
Reinforced Condition/Decision Coverage (RC/DC):
A New Criterion for Software Testing

Sergiy A. Vilkomir and Jonathan P. Bowen

South Bank University, Centre for Applied Formal Methods
School of Computing, Information Systems and Mathematics

103 Borough Road, London SE1 0AA, UK
Email:{vilkoms, bowenjp}@sbu.ac.uk

URL: http://www.cafm.sbu.ac.uk/

Abstract. A new Reinforced Condition/Decision Coverage (RC/DC) criterion
for software testing is proposed. This criterion provides further development of
the well-known Modified Condition/Decision Coverage (MC/DC) criterion and
is more suitable for testing of safety-critical software. Formal definitions in the
Z notation for RC/DC, as well as MC/DC, are presented. Specific examples of
using of these criteria are considered and some features are formally proved.

1 Introduction

Software testing criteria determine requirements for the scope and the volume of soft-
ware testing. The requirements for testing logical structure of programs are specified
using so-called control-flow criteria. The aim of these criteria is testingdecisions (the
program points at which the control flow can divide into various paths) andconditions
(atomic predicates which form component parts of decisions) in a program.

One of the simplest control-flow criteria is the decision coverage criterion which
states that every decision in the program has taken all possible outcomes at least once
[13]. This criterion requires only two test cases for each binary decision. The greatest
number of test cases is required by the multiple condition coverage criterion which
states that all possible combinations of condition outcomes in each decision have been
invoked a minimum of once [13].

The decision coverage criterion is weak and not sufficient, especially for the testing
of safety-critical software. The multiple condition coverage criterion requires2n test
cases for a decision made up ofn conditions and this is often not possible in practice.
So it is necessary to use an intermediate criterion that combines sufficient scope of test-
ing with a relatively small number of test cases. One of such criteria is the Modified
Condition/Decision Coverage (MC/DC), which requires testing of the independent in-
fluence of every condition on the decision. This criterion has been introduced in the
RTCA/DO-178B standard [16], which provides regulatory requirements for avionics
software.

We considered the formal definitions of the main control-flow criteria in [17, 19].
For those requiring more background information, a review of control-flow criteria with
a fuller list of relevant references is available [19]. In this paper we propose the further



development of this approach. The paper is structured as follows. Section 2 presents a
detailed analysis of MC/DC. A new version of the definition in the Z notation [1] is
proposed and the explanation how this formal approach can eliminate the ambiguity of
informal definitions is given. A specific example using MC/DC is considered, illustrat-
ing the interdependence of the conditions and decisions. We analyze a major shortcom-
ing of the MC/DC criterion, namely the deficiency of requirements for the testing of
the “false operation” type of failures. Examples of situations when failures of this type
are present are considered. These have especially vital importance for safety-critical
applications in particular.

To eliminate the shortcoming of MC/DC, we propose a new Reinforced Condi-
tion/Decision Coverage (RC/DC) criterion, which is considered in Section 3. Z schemas
for the formal definition of RC/DC and examples of its application are provided.

2 MC/DC

2.1 General definition

The definition of the MC/DC criterion, according to [16], is the following:

Every point of entry and exit in the program has been invoked at least once,
every condition in a decision in the program has taken on all possible outcomes
at least once, every decision in the program has taken all possible outcomes at
least once, and each condition in a decision has been shown to independently
affect the decision’s outcome. A condition is shown to independently affect a
decision’s outcome by varying just that condition while holding fixed all other
possible conditions.

The maximum number of required tests for a decision withn conditions is2n. The place
of MC/DC in the hierarchy of control-flow criteria is given in Figure 1. The definitions
and analysis of these criteria are considered in [13–15, 19, 22].

The first part of the MC/DC definition (every point of entry and exit in the program
has been invoked at least once) is just the standard statement coverage criterion. This
part is traditionally added to all control-flow criteria and is not directly connect with the
main point of MC/DC.

The second and the third parts of the definition are just the condition and decision
coverage criteria. The inclusion of these parts in the definition of MC/DC could be
considered excessive because satisfiability of the condition and decision coverage re-
sults from the main part of the MC/DC definition:each condition has been shown to
independently affect the decision’s outcome.

The key word in this definition is “independently”; i.e., the aim of MC/DC is the
elimination during testing of the mutual influence of the individual conditions and the
testing of the correctness of each condition separately.

Investigation of MC/DC has initially been considered in [4, 5, 10]. Detailed consid-
eration of the different aspects of this criterion was carried out more recently (1999–
2001) in [2, 6, 7, 9]. The successful practical application of MC/DC for satellite control
software has been evaluated [8] though the difficulties during the analysis of this type



statement coverage

decision coverage condition coverage

decision/condition coverage

full predicate coverage

modified condition/decision coverage

multiple condition coverage

?

?

?

������)

PPPPPPq

PPPPPPq

������)

Fig. 1.The hierarchy of control-flow criteria.

of coverage (e.g., it is extremely expensive to carry out and can affect staff morale and
time) were also addressed [3]. The application of this criterion in the testing of digital
circuits was considered in [12]. A number of software tools (LDRA Testbed, McCabe,
ATTOL, CodeTEST, Cantata++, etc.) support the MD/DC criterion.

