
Preliminary draft (c)
2007 Cambridge UP

DRAFT! © June 2, 2007 Cambridge University Press. Feedback welcome. 323

19 Web search basics

Thus far in this book, we have considered search engines for content whose
authorship is of relatively high quality; furthermore, the users of such en-
gines tended to be relatively skilled users. In this and the following two
chapters, we consider web search engines. Sections 19.1–19.3 provide some
background and history to help the reader appreciate the forces that conspire
to make the web chaotic, fast-changing and (from the standpoint of informa-
tion retrieval) very different from the “traditional” collections studied thus
far in this book. Sections 19.5 and 19.6 deal with estimating the number of
documents indexed by web search engines, and the elimination of duplicate
documents in web indexes, respectively. These two sections serve as back-
ground material for the following two chapters.

19.1 Background and history

The web is unprecedented in many ways: unprecedented in scale, unprece-
dented in the almost-complete lack of coordination in its creation, and un-
precedented in the diversity of backgrounds and motives of its participants.
Each of these contributes to making web search different – and generally far
harder – than searching “traditional” documents.

The invention of hypertext, envisioned by Vannevar Bush in the 1940’s and
realized in working systems in the 1970’s, significantly precedes the forma-
tion of the World Wide Web (which we will simply refer to as the web), in
the 1990’s. Web usage has shown tremendous growth to the point where it
now claims a good fraction of humanity as participants, by relying on a sim-
ple, open client-server design: (1) the server communicates with the client
via a protocol (the http or hypertext transfer protocol) that is lightweight andHTTP

simple, asynchronously carrying a variety of payloads (text, images and –
over time – richer media such as audio and video files) encoded in a simple
markup language called html (for hypertext markup language); (2) the clientHTML

– generally a browser, an application within a graphical user environment –



Preliminary draft (c)
2007 Cambridge UP

324 19 Web search basics

can ignore what it does not understand. Each of these seemingly innocu-
ous features has contributed enormously to the growth of the web, so it is
worthwhile to examine them further.

The basic operation is as follows: a client (such as a browser) sends an http
request to a web server. The browser specifies a URL (for Universal Resource Lo-URL

cator) such ashttp://www.stanford.edu/home/atoz/contact.html.
In this example URL, the string http refers to the protocol to be used for
transmitting the data. The string www.stanford.edu is known as the do-
main (sometimes the top-level domain) and specifies the root of a hierarchy
of web pages (typically mirroring a filesystem hierarchy underlying the web
server). In this example, /home/atoz/contact.html is a path in this hier-
archy with a file contact.html that contains the information to be returned
by the web server at www.stanford.edu in response to this request. The
html-encoded file contact.html holds the hyperlinks and the content (in
this instance, contact information for Stanford University), as well as for-
matting rules for rendering this content in a browser. Such an http request
thus allows us to fetch the content of a page, something that will prove to be
useful to us for crawling and indexing documents (Chapter 20).

The designers of the first browsers made it easy to view the html markup
tags on the content of a URL. This simple convenience allowed new users
to create their own html content without extensive training and experience;
rather, they learned from example content that they liked. As they did so, a
second feature of browsers supported the rapid proliferation of web content
creation and usage: browsers ignored what they did not understand. This
did not, as one might fear, lead to the creation of numerous incompatible di-
alects of html. What it did promote was amateur content creators who could
freely experiment with and learn from their newly created web pages with-
out fear that a simple syntax error would “bring the system down”. Publish-
ing on the web became a mass activity that was not limited to a few trained
programmers, but rather open to tens and eventually hundreds of millions of
individuals. For most users and for most information needs, the web quickly
became the best way to supply and consume information on everything from
rare ailments to subway schedules.

The mass publishing of information on the web is essentially useless un-
less this wealth of information can be discovered and consumed by other
users. Early attempts at making web information “discoverable” fell into two
broad categories: (1) full-text index search engines such as Altavista, Excite
and Infoseek and (2) taxonomies populated with web pages in categories,
such as Yahoo! The former presented the user with a keyword search in-
terface supported by inverted indexes and ranking mechanisms building on
those introduced in earlier chapters. The latter allowed the user to browse
through a hierarchical tree of category labels. While this is at first blush a
convenient and intuitive metaphor for finding web pages, it has a number



Preliminary draft (c)
2007 Cambridge UP

19.2 Web characteristics 325

of drawbacks: first, classifying web pages into taxonomy tree nodes is for
the most part a manual editorial process, which is difficult to scale with the
size of the web. Arguably, we only need to have “high-quality” web pages
in the taxonomy, with only the best web pages for each category. However,
just discovering these and classifying them accurately and consistently into
the taxonomy entails significant human effort. Further, in order for a user
to effectively discover web pages classified into the nodes of the taxonomy
tree, the user’s idea of what sub-tree(s) to seek for a particular topic should
match that of the editors performing the classification. This quickly becomes
challenging as the size of the taxonomy grows; the Yahoo! taxonomy tree
surpassed 1000 distinct nodes fairly early on. Given these challenges, the
popularity of taxonomies declined over time, even though variants (such as
About.com and the Open Directory Project) sprang up with subject-matter
experts collecting and annotating web pages for each category.

