

CCA User Defined Extensions

Reference and Guide

16-NOV-01, 14:51

IBM CCA User Defined Extensions

Reference and Guide

16-NOV-01, 14:51

 16-NOV-01, 14:51

 Note!

Before using this information and the product it supports, be sure to read the general information under Appendix I, “Notices” on
page I-1.

First Edition (November, 2001)

IBM does not stock publications at the address given below. This and other publications related to the IBM 4758 Coprocessor can
be obtained in PDF format from the Library page at http://www.ibm.com/security/cryptocards.

Reader’s comments can be communicated to IBM by using the Comments and Questions Form located on the product Web site at
http://www.ibm.com/security/cryptocards, or you can respond by mail to:

Department VM9A, MG81/204-3
IBM Corporation
8501 IBM Drive
Charlotte, NC 28262-8563
U.S.A.

IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1999, 2001. All rights reserved.

Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

 16-NOV-01, 14:51

 Contents

About This Book . xi
Prerequisite Knowledge . xi
Organization of This Book . xi
Typographic Conventions . xiii
Related Publications . xiii

General Interest . xiii
CCA Support Program Publications . xiii
Custom Software Publications . xiii
Cryptography Publications . xiv
Other IBM Cryptographic Product Publications xvi

Summary of Changes . xvi

Chapter 1. Understanding the UDX Environment 1-1
CCA Communication Structures . 1-7

Chapter 2. Building and Installing a CCA User-Defined Extension 2-1
Host Piece of a UDX . 2-1

Building the Host Piece of a UDX . 2-1
Installing the Host Piece of a UDX . 2-3

Coprocessor Piece of a UDX . 2-5
Building the Coprocessor Piece of a UDX . 2-5
Installing the Coprocessor Piece of a UDX 2-9

Chapter 3. SCC Functions . 3-1
Coprocessor-Side SCC API Functions . 3-1

Chapter 4. Communications Functions . 4-1
Header Files for Communications Functions 4-1
Summary of Functions . 4-1
CSFACKDS - Access ICSF Cryptographic Keys Data Set 4-3
CSFAPKDS - Access ICSF Public Key Data Set 4-5
CSFACCPN - Send a Request to the Coprocessor 4-7
CSFACPRB - Build a CPRB . 4-10
CSFADSCP - Destroy a CPRB . 4-13
CSFAVLPB - Validate a CPRB . 4-14
CSFAPBLK - Parse a CPRB . 4-16
CSFAPKTV - Validate/Initialize an RSA or DSS Key Token 4-18
CSFADSPI - Communication Between Services and Coprocessor 4-20
CSFASEC - Check Authorization . 4-24
BuildParmBlock - Build a Parameter Block 4-25
Cas_proc_retc - Prioritize Return Code . 4-29
FindFirstDataBlock - Search for Address of First Data Block 4-30
FindNextDataBlock - Search for Address of Next Data Block 4-31
find_first_key_block - Search for First Key Data Block 4-32
find_next_key_block - Find Address of Next Key Data Block 4-33
InitCprbParmPointers - Initialize CPRB Parameter Pointers 4-34
keyword_in_rule_array - Search for Rule Array Keyword 4-35
parm_block_valid - Examine and Verify a Parameter Block 4-36
rule_check - Verify Rule Array . 4-37

 Contents iii

 16-NOV-01, 14:51

Chapter 5. Function Control Vector Management Functions 5-1
Header Files for Function Control Vector Management Functions 5-1
Summary of Functions . 5-1
getSymmetricMaxModulusLength - Get RSA Key Length 5-2
isFunctionEnabled - Check Whether a Function is Enabled 5-3

Chapter 6. CCA Master Key Manager Functions 6-1
Header Files for Master Key Manager Functions 6-1

Overview of the Coprocessor CCA Master Keys 6-1
Location of the Master Keys . 6-2
Initialization of the Master Key SRDI . 6-2

CCA Master Key Manager Interface Functions 6-3
Common Entry Processing . 6-3
Required Variables . 6-3

Functions to Check Master Key Values and Status 6-5
Summary of Functions . 6-5
 mkmGetMasterKeyStatus - Get Master Key Status 6-6
get_mk_verification_pattern . 6-8

Functions to Encrypt and Decrypt Using the Master Key 6-9
Summary of Functions . 6-9
ede3_triple_decrypt_under_master_key . 6-10
ede3_triple_encrypt_under_master_key . 6-11
TDESDecryptUnderMasterKey . 6-12
TDESEncryptUnderMasterKey . 6-13
triple_decrypt_under_master_key . 6-14
triple_decrypt_under_master_key_with_CV 6-15
triple_encrypt_under_master_key . 6-16
triple_encrypt_under_master_key_with_CV 6-17

Chapter 7. SHA-1 Functions . 7-1
Header Files for SHA-1 Functions . 7-1
Summary of Functions . 7-1
computeHMAC_SHA1 - Compute HMAC using SHA-1 Algorithm 7-2
do_sha_hash_message - Calculate SHA-1 Hash Hardware/Software 7-3
do_sha_hash_msg_to_bfr - SHA-1 Hash . 7-6
hw_sha_hash_message - Compute SHA-1 Hash in Hardware 7-7
sha_hash_message - SHA-1 Hash with Chaining 7-9
sha_hash_msg_to_bfr - SHA-1 Hash . 7-12

Chapter 8. DES Utility Functions . 8-1
Header Files for DES Utility Functions . 8-1
Summary of Functions . 8-1
Overview . 8-3
cas_adjust_parity - Adjust Parity . 8-4
 CasBuildCv - Build a Default Control Vector 8-5
 CasBuildToken - Build a Default Token . 8-6
 CasCurrentMkvp - Current Master Key Verification Pattern 8-8
 CasOldMkvp - Old Master Key Verification Pattern 8-9
cas_des_key_token_check - Verify the DES Key Token 8-10
cas_get_key_type - Return Key Type . 8-11
cas_key_length - Return Key Length . 8-12
cas_key_tokentvv_check - Verify the Token Validation Value 8-13
 CasMasterKeyCheck - Master Key Version Check 8-14
cas_parity_odd - Verify Parity . 8-16

iv UDX Reference and Guide

 16-NOV-01, 14:51

 RecoverDesDataKeyWithMK - Recover DES Data Key 8-17
 RecoverDesKekImporterWithMK - Recover DES Importer KEK 8-19

Chapter 9. RSA Functions . 9-1
Header Files for RSA Functions . 9-1
Summary of Functions . 9-1
Overview . 9-4
CalculatenWordLength - Return Word Length of Modulus 9-6
 CreateInternalKeyTokenWithMK - Create Internal Key Token 9-7
 CreateRsaInternalSectionWithMK - Create RSA Internal Section 9-8
delete_KeyToken - Delete a Key From On-Board Storage 9-9
GenerateCcaRsaToken - Generate CCA RSA Key Token 9-10
GenerateRsaInternalToken - Generate RSA Key Token 9-11
generate_dSig - Receives RSA Key Token 9-12
GeteLength - Return RSA Public Exponent Byte Length 9-14
getKeyToken - Get a PKA Token From On-Board Storage 9-15
GetModulus - Extract and Copy RSA Modulus 9-16
GetnBitLength - Return RSA Modulus Bit Length 9-17
GetnByteLength - Return RSA Modulus Byte Length 9-18
GetPublicExponent - Extract and Copy Public Exponent 9-19
GetRsaPrivateKeySection - Return Private Key 9-20
GetRsaPublicKeySection - Return Public Key 9-21
GetTokenLength - Return Key Token Length 9-22
IsPrivateExponentEven - Verify RSA Private Exponent 9-23
IsPrivateKeyEncrypted - Verify Private Key Encryption 9-24
IsPublicExponentEven - Verify RSA Public Exponent 9-25
IsRsaToken - Verify RSA Key . 9-26
IsTokenInternal - Key Token Format . 9-27
PkaHashQueryWithMK - Return Master Key Version 9-28
 PkaMkvpQueryWithMK - Return Master Key Version 9-29
pka96_tvvgen - Calculate Token Validation Value 9-30
RecoverPkaClearKeyTokenUnderMkWithMK 9-31

RecoverPkaClearKeyTokenUnderXport . 9-33
 ReEncipherPkaKeyTokenWithMK - Re-Encipher PKA Key Token 9-34
RequestRSACrypto - Perform an RSA Operation 9-35
store_KeyToken - Store Registered or Retained Key 9-36
TokenMkvpMatchMasterKey - Test Encryption of RSA Key 9-37
ValidatePkaToken - Validate RSA Key Token 9-38
VerifyKeyTokenConsistency - Verify Key Token Consistency 9-39
verify_dSig - Verify RSA Key Token Signature 9-40

Chapter 10. CCA SRDI Manager Functions 10-1
Header Files for SRDI Manager Functions 10-1
Overview . 10-1
CCA SRDI Manager Operation . 10-3
Controlling Concurrent Access to an SRDI 10-6
Summary of Functions . 10-7
close_cca_srdi - Close CCA SRDI . 10-8
create_cca_srdi - Create CCA SRDI . 10-9
create4update_cca_srdi - Create CCA SRDI for Update Only 10-11
delete_cca_srdi - Delete CCA SRDI . 10-12
get_cca_srdi_length - Get CCA SRDI Length 10-13
open_cca_srdi - Open CCA SRDI . 10-14
resize_cca_srdi - Resize CCA SRDI . 10-15

 Contents v

 16-NOV-01, 14:51

save_cca_srdi - Save CCA SRDI . 10-16
update_cca_srdi - Update an SRDI Item 10-17
Example Code . 10-18

Chapter 11. Cache Management Functions 11-1
Header Files for Caching Functions . 11-1
Overview of Cache Management Functions 11-1
Summary of Functions . 11-2
cache_clear . 11-3
cache_delete . 11-4
cache_delete_item . 11-5
cache_get_item . 11-6
cache_get_item_b . 11-7
cache_init . 11-8
cache_status . 11-9
cache_write_item . 11-10

Chapter 12. Miscellaneous Functions . 12-1
Header Files for Miscellaneous Functions 12-1
Summary of Functions . 12-1
check_access_auth_fcn - Verify User Authority 12-2
GetKeyLength - Get Length of Key Token 12-4
intel_long_reverse - Convert Long Values 12-5
intel_word_reverse - Convert 2-Byte Values 12-6
TOKEN_IS_A_LABEL - Identifies the Token as a Label 12-7
TOKEN_LABEL_CHECK - Determine if Key Identifier is a Label 12-8

Appendix A. UDX Sample Code - Host Piece - Service A-1

Appendix B. UDX Sample Code - Host Piece - Service Stub B-1

Appendix C. UDX Sample Code - Host Piece - CSFPCI Post-Processing
Exit . C-1

Appendix D. UDX Sample Code - Coprocessor Piece D-1

Appendix E. UDX Sample Code - Workstation Host - Test Code E-1

Appendix F. Moving a UDX from the Model 1 Card to the Model 2 Card . F-1
Master Key Manager Changes . F-1
Makefile Changes . F-2

Appendix G. Reserved Values . G-1

Appendix H. Data Structures . H-1
Structures Used in Communications Between NT Host and Coprocessor . . H-1
Data Structures for Caching Functions . H-7
Other Useful Data Structures . H-8

Appendix I. Notices . I-1
Copying and Distributing Softcopy Files . I-2
Trademarks . I-2

List of Abbreviations and Acronyms . X-1

vi UDX Reference and Guide

 16-NOV-01, 14:51

Glossary . X-3

Index . X-7

 Contents vii

 16-NOV-01, 14:51

viii UDX Reference and Guide

 16-NOV-01, 14:51

 Figures

1-1. View of CCA with User-Defined Extensions 1-2
1-2. Request and Reply Parameter Block Formats 1-7
2-1. Example UDX Command Processor Prototype 2-6
2-2. Example UDX Access Control Points 2-7
2-3. Example UDX Command Decoding Array Definition 2-8
4-1. The RULE_MAP Structure . 4-37
4-2. Example Rule Map for Verb CSNBPKI 4-39
4-3. Example Rule Map for Verb CSUAACI 4-39
5-1. Possible Values . 5-4
6-1. Master Key Status Bits . 6-6

10-1. Master SRDI Manager Overview . 10-2
10-2. Master SRDI Read Illustration, Part 1 10-4
10-3. Master SRDI Read Illustration, Part 2 10-5
10-4. Master SRDI Read Illustration, Part 3 10-5

 Figures ix

 16-NOV-01, 14:51

x UDX Reference and Guide

 16-NOV-01, 14:51

About This Book

The IBM 4758 PCI Cryptographic Coprocessor CCA User Defined Extensions
Reference and Guide, Version 2: 4758-002 and 4758-023 describes the Common
Cryptographic Architecture (CCA) application programming interface (API) function
calls that are available to user-defined extensions to CCA. A user-defined
extension (UDX) allows a developer to add customized operations to IBM’s CCA
Support Program. UDXs are written and invoked in the same manner as base
CCA functions and have access to the same internal functions and services as the
CCA Support Program.