However, it should be noted that the original definition of the MC/DC criterion al-
lows different interpretations and understanding during the application of the criterion.
The informal definition gives no precise answer to some practical questions. For exam-
ple:

– How to handle the situation when it is impossible to vary a condition and a decision
while holding fixed all other conditions (see Section 2.3 for an example of such a
situation). To assume that such a condition does not satisfy the MC/DC criterion is
probably not the best way of dealing with this situation. In any case, such conditions
should be checked during testing.

– How to understand multiple occurrences of a condition in a decision. For example,
for a decision of the form(A ∧ B) ∨ (¬ A ∧ C ), should we assume three
conditions (A, B , andC ) or four (the firstA, B , C , and the secondA) conditions?
Both approaches have been used [4, 9] but the last one seems unnatural for many
situations.

– How to treat degenerate conditions and decisions, which are either all 0 or all 1. Of
course, the appearance of such conditions should attract the attention of the tester
and be justified. But if it is valid for some reason, does it mean that in this case
MC/DC is not satisfied because such conditions cannot be varied?



– How to consider coupled conditions, i.e., conditions that cannot be varied indepen-
dently. According to [4], two or more conditions are strongly coupled if varying
one always varies the other, and weakly coupled if varying one sometimes, but
not always, varies the others. However, it is questionable whether strongly coupled
conditions really exist.

For a more precise definition of the MC/DC criterion, eliminating inaccuracies and
answering the above questions, we propose a formal definition of MC/DC using the Z
notation.

2.2 Formal definition in the Z notation

We considered the formal definitions in the Z notation for all main control-flow crite-
ria, including MC/DC, in [19]. In this paper, a slightly different approach is proposed.
Within the framework of this approach, we distinguish the difference between input
variables for a whole program and input variables for an individual decision. It allows
us to consider possible changes of values of input variables and the multiple execution
a decision in a loop. A more precise definition of the notion of a decision is introduced
gradually and used in the next section for the formulation of a formal definition for
RC/DC.

For defining the criteria, the given setsSTATEMENT andINPUT are used:

[STATEMENT , INPUT ]

TheSTATEMENT set contains all possible program statements. The second set con-
tains all possible values of all input, output and internal variables during the running of
the program. In practice, the elements ofINPUT are values associated with variables
under consideration at any particular part of the program, but this level of detail is not
required at this level of abstraction. We use the nameINPUT to emphasize the fact
that the members of this set are the input data relative to decisions and conditions in a
program. The setstartinput is a set of the values of the input variables only and is a
subset ofINPUT . Some of the values of the input variables (namely, thestarttest set)
are used as testing data.

startinput , starttest : P INPUT
statementinput : STATEMENT × INPUT 7→ P INPUT

starttest ⊆ startinput
domstatementinput = STATEMENT × startinput

The statementinput function returns (for each program statement and each fixed
values of input variables) all values of all program variables which are possible when
this statement is executed. It can be several different sets of values (several different
elements ofINPUT ) for one decision because of potential multiple execution of this
decision in a loop.

Now we can create a Z schema1 for the statement coverage criterion, which is a
component of all other control-flow criteria including MC/DC.

1 All schemas in this paper have been checked using the ZTC type-checker package [11].



StatementCoverage
st : STATEMENT⋃
{i : starttest • statementinput(st , i)} 6= ∅

If for some statementst the value ofstatementinput is the empty set for all testing
data, this means that this statement is never executed during test runs of a program; i.e.,
the testing data does not satisfy the statement coverage criterion.

We now introduce some definitions. TheBool set contains values for logical vari-
ables: 1 (TRUE ) and 0 (FALSE ):

Bool == {0, 1}

We encode this as numbers since this is a standard nomenclature by many testers. We
use the elements of this set as values ofcond , a set of partial “logical” functions on
INPUT :

cond == INPUT 7→ Bool

The following schema describes a decision. We consider a decision as a program
statement (decst) and an associated logical function (value).

Dec
decst : STATEMENT
value : cond
decinput , decinput0, decinput1, testset : P1 INPUT
argdec : P1 cond

decinput = domvalue =
⋃
{i : startinput • statementinput(decst , i)}

decinput0 = {i : decinput | value i = 0}
decinput1 = {i : decinput | value i = 1}
〈decinput0, decinput1〉partitionsdecinput
testset =

⋃
{i : starttest • statementinput(decst , i)}

argdec ⊆ {c : cond | domc = decinput ∧ ranc = Bool}

Thedecinput set contains data (values of input, output, and internal variables), which
activates the given decision. Thedecinput0 anddecinput1 sets contain data, for which
the decision equals 0 and 1 respectively. These sets partitiondecinput ; i.e.,decinput0∪
decinput1 = decinput anddecinput0 ∩ decinput1 = ∅.

Theargdec set contains all conditions (atomic predicates), which make a decision.
For example, if a decision is of the formA1 ∨ B1, then theA1 andB1 conditions form
part of the decision andargdec is {A1,B1} (see also an example in section 2.3). These
conditions are the arguments of the logical formula, which determines the decision
value function uniquely.

The testset set contains data fromINPUT , which activating the given decision
during test runs of a program, i.e., when thestarttest set is used as input data. The



members oftestset are testing data for a given decision. If a decision statement is exe-
cuted multiple times inside a loop, one test case for the whole program fromstarttest
(one test run) generates several test cases for the decision fromtestset .

