee830d49106649803422c&ie=/sdarticle.pdf (03/2007).

BAEZA-YATES, Ricardo / RIBEIRO-NETO, Berthier (1999). Modern Information
Retrieval. Harlow, England: Addison-Wesley Longman.

BAILEY, Christopher / EL-BELTAGY, Samhaa R. / HALL, Wendy (2001). "Link
Augmentation: A Context-Based Approach to Support Adaptive Hypermedia". In:
Proceedings of Hypermedia: Openness, Structural Awareness, and Adaptivity.
Vol. 2266, p. 239-251. Århus, Denmark.
http://wwwis.win.tue.nl/ah2001/papers/bailey.pdf (03/2007).

BARABÁSI, Albert-Lázló / ALBERT, Reka / JEONG, Hawoong (2000). "Scale-Free
Characteristics of Random Networks: The Topology of the World Wide Web". In:
Physica A. Vol. 281, p. 69-77.
http://www.cogs.sussex.ac.uk/users/masters/easymsc2003/wh21/Barbarasi,%20Al
bert,%20Jeong%20-%20Scale%20free%20characteristics%20of%20random
%20networks...ps (03/2007).

BELLOMI, Francesco / CRISTIANI, Matteo (2006). "Supervised Document
Classification Based upon Domain-Specific Term Taxonomies". In: International
Journal of Metadata, Semantics and Ontologies . Vol. 1, No.1, p. 37-46.
http://www.inderscience.com/filter.php?aid=87 (03/2007).

BRODER, Andrei / KUMAR, Ravi / MAGHOUL, Farzin / RAGHAVAN, Prabhakar /
RAJAGOPALAN, Sridhar / STATA, Raymie / TOMKINS, Andrew / WIENER, Janet (2000).
"Graph Structure in the Web". In: Proceedings of the 9th International World Wide
Web Conference on Computer Networks: The International Journal of Computer
and Telecommunication Networking. P. 309-320.
http://www9.org/w9cdrom/160/160.html (03/2007).

 32

http://www.cs.strath.ac.uk/~fabioc/papers/97-ipem.ps
http://typhon.perseus.tufts.edu/typhon/Flashy/Documents/Documents.current/DL Notes/allan.dl.96.pdf
http://typhon.perseus.tufts.edu/typhon/Flashy/Documents/Documents.current/DL Notes/allan.dl.96.pdf
http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6VC8-3SWVHFP-3-2&_cdi=5948&_user=1634476&_orig=search&_coverDate=03%2F31%2F1997&_sk=999669997&view=c&wchp=dGLbVzW-zSkzV&md5=4ddb01cf51cee830d49106649803422c&ie=/sdarticle.pdf
http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6VC8-3SWVHFP-3-2&_cdi=5948&_user=1634476&_orig=search&_coverDate=03%2F31%2F1997&_sk=999669997&view=c&wchp=dGLbVzW-zSkzV&md5=4ddb01cf51cee830d49106649803422c&ie=/sdarticle.pdf
http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6VC8-3SWVHFP-3-2&_cdi=5948&_user=1634476&_orig=search&_coverDate=03%2F31%2F1997&_sk=999669997&view=c&wchp=dGLbVzW-zSkzV&md5=4ddb01cf51cee830d49106649803422c&ie=/sdarticle.pdf
http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6VC8-3SWVHFP-3-2&_cdi=5948&_user=1634476&_orig=search&_coverDate=03%2F31%2F1997&_sk=999669997&view=c&wchp=dGLbVzW-zSkzV&md5=4ddb01cf51cee830d49106649803422c&ie=/sdarticle.pdf
http://wwwis.win.tue.nl/ah2001/papers/bailey.pdf
http://www.cogs.sussex.ac.uk/users/masters/easymsc2003/wh21/Barbarasi, Albert, Jeong - Scale free characteristics of random networks...ps
http://www.cogs.sussex.ac.uk/users/masters/easymsc2003/wh21/Barbarasi, Albert, Jeong - Scale free characteristics of random networks...ps
http://www.cogs.sussex.ac.uk/users/masters/easymsc2003/wh21/Barbarasi, Albert, Jeong - Scale free characteristics of random networks...ps
http://www.inderscience.com/filter.php?aid=87
http://www9.org/w9cdrom/160/160.html

CAMACHO-GUERRERO, José Antonio / MACEDO, Alessandra Alaniz / PIMENTEL,
Maria da Graca Campos (2004). "A Look at Some Issues During Textual Linking of
Homogeneous Web Repositories". In: Proceedings of the 2004 ACM Symposium
on Document Engineering.
http://portal.acm.org/ft_gateway.cfm?id=1030413&type=pdf&coll=GUIDE&dl=GUI
DE&CFID=12954610&CFTOKEN=30853434 (03/2007).

CIMIANO, Philipp (2006). Ontology Learning and Population from Text – Algorithms,
Evaluation and Applications. Springer Science+Business Media.

CLEARY, Chip / BAREISS, Ray (1996). "Practical Methods for Automatically
Generating Typed Links". In: Proceedings of the Seventh ACM Conference on
Hypertext. P. 31-41.
http://typhon.perseus.tufts.edu/typhon/Flashy/Documents/Documents.current/DL%
20Notes/cleary.96.pdf (03/2007).

CHURCH, Kenneth Ward / Hanks, Patrick (1990). "Word Association Norms, Mutual
Information and Lexicography". In: Proceedings of the 27th Annual Meeting on
Association for Computational Linguistics. P. 76-83.
http://acl.ldc.upenn.edu/J/J90/J90-1003.pdf (03/2007).

CROFT, W. B. / HARPER, D.J. (1979). "Using Probabilistic Models of Document
Retrieval without Relevance Information". In: Ed.: SPÄRCK JONES, Karen / WILLETT,
Peter (1997). Readings in Information Retrieval. P. 339-344. San Francisco, USA:
Morgan Kaufmann.

EL-BELTAGY, Samhaa R. / HALL, Wendy / DEROURE, David / CARR, Leslie (2001).
"Linking in Context". In: Proceedings of the Twelfth ACM Conference on Hypertext
and Hypermedia. http://www.sigweb.org/papers/ElBeltagy.pdf (03/2007).

GOFFINET, Luc / NOIRHOMME-FRAITURE Monique (1995). "Automatic Hypertext Link
Generation Based on Similarity Measures between Documents". Research Paper,
RP-96-034, Namur, Belgium: Institut d'Informatique, FUNDP.
http://perso.fundp.ac.be/~lgoffine/Hypertext/semantic_links.html (03/2007).

GOLOVCHINSKY, Gene (1997). "Queries? Links? Is There a Difference?" In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
P. 407-414. http://www.cindoc.csic.es/cybermetrics/pdf/159.pdf (03/2007).

GREEN, Stephen J. (1998). "Automated Link Generation: Can We Do Better Than
Term Repetition?". In: International World-Wide Web Conference. P. 75-84.
Brisbane, Australia. http://ftp.cs.toronto.edu/pub/gh/Green-98.pdf (03/2007).

HEYER, Gerhard / QUASTHOFF, Uwe / WITTIG, Thomas (2006). Text Mining:
Wissensrohstoff Text. Bochum: W3L GmbH.

HOPPER, Paul J. / THOMPSON, Sandra (1980). “Transitivity in grammar and
discourse”. In: Language. Vol. 56, p. 251-299.

JURAFSKY, Daniel / MARTIN, James H. (2000). Speech and Language Processing –
An Introduction to Natural Language Processing, Computational Linguistics and
Speech Recognition. New Jersey: Prentice Hall.

 33

http://portal.acm.org/ft_gateway.cfm?id=1030413&type=pdf&coll=GUIDE&dl=GUIDE&CFID=12954610&CFTOKEN=30853434
http://portal.acm.org/ft_gateway.cfm?id=1030413&type=pdf&coll=GUIDE&dl=GUIDE&CFID=12954610&CFTOKEN=30853434
http://typhon.perseus.tufts.edu/typhon/Flashy/Documents/Documents.current/DL Notes/cleary.96.pdf
http://typhon.perseus.tufts.edu/typhon/Flashy/Documents/Documents.current/DL Notes/cleary.96.pdf
http://acl.ldc.upenn.edu/J/J90/J90-1003.pdf
http://www.sigweb.org/papers/ElBeltagy.pdf
http://perso.fundp.ac.be/~lgoffine/Hypertext/semantic_links.html
http://www.cindoc.csic.es/cybermetrics/pdf/159.pdf
http://ftp.cs.toronto.edu/pub/gh/Green-98.pdf

LANGVILLE, Amy N. / MEYER, Carl D. (2006). Google's Page Rank and Beyond –
The Science of Search Engine Rankings. New Jersey, USA: Princeton University
Press.

LEWIS, Paul H. / HUGH, C. Davis, / GRIFFITHS, Steve R. / HALL, Wendy / WILKINS,
Rob J. (1996). "Media-Based Navigation with Generic Links". In: Proceedings of
the Seventh ACM Conference on Hypertext. P. 215-223.
http://eprints.ecs.soton.ac.uk/797/05/html/ (03/2007).

MACEDO, Alessandra Alaniz / CAMACHO-GUERRERO, Jose Antonio / PIMENTEL,
Maria da Graca (2002). "An Infrastructure for Open Latent Semantic Linking". In:
Proceedings of the Thirteenth ACM Conference.
http://portal.acm.org/ft_gateway.cfm?id=513369&type=pdf&coll=GUIDE&dl=portal,
ACM&CFID=16084462&CFTOKEN=39931354 (03/2007).

MANNING, Christopher D. / SCHÜTZE, Hinrich (1999). Foundations of Statistical
Natural Language Processing. Cambridge, Massachusetts / London, England: MIT
Press.

MCNAMEE, Paul / MAYFIELD, James (2001). "JHU/APL Experiments at CLEF:
Translation Resources and Score Normalization". In: Proceedings of the CLEF
2001 Cross-LanguageText Retrieval System Evaluation Campaign. Springer-
Verlag. http://www.ercim.org/publication/ws-proceedings/CLEF2/mcnamee.pdf
(03/2007).

MONTEJO-RÁEZ, Arturo / STEINBERGER, Ralf (2004). "Why Keywording Matters". In:
HEP Libraries Webzine. Issue 10. http://library.cern.ch/HEPLW/10/papers/2/
(03/2007).

MORVILLE, Peter (2005). Ambient Findability – What We Find Changes Who We
Become. Sebastopol, CA: O'Reilly.

NANAS, Nikolaos / UREN, Victoria / DEROECK, Anne (2003). "A Comparative Study
of Term Weighting Methods for Information Filtering". In: Proceedings of the 26th
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval. http://kmi.open.ac.uk/publications/pdf/kmi-03-4.pdf
(03/2007).

RENNIE, Jason / JAAKKOLA, Tommi (2005). "Using Term Informativeness for Named
Entity Detection". In: Proceedings of the 28th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval.
http://people.csail.mit.edu/tommi/papers/RenJaa-sigir05.pdf (03/2007).

ROBERTSON, Stephen (2004). "Understanding Inverse Document Frequency: On
Theoretical Arguments for IDF". In: Journal of Documentation. Vol. 60, No. 5, p.
503-520. MCB University Press.
http://www.soi.city.ac.uk/~ser/idfpapers/Robertson_idf_JDoc.pdf (03/2007).

 34

http://eprints.ecs.soton.ac.uk/797/05/html/
http://portal.acm.org/ft_gateway.cfm?id=513369&type=pdf&coll=GUIDE&dl=portal,ACM&CFID=16084462&CFTOKEN=39931354
http://portal.acm.org/ft_gateway.cfm?id=513369&type=pdf&coll=GUIDE&dl=portal,ACM&CFID=16084462&CFTOKEN=39931354
http://www.ercim.org/publication/ws-proceedings/CLEF2/mcnamee.pdf
http://library.cern.ch/HEPLW/10/papers/2/
http://kmi.open.ac.uk/publications/pdf/kmi-03-4.pdf
http://people.csail.mit.edu/tommi/papers/RenJaa-sigir05.pdf
http://www.soi.city.ac.uk/~ser/idfpapers/Robertson_idf_JDoc.pdf

SALTON, Gerard / BUCKLEY, Christopher (1988). "Term-Weighting Approaches in
Automatic Text Retrieval". In: Information Processing & Management. Vol. 24, No.
5, p. 513-523. http://www.sciencedirect.com/science?_ob=MImg&_imagekey
=B6VC8-469WV05-11&_cdi=5948&_user=1634476&_orig=search&_coverDate=
12%2F31%2F1988 &_sk=999759994&view=c&wchp=dGLbVtbzSkWW&md5
=032407b57ceb 1e55fb8f33034888bead&ie=/sdarticle.pdf (03/2007).
SALTON, Gerard (1989). Automatic Text Processing – The Transformation,
Analysis, and Retrieval of Information by Computer. Reading, USA: Addison-
Wesley.

SALTON, GERARD / ALLAN, JAMES (1993). "Selective Text Utilization and Text
Traversal". In: Proceedings of ACM Hypertext. P. 131-144. http://www-
ciir.cs.umass.edu/~allan/Papers/1993-hypertext.ps (03/2007).

SALTON, Gerard / ALLAN, James / BUCKLEY, Chris (1994). "Automatic Structuring
and Retrieval of Large Text Files". In: Communications of the ACM. Vol. 37,
No./Issue 2, p. 97-108.
http://portal.acm.org/ft_gateway.cfm?id=175243&type=pdf&coll=GUIDE&dl=GUID
E&CFID=12954356&CFTOKEN=65231581 (03/2007).

SHANNON, Claude (1948). "A Mathematical Theory of Communication". In: Bell
System Technical Journal. Vol. 27. http://cm.bell-
labs.com/cm/ms/what/shannonday/shannon1948.pdf (03/2007).

SOERGEL, Dagobert (1999). "Indexing and Retrieval Performance: The Logical
Evidence". In: Journal of the American Society for Information Science. Vol. 45,
No./Issue 8, p. 589-599. http://www.dsoergel.com/cv/B46.pdf (03/2007).

SPÄRCK JONES, Karen (2004). "A Statistical Interpretation of Term Specificity and
its Application in Retrieval". In: Journal of Documentation. Vol. 60, No. 5, p. 493-
502. MCB University Press. http://www.soi.city.ac.uk/~ser/idfpapers/ksj_orig.pdf
(03/2007).

STEYVERS, Mark / TENENBAUM, Joshua B. (2005). "The Large-Scale Structure of
Semantic Networks: Statistical Analyses and a Model of Semantic Growth". In:
Cognitive Science. http://web.mit.edu/cocosci/Papers/03nSteyvers.pdf (03/2007).

TEBUTT, John (1998). "Finding Links". In: Proceedings of the Ninth ACM
Conference on Hypertext. ACM. http://www-
nlpir.nist.gov/works/papers/finding_links.html (03/2007).

TOMOKIYO, Takashi / HURST, Matthew (2003). "A Language Model Approach to
Keyphrase Extraction". In: Proceedings of the ACL Workshop on Multiword
Expressions: Analysis, Acquisition and Treatment. P. 33-40.
http://acl.ldc.upenn.edu/acl2003/mwexp/pdfs/Tomokiyo.pdf (03/2007).

VOSS, Jacob (2005). "Informetrische Untersuchungen an der Online-Enzyklopädie
Wikipedia". http://jakobvoss.de/magisterarbeit/MagisterarbeitJakobVoss.pdf
(03/2007).

 35

http://www.sciencedirect.com/science?_ob=MImg&_imagekey =B6VC8-469WV05-11&_cdi=5948&_user=1634476&_orig=search&_coverDate= 12%2F31%2F1988 &_sk=999759994&view=c&wchp=dGLbVtbzSkWW&md5 =032407b57ceb 1e55fb8f33034888bead&ie=/sdarticle.pdf
http://www.sciencedirect.com/science?_ob=MImg&_imagekey =B6VC8-469WV05-11&_cdi=5948&_user=1634476&_orig=search&_coverDate= 12%2F31%2F1988 &_sk=999759994&view=c&wchp=dGLbVtbzSkWW&md5 =032407b57ceb 1e55fb8f33034888bead&ie=/sdarticle.pdf
http://www.sciencedirect.com/science?_ob=MImg&_imagekey =B6VC8-469WV05-11&_cdi=5948&_user=1634476&_orig=search&_coverDate= 12%2F31%2F1988 &_sk=999759994&view=c&wchp=dGLbVtbzSkWW&md5 =032407b57ceb 1e55fb8f33034888bead&ie=/sdarticle.pdf
http://www.sciencedirect.com/science?_ob=MImg&_imagekey =B6VC8-469WV05-11&_cdi=5948&_user=1634476&_orig=search&_coverDate= 12%2F31%2F1988 &_sk=999759994&view=c&wchp=dGLbVtbzSkWW&md5 =032407b57ceb 1e55fb8f33034888bead&ie=/sdarticle.pdf
http://www-ciir.cs.umass.edu/~allan/Papers/1993-hypertext.ps
http://www-ciir.cs.umass.edu/~allan/Papers/1993-hypertext.ps
http://portal.acm.org/ft_gateway.cfm?id=175243&type=pdf&coll=GUIDE&dl=GUIDE&CFID=12954356&CFTOKEN=65231581
http://portal.acm.org/ft_gateway.cfm?id=175243&type=pdf&coll=GUIDE&dl=GUIDE&CFID=12954356&CFTOKEN=65231581
http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
http://www.dsoergel.com/cv/B46.pdf
http://www.soi.city.ac.uk/~ser/idfpapers/ksj_orig.pdf
http://web.mit.edu/cocosci/Papers/03nSteyvers.pdf
http://www-nlpir.nist.gov/works/papers/finding_links.html
http://www-nlpir.nist.gov/works/papers/finding_links.html
http://acl.ldc.upenn.edu/acl2003/mwexp/pdfs/Tomokiyo.pdf

WATTS, Duncan J. / Strogaz, Steven H. (1998). "Collective Dynamics of Small-
World Networks". In: Nature. Vol. 393, p. 440-442.
http://www.tam.cornell.edu/SS_nature_smallworld.pdf (03/2007).