This document begins with an overview of the UDX programming environment and
the sample files that are provided for use by UDX authors. The remainder of the
document is a reference manual that describes a variety of functions that a UDX
developer may exploit. The callable functions may be grouped into three classes:

1. Functions that may be called by the portion of a UDX that runs inside the PCI
cryptographic coprocessor.

2. Functions that may be called by the portion of a UDX that runs on the host.

3. Functions that are available both inside the coprocessor and on the host.

Most of the functions are in the first class.

The primary audience for this manual is developers who need to write a UDX. This
manual should be used in conjunction with the manuals listed under “CCA Support
Program Publications” on page xiii and “Custom Software Publications” on
page xiii.

 Prerequisite Knowledge
The reader of this book should understand how to perform basic tasks (including
editing, system configuration, file system navigation, and creating application
programs) on the host machine and in the Windows NT environment, and should
understand the use of IBM’s CCA Support Program (as described in the IBM 4758
PCI Cryptographic Coprocessor CCA Support Program Installation Manual and the
IBM 4758 PCI Cryptographic Coprocessor CCA Basic Services Reference and
Guide). The reader should also understand the OS/390 application environment
(as described in the OS/390 ICSF Application Programmer’s Guide and the OS/390
ICSF System Programmer’s Guide). Familiarity with the SCC application
development process (as described in the IBM 4758 PCI Cryptographic
Coprocessor Custom Software Developer’s Toolkit Guide) is also required.

Organization of This Book
Chapter 1, “Understanding the UDX Environment” discusses the design of the CCA
application and the separation of the CCA API into host-side and coprocessor-side
components.

Chapter 2, “Building and Installing a CCA User-Defined Extension” discusses how
to build each portion of a UDX.

 About This Book xi

 16-NOV-01, 14:51

Chapter 3, “SCC Functions” summarizes the secure cryptographic coprocessor
(SCC) API on top of which IBM’s CCA coprocessor application modules are built.
A UDX may use the SCC API if so desired.

Chapter 4, “Communications Functions” describes the functions that allow the
piece of a UDX that runs on the host to exchange information with the piece of the
UDX that runs in the coprocessor.

Chapter 5, “Function Control Vector Management Functions” describes the
functions that allow a UDX to determine which cryptographic operations have been
authorized by the CCA function control vector and how long certain cryptographic
keys may be.

Chapter 6, “CCA Master Key Manager Functions” describes the functions that allow
a UDX to access and manipulate the CCA master key registers, which are used to
encrypt and decrypt data and keys using various forms of the Data Encryption
Standard (DES) algorithm.

Chapter 7, “SHA-1 Functions” describes the functions that a UDX can use to
compute the hash of a block of data using the Secure Hash Algorithm (SHA-1).

Chapter 8, “DES Utility Functions” describes the functions that a UDX can use to
manipulate and obtain information about key tokens and other cryptographic
structures.

Chapter 9, “RSA Functions” describes the functions that a UDX can use to perform
public key cryptographic operations using the RSA (Rivest-Shamir-Adleman)
algorithm.

Chapter 10, “CCA SRDI Manager Functions” describes the functions that a UDX
can use to store and retrieve data in the coprocessor’s nonvolatile memory areas
(flash memory and battery-backed RAM [BBRAM]).

Chapter 11, “Cache Management Functions” describes the functions that a UDX
can use to implement an on-board cache of secure data, and to track the contents
of the cache on the host.

Chapter 12, “Miscellaneous Functions” describes several assorted utility functions
available to a UDX.

Appendix A, “UDX Sample Code - Host Piece - Service” contains the host-side
portion of a sample UDX.

Appendix D, “UDX Sample Code - Coprocessor Piece” contains the
coprocessor-side portion of a sample UDX.

Appendix F, “Moving a UDX from the Model 1 Card to the Model 2 Card” contains
necessary changes to the UDX codewhen transferring code from a model 1 to a
model 2 card.

Appendix G, “Reserved Values” lists the values reserved for UDX developers.

Appendix H, “Data Structures” contains useful data structures from the toolkit
header files.

xii UDX Reference and Guide

 16-NOV-01, 14:51

Appendix I, “Notices” includes product and publication notices.

A list of abbreviations, a glossary, and an index complete the manual.

 Typographic Conventions
This publication uses the following typographic conventions:

� File names, function names, and return codes are presented in bold type.

� Variable information and parameters are presented in fixed-space type.

� Web addresses are presented in italic type.

 Related Publications
Many of the publications listed below under “General Interest,” “CCA Support
Program Publications,” and “Custom Software Publications” are available in Adobe
Acrobat** portable document format (PDF) at
http://www.ibm.com/security/cryptocards.

z/OS publications are available at
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/.

Click Library to view or print books, or to order available hardcopy publications.

 General Interest
The following publications may be of interest to anyone who needs to install, use,
or write applications for a PCI Cryptographic Coprocessor:

� IBM 4758 PCI Cryptographic Coprocessor General Information Manual (version
-01 or later)

� IBM 4758 PCI Cryptographic Coprocessor Installation Manual

� z900 Support Element Operations Guide, SC28-6813, Version 1.7.2

CCA Support Program Publications
The following publications may be of interest to readers who intend to use a PCI
Cryptographic Coprocessor to run IBM’s Common Cryptographic Architecture
(CCA) Support Program:

� IBM 4758 PCI Cryptographic Coprocessor CCA Support Program Installation
Manual

� IBM 4758 PCI Cryptographic Coprocessor CCA Basic Services Reference and
Guide

� z/OS Integrated Cryptographic Service Facility Application Programmer’s Guide

Custom Software Publications
The following publications may be of interest to persons who intend to write
applications that will run on a PCI Cryptographic Coprocessor:

� IBM 4758 PCI Cryptographic Coprocessor Custom Software Installation Manual

� IBM 4758 PCI Cryptographic Coprocessor Custom Software Interface
Reference

 About This Book xiii

 16-NOV-01, 14:51

� IBM 4758 PCI Cryptographic Coprocessor Interactive Code Analysis Tool
(ICAT) User’s Guide

� IBM 4758 PCI Cryptographic Coprocessor Custom Software Developer’s Toolkit
Guide

� IBM 4758 PCI Cryptographic Coprocessor CP/Q Operating System Overview

� IBM 4758 PCI Cryptographic Coprocessor CP/Q Operating System Application
Programming Reference

� IBM 4758 PCI Cryptographic Coprocessor CP/Q Operating System C Runtime
Library Reference

� AMCC S5933 PCI Controller Data Book, available from Applied Micro Circuits
Corporation, 6290 Sequence Drive, San Diego, CA 92121-4358. Phone
1-800-755-2622 or 1-619-450-9333. The manual is available online as an
Adobe Acrobat** PDF file at http://www.amcc.com/pdfs/5933db.pdf.

 Cryptography Publications
The following publications describe cryptographic standards, research, and
practices applicable to the PCI Cryptographic Coprocessor:

� “Application Support Architecture for a High-Performance, Programmable
Secure Coprocessor,” J. Dyer, R. Perez, S.W. Smith, and M. Lindemann, 22nd
National Information Systems Security Conference, October 1999.

� “Validating a High-Performance, Programmable Secure Coprocessor,” S.W.
Smith, R. Perez, S.H. Weingart, and V. Austel, 22nd National Information
Systems Security Conference, October 1999.

� “Building a High-Performance, Programmable Secure Coprocessor,” S.W. Smith
and S.H. Weingart, Research Report RC21102, IBM T.J. Watson Research
Center, February 1998.

� “Using a High-Performance, Programmable Secure Coprocessor, S.W. Smith,
E.R. Palmer, and S.H. Weingart, in FC98: Proceedings of the Second
International Conference on Financial Cryptography, Anguilla, February 1998.
Springer-Verlag LNCS, 1998. ISBN 3-540-64951-4

� “Smart Cards in Hostile Environments,” H. Gobioff, S.W. Smith, J.D. Tygar,
and B.S. Yee, Proceedings of the Second USENIX Workshop on Electronic
Commerce, 1996.

� “Secure Coprocessing Research and Application Issues,” S.W. Smith, Los
Alamos Unclassified Release LA-UR-96-2805, Los Alamos National Laboratory,
August 1996.

� “Secure Coprocessing in Electronic Commerce Applications,” B.S. Yee and J.D.
Tygar, in Proceedings of the First USENIX Workshop on Electronic Commerce,
New York, July 1995.

� “Transaction Security Systems,” D.G. Abraham, G.M. Dolan, G.P. Double, and
J.V. Stevens, in IBM Systems Journal Vol. 30 No. 2, 1991, G321-0103.

� “Trusting Trusted Hardware: Towards a Formal Model for Programmable
Secure Coprocessors,” S.W. Smith and V. Austel, in Proceedings of the Third
USENIX Workshop on Electronic Commerce, Boston, August 1998.

� “Using Secure Coprocessors,” B.S. Yee (Ph.D. thesis), Computer Science
Technical Report CMU-CS-94-149, Carnegie-Mellon University, May 1994.

xiv UDX Reference and Guide

 16-NOV-01, 14:51

� “Cryptography: It’s Not Just for Electronic Mail Anymore,” J.D. Tygar and B.S.
Yee, Computer Science Technical Report, CMU-CS-93-107, Carnegie Mellon
University, 1993.

� “Dyad: A System for Using Physically Secure Coprocessors,” J.D. Tygar and
B.S. Yee, Harvard-MIT Workshop on Protection of Intellectual Property, April
1993.

� “An Introduction to Citadel—A Secure Crypto Coprocessor for Workstations,”
E.R. Palmer, Research Report RC18373, IBM T.J. Watson Research Center,
1992.

� “Introduction to the Citadel Architecture: Security in Physically Exposed
Environments,” S.R. White, S.H. Weingart, W.C. Arnold, and E.R. Palmer,
Research Report RC16672, IBM T.J. Watson Research Center, 1991.

� “An Evaluation System for the Physical Security of Computing Systems,” S.H.
Weingart, S.R. White, W.C. Arnold, and G.P. Double, Sixth Computer Security
Applications Conference, 1990.

� “ABYSS: A Trusted Architecture for Software Protection,” S.R. White and L.
Comerford, IEEE Security and Privacy, Oakland 1987.

� “Physical Security for the microABYSS System,” S.H. Weingart, IEEE Security
and Privacy, Oakland 1987.

� Applied Cryptography: Protocols, Algorithms, and Source Code in C, Second
Edition, Bruce Schneier, John Wiley & Sons, Inc. ISBN 0-471-12845-7 or ISBN
0-471-11709-9

� ANSI X9.31 Public Key Cryptography Using Reversible Algorithms for the
Financial Services Industry

� IBM Systems Journal Volume 30 Number 2, 1991, G321-0103

� IBM Systems Journal Volume 32 Number 3, 1993, G321-5521

� IBM Journal of Research and Development Volume 38 Number 2, 1994,
G322-0191

� USA Federal Information Processing Standard (FIPS):

– Data Encryption Standard, 46-1-1988

– Secure Hash Algorithm, 180-1, May 31, 1994

– Cryptographic Module Security, 140-1

� Derived Test Requirements for FIPS PUB 140-1, W. Havener, R. Medlock, L.
Mitchell, and R. Walcott. MITRE Corporation, March 1995.