The relationInputPairs describes pairs of data fromINPUT . It is convenient to
use this type because we always apply a pair of test sets for testing when varying each
condition or decision.

InputPairs == INPUT ↔ INPUT

ConsiderDecModified , a modified version of theDec schema. Two sets of pairs of
data are considered for each condition.

DecModified
Dec
changedec, changedecfix : cond 7→ InputPairs

domchangedec = domchangedecfix = argdec
ranchangedec ∪ ranchangedecfix ⊆ decinput ↔ decinput
∀ c : cond | c ∈ argdec •
changedec c = {i0, i1 : decinput | value i0 6= value i1 ∧ c i0 6= c i1} ∧
changedecfix c = {i0, i1 : decinput | (i0, i1) ∈ changedec c ∧
(∀ othercond : argdec | othercond 6= c • othercond i0 = othercond i1)}

The setchangedec c is a set of pairs of data which simultaneously varying the decision
and conditionc, i.e., conditionc equals 0 for one element of the pair and equals 1
for another element. Thechangedecfix c set contains pairs of data which varying the
decision and given and only given conditionc, i.e., for all other conditions from the
decision, the condition value for the first element of the pair coincides with the condition
value for the second element. Obviously,changedecfix c ⊆ changedec c.

For definition of MC/DC (and, later, RC/DC), thechoice function is used.

choice : InputPairs × InputPairs → InputPairs

∀ a, b : InputPairs •
(a 6= ∅ ⇒ choice(a, b) = a) ∧ (a = ∅ ⇒ choice(a, b) = b)

The arguments are two sets. If the first one is not empty the function just returns it;
otherwise, the second set is returned.

Now we can create a formal definition of MC/DC. For each condition in each deci-
sion, the aim of this criterion is to have, as a part of the testing data, pairs of input data
that vary this condition simultaneously with the decision while, if it is possible, fixing
all other conditions. The following Z schema captures MC/DC:

MC DC
StatementCoverage

∀DecModified ; c : cond | c ∈ argdec •
(testset × testset) ∩ choice(changedecfix c, changedec c) 6= ∅



Let us prove that it is always possible to choose the testing data, which satisfy
MC/DC, i.e., thatchoice(changedecfix c, changedec c) 6= ∅, using the method of the
proof by contradiction.

Lemma1
MC DC ; c : cond ` choice(changedecfix c, changedec c) 6= ∅
Proof

choice(changedecfix c, changedec c) = ∅ [assumption]

⇔ changedec c = ∅ [definition of choice]

⇔ ¬ (∃ i0, i1 : decinput | c i0 6= c i1 • [definition of changedec]

value i0 6= value i1)
⇔ ∀ i0, i1 : decinput | c i0 = 0 ∧ c i1 = 1 • [logic]

value i0 = value i1
⇒ ∀ i0, i1 : decinput | [decinput0, decinput1 : P1 INPUT ]

c i0 = 0 ∧ c i1 = 1 • ∃ i2 : decinput •
value i2 6= value i0 ∧ value i2 6= value i1

⇒ ∀ i0, i1 : decinput | c i0 = 0 ∧ c i1 = 1 • [c i2 = 0 ∨ c i2 = 1]

∃ i2 : decinput • (c i2 = 0 ∧ value i2 6= value i1) ∨
(c i2 = 1 ∧ value i2 6= value i0)

⇒ ∃ i0, i1, i2 : decinput • [c i1 = 1 ∧ c i0 = 0]

(c i2 6= c i1 ∧ value i2 6= value i1) ∨
(c i2 6= c i0 ∧ value i2 6= value i0)

⇒ ∃n,m : decinput • [n = i2 ∧ (m = i0 ∨ m = i1)]
c n 6= c m ∧ value n 6= value m

⇔ changedec c 6= ∅ [definition of changedec]

⇔ choice(changedecfix c, changedec c) 6= ∅ [definition of choice]

⇒ false [contradiction]

Let us consider how the proposed formal definition of MC/DC answers the ques-
tions formulated in Section 2.1:

– How to handle the situation when it is impossible to vary a condition and a de-
cision while holding fixed all other conditions.According the formal definition of
MC/DC, if it is impossible to find such testing data (i.e.,changedecfix c = ∅) we
can vary the condition and the decision without fixing other conditions (i.e., take
testing data fromchangedec c).

– How to understand multiple occurrences of a condition in a decision.According
to the definition of a decision (in theDec schema), we consider a set (argdec)
of conditions that make a decision. This means that each condition is considered
only once. This approach is more mathematically valid and corresponds with un-
derstanding a decision as a function of conditions.



– How to treat degenerate conditions and decisions.According to the definition of
a decision (again in theDec schema), both of the setsdecinput0 anddecinput1
are non-empty. This means that every decision should take the value of both 0 and
1 and the degenerate decisions are excluded from consideration. TheDec schema
also ensures that the range of every condition is equal toBool ; i.e., every condition
should take both 0 and 1 values and thus degenerate conditions are excluded from
consideration. The reason for this approach is that degenerate conditions and de-
cisions are always covered by any testing data. So, we consider them as satisfying
MC/DC because it does not make demands on such decisions and conditions.