WATTS, Duncan J. (1999). Small Worlds – The Dynamics of Networks between
Order and Randomness. Chichester, England: Princeton University Press.

WILKINSON, Ross / SMEATON, Alan F. (1999). "Automatic Link Generation". In: ACM
Computing Surveys (CSUR). Vol. 31, No. 4.
http://typhon.perseus.tufts.edu/typhon/Flashy/Documents/Documents.current/DL%
20Notes/wilkinson.acm.1999.pdf (03/2007).

YAMAMOTO, Mikio / CHURCH, Kenneth Ward (1998). "Using Suffix Arrays to
Compute Term Frequency and Document Frequency for All Substrings in a
Corpus". In: Proceedings of ACL Workshop on Very Large Corpora. P. 28-37.
Montreal. http://acl.ldc.upenn.edu/J/J01/J01-1001.pdf (03/2007).

ZENG, Jihong / BLONIARZ, Peter A. (2004). "From Keywords to Links: An Automatic
Approach". In: International Conference on Information Technology: Coding and
Computing (ITCC'04). Vol. 1.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1286467 (03/2007).

Examples

Texts

CAMUS, Albert (1956). Der Mythos von Sisyphos ⎯ Ein Versuch über das Absurde.
Düsseldorf: Karl Rauch Verlag GmbH.

CARPENTIER, Alejo (1985). Los pasos perdidos. Madrid: Cátedra.
http://www.lms.uchile.cl/PRINCIPAL/planlector/IV%BA%20Medio/Carpentier,%20
Alejo%20-%20Los%20pasos%20perdidos.doc (03/2007).

PEZZELLA, Daniel (2006). "Las mujeres y su función en Los pasos perdidos, de
Alejo Carpentier". http://www.cienciared.com.ar/ra/usr/10/177/hln1.pdf (03/2007).

SPADAFORI, Gina (2001). Dogs for Dummies. New York, USA: Hungry Minds.
http://www.amazon.com/Dummies-Miniature-Editions-Running-
Press/dp/076241362X/ref=pd_bbs_sr_1/102-1499838-
4006546?ie=UTF8&s=books&qid=1173094595&sr=8-1 (03/2007).

Websites

http://www.amazon.com/phrase/canine-competitions/ref=sip_bod_2/102-1499838-
4006546 [Amazon books linked by a SIP] (03/2007).

http://www.krone.at/index.php?http://wcm.krone.at/krone/C12/S22/A7/object_id__1
0152/hxcms/ [yellow press article] (03/2007).

 36

http://www.tam.cornell.edu/SS_nature_smallworld.pdf
http://typhon.perseus.tufts.edu/typhon/Flashy/Documents/Documents.current/DL Notes/wilkinson.acm.1999.pdf
http://typhon.perseus.tufts.edu/typhon/Flashy/Documents/Documents.current/DL Notes/wilkinson.acm.1999.pdf
http://acl.ldc.upenn.edu/J/J01/J01-1001.pdf
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1286467
http://www.lms.uchile.cl/PRINCIPAL/planlector/IV%BA Medio/Carpentier, Alejo - Los pasos perdidos.doc
http://www.lms.uchile.cl/PRINCIPAL/planlector/IV%BA Medio/Carpentier, Alejo - Los pasos perdidos.doc
http://www.cienciared.com.ar/ra/usr/10/177/hln1.pdf
http://www.amazon.com/Dummies-Miniature-Editions-Running-Press/dp/076241362X/ref=pd_bbs_sr_1/102-1499838-4006546?ie=UTF8&s=books&qid=1173094595&sr=8-1
http://www.amazon.com/Dummies-Miniature-Editions-Running-Press/dp/076241362X/ref=pd_bbs_sr_1/102-1499838-4006546?ie=UTF8&s=books&qid=1173094595&sr=8-1
http://www.amazon.com/Dummies-Miniature-Editions-Running-Press/dp/076241362X/ref=pd_bbs_sr_1/102-1499838-4006546?ie=UTF8&s=books&qid=1173094595&sr=8-1
http://www.amazon.com/phrase/canine-competitions/ref=sip_bod_2/102-1499838-4006546
http://www.amazon.com/phrase/canine-competitions/ref=sip_bod_2/102-1499838-4006546
http://www.krone.at/index.php?http://wcm.krone.at/krone/C12/S22/A7/object_id__10152/hxcms/
http://www.krone.at/index.php?http://wcm.krone.at/krone/C12/S22/A7/object_id__10152/hxcms/

Perl Textbooks

CONWAY, Damian (2005). Perl – Best Practices. Sebastopol, CA: O'Reilly.

COZENS, Simon (2005). Advanced Perl Programming, Second Edition. Sebastopol,
CA: O'Reilly.

SCHWARTZ, Randal L. / PHOENIX, Tom / FOY, Brian D. (2005). Einführung in Perl.
Köln: O'Reilly.

SCHWARTZ, Randal L. / PHOENIX, Tom (2004). Perl – Objekte, Referenzen &
Module. Köln: O'Reilly.

Further Weblinks

Amazon
http://www.amazon.com (03/2007).
http://www.amazon.com/gp/search-inside/sipshelp.html (03/2007).

CPAN
http://www.cpan.org/ (03/2007).
http://search.cpan.org/~bricas/WWW-Wikipedia-1.92/lib/WWW/Wikipedia.pm
(03/2007).

Google
http://www.google.com/ (03/2007).

The IDF page
http://www.soi.city.ac.uk/~ser/idf.html (03/2007).

Wikipedia
http://en.wikipedia.org/wiki/Graph_%28mathematics%29 (03/2007).
http://en.wikipedia.org/wiki/Hypermedia (03/2007).
http://en.wikipedia.org/wiki/Lemmatization (03/2007).
http://en.wikipedia.org/wiki/Lexical_chain (03/2007).
http://en.wikipedia.org/wiki/Part_of_speech_tagging (03/2007).
http://en.wikipedia.org/wiki/Polysemy (03/2007).
http://en.wikipedia.org/wiki/Power_law (03/2007).
http://en.wikipedia.org/wiki/Stemming (03/2007).
http://en.wikipedia.org/wiki/Synset (03/2007).
http://es.wikipedia.org/wiki/Treno (03/2007).
http://en.wikipedia.org/wiki/WordNet (03/2007).
http://wikipedia.org (03/2007).

Wikipedia API (TU Darmstadt)
http://www.ukp.tu-darmstadt.de/ (03/2007).
http://www.ukp.tu-darmstadt.de/software/WikipediaAPI (03/2007).

WordNet
http://wordnet.princeton.edu/ (03/2007).

 37

http://www.amazon.com/
http://www.amazon.com/gp/search-inside/sipshelp.html
http://www.cpan.org/
http://search.cpan.org/~bricas/WWW-Wikipedia-1.92/lib/WWW/Wikipedia.pm
http://www.google.com/
http://www.soi.city.ac.uk/~ser/idf.html
http://en.wikipedia.org/wiki/Graph_%28mathematics%29
http://en.wikipedia.org/wiki/Hypermedia
http://en.wikipedia.org/wiki/Lemmatization
http://en.wikipedia.org/wiki/Lexical_chain
http://en.wikipedia.org/wiki/Part_of_speech_tagging
http://en.wikipedia.org/wiki/Polysemy
http://en.wikipedia.org/wiki/Power_law
http://en.wikipedia.org/wiki/Stemming
http://en.wikipedia.org/wiki/Synset
http://es.wikipedia.org/wiki/Treno
http://en.wikipedia.org/wiki/WordNet
http://wikipedia.org/
http://www.ukp.tu-darmstadt.de/
http://www.ukp.tu-darmstadt.de/software/WikipediaAPI
http://wordnet.princeton.edu/

Appendices

A. Citation Conventions Notation and Abbreviations

A.a Citation conventions

Since most of the scientific papers referenced here have been retrieved as
electronic versions, citations frequently refer to electronic documents. This fact is
emphasized by specifying the file type of the electronic documents in the
respective citations. A citation such as 'Steyvers and Tenenbaum (2005:pdf:4-9)'
refers to the PDF-version of the article. In a citation such as '(Croft/Harper
1979:340)', on the other hand, page numbers refer to the printed version.

A.b Notation and abbreviations

For the reader's convenience, a subset of abbreviations is used consistently with a
constant meaning throughout the paper. These abbreviations are listed in Table 8:

notation,
symbols,
abbreviations

explanation

B set containing all Wikipedia articles from the Wikipedia category Bibel ('Bible')

C total number of tokens contained in a corpus

cf collection frequency: total number of occurrences of a term w in a collection of
documents (see 2.1.2.1)

D total number of documents d in a collection

d document in a collection
→

d document vector representing document d (see 2.2)

df document frequency: number of documents in a collection in which a term w
occurs at least once (see 2.1.2.1)

IDF, idf inverse document frequency: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

i
ii df

DwIDFidf log)((see2.1.2.2)

 MI, I, mi, i mutual information:
)|()(

)(log)(
YzpxYp

xYzpxYzwIi ii === (see 2.1.2.5)

RIDF, ridf

residual inverse document frequency:

)1(log)1(loglog)(222
D
cf

i
D
cf

i
ii

ii

eidfe
df
DwRIDFridf

−−
−−=−−==

(see 2.1.2.4)
tf term frequency: number of occurrences of a term w in a document d (see 2.1.2.1)

TF.IDF, tf.idf ijij
i

ijijij idftf
df
DtfwIDFTFidftf ⋅=⋅== log)(.. (see 2.1.2.3)

VT set containing all Wikipedia articles from the Wikipedia category
Verschwörungstheorie ('conspiracy theory')

w term (word, N-gram, etc.)

Table 8: Notation and abbreviations

 38

B. Probabilistic Motivation for IDF

"[...] in the case where no relevance information is available, the best function
for ranking documents is a combination of a simple match and a match using
inverse document frequency weights" (Croft/Harper 1979:340).

Croft and Harper (1979), Manning and Schütze (1999) and also Robertson (2004:
7-10) argue that, on the basis of a few supplementary suppositions, IDF can be
legitimated as a function of probability.
Manning and Schütze (1999: 551-553) derive IDF from the odds of relevance

)(
)()(

R|dP
R|dPdO
¬

=

where P(R|d) is the probability of relevance of a given document d and P(¬R|d) is
respectively the probability of document d being non-relevant.
In a first step, they construct a ranking function g'(d) from O(d) that ranks
documents relative to a query Q. For this purpose, they rewrite O(d) using Bayes'
formula and then compute the log odds:

)()|(
)()|()(
RPRdP

RPRdPdO
¬¬

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
¬¬

==
)()|(

)()|()(log))(log(
RPRdP

RPRdPdOdO

))(log())|(log())(log())|(log())(log(RPRdPRPRdPdO ¬−¬−+=
In order to relate O(d) to a query Q = {wi}, they introduce a random variable Xi' with
range {0,1} where 1 represents the occurrence and 0 the absence of wi in d. On
the Naïve Bayes assumption that word-order can be neglected and that the
occurrences of words in a document are independent of each other (also called
bag-of-words model), they formulate a ranking function g(d), dropping the constant
factor log(P(R)) – log(P(¬R)):

()∑ ¬−=
i

ii RXPRXPdg))|(log())|(log()(

g(d) can be rewritten as follows:

∑∑∑ ¬=−
=−

+
¬=
¬=−

+
=−

=
=

i i

i

i i

i
i

i i

i
i RXP

RXP
RXP

RXPX
RXP

RXPXdg
)|1(1

)|1(1log
)|1(

)|1(1log
)|1(1

)|1(log)(

Since

∑ ¬=−
=−

i i

i

RXP
RXP

)|1(1
)|1(1log

is another constant factor, irrelevant for ranking, it can also be abandoned, finally
yielding the function

∑∑ ¬=
¬=−

+
=−

=
=

i i

i
i

i i

i
i RXP

RXPX
RXP

RXPXdg
)|1(

)|1(1log
)|1(1

)|1(log)(' .

The subsequent simplifications are the most drastic ones. Since, in ad-hoc
retrieval, there are generally no direct estimates for P(Xi=1|R) and P(Xi=1|¬R)
available, Manning and Schütze (1999) postulate that P(Xi=1|R) is small and
constant across terms and that, to approximate P(Xi=1|¬R), it can be presumed
that none of the documents in the collection is relevant (which is an exaggeration

 39

of more realistic assumption that the vast majority of documents is irrelevant)59.
Thus they arrive at the following approximations:

∑∑ ≈
=−

=

i
i

i i

i
i Xc

RXP
RXPX

)|1(1
)|1(log

∑∑ ≈
¬=
¬=−

i i
i

i i

i
i df

DX
RXP

RXPX log
)|1(

)|1(1log

where c is a weighting factor, D is the number of documents in the collection and
dfi is the number of documents that contain wi at least once.
In other words, they reduce the former term to a simple weighted count of the
number of first occurrences of the distinct query terms {wi} in the respective
document and they further assume that the probability of a query term wi occuring
in a non-relevant document approximates the unconditional probability of a
document containing wi representable as the maximum likelihood estimate

D
dfwP i

i ≈)(

thereof.
Consequently g'(d) rewrites as

∑ ∑+=
i i

iii idfXXcdg)('

and represents a ranking function in which the impracticality of estimating the
probability of document relevance directly is compensated for by frequency
information. As Robertson (2004) points out, the derivation via a Naïve Bayes
model provides a strong justification for IDF. IDF can thus be regarded as an
implicit but direct measure of the probability of relevance (Robertson 2004:pdf:10).

59 Perhaps the most obvious blemish of the above approach is that the approximations, Manning
and Schütze (1999: 553) suggest for P(X =1|R)i and P(X =1|¬R) are contradictory. If all documents
in the collection were irrelevant, P(X =1|R) should actually be 0.

i

i

 40

C. Allan's Hyperlink Taxonomy

manual

require human authoring, "those [links] which connect documents which
describe circumstances under which one document occurred, those which
collect the various components of a debate or argument, and those which
describe forms of logical implication (caused-by, purpose, warning, and so
on)" (Allan 1996:pdf:2)

pattern-Matching typically definitions, e.g. links that point from a term to a description of the
meaning of the term

revision derives from a revision-history, f.e. version numbers,
backup copies, etc.

summary points from a larger section to a summary of that section

expansion inverse of summary, points from a digest to an elaboration

equivalence connection between a strongly related discussion of the
same topic

comparison links that identify similarities and differences between texts

tangent

subtype of equivalence links that relate topics in an unusual
manner, the target document is usually disconnected from
other documents that are related to the source document by
an equivalence link

automatic

aggregate agglomerating documents that are highly interconnected by
equivalence links

Table 9: Allan's link types (Allan 1996:pdf:2-3)

 41

D. Graph-Related Terminology

Following Broder et al. (2000:html), Steyvers and Tenenbaum (2005:pdf:4-9), and
Wikipedia.org (2007:http://en.wikipedia.org/wiki/Graph_%28mathematic% 29), this
study uses the graph-related terminology given in Table 10:

arc unidirectional connection between two vertices, formally defined as an
ordered pair of two distinct vertices

average distance60 average over the shortest path lengths of all pairs of vertices61

complete graph a graph where all pairs of vertices are joined by an edge

component a set of vertices in a graph where every pair of vertices is connected by at
least one path

cluster coefficient the probability that two distinct vertices connected to a third vertex will be
connected themselves

degree The number of incoming and outgoing arcs of a vertex in a directed graph is
respectively called the in- or out-degree of the arc, in case of an undirected
graph, the number of edges connecting a vertex to other vertices is called
the degree of the vertex.

degree distribution The degree distribution P(k) is the probability that a randomly chosen node
will have degree K.

diameter62 maximum shortest path length over all pairs of vertices in the graph

directed graph A directed graph G is an ordered pair (V, A), where V is a nonempty finite
set of vertices and A is a finite set of arcs, where an arc is an ordered pair
of elements of V.

distance The distance between two vertices is defined as the length of the shortest
path that connects them.

edge symmetric connection between two vertices formally defined as an
unordered pair of vertices

graph A graph G is either a directed graph, where vertices are connected by arcs,
an undirected graph, where vertices are connected by edges or a mixed
graph involving both vertices and edges.

mixed graph A mixed graph G is a triple (V, E, A) involving both ordered and unordered
pairs of vertices.

path In an undirected graph, a path is a sequence of edges that connects two
vertices. In a directed graph a path is a sequence of arcs that
unidirectionally leads from one vertex to another.

undirected graph An undirected graph G is an ordered pair (V, E), where V is a nonempty
finite set of vertices and E is a finite set of edges, where an edge is an
unordered pair of distinct elements of V.

vertex A vertex is a node.