� ISO 9796 Digital Signal Standard

� Internet Engineering Taskforce RFC 1321, April 1992, MD5

� Secure Electronic Transaction Protocol Version 1.0, May 31, 1997

IBM Research Reports can be obtained from:

IBM T.J. Watson Research Center
Publications Office, 16-220
P.O. Box 218
Yorktown Heights, NY 10598

 About This Book xv

 16-NOV-01, 14:51

Back issues of the IBM Systems Journal and the IBM Journal of Research and
Development may be ordered by calling (914) 945-3836.

Other IBM Cryptographic Product Publications
The following publications describe products that utilize the IBM Cryptographic
Architecture (CCA) Application Program Interface (API).

� IBM Transaction Security System General Information Manual, GA34-2137

� IBM Transaction Security System Basic CCA Cryptographic Services,
SA34-2362

� IBM Transaction Security System I/O Programming Guide, SA34-2363

� IBM Transaction Security System Finance Industry CCA Cryptographic
Programming, SA34-2364

� IBM Transaction Security System Workstation Cryptographic Support
Installation and I/O Guide, GC31-4509

� IBM 4755 Cryptographic Adapter Installation Instructions, GC31-4503

� IBM Transaction Security System Physical Planning Manual, GC31-4505

� IBM Common Cryptographic Architecture Services/400 Installation and
Operators Guide, Version 2, SC41-0102

� IBM Common Cryptographic Architecture Services/400 Installation and
Operators Guide, Version 3, SC41-0102

� IBM ICSF/MVS General Information, GC23-0093

� IBM ICSF/MVS Application Programmer’s Guide, SC23-0098

� OS/390 Integrated Cryptographic Service Facility Overview, GC23-3972

� OS/390 Integrated Cryptographic Service Facility Application Programmer’s
Guide, SC23-3976

� OS/390 Integrated Cryptographic Service Facility System Programmer’s Guide,
SC23-3974

� OS/390 ICSF Trusted Key Entry Workstation User’s Guide, SC23-3978

Summary of Changes
This edition of the CCA User Defined Extensions Reference and Guide contains
product information that is current with IBM 4758 PCI Cryptographic Coprocessor
Version 2: 4758-002 and 4758-023. Revision bars (|) throughout this manual
indicate updates.

xvi UDX Reference and Guide

 16-NOV-01, 14:51

Chapter 1. Understanding the UDX Environment

The UDX Development Toolkit for S/390 The UDX Toolkit provides sample code,
object modules, and macros that you can use to extend the IBM-developed
Common Cryptographic Architecture (CCA) application program which employs the
IBM zSeries PCI Cryptographic Coprocessor. You can use as much or as little of
the CCA application function as required to meet your processing requirements.

This chapter explains the design of the CCA “middleware” application. If you are
not familiar with the CCA implementation of ICSF and the zSeries cryptograpic
engines, you should first become familiar with the information in the OS/390 ICSF
System Programmer’s Guide, the OS/390 ICSF Application Programmer’s Guide,
and the IBM 4758 PCI Cryptographic Coprocessor CCA Basic Services Reference
and Guide.

The CCA architecture requires that security-sensitive functions be carried out in an
environment where secret or private quantities can safely appear in the clear and
where the design of the processing functions cannot be altered by an adversary. A
coprocessor application program operates in such an environment. However, the
confidentiality of secret or private quantities (for example, cryptographic keys or
computational values) is also the responsibility of the application program design.

The CCA application operates as a request/response mechanism. Once initialized
by CP/Q++ as a result of a PCI cryptographic coprocessor reset sequence, the CCA
application within the coprocessor waits for an external request. The application
then performs the requested function and returns a response. The application
retains persistent data as a set of security relevant data items (SRDI). The
application stores SRDIs in RAM memory, with a backup copy retained in either
battery-backed RAM (BBRAM) or (optionally) encrypted in flash memory.

The CCA verbs (callable services) that a host application can request are generally
serviced, on a one-for-one basis, by a command processor portion of coprocessor
application code1. A common infrastructure is employed to format a verb request,
transport the request to the coprocessor, dispatch the command processor, and
return the reply to the host. Command processors and the top layer of CCA host
code, z/OS ICSF, make extensive use of a set of common subroutines described in
this manual.

The code that implements a user-defined extension (UDX) to CCA can be
separated into two distinct pieces. One (the “host piece”) is link-edited into a load
module and installed in an APF authorized library. It executes in the ICSF address
space along with the other ICSF callable services. The other (the “coprocessor
piece”) is linked with a library containing IBM’s CCA coprocessor application
modules, and loaded into the coprocessor. The host piece converts requests for
service from the user’s application into messages to be sent to the coprocessor.
These messages are received by the CCA application and routed to the appropriate
(CCA or UDX) command processor.

1 A few CCA verbs are implemented as subroutines in the top layer of CCA host code (z/OS ICSF) and do not send a request to
the PCI Cryptographic Coprocessor.

 Chapter 1. Understanding the UDX Environment 1-1

 16-NOV-01, 14:51

Figure 1-1 on page 1-2 depicts the major elements of code that form the CCA
implementation for zSeries. Each block is described below the figure. Blocks 1
through 5 are functions which execute on the zSeries host; blocks 7 through 11 are
functions which execute on the PCI Cryptographic Coprocessor.

zSeries Server

User’s
application
program

Callable
service stub
or UDX stub

z/OS

User Address Space ICSF Address Space ICSF Data Space

RACF

Inst.
Exits

R
O
U
T
E
R

ICSF
Callable
service or
UDX service

Cryptographic
Coprocessor
Interfaces

Machine
instructions

Cryptographic
Coprocessor
Feature

CCA Dispatcher

CCA Services

CCA Command
Processors

UDX Command
Processors

PCI Cryptographic Coprocessor

CP/Q++ Services

Cryptographic
Key Data Set
(in-storage copy)

CKDS

PKDS

Figure 1-1. View of CCA with User-Defined Extensions

1-2 UDX Reference and Guide

 16-NOV-01, 14:51

�1� UDX service stub

The service stub connects the application program with the callable service. Each
callable service which is part of ICSF has a service stub. Each UDX callable
service must also have a related service stub. A callable service receives
parameters from the application program when the program calls the service stub
associated with the service. The service stub performs a space-switch PC
(Program Call) operation to transfer control from the application’s address space to
ICSF’s address space. The parameters that are associated with a callable service
provide the only communication between the application program and ICSF.

�2� Callable service

ICSF provides access to cryptographic functions through callable services, which
are also known as verbs. A callable service is a routine that receives control using
a CALL statement in an application language. The callable service contains the
CCA verb entry point. On input, the callable service gathers the request information
from the variables identified by the verb parameters and constructs a standardized
set of control blocks for communication to the coprocesor CCA application. The
formatted request is then passed to the cryptographic coprocessor interfaces layer
(�5�). On output, the formatted reply is parsed and the caller’s variables are
updated with the verb results.

The request is communicated from the host to the coprocessor using a Cooperative
Processing Request/Reply Block (CPRB) data structure and an appended,
variable-length request parameter block. The formatted reply is likewise
communicated from the coprocessor to the host with a CPRB and an appended
reply parameter block of the same general structure as the request block.

The fixed-length CPRB structure carries a primary function code, return and reason
code values, and pointers to, and lengths of, the request and reply parameter
blocks and data to be DMAed to/from the coprocessor. The variable-length request
and reply parameter blocks (see Figure 1-2 on page 1-7) carry:

� A sub-function code, the identifier of the command processor
� The rule-array elements, encoded in ASCII
� Verb-unique data (VUD)
� Cryptographic key information (key tokens) in “key blocks”

The subroutines used to construct and to parse these control blocks are used by all
of the ICSF callable services. These same subroutines are entry points that can be
called by the UDX callable services. See Chapter 4, “Communications Functions”
on page 4-1 for a description of the CSFADSPI (Communication interface between
services and coprocessor) function.

The ICSF callable service routines perform minimal checking on the input variables.
The design concept is to perform almost all variable checking within the
coprocessor. The callable service routine must ensure that character-based control
and data information is encoded in the manner expected by the coprocessor
application, regardless of the encoding of this data on the host system. Likewise,
the callable service routine must ensure that integers and other numbers are
communicated in the form expected by the coprocessor application. In general,
integers must be in little-endian format (Intel byte-reversed format). However, most
CCA data structures, such as key tokens, define integer values as big endian
(zSeries integer format) quantities.

 Chapter 1. Understanding the UDX Environment 1-3

 16-NOV-01, 14:51

The UDX callable services are analogous to the ICSF-provided CCA callable
services. The UDX host-piece constructs and parses CPRB and request and reply
parameter blocks using the same subroutines as employed by the ICSF callable
service routines. Once the CPRB and request parameter block are constructed, the
UDX callable service routine uses common subroutines to interface with the
cryptographic coprocessor hardware (�5�). See Chapter 4, “Communications
Functions” on page 4-1 for a description of the CSFADSPI (Communication
interface between services and the coprocessor) function. See Appendix A, “UDX
Sample Code - Host Piece - Service.”

�3� Cryptographic Key Data Set (CKDS)

The Cryptographic Key Data Set (CKDS) is a VSAM data set that contains DES
encrypting keys used by an installation. Besides the encrypted key value, an entry
in the CKDS contains information about the key, such as key type, creation date
and time, last update date and time. If a UDX callable service (UDX host piece)
needs to pass key data to the UDX command processor (UDX coprocessor piece),
the callable service must resolve a key label into a key token. This involves reading
the key record from the CKDS. ICSF maintains an in-storage copy of the CKDS to
improve performance of key access. The callable service uses the CSFACKDS
subroutine to access the in-storage CKDS. (See Chapter 4, “Communications
Functions” on page 4-1 for a description of the CSFACKDS (Access ICSF
Cryptographic Keys Data Set) function.)

�4� Public Key Data Set (PKDS)

The Public Key Data Set (PKDS) is a VSAM data set that contains PKA encrypting
keys used by an installation. If a UDX callable service (UDX host piece) needs to
pass PKA key data to the UDX command processor (UDX coprocessor piece), the
callable service must resolve a key label into a key token. This involves reading the
key record from the PKDS. The callable service uses the CSFAPKDS subroutine
to access the PKDS. (See Chapter 4, “Communications Functions” on page 4-1 for
a description of the CSFAPKDS (Access ICSF Public Key Data Set) function.)

�5� Cryptographic Coprocessor Interfaces

ICSF provides service modules which interface with the cryptographic coprocessor
hardware. The module which interfaces with the PCI cryptographic coprocessor is
CSFACCPN. This module receives control from the callable service routines and
examines the CPRB data passed as input to determine the nature of the call it will
create to the PCI cryptographic coprocessor. The interface module makes use of
machine instructions to cause zSeries Licensed Internal Code (LIC) to receive
control to pass control via the PCI Bus to CP/Q++ in the PCI Cryptographic
Coprocessor.

�6� Cryptographic Coprocessor Feature

The Cryptographic Coprocessor Feature is a hardware feature available on the
following zSeries servers: IBM zSeries Parallel Enterprise Server - Generation 3,
IBM zSeries Multiprise 2000, zSeries G4 Enterprise Server, zSeries G5 Enterprise

Server, zSeries G6 Enterprise Server, IBM zSeries. The Cryptographic
Coprocessor Feature is secure, high-speed hardware which provides cryptographic
functions. The Cryptographic Coprocessor Feature includes dual cryptographic
coprocessor chips protected by tamper-detection circuitry and a cryptographic

1-4 UDX Reference and Guide

 16-NOV-01, 14:51

battery unit. The callable services provided by ICSF utilize both the Cryptographic
Coprocessor Feature (CCF) and the PCI cryptographic coprocessor to provide
cryptographic functions to applications. The CCF, however, is not available for
direct invocation by UDX callable services (other than by nested calls to other ICSF
callable services). Cryptographic functions for UDX callable services are provided
by the PCI cryptographic coprocessor.

�7� CP/Q++ Services

CP/Q++ becomes aware of an application in coprocessor segment three following a
reset sequence. The application’s entry point is called and CCA registers itself with
CP/Q++.