The first generation of web search engines transported classical search
techniques such as those in the preceding chapters to the web domain, focus-
ing on the challenge of scale. The earliest web search engines had to contend
with indexes containing millions of documents, which was a few orders of
magnitude larger than any prior information retrieval system in the public
domain. Indexing, query serving and ranking at this scale required the har-
nessing together of tens of machines to create highly available systems, again
at scales not witnessed hitherto in a consumer-facing search application. The
first generation of web search engines was largely successfully at solving
these challenges while continually indexing a significant fraction of the web,
all the while serving queries with sub-second response times. However, the
quality and relevance of web search results left much to be desired owing to
the idiosyncracies of content creation on the web. This necessitated the in-
vention of new ranking and spam-fighting techniques in order to ensure the
quality of the search results.

19.2 Web characteristics

The essential feature that led to the explosive growth of the web – decentral-
ized content publishing with essentially no central control of authorship –
turned out to be the biggest challenge for web search engines in their quest to
index and retrieve this content. Web page authors created content in dozens
of (natural) languages and thousands of dialects, thus demanding many dif-
ferent forms of stemming and other linguistic operations. Because publish-
ing was now open to tens of millions, web pages exhibited heterogeneity at a
daunting scale, in many crucial aspects. First, content-creation was no longer
the privy of editorially-trained writers; while this represented a tremendous
democratization of content creation, it also resulted in a tremendous varia-



Preliminary draft (c)
2007 Cambridge UP

326 19 Web search basics

tion in grammar and style (and in many cases, no recognizable grammar or
style). Indeed, web publishing in a sense unleashed the best and worst of
desktop publishing on a planetary scale, so that pages quickly became rid-
dled with wild variations in colors, fonts and structure. Some web pages,
including the professionally created home pages of some large corporations,
consisted entirely of images (which, when clicked, led to richer textual con-
tent) – and therefore, no indexable text.

What about the substance of the text in web pages? The democratization
of content creation on the web meant a new level of granularity in opinion on
virtually any subject. This meant that the web contained truth, lies, contra-
dictions and suppositions on a grand scale. This gives rise to the question:
which web pages does one trust? In a simplistic approach, one might argue
that some publishers are trustworthy and others not – begging the question
of how a search engine is to assign such a measure of trust to each website
or web page. In Chapter 21 we will examine approaches to understanding
this question. More subtly, there may be no universal, user-independent no-
tion of trust; a web page whose contents are trustworthy to one user may
not be so to another. In traditional (non-web) publishing this is not an issue:
users self-select sources they find trustworthy. Thus one reader may find
the reporting of The New York Times to be reliable, while another may prefer
The Wall Street Journal. But when a search engine is the only viable means
for a user to become aware of (let alone select) most content, this challenge
becomes significant.

While the question “how big is the web?” has no easy answer (see Sec-
tion 19.5), the question “how many web pages are in a search engine’s index”
is more precise, although, even this question has issues. By the end of 1995,
Altavista reported that it had crawled and indexed approximately 30 mil-
lion static web pages. Static web pages are those whose content does not varySTATIC WEB PAGES

from one request for that page to the next. For this purpose, a professor who
manually updates his home page every week is considered to have a static
web page, but an airport’s flight status page is considered to be dynamic.
Dynamic pages are typically mechanically generated and one sign of such a
page is that the URL has the character "?" in it. Since the number of static web
pages was believed to be doubling every few months in 1995, engines such as
Altavista had to constantly add hardware and bandwidth for crawling and
indexing web pages.

19.2.1 The web graph

We can view the static web consisting of static html pages together with the
hyperlinks between them as a directed graph in which each web page is a
node and each hyperlink a directed edge.

Figure 19.1 shows two nodes A and B from the web graph, each corre-



Preliminary draft (c)
2007 Cambridge UP

19.2 Web characteristics 327

&%
'$

&%
'$

-
anchor

◮ Figure 19.1 Two nodes of the web graph joined by a link.

sponding to a web page, with a hyperlink from A to B. We refer to the set of
all such nodes and directed edges as the web graph. Figure 19.1 also shows
that (as is the case with most links on web pages) there is some text surround-
ing the origin of the hyperlink on page A. This text is generally encapsulated
in the href tag that encodes the hyperlink in the html code of page A, and
is referred to as anchor text. As one might suspect, this directed graph isANCHOR TEXT

not strongly connected: there are pairs of pages such that one cannot proceed
from one page of the pair to the other by following hyperlinks. We refer to
the hyperlinks into a page as in-links and those out of a page as out-links. TheIN-LINKS

OUT-LINKS number of in-links to a page (also known as its in-degree) has averaged from
roughly 8 to 15, in a range of studies. We similarly define the out-degree of
a web page to be the number of links out of it. There is ample evidence that
these links are not randomly distributed; for one thing, the distribution of the
number of links into a web page does not follow the Poisson distribution one
would expect if every web page were to pick the destinations of its links uni-
formly at random. Rather, this distribution is widely reported to be a powerPOWER LAW

law, in which the total number of web pages with in-degree i is proportional

to 1/iα; the value of α typically reported by studies is 2.1.1

Exercise 19.1

If the number of pages with in-degree i is proportional to 1/i2.1, write down the
probability that a randomly chosen web page has in-degree 1.