– How to consider the coupled conditions.The coupled conditions [4] make prob-
lems for selecting the testing data satisfying the MC/DC criterion. However, these
problems exist only for weakly coupled conditions. As we show below (see Lemma
2), if one conditionA always varies the other conditionB thenA = B ∨ A = ¬ B ,
where¬ is formally defined as follows:

¬ : cond �→ cond

∀ c : cond • ¬ c = c o
9 {0 7→ 1, 1 7→ 0}

So we can considerA andB as entering the same condition into a decision. In other
words, strongly coupled conditions as mentioned in [4] do not exist.

Lemma2
MC DC ; A,B : cond `
(∀ i0, i1 : decinput • A i0 6= A i1 ⇒ B i0 6= B i1) ⇒ (A = B ∨ A = ¬ B)

Proof

¬ ((∀ i0, i1 : decinput • [assumption]

A i0 6= A i1 ⇒ B i0 6= B i1) ⇒ (A = B ∨ A = ¬ B))
⇔ (∀ i0, i1 : decinput • [logic]

A i0 6= A i1 ⇒ B i0 6= B i1) ∧ (A 6= B ∧ A 6= ¬ B)
⇒ (∃ i0, i1 : decinput •

A i0 = 0 ∧ A i1 = 1 ∧ B i0 6= B i1) ∧ [ranA = Bool ]
(A 6= B ∧ A 6= ¬ B)

[CASE 1 : B i0 = 1, B i1 = 0]
⇒ A 6= ¬ B [logic]

⇔ ∃ i2 : decinput • A i2 = B i2 [logic]

[CASE 1.1 : A i2 = 0, B i2 = 0]
⇒ A i2 6= A i1 [A i1 = 1]

⇒ B i2 6= B i1 [A i2 6= A i1 ⇒ B i2 6= B i1]

⇒ B i2 = 1 [B i1 = 0]

⇒ false [contradiction with CASE 1.1]

[CASE 1.2 : A i2 = 1, B i2 = 1]



⇒ A i2 6= A i0 [A i0 = 0]

⇒ B i2 6= B i0 [A i2 6= A i0 ⇒ B i2 6= B i0]

⇒ B i2 = 0 [B i0 = 1]

⇒ false [contradiction with CASE 1.2]

[CASE 2 : B i0 = 0, B i1 = 1]
⇒ A 6= B [logic]

⇔ ∃ i2 : decinput • A i2 6= B i2 [logic]

[CASE 2.1 : A i2 = 0, B i2 = 1]
⇒ A i2 6= A i1 [A i1 = 1]

⇒ B i2 6= B i1 [A i2 6= A i1 ⇒ B i2 6= B i1]

⇒ B i2 = 0 [B i1 = 1]

⇒ false [contradiction with CASE 2.1]

[CASE 2.2 : A i2 = 1, B i2 = 0]
⇒ A i2 6= A i0 [A i0 = 0]

⇒ B i2 6= B i0 [A i2 6= A i0 ⇒ B i2 6= B i0]

⇒ B i2 = 1 [B i0 = 0]

⇒ false [contradiction with CASE 2.2]

2.3 A case study

The contents of the proposed formal definitions are considered below. Different exam-
ples of MC/DC use that have been presented previously (for example, see [4]) have of-
ten considered only simple decisions containing two or three conditions. Using MC/DC
for such decisions has no great practical use because full searching of all test cases is
easy achieved. Furthermore, such examples do not reflect complicated situations, which
are typical in realistic practical examples of use of this criterion. We consider a more
complex example (but one that is still far from a real practical problem because of space
considerations), which takes into account the following factors:

– dependence of the values of the conditions and decisions on input data;
– dependence of the specific decision on its place in the computer program, i.e., on

the values of other decisions in the program;
– dependence of the conditions in the specific decision on each other, i.e., the possi-

bility that one condition takes a value depending on the value of other conditions in
this decision.

This example uses a computer program fragment, whose graph is given in Figure 2.
In this fragment, the input datax andy are read; let the value of bothx andy be

between 0 and 100. For this simple example, we could considerINPUT as just a pair
of values:

INPUT == (0 . . 100)× (0 . . 100)



����
1 READ x , y

?����
2 d1

������)

PPPPPPq
FALSETRUE

����
3 f1 ����

4 f2

?����
5 d2

������)

PPPPPPq
FALSETRUE

����
6 f3 ����

7 f4

? ?

Fig. 2.Flow graph of a program fragment.

Then, depending on the values ofx andy , the computation by one from four formulae
f1 – f4 is implemented.

The control flow of this program is determined by two decisions:d1 andd2. Let d1

depends on conditionsA1 andB1 andd2 depends on conditionsA, B , C , andD , as it
is shown below:

d1, d2 : DecModified
A,B ,C ,D ,A1,B1 : cond
x , y : 0 . . 100

A (x , y) = 1 ⇔ x > 20
B (x , y) = 1 ⇔ y < 60
C (x , y) = 1 ⇔ x > 40
D (x , y) = 1 ⇔ y < 80
A1 (x , y) = 1 ⇔ x > 20
B1 (x , y) = 1 ⇔ y > 60
d1.decinput = INPUT
d2.decinput = {x , y : 0 . . 100 | x > 20 ∨ y > 60}
d1.argdec = {A1,B1}
d2.argdec = {A,B ,C ,D}
d1.value (x , y) = 1 ⇔ A1 (x , y) = 1 ∨ B1 (x , y) = 1
d2.value (x , y) = 1 ⇔
((A (x , y) = 1 ∧ B (x , y) = 1) ∨ (C (x , y) = 1 ∧ D (x , y) = 1))



For thed1 decision,d1.decinput is all possibleINPUTs and both conditionsA1 and
B1 are independent. The examples of the testing data satisfy the MC/DC criterion for
d1 are given in Table 1.

num values testing datavariationsMC/DC
A1 B1 d1.value (x , y) A1 B1

1 1 1 1 (50, 70)

2 1 0 1 (50, 50) ∗ +
3 0 1 1 (10, 70) ∗ +
4 0 0 0 (10, 50) ∗ ∗ +

Table 1.Testing data satisfied the MC/DC criterion ford1.