When CP/Q++ receives a request from the host it checks for a registered application
identifier; the identifier is a constant prearranged between the cryptographic
coprocessor interfaces layer and the CCA application. CCA host requests include
the CPRB and request parameter block. The cryptographic coprocessor interfaces
layer presents sufficient information, which is passed on by CP/Q++, so that the
CCA Dispatcher can request CP/Q++ to obtain the CPRB and request parameter
block.

Other CP/Q++ services for DES, RSA, DSA, random number, date and time,
storage of data in BBRAM and flash memory, and communication with external
functions as described in the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference and IBM 4758 PCI
Cryptographic Coprocessor CP/Q Operating System C Runtime Library Reference
are available to the UDX code. Note that CCA service subroutines are already
available to perform many common functions and therefore command processor
code generally does not call CP/Q++ directly.

�8� CCA Dispatcher

When CP/Q++ responds to the CCA dispatcher’s request for input because of the
receipt of a host request, the dispatcher obtains the CPRB and request parameter
block. The dispatcher also locates the role that governs the processing of the CCA
request, that is, the default role.

The dispatcher uses the sub-function code in the first two bytes of the request
parameter block in a table lookup operation to locate a command processor entry
point. The dispatcher first checks the UDX entry point table for a match. If a
match is not found, the dispatcher checks for a CCA command processor entry
point. (Of course, if again no match is found, the dispatcher constructs a reply
CRPB and fills it with a return and reason code indicating that no such function
exists.) The dispatcher then calls the command processor and passes pointers to
the CPRB and request parameter block, and to the role that governs processing for
this request.

Later the command processor returns control to the dispatcher which uses CP/Q++

to DMA the reply CPRB, and (optionally) the reply parameter block, back to the
host.

�9� CCA Services

The CCA application supplies many subroutines that command processors use to
perform functions in a consistent manner. These routines are described later in this

 Chapter 1. Understanding the UDX Environment 1-5

 16-NOV-01, 14:51

manual. The command processors also make use of three “managers” that localize
certain classes of function to the managers:

SRDI Manager The CCA coprocessor application code generally uses the SRDI
Manager to access information that is held in persistent BBRAM and flash
memory. The manager is responsible for serializing the use of the SRDIs to
accommodate the multi-tasking environment. See Chapter 10, “CCA SRDI
Manager Functions” on page 10-1.

Access Control Manager All operations on roles and profiles are carried out by
the Access Control Manager. Command processors call the manager to
determine if individual control points are authorized. When a command
processor is designed, one or more control points may be assigned, as
required for security purposes, to authorize function within the command
processor.

Master Key Manager All operations pertaining to the master keys are performed
by this manager. Code in other parts of CCA does not access the master key
values directly, but rather calls the manager for operations that affect or use
the master keys and their registers. See Chapter 6, “CCA Master Key
Manager Functions” on page 6-1.

Note that all of the CCA coprocessor code and much of CP/Q++ operates at
“protection ring 3” in the Intel 80x86 architecture. Therefore, all of this code has
access to memory areas belonging to any portion of CCA. As additional code is
created, it should be inspected to ensure that it performs only the intended function
and accesses only information appropriate to the intended function.

�1�� CCA Command Processors

In general, each CCA verb results in a call to one command processor, the code in
the coprocessor CCA application that performs the function unique to a verb.

Command processor code can call any of the other CCA subroutines and manager
functions as well as functions available on the CP/Q++ API. In general, a command
processor will perform the following steps. See Appendix D, “UDX Sample Code -
Coprocessor Piece.”

� Copy the request CPRB to form the reply CPRB in the memory provided by the
dispatcher.

� Set the return code and reason code to 0, 0 using Cas_proc_retc() and copy
the sub-function code into the reply block.

� Check that the caller is authorized to use this domain.
� Initialize the master key selector.
� Call the Access Control Manager to determine if the appropriate control point is

authorized using CHECK_ACCESS_AUTH().
� Because most command processors will need to decrypt or encrypt a key,

determine that there is a valid master key(s) using mkmGetMasterKeyStatus().
� Check that the request parameter block is formed in a valid manner by calling

parm_block_valid().
� Check the length of the rule array data area by examining the rule array area

length bytes. For CCA, this value is 8x+2 where x=0, 1, ...,n. However, you
could make this portion of the request parameter block contain data of almost
any length. You can check the rule array elements using rule_check().

1-6 UDX Reference and Guide

 16-NOV-01, 14:51

� Check the length of any VUD, data formatted to the needs of the command
processor. You should establish addressability to the VUD using a structure
definition.

� Check the length and content of the zero or more key blocks.
� Perform the desired command function.
� Determine that the reply will not exceed the permissible reply size.
� Fill in the reply block with the rule array length and any elements, fill in the

VUD length and any data, and fill in the key-block area length and any key
blocks.

� Return to the dispatcher.

�11� UDX Command Processors

UDX command processors are coded in the same way as the existing CCA
command processors and have all of the same rights and responsibilities. In
addition, you must establish the ccax_cp_list[] and the ccax_cp_list_size variable to
inform the dispatcher of the length and content of the sub-function lookup table with
the UDX command processor entry points.

CCA Communication Structures
Two of the commonly used data structures internal to the CCA implementation are
described in this section:

� Request and reply parameter blocks
� Key blocks and their header

CCA key tokens are described in Appendix H of the z/OS Integrated Cryptographic
Service Facility Application Programmer’s Guide.

Request and Reply Parameter Block Format
The request and reply parameter blocks immediately follow a data structure of type
CPRB_structure. Figure 1-2 shows the request and reply parameter block format.

Note: Be careful that the host code processes the lengths in little-endian format
(“Intel byte-reversed order”).

Field Name Description

Subfunction code A code that identifies the command processor through
a CCA dispatcher table lookup operation.

Rule Array Length Length in bytes of the rule array portion of the block.
Incorporation of rule-array information is optional, but
this field must be present. If no rule-array information
is specified, this field must be set to 2 (that is, the size
of the length field).

Figure 1-2. Request and Reply Parameter Block Formats

Field:

Sub-
function
Code

Rule
Array
Length

Rule
Array
Data

Verb
Unique
Data
Length

Verb
Unique
Data

Key
Block
Fields
Length

Key
Block
Fields

Size: 2 2 X 2 Y 2 Z

Offset: 0 2 4 4+X 6+X 6+X+Y 8+X+Y

 Chapter 1. Understanding the UDX Environment 1-7

 16-NOV-01, 14:51

Rule Array Data Zero or more 8-byte character arrays (not
NULL-terminated). If no rule-array elements are
specified, this field is empty (0-length).

Verb Unique Data Length Length in bytes of the (optional) data that is unique to
this verb call and the length field. This field must
always be present. If no data is specified, this field
must be set to 2.

Verb Unique Data Optional data block to be passed to the verb. For
instance, if the verb is to encrypt 8 bytes as a key, the
verb unique data might be the clear value of the key.
If no data is specified, this field is empty (0-length).

Key Block Fields Length Length in bytes of the optional key block(s) portion of
the request or reply parameter block. This field must
always be present. If no keys are specified, this field
must be set to 2.

Key Block Fields Optional key block(s) exchanged between the host
and coprocessor code. If no key tokens are specified,
this field should be empty (0-length).

While it is possible to construct a request/reply parameter block “by hand” using
pointer arithmetic, it is recommended that the UDX developer instead use the utility
routine CSFACPRB. This routine simplifies request/reply parameter block creation by
accepting an arbitrary number of argument pairs (length + data pointer pairs) and
constructs the sub-blocks in the previous table.

Similarly, while it is possible to extract data from the request/reply parameter blocks
“by hand” using pointer arithmetic, it is recommended that the UDX developer
instead use the utility routines CSFAVLPB (Validate a CPRB) and CSFAPBLK (Parse a
CPRB).

Note: An example of the use of these functions is in Appendix A, “UDX Sample
Code - Host Piece - Service” on page A-1.

Passing Large Data Blocks

If more data must be passed, it is possible to pass the host address to the
coprocessor for reading or writing with the CSFADSPI (Communication interface
between services and the coprocessor) or the CSFACPRB (Build a CPRB) function
followed by the CSFACCPN (Send a Request to the Coprocessor) function. The
buffer so addressed for sending to the coprocessor is referred to as a request data
block. The length and pointer for the reply data block can be used for reading data
from the coprocessor. The data buffers must not overlap and must be a multiple of
four bytes long. In order for the device driver to manipulate the buffers efficiently,
they should be aligned on 4-byte boundaries. Access to these buffers is managed
by the coprocessor application using the sccGetBufferData and sccPutBufferData
functions, respectively, using the defined constants CPRB_REQUEST_DATA or
CPRB_REPLY_DATA as buffer indices.

On the host:

1-8 UDX Reference and Guide

 16-NOV-01, 14:51

/
 First, set the CPRB structures properly, with the Rule Array, Verb Unique Data, and Key Blocks
/

/
 using the CSFACPRB or CSFADSPI function.
/

/
 (Alternatively, you can use the CSFADSPI function, in which case you will not also use the
/

/
 CSFACCPN function.
/

CALL CSFACPRB(return_code,

 flags,

 subfunction_code,

 rule_count,

 rules,

 number_vuds,

 vud_list,

 number_keys,

 key_list,

 request_data_block_length,

 request_data_block,

 reply_data_block_length,

 reply_data_block,

 request_CPRB_length,

 request_CPRB,

 reply_CPRB,

 SPB);

/
 Then, submit the request to the coprocessor, using the CSFACCPN function.
/

/
 The CCP must first be set up to address the request and reply data blocks.
/

 DCL

 INPUT_DATA_BLOCK CHAR(LENGTH(CCNP)),

 OUTPUT_DATA_BLOCK CHAR(LENGTH(CCNP));

CCNPPTR = ADDR(INPUT_DATA_BLOCK);

CCNP_ALET = PRIMALET; /
 Primary ALET
/

CCNP_ADDRESS = REQUEST_DATA)BLOCK; /
 Address of data
/

CCNP_LENGTH = REQUEST_DATA_BLOCK_LENGTH; /
 Length of data
/

CCNPPTR = ADDR(OUTPUT_DATA_BLOCK);

CCNP_ALET = PRIMALET; /
 Primary ALET
/

CCNP_ADDRESS = REPLY_DATA_BLOCK; /
 Address of data
/

CCNP_LENGTH = REPLY_DATA_BLOCK_LENGTH; /
 Length of data
/

 CALL CSFACCPN(RETURN_CODE,

 REASON_CODE,

 REQUEST_CPRB,

 REQUEST_CPRB_LENGTH,

 REPLY_CPRB

 REPLY_CPRB_LENGTH,

 PRIMALET,

 PCICC_INDEX,

 PCICC_SERIAL_NUMBER,

 ACCPN_BLANK_ID,

 ACCPN_SHARED,

 ACCPN_DOMAIN_NOT_APPLIC

 SUBFUNCTION_CODE,

 INPUT_DATA_BLOCK,

 OUTPUT_DATA_BLOCK,

 SPB);

 Chapter 1. Understanding the UDX Environment 1-9

 16-NOV-01, 14:51

// First, set the CPRB structures properly, with the Rule Array, Verb Unique Data, and Key Blocks

using the CSFACPRB or CSFADSPI function.

// To set the Request Data Block:

LocalRequestTextLength =
pTextLength;

 LocalReplyTextLength =
pTextLength;

 CSUC_BULDCPRB(pCprb,

(UCHAR
) ESSS_FUNCTION_ID_S,

 RequestBlockLength, // Req.Parm

 pRequestParmBlock, // block

// len + adr

 LocalRequestTextLength, // Req.Data

(UCHAR
) pInpText, // block

// len + adr

sizeof(pRequestReplyBuffer->reply_buf),

 pRequestReplyBuffer->reply_buf,

 LocalReplyTextLength, // Rep.Data

(UCHAR
) pOutText); // block

1-10 UDX Reference and Guide

 16-NOV-01, 14:51

On the card:

// ---

// Get the length of the bulk text first, from

// the CPRB structure.