Exercise 19.2

If the number of pages with in-degree i is proportional to 1/i2.1, what is the average
in-degree of a web page?

Exercise 19.3

If the number of pages with in-degree i is proportional to 1/i2.1, then as the largest
in-degree goes to infinity, does the fraction of pages with in-degree i grow, stay the

1. Cf. Zipf’s law of the distribution of words in text in Chapter 5 (page 79), which is a power
law with α = 1.



Preliminary draft (c)
2007 Cambridge UP

328 19 Web search basics

same, or diminish? How would your answer change for values of the exponent other
than 2.1?

Exercise 19.4

The average in-degree of all nodes in a snapshot of the web graph is 9. What can we
say about the average out-degree of all nodes in this snapshot?

19.2.2 Spam

Early in the history of web search, it became clear that web search engines
were an important means for connecting advertisers to prospective buyers.
A user searching for maui golf real estate is not merely seeking news or enter-
tainment on the subject of housing on golf courses on the island of Maui, but
instead likely to be seeking to purchase such a property. Sellers of such prop-
erty and their agents, therefore, have a strong incentive to create web pages
that rank highly on such a query. In a search engine whose scoring was based
on term frequencies, a web page with numerous repetitions of maui golf real
estate would rank highly. This led to the first generation of spam, which (inSPAM

the context of web search) is the manipulation of web page content for the
purpose of appearing high up in search results for selected keywords. To
avoid irritating users with these repetitions, sophisticated spammers resorted
to such tricks as rendering these repeated terms in the same color as the back-
ground. Despite these words being consequently invisible to the human user,
a search engine indexer would parse the invisible words out of the html rep-
resentation of the web page and index these words as being present in the
page.

At its root, spam stems from the heterogeneity of motives in content cre-
ation on the web. In particular, many web content creators have commercial
motives and therefore stand to gain from manipulating search engine results.
You might argue that this is no different from a company that uses large fonts
to list its phone numbers in the yellow pages; but this generally costs the
company more and is thus a fairer mechanism. A more apt analogy, per-
haps, is the use of company names beginning with a long string of A’s to be
listed early in a yellow pages category. In fact, the yellow pages’ model of
companies paying for larger/darker fonts has been replicated in web search:
in many engines, it is possible to pay to have one’s web page included in the
engine’s search index – a model known as paid inclusion. Different enginesPAID INCLUSION

have different policies on whether to allow paid inclusion, and whether such
a payment has any effect on ranking in search results.

Search engines soon became sophisticated enough in their spam detection
to screen out an unusually large number of repetitions of particular key-
words. Spammers responded with a richer set of spam techniques, the best
known of which we now describe. The first of these techniques is cloaking:
the spammer’s web server returns different pages depending on whether



Preliminary draft (c)
2007 Cambridge UP

19.3 Advertising as the economic model 329

the http request comes from a web search engine’s crawler, or from a hu-
man user’s browser. The former causes the web page to be indexed by the
search engine under misleading keywords. When the user searches for these
keywords and elects to view the page, he receives a web page that has alto-
gether different content than that indexed by the engine. Such deception of
search indexers is unknown in the traditional world of information retrieval;
it stems from the fact that the web is partly collaborative but also partly com-
petitive.

A doorway page contains text and meta-data carefully chosen to rank highly
on selected search keywords. When a browser requests the doorway page, it
is redirected to a page containing content of a more commercial nature. More
complex spamming techniques involve manipulation of the meta-data re-
lated to a page including (for reasons we will see in Chapter 21) the links into
a web page. Given that spamming is inherently an economically motivated
activity, there has sprung around it an industry of Search Engine Optimizers,SEARCH ENGINE

OPTIMIZERS or SEO’s to provide consultancy services for clients who seek to have their
web pages rank highly on selected keywords. Web search engines frown on
this business of attempting to decipher and adapt to their proprietary rank-
ing techniques and indeed announce policies on forms of SEO behavior they
do not tolerate (and have been known to shut down search requests from
certain SEO’s for violation of these). Inevitably, the parrying between such
SEO’s (who gradually infer features of each web engine’s ranking methods)
and the web search engines (who adapt in response) is an unending struggle;
indeed, the research sub-area of adversarial information retrieval has sprungADVERSARIAL

INFORMATION

RETRIEVAL
up around this battle. One potent technique for addressing spammers that
fabricate the textual content of their web pages is the exploitation of the link
structure of the web – a technique known as link analysis. The first web search
engine to apply link analysis (to be detailed in Chapter 21) was Google, al-
though all web search engines currently make use of it (and correspondingly,
spammers now invest considerable effort in subverting it).

19.3 Advertising as the economic model

Early in the history of the web, companies used graphical banner advertise-
ments on web pages at popular websites (news and entertainment sites such
as MSN, America Online, Yahoo! and CNN). The primary purpose of these
advertisements was branding: to convey to the viewer a positive feeling about
the brand of the company placing the advertisement. Typically these adver-
tisements were priced on a cost per mil (CPM) basis: the cost to the companyCPM

of having its banner advertisement displayed 1000 times. Some websites
struck contracts with their advertisers in which an advertisement was priced
not by the number of times it is displayed (also known as impressions), but



Preliminary draft (c)
2007 Cambridge UP

330 19 Web search basics

rather by the number of times it was clicked on by the user. This pricing model
is known as the cost per click (CPC) model. In such cases, clicking on the ad-CPC

vertisement leads the user to a web page set up by the advertiser, where the
user is induced to make a purchase. Here the goal of the advertisement is
not so much brand promotion as to induce a transaction. This distinction
between brand and transaction-oriented advertising was already widely rec-
ognized in the context of conventional media such as broadcast and print.
The interactivity of the web allowed the CPC billing model – clicks could be
metered and monitored by the website and billed to the advertiser.