For the d2 decision, the setd2.decinput is more restricted than the full set of
possibleINPUTs because of the interdependency ofd1 and d2. The members of
d2.decinput are only the input data for whichd1 equals 1, i.e., is TRUE.

The conditions ind2 are interdependent in pairs. For conditionsA andC the situa-
tion (A = 0 ∧ C = 1) is impossible because(C = 1) ⇒ (A = 1). For conditionsB
andD the situation(B = 1 ∧D = 0) is impossible because(B = 1) ⇒ (D = 1).

As it is shown in Table 2, only 8 of the 16 combinations of condition values are
possible.

num values testing datavariations MC/DC
A B C D d2.value (x , y) A B C D

1 1 1 1 1 1 (50, 50)

2 1 1 1 0 - impossible
3 1 1 0 1 1 (30, 50) • ∗ +
4 1 0 1 1 1 (50, 70) ∗ ∗ +
5 0 1 1 1 - impossible
6 1 1 0 0 - impossible
7 1 0 1 0 0 (50, 90) ∗ +
8 1 0 0 1 0 (30, 70) ∗ ∗ +
9 0 1 1 0 - impossible
10 0 1 0 1 - impossible
11 0 0 1 1 - impossible
12 1 0 0 0 0 (30, 90)

13 0 1 0 0 - impossible
14 0 0 1 0 - impossible
15 0 0 0 1 0 (10, 70) • +
16 0 0 0 0 0 (10, 90)

Table 2.Testing data satisfied the MC/DC criterion ford2.



The combinations(0, 1, 1, 1), (0, 1, 1, 0), (0, 0, 1, 1), and (0, 0, 1, 0) are impossi-
ble because of the value of the conditionA. Combinations(1, 1, 1, 0), (1, 1, 0, 0), and
(0, 1, 0, 0) are impossible because of the value of the conditionD . The combination
(0, 1, 0, 1) is impossible because of the value of the decisiond1.

Testing data satisfying the MC/DC criterion for the conditionsB , C , andD are
shown in Table 2 marked as ‘∗’.

For the conditionA it is impossible to choose similar combinations, i.e., combina-
tions for which the values ofA andd2 are changed and the values ofB , C , andD are
fixed. So, following the formal definition of MC/DC, in this case for the conditionA
it is sufficient to take any combinations which varyA andd2 without fixing other con-
ditions. For example, it is possible to take combinations(1, 1, 0, 1) and(0, 0, 0, 1), for
which the values ofA andd2 vary simultaneously (marked ‘•’ in Table 2). The testing
set satisfying the MC/DC criterion for the decisiond2 consists of five pairs of the input
data (marked ‘+’ in Table 2).

2.4 The main shortcoming of MC/DC

As already mentioned in this paper, the MC/DC criterion is used mainly for testing
of safety-critical avionics software [16]. The main aim of MC/DC is testing situations
when changing a condition implies a change in a decision. Often a decision can be asso-
ciated with some safety-critical operation of a system. In such cases, MC/DC requires
the testing of situations when changing one condition has some consequence on the op-
eration of the system. A software error in such situations could involve “non-operation”
(inability to operate on demand) type of failures. Such situations are extremely impor-
tant and the MC/DC requirements are entirely reasonable.

But, as we show below, this criterion has one substantial shortcoming, not previ-
ously mentioned in the literature, namely deficiency of requirements for testing of the
“ false actuation” (operation without demand) type of failures. This could make this
criterion insufficient for many safety-critical applications.

The false actuation of a system could be invoked by a software error in situations
when changing a condition should not imply changing a decision. We now consider
several examples.

Railway points: Consider a railway computer control system and a decision that is
responsible for switching over the points by which trains can be routed in one direction
to another.

Let there be two tracks (main and reserved); the condition determines track states
(which may be either occupied or clear) and the decision determines changing the route
from the main track to the reserved track and vice versa. Consider two situations for the
non-operation and false actuation types of failures.

The first situation is when the main track becomes occupied (varying the condition)
and, therefore, it is necessary to switch over the points to the reserve track (varying the
decision). The failure in this situation involves keeping the value of the decision instead
of varying it; this means non-operation of the system and could result in a possible
crash.



The second situation is when the reserved track becomes occupied (varying the
condition) and, therefore, it is necessary to keep the main track as a route (keeping the
decision). The failure in this situation involves varying the value of the decision instead
of keeping it fixed that means false operation of the system and a possible crash.

Thus, from the safety point of view, these situations are symmetrical and can lead
to a crash. Therefore, both types of failures should be considered and both situations
should be tested with the same accuracy.