 // ---

BulkBlockLength = pRequestCprb->req_data_block_length;

 // ---

// Check that the length of the reply data block

// in the CPRB is long enough (depends on your function)

 // ---

if (BulkBlockLength > pRequestCprb->reply_data_block_length)

 {

Cas_proc_retc(pReplyCprb, RT_CONSISTENCY_ERROR);

 return;

 }

 // ---

// Get the InpText

 // ---

// It is best to allocate these large blocks of data dynamically.

// But don't forget to free them later!

InpTxt = malloc(BulkBlockLength);

if (InpTxt == NULL)

 {

 Cas_proc_retc(pReplyCprb, E_ALLOCATE_MEM);

 return;

 }

 memset(InpTxt,255,sizeof(InpTxt));

// Get the data from the buffer.

ReturnMsg = sccGetBufferData(RequestId,

 CPRB_REQUEST_DATA,

 InpTxt,

 BulkBlockLength);

if (ReturnMsg != F)

 {

 free(InpTxt);

 Cas_proc_retc(pReplyCprb,

 RT_CONSISTENCY_ERROR);

 return;

} // End if

 //---

 //

// Build the OutTxt

// after completing the function

// and filling the Reply CPRB with the correct information

 //---

OutTxt = malloc(BulkBlockLength);

if (OutTxt == NULL)

 {

 free(InpTxt);

 Cas_proc_retc(pReplyCprb, E_ALLOCATE_MEM);

 return;

 }

 Chapter 1. Understanding the UDX Environment 1-11

 16-NOV-01, 14:51

for (iCnt=F ; iCnt < BulkBlockLength ; iCnt++)

 {

OutTxt[iCnt] = InpTxt[BulkBlockLength-iCnt-1];

} // End for

 free(InpTxt);

// The data we return is the same length as the data which

// was sent, for this function.

ReturnMsg = sccPutBufferData(RequestId,

 CPRB_REPLY_DATA,

 OutTxt,

 BulkBlockLength);

 free(OutTxt);

if (ReturnMsg != F)

 {

 Cas_proc_retc(pReplyCprb,

 RT_CONSISTENCY_ERROR);

 return;

} // End if

 //---

// Write the Length of OutTxt in the CPRB

 // --

pReplyCprb->reply_data_block_length = BulkBlockLength;

 //--

// Then return to the host function

 //--

 return;

Refer to the IBM 4758 PCI Cryptographic Coprocessor Custom Software Interface
Reference for more details on using the sccGetBufferData and sccPutBufferData
functions.

 Key Blocks
The key blocks portion of the request and reply parameter blocks is used to
transport zero or more key identifiers (key tokens). A key block is a data structure
consisting of a header and appended key token data.

The key block header is a data structure containing a USHORT Length field in
little-endian format followed by a USHORT Flags field in little-endian format. The
Length field indicates the length of the header plus the length of the key token
which follows it. For zSeries, the Flags field should be set to binary zeroes.

1-12 UDX Reference and Guide

 16-NOV-01, 14:51

Chapter 2. Building and Installing a CCA User-Defined
Extension

Building a CCA UDX for zSeries is not a customer function. The steps followed
during UDX development and test are outlined below for your information. See
“Installing the Host Piece of a UDX” on page 2-3 and “Installing the Coprocessor
Piece of a UDX” on page 2-9 for the steps required to install a zSeries UDX.

Host Piece of a UDX

Building the Host Piece of a UDX
The host piece of a UDX consists of two (or more) modules which implement a
callable service that performs one or more cryptographic functions. An application
program calls and passes parameters to the callable service. The main portion of
the host piece of the UDX is the module which provides the callable service. The
UDX callable service module typically checks its input parameters, constructs a
request block, sends the request to the coprocessor and receives the reply,
extracts the result, and returns the result to the user’s application. The second
module required to implement the host portion of the UDX is a service stub. The
service stub connects the application program with the UDX callable service. The
UDX callable service is defined in the ICSF Installation Options Data Set via the
UDX keyword. Using the UDX keyword, a number to identify the service and the
load module containing the service are specified.

During ICSF startup, ICSF loads the load module containing the UDX service into
the ICSF address space with the ICSF callable services. ICSF binds the service
with the service number specified in the Installation Options Data Set.

The steps a developer performs in order to create the host piece of the UDX are as
follows:

1. Define the UDX API.

2. Define the subfunction code for the UDX.

3. Define new completion codes for the UDX.

4. Update the appropriate macros supplied with the UDX Development Toolkit for
zSeries with the UDX subfunction code and completion codes.

5. Design and code the logic of the UDX callable service.

6. Code the UDX service stub.

7. Compile the UDX callable service and service stub.

This section lists the steps an IGS developer performs in order to create the host
piece of the zSeries UDX. More development detail is provided in this draft
material than is provided in the customer version.

1. Define the UDX API.

The definition of the UDX API will most likely be a joint effort between IGS
developers and the customer’s technical team. IGS will work with the customer
to understand the requested function, and to develop the API for the UDX

 Chapter 2. Building and Installing a CCA User-Defined Extension 2-1

 16-NOV-01, 14:51

callable service. It is possible that the customer will defer the definition of the
API totally to the IGS development team.

The UDX API may have any number of parameters, although to make use of
ICSF’s CSFVRGEN macro it is more convenient if the number of parameters is
less than 20. Callable service parameters are positional, and must be specified
even if not used. For consistency, it is recommended that all UDX functions
include the following six parameters as the first six parameters of the API:
return_code, reason_code, exit_data_length, exit_data, rule_array_count,
and rule_array.

2. Define the subfunction code for the UDX.

There will be one subfunction code associated with the UDX command
processor (the coprocessor piece of the UDX). The following 2-character code
points have been reserved for CCA extensions. You should not use other code
points as they may conflict with existing CCA commands.

WA - WZ, W0 - W9
XA - XZ, X0 - X9 (reserved for customer-written UDXs)
YA - YZ, Y0 - Y9 (reserved for customer-written UDXs)

must be added to the macro CSFCPRB -- add the subfunction in the form

CCP_FUNCTION_KEY_GENERATE CONSTANT('4B47'X) /
 KG
/

(that is, in “big-endian” form). The CSFCPRB macro must be INCLUDEd
(%INCLUDE SYSLIB(CSFCPRB);) in the host callable service module.

3. Define new completion codes for the UDX.

A UDX function returns a completion code indicating whether the function
succeeded or not (and giving some idea of what caused the failure if one
occurred). The standard CCA completion codes are defined in cmnerrcd.h and
their meanings and use are further clarified in an appendix to the IBM 4758 PCI
Cryptographic Coprocessor CCA Basic Services Reference and Guide. If no
standard code is applicable to a particular situation, new completion codes
should be defined in the cxt_cmds.h header file that is #included in the
coprocessor portion of the UDX (the UDX command processor). Completion
codes for ICSF code are defined in the macros CSFSDCL and CSFFDCL. In
most cases there will be no need to add a new completion code to the ICSF
macro(s). The only reason to add it would be to facilitate referencing the
completion code via a variable name in the host portion of the UDX.

4. Update the appropriate macros with the UDX subfunction code and completion
codes (if necessary).

The UDX subfunction code is defined in macro CSFCPRB; completion codes
are defined in macro CSFFDCL.

5. Design and code the logic of the UDX callable service.

The host piece of a UDX is typically straightforward - it essentially constructs a
request block, sends the block to the coprocessor, and parses the result. See
Appendix A, “UDX Sample Code - Host Piece - Service” on page A-1 for a
sample (UDXKEN1.PLX). This sample can be used as a skeleton and
customized to meet the requirements of most UDXs.

In general, the host piece of a UDX should be as small as possible. Most of
the work should be performed by the coprocessor piece. This approach makes
it much easier to port the host piece to different platforms if the need arises.

2-2 UDX Reference and Guide

 16-NOV-01, 14:51

6. Code the UDX service stub.

Besides writing the callable service itself, you must write a service stub, which
is the connection between the application program and the UDX callable
service. The application program calls the service stub, which accesses the
callable service. The service stub can be identified by any name you choose to
call it. All callable service stubs for callable services which execute in ICSF’s
address space look identical. The ICSF group will provide a sample stub which
may be copied to create a new UDX service stub.

7. Compile the UDX callable service and service stub.

The UDX callable service and service stub are both coded in PL/X, and should
be compiled with the PL/X compiler at the ???.?? level. The macro library
concatenation for the compile and assemble steps will be provided by the ICSF
group. (The macro library concatenation is dependent upon the level of
OS/390 on the zSeries system where the UDX is to be installed.)

End IGS Information

This ends the development information.

Installing the Host Piece of a UDX
You will receive several files from IBM which must be installed on the zSeries host
and the ICSF Installation Options data set must be customized in order to use your
UDX. The files and the steps to be followed are specified below. (The OS/390
ICSF System Programmer’s Guide may also provide valuable information about
steps required for UDX installation.)

1. The OBJ file for the UDX callable service must be link-edited into a load
module and installed into an APF authorized library. ICSF uses the normal
OS/390 search order to locate the service:

� Job pack area
� Steplib (if one exists)
� Link pack area (LPA)
� Link list (SYS1.LINKLIB concatenation)

2. The OBJ file for the service stub must be link-edited with the application
program which calls the service stub. Any application program that calls a
service stub must be link-edited with the service stub.

To call a UDX service from an application program, use the following
statement:

CALL <service_stub_name> <service_parameters>

where service_stub_name is the name of the service stub for the UDX callable
service and service_parameters are the parameters you want to pass to the
UDX callable service. You supply the parameters according to the syntax of the
programming language that you use to write the application program.

3. You must identify the UDX service in the ICSF Installation Options Data Set
using the UDX keyword. For information about the specification of the UDX
keyword, refer to the OS/390 ICSF System Programmer’s Guide. You will
specify information including the UDX subfunction code, a service number, and
a load module name.

 Chapter 2. Building and Installing a CCA User-Defined Extension 2-3

 16-NOV-01, 14:51

4. If you received a post-processing exit for the CSFPCI callable service (because
you requested that your UDX have an access control point), the exit must be
installed. Link-edit the OBJ file into a load module, and install the load module
into an APF-authorized library. ICSF uses the normal OS/390 search order to
locate the service:

� Job pack area
� Steplib (if one exists)
� Link pack area (LPA)
� Link list (SYS1.LINKLIB concatenation)

The ICSF Installation Options Data Set must be updated to define the exit. Use
the EXIT keyword, specifying “CSFPCI” for the ICSF name of the callable
service exit. For information about the specification of the EXIT keyword, refer
to the OS/390 ICSF System Programmer’s Guide.

5. You will receive a password associated with the UDX which has been created
for you. You use the password to authorize the UDX on one or more PCI
cryptographic coprocessors. Use the ICSF “Authorize a UDX” panel which is
selectable from the “User Defined Extension Management” panel.

2-4 UDX Reference and Guide

 16-NOV-01, 14:51

Coprocessor Piece of a UDX

Building the Coprocessor Piece of a UDX
The coprocessor piece of a UDX is a command processor that is linked with IBM’s
CCA coprocessor application modules to create an executable that is loaded into
the coprocessor. The coprocessor piece of a UDX may invoke any of the CCA
services and can also invoke CP/Q++ functions.

The steps a developer must complete in order to create the coprocessor piece of a
UDX are as follows:

1. Define the UDX command processor API.

2. Define access control points for the UDX.

3. Define new completion codes for the UDX.

4. Define the subfunction code for the UDX.

5. Add the UDX command processor to the command decoding array.

6. Design and code the logic of the coprocesor piece of the UDX.

7. Build the UDX coprocessor executable.

This section lists the steps an IGS developer performs in order to create the
coprocessor piece of the zSeries UDX. More development detail is provided in this
draft material than is provided in the customer version.

1. Define the UDX command processor API.

A prototype for each command processor the coprocessor piece of the UDX
makes available to the host piece of the UDX must be placed in a header file
(for example, cxt_cmds.h) that is #included by the command processor. The
prototype must have the same parameters and return type as the example
shown in Figure 2-1 on page 2-6.

 Chapter 2. Building and Installing a CCA User-Defined Extension 2-5

 16-NOV-01, 14:51

/

 Enter

 your CCA command extension function prototypes after this comment.