Table 10: Graph-related terminology

60 Broder et al. (2000:htm) warn that inter-author terminology is inconsistent. They point out that
Barabási et al. (2000) use the term diameter for what's referred to as average distance here.
61 Broder et al. (2000:htm) point out that the use of the average distance may be problematic: Even
one single pair of unconnected vertices will provoke an average distance that is infinitely large.
62 See Footnote 60.

 42

http://en.wikipedia.org/wiki/Graph_%28mathematic% 29

E. Experimental Results

This appendix contains additional result details from the CrossRef experiment.

E.a Results of comparisons to Wikipedia Link Structures

Figure 7: scores for distinct ridf values (category Bibel)

 43

Figure 8: scores for distinct ridf values (category Handball)

Figure 9: scores for distinct ridf values (category Privatrecht)

 44

Figure 10: scores for distinct ridf values of (category Sexualität)

Figure 11: scores for distinct ridf values (category Verschwörungstheorie)

 45

Figure 12: scores for distinct ridf values (category Verschwörungstheorie + Bibel)

E.b Top Key N-Grams

tf df (≥2) ridf n-gram (2 ≤ n ≤ 5)

44 3 3.841704 ecce homo
39 4 3.256347 des muensters
29 3 3.251395 biblischen theologie
28 3 3.201513 das muenster
18 2 3.156491 herz jesu verehrung
18 2 3.156491 jesu verehrung
42 5 3.039108 ave maria
16 2 2.988056 becker 2005
16 2 2.988056 der mit seinen
16 2 2.988056 gospel of mark
16 2 2.988056 schnelle 2005
16 2 2.988056 soeding 1998
15 2 2.895692 stralsund marienkirche
30 4 2.884523 die historisch kritische methode
30 4 2.884523 herz jesu
59 8 2.838765 biblische theologie
14 2 2.796902 die goldene madonna
14 2 2.796902 marienkirche stralsund
14 2 2.796902 meiser kuehneweg
14 2 2.796902 steck 1999

Table 11: top 20 n-grams for category Bibel

 46

tf df (≥2) ridf n-gram (2 ≤ n ≤ 5)
34 2 3.968908 text flag of
34 2 3.968908 text flag
21 2 3.318698 1 23 14 23 20
21 2 3.318698 1 23 14 23
21 2 3.318698 1 23 14
21 2 3.318698 1 23
21 2 3.318698 14 23 20
21 2 3.318698 14 23
21 2 3.318698 23 14 23 20
21 2 3.318698 23 14 23
21 2 3.318698 23 14
21 2 3.318698 23 20
21 2 3.318698 80 1 23 14 23
21 2 3.318698 80 1 23 14
21 2 3.318698 80 1 23
21 2 3.318698 80 1
36 4 3.0445 flag of
17 2 3.027768 spartak kiew
27 4 2.660468 empor rostock
13 2 2.654716 hypo niederoesterreich aut

Table 12: top 20 n-grams for category Handball63

tf df (≥2) ridf n-gram (2 ≤ n ≤ 5)

37 2 4.195781 e books
34 2 4.074897 us amerikanischer
29 2 3.847261 nur maenner
34 3 3.489935 der wechsel
34 3 3.489935 ias 39
34 3 3.489935 nein ja
33 3 3.447235 der handelsvertreter
43 4 3.410379 e book
21 2 3.384552 documentation license
21 2 3.384552 free documentation license
21 2 3.384552 free documentation
21 2 3.384552 gnu free documentation license
21 2 3.384552 gnu free documentation
21 2 3.384552 gnu free
17 2 3.081176 13 nr
17 2 3.081176 der sorbonne
24 3 2.991126 1 mio
15 2 2.901342 das zeugnis

111 15 2.846638 vob b
14 2 2.802176 bremer hoehe

Table 13: top 20 n-grams for category Privatrecht

63 These key terms may appear strange but they reflect document content very well.

 47

tf df (≥2) ridf n-gram (2 ≤ n ≤ 5)
60 2 4.882257 nein nein
46 2 4.504664 pet shop
38 2 4.23231 rowspan 2
35 2 4.114897 pet shop boys
35 2 4.114897 shop boys
34 2 4.073487 freddie mercury
50 3 4.038356 brokeback mountain
32 2 3.986845 britischen charts
48 3 3.980282 tennessee williams
30 2 3.894556 frank n furter
30 2 3.894556 frank n
30 2 3.894556 n furter
27 2 3.743785 a t
78 6 3.668444 karl ii
37 3 3.609284 alan turing
37 3 3.609284 village people
23 2 3.514103 anne rice
23 2 3.514103 den britischen charts
23 2 3.514103 in den britischen charts
34 3 3.488524 marcel proust

Table 14: top 20 n-grams for category Sexualität

tf df (≥2) ridf n-gram (2 ≤ n ≤ 5)
62 2 4.652726 der titanic
51 2 4.422799 skull bones
33 3 3.296167 men in
18 2 3.080078 johann karl august
18 2 3.080078 johann karl
50 5 3.07705 da vinci
48 5 3.02767 area 51
26 3 2.98631 der prieur
26 3 2.98631 von mainz
25 3 2.934621 in black
25 3 2.934621 men in black
16 2 2.920042 baggesen jens
15 2 2.831886 harvey oswald
15 2 2.831886 jacobi friedrich
15 2 2.831886 lee harvey oswald
15 2 2.831886 lee harvey
23 3 2.824133 alfred rosenberg
23 3 2.824133 dem mond
31 4 2.800644 sauni re
22 3 2.764915 auf dem mond

Table 15: top 20 n-grams for category Verschwörungstheorie

 48

tf df (≥2) ridf n-gram (2 ≤ n ≤ 5)
62 2 4.91402 der titanic
51 2 4.63935 skull bones
42 2 4.36506 die titanic
44 3 3.845918 ecce homo
50 5 3.289499 da vinci
39 4 3.260086 des muensters
29 3 3.25418 biblischen theologie
48 5 3.231898 area 51
28 3 3.204202 das muenster
18 2 3.158222 herz jesu verehrung
18 2 3.158222 jesu verehrung
18 2 3.158222 johann karl august
18 2 3.158222 johann karl
26 3 3.098583 der prieur
34 4 3.065384 men in
42 5 3.043132 ave maria
16 2 2.989596 baggesen jens
16 2 2.989596 becker 2005
16 2 2.989596 der mit seinen
16 2 2.989596 gospel of mark

Table 16: top 20 n-grams for categories Verschwörungstheorie + Bibel

E.c Example of n-grams with high MI- and high RIDF-values

tf df (≥2) ridf mi n-gram (2 ≤ n ≤ 5)
33 3 3.296167 29.17734 men in

7 2 1.772188 29.11185 nixon und
38 12 1.475521 28.68726 weisen von
11 3 1.819337 28.58326 reichsgraf von
10 2 2.271778 28.55267 constantin von
10 2 2.271778 28.44576 erzbischof von
20 6 1.637253 28.39513 ignaz von
13 3 2.050397 28.3837 xaver von

6 2 1.554802 28.34622 konzil von
8 3 1.374871 28.17292 untergang der

13 4 1.635359 28.15694 wissenschaft und
11 4 1.404299 28.04739 van der
10 3 1.686816 27.8608 buergermeister von
13 4 1.635359 27.82427 bischof von
17 5 1.68063 27.80919 ferdinand von
17 3 2.417595 27.73325 theodor von

8 3 1.374871 27.58795 weg der
8 3 1.374871 27.53887 andreas von

10 2 2.271778 27.5322 offenbarung des
12 2 2.524853 27.47083 umgang mit

Table 17: top 20 n-grams sorted by MI with ridf ≥ 2.2 (category Verschwörungstheorie)

 49

F. Perl Code: CrossRef.pm

#!/usr/bin/perl

package CrossRef;

ABOUT THIS MODULE

AUTHOR: Heike Johannsen
NAME: CrossRef.pm
VERSION: 0.01
CREATED: 02/2007.
LAST UPDATE: 27.03.2007

PURPOSE:
This module is the implementation part of a BA-thesis
called "Linking Documents by Distinctive Phrases".
It is designed to:
- calculate RIDF and MI values of n-grams given a corpus,
- extract a set of key n-grams based on high RIDF,
- link documents if they contain common key n-grams,
- match the resulting link structure against a gold-standard,
- create HTML output and other files for human assessment.

IMPLEMENTATION DETAILS:
In order to calculate the parameter frequencies for RIDF
(residual inverse document frequency) and MI (Mutual
information)from corpus data, this module employs a suffix
array as described in Yamamoto/Church (1998).

TERMINOLOGY:
Stuff for lexicon generation with suffix array
(following Yamamoto/Church 1998):
'Term frequency (TF)': The total number of
occurrences of an N-gram in the entire collection
(!TF is called 'collection frequency' (CF) in Manning/Schütze
(1999)!).
'Document frequency (DF)': The number of documents in
the corpus that contain an N-Gram at least once
'Longest common prefix (LCP)': The longest common
prefix of two or more suffixes stored in the suffix array.
'Class': "Let <i,j> be an interval on the suffix array, [...].
Class(<i,j>) is the set of substrings that start every suffix
within the interval and no suffix outside the interval"
(Yamamoto/Church 1998:7). As I understand this, a class contains
prefixes of an LCP that is common to substrings over an interval.
'Bounding LCPs': The first LCP of an interval and the first LCP
after an interval.
'Interior LCPs: The set of LCPs following the first LCP of an
interval and preceding the first LCP after the interval.
'Longest bounding LCP (LBL)': The longer one of the 2 bounding LCPs.
'Shortest interior LCP (SIL)': The shortest of the interior LCPs.
'LCP delimited': A class is LCP-delimited iff LBL < SIL.
'Trivial': Intervals and classes of size 1.

 50

CURRENT STATE:
Grown peace of code, partially suboptimal, not ready for any
public use, but sufficient for the experiment.
Not all features potentially available in this module have
recently been tested. Therefore, there is no guarantee that
this module is absolutely bug-free.
The tested and recently used functions are:
&test_parameters,
&link_and_match_directly,
&demo.
and client functions thereof (depending on config settings).
See USAGE for working settings.

USAGE:
Recently, this module has only been used to process
file input. Hence, you'll need a corpus available in
text format.
This module uses configuration files to manage parameter
settings. You can create such a config file by running
demo() without arguments and refusing to use the default
file. But ideally, you should have a template for a config
file and a demo version.
For a demo, just type '>perl CrossRef.pm' on the command-line.

REFERENCES:
MANNING, Christopher D. / SCHÜTZE, Hinrich (1999).
Foundations of Statistical Natural Language Processing.
Cambridge, Massachusetts / London, England: MIT Press.
YAMAMOTO, Mikio / CHURCH, Kenneth Ward (1998).
"Using Suffix Arrays to Compute Term Frequency
and Document Frequency for All Substrings in
a Corpus". In: Proceedings of ACL Workshop on Very
Large Corpora. P. 28-37. Montreal.
http://acl.ldc.upenn.edu/J/J01/J01-1001.pdf (03/2007).

BEGIN {

 # REQUIRE...
 require WWW::Wikipedia;

 # USE...
 use 5.008008;
 use strict;
 use warnings;
 use WWW::Wikipedia;
 use constant {

 # General N-gram data keys:
 ng_start => 'ng_start', # N-gram hash key: Start index in corpus.
 ng_length => 'ng_length', # N-gram hash key: N-Gram length.
 ng_tf => 'tf', # N-gram hash key: term frequency.
 ng_df => 'df', # N-gram hash key: document frequency.
 ng_mi => 'mi', # N-gram hash key: mutual information.
 ng_ridf => 'ridf', # N-gram hash key: Residual IDF.
 ng_txt => 'ng_txt', # N-gram hash key: Text.
 ng_list => 'ng_list', # Key: N-gram list.

 # N-gram keys for MI-calculation:
 xYz => 'tf_xYz', # Key for input hash to mi_cy();
 Y => 'tf_Y', # Key for input hash to mi_cy();
 xY => 'tf_xY', # Key for input hash to mi_cy();
 Yz => 'tf_Yz', # Key for input hash to mi_cy();

 51

 # Parameter keys (%params):
 df_min => 'df_min', # Minimum DF.
 ridf_min => 'ridf_min', # Minimum RIDF.
 mi_max => 'mi_max', # Maximum MI.
 length_min => 'length_min', # Minimum key N-gram length.
 store_lk => 'store_lk', # Store the linking keywords?
 limit => 'lim', # Maximal N-gram length.
 lex_file => 'lexfile', # Lexicon.
 link_cr => 'linkfile', # Link file.
 keyw_file => 'keyword_file', # Keyword file.
 dat_dir => 'data_dir', # Key for data directory.
 page_dir => 'page_dir', # Key for collection directory.
 html_dir => 'html', # Key: Output directory for HTML files.
 pid_o => 'pid_orig', # Key for original page-data file.
 pid_cr => 'pid_cr', # Key for CrossRef PID-file.
 link_o => 'links_orig', # Original link adjacency matrix file.
 config_file => 'config_file', # Key: config data file.
 score_file => 'score_file', # Key: score file.
 param_result_file => 'param_res', # Key: outfile parameter testing.
 stop_list => 'stop_list', # Stopword list.
 eval_sheet => 'eval_sheet', # Filename fpr evaluation sheet.
 alpha => 'alpha', # Weighting factor for F-measure.
 print_prog => 'print_prog', # Key: Print progress info?

 # Adjacency matrix - relevant keys:
 pid_lm_index => 0, # Matrix-ID column in PID file.
 pid_fn_index => 1, # Real filename column in PID file.
 pid_wid_index => 2, # Wiki-ID column in PID file.
 pid_pt_index => 3, # Page title column in PID file.
 cr_matrix => 'cr_matrix', # CrossRef link matrix.
 o_matrix => 'o_matrix', # Original link matrix.
 cr_pid_map => 'cr_pid_map', # CrossRef PID map.
 o_pid_map => 'o_pid_map', # Original PID map.
 linkey => 'linkey', # Map of linking keywords.

 # Matches, evaluation measures - keys:
 true_pos => 'true_pos', # Key: nr of true positives.
 false_pos => 'false_pos', # Key: nr of false positives.
 true_neg => 'true_neg', # Key: nr of true negatives.
 false_neg => 'false_neg', # Key: nr of false negatives.
 prec => 'precision', # Key: precision.
 rec => 'recall', # Key: recall.
 fall => 'fallout', # Key: fallout value.
 f_score => 'f-measure', # F-measure name.

 # Other keys:
 meas => 'meas', # Threshold measure (filter_results()).
 thresh => 'thresh', # Threshold value (filter_results()).
 keywords => 'keywords', # Key: Keyword-list.

 # Default values, symbols:
 no_mi_val => -999999, # Value for undefined MI.
 no_val => undef, # No value.
 sep => ';', # Column separator in files.
 file_suff => '.txt', # Filename extension.
 comment => '#', # Comment marker in config file.
 mi_step => 0.5, # Decrement MI by this value in parameter testing.
 ridf_step => 0.1, # Increment RIDF by this val in parameter testing.
 abs_df_min => 2, # Absolute DF minimum.
 html_suffix => '.html', # HTML filename extension.
 key_html_prefix => '00_Keyword_', # Prefix for keyword html files.
 demo_config => '../config_files/config_demo.txt', # Demo config.

 # Tokenization:
 end_of_doc => '°', # Document end symbol.
 word_boundary => qr/(?:[^\w])+/, # Token delimiter.

 };
}

 52

GLOBAL VARIABLES:

Delimiters:
my $word_boundary; # Word delimiter.

Mappings:
my %ix_to_doc; # Corpus index to document map.
my %token; # Beginning of token to token end.
my %next_token; # For each token beginning of next token.
my %fn_to_doc; # Filename -> doc ID mapping.
my %linking_keywords; # Stores linking words for document pairs.

Counts:
my $cur_ix; # Start of current word (&tokenize).
my $nr_docs = 0; # Number of documents in corpus.

Text data:
my $corpus; # The corpus on which to calculate frequencies.

Data arrays:
my @suff_arr; # Suffix array.
my @lcp; # LCP array.
my @link_table; # Adjacency matrix for links.
my @keywords; # Keyword list.
my @stopwords; # Stopword list.