However, the user at the news/entertainment website is typically not there
with an intent to make a purchase, as much as to consume news and enter-
tainment. How could a company better target its audience? Companies do
in fact achieve some measure of focus by carefully selecting the websites on
which they advertised. For instance, a company selling golf clubs might wish
to advertise on a web page containing sports news and even better on a web
pages that discuss golf news, but perhaps not on a web page announcing
recent breakthroughs on biochemistry.

Demographic focusing of web advertising was already in use in the late
1990’s, when web search engines were growing in usage (and therefore con-
stantly in need of capital expenditures for hardware and bandwidth). The
challenge for web search companies was to create a revenue stream that out-
weighed these expenditures. The pioneer in this direction was a company
named Goto, which changed its name to Overture prior to eventual acquisi-
tion by Yahoo! Goto was not, in the traditional sense, a search engine; rather,
for every query term q it accepted bids from companies who wanted their
web page shown on the query q. In response to the query q, Goto would re-
turn the pages of all advertisers who bid for q, ordered by their bids. Further-
more, when the user clicked on one of the returned results, the corresponding
advertiser would make a payment to Goto (in the initial implementation, this
payment equalled the advertiser’s bid for q).

Several aspects of Goto’s model are worth highlighting. First, a user typing
the query q into Goto’s search interface was actively expressing an interest
and intent related to the query q. For instance, a user typing golf clubs is more
likely to be imminently purchasing a set than one who is simply browsing
news on golf. Second, Goto only got compensated when a user actually ex-
pressed interest in an advertisement – as evinced by the user clicking the ad-
vertisement. Taken together, these created a powerful mechanism by which
to connect advertisers to consumers, quickly raising the annual revenues of
Goto/Overture into hundreds of millions of dollars. This style of search en-
gine came to be known variously as sponsored search or paid placement.SPONSORED SEARCH

PAID PLACEMENT Given these two kinds of search engines – the “pure” engines such as
Google and Altavista, versus the sponsored search engines – the logical next
step was to combine them into a single user experience. Current search en-



Preliminary draft (c)
2007 Cambridge UP

19.4 The search user experience 331

gines follow precisely this model: they provide pure search results (gener-
ally known as algorithmic search results) as the primary response to a user’sALGORITHMIC SEARCH

search, together with sponsored search results displayed separately and dis-
tinctively to the right of the algorithmic results. Retrieving sponsored search
results and ranking them in response to a query has now become consid-
erably more sophisticated than the simple Goto scheme; the process entails
a blending of ideas from information retrieval and microeconomics, and is
beyond the scope of this book. From the standpoint of advertisers, under-
standing how search engines do this ranking and how to allocate marketing
campaign budgets to different sponsored search engines has become a pro-
fession known as search engine marketing (SEM).SEARCH ENGINE

MARKETING The inherently economic motives underlying sponsored search give rise
to attempts by some participants to subvert the system to their advantage.
This can take many forms, one of which is known as click spam. There isCLICK SPAM

currently no universally accepted definition of click spam. It refers (as the
name suggests) to clicks on sponsored search results that are not from bona
fide search users. For instance, a devious advertiser may attempt to exhaust
the advertising budget of a competitor by clicking repeatedly (through the
use of a robotic click generator) on that competitor’s sponsored search ad-
vertisements. Search engines face the challenge of discerning which of the
clicks they observe are part of a pattern of click spam, to avoid charging their
advertiser clients for such clicks.

Exercise 19.5

The Goto method ranked advertisements matching a query by bid: the highest-bidding
advertiser got the top position, the second-highest the next, and so on. What can go
wrong with this when the highest-bidding advertiser places an advertisement that is
irrelevant to the query? Why might an advertiser with an irrelevant advertisement
bid high in this manner?

Exercise 19.6

Suppose that, in addition to bids, we had for each advertiser their click-through rate:
the ratio of the historical number of times users click on their advertisement to the
number of times the advertisement was shown. Suggest a modification of the Goto
scheme that exploits this data to avoid the problem in Exercise 19.5 above.

19.4 The search user experience

It is crucial that we understand the users of web search as well. This is
again a significant change from traditional information retrieval, where users
were typically professionals with at least some training in the art of phrasing
queries over a well-authored corpus whose style and structure they under-
stood well. In contrast, web search users tend to not know (or care) about
the heterogeneity of web content, the syntax of query languages and the art
of phrasing queries; indeed, a mainstream tool (as web search has come to
become) should not place such onerous demands on billions of people. A



Preliminary draft (c)
2007 Cambridge UP

332 19 Web search basics

range of studies has concluded that the average number of keywords in a
web search is somewhere between 2 and 3. Syntax operators (Boolean con-
nectives, wildcards, etc.) are seldom used, again a result of the composition
of the audience – “normal” people, not information scientists.