 ==

 The entry points must have the following parameter definitions.

pCprbIn - (input) Pointer to the input CPRB. The request

 parameter block exists immediately after the

 CPRB area.

pCprbOut - (output) Pointer to an area for returning of the

 CPRB followed by the reply parameter block.

 RequestId - (input) Request identifier. It is required

 as input for some scc... library calls.

 roleID - (input) The user's role identifier. It is required

 as input when checking the requestor's access

 authority to this function.

/

void ccax_fcn_1(

 CPRB_structure
pCprbIn,

 CPRB_structure
pCprbOut,

 unsigned long RequestId,

 role_id_t roleID);

Figure 2-1. Example UDX Command Processor Prototype

On entry to a command processor:

pCprbIn contains the address of a cooperative processing request block
(CPRB). The CPRB’s contents match the contents of the CPRB created by the
host piece of the UDX which caused the command processor to gain control.

pCprbOut contains the address of a buffer large enough to hold a CPRB header
and the result of the operation.

RequestId contains a handle generated by the coprocessor operating system
that uniquely identifies the message that the host sent to the coprocessor
whose receipt caused the command processor to gain control.1 A command
processor that invokes basic coprocessor operating system functions may need
to pass this handle as an argument to those functions.

roleID contains the identifier of the role associated with the host process that
caused the command processor to gain control. It can be used to verify that
the host process has the proper authority to perform the requested function.

2. Define access control points for the UDX.

Associated with each profile on the host is a role, or set of coprocessor
operations the profile is allowed to invoke. If access to the functions of the
UDX needs to be restricted in any way, new “access control point” values must
be defined in a header file (for example, cxt_cmds.h) that is #included by the
command processor piece of the UDX. Figure 2-2 on page 2-7 contains an
example of such a definition.

A command processor can use access control points in conjunction with the
role identifier supplied as an argument to the command processor to determine

1 RequestId is the value returned in the pRequestHeader->RequestID output from the call to sccGetNextHeader that received the
message. Refer to the IBM 4758 PCI Cryptographic Coprocessor Custom Software Interface Reference for details.

2-6 UDX Reference and Guide

 16-NOV-01, 14:51

whether or not a particular operation is authorized. See
“check_access_auth_fcn - Verify User Authority” on page 12-2 for details.

/

 Enter

 your CCA command extension access control points after this

 comment.

 ==

 The following range of 2 byte hex code points have been reserved

 for CCA extension access control points.

 Fx8FFF - FxFFFF

/

#define CXT_COMMAND_XXXXXXX Fx8FFF /
 Sample definition.
/

Figure 2-2. Example UDX Access Control Points

Notes:

a. When writing UDXs for zSeries customers, IGS should define access
control points from the range 0xF000-0xFFFF. The range 0x8000-0xEFFF
should be reserved for customer-written UDXs.

b. For zSeries, the access control point for a UDX should never be enabled
by IGS in the DEFALTxx role. Enablement of a UDX access control point
requires a TKE.

3. Define new completion codes for the UDX.

A UDX function returns a completion code indicating whether the function
succeeded or not (and giving some idea of what caused the failure if one
occurred). The standard CCA completion codes are defined in cmnerrcd.h and
their meanings and use are further clarified in an appendix to the IBM 4758 PCI
Cryptographic Coprocessor CCA Basic Services Reference and Guide. If no
standard code is applicable to a particular situation, new completion codes
should be defined in a header file (for example, cxt_cmds.h) that is #included
in the coprocessor portion of the UDX (the UDX command processor).

4. Define the subfunction code for the UDX.

There will be one subfunction code associated with the UDX command
processor (the coprocessor piece of the UDX). The following 2-character code
points have been reserved for CCA extensions. You should not use other code
points as they may conflict with existing CCA commands.

WA - WZ, W0 - W9
XA - XZ, X0 - X9 (reserved for customer-written UDXs)
YA - YZ, Y0 - Y9 (reserved for customer-written UDXs)

The subfunction code must be defined in a header file (for example,
cacuatm.h). The definition must be in “little-endian” form:

#define SSKEYG_ID Fx474B /
 'KG', Generate Key
/

5. Add the UDX command processor to the command decoding array.

IBM’s CCA coprocessor application modules use an array to determine which
UDX command processor to invoke when a request with a particular
subfunction code is received. An entry for each command processor must be
added to the ccax_cp_list array, which must be defined in a program file (for

 Chapter 2. Building and Installing a CCA User-Defined Extension 2-7

 16-NOV-01, 14:51

example, cxt_cmds.c) that is compiled with the coprocessor piece of the UDX.
Each entry contains a subfunction code and the name of the corresponding
command processor.

The ccax_cp_list_size variable must be initialized to the number of entries in
the array.

Figure 2-3 contains an example of the requisite definitions.

/

 Enter

 your CCA command extension array entry after this comment.

 ==

 Each element of the table is a CCAX_CP_DEF type. That is,

 it contains one 2 character sub-function code, and a

 pointer to the corresponding command processor function.

/

CCAX_CP_DEF ccax_cp_list[] = { { CCAXFNC1_ID, ccax_fcn_1 },

{ CCAXFNC2_ID, ccax_fcn_2 } };

/

 Declare a variable which holds the number of CCA extension

 command processors defined in the ccax_cp_list table above.

/

ULONG ccax_cp_list_size = (sizeof(ccax_cp_list)/sizeof(CCAX_CP_DEF));

Figure 2-3. Example UDX Command Decoding Array Definition

6. Design and code the logic of the coprocessor piece of the UDX.

The coprocessor piece of a UDX has access to the same internal functions and
services as the CCA coprocessor application modules and may be quite
complex. A sample (udx_ken1.c) is in Appendix D, “UDX Sample Code -
Coprocessor Piece” on page D-1. It can be used as a skeleton and
customized to meet the requirements of most UDXs.

7. Construct the UDX Authority Table (UAT)

Generate a password associated with the UDX. You can use a random number
generator to generate an 8-byte random number. (This password must be
saved and communicated to the UDX owner.) Hash the password using
SHA-1. To add a new UDX to the UDX Authority Table, modify the cacuatm.h
part. Add a UDX entry consisting of the UDX subfunction code, the SHA-1
hash of the UDX password, and the default authority state ('N') to cacuatm.h.
Increment the number of entries constant (UAT_ENTRY_NUMBER). When
there are any changes to the UAT, the UDX list version number
(UDX_LIST_VERSION) must be incremented once for the set of changes.

8. Build the UDX coprocessor executable.

The UDX Development Toolkit for zSeries includes a sample makefile
(S390NT.mak) for Windows NT. Statements should be added to compile the
source files that contain the coprocessor piece of the UDX. The UDX files
should be compiled with the S39F option and with debug options.

2-8 UDX Reference and Guide

 16-NOV-01, 14:51

End IGS Information

This ends the development information.

(S390NT.mak)

Installing the Coprocessor Piece of a UDX
The UDX coprocessor executable file will be incorporated into the coprocessor
segment three image and signed by IBM. The image will be made available via the
zSeries LIC patch and driver process. To install the UDX command processor on
your coprocessor, install the appropriate level of zSeries LIC. The segment three
image containing the UDX command processor will be loaded into the PCI
cryptographic coprocessor at the next coprocessor reset.

 Chapter 2. Building and Installing a CCA User-Defined Extension 2-9

 16-NOV-01, 14:51

2-10 UDX Reference and Guide

 16-NOV-01, 14:51

 Chapter 3. SCC Functions

The CCA API is built on top of the secure cryptographic coprocessor (SCC) API, a
lower level API that allows the coprocessor piece of the CCA Support Program to
perform various cryptographic operations and to manipulate persistent storage on
the coprocessor. SCC API functions can also be invoked by a UDX. The SCC API
includes a set of functions an application running on the coprocessor may invoke
(the coprocessor-side API).

This section briefly describes SCC API. A more detailed description may be found
in the IBM 4758 PCI Cryptographic Coprocessor Custom Software Interface
Reference.

Coprocessor-Side SCC API Functions
The coprocessor API includes functions in the following categories:

Functions Category Description

Communications Allows a coprocessor application to interact with a host
application and obtain permission to request services
from the coprocessor device managers.

Hash Allows a coprocessor application to compute a
condensed representation of a block of data using
various standard hash algorithms.

DES Allows a coprocessor application to request services from
the Data Encryption Standard (DES) Manager, which
uses the coprocessor’s DES chip to support DES
operations with key lengths of 40, 56, 112, or 168 bits
and the Commercial Data Masking Facility (CDMF)
algorithm.1

Public Key Algorithm Allows a coprocessor application to request services from
the Public Key Algorithm (PKA) Manager, which uses the
coprocessor’s large-integer modular math hardware to
support public key cryptographic algorithms.

Large Integer Modular
Math

Allows a coprocessor application to direct the PKA
Manager to perform specific operations on large integers.

Random Number
Generator

Allows a coprocessor application to request services from
the Random Number Generator (RNG) Manager, which
uses a hardware noise source to deliver random bits that
meet the standards described in FIPS Publication 140-1,
section 4.11.

Nonvolatile Memory Allows a coprocessor application to request services from
the Program Proprietary Data (PPD) Manager, which
controls the coprocessor’s nonvolatile memory areas
(flash memory and battery-backed RAM [BBRAM]).

Coprocessor
Configuration

Configures certain processor features or return
information about the coprocessor.

1 CDMF is a DES-based data confidentiality algorithm with a key strength equivalent to
40 bits. In general, it is used when import or export regulations prohibit the use of
longer keys.

 Chapter 3. SCC Functions 3-1

 16-NOV-01, 14:51

3-2 UDX Reference and Guide

 16-NOV-01, 14:51

 Chapter 4. Communications Functions

In CCA, the host and coprocessor communicate by exchanging well-formed request
and reply data blocks. For consistency, UDX routines also follow this paradigm.

This section describes functions needed to allow the host and coprocessor to
exchange requests and replies.

Header Files for Communications Functions
When using these functions on the coprocessor, your program must include the
following header files.

#include "cmncryt2.h" /
 Cryptographic definitions
/

#include "cmnfunct.h" /
 Common library routines.
/

When using the functions that are available on the host, your program should
include the CSFGSVT macro which contains the ENTRY statements for the host
communications functions.

%INCLUDE SYSLIB(CSFGSVT); /
 Generic service vector table
/

Summary of Functions
Request and reply processing includes the following functions.

On the zSeries Host
CSFACKDS Access the in-storage ICSF Cryptographic Keys Data

Set.

CSFAPKDS Access the ICSF Public Key Data Set.

CSFACCPN Send a request to the coprocessor.

CSFACPRB Build a CPRB.

CSFADSCP Destroy a CPRB.

CSFAVLPB Validate a CPRB.

CSFAPBLK Parse a CPRB.

CSFAPKTV Validate/initialize an RSA/DSS key token.

CSFADSPI Communication interface between services and the
coprocessor.

CSFASEC Check authorization to a RACF-protected or
security-exit-protected resource.

On the Coprocessor
BuildParmBlock Build a parameter block.

Cas_proc_retc Prioritizes a return code in the reply CPRB.

FindFirstDataBlock Search for the first data block.

FindNextDataBlock Search for the next data block.

 Chapter 4. Communications Functions 4-1

 16-NOV-01, 14:51

find_first_key_block Search for the first key block.

find_next_key_block Search for the next key block.

InitCprbParmPointers Initialize CPRB parameter pointers.

keyword_in_rule_array Search for a keyword in the rule array.

parm_block_valid Examine and verify a parameter block.

rule_check Verify a rule array.

Refer to the z/OS Integrated Cryptographic Service Facility Application
Programmer’s Guide, SC23-3976 located on the OS/390 publications Web site
(http://www.ibm.com/servers/eserver/zseries/zos/bkserv/) for general information
about ICSF callable services and common parameters.

4-2 UDX Reference and Guide

 16-NOV-01, 14:51 CSFACKDS - Access ICSF Cryptographic Keys Data Set

CSFACKDS - Access ICSF Cryptographic Keys Data Set
Note: This function is available on the host.

CSFACKDS supports dynamic updating, deleting, and adding of records to the
in-storage copy of the ICSF Cryptographic Key Data Set (CKDS), which holds the
DES private keys.