Other:
my $n_max; # Maximal N-gram length;
my $print_info; # Flag: Print progress info to STDOUT?

MAIN PROGRAM:

demo($ARGV[0]); # Run a demo...
1; # End of main program.

SUBROUTINES:

Runs a demo on parameter testing or link creation.
PARAMETERS:
Path to configuration file
(optional but recommended).
sub demo {
 my $settings = shift @_; # Configuration file.
 my $params; # Reference to parameter hash.
 unless (defined $settings){
 print "Use demo configuration file? {1,0}\n";
 my $yes = <STDIN>;
 if ($yes == 1){
 $params = load_config(demo_config());
 } else {
 $params = prompt_for_settings();
 }
 } else {
 $params = load_config($settings);
 }
 print "Test parameters (type '1') or create HTML (type '0')?\n";
 my $function = <STDIN>;
 if ($function == 1){
 # Use slightly different settings...
 my $ridf_min = $$params{ridf_min()};
 $$params{ridf_min()} = 0;
 $$params{store_lk()} = 0;
 test_parameters($params);
 $$params{ridf_min()} = $ridf_min;
 $$params{store_lk()} = 1;
 } else {
 link_and_match_directly($params);
 }
}

 53

This sub creates links for a range of RIDF and MI values and matches
the outcome against a gold-standard.
MI-testing has originally been intended to explore the possibility of
reducing lexicon-size by MI above a certain threshold. However, that
plan has been abandoned. Therefore, MI-testing has become somewhat
obsolete.
Creates an output file with test results.
RESTRICTION:
Don't run this function immediately before or after
another function in this module.
PARAMETERS:
Ref to hash with the following keys (see constants):
page_dir => collection directory (should not end with slash),
links_orig => path to gold standart link map,
pid_orig => original page identification data,
stop_list => path to stopword list,
param_res => output file for test-results,
limit => maximal length of an N-gram,
ridf_min => RIDF threshold (minimum RIDF)(optional),
df_min => DF threshold (minimum DF) (optional),
mi_max => MI threshold (maximum MI) (optional).
alpha => weighting factor for precision and recall in f-measure,
print_prog => Flag: Print progress info at runtime?
SIDE EFFECT:
Selects STDOUT.
sub test_parameters {
 my $params = shift @_;
 if ($$params{print_prog()}){
 $print_info = $$params{print_prog()};
 }
 append_to_file($$params{param_result_file()},

"---\n");
 append_to_file($$params{param_result_file()},

"New Test: Start values:\n");
append_to_file($$params{param_result_file()}, "Min RIDF: " .

$$params{ridf_min()} . "\n");
 append_to_file($$params{param_result_file()}, "Max MI: " .

$$params{mi_max()} . "\n");
 my $best_ridf = $$params{ridf_min()};
 my $best_mi = $$params{mi_max()};
 my $best_f = -1;
 my $best_prec = -1;
 my $best_rec = -1;
 my $best_fall = -1;
 my $lex_size;
 my $lex_size_fin;
 my @lex_copy;
 my $collection = load_collection($params);
 $$params{ng_list()} = generate_frequency_lexicon($collection,

$$params{limit()});
 $$params{ng_list()} = filter_keywords($params);
 {
 my $lex = $$params{ng_list()};
 $lex_size = @$lex;
 $lex_size++;
 @lex_copy = @$lex; # Save a copy for reuse in MI-testing.
 }
 my $pid_orig = load_pid_data($$params{pid_o()});
 my $links_orig = load_link_matrix($$params{link_o()});
 symmetrize($links_orig);
 printprog("Lexicon generated, original links loaded.\n");
 my $time = times()/60;
 printprog("Duration so far (minutes): $time\n");

 54

 my $header = ng_ridf . sep
. ng_mi . sep
. prec . sep
. rec . sep
. fall . sep
. f_score . sep
. true_pos . sep
. false_pos . sep
. true_neg . sep
. false_neg . sep . "\n";

 append_to_file($$params{param_result_file()}, $header);
 # Find RIDF that gives best F-measure...
 printprog("Finding best thresholds...\n");
 while ($lex_size > 0){
 printprog("Raising RIDF: Remaining keywords: $lex_size\n");
 my $c_lex = filter_keywords($params);
 unless(@$c_lex < $lex_size){
 $$params{ridf_min()} += ridf_step;
 next;
 } else {
 $lex_size = @$c_lex;
 $$params{ng_list()} = $c_lex;
 }
 link_by_lex($params, 0);
 my $matches = match_links($links_orig,

\@link_table,
$pid_orig,
\%fn_to_doc);

 if ($$matches{prec()} > 0 && $$matches{rec()} > 0){
 my $f = f_measure($$params{alpha()},

$$matches{prec()},
$$matches{rec()});

 printprog("F: RIDF: " . $$params{ridf_min()} . ": $f\n");
 if ($f >= $best_f){
 $best_f = $f;
 $best_prec = $$matches{prec()};
 $best_rec = $$matches{rec()};
 $best_fall = $$matches{fall()};
 $best_ridf = $$params{ridf_min()};
 my $lex = $$params{ng_list()};
 $lex_size_fin = $lex_size;
 }
 my $result_line = $$params{ridf_min()} . sep()
 . $$params{mi_max()} . sep()
 . $$matches{prec()} . sep()
 . $$matches{rec()} . sep()
 . $$matches{fall()} . sep()
 . $f . sep()
 . $$matches{true_pos()} . sep()
 . $$matches{false_pos()} . sep()
 . $$matches{true_neg()} . sep()
 . $$matches{false_neg()} . sep()
 . "\n";
 append_to_file($$params{param_result_file()}, $result_line);
 }
 $$params{ridf_min()} += ridf_step;
 }
 printprog("Best RIDF calculated: $best_ridf\n");
 # Now, see how much MI can be lowered without lowering the best
 # F-score...
 $lex_size = @lex_copy;
 $lex_size++;
 $$params{ng_list()} = \@lex_copy;
 $$params{ridf_min()} = $best_ridf;
 while ($lex_size > 0){
 printprog("Lowering MI: Remaining keywords: $lex_size\n");
 my $c_lex = filter_keywords($params);

 55

 unless(@$c_lex < $lex_size){
 $$params{mi_max()} = $$params{mi_max()} - mi_step;
 next;
 } else {
 $lex_size = @$c_lex;
 $$params{ng_list()} = $c_lex;
 }
 link_by_lex($params, 0);
 my $matches = match_links($links_orig,

\@link_table,
$pid_orig,
\%fn_to_doc);

 if ($$matches{prec()} > 0 && $$matches{rec()} > 0){
 my $f = f_measure($$params{alpha()},

$$matches{prec()},
$$matches{rec()});

 printprog("F: MI: " . $$params{mi_max()} . ": $f\n");
 unless ($f < $best_f){
 $best_mi = $$params{mi_max()};
 printprog("F: " . $$params{mi_max()} . ": $f\n");
 }
 my $result_line = $$params{ridf_min()} . sep()
 . $$params{mi_max()} . sep()
 . $$matches{prec()} . sep()
 . $$matches{rec()} . sep()
 . $$matches{fall()} . sep()
 . $f . sep()
 . $$matches{true_pos()} . sep()
 . $$matches{false_pos()} . sep()
 . $$matches{true_neg()} . sep()
 . $$matches{false_neg()} . sep()
 . "\n";
 append_to_file($$params{param_result_file()}, $result_line);
 }
 $$params{mi_max()} = $$params{mi_max()} - mi_step;
 }
 printprog("Best MI calculated: $best_mi\n");
 # Save relevant data.
 append_to_file($$params{param_result_file()},

"Nr of documents: $nr_docs\n");
 append_to_file($$params{param_result_file()},

"Nr of tokens: " . keys(%token) . "\n");
 append_to_file($$params{param_result_file()},

"Nr of keywords (N-grams): $lex_size_fin\n");
 append_to_file($$params{param_result_file()},

"Best RIDF minimum: $best_ridf\n");
 append_to_file($$params{param_result_file()},

"Best MI maximum: $best_mi\n");
 append_to_file($$params{param_result_file()},

"Best F-score: $best_f\n");
 append_to_file($$params{param_result_file()},

"Weighting factor: " . $$params{alpha()} . "\n");
 append_to_file($$params{param_result_file()},

"Precision: $best_prec\n");
 append_to_file($$params{param_result_file()},

"Recall: $best_rec\n");
 append_to_file($$params{param_result_file()},

"Fallout: $best_fall\n");
 $time = times()/60;
 printprog("Duration so far (minutes): $time\n");
 printprog("Collection linked.\n");
 append_to_file($$params{param_result_file()},

"Processing time (minutes): $time\n");
 append_to_file($$params{param_result_file()},

"---\n");
}

 56

Links a collection of documents directly after calculating
TF, DF, RIDF and MI. Hence, thresholds must be known in advance.
Compares the resulting link-structure to a gold-standard.
Optionally creates some output files with the results.
PARAMETERS:
Ref to hash with the following keys (see constants):
page_dir => collection directory (should not end with slash),
lex_file => output file for frequency lexicon (optional),
link_cr => output file for CrossRef link adjacency matrix,
keyw_file => output file for mere keywords (optional),
pid_cr => output file for CrossRef page identification data
(optional),
score_file => output file for scores (optional).
limit => maximal length of an N-gram,
ridf_min => RIDF threshold (minimum RIDF)(optional),
df_min => DF threshold (minimum DF) (optional),
mi_max => MI threshold (maximum MI) (optional).
print_prog => Flag: Print progress info at runtime?
SIDE EFFECT:
Selects STDOUT.
sub link_and_match_directly {
 my $params = shift @_;
 my $outdir;
 if ($$params{print_prog()}){
 $print_info = $$params{print_prog()};
 }
 my $pid_orig = load_pid_data($$params{pid_o()});
 my $links_orig = load_link_matrix($$params{link_o()});
 symmetrize($links_orig);
 if ($$params{html_dir()}){
 # Postpone HTML-creation.
 $outdir = $$params{html_dir()};
 $$params{html_dir()} = undef;
 }
 link_directly($params);
 my $matches = match_links($links_orig,

\@link_table,
$pid_orig,
\%fn_to_doc);

 if (defined($$params{score_file()})){
 write_hash_info($matches, $$params{score_file()});
 }
 if ($outdir){
 $$params{html_dir()} = $outdir;
 $$params{cr_matrix()} = \@link_table;
 $$params{cr_pid_map()} = \%fn_to_doc;
 $$params{o_matrix()} = $links_orig;
 $$params{o_pid_map()} = $pid_orig;
 if ($$params{store_lk()}){
 $$params{linkey()} = \%linking_keywords;
 }
 create_html($params);
 }
 if ($$params{eval_sheet()}){
 $$params{cr_matrix()} = \@link_table;
 $$params{cr_pid_map()} = \%fn_to_doc;
 $$params{o_matrix()} = $links_orig;
 $$params{o_pid_map()} = $pid_orig;
 create_eval_sheet($params);
 }
}

 57

Links documents by a predefined lexicon.
PARAMETERS:
Hash with the following key (constant):
ng_list => Reference to N-gram lexicon.
Boolean flag: 1 for switching off filtering,
0 or undef for filtering.
sub link_by_lex {
 my $params = shift @_;
 my $filter = shift @_;
 my $lex_size;
 {
 my $lex = $$params{ng_list()};
 $lex_size = @$lex;
 }
 if ($filter){
 $$params{ng_list()} = filter_keywords($params);
 }
 @link_table = @{initialize_link_array(\@link_table, $nr_docs)};
 my $ngs = $$params{ng_list()};
 foreach(@{$ngs}){
 my $corpus_index = find_string($_, \&cmp_ix_ix);
 if (defined($corpus_index)){
 link_docs ($corpus_index, $$_{ng_length()});
 }
 }
 my $time = times()/60;
 printprog("Duration so far (minutes): $time\n");
 printprog("Collection-linked.\n");
}

Links a collection of documents directly after calculating
TF, DF, RIDF and MI. Hence, thresholds must be known in advance.
Optionally creates some output files with the results.
PARAMETERS:
Ref to hash with the following keys (see constants):
page_dir => collection directory (should not end with slash),
lex_file => output file for frequency lexicon (optional),
link_cr => output file for CrossRef link adjacency matrix,
keyw_file => output file for mere keywords (optional),
pid_cr => output file for CrossRef page identification data
(optional),
limit => maximal length of an N-gram,
ridf_min => RIDF threshold (minimum RIDF)(optional),
df_min => DF threshold (minimum DF) (optional),
mi_max => MI threshold (maximum MI) (optional).
print_prog => Flag: Print progress info at runtime?
SIDE EFFECT:
Selects STDOUT.
sub link_directly {
 my $params = shift @_;
 if ($$params{print_prog()}){
 $print_info = $$params{print_prog()};
 }
 my $collection = load_collection($params);
 printprog("Linking collection...\n");
 my $linkfile = $$params{link_cr()};
 if (defined($$params{stop_list()})){
 initialize_stops($params);
 }
 $$params{ng_list()} = generate_frequency_lexicon($collection,

$$params{limit()});
 if (defined($$params{lex_file()})){
 create_freq_lex_file($$params{lex_file()}, $$params{ng_list()});
 }
 my $time = times()/60;
 printprog("Duration so far (minutes): $time\n");
 $$params{ng_list()} = filter_keywords($params);
 @link_table = @{initialize_link_array(\@link_table, $nr_docs)};
 my $ngs = $$params{ng_list()};

 58

 foreach(@{$ngs}){
 my $corpus_index = find_string($_, \&cmp_ix_ix);
 if (defined($corpus_index)){
 if ($$params{store_lk()}){
 link_docs ($corpus_index, $$_{ng_length()}, $_);
 } else {
 link_docs ($corpus_index, $$_{ng_length()});
 }
 }
 }
 open LINKS, ">$linkfile" or die "Couldn't open link file";
 select LINKS;
 print_link_array(sep);
 close LINKS;
 select STDOUT;
 if ($$params{keyw_file()}){
 $$params{keywords()} = ng_to_text($params);
 write_keywords_to_file($params);
 }
 if ($$params{pid_cr()}){
 my $pidfile = $$params{pid_cr()};
 open PIDCR, ">$pidfile" or die "Couldn't write PID data";
 select PIDCR;
 print_pid_data(sep);
 close PIDCR;
 select STDOUT;
 }
 if ($$params{html_dir()}){
 $$params{cr_matrix()} = \@link_table;
 $$params{cr_pid_map} = \%fn_to_doc;
 if ($$params{store_lk()}){
 $$params{linkey()} = \%linking_keywords;
 }
 create_html{$params};
 }
 $time = times()/60;
 printprog("Duration so far (minutes): $time\n");
 printprog("Collection-linked.\n");
}

Filters a file with N-gram frequency
data such that it outputs a file with
mere key-N-grams.
PARAMETERS:
Hash with the following keys (constant):
lex_file => N-gram lexicon file with TF, DF, RIDF, MI,...,
df_min => minimum DF (optional),
mi_max => maximum MI (optional),
ridf_min => minimum RIDF,
keyw_file => outpuf file for keyword list.
sub create_keywords_from_lex {
 my $params = shift @_;
 $$params{ng_list()} = load_ngram_data($params);
 $$params{ng_list()} = filter_keywords($params);
 $$params{keywords()} = ng_to_text($params);
 write_keywords_to_file($params);
}

 59

Generates a frequency lexicon from a collection of files.
PARAMETERS:
Hash with the following keys (constants):
page_Dir => directory with input files (text only).
lex_file => output filename.
limit => maximal length of output N-grams.
sub gen_freq_lex_from_files {
 my $params = shift @_;
 printprog("Generating lexicon from file...\n");
 my $collection = load_collection($params);
 printprog("Generating lexicon...\n");
 my $ngrams = generate_frequency_lexicon($collection,

$$params{limit()});
 create_freq_lex_file($$params{lex_file()}, $ngrams);
 my $time = times()/60;
 printprog("Duration so far (minutes): $time\n");
}

Generates file with frequeny data using
Wiki articles retrieved online as corpus.
PARAMETERS:
Filename of a file with Wiki titles.
Language of articles.
Maximal length of resulting N-grams-
Output filename.
sub gen_freq_lex_from_wiki {
 my $filename = shift @_; # File with Wiki titles.
 my $lang = shift @_;
 my $limit = shift @_;
 my $lexfile = shift @_;
 my @collection; # Training corpus.
 my $wiki; # Wikipedia.
 my $id = 0;
 open TITFILE, "<$filename" or die "Couldn't open $filename";
 $wiki = WWW::Wikipedia->new(language => "$lang");
 while(<TITFILE>){
 chomp($_);
 printprog("Getting article $_\n");
 my $result = $wiki->search($_);
 if (defined($result) && $result->text()) {
 push(@collection, $id);
 $fn_to_doc{$_} = $id;
 $id++;
 } else {
 warn "No text retrieved for article $_";
 }
 }
 close TITFILE;
 printprog("Articles: " . ($#collection + 1) . "\n"); # Testing only!
 my $ngrams = generate_frequency_lexicon(\@collection, $limit);
 create_freq_lex_file($lexfile, $ngrams);
 my $time = times()/60;
 printprog("Duration so far (in minutes): $time\n");
}