Nuclear reactor protection system: Consider a decision that is responsible for actu-
ating a reactor protection system at a nuclear power plant (i.e., the reactor shutdown)
and a condition that describes some criterion for the actuation (e.g., excessive pressure
over some specified level). Varying this decision because of variation of the condition
should be tested since failure in this situation means the non-operation of the system in
case of emergency conditions and can lead to the nuclear accident.

Nevertheless, keeping the value of the decision is also important. The failure in this
situation means the false actuation of the system during normal operating and can lead
to non-forced reactor shutdown, the deterioration of the physical equipment, and the
underproduction of electricity.

The typical architecture of nuclear reactor protection systems (three channels with
“2 from 3” logical voting) takes into account this particular problem. The use of three
identical channels decreases the probability of the system not operating correctly. How-
ever, if it is only required to consider this factor, the “1 from 3” logic is more reliable.
The aim of using “2 from 3” voting is to provide protection against false actuation
of a system as in this case the false signal from one channel does not lead to system
actuation.

Thus, during the reactor protection system software testing, it is necessary to include
test cases both for varying and keeping a decision’s outcomes.

Planned halt of a computer control system:Sometimes specific situations are possi-
ble, when keeping a decision is much more important for safety than varying a decision.
Consider a decision that is responsible for a planned (non-emergency) halt of a contin-
uous process control system, e.g., for planned maintenance. Conditions describe when
this process is in a safe state allowing switching off of the control system. Again con-
sider two situations.

The first situation is when the state of the process becomes safe (varying the con-
dition) and it is possible to switch system off (varying the decision). The failure in this
situation does not have grave consequences and means only a delay of the system halt.

The second situation is when the state of the process becomes unsafe (varying the
condition) and the control system should continue in operation (keeping the decision).
The failure in this situation means that the system is erroneously switched off. Such a
fault leads to loss of control and this is important with respect to safety. So it is important
to test the keeping of the value of this decision.

The examples considered above demonstrate that for many cases testing only vary-
ing a decision when varying a condition (i.e., using MC/DC) is insufficient from the



safety point of view. To eliminate this shortcoming, we propose the use of a new RC/DC
criterion in critical applications.

3 RC/DC

3.1 General definition

The main idea of RC/DC is for future development of MC/DC with the purpose of
making it even stronger. In that way, all requirements of MC/DC are valid and a new
requirement for keeping the value of a decision when varying a condition is added to
the testing regime.

With the objective of ensuring compatibility and continuity with the MC/DC defi-
nition, we define RC/DC as follows:

Every point of entry and exit in the program has been invoked at least once, ev-
ery condition in a decision in the program has taken on all possible outcomes
at least once, every decision in the program has taken all possible outcomes at
least once, each condition in a decision has been shown to independently af-
fect the decision’s outcome,and each condition in a decision has been shown
to independently keep the decision’s outcome. A condition is shown to inde-
pendently affectand keepa decision’s outcome by varying just that condition
while holding fixed(if it is possible)all other conditions.

The reservation “if it is possible” is used because it is far from always being possible to
independently affect or keep the value of a decision. For more accurate consideration
and analysis of all possible situations we propose the formal definition of RC/DC using
the Z notation in the next section.

3.2 Formal definition in the Z notation

For elaboration of the formal definition of RC/DC, we carry out further development of
the Z schema, describing the notion of the decision. TheDecReinforced schema below
differs from theDecModified schema by adding four new functions:keep0, keep1,
keep0fix andkeep1fix . Each of these functions connects conditions with pairs of input
data.



DecReinforced
DecModified
keep0, keep1, keep0fix , keep1fix : cond 7→ InputPairs

domkeep0 = domkeep1 = domkeep0fix = domkeep1fix = argdec
rankeep0 ∪ rankeep1 ∪ rankeep0fix ∪ rankeep1fix ⊆ decinput ↔ decinput
∀ c : cond | c ∈ argdec •
keep0 c = {i0, i1 : decinput | value i0 = value i1 = 0 ∧ c i0 6= c i1} ∧
keep1 c = {i0, i1 : decinput | value i0 = value i1 = 1 ∧ c i0 6= c i1} ∧
keep0fix c = {i0, i1 : decinput | (i0, i1) ∈ keep0 c ∧
(∀ othercond : argdec | othercond 6= c • othercond i0 = othercond i1)} ∧

keep1fix c = {i0, i1 : decinput | (i0, i1) ∈ keep1 c ∧
(∀ othercond : argdec | othercond 6= c • othercond i0 = othercond i1)}

The functionskeep0 and keep1 assign for each condition the subset of pairs of
input data that vary the condition but keep the value of the decision equal to 0 (for
keep0) or 1 (for keep1). The difference between thekeep0fix /keep1fix functions and
the keep0/keep1 functions is that, for thekeep0fix /keep1fix functions, all the other
conditions are kept fixed. This is similar to the difference betweenchangedecfix and
changedec in theDecModified schema.

The introduced functions allow formulation of the formal definition of the RC/DC
criterion:

RC DC
MC DC

∀DecReinforced ; c : cond | c ∈ argdec •
(let target0 == choice(keep0fix c, keep0 c);
target1 == choice(keep1fix c, keep1 c) •
(target0 6= ∅ ⇒ (testset × testset) ∩ target0 6= ∅) ∧
(target1 6= ∅ ⇒ (testset × testset) ∩ target1 6= ∅))

This criterion contains MC/DC as a component and also includes the requirements
for testing of invariability of the decision when a condition varies. In this way, the
set of test cases should contain pairs of input data from two setstarget0 andtarget1,
which keep (if it is possible) the value of the decision and fix (if it is possible) all other
conditions. If holding other conditions is not possible, the test cases that keep the value
of the decision without fixing other conditions should be used.