 Function Prototype
call CSFACKDS

(return_code,

 reason_code,

 exit_data_length,

 exit_data,

 entry_code,

 label,

 key_type,

 output_area,

 SPB)

 Input
On entry to this routine:

exit_data_length is an integer that represents the length of the data that is passed
to the installation exit.

exit_data is a character string containing the data that is passed to the installation
exit.

entry_code is an integer that represents the 4-byte hexadecimal value containing
the entry code. Possible values are:

X'00000001' (TOKEN)
Retrieve a token from the in-storage CKDS. (If the token is not found,
return a return code rather than abending.)

label is a character string containing 64-bytes, left-justified and padded on the right
with blanks, containing the name of the key/record.

key_type is a character string containing 8 EBCDIC characters specifying the type
of key record to be processed.

ANY for generic retrieval.

Otherwise, allowable key types are:

 DATA
 DATAXLAT
 EXPORTER
 IMPORTER
 IPINENC
 MAC
 MACVER
 NULL
 OPINENC
 PINGEN
 PINVER

 Chapter 4. Communications Functions 4-3

 CSFACKDS - Access ICSF Cryptographic Keys Data Set 16-NOV-01, 14:51

 CV

output_area is a character string which is to contain the key record returned.

SPB is a character string containing the service parameter block (SPB) or zero.

 Output
On successful exit from this routine:

return_code is an integer that represents the general result of the callable service.

reason_code is an integer that represents the result of the callable service that is
returned to the application program. Each return code has different reason codes
assigned to it to indicate specific processing problems.

output_area is a character string containing the actual key record returned.

Return and Reason Codes
Common return codes (decimal values in register 15) and reason codes (returned
in register 0 and in the reason_code parameter) generated by this routine are:

Return
Code
(dec)

Reason Code Meaning

0 0 The operation was successful.

8 10012 Key not found.

8 16004 Request failed by RACF.

8 16020 Function not allowed for system key.

12 0 CSF not active.

12 12 Exit has failed.

12 10020 MAC failed.

12 10024 Key failed by installation exit.

12 10036 Label not unique.

12 10052 No space in CKT for dynamic adds.

16 4 Your call to an ICSF callable service resulted in an
abnormal ending.

Abend
Code

Reason Code Meaning

x'18F' 160
256
258

Invalid entry code
Invalid return code from exit
Invalid return code from CSFPCMF

4-4 UDX Reference and Guide

 16-NOV-01, 14:51 CSFAPKDS - Access ICSF Public Key Data Set

CSFAPKDS - Access ICSF Public Key Data Set
Note: This function is available on the host.

CSFAPKDS supports dynamic updating, deleting, and adding of records to the
ICSF Public Key Data Set (PKDS), which holds the PKA and DSS keys.

 Function Prototype
call CSFAPKDS

(return_code,

 reason_code,

 exit_data_length,

 exit_data,

 label,

 token_length,

 token,

 function,

 SPB)

 Input
On entry to this routine:

exit_data_length is an integer that represents the length of the data that is passed
to the installation exit.

exit_data is a character string containing the data that is passed to the installation
exit.

label is a character string containing the name of the key/record which is 64-bytes,
left-justified, and padded on the right with blanks.

token_length is the length of the block available at token. The maximum token size
is 2500 bytes.

token is a character string containing the key token for UPDTENUL and UPDATE
requests.

function is a character string containing eight EBCDIC characters specifying the
function to be performed, and is left-justified and padded on the right with blanks,
as follows:

READ Read record

CREATE Create record

UPDTENUL Replace null token

UPDATE Update token

DELLABEL Delete record

DELTOKEN Replace token with nulls

SPB is a character string containing the service parameter block (SPB) or zero.

 Chapter 4. Communications Functions 4-5

 CSFAPKDS - Access ICSF Public Key Data Set 16-NOV-01, 14:51

 Output
On successful exit from this routine:

return_code is an integer that represents the general result of the callable service.

reason_code is an integer that represents the result of the callable service that is
returned to the application program. Each return code has different reason codes
assigned to it to indicate specific processing problems.

token_length is the actual length of the token returned in token, if the function
specified was READ.

token is a character string containing the actual token returned if the request was a
READ request.

Return and Reason Codes
Common return codes (decimal values in register 15) and reason codes (returned
in register 0 and in the reason_code parameter) generated by this routine are:

Return
Code
(dec)

Reason Code Meaning

0 0 The operation was successful.

4 14008 Authentication code mismatch.

8 Application error.

12 8 Cryptographic facility not available.

16 4 Your call to an ICSF callable service resulted in an
abnormal ending.

Abend
Code

Reason Codes Meaning

x'18F' 174 Unknown FUNCTION code in the parameter list.

4-6 UDX Reference and Guide

 16-NOV-01, 14:51 CSFACCPN - Send a Request to the Coprocessor

CSFACCPN - Send a Request to the Coprocessor
Note: This function is available on the host.

CSFACCPN sends a request to the coprocessor and analyzes and reports the
reply.

 Function Prototype
call CSFACCPN

(return_code,

 reason_code,

 request_addr,

 request_len,

 response_addr,

 response_len,

 caller_alet,

 ccp_index,

 ccp_serial_nr,

 identifier,

 serialization,

 domain_index,

 pcifunction,

 input_data_block,

 output_data_block,

 SPB)

 Input
On entry to this routine:

request_addr is a character string containing the address where the message
header is built.

request_len is an integer that represents the total length of the message.

response_addr is a character string containing the address of where the response
message is copied.

response_len is an integer that represents the amount of available space for the
response message.

caller_alet is an integer that represents the ALET corresponding to request_addr
and response_addr.

ccp_indx is an integer that represents a target cryptographic coprocessor (CCP)
index or -1. The CCP index is one greater than the coprocessor number. If it is
irrelevant as to which coprocessor the service is directed, specify an index of -1.

ccp_serial_nr is a character string containing 8 bytes of EBCDIC characters
specifying the CCP serial number. If you identify the coprocessor by index, or if it
is irrelevant as to which coprocessor the service is directed, specify NOT APPL as
the serial number.

identifier is a character string containing 8 bytes of binary zeroes.

serialization is an integer that represents the type of serialization. Specify 0 for
shared.

 Chapter 4. Communications Functions 4-7

 CSFACCPN - Send a Request to the Coprocessor 16-NOV-01, 14:51

domain_index is an integer that represents -1 to indicate that the domain is not
applicable.

pcifunction is a character string containing 2 bytes of hexadecimal data specifying
the subfunction code of the coprocessor command processor to which the request
is to be sent. A list of subfunction codes for the standard CCA API functions are
located in the file cmncryt2.h. The hexadecimal data is in big endian form. (For
example, the subfunction code for the Clear PIN encrypt service is 'PE' in ASCII, or
X'5045' as a two-byte integer.)

input_data_block is a character string containing 20 bytes of binary zeroes.

output_data_block is a character string containing 20 bytes of binary zeroes.

The input_data_block and output_data_block are only binary zeroes if there is no
request data block or reply data block. If there is a request_data block, the
input_data_block field is a structure as defined below. If there is a reply_data
block, the output_data_block field is a structure as defined below:

� Integer containing the ALET of the data
� 4 bytes of hexadecimal data containing the address of the data
� Integer containing the length of the data (length must be a multiple of 8 bytes)
� Integer containing the storage protect key
� Character string of 4 bytes of binary zeroes

SPB is a character string containing the service parameter block (SPB) or zero.

 Output
On successful exit from this routine:

return_code is an integer that represents the general result of the callable service.

reason_code is an integer that represents the result of the callable service that is
returned to the application program. Each return code has different reason codes
assigned to it to indicate specific processing problems.

response_addr is a character string containing the response message.

response_len is an integer that represents the actual length of the response
message.

ccp_index is an integer that represents the index of the CCP that performed the
service.

ccp_serial_nr is a character string containing the serial number of the coprocessor
that performed the service.

output_data_block is a character string containing 20 bytes of zeroes if there is no
reply data block, or else it is a character string containing the reply data block.

4-8 UDX Reference and Guide

 16-NOV-01, 14:51 CSFACCPN - Send a Request to the Coprocessor

Return and Reason Codes
In general, the return and reason codes from this function will have been generated
by the coprocessor, in the course of completing the request identified by
pcifunction.

Common return codes (decimal values in register 15) and reason codes (returned
in register 0 and in the reason_code parameter) generated by this routine are:

Return
Code
(dec)

Reason Code Meaning

0 0 The operation was successful.

8 Application error.

12 0 CSF not active.

12 X'2B28' Service has failed.

12 X'2B34' Crytographic coprocessor is not available.

16 4 Unrecoverable failure in this routine.

16 4 Your call to an ICSF callable service resulted in an
abnormal ending.

Abend
Code

Reason Code Meaning

x'18F' 80

165
258
267
268
408

NQ incomplete. Error in the interface to the
coprocessor.
Bad internal parameters between internal service calls
Invalid condition code from the CSF (instruction) macro
Full CCP queue CSFACCPS
Bad response code DQ/NQ/PQ AP
PSMID in returned message does not match sent
message

 Chapter 4. Communications Functions 4-9

 CSFACPRB - Build a CPRB 16-NOV-01, 14:51

CSFACPRB - Build a CPRB
Note: This function is available on the host.

CSFACPRB builds the CPRB for a call to a CCA application on a coprocessor.

Note: This function may be invoked using the CSFMCPRB macro which is
provided with the UDX Development Toolkit for zSeries.

 Function Prototype
call CSFACPRB

(return_code,

 flags,

 subfunction_code,

 rule_count,

 rules,

 number_vuds,

 vud_list,

 number_keys,

 key_list,

 request_data_block_length,

 request_data_block,

 reply_data_block_length,

 reply_data_block,

 request_CPRB_len,

 request_CPRB,

 reply_CPRB

 SPB)

 Input
On entry to this routine:

flags is an integer that represents 4 bytes of checkpoint flags. Specify 4 bytes of
binary zeroes.

subfunction_code is a character string containing 2 bytes of hexadecimal data
specifying the subfunction code of the processor command processor to which the
request is to be sent. A list of subfunction codes for the standard CCA API
functions is located in the file cmncryt2.h. The hexadecimal data is in big endian
form. (For example, the subfunction code for the Clear PIN encrypt service is 'PE'
in ASCII, or X'5045' as a two-byte integer.)

rule_count is an integer that represents the number of keywords passed.

rules is a character string containing the keywords to be put into the request
parameter block.

number_vuds is an integer that represents the number of elements to be put into the
verb unique data block.

vud_list is a character string containing the elements to be put in the verb unique
data block. The vud_list is an array of 12-byte entries:

4-10 UDX Reference and Guide

 16-NOV-01, 14:51 CSFACPRB - Build a CPRB

number_keys is an integer that represents the number of elements to be put into the
key block.

key_list is a character string containing the elements to be put into the key block.
The key_list is an array of 12-byte entries:

request_data_block_length is an integer that represents the length of the data in
the request data block.

request_data_block is a character string containing the address of the request data
block.

reply_data_block_length is an integer that represents the length of the data in the
reply data block.

reply_data_block is a character string which is to contain the address of the reply
data block.

SPB is a character string containing the service parameter block (SPB).

Offset Length Description
0 4 length of verb unique data field
4 2 flag1 may be used to indicate the type of data
6 2 flag2 may be used to indicate the type of data
8 4 Address of the data item to be added

Offset Length Description
0 4 Length of key token
4 2 flag used to indicate the type of data
6 2 reserved
8 4 Address of key token to be added

 Output
On successful exit from this routine:

return_code is an integer that represents the general result of the callable service.

request_CPRB_len is an integer that represents the length of the request CPRB and
parameter block.

request_CPRB is a character string containing the address of the request CPRB and
parameter block.

reply_CPRB is a character string containing the address of the reply CPRB and
parameter block.

reply_data_block_length is an integer that represents the length of the data in the
reply data block.

reply_data_block is a character string containing the address of the reply data
block.