 60

Counts term frequencies (TF) and
document frequencies (DF) in a given collection
of texts.
PARAMETERS:
Reference to array of references
to texts (the collection).
Optional: maximal Term length
(n of N-gram).
sub generate_frequency_lexicon {
 # INPUT:
 # Reference to an array of document references and IDs.
 # (docref, id, docref, id, docref, ...)
 my $collection = shift @_;
 unless (defined($collection)){
 die "No collection to process handed over";
 }
 unless (defined($_[0])){
 warn "No maximal n-value specified. N-grams can be large!";
 } else {
 $n_max = shift @_;
 }
 if (@_ > 0){
 warn "Obsolete arguments are ignored by generate_lexicon()";
 }
 # TOKENIZE COLLECTION:
 # Transform the collection into a long sequence ($corpus).
 # Tokenize each document.
 # Store the start and end indices of each token (in %token).
 # For each token store the document id (in %ix_to_doc).
 $word_boundary = word_boundary;
 $cur_ix = 0;
 while (@$collection){
 my $docref = shift @$collection; # Document reference.
 my $id = shift @$collection; # Document ID.
 tokenize($docref, $id);
 }
 printprog("Collection tokenized.\n"); # Testing only!
 # INITIALIZE HASHES AND ARRAYS:
 # Create a map from token to next token (%next_token).
 my $nr_tokens = keys(%token);
 printprog("Documents: $nr_docs\n");
 printprog("Tokens: $nr_tokens\n");
 printprog("Maximal Nr of output N-grams: " . max_nr_ngrams() . "\n");
 initialize_next_token();
 printprog("Next-token map initialized.\n"); # Testing only!
 # Initialize the suffix array and sort it (@suff_arr).
 initialize_suffix_array();
 printprog("Suffix array initialized.\n"); # Testing only!
 # For each suffix in the suffix array ($suff_arr),
 # calculate the length of the longest common prefix
 # of the suffix and the previous suffix in the array and
 # store it in the LCP array ($lcp) which is parallel to
 # the suffix array (except that it has one more position).
 initialize_lcp();
 printprog("LCP array initialized.\n"); # Testing only!
 # Calculate classes,
 # for all class members (N-grams) that don't exceed
 # $n_max, get N-gram (start index suffix array + length),
 # TF and DF.
 my $n_grams = calc_class_freqs();
 printprog("TF and DF calculated.\n"); # Testing only!
 # Add RIDF and MI (if length > 1).
 calc_measures($n_grams);
 printprog("RIDF and MI calculated.\n"); # Testing only!
 # Give it back.
 return $n_grams;
}

 61

Calculates MI as defined in Yamamoto/Church (1998:18).
Applicable to N-grams with n > 1;
PARAMETERS:
Reference to a hash with n-gram frequencies:
xYz => TF of the N-gram xYz,
Y => TF of the N-gram y,
xY => TF of the N-gram xY (>0),
Yz => TF of the N-gram Yz (>0),
where x and z are unigrams and Y is an
N-gram of arbitrary length.
RETURNS:
Mutual information.
sub mi_yc {
 my $tf = shift @_;
 return log2($$tf{xYz()}*$$tf{Y()}/$$tf{xY()}*$$tf{Yz()});
}

Calculates RIDF of an N-gram
as it is defined in
Manning/Schütze (1999:553).
PARAMETERS:
Term frequency.
Document frequency (>0);
Total number of documents (>0).
RETURNS:
Residual inverse document frequency.
sub ridf {
 my $tf = shift @_;
 my $df = shift @_;
 my $docs = shift @_;
 my $Ddf = $docs/$df;
 my $tfD = $tf/$docs;
 my $ridf = log2($Ddf)+log2(1 -1/exp($tfD));
 return $ridf;
}

Logarithm with base 2.
PARAMETERS:
Number whose log to calculate.
RETURNS:
Logarithm of number in base 2.
sub log2 {
 my $num = shift;
 return log($num)/log(2);
}

Logarithm with base 10.
PARAMETERS:
Number whose log to calculate.
RETURNS:
Logarithm of number in base 10.
sub log10 {
 my $num = shift;
 return log($num)/log(10);
}

Calculates f-measure as suggested in Manning/Schütze (1999:269).
PARAMETERS:
Weighting factor alpha: 0<=alpha<=1,
alpha==0.5 for equal weighting,
alpha>0.5 for higher weighting of precision,
alpha<0.5 for higher weighting of recall.
Precision (>0).
Recall (>0).
RETURNS:
F-value.
PRESUPPOSES:
Both precision and recall > 0.
sub f_measure {
 my ($alpha, $prec, $rec) = @_;
 return 1/(($alpha/$prec)+((1-$alpha)/$rec));}

 62

Calculates precision as suggested in
Manning/Schütze (1999:268).
PARAMETERS:
Nr of true positives.
Nr of false positives.
RETURNS:
Precision value.
PRESUPPOSES:
Sum of parameters > 0.
sub precision {
 my ($tp, $fp) = @_;
 return $tp/($tp+$fp);
}

Calculates recall as suggested in
Manning/Schütze (1999:269).
PARAMETERS:
Nr of true positives.
Nr of false negatives.
RETURNS:
Recall value.
PRESUPPOSES:
Sum of parameters > 0.
sub recall {
 my ($tp, $fn) = @_;
 return $tp/($tp+$fn);
}

Calculates fallout as suggested in
Manning/Schütze (1999:270).
PARAMETERS:
Nr of false positives.
Nr of true negatives.
RETURNS:
Fallout value.
PRESUPPOSES:
Sum of parameters > 0.
sub fallout {
 my ($fp, $tn) = @_;
 return $fp/($fp+$tn);
}

Initializes a square link adjacency matrix
with 0-values.
PARAMETERS:
Reference to array to be initialized.
Number of documents to be linked.
PRESUPPOSES:
tokenize();
RETURNS:
Reference to empty matrix.
sub initialize_link_array {
 my $lt = shift @_;
 my $docs = shift@_;
 my @arr = ();
 $lt = \@arr;
 foreach (0..($docs-1)){
 my @table_row = ();
 foreach (0..($nr_docs-1)){
 $table_row[$_] = 0;
 }
 $$lt[$_] = \@table_row;
 }
 return $lt;
}

 63

Initializes the suffix array with tokens
(= start indices of suffixes).
Sorts the suffix array alphabetically.
PRECONDITION:
&tokenize();
sub initialize_suffix_array {
 unless (defined($corpus)){
 die "No corpus defined. Probably forgot to tokenize";
 }
 foreach (sort numeric keys(%token)){ # Sort necessary?
 push(@suff_arr, $_);
 }
 @suff_arr = sort suffix_tokens_alphabetic @suff_arr; # !!!
}

Initializes the next-token map.
PRECONDITION:
&tokenize();
sub initialize_next_token {
 my $prev; # Previous token.
 foreach (sort numeric keys(%token)){
 if (defined $prev){
 $next_token{$prev} = $_;
 }
 $prev = $_;
 }
}

Initializes the LCP-array.
PRECONDITION:
&initialize_suffix_array().
&initialize_next_token().
sub initialize_lcp {
 $lcp[0] = 0; # Always 0.
 foreach (0..($#suff_arr-1)){
 my $lcpl = lcp_length($suff_arr[$_], $suff_arr[$_+1]);
 $lcp[$_+1] = $lcpl;
 }
 $lcp[$#lcp+1] = 0; # Always 0.
}

Initializes stopword list.
PARAMETERS:
Hash with the following key (constant):
stop_list => filename of stopword list.
sub initialize_stops{
 my $params = shift @_;
 my $list = load_list($$params{stop_list()}, 0);
 @stopwords = @$list;
}

Counts the number of matching and respectively non-matching
links in the CrossRef link matrix and a comparison link matrix
(probably the original one).
PARAMETERS:
Reference to comparison link matrix.
Reference to CrossRef link matrix.
Reference to original PID-hash.
Reference to CrossRed PID-hash.
RETURNS:
Reference to a hash that contains the counts for
true and false positives and true and false negatives.
Also contains performance values: precision, recall, fallout.
sub match_links {
 my ($links_o, $links_cr, $pid_o, $pid_cr) = @_;
 my %matches = (
 true_pos() => 0, # True positives.
 true_neg() => 0, # True negatives.
 false_pos() => 0, # False positives.
 false_neg() => 0, # False negatives.
);

 64

 printprog("Matching links against gold-standard...\n");
 foreach (keys(%$pid_cr)){
 if (defined($$pid_o{$_}) && defined($$pid_cr{$_})){
 my $key_row_o = $$pid_o{$_}; # Row index in original matrix.
 my $key_row_cr = $$pid_cr{$_}; # Row index in CrossRef matrix.
 my $row_o = ${$links_o}[$key_row_o]; # Row array in original.
 my $row_cr = ${$links_cr}[$key_row_cr]; # Row array in CrossRef.
 foreach (keys(%$pid_cr)){
 if (defined($$pid_o{$_}) && defined($$pid_cr{$_})){
 my $key_col_o = $$pid_o{$_}; # Column index in original.
 my $key_col_cr = $$pid_cr{$_}; # Column index in CrossRef.
 my $val_o = ${$row_o}[$key_col_o]; # Link value in original.
 my $val_cr = ${$row_cr}[$key_col_cr]; # Link value Crossref.
 if ($val_cr > 0 && $val_o > 0){
 $matches{true_pos()}++;
 } elsif ($val_cr == 0 && $val_o == 0){
 $matches{+true_neg()}++;
 } elsif ($val_cr > 0 && $val_o == 0){
 $matches{+false_pos()}++;
 } elsif ($val_cr == 0 && $val_o > 0){
 $matches{+false_neg()}++;
 } else {
 die "Bad values!";
 }
 } else {
 warn "Cols: complementary document $_";
 next;
 }
 }
 } else {
 warn "Rows: complementary document $_";
 next;
 }
 }
 # Calculate performance measures...
 if (($matches{true_pos()} + $matches{false_pos()}) > 0){
 $matches{prec()} = precision($matches{true_pos()},

$matches{false_pos()});
 }
 if (($matches{true_pos()} + $matches{false_neg()}) > 0){
 $matches{rec()} = recall($matches{true_pos()},

$matches{false_neg()});
 }
 if (($matches{false_pos()} + $matches{true_neg()}) > 0){
 $matches{fall()} = fallout($matches{false_pos()},

$matches{true_neg()});
 }
 return \%matches;
}

Links docs that contain the same keyword N-gram.
PARAMETERS:
Start index of one keyword (N-gram) containing substring
in suffix array.
Keyword (N-gram) length;
Optional: ref to connecting N-gram to store it
(for testing and evaluation).
sub link_docs {
 my $doc1 = shift @_;
 my $length = shift @_;
 my $ngram;
 if (@_){
 $ngram = shift @_;
 }
 my $doc2;
 # Move to the FIRST occurrence of the N-gram in the
 # suffix array.
 while($lcp[$doc1] >= $length){
 $doc1--;
 }

 65

 # For each doc, create symmetric links to other
 # docs containing the same key N-Gram.
 while($lcp[$doc1+1] >= $length){
 $doc2 = $doc1;
 while($lcp[++$doc2] >= $length){
 # Link (only) distinct documents.
 unless ($ix_to_doc{$suff_arr[$doc1]} ==

$ix_to_doc{$suff_arr[$doc2]}){
${$link_table[$ix_to_doc{$suff_arr[$doc1]}]}

[$ix_to_doc{$suff_arr[$doc2]}]++;
 ${$link_table[$ix_to_doc{$suff_arr[$doc2]}]}

[$ix_to_doc{$suff_arr[$doc1]}]++;
 if (defined($ngram)){
 # Store also the linking keywords.
 my $keyw_key = $ix_to_doc{$suff_arr[$doc1]}

. sep . $ix_to_doc{$suff_arr[$doc2]};
 my $kw_list;
 if (exists($linking_keywords{$keyw_key})){
 $kw_list = $linking_keywords{$keyw_key};
 } else {
 my @arr = ();
 $kw_list = \@arr;
 }
 my $contained = 0;
 foreach (@$kw_list){
 if ($_ == $ngram){
 $contained++;
 last;
 }
 }
 unless ($contained){
 push(@$kw_list, $ngram);
 }
 $linking_keywords{$keyw_key} = $kw_list;
 $keyw_key = $ix_to_doc{$suff_arr[$doc2]}

. sep . $ix_to_doc{$suff_arr[$doc1]};
 $linking_keywords{$keyw_key} = $kw_list;
 }
 }
 }
 $doc1++;
 }
}

Iterates over an N-gram array and, for
each N-gram, adds RIDF and MI if defined
to the associated data.
PARAMETERS:
Reference to N-gram array.
RETURNS:
Reference to N-gram array augmented
with RIDF and MI data.
sub calc_measures {
 my $ngr = shift @_;
 my %ngrh = ();
 for (@$ngr){
 # Store for quick access...
 $ngrh{lc(token_text($$_{ng_start()}))

. "_" . $$_{ng_length()}} = $_;
 }
 foreach (@$ngr){
 # Get RIDF...
 $$_{ng_ridf()} = ridf($$_{ng_tf()}, $$_{ng_df()}, $nr_docs);
 # Get MI...
 if ($$_{ng_length()} >= 2){
 my %tf = ();
 my $xg;
 $tf{xYz()} = $$_{ng_tf()};

 66

 # Get TF for Y...
 if ($$_{ng_length()} > 2){
 $xg = $ngrh{lc(token_text($next_token{$$_{ng_start()}}))

. "_" . ($$_{ng_length()} - 2)};
 $tf{Y()} = $$xg{ng_tf()};
 } else {
 $tf{Y()} = keys %token;
 }
 # Get TF for xY...
 $xg = $ngrh{token_text($$_{ng_start()}) . "_"

. ($$_{ng_length()} - 1)};
 $tf{xY()} = $$xg{ng_tf()};
 # Get TF for Yz...
 $xg = $ngrh{token_text($next_token{$$_{ng_start()}})

. "_" . ($$_{ng_length()} - 1)};
 $tf{Yz()} = $$xg{ng_tf()};
 my $zeros = 0;
 # TODO:
 # There seems to be a minor bug.
 # (But it occurred only once in manymany trials.)
 # Fix it!
 foreach (keys %tf){
 if ($tf{$_} == 0){
 $zeros = 1;
 }
 }
 # Actually, there shouldn't be any 0s.
 # -> Tokenization or string matching?
 # However, since MI is a feature likely to be removed
 # from this code, I'll postpone the problem.
 # TODO: Fix this!
 unless ($zeros){
 $$_{ng_mi()} = mi_yc(\%tf);
 } else {
 $$_{ng_mi()} = no_mi_val();
 }
 }
 }
}

Calculates term frequencies
and document frequencies
for classes.
RETURNS:
Reference to a list hashes with N-gram data.
Hash keys (constants):
ng_start => Corpus start index.
ng_length => Length.
ng_tf => Term frequency (TF).
ng_df => Document frequency (DF).
PRESUPPOSES:
initialize_lcp();
sub calc_class_freqs {
 my @stack_start; # Stack of left edges.
 my @stack_rep; # Stack of representative.
 my @stack_df; # Document frequency stack.
 my @doc_link; # Most recently processed suffix at doc index.
 my $sp = 1; # Stack pointer.
 my @intervals; # Array of intervals.
 push(@stack_start, 0);
 push(@stack_rep, 0);
 push(@stack_df, 1);
 foreach (0..$#suff_arr){
 # List a trivial interval.
 # Interval data:
 # $intv_data[0]: Start index on suffix array.
 # $intv_data[1]: Last element index.
 # $intv_data[2]: LBL.
 # $intv_data[3]: SIL (undef if trivial).
 # $intv_data[4]: Term frequency.
 # $intv_data[5]: Document frequency.