Let us prove that if the decision does not coincide with the condition or the condi-
tion’s negation, it is always possible to choose testing data that satisfies RC/DC; i.e.,
(target0 6= ∅) ∨ (target1 6= ∅).

Lemma3
RC DC ; c, value : cond `
(value 6= c ∧ value 6= ¬ c) ⇒ (target0 6= ∅ ∨ target1 6= ∅)

Proof



¬ ((value 6= c ∧ value 6= ¬ c) ⇒ [assumption]

(target0 6= ∅ ∨ target1 6= ∅))
⇔ value 6= c ∧ value 6= ¬ c ∧ target0 = ∅ ∧ target1 = ∅ [logic]

⇒ choice(keep0fix c, keep0 c) = ∅ ∧ [definition of target0 and target1]

choice(keep1fix c, keep1 c) = ∅
⇔ keep0 c = ∅ ∧ keep1 c = ∅ [definition of choice]

⇔ ¬ (∃ i0, i1 : decinput • [definition of keep0 and keep1]

c i0 6= c i0 ∧ value i0 = value i1)
⇔ ∀ i0, i1 : decinput • c i0 6= c i1 ⇒ value i0 6= value i1 [logic]

⇒ c = value ∨ c = ¬ value [Lemma 2]

⇒ false [contradiction]

It should be noted that there are decisions that do not keep one of the values (0 or
1) when varying a condition. For example,A ∨ B does not keep 0 andA ∧ B does not
keep 1.

3.3 A case study

Consider the following criterion of the protection system actuation for the VVER-1000
type [21] nuclear reactor: the system should shut down a reactor in the case of decrease
of the pressure in the first circuit to less than150 kg/cm2 under the coolant temperature
of more than260◦ centigrade and reactor capacity equal or more than 75% of the rated
capacity or decrease of the pressure in the first circuit to less than140 kg/cm2 under
the coolant temperature more than280◦ centigrade.

For measurement of each input parameter (pressurep and temperaturet), three
sensors are used (inputsp1, p2, p3 andt1, t2, t3) with majority voting of inputs.

Hence, 13 conditions are used for determination of necessity of the system actua-
tion:

P11 = p1 < 150 P21 = p2 < 150 P31 = p3 < 150
P12 = p1 < 140 P22 = p2 < 140 P32 = p3 < 140
T11 = t1 > 260 T21 = t2 > 260 T31 = t3 > 260
T12 = t1 > 280 T22 = t2 > 280 T32 = t3 > 280
NR = N ≥ 0.75Nr

The decision that is responsible for this actuation criterion is:

(((P11 ∧ P21) ∨ (P11 ∧ P31) ∨ (P21 ∧ P31)) ∧ ((T11 ∧ T21) ∨ (T11 ∧ T31) ∨
(T21 ∧ T31)) ∧ NR) ∨ (((P12 ∧ P22) ∨ (P12 ∧ P32) ∨ (P22 ∧ P32)) ∧
((T12 ∧ T22) ∨ (T12 ∧ T32) ∨ (T22 ∧ T32)))

A general number of all possible combinations of values of the conditions equals213 =
8192. Not all combinations are possible because of coupled conditions. Thus, it is im-
possible to havePi1 = 0 ∧ Pi2 = 1 and alsoTi1 = 1 ∧ Ti2 = 0. However, the



number of possible combinations is still too large to be completely checked during
practical testing.

The RC/DC criterion requires a maximum of 6 test cases for each condition (two for
varying the decision, two for keeping it 0, and two for keeping it 1). So, not more than 78
combinations are required for this decision. However this number is overestimated since
the same combinations can be used for testing different conditions. The minimization of
the number of test cases for RC/DC could demand special analysis and be a hard task.
Costs of this analysis could exceed the obtained benefit from the minimization. But if
further reduction of test cases is not very important, the selection of test cases presents
no difficulty.

For testing maintaining the value 0 for the decision during variation of the condition
P11, it is sufficient to select combinations of input data, for whichT11 = 0 andT21 = 0.
It ensures that the decision equals0; therefore any possible values of the other condi-
tions could be fixed. For testing maintaining the value 1 for the decision during variation
of the conditionP11, it is sufficient to fix, for example,P12 = P22 = T12 = T22 = 1
and any allowed values of the other conditions.

4 Conclusion and Future Work

In this paper we have proposed and formalized a new Reinforced Condition/Decision
Coverage (RC/DC) criterion for software testing, which strengthens the requirements
of the well-known Modified Condition/Decision Coverage (MC/DC) criterion [16].

Z schemas have been formulated to provide the formal definition of MC/DC (see
also [19]) in the Z notation [1], which accurately capture the particular features of this
criterion. However, the MC/DC criterion does not include requirements for testing of
“false operation” type failures. Such failures, as we have shown in several examples,
can be highly important for safety-critical computer systems.

