
Tree SSA – A New Optimization Framework
for GCC

Diego Novillo
dnovillo@redhat.com
Red Hat Canada, Ltd.

GCC Developers’ Summit
Ottawa, Canada

May 2003



Goals of the Project

• Technical

1. Internal infrastructure overhaul.
2. Add new optimization features: vectorization.
3. Add new analysis features: mudflap.

• Non-technical

1. Improve maintainability.
2. Improve our ability to add new features to the optimizer.
3. Allow external groups to get interested in GCC.

Tree SSA 1



RTL based optimizers
C

trees
C

expander

RTLC++
trees

C++
expander

Java
trees

Java
expander

RTL
Optimizer

Object
code

• RTL is not suited for high-level transformations.

• Too many target features have crept in.

• Lost original data type information and control structures.

• Addressing modes have replaced variable references.

Tree SSA 2



Tree based optimizers

• GCC trees contain complete control, data and type information for the
original program.

• Suited for transformations closer the source.

– Control flow restructuring.
– Scalar cleanups.
– Data dependency analysis on arrays.
– Instrumentation.

• Problems.

– Each front end generates its own “flavor” of trees.
– Trees are complex to analyze. They can be freely combined and carry

a lot of semantic information and side-effects.

Tree SSA 3



Tree SSA Overview

Tree Optimizer

GIMPLE CFG SSA

SSA pass N

   ...    

SSA pass 2

SSA pass 1

unSSA RTL Back
End

• GIMPLE trees are language/target independent.

• Full type information is preserved.

Tree SSA 4



GIMPLE trees

1 a = foo ();

2 b = a + 10;

3 c = 5;

4 if (a > b + c)
5 c = b++ / a + (b * a);

6 bar (a, b, c);

a = foo ();

b = a + 10;

c = 5;

T1 = b + c;
if (a > T1)

{
T2 = b / a;

T3 = b * a;

c = T2 + T3;

b = b + 1;

}
bar (a, b, c);

Tree SSA 5



Statement manipulation

1 baz ()

2 {
3 int i, j;
4

5 {
6 int k;

7

8 k = foo ();

9 i = k + 2;

10 j = i * k;

11 }
12

13 return j;
14 }

2  {

 3  int i, j; CE

5  { 13  return j;

 6  int k; CE

 8  k = foo (); CE

 9  i = k + 2; 10  j = i * k;

• Two kind of iterators: block (BSI) and tree (TSI).

Tree SSA 6



Control Flow Graph

➀ Share same flowgraph data structures and code from RTL flowgraph.

➁ IL-specific information is replicated or use langhooks.

➂ Basic cleanup passes: linearization, unreachable code elimination.

Tree SSA 7



SSA form

• A program is in SSA form iff every USE of a variable is reached by no
more than one DEF.

a = foo ();

b = a + 10;

c = 5;

T1 = b + c;
if (a > T1)

{
T2 = b / a;

T3 = b * a;

c = T2 + T3;

b = b + 1;

}
bar (a, b, c);

a1 = foo ();

b1 = a1 + 10;

c1 = 5;

T11 = b1 + c1;

if (a1 > T11)

{
T21 = b1 / a1;

T31 = b1 * a1;

c2 = T21 + T31;

b2 = b1 + 1;

}
b3 = φ(b1, b2);
c3 = φ(c1, c2);
bar (a1, b3, c3);

Tree SSA 8



SSA form

Most programs are not in SSA form and need to be converted

➀ Every time a variable is defined, it receives a new version number.

➁ Variable uses get the version number of their immediately reaching
definition.

➂ Ambiguities (i.e., more than one immediately reaching definition) are
solved by inserting artificial variables called φ-nodes (or φ-terms).

φ-nodes are functions with N arguments. One argument for each
incoming edge.

Tree SSA 9



Handling non-scalar variables and aliasing

foo (i, j, k, l)
{
# M2 = VDEF <M1>

M[i][j] = . . .

# M3 = VDEF <M2>

M[k][l] = . . .

# VUSE <M3>

T14 = M[i][j];

f6 = T14 + T25;

return f6;
}

foo (i, j, *p)

{
int a;

if (i1 > j2)
p5 = &a;

# MT.17 = VDEF <MT.14>

a = i1 + j2;

# VUSE MT.17

return *p;

}

Tree SSA 10



Conversion into SSA form

1. May-alias computation.

2. Insertion of φ nodes.

• Minimal
• Semi-pruned
• Pruned

3. Statement renaming. Dominator-based optimizations:

• constant propagation
• redundancy elimination
• propagation of predicate expressions.

Tree SSA 11



Conversion out of SSA form

1. Remove φ nodes by converting them into copies.

2. Coalesce as many copies as possible.

3. Deal with overlapping live ranges of different SSA names for the same
variable.

4. Assign SSA names to real variables.

Tree SSA 12



Current Status

• C and C++ front ends emit GIMPLE trees.

• SSA based constant propagation and dead code elimination working.

• Copy propagation, partial redundancy elimination, global value numbering
and value range propagation being implemented.

• Plan to merge infrastructure for GCC 3.5, provided we keep making the
same progress.

• Performance w.r.t. mainline still lagging, but making steady progress.

Tree SSA 13



Implementation Details

• Main entry points.

c-decl.c calls the gimplification and optimization passes before RTL
expansion.

gimplify.c converts the function into GIMPLE form.
tree-cfg.c builds the CFG.
tree-dfa.c finds all variable references in the function.
tree-ssa.c builds the SSA web.
tree-simple.c validates statements and expressions in GIMPLE form.
tree-pretty-print.c unparses GENERIC trees.

Tree SSA 14



TODO List

• Optimizations.

– Value Numbering (VN), Value Range Propagation (VRP).
– Mudflap-specific optimizations.
– Loop transformations

loop canonicalization.
loop unswitching.
loop unrolling.

– Vectorization: Super-word level parallelism (SLP).

• Performance evaluation: profile, remove superfluous RTL passes, improve
tree→RTL conversion.

Tree SSA 15



Conclusions

• Tree SSA provides a new optimization framework to implement high-level
analyses and optimizations in GCC.

• Goals:

1. Provide a basic data and control flow API for optimizers.
2. Simplify and/or replace RTL optimizations. Improve compile times

and code quality.
3. Implement new optimizations and analyses that are either difficult or

impossible to implement in RTL.

• Currently implemented in the C and C++ front ends.

• Code lives in the FSF branch tree-ssa-20020619-branch.

• Project page http://gcc.gnu.org/projects/tree-ssa/

Tree SSA 16