 67

 my @intv_data = ($_, $_, lbl($_, $_), undef, 1, 1);
 if ($intv_data[5] >= abs_df_min){
 push(@intervals, \@intv_data);
 }
 my $doc = $ix_to_doc{$suff_arr[$_]};
 if (defined($doc_link[$doc])){
 my $beg = 0;
 my $end = $sp;
 my $x = int($end/2);
 while ($beg != $x){
 if ($doc_link[$doc] >= $stack_start[$x]){
 $beg = $x;
 } else {
 $end = $x;
 }
 $x = int(($beg + $end)/2);
 }
 $stack_df[$x] = $stack_df[$x] - 1;
 }
 $doc_link[$doc] = $_;
 my $d_freq = 1; # Document frequency.
 while ($lcp[$_+1] < $lcp[$stack_rep[$sp-1]]){
 $d_freq = $stack_df[$sp-1] + $d_freq;
 if (is_lcp_delimited($stack_start[$sp-1], $_)){
 my @intv_data2 = ($stack_start[$sp-1], # Start of interval.
 $_, # Last element of interval.
 lbl($stack_start[$sp-1], $_), # Longest bound LCP.
 sil($stack_start[$sp-1], $_), # Shortest inner LCP.
 ($_ - $stack_start[$sp-1] + 1), # Term frequency.
 $d_freq); # Document frequency.
 if ($intv_data2[5] >= abs_df_min){
 push(@intervals, \@intv_data2);
 }
 }
 $sp--;
 }
 $stack_start[$sp] = $stack_rep[$sp-1];
 $stack_rep[$sp] = $_ + 1;
 $stack_df[$sp] = $d_freq;
 $sp++;
 }
 # Get N-grams with TF and DF from classes.
 return class_n_grams(\@intervals);
}

Turns interval data into N-gram data.
PARAMETERS:
Reference to an array with interval data.
RETURNS:
Reference to a list with N-gram data.
PRESUPPOSES:
Supposed to be called by &calc_class_freqs.
sub class_n_grams {
 my $intervals = shift @_; # Interval data.
 my @n_grams; # Array of N-grams of the input class.
 foreach (@$intervals){
 my $intv_data = $_;
 my $m;
 if (defined($$intv_data[3])){
 if (defined($n_max) && ($$intv_data[3] > $n_max)){
 $m = $n_max;
 } else {
 $m = $$intv_data[3];
 }
 } else { # Very long, extends till the end of the document.
 if (defined $n_max){
 $m = suffix_length_max($suff_arr[$$intv_data[0]], $n_max);
 } else {
 $m = suffix_length($suff_arr[$$intv_data[0]]);
 }
 }

 68

 # Get class members, store data...
 while ($m > $$intv_data[2]){
 my %n_gram = (
 ng_start() => $suff_arr[$$intv_data[0]], # N-gram start corpus.
 ng_length() => $m, # N-gram length;
 ng_tf() => $$intv_data[4], # Term frequency.
 ng_df() => $$intv_data[5], # Document frequency.
);
 push(@n_grams, \%n_gram);
 $m--;
 }
 }
 return \@n_grams;
}

Checks if an interval is LCP-delimited.
sub is_lcp_delimited {
 my $ix_first = shift @_; # Start of interval on suffix array.
 my $ix_last = shift @_; # Last element of interval on suffix array.
 return (lbl($ix_first, $ix_last) < sil($ix_first, $ix_last));
}

Finds the longest bounding LCP (LBL)
of the input interval.
PARAMETERS:
Start index of interval on suffix array.
Index of last element of interval on suffix array.
RETURNS:
The larger one of the 2 bounding LCPs (its length).
PRESUPPOSES:
initialize_lcp();
sub lbl {
 my $ix_first = shift @_; # Start of interval on suffix array.
 my $ix_last = shift @_; # Last element of interval on suffix array.
 my $lcp_first = $lcp[$ix_first];
 my $lcp_after = $lcp[$ix_last+1];
 if ($lcp_after > $lcp_first){
 return $lcp_after;
 } else {
 return $lcp_first;
 }
}

Finds the shortest internal LCP (SIL)
of an interval on the suffix array.
PARAMETERS:
Start index of interval on suffix array.
Index of last element of interval on suffix array.
RETURNS:
The shortest of the interior LCPs (its length).
PRESUPPOSES:
initialize_lcp();
sub sil {
 my $ix_first = shift @_; # Start of interval on suffix array.
 my $ix_last = shift @_; # Last element of interval on suffix array.
 if ($ix_first >= $ix_last){
 return undef; # Infinity.
 }
 my $min = $lcp[$ix_last];
 $ix_first++;
 while ($ix_first < $ix_last){
 if ($lcp[$ix_first] < $min){
 $min = $lcp[$ix_first];
 }
 $ix_first++;
 }
 return $min;
}

 69

Finds an occurrence of the input words in
the corpus.
PARAMETERS:
Reference to array of words.
Reference to comparison function:
\&cmp_txt_ix to compare words to corpus content.
\&cmp_ix_ix to compare corpus content to other corpus content.
RETURNS:
Index of found match in suffix array.
-1 if the sought string is not contained.
PRESUPPOSES:
initialize_suffix_array();
sub find_string {
 my $ng = shift @_;
 my $cmp_func = shift @_;
 my $beg = 0;
 my $end = @suff_arr;
 my $mid = int($end/2);
 my $cmp_val = $cmp_func->($ng, $mid);
 while ($cmp_val != 0){
 if ($cmp_val < 0){
 $end = $mid;
 } else {
 if ($mid <= $beg){
 return no_val; # Not contained.
 }
 $beg = $mid;
 }
 $mid = $beg + int(($end - $beg)/2);
 $cmp_val = $cmp_func->($ng, $mid);
 }
 return $mid;
}

Finds an N-gram with a specific start index and a specific length in
an array of N-grams. Binary search.
PARAMETERS:
Array with references to N-grams.
Searched start index (word).
Searched length.
RETURNS:
Reference to the appropriate N-gram.
PRECONDITION:
The N-gram list actually contains the
sought N-gram.
sub find_ng_ix_l {
 my $ngr = shift @_; # Reference to N-gram array.
 my $start = shift @_; # Searched start index.
 my $l = shift @_; # Searched length.
 my $beg = 0;
 my $end = @$ngr;
 my $mid = int($end/2);
 my $gram = $$ngr[$mid];
 while (!($$gram{ng_start()} == $start && $$gram{ng_length()} == $l)){
 if($$gram{ng_start()} == $start){
 if ($$gram{ng_length()} > $l){
 $end = $mid;
 } else {
 $beg = $mid;
 }
 } else {
 if ($$gram{ng_start()} > $start){
 $end = $mid;
 } else {
 $beg = $mid;
 }
 }
 $mid = int(($beg + $end)/2);
 $gram = $$ngr[$mid];
 }
 return $gram;}

 70

Calculates the length of a suffix
from the start index in the corpus
to the end of the containing document.
PARAMETERS:
Start index of suffix in corpus.
RETURNS:
Length of suffix (bounded by end of doc).
PRESUPPOSES:
initialize_next_token();
sub suffix_length {
 my $suffix = shift @_;
 my $l = 1;
 while (!is_doc_end($suffix)){
 if (defined($next_token{$suffix})){
 $suffix = $next_token{$suffix};
 $l++;
 } else {
 last;
 }
 }
 return $l;
}

Calculates the length of a suffix
where either the document end or the
specified max value provide an upper
bound.
PARAMETERS:
Start index of suffix in corpus.
Maximal length.
RETURNS:
Length of suffix (bounded by end of doc
or maximal length).
PRESUPPOSES:
initialize_next_token();
sub suffix_length_max {
 my $suffix = shift @_;
 my $l_max = shift @_;
 my $l = 1;
 while (!is_doc_end($suffix) && $l < $l_max){
 if (defined($next_token{$suffix})){
 $suffix = $next_token{$suffix};
 $l++;
 } else {
 last;
 }
 }
 return $l;
}

Finds the longest common prefix of 2 sequences starting with the input
tokens (= start indices). Stops at document boundaries! Ignores case.
PARAMETERS:
Start token of suffix 1.
Start token of suffix 2.
RETURNS:
Length of the LCP of the input suffixes.
sub lcp_length {
 my $suff1 = shift @_; # Suffix.
 my $suff2 = shift @_; # Other suffix.
 my $l = 0; # LCP length.
 while (token_text($suff1) eq token_text($suff2)){
 if (is_doc_end($suff1) || is_doc_end($suff2)){
 last;
 }
 $l++;
 $suff1 = $next_token{$suff1};
 $suff2 = $next_token{$suff2};
 }
 return $l;
}

 71

Checks if the input word is contained
in the stopword list.
PARAMETERS:
Word to be checked (lowercase).
RETURNS:
1 if the word is a designated stopword,
0 otherwise.
sub is_stop {
 my $word = shift @_;
 unless (@stopwords > 0){
 return 0;
 }
 my $stops = grep {$word eq $_} @stopwords;
 if ($stops > 0){
 return 1;
 } else {
 return 0;
 }
}

Checks if a token is the last token of
a document (Document boundary?).
RETURNS:
TRUE iff so.
PARAMETERS:
Token to check (start ID).
PRESUPPOSES:
&tokenize().
sub is_doc_end {
 my $tok = shift @_;
 unless (defined($next_token{$tok})){
 return 1;
 }
 return ($ix_to_doc{$tok} != $ix_to_doc{$next_token{$tok}});
}

Returns the text of the token starting at
the input index.
PARAMETERS:
Token start index.
PRECONDIZION:
$tokenize();
sub token_text {
 my $tox = shift @_; # Token start index;
 return substr($corpus, $tox, ($token{$tox} - $tox));
}

Accessor for the text units of an N-gram.
Ignores document boundaries!
PARAMETERS:
Start index of N-gram in corpus.
Length of the n-gram (nr of units).
RETURNS:
Reference to an array of words that constitute
the N-gram text.
PRESUPPOSES:
initialize_next_token();
sub n_gram_text {
 my $start = shift @_; # Start index in corpus.
 my $n_val = shift @_; # N-gram length.
 unless (defined($start) && defined($n_val)){
 die "Bad arguments [$start] [$n_val]";
 }
 my @n_gram_text; # List of words to be returned.
 push(@n_gram_text, token_text($start));
 foreach (2..$n_val){
 if (defined($next_token{$start})){
 $start = $next_token{$start};
 push(@n_gram_text, token_text($start));
 } else {

 72

 warn "End of corpus: $start?";
 my $d9 = <STDIN>;
 last;
 }
 }
 return \@n_gram_text;
}

Gets a list of mere keywords
from a list of corpus-index form
N-grams.
PARAMETERS:
Hash with key:
ng_list => list of raw N-grams.
RETURNS:
Reference to a list of word-arrays.
sub ng_to_text {
 my $params = shift @_;
 my $ngs = $$params{ng_list()};
 my @wordforms = ();
 foreach (@$ngs){
 unless ($$_{ng_txt()}){
 my $txt = n_gram_text($$_{ng_start()}, $$_{ng_length()});
 push(@wordforms, $txt);
 } else {
 push(@wordforms, $$_{ng_txt});
 }
 }
 return \@wordforms;
}

This sub tokenizes the input text such that
it appends the text to a long sequence of documents
which is used by the suffix array,
it stores the inices of beginnings and ends of tokens
(relative to that long sequence) in a hash and
it creates a mapping from tokens (that means from the
beginning of a token) to the ID of the document from
which the token was retrieved.
PARAMETERS:
$text reference to the document text
$text_id document ID
sub tokenize {
 my $text = shift @_;
 my $text_id = shift @_;
 my $end_of_doc_length = length(end_of_doc); # Length of doc delimitor.
 $nr_docs++;
 while ($$text =~ s/((\w+?)$word_boundary)//){
 my $str = $1; # Token text + delimiter(s).
 my $toxt = $2; # Token text.
 unless (is_stop(lc($toxt))){
 $token{$cur_ix} = $cur_ix + length($toxt); # Token-end.
 $ix_to_doc{$cur_ix} = $text_id;
 }
 $corpus .= lc($str);
 $cur_ix += length($str);
 if ($$text eq ""){
 $corpus .= end_of_doc;
 $cur_ix += $end_of_doc_length;
 }
 }
}

 73

Compares the words in the input array
to words in the corpus.
PARAMETERS:
Reference to array of words.
Start index of comparison string in corpus.
RETURNS:
0 iff equal.
< 0 if words < corpus string.
> 0 otherwise.
PRESUPPOSES:
initialize_suffix_array();
initialize_next_token();
sub cmp_txt_ix {
 my @words = @{shift @_};
 my $ix = shift @_;
 my $length = @words;
 $ix = $suff_arr[$ix];
 my $cmp_val;
 foreach (0..$#words){
 $cmp_val = $words[$_] cmp token_text($ix);
 unless ($cmp_val == 0){
 return $cmp_val;
 }
 $ix = $next_token{$ix};
 }
 return $cmp_val;
}

Compares the words in the corpus
specified by index in the input array
to other words in the corpus.
PARAMETERS:
Reference to N-gram.
Start index of comparison string in corpus.
RETURNS:
0 iff equal.
< 0 if words < corpus string.
> 0 otherwise.
PRESUPPOSES:
initialize_suffix_array();
initialize_next_token();
sub cmp_ix_ix {
 my $ng = shift @_;
 my $corp_ix = shift@_;
 $corp_ix = $suff_arr[$corp_ix];
 my $ng_ix = $$ng{ng_start()};
 my $cmp_val;
 for (1..$$ng{ng_length()}){
 $cmp_val = token_text($ng_ix) cmp token_text($corp_ix);
 unless($cmp_val == 0){
 return $cmp_val;
 } else {
 $corp_ix = $next_token{$corp_ix};
 $ng_ix = $next_token{$ng_ix};
 }
 }
 return $cmp_val;
}

Sorts links in descending order by the number
of shared terms.
sub links_by_nr_shared_keywords {
 return $$b[0] <=> $$a[0];
}

Sort N-grams by RIDF (descending).
sub n_grams_by_ridf {
 $$b{ng_length()} <=> $$a{ng_length()};
}

 74

Sort N-grams by length.
sub n_grams_length {
 $$a{ng_length()} <=> $$b{ng_length()};
}

Numeric sort sequence for N-gram references.
sub n_grams_numeric {
 $$a{ng_start()} <=> $$b{ng_start()};
}

Numeric sort sequence.
sub numeric {
 $a <=> $b;
}

Sorts alphabetically but descending.
sub alpha_descending {
 $b cmp $a;
}

Compares the substrings beginning at the
indices handed over.
Case is ignored!
PRECONDIZION:
tokenize();
sub suffixes_alphabetic {
 substr($corpus, $a) cmp substr($corpus, $b);
}

Compares the token-substrings beginning at the
indices handed over.
Case is ignored!
Since there are no 2 substrings
extending to corpus end with the
same length in the corpus, if one substring
ends, it is the shorter one and comes first.
PRECONDIZION:
tokenize();
initialize_next_token();
sub suffix_tokens_alphabetic {
 my $first = $a;
 my $sec = $b;
 if ($first == $sec){
 return 0;
 } else {
 my $cmp_val = token_text($first) cmp token_text($sec);
 while ($cmp_val == 0){
 if (defined($next_token{$first})){
 $first = $next_token{$first};
 } else {
 return -1;
 }
 if (defined($next_token{$sec})){
 $sec = $next_token{$sec};
 } else {
 return 1;
 }
 $cmp_val = token_text($first) cmp token_text($sec);
 }
 return $cmp_val;
 }
}

 75

Accessor for the number of tokens per document.
Needed for testing purposes.
RETURNS:
Reference to array with
number of tokens per doc (index = doc ID).
PRESUPPOSES:
tokenize();
sub tok_per_doc {
 my @d = ();
 push(@d, 0);
 for (sort numeric keys(%ix_to_doc)){
 unless ($#d == $ix_to_doc{$_}){
 push(@d, 0);
 }
 $d[$#d]++;
 }
 return \@d;
}

Calculates the maximum number of N-grams
from token data.
Since here, N-grams are
supposed to terminate at document ends,
The total number of N-Grams is the sum
over the number of substrings for each
document.
RETURNS:
Maximal number of countable substrings
in the corpus.
PRESUPPOSES:
tokenize();
sub max_nr_ngrams {
 my $tok_doc = tok_per_doc();
 my $sum = 0;
 for (@$tok_doc){
 my $nr_substrings = $_*($_+1)/2;
 $sum += $nr_substrings;
 }
 return $sum;
}

Turns a matrix representing a directed graph
into a matrix representing an undirected graph
such that it creates a backlink for each
link in the matrix.
PARAMETERS:
Reference to adjacency matrix array.
sub symmetrize {
 my $matrix = shift;
 foreach (0..$#{$matrix}){
 my $row = $_;
 foreach(0..$#{$$matrix[$row]}){
 my $col = $_;
 if (${$$matrix[$row]}[$col] > 0){
 ${$$matrix[$col]}[$row]++;
 }
 }
 }
}

Creates a simple keyword list from N-gram data.
PARAMETERS:
Hashwith the following key:
ng_list => reference to N-gram array.
RETURNS:
Reference to list of key N-gram hashes.
sub filter_keywords {
 my $params = shift @_;
 my $ngrams = $$params{ng_list()};
 my @keywords = ();

 76

 foreach (@$ngrams){
 if (defined($$params{mi_max()}) && ($$_{ng_mi()}

> $$params{mi_max()})){
 next;
 }
 if (defined($$params{df_min()}) && ($$_{ng_df()}

< $$params{df_min()})){
 next;
 }
 if (defined($$params{ridf_min()}) && ($$_{ng_ridf()}

< $$params{ridf_min()})){
 next;
 }
 if (defined($$params{length_min()})){
 if (defined($$_{ng_length()}) && $$_{ng_length()}