The proposed RC/DC criterion aims to eliminate this shortcoming and requires the
consideration of situations when varying a condition keeps the value of a decision con-
stant. Though the number of required test cases rises, this growth remains linear com-
pared to the number of conditions in a decision, making the approach practicable. We
have illustrated application of the RC/DC criterion in the testing of nuclear reactor pro-
tection system software. An important area of application of the RC/DC criterion could
be using it as a regulatory requirement in standards [18, 20].

One direction for future work could be using RC/DC not only for software testing
but also for integration testing of a whole computer system, assuming the system speci-
fication as a basis. Another important aim is automated generation of test inputs in line
with the RC/DC criterion.

References

1. Bowen, J. P. Z: A formal specification notation. In M. Frappier and H. Habrias (eds.),Soft-
ware Specification Methods: An Overview Using a Case Study, Chapter 1. Springer-Verlag,
FACIT series, 2001, pp. 3–19.



2. Burton, S.Towards Automated Unit Testing of Statechart Implementations. Technical Report
YCS319, Department of Computer Science, University of York, UK. September 1999.

3. Chapman, R. Industrial Experience with SPARK.Proceedings of ACM SIGAda Annual In-
ternational Conference (SIGAda 2000), November 12–16, 2000, Johns Hopkins Univer-
sity/Applied Physics Laboratory, Laurel, MD, USA.

4. Chilenski, J. and Miller, S. Applicability of modified condition/decision coverage to software
testing.Software Engineering Journal, September 1994, pp. 193–200.

5. Chilenski, J. and Newcomb, P. H. Formal specification tool for test coverage analysis.Pro-
ceedings of the Ninth Knowledge-Based Software Engineering Conference, September 20–
23, 1994, pp. 59–68.

6. DeWalt, M. MCDC. A blistering love/hate relationship.FAA National Software Conference,
Long Beach, CA, USA, April 6–9, 1999.

7. Dolman, B.Definition of Statement Coverage, Decision Coverage and Modified Condition
Decision Coverage. WG-52/SC-190 Discussion paper. Paper reference: D004, revision 1.
Draft, September 25, 2000.

8. Dupuy, A. and Leveson, N. An empirical evaluation of the MC/DC coverage criterion on the
HETE-2 satellite software.Proceedings of the Digital Aviation Systems Conference (DASC),
Philadelphia, USA, October 2000.

9. Hayhurst, K. J., Veerhusen, D. S., Chilenski, J. J., and Rierson, L. K.A Practical Tutorial
on Modified Condition/Decision Coverage, Report NASA/TM-2001-210876, NASA, USA,
May 2001.

10. Jasper, R., Brennan, M., Williamson, K., Currier, B., and Zimmerman, D. Test data gener-
ation and feasible path analysis.Proceedings of the 1994 International Symposium on Soft-
ware Testing and Analysis, Seattle, WA, USA, August 17–19, 1994, pp. 95–107.

11. Jia, X.ZTC: A Type Checker for Z Notation. User’s Guide. Version 2.03, August 1998.Divi-
sion of Software Engineering, School of Computer Science, Telecommunication, and Infor-
mation Systems, DePaul University, USA, 1998.

12. Li, Y. Y. Structural test cases analysis and implementation.42nd Midwest Symposium on
Circuits and Systems, 8–11 August, 1999, Volume 2, pp. 882–885.

13. Myers, G.The Art of Software Testing.Wiley-Interscience, 1979.
14. Offutt, A. J., Xiong, Y., and Liu, S. Criteria for generating specification-based tests.Pro-

ceedings of the Fifth IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS’99), Las Vegas, Nevada, USA, October 18–21, 1999, pp. 119–129.

15. Roper, M.Software Testing.McGraw-Hill, 1994.
16. RTCA/DO-178B.Software Considerations in Airborne Systems and Equipment Certifica-

tion, RTCA, Washington DC, USA, 1992.
17. Vilkomir, S. A. and Bowen, J. P.Formalization of Control-flow Criteria of Software Testing.

Technical Report SBU-CISM-01-01, SCISM, South Bank University, London, UK, January
2001.

18. Vilkomir, S. A. and Bowen, J. P.Application of Formal Methods for Establishing Regulatory
Requirements for Safety-Critical Software of Real-Time Control Systems. Technical Report
SBU-CISM-01-03, SCISM, South Bank University, London, UK, 2001.

19. Vilkomir, S. A. and Bowen, J. P. Formalization of software testing criteria using the Z nota-
tion, Proceedings of COMPSAC 2001: 25th IEEE Annual International Computer Software
and Applications Conference, Chicago, Illinois, USA, 8–12 October 2001. IEEE Computer
Society Press, 2001, pp. 351–356.

20. Vilkomir, S. A. and Kharchenko, V. S. Methodology of the Review of Software for Safety
Important Systems.Safety and Reliability. Proceedings of ESREL’99 – The Tenth European
Conference on Safety and Reliability, Munich-Garching, Germany, 13–17 September 1999,
Vol. 1, pp. 593–596.



21. Voznessensky, V. and Berkovich, V. VVER 440 and VVER-1000. Design Features in Com-
parison with Western PWRS.International Conference on Design and Safety of Advanced
Nuclear Power Plants, Tokyo, October 1992, Vol. 4.

22. Zhu, H., Hall P. A., and May, H. R. Software unit test coverage and adequacy.ACM Com-
puting Surveys, Vol. 29, No. 4, December 1997, pp. 336–427.