It is clear that the more user traffic a web search engine can attract, the
more revenue it stands to earn from sponsored search. How do search en-
gines differentiate themselves and grow their traffic? Here Google identified
two principles that helped it grow at the expense of its competitors: (1) a
focus on relevance, specifically precision rather than recall in the first few re-
sults; (2) a user experience that is lightweight, meaning that both the search
query page and the search results page are uncluttered and almost entirely
textual, with very few graphical elements. The effect of the first was simply
to save users time in locating the information they sought; more on this be-
low. The effect of the second is to provide a user experience that is extremely
responsive, or at any rate not bottlenecked by the time to load the search
query or results page.

19.4.1 User query needs

There appear to be three broad categories into which common web search
queries can be grouped: (i) informational, (ii) navigational and (iii) transac-
tional. We now explain these categories; it should be clear that some queries
will fall in more than one of these categories, while others will fall outside
them.

Informational queries seek general information on a broad topic, such asINFORMATIONAL

QUERIES leukemia or Provence. There is typically not a single web page that con-
tains all the information sought; indeed, users with informational queries
typically try to assimilate information from multiple web pages.

Navigational queries seek the website or home page of a single entity that theNAVIGATIONAL

QUERIES user has in mind, say Lufthansa airlines. In such cases, the user’s expectation
is that the very first search result should be the home page of Lufthansa.

A transactional query is one that is a prelude to the user performing a trans-TRANSACTIONAL

QUERY action on the web – such as purchasing a product, downloading a file or
making a reservation. In such cases, the engine should return results listing
services that provide form interfaces for such transactions.

Discerning which of these categories a query falls into can be challeng-
ing. The category not only governs the algorithmic search results, but the
suitability of the query for sponsored search results (since the query may re-
veal an intent to purchase). For navigational queries, some have argued that
the engine should return only a single result or even the target web page
directly. Nevertheless, web search engines have historically engaged in a
battle of bragging rights over which one indexes more web pages. Does the
user really care? Perhaps not, but the media does highlight measurements



Preliminary draft (c)
2007 Cambridge UP

19.5 Index size and estimation 333

(often statistically indefensible) of the sizes of various search engines. Users
are influenced by these reports and thus, search engines do have to pay at-
tention to how their index sizes compare to competitors’. For informational
(and to a lesser extent, transactional) queries, the user does care about the
comprehensiveness of the engine.

19.5 Index size and estimation

To a first approximation, comprehensiveness grows with index size, although
it does matter which specific pages an engine indexes – some pages are more
informative than others. It is also difficult to reason about the fraction of the
web indexed by an engine, because there is an infinite number of dynamic
web pages; for instance, http://www.yahoo.com/any_string returns a
valid html page rather than an error, politely informing the user that there
is no such page at Yahoo! Such a "soft 404 error" is only one example of
many ways in which web servers can generate an infinite number of valid
web pages. Indeed, some of these are malicious spider traps devised to
cause a search engine’s crawler (the component that systematically fetches
web pages for the engine’s index, described in Chapter 20) to stay within a
spammer’s website and index many pages from that site.

We could ask the following better-defined question: given two search en-
gines, what are the relative sizes of their indexes? Even this question turns
out to be imprecise, because:

1. In response to queries a search engine can return web pages whose con-
tents it has not (fully or even partially) indexed. For one thing, engines
generally index only the first few thousand words in a web page. In some
cases, an engine is aware of a page p that is linked to by pages it has in-
dexed, but has not indexed p itself. As we will see in Chapter 21, it is still
possible to meaningfully return p in search results.

2. Search engines generally organize their indexes in various tiers and parti-
tions, not all of which are examined on every search. For instance, a web
page deep inside a website may be indexed but not retrieved on general
web searches; it is however retrieved as a result on a search specific to that
website.

Thus, search engine indexes include multiple classes of indexed pages, so
that there is no single measure of index size. These issues notwithstanding,
a number of techniques have been devised for crude estimates of the ratio
of the index sizes of two search engines, E1 and E2. The basic hypothesis
underlying these techniques is that each engine indexes a fraction of the web
chosen independently and uniformly at random. This involves some ques-
tionable assumptions: first, that there is a finite size for the web from which



Preliminary draft (c)
2007 Cambridge UP

334 19 Web search basics

each engine chooses a subset, and second, that each engine chooses an inde-
pendent, uniformly chosen subset. As will be clear from the discussion of
crawling in Chapter 20, this is far from true. However, if we begin with these
assumptions, then we can invoke a classical estimation technique known as
the capture-recapture method.CAPTURE-RECAPTURE

METHOD Suppose that we could pick a random page from the index of E1 and test
whether it is in E2’s index and symmetrically, test whether a random page
from E2 is in E1. These experiments give us fractions x and y such that our
estimate is that a fraction x of the pages in E1 are in E2, while a fraction y of
the pages in E2 are in E1. Then, letting |Ei| denote the size of the index of
engine Ei, we have

x|E1| ≈ y|E2|,

from which we have the form we will use

|E1|

|E2|
≈

y

x
.(19.1)

If our assumption about E1 and E2 being independent and uniform random
subsets of the web were true, and our sampling process unbiased, then Equa-
tion (19.1) should give us an unbiased estimator for |E1|/|E2|. We distinguish
between two scenarios here. Either the measurement is performed by some-
one with access to the index of one of the engines (say an employee of E1),
or the measurement is performed by an independent party with no access to
the innards of either engine. In the former case, we can simply pick a ran-
dom document from one index. The latter case is more challenging; we begin
with the sampling process by which we pick a random page from one engine
from outside the engine, then describe the checking process by which we verify
whether the random page is present in the other engine.