< $$params{length_min()}){
 next;
 } elsif (defined($$_{ng_txt()})){
 my $length = @{$$_{ng_txt()}};
 if ($length < $$params{length_min()}){
 next;
 }
 }
 }
 push(@keywords, $_);
 }
 return \@keywords;
}

Pretty printer for the suffix
array ($suff_arr).
PRESUPPOSES:
&initialize_suffix_array().
sub print_sa_pretty {
 my $l = shift @_; # Number of tokens to print.
 foreach (0..$#suff_arr){
 my $sux = $suff_arr[$_]; # Token start index.
 print "[$_][$sux]:[";
 print token_text($sux);
 foreach (2..$l){
 unless (defined($next_token{$sux})){
 next;
 }
 print " ";
 $sux = $next_token{$sux};
 print token_text($sux);
 }
 print "]\n";
 }
}

Pretty printer for token data.
PARAMETERS:
Name of sort order:
"numeric" (for order as in corpus) or
"suffix_tokens_alphabetic".
PRESUPPOSES:
&tokenize().
sub print_token_data_pretty {
 my $order = shift @_; # Sort order.
 print "[TOKEN][BEGIN][END][DOC ID]\n";
 foreach (sort $order keys(%token)){
 print "[" . token_text($_) . "]"; # Token.
 print "[$_]"; # Token start.
 print "[$token{$_}]"; # Token end.
 print "[$ix_to_doc{$_}]\n"; # Document ID.
 }
}

 77

Prints the LCP-data pretty. Well...
at least a bit less ugly.
PRECONDITION:
&initialize_lcp();
sub print_lcp_data_pretty {
 for (0..$#suff_arr){
 my $suff = $suff_arr[$_];
 my $lcpl = $lcp[$_];
 print "[$_]: $suff_arr[$_]: ";
 for (1..$lcpl){
 print token_text($suff) . " ";
 $suff = $next_token{$suff};
 }
 print "| ";
 print token_text($suff) . " ";
 if (defined($next_token{$suff})){
 print token_text($next_token{$suff}) . "... ";
 } else {
 print ". ";
 }
 print "$lcpl\n";
 }
}

Prints LCP-delimited intervals (LDIs)
on the suffix array pretty.
sub print_ldis_pretty {
 my $ix_first = shift @_; # Start of interval on suffix array.
 my $ix_rep = shift @_; # Index of a representative.
 my $ix_last = $ix_rep; # Index of last element.
 print_interval($ix_rep, $ix_rep);
 while (($lcp[$ix_rep] <= $lcp[$ix_last+1])&&(($ix_last+1)<@suff_arr)){
 $ix_last = print_ldis_pretty($ix_rep, ($ix_last+1));
 if (is_lcp_delimited($ix_first, $ix_last)){
 print_interval($ix_first, $ix_last);
 }
 }
 return $ix_last;
}

Prints an interval on the suffix array, pretty.
For each item: LCP and following word + length of LCP.
PARAMETERS:
When called externally:
(0,0).
When called recursively:
Start index of interval on suffix array.
Index of last element of interval on suffix array.
PRESUPPOSES:
initialize_lcp();
sub print_interval {
 my $ix_first = shift @_; # Start of interval on suffix array.
 my $ix_last = shift @_; # Last element of interval on suffix array.
 for ($ix_first..$ix_last){
 print "[$_]: $suff_arr[$_]: ";
 print_n_gram($suff_arr[$_], ($lcp[$_]+1));
 print " | $lcp[$_]\n";
 }
 print "------------------------\n";
}

 78

Prints the link array (almost pretty).
PARAMETERS:
Column separating string (f.e. ';' or ' ').
PRESUPPOSES:
initialize_link_array();
link_docs();
sub print_link_array {
 my $sep = shift @_;
 foreach (0..$#link_table){
 my $table_row = $link_table[$_];
 foreach(@$table_row){
 print $_ . $sep;
 }
 if ($_ < $#link_table){
 print "\n";
 }
 }
}

Prints page identification data
(the mapping from filename to doc ID
in %fn_to_doc).
PARAMETERS:
Column separating string.
PRESUPPOSES:
load_collection();
sub print_pid_data {
 my $sep = shift @_;
 foreach(keys(%fn_to_doc)){
 print "$fn_to_doc{$_}sep_$sep\n";
 }
}

Prints an N-Gram.
PARAMETERS:
Start index on suffix array.
Length.
PRESUPPOSES:
initialize_next_token();
sub print_n_gram {
 my $start = shift @_; # start of the n-gram.
 my $length = shift @_; # Length;
 print token_text($start);
 for (2..$length){
 if (defined($next_token{$start})){
 $start = $next_token{$start};
 print " " . token_text($start);
 } else {
 last;
 }
 }
}

Prints progress info to STDOUT if allowed.
PARAMETERS:
String to be printed.
SIDE-EFFECT:
May select STDOUT.
sub printprog {
 my $info = shift @_;
 if ($print_info){
 select STDOUT;
 print $info;
 }
}

 79

Creates an evaluation sheet for manual evaluation
of false positives in CSV-format.
PARAMETERS:
Hash with the following keys (constants):
cr_matrix => reference to link matrix,
cr_pid_map = reference to PID map,
o_matrix => reference to comparison link matrix (optional),
p_link_pid => reference to comparison PID (obligatory if o_matrix),
eval_sheet => output file for evaluation sheet.
SIDE-EFFECT:
Selects STDOUT.
sub create_eval_sheet {
 my $params = shift @_;
 my $cr_links = $$params{cr_matrix()};
 my $o_links = $$params{o_matrix()};
 my $o_pid = $$params{o_pid_map()};
 my $cr_pid = $$params{cr_pid_map()};
 my $evalfile = $$params{eval_sheet()};
 my %links_by_name;
 foreach(keys(%$cr_pid)){
 my $cr_row_ix = $$cr_pid{$_};
 my $o_row_ix = $$o_pid{$_};
 my $cr_row = $$cr_links[$cr_row_ix];
 my $o_row = $$o_links[$o_row_ix];
 my %link_to = ();
 foreach(keys(%$cr_pid)){
 my $val;
 my $cr_col_ix = $$cr_pid{$_};
 my $o_col_ix = $$o_pid{$_};
 if ($$cr_row[$cr_col_ix] > 0 && $$o_row[$o_col_ix] > 0){
 $val = 'TP'; # Good link, true positive.
 } elsif ($$cr_row[$cr_col_ix] > 0 && $$o_row[$o_col_ix] == 0) {
 $val = ''; # False positive? To be evaluated manually.
 } elsif ($$cr_row[$cr_col_ix] == 0 && $$o_row[$o_col_ix] > 0){
 $val = 'FN'; # False negative :(.
 } else {
 $val = 'TN'; # True negative :).
 }
 $link_to{$_} = $val;

 }
 $links_by_name{$_} = \%link_to;
 }
 open EVAL, ">$evalfile" or die "Couldn't write evaluation sheet";
 select EVAL;
 print 'X' . sep;
 my @sorted_arts = sort keys(%links_by_name);
 foreach (@sorted_arts) {
 print $_ . sep;
 }
 print "\n";
 foreach (@sorted_arts){
 my $art = $_;
 print $art . sep;
 my $outlinks = $links_by_name{$art};
 foreach(@sorted_arts){
 print $$outlinks{$_} . sep;
 }
 print "\n";
 }
 close EVAL;
 select STDOUT;
 printprog("Evaluation sheet created.\n");
}

 80

Creates linked HTML documents.
PARAMETERS:
Hash with the following data:
page_dir => collection directory,
html_dir => output directory,
cr_matrix => reference to link matrix,
cr_pid_map = reference to PID map,
o_matrix => reference to comparison link matrix (optional),
p_link_pid => reference to comparison PID (obligatory if o_matrix),
linkey => reference to map of linking keywords (optional).
SIDE-EFFECTS:
May select STDOUT;
sub create_html {
 my $params = shift @_;
 my $indir = $$params{page_dir()}; # Collection directory.
 my $outdir = $$params{html_dir()}; # Output directory.
 my $links = $$params{cr_matrix()}; # CrossRef links.
 my $pid = $$params{cr_pid_map()}; # CrossRef PID-data.
 my $control_links = $$params{o_matrix()}; # Comparison links.
 my $control_pid = $$params{o_pid_map()}; # Comparison PID.
 my $lk = $$params{linkey()}; # Linking keywords.
 my %lk_docs = ();
 printprog("Creating HTML output...\n");
 unless ($outdir =~ m/.+\/\z/){
 $outdir .= '/';
 }
 unless ($indir =~ m/.+\/\z/){
 $indir .= '/';
 }
 foreach (keys(%$pid)){
 my @outgoing = ();
 my @outgoing_orig = ();
 my %linking_kw = ();
 my %orig_match = ();
 my $c_page = $_; # Current page.
 my $c_doc_id = $$pid{$c_page}; # Current document ID.
 my $out_links = $$links[$c_doc_id]; # List of outgoing links.
 my $c_orig_id; # Comparison document ID.
 my $orig_out_links; # List of outgoing links in comparison matrix.
 if (defined($control_links)){
 my $c_orig_id = $$control_pid{$c_page};
 $orig_out_links = $$control_links[$c_orig_id];
 }
 foreach (keys(%$pid)){
 my $tar_page = $_; # Target page.
 my $tar_doc_id = $$pid{$tar_page}; # Target document ID.
 my $tar_orig_id; # Target doc id in control matrix.
 if (defined($control_links)){
 $tar_orig_id = $$control_pid{$tar_page};
 }
 if (defined($control_links) && $$orig_out_links[$tar_orig_id]>0){
 my $linked_file = $tar_page . html_suffix;
 push(@outgoing_orig, $linked_file);
 }
 if ($$out_links[$tar_doc_id] > 0){
 my $linked_file = $tar_page . html_suffix;
 my @dat = ($$out_links[$tar_doc_id], $linked_file);
 push(@outgoing,\@dat);
 if (defined($control_links)

&& $$orig_out_links[$tar_orig_id] > 0){
 $orig_match{$linked_file} = 1; # True positive.
 } elsif (defined($control_links)) {
 $orig_match{$linked_file} = 0; # False positive.
 }
 if ($lk){
 my $keyw_key = $c_doc_id . sep . $tar_doc_id;
 $linking_kw{$linked_file} = $$lk{$keyw_key};
 }
 }
 }

 81

 @outgoing = sort links_by_nr_shared_keywords @outgoing;
 my $txtf = $indir . $c_page . file_suff;
 my $txt = read_txt_file($txtf);
 my $htmlf = $outdir . $c_page . html_suffix;
 open HTMLF, ">$htmlf" or die "Couldn't write $htmlf";
 select HTMLF;
 print '<html>' . "\n";
 print '<head>' . "\n";
 print '<title>' . "\n";
 print $c_page;
 print '</title>' . "\n";
 print '</head>' . "\n";
 print '<body>' . "\n";
 print '<p>' . "\n";
 print $$txt;
 print '</p>' . "\n";
 print '<h5>' . "\n";
 print 'CrossRef links:';
 print '</h5>' . "\n";
 print '' . "\n";
 foreach (@outgoing){
 print '' . "\n";
 my $target = $$_[1];
 if (defined($control_links)){
 print "$orig_match{$$_[1]}: ";
 }
 print ''

. $target . '
' . "\n";
 my $kws = $linking_kw{$target};
 if (defined($kws)){
 foreach(@$kws){
 my $ng = $_;
 my $keyw;
 if (defined($$ng{ng_txt()})){
 $keyw = $$ng{ng_txt()};
 } else {
 $keyw = n_gram_text($$ng{ng_start()}, $$ng{ng_length()});
 }
 my $keyw_file = key_html_prefix;
 my $keyw_string = '';
 foreach (@$keyw){
 $keyw_string .= "$_ ";
 $keyw_file .= $_. "_";
 }
 $keyw_file .= html_suffix;
 if (exists($lk_docs{$keyw_file})){
 my $doclist = $lk_docs{$keyw_file};
 unless((grep {$target eq $_} @$doclist) > 0){
 push(@$doclist, $target);
 }
 } else {
 my @doclist = ($target);
 $lk_docs{$keyw_file} = \@doclist;
 }
 print " [";
 print ''

. $keyw_string . '';
 print "]";
 }
 }
 print '
' . "\n";
 }
 print '' . "\n";
 if (defined($control_links)){
 print '<h5> Original links: </h5>' . "\n";
 print '' . "\n";
 foreach (@outgoing_orig){
 print '' . "\n";
 if (defined($orig_match{$_})){
 print "$orig_match{$_}: ";
 } else {

 82

 print '0: ';
 }
 print '' . $_ . '' . "\n";
 print '' . "\n";
 }
 print '' . "\n";
 }
 print '</body>' . "\n";
 print '</html>' . "\n";
 close HTMLF;
 }
 foreach (keys(%lk_docs)){
 printprog("Writing $_\n");
 my $keyfilename = $outdir . $_;
 open KEYWHTML, ">$keyfilename" or die "Couldn't write $_";
 select KEYWHTML;
 print '<html><head><title>Keyword: '

. $_ . '</title></head><body>' . "\n";
 my $doclist = $lk_docs{$_};
 my @out_doclist = sort @$doclist;
 print '' . "\n";
 foreach (@out_doclist){
 print '' . $_ . '' . "\n";
 }
 print '' . "\n";
 print '</body></html>';
 close KEYWHTML;
 }
 select STDOUT;
 printprog("HTML created.\n");
}

Writes results from counting corpus data to a frequency lexicon file.
The resulting file has a headline.
Coulmns: | TF | DF | RIDF | MI | Text... |
PARAMETERS:
Filename for lexicon file.
Reference to N-gram list.
sub create_freq_lex_file {
 my $lexfile = shift @_;
 my $ngrams = shift @_;
 open LEXFILE, ">$lexfile" or die "Couldn't open lexicon file.";
 select LEXFILE;
 print ng_tf . sep . ng_df . sep . ng_ridf . sep

. ng_mi . sep . ng_txt . "\n";
 foreach (@$ngrams){
 unless(defined($$_{ng_start()})){
 die "No start";
 }
 unless($$_{ng_length()}){
 die "No length";
 }
 print $$_{ng_tf()} . sep . $$_{ng_df()} . sep

. $$_{ng_ridf()} . sep;
 if ($$_{ng_mi()}){
 print $$_{ng_mi()} . sep;
 } else {
 print no_mi_val . sep;
 }
 my $ng_txt = n_gram_text($$_{ng_start()}, $$_{ng_length()});
 unless(@$ng_txt){
 die "No text returned for "

. $$_{ng_start()} . " with " . $$_{ng_length()};
 }
 foreach (@$ng_txt){
 print $_ . sep;
 }
 print "\n";
 }
 close LEXFILE;
 select STDOUT;}

 83

Filters the found N-grams according to a given
criterion. Creates a filtered output file.
PARAMETERS:
Filename for raw N-grams.
Output filename.
Threshold data: a hash ref:
meas => relevant measure,
thresh => threshold.
SIDE-EFFECT:
Selects STDOUT.
sub filter_results {
 my $infile = shift @_;
 my $outfile = shift @_;
 my $threshold = shift @_;
 open LEX, "<$infile" or die "Couldn't open $infile";
 open OUTF, ">$outfile" or die "Couldn't open $outfile";
 select OUTF;
 my @keys;
 my $measure;
 my $thresh = $$threshold{thresh()};
 while (<LEX>){
 my $line = $_;
 chomp($line);
 unless (@keys > 0){
 @keys = split(sep, $line);
 foreach (0..$#keys){
 print $keys[$_];
 print sep;
 if ($keys[$_] eq $$threshold{meas()}){
 $measure = $_;
 }
 }
 print "\n";
 } else {
 my @data = split(sep, $line);
 if ($data[$measure] >= $thresh){
 print "$line\n";
 }
 }
 }
 close LEX;
 close OUTF;
 select STDOUT;
}

Removes frequent markup from all files
in the input directory.
PARAMETERS:
Input directory (should contain only text files).
File with a list of markup chunks.
SIDE-EFFECT:
Selects STDOUT.
sub remove_markup {
 my ($indir, $m_file) = @_;
 my @markup = ();
 open MARKUP, $m_file or die "Couldn't open markup file $m_file";
 while (<MARKUP>){
 chomp($_);
 my $line = $_;
 push(@markup, $line);
 }
 close MARKUP;
 opendir INDIR, $indir or die "Couldn't open directory $indir";
 foreach(readdir INDIR){
 unless ($_ eq '.' || $_ eq '..'){
 my $file = $indir . "/" . $_;
 print "Cleaning $file\n";
 my $txt = read_txt_file($file);
 foreach (@markup) {
 $$txt =~ s/$_//ig;
 write_txt_file($txt, $file);}}}}