To implement the sampling phase, we might generate a random page from
the entire (idealized, finite) web and test it for presence in each engine. Un-
fortunately, picking a web page uniformly at random is a difficult problem.
We briefly outline several attempts to achieve such a sample, pointing out
the biases inherent to each; following this we describe in some detail one
technique that much research has built on.

1. Random searches: Begin with a search log of web searches; send a random
search from this log to E1 and a random page from the results. Since such
logs are not widely available outside a search engine, one implementation
is to trap all search queries going out of a work group (say scientists in a
research center) that agrees to have all its searches logged. This approach
has a number of issues, including the bias from the types of searches made
public by the work group. Further, a random document from the results
of such a random search to E1 is not the same as a random document from
E1.



Preliminary draft (c)
2007 Cambridge UP

19.5 Index size and estimation 335

2. Random IP addresses: A second approach is to generate random IP ad-
dresses and send a request to a web server residing at the random ad-
dress, collecting all pages at that server. The biases here include the fact
that many hosts might share one IP (due to a practice known as virtual
hosting) or not accept http requests from the host where the experiment
is conducted. Further, this technique is more likely to hit one of the many
sites with few pages, skewing the document probabilities; we may be able
to correct for this effect if we understand the distribution of pages on a
website.

3. Random walks: If the web graph were a strongly connected directed graph,
we could run a random walk starting at an arbitrary web page. This
walk would converge to a steady state distribution (see Chapter 21, Sec-
tion 21.2.1 for more background material on this), from which we could in
principle pick a web page with a fixed probability. This method, too has
a number of biases. First, the web is not strongly connected so that, even
with various corrective rules, it is difficult to argue that we can reach a
steady state distribution starting from any page. Second, the time it takes
for the random walk to settle into this steady state is unknown and could
exceed the length of the experiment.

Clearly each of these approaches is far from perfect. We now describe a
fourth sampling approach, random queries. This approach is noteworthy for
two reasons: it has been successfully built upon for a series of increasingly
refined estimates, and conversely it has turned out to be the approach most
likely to be misinterpreted and carelessly implemented, leading to mislead-
ing measurements. The idea is to pick a page (almost) uniformly at random
from an engine’s index by posing a random query to it. It should be clear that
picking a set of random terms from (say) Webster’s dictionary is not a good
way of implementing this idea. For one thing, not all dictionary terms oc-
cur equally often, so this approach will not result in documents being chosen
uniformly at random from the engine. For another, there are a great many
terms in the web corpus that do not occur in a standard dictionary such as
Webster’s. To address the problem of lexicon terms not in a standard dic-
tionary, we begin by amassing a sample web lexicon. This could be done by
crawling a limited portion of the web, or by crawling a manually-assembled
representative subset of the web such as Yahoo! (as was done in the earliest
experiments with this method). Consider a conjunctive query with two or
more randomly chosen words from this lexicon.

The probability of the event that a page is in the results set of such a ran-
dom conjunctive query induces a distribution over all pages in the union of
the two engines. Then, we estimate |E1|/|E2| by taking the ratio of the corre-
sponding induced distributions. We can improve the estimate by repeating
the experiment a large number of times.



Preliminary draft (c)
2007 Cambridge UP

336 19 Web search basics

Operationally, we proceed as follows: we use a random conjunctive query
on E1 and pick from the top 100 returned results a page p at random. We
then test p for presence in E2 by choosing 6-8 low-frequency terms in p and
using them in a conjunctive query for E2. Both the sampling process and the
testing process have a number of issues.

1. Our sample is biased towards longer documents.

2. Picking from the top 100 results of E1 induces a bias from the ranking
algorithm of E1. Picking from all the results of E1 makes the experiment
slower. This is particularly so because most web search engines put up
defenses against excessive robotic querying.

3. During the checking phase, a number of additional biases are introduced:
for instance, E2 may not handle 8-word conjunctive queries properly.

4. Either E1 or E2 may refuse to respond to the test queries, treating them as
robotic spam rather than as bona fide queries.

5. There could be operational problems like connection time-outs.

A sequence of research has built on this basic paradigm to eliminate some of
these issues; there is no perfect solution yet, but the level of sophistication in
statistics for understanding the biases is increasing.

Exercise 19.7

Two web search engines A and B each generate a large number of pages uniformly at
random from their indexes. 30% of A’s pages are present in B’s index, while 50% of
B’s pages are present in A’s index. What is the number of pages in A’s index relative
to B’s?

19.6 Near-duplicates and shingling

One aspect we have ignored in the discussion of index size in Section 19.6 is
duplication: the web contains multiple copies of the same content. By some
estimates, as many as 40% of the pages on the web are duplicates of other
pages. Many of these are legitimate copies; for instance, certain information
repositories are mirrored simply to provide redundancy and access reliabil-
ity. Search engines try to avoid indexing multiple copies of the same content,
to keep down storage and processing overheads.

The simplest approach to detecting duplicates is to compute, for each web
page, a fingerprint that is a succinct (say 64-bit) digest of the sequence of char-
acters on that page. Then, whenever the fingerprints of two web pages are
equal, we test whether the pages themselves are equal and if so declare one
of them to be a duplicate copy of the other. This simplistic approach fails



Preliminary draft (c)
2007 Cambridge UP

19.6 Near-duplicates and shingling 337

to capture a crucial and widespread phenomenon on the web: near duplica-
tion. In many cases, the contents of one web page are identical to those of
another except for a few characters – say, a notation showing the date and
time at which the page was last modified. Even in such cases, we want to
be able to declare the two pages to be close enough that we only index one
copy. Short of exhaustively comparing all pairs of web pages, an infeasible
task at the scale of billions of pages, how can we detect and filter out such
near duplicates?

Exercise 19.8

Web search engines A and B each crawl a random subset of the same size of the web.
Some of the pages crawled are duplicates – exact textual copies of each other at dif-
ferent URLs. Assume that duplicates are distributed uniformly amongst the pages
crawled by A and B. Further, assume that a duplicate is a page that has exactly two
copies – no pages have more than two copies. A indexes pages without duplicate
elimination whereas B indexes only one copy of each duplicate page. The two ran-
dom subsets have the same size before duplicate elimination. If, 45% of A’s indexed
URLs are present in B’s index, while 50% of B’s indexed URLs are present in A’s
index, what fraction of the web consists of pages that do not have a duplicate?

19.6.1 Shingling

We now describe a solution to the problem of detecting near-duplicate web
pages. The answer lies in a technique known as shingling. Given a positiveSHINGLING

integer k and a sequence of terms in a document d, define the k-shingles of
d to be the set of all consecutive sequences of k terms in d. As an example,
consider the following text: a rose is a rose is a rose. The 4-shingles for this text
(k = 4 is a typical value used in the detection of near-duplicate web pages)
are a rose is a, rose is a rose and is a rose is. The first two of these shingles
each occur twice in the text. Intuitively, two documents are near duplicates if
the sets of shingles generated from them are nearly the same. We now make
this intuition precise, then develop a method for efficiently computing and
comparing the sets of shingles for all web pages.

Let S(dj) denote the set of shingles of document dj. Recall the Jaccard coef-
ficient (Chapter 3, page 47), which measures the degree of overlap between
the sets S(d1) and S(d2) as |S(d1) ∩ S(d2)|/|S(d1) ∪ S(d2)|; denote this by
J(S(d1), S(d2)). Our test for near duplication between d1 and d2 is to com-
pute this Jaccard coefficient; if it exceeds a preset threshold (say, 0.9), we
declare them near duplicates and eliminate one from indexing. However,
this does not appear to have simplified matters: we still have to compute
Jaccard coefficients pairwise.

To avoid this, we use a form of hashing. First, we map every shingle into
a hash value over a large space, say 64 bits. For j = 1, 2, let H(dj) be the
corresponding set of 64-bit hash values derived from S(dj). We now invoke
the following trick to detect document pairs whose sets H() have large Jac-
card overlaps. Let π be a random permutation from the 64-bit integers to the



Preliminary draft (c)
2007 Cambridge UP

338 19 Web search basics

-

-

-

-

-

-

-

-

0

0

0

0

0

0

0

0

264 − 1

264 − 1

264 − 1

264 − 1

264 − 1

264 − 1

264 − 1

264 − 1

Document 1 Document 2

H(d1) H(d2)
u

1
u

1
u

2
u

2
u

3
u

3
u

4
u

4

H(d1) and Π(d1) H(d2) and Π(d2)
u uu uu uu u3 31 14 42 2

3 31 14 42 2

3 3

Π(d1) Π(d2)

xπ
1 xπ

2

◮ Figure 19.2 Illustration of shingle sketches. We see two documents going through
four stages of shingle sketch computation. In the first step (top row), we apply a 64-bit
hash to each shingle from each document to obtain H(d1) and H(d2) (circles). Next,
we apply a random permutation Π to permute H(d1) and H(d2), obtaining Π(d1)
and Π(d2) (squares). The third row shows only Π(d1) and Π(d2), while the bottom
row shows the minimum values xπ

1 and xπ
2 for each document.

64-bit integers. Denote by Π(dj) the set of permuted hash values in H(dj);
thus for each h ∈ H(dj), there is a corresponding value π(h) ∈ Π(dj).

Let xπ
j be the smallest integer in Π(dj). Then

Theorem 19.1.

J(S(d1), S(d2)) = Pr[xπ
1 = xπ

2 ].

Proof. We give the proof in a slightly more general setting: consider a family
of sets whose elements are drawn from a common universe. View the sets
as columns of a matrix A, with one row for each element in the universe.
The element aij = 1 if element i is present in the set Sj that the jth column
represents.

Let Π be a random permutation of the rows of A; denote by Π(Sj) the
column that results from applying Π to the jth column. Finally, let xπ

j be the

index of the first row in which the column Π(Sj) has a 1. We then prove that
for any two columns j1, j2,

Pr[xπ
j1

= xπ
j2
] = J(Sj1 , Sj2).