 84

Writes a given keyword-list to file.
PARAMETERS:
Hash with the following keys (constant):
keywords => Keyword-list,
SIDE-EFFECT:
Selects STDOUT.
sub write_keywords_to_file {
 my $params = shift @_;
 my $outf = $$params{keyw_file()};
 my $keywords = $$params{keywords()};
 open OUTF, ">$outf" or die "Couldn't create $outf";
 select OUTF;
 foreach (@$keywords){
 my @words = @$_;
 foreach (@words){
 print $_ . sep;
 }
 print "\n";
 }
 select STDOUT;
 close OUTF;
}

Appends the input string to the input file.
PARAMETERS:
Output filename.
String to be appended.
SIDE-EFFECT:
Selects STDOUT.
sub append_to_file {
 my ($file, $line) = @_;
 open OUTF, ">>$file" or die "Couldn't open $file";
 select OUTF;
 print $line;
 close OUTF;
 select STDOUT;
}

Writes text to file.
PARAMETERS:
Ref to text to be written.
Output file name.
SIDE-EFFECT:
Selects STDOUT.
sub write_txt_file {
 my ($txt, $outfile) = @_;
 open OUTF, ">$outfile" or die "Couldn't write to $outfile";
 select OUTF;
 print $$txt;
 select STDOUT;
 close OUTF;
}

Writes hash data to file.
PARAMETERS:
Reference to hash to be stored.
Output filename.
SIDE-EFFECT:
Selects STDOUT.
sub write_hash_info {
 my $params = shift @_;
 my $conff = shift @_;
 open HASH, ">$conff" or die "Couldn't open $conff";
 select HASH;
 foreach(keys(%$params)){
 my $key = $_;
 unless(ref($$params{$_})){
 print $key . sep . $$params{$_} . "\n";
 }
 }
 close HASH; select STDOUT;}

 85

Stores a user defined configuration.
PARAMETERS:
Ref to hash with user settings.
Ref to hash with setting descriptions.
SIDE EFFECT:
May select STDOUT.
sub store_user_config {
 my $params = shift @_; # Parameter settings.
 my $param_desc = shift @_; # Parameter descriptions.
 my $settings; # Config file.
 print "Save as:\n";
 $settings = <STDIN>;
 eval {
 open CONFF, ">$settings";
 select CONFF;
 foreach (keys %$params){
 print comment() . ' ' . $$param_desc{$_};
 print $_ . sep() . $$params{$_} . "\n\n";
 }
 close CONFF;
 select STDOUT;
 print "Config file created: $settings\n";
 };
 if ($@){
 print "Couldn't write configuration file.\nTry again? {1,0}\n";
 my $tryag = <STDIN>;
 if ($tryag == 1){
 print "Save as:\n";
 $settings = <STDIN>;
 store_user_config($params, $param_desc, $settings);
 }
 }
}

Reads text from file.
PARAMETERS:
Input filename.
RETURNS:
Reference to text.
PRECONDITION:
It's an existing textfile.
sub read_txt_file {
 my $inf = shift @_;
 open INF, "<$inf" or die "Couldn't open $inf";
 my $txt;
 while (<INF>){
 $txt .= $_;
 }
 close INF;
 return \$txt;
}

Loads the relevant page identification data
(namely a mapping from filename to document ID)
into a hash.
PARAMETERS:
Filename of PID-file.
sub load_pid_data {
 my $pidfile = shift @_;
 my %pid = ();
 open PID, "<$pidfile" or die "Couldn't open $pidfile";
 while (<PID>){
 my $line = $_;
 chomp($line);
 my @dat = split(sep, $line);
 # Map filename to adjacency matrix doc-ID.
 $pid{$dat[pid_fn_index]} = $dat[pid_lm_index];
 }
 close PID;
 return \%pid;
}

 86

Loads an adjacency matrix modelling
a link structure into an array.
PARAMETERS:
Filename of linkfile to read.
RETURNS:
Reference to link table.
sub load_link_matrix {
 my $linkfile = shift @_;
 my @adjmat = ();
 open LINKF, "<$linkfile" or die "Couldn't open $linkfile";
 while (<LINKF>){
 chomp($_);
 my @line = split(sep, $_);
 push(@adjmat, \@line);
 }
 close LINKF;
 return \@adjmat;
}

Loads configuration data from file.
The file should have the following format:
key1;value1
key2;value2
...
It may contain comments introduced by #.
PARAMETERS:
Filename of config file.
RETURNS:
Reference to parameter hash.
sub load_config {
 my $conff = shift @_;
 my %params = ();
 my $com = comment;
 open CONFIG, "<$conff" or die "Couldn't open $conff";
 while (<CONFIG>){
 chomp($_);
 if ($_ eq ''){
 next;
 }
 my $data = $_;
 if ($data =~ m/^$com.*/){
 # It's a comment.
 next;
 } elsif ($data =~ m/([^$com\s]+)\s*#.*/){
 # Ends with a comment.
 $data = $1;
 }
 my @dat = split(sep, $data);
 unless(@dat == 2) {
 die "Couldn't interpret line $_ in $conff";
 }
 $params{@dat[0]} = $dat[1];
 }
 close CONFIG;
 return \%params;
}

 87

Loads the collection to be processed from
files. Assigns each document a unique numeric
ID that funktions as the index of the document
in the adjacency link matrix.
PARAMETERS:
A hash with the following content (use constant as keys):
page_dir => directory with collection (text-only).
limit => maximal N-gram length.
lex_file => output file for raw lexicon.
map_fn => recall filename?
RETURNS:
Reference to collection array.
sub load_collection {
 my $params = shift @_;
 opendir DATDIR, $$params{page_dir()}

or die "Couldn't open page directory";
 my @collection = ();
 my $count = 0;
 foreach (readdir DATDIR){
 my $f = $_;
 chomp($f);
 if ($f eq '.' || $f eq '..'){
 next;
 }
 printprog("Reading $f\n");
 my $txt = read_txt_file($$params{page_dir()} . "/" . $f);
 push(@collection, $txt);
 push(@collection, $count);
 $f =~ s/\..*//g; # Remove filename extension if any.
 $fn_to_doc{$f} = $count;
 $count++;
 }
 return \@collection;
}

Loads raw N-gram data from file.
PARAMETERS:
Hash with the following keys:
lex_file => Input lexicon file.
sub load_ngram_data {
 my $params = shift @_;
 my @ng_data = ();
 open LEX, $$params{lex_file()}

or die "Couldn't open frequency lexicon";
 my $headl = readline(LEX);
 chomp($headl);
 my @headl = split(sep, $headl);
 while(<LEX>){
 chomp($_);
 my @words = ();
 my @line = split(sep, $_);
 my %ng = ();
 foreach(0..$#headl-1){
 $ng{$headl[$_]} = $line[$_];
 }
 foreach($#headl..$#line){
 push(@words, $line[$_]);
 }
 $ng{$headl[$#headl]} = \@words;
 push(@ng_data, \%ng);
 }
 close LEX;
 return \@ng_data;
}

 88

Loads the content of the specified column
from the input file (where columns must be)
separated by ';' into an array.
PARAMETERS:
Filename of list to load.
Index of column (0 for first).
RETURNS:
Reference to loaded list.
sub load_list {
 my $filename = shift @_;
 my $col = shift @_;
 my @list;
 open LIST, "<$filename" or die "Couldn't open $filename";
 while (<LIST>){
 chomp($_);
 my @dat = split(sep, $_);
 push(@list, $dat[$col]);
 }
 close LIST;
 return \@list;
}

Prompts for user defined configuration settings.
Optionally saves settings to file.
The procedure is rather tyring and typos, etc. might
cause many errors. So, if possible, edit the config
file directly.
sub prompt_for_settings {
 my %params = (); # Parameter hash.
 my %param_desc = (
 alpha() => "Weighting factor for f-measure:\n",
 df_min() => "Parameter: Minimum document frequency:\n",
 html_dir() => "Output: HTML directory (should EXIST):\n",
 keyw_file => "Output: Key n-gram file (only key n-grams)\n",
 length_min() => "Parameter: Minimum key n-gram length:\n",
 lex_file() => "Output: N-gram lexicon (complete, with details):\n",
 limit() => "Parameter: Maximum n-gram length:\n",
 link_cr => "Output: CrossRef link matrix:\n",
 link_o => "Input: Gold-standard link matrix:\n",
 page_dir() => "Input: Collection directory:\n",
 param_result_file => "Output: results of parameter testing:\n",
 pid_o() => "Input: Gold-standard index->page map:\n",
 print_prog() => "Parameter: Print progress info? {1,0}\n",
 ridf_min() => "Parameter: RIDF threshold:\n",
 score_file() => "Output: Eval of linkS against gold-standard:\n",
 stop_list() => "Input: Stopword list:\n",
 store_lk() => "Parameter: Include linking n-grams in HTML? {1,0}\n",

);
 print "\nPlease specify parameters.\n\n";
 foreach (keys %param_desc){
 print $param_desc{$_};
 $params{$_} = <STDIN>;
 }
 print "\nStore settings? {1,0}\n";
 my $storit = <STDIN>;
 if ($storit == 1){
 store_user_config(\%params, \%param_desc);
 }
 return \%params;
}

 89

__END__

=head1 NAME

CrossRef - Code to perform the experiment described in the essay
'Linking Documents by Distinctive Phrases'.

=head1 SYNOPSIS

Don't use any of the alternatives below in sequence, since this may
corrupt your results!

 use CrossRef;

 # This will run a demo. Demo prompts for user input!
 my $config =

'/your/absolute/path/to/a/configuration/file/configuration.txt';
 CrossRef::demo($config);

 #---

 use CrossRef;

 # This will link your collection, create HTML output and write
 # results of evaluation against a gold-standard to file.
 my $config =

'/your/absolute/path/to/a/configuration/file/configuration.txt';
 CrossRef::link_and_match_directly($config);

 #---

 use CrossRef;

 # This will link your collection and create HTML output.
 my $config =

'/your/absolute/path/to/a/configuration/file/configuration.txt';
 CrossRef::link_directly($config);

 #---

 use CrossRef;

 # This will test linking results against a gold-standard for several
 # values of RIDF.
 my $config =

'/your/absolute/path/to/a/configuration/file/configuration.txt';
 CrossRef::test_parameters($config);

The most convenient way to use the C<CrossRef.pm> module is by means of
a configuration file in the following format:

 # TEMPLATE FOR A CrossRef CONFIGURATION FILE
 # ===
 #
 # FORMAT:
 # --------
 #
 # Each setting is represented as a line beginning with a hash key
 # followed by a semicolon followed by the actual setting.
 # Comments are marked with a '#', the rest of the line is ignored.
 # You may disable optional settings by commenting out or
 # removing the respecting line.
 # Distinct functions may require distinct parameters.
 #

 90

 # INPUT FILES:
 # -------------

 # Directory containing the collection to be linked
 # (obligatory, no slash at the end).
 page_dir;/your/path/to/collections/collection/texts

 # Gold-standard link adjacency matrix. Necessary for matching.
 links_orig;/your/path/to/collections/collection/data/links_orig.txt

 # Gold-standard filename->doc-ID mapping.
 # Maps the array index used internally to the filename of the text.
 # Necessary for matching.
 pid_orig;/your/path/to/collections/collection/data/pid_orig.txt

 # Stopword file. Optional.
 stop_list;/your/path/to/lists/stops.csv

 # OUTPUT FILES:
 #---------------

 # This file will contain a list of mere key N-grams.
 # Optional.
 keyword_file;/your/path/to/output/keyword_list

 # Mapping from file name to the doc-ID used CrossRef internally.
 # Optional.
 pid_cr;/your/path/to/output/pid_cr

 # CrossRef-generated link matrix.
 # Optional.
 linkfile;/your/path/to/output/cr_link_matrix

 # Results of comparing CrossRef link matrix to gold-standard.
 # Optional.
 score_file;/your/path/to/output/scores

 # Frequency lexicon with TF, DF, RIDF and MI.
 # Optional.
 lexfile;/your/path/to/output/lexicon

 # Output file for results of parameter optimization.
 # Nexessary for parameter testing.
 param_res;/your/path/to/output/parameter_test

 # Output directory for HTML-files. Should EXIST.
 # Necessary for HTML creation.
 html;/your/path/to/output/html

 # Output directory for evaluation sheet.
 # Optional
 eval_sheet;/your/path/to/output/eval_sheet

 # PARAMETERS:
 # ------------

 # RIDF threshold. Optional but recommended!
 ridf_min;1.5 # Default.

 # Minimum DF. Optional.
 df_min;2 # Default.

 # Minimum key n-gram length. Optional.
 length_min;2 # Default.

 # Maximum key N-gram length.
 # Optional but highly recommended!
 lim;5 # Default.

 91

 # Store linking keywords? If true, the linking keywords will be
included in the HTML-output. Obsolete for parameter testing.

 store_lk;1 # Default.

 # Weighting factor for f-measure (0.5 for equal weigthing of precision

and recall).
 alpha;0.5 # Default.

 # Print progress info?
 print_prog;1

You can also run the demo from the command-line:
C<perl CrossRef.pm
/your/absolute/path/to/a/configuration/file/configuration.txt>

=head1 DESCRIPTION

This module has been created to perform an experiment in the field of
automatic document linking.

For this purpose, the module contains subroutines to:
tokenize an input collection,
calculate I<collection frequency> (called I<term frequency> in
Yamamoto/Church (1998)) and I<document frequency>
for n-grams from an input text collection,
calculate I<residual inverse document frequency> (I<RIDF>) and I<mutual
information> (I<MI>) for the n-grams,
link the input collection,
create C<HTML> output and
match the resulting link-structure against a gold-standard.

In particular, the linking strategy employed here is to link two
documents if they contain at least one
common keyword, where keywords are determined by an I<RIDF>-value equal
to or above a given threshold.

This module presupposes that you have a text collection available in
file format and that
you have a gold-standard link structure in the form of an adjacency
matrix.

=head2 EXPORT

Nothing to
export. This module is too specialized (and too premature) to be
included in a distribution.

=head1 SEE ALSO

For a nice tool to retrieve Wikipedia articles (as a text collection)
see
L<http://search.cpan.org/~bricas/WWW-Wikipedia-
1.92/lib/WWW/Wikipedia.pm>.

=head2 LITERATURE

JOHANNSEN, Heike (2007). 'Linking Documents by Distinctive Phrases'.
Soon to appear at L<http://www.sfs.uni-tuebingen.de/iscl/English/Thesen-
en.shtml>.

MANNING, Christopher D. / SCHE<Uuml>TZE, Hinrich (1999). I<Foundations
of Statistical Natural Language Processing>.
Cambridge, Massachusetts / London, England: MIT Press.

YAMAMOTO, Mikio / CHURCH, Kenneth Ward (1998).
'Using Suffix Arrays to Compute Term Frequency and Document Frequency
for All Substrings in a Corpus'.
In: I<Proceedings of ACL Workshop on Very Large Corpora>. P. 28-37.
Montreal.
L<http://acl.ldc.upenn.edu/J/J01/J01-1001.pdf> (03/2007).

 92

=head1 AUTHOR

Heike Johannsen, H_Johannsen@web.de

=head1 COPYRIGHT AND LICENSE

Copyright (C) 2007 by H. Johannsen

This module is free software; you can redistribute it and/or modify
it under the same terms as Perl itself, either Perl version 5.8.8 or,
at your option, any later version of Perl 5 you may have available.

=cut

 93

	Table of Contents
	Table of Appendices
	Table of Figures
	Table of Tables
	1. Introduction
	1.1. Topic
	1.2. Outline
	1.3. Motivation
	2. Theoretical Foundations and Related Work
	2.1. Keyword-Extraction
	2.1.1. Standard Conception of Distinctive Phrases
	2.1.2. Term-Weighting
	2.1.2.1. Term Frequency (TF), Collection Frequency (CF) and Document Frequency (DF)
	2.1.2.2. IDF
	2.1.2.3. TF.IDF
	2.1.2.4. RIDF
	2.1.2.5. MI
	2.1.2.6. Other term-weighting approaches
	2.2. Methods in the field of automatic hyperlink generation
	2.3. Structural Characteristics of Hyperlink Networks
	2.4. Established Evaluation Methodology
	3. An Experiment
	3.1. Aim and Expectations
	3.2. Design Decisions and Setup
	3.2.1. The Corpus
	3.2.2. Selection of Distinctive Phrases
	3.2.3. Advantages of RIDF
	3.2.4. Implementation Details
	3.2.5. Evaluation
	3.3. Results and Discussion
	4. Conclusions
	References
	Bibliography
	Examples
	Example Texts
	Example Websites
	Perl Textbooks
	Further Weblinks
	Appendices
	A. Citation Conventions Notation and Abbreviations
	A.a Citation conventions
	A.b Notation and abbreviations
	B. Probabilistic Motivation for IDF
	C. Allan's Hyperlink Taxonomy
	D. Graph-Related Terminology
	E. Experimental Results
	E.a Results of comparisons to Wikipedia Link Structures
	E.b Top Key N-Grams
	F. Perl Code: CrossRef.pm