Preliminary draft (c)
2007 Cambridge UP

19.6 Near-duplicates and shingling 339

Sj1 Sj2
0 1
1 0
1 1
0 0
1 1
0 1

◮ Figure 19.3 Two sets Sj1 and Sj2 ; their Jaccard coefficient is 2/5.

If we can prove this, the theorem follows.
Consider two columns j1, j2 as shown in Figure 19.3, which shows that

the ordered pairs of entries of Sj1 and Sj2 partition the rows into four types:
those with 0’s in both of these columns, those with a 0 in Sj1 and a 1 in Sj2 ,
those with a 1in Sj1 and a 0in Sj2 , and finally those with 1’s in both of these
columns. Indeed, the first four rows of Figure 19.3 exemplify all of these four
types of rows. Denote by C00 the number of rows of the first of these types,
C01 the second, C10 the third and C11 the fourth. Then,

J(Sj1 , Sj2) =
C11

C01 + C10 + C11
.(19.2)

To complete the proof by showing that the right-hand side of (19.2) equals
Pr[xπ

j1
= xπ

j2
], consider scanning columns j1, j2 in increasing row index until

the first non-zero entry is found in either column. Because Π is a random
permutation, the probability that this smallest row has a 1 in both columns
is exactly the right-hand side of (19.2).

Thus, our test for the Jaccard coefficient of the shingle sets is probabilistic:
we compare the computed values xπ

i from different documents. If a pair
coincides, we have candidate near duplicates. Repeat the test independently
for 200 random permutations π (a choice suggested in the literature). Call
the set of these 200 values of xπ

i the sketch ψ(di) of di. We can then estimate
the Jaccard coefficient for any pair of documents di, dj to be |ψi ∩ ψj|/200; if
this exceeds a preset threshold, we declare that di and dj are similar.

How can we quickly compute |ψi ∩ ψj|/200 for all pairs i, j? Indeed, how
do we represent all pairs of documents that are similar, without incurring
a blowup that is quadratic in the number of documents? First, we use fin-
gerprints to remove all but one copy of identical documents. We may also
remove common html tags and integers from the shingle computation, to
eliminate shingles that occur very commonly in documents without telling
us anything about duplication. Next we use a union-find algorithm to create



Preliminary draft (c)
2007 Cambridge UP

340 19 Web search basics

clusters that contain documents that are similar. To do this, we must accom-
plish a crucial step: going from the set of sketches to the set of pairs i, j such
that di and dj are similar.

To this end, we compute the number of shingles common for any pair of
documents whose sketches have any members in common. We begin with
the list of sorted < xπ

i , di > pairs and for each xπ
i , generate all pairs i, j for

which xπ
i is present in both their sketches. We then accumulate these into

counts for each pair i, j with non-zero sketch overlap; by applying the pre-
set threshold, we know which pairs i, j have heavily overlapping sketches.
For instance, if the preset threshold were 80%, we would need the merged
count to be at least 160. As we identify such pairs, we run the union-find to
group documents into near-duplicate “syntactic clusters”. This is essentially
a variant of the single-link clustering algorithm introduced in Section 17.2
(page 290).

One final trick cuts down the space needed in the computation of |ψi ∩
ψj|/200 for pairs i, j, which in principle could still demand space quadratic
in the number of documents. To remove from consideration those pairs i, j
whose sketches have few shingles in common, we preprocess the sketch for
each document as follows: sort the xπ

i in the sketch, then shingle this sorted
sequence to generate a set of super-shingles for each document. If two docu-
ments have a super-shingle in common, we proceed to compute the precise
value of |ψi ∩ ψj|/200. This again is a heuristic but can be highly effective
in cutting down the number of i, j pairs for which we accumulate the sketch
overlap counts.

Exercise 19.9

Instead of using the process depicted in Figure 19.2, consider instead the following
process for estimating the Jaccard coefficient of the overlap between two sets S1 and
S2. We pick a random subset of the elements of the universe from which S1 and S2
are drawn; this corresponds to picking a random subset of the rows of the matrix A in
the proof. We exhaustively compute the Jaccard coefficient of these random subsets.
Why is this estimate an unbiased estimator of the Jaccard coefficient for S1 and S2?

Exercise 19.10

Explain why this estimator would be very difficult to use in practice.

19.7 References and further reading

Bush (1945b) foreshadowed the web when he described an information man-
agement system that he called memex. Berners-Lee et al. (1992) describes one
of the earliest incarnations of the web. Kumar et al. (2000) and Broder et al.
(2000) provide comprehensive studies of the web as a graph. The use of
anchor text was first described in McBryan (1994a). The taxonomy of web
queries in Section 19.4 is due to Broder (2002).



Preliminary draft (c)
2007 Cambridge UP

19.7 References and further reading 341

The estimation of web search index sizes has a long history of develop-
ment covered by Bharat and Broder (1998), Lawrence and Giles (1998), Rus-
mevichientong et al. (2001), Lawrence and Giles (1999), Henzinger et al. (2000a),
Henzinger et al. (2000b), Bar-Yossef and Gurevich (2006). Shingling was in-
troduced by Broder et al. (1997) and used for detecting websites (rather than
simply pages) that are identical by Bharat et al. (2000).