 Chapter 4. Communications Functions 4-11

 CSFACPRB - Build a CPRB 16-NOV-01, 14:51

Return and Reason Codes
Common return codes (decimal values in register 15) and reason codes (returned
in register 0 and in the reason_code parameter) generated by this routine are:

Return
Code
(dec)

Reason Code Meaning

0 The operation was successful.

4 Too much data for the request parameter block.

16 4 Your call to an ICSF callable service resulted in an
abnormal ending.

Abend
Code

Reason Code Meaning

x'18F' 178 Unable to obtain storage for CPRB

4-12 UDX Reference and Guide

 16-NOV-01, 14:51 CSFADSCP - Destroy a CPRB

CSFADSCP - Destroy a CPRB
Note: This function is available on the host.

CSFADSCP releases the storage acquired for the request and reply CPRBs by
CSFACPRB. The address of the storage is stored in the SPB.

 Function Prototype
call CSFADSCP

(return_code,

 SPB)

 Input
On entry to this routine:

SPB is a character string containing the service parameter block (SPB).

 Output
On successful exit from this routine:

return_code is an integer that represents the general result of the callable service.

Return and Reason Codes
Common return codes (decimal values in register 15) and reason codes (returned
in register 0 and in the reason_code parameter) generated by this routine are:

Return
Code
(dec)

Reason Code Meaning

0 The operation was successful.

4 No address in the SPB.

16 4 Your call to an ICSF callable service resulted in an
abnormal ending.

Abend
Code

Reason Code Meaning

X'18F' 180 Invalid pointer in SPB for CPRB

 Chapter 4. Communications Functions 4-13

 CSFAVLPB - Validate a CPRB 16-NOV-01, 14:51

CSFAVLPB - Validate a CPRB
Note: This function is available on the host.

CSFAVLPB checks the reply CPRB and parameter block for validity. The service
checks the following:

1. The CPRB fields for valid values.
2. That the domain matches the CDX.
3. The reply parameter block address and length.
4. If there is a reply parameter block:

a. Step through the parameter block and check that the element lengths add
up to the overall length of the parameter block.

b. Determine the address of the verb unique data block.
c. Step through the verb unique data block and check that the element

lengths add up to the overall length of the block.
d. Determine the address of the key block.
e. Step through the key block and check that the element lengths add up to

the overall length of the block.
5. Parse the service return and reason codes.
6. Return to the caller.

 Function Prototype
call CSFAVLPB

(return_code,

 reply_cprb,

 service_return_code,

 service_reason_code,

 parm_block_address,

 vud_block_address,

 key_block_address,

 SPB)

 Input
On entry to this routine:

reply_cprb is a character string containing the address of the reply CPRB.

SPB is a character string containing the service parameter block (SPB).

 Output
On successful exit from this routine:

return_code is the general result of the callable service.

service_return_code is an integer that represents the return code within the CPRB.

service_reason_code is an integer that represents the reason code within the
CPRB.

parm_block_address is a character string containing the address of the reply
parameter block.

vud_block_address is a character string containing the address of the verb unique
data block.

4-14 UDX Reference and Guide

 16-NOV-01, 14:51 CSFAVLPB - Validate a CPRB

key_block_address is a character string containing the address of the key block.

Return and Reason Codes
Common return codes (decimal values in register 15) and reason codes (returned
in register 0 and in the reason_code parameter) generated by this routine are:

Return
Code
(dec)

Reason Code Meaning

0 The operation was successful.

2 The CPRB is not valid.

4 The parameter block is not valid.

6 No CPRB found at this address.

16 4 Your call to an ICSF callable service resulted in an
abnormal ending.

Abend
Code

Reason Code Meaning

X'18F' 179
180
183

Domain in CPRB doesn’t match CCVE
Invalid pointer in SPB for CPRB
Reply CPRB or parameter block is bad

 Chapter 4. Communications Functions 4-15

 CSFAPBLK - Parse a CPRB 16-NOV-01, 14:51

CSFAPBLK - Parse a CPRB
Note: This function is available on the host.

CSFAPBLK parses the next element from the verb unique data block or the key
block.

 Function Prototype
call CSFAPBLK

(return_code,

 block_address,

 element_ptr,

 element_length,

 element_flag,

 element_data_ptr,

 SPB)

 Input
On entry to this routine:

block_address is a character string containing the address of the block to be
parsed.

element_ptr is a character string containing the address of the last record found in
the block, or null if the first record in the block is to be found.

SPB is a character string containing the service parameter block (SPB).

 Output
On successful exit from this routine:

return_code is an integer that represents the general result of the callable service.

element_ptr is a character string containing the address of the next record found in
the block.

element_length is an integer that represents the length of the data returned at the
address specified by the element_data_ptr parameter.

element_flag is a character string containing the flag from the record found.

element_data_ptr is a character string containing the address of the data from the
record found.

4-16 UDX Reference and Guide

 16-NOV-01, 14:51 CSFAPBLK - Parse a CPRB

Return and Reason Codes
Common return codes (decimal values in register 15) and reason codes (returned
in register 0 and in the reason_code parameter) generated by this routine are:

Return
Code
(dec)

Reason Code Meaning

0 0 The operation was successful.

1 The operation was successful. There are no more
records in the block.

4 The last record address is not valid.

6 The block is not valid.

16 4 Your call to an ICSF callable service resulted in an
abnormal ending.

Abend
Code

Reason Code Meaning

X'18F' 180 Invalid pointer in SPB for CPRB

 Chapter 4. Communications Functions 4-17

 CSFAPKTV - Validate/Initialize an RSA or DSS Key Token 16-NOV-01, 14:51

CSFAPKTV - Validate/Initialize an RSA or DSS Key Token
Note: This function is available on the host.

CSFAPKTV establishes addressability to DSS or RSA key token parts and verifies
the correctness of the key token.

 Function Prototype
call CSFAPKTV

(return_code,

 reason_code,

 function,

 input_token_length,

 input_token,

 SPB)

 Input
On entry to this routine:

function is a character string of eight characters containing the function to be
performed by the service.

input_token_length is an integer that represents the actual byte length of the token
body being passed.

input_token is a character string containing the actual token at offset zero.

SPB is a character string containing the service parameter block (SPB).

 Output
On successful exit from this routine:

return_code is an integer that represents the general result of the callable service.

reason_code is an integer that represents the result of the callable service that is
returned to the application program. Each return code has different reason codes
assigned to it that indicate specific processing problems.

input_token is a character string containing the key token updated with debugging
information and entries in the offset tables.

Return and Reason Codes
Common return codes (decimal values in register 15) and reason codes (returned
in register 0 and in the reason_code parameter) generated by this routine are:

Return
Code
(dec)

Reason Code Meaning

0 0 The operation was successful.

8 2040 Invalid first byte (must be X'1E' or X'1F').

8 11012 Invalid flags in the token.

8 11016 Invalid hash value.

8 11020 Token too old—invalid RMK or SMK hash.

4-18 UDX Reference and Guide

 16-NOV-01, 14:51 CSFAPKTV - Validate/Initialize an RSA or DSS Key Token

Return
Code
(dec)

Reason Code Meaning

8 11024 Token missing one or more required parts.

8 11044 Invalid PKA token.

8 11092 Invalid PKA subsection or TLV.

 Chapter 4. Communications Functions 4-19

 CSFADSPI - Communication Between Services and Coprocessor 16-NOV-01, 14:51

CSFADSPI - Communication Between Services and Coprocessor
Note: This function is available on the host.

CSFADSPI handles communication between the callable services and the
coprocessor in the following manner:

1. Builds a CPRB
2. Passes the CPRB to the coprocessor
3. Validates the CPRB on return from the coprocessor
4. Returns an VUD and key block
5. Releases the storage obtained for the CPRB

Note: This function may be invoked using the CSFMDSPI macro which is
provided with the UDX Toolkit.

 Function Prototype
call CSFADSPI

(return_code,

 reason_code,

 flags,

 subfunction_code,

 CCP_index,

 CCP_serial_number,

 CCP_domain,

 invoking_alet,

 rule_count,

 rules,

 number_vuds,

 vud_list,

 number_keys,

 key_list,

 reply_vud_block_length,

 reply_vud_block_address,

 reply_key_block_length,

 reply_key_block_address,

 request_data_block_length,

 request_data_block,

 reply_data_block_length,

 reply_data_block,

 SPB)

 Input
On entry to this routine:

flags is a character string containing 4 bytes of checkpoint flags. Specify 4 bytes
of binary zeroes.

subfunction_code is a character string containing 2 bytes of hexadecimal data
specifying the subfunction code of the coprocessor command processor to which
the request is to be sent. A list of the subfunction codes for the standard CCA API
functions are in file cmncryt2.h. The hexadecimal data is in big endian form. (For
example, the subfunction code for the Clear PIN encrypt service is 'PE' in ASCII, or
X'5045' as a two-byte integer.)

4-20 UDX Reference and Guide

 16-NOV-01, 14:51 CSFADSPI - Communication Between Services and Coprocessor

CCP_index is an integer that represents the index number of the coprocessor which
is to execute the request. If it is irrelevant as to which coprocessor the service is
directed, specify an index of -1.

CCP_serial_number is a character string containing 8 bytes of EBCDIC characters
specifying the serial number of the coprocessor which is to execute the request. If
it is irrelevant as to which coprocessor the service is directed, specify NOT APPL
as the serial number.

CCP_domain is an integer that represents the domain used to call to CSFACCPN (a
number from 0 to 15). Usually specified as -1 to indicate that the domain is not
applicable.

invoking_alet is an integer that represents the ALET that is used in the call to
CSFACCPN and also when building the Data Block parameter for the call to
CSFACCPN. Specify zero.

rule_count is an integer that represents the number of keywords supplied in the
rule_array.

rules is a character string containing the keywords that supply control information
to the callable service. Specify a blank character if the rule_count field specifies a
count of zero.

number_vuds is an integer that represents the number of items of verb unique data
in the VUD list (vud_list).

vud_list is a character string containing the verb unique data (VUD) list. The verb
unique data specified depends upon the verb being invoked. Specify a value of
zero if the number_vuds field specifies a count of zero. Each element in the list
consists of four items:

� vud_length is an integer that represents the length of the VUD element.
� vud_flag is a two-byte character string containing flag information for the verb.

The flag information is related to the vud_data item. If there is no vud_flag
information, specify a value of 'FFFF'x here and in the vud_no_flag item.

� vud_no_flag is a two-byte character string that contains the value '0000'x if
vud_flag data is present, or the value 'FFFF'x if there is no vud_flag data.

� vud_data is a character string containing the address of the VUD data for this
VUD element.

number_keys is an integer that represents the number of items in the KEY list
(key_list).

key_list is a character string containing the key list. Specify a value of zero if the
number_keys field specifies a count of zero. Each element in the list consists of
three items:

� key_length is an integer that represents the length of the key in the key_data

element.
� key_flag is a two-byte character string containing the value '0000'x. (zSeries

does not use flag information for keys.)
� key_data is a character string containing the key to be passed to the verb.

reply_vud_block_length is an integer that represents the data area length the
caller provided for the reply_VUD block or zero.

 Chapter 4. Communications Functions 4-21

 CSFADSPI - Communication Between Services and Coprocessor 16-NOV-01, 14:51

reply_key_block_length is an integer that represents the data area length the
caller provided for the reply_key block or zero.

request_data_block_length is an integer that represents the length of the request
data block. storage allocated for the reply.

request_data_block is a character string containing the Request Data Block.
Specify a blank character if the request_data_block_length specifies a length of
zero.

reply_data_block_length is an integer that represents the length of the storage
allocated for the reply.

reply_data_block is a character string containing the address of the storage
allocated for the reply.

SPB is a character string containing the service parameter block (SPB).

 Output
On successful exit from this routine:

return_code is an integer that represents the general result of the callable service.

reason_code is an integer that represents the result of the callable service that is
returned to the application program. Each return code has different reason codes
assigned to it that indicate specific processing problems.

CCP_index is an integer that represents the index of the coprocessor that performed
the service.

CCP_serial_number is a character string containing the serial number of the
coprocessor that executed the request.

rules is a character string containing the keywords that supply control information
to the callable service.

reply_vud_block_address is a character string containing the address of the caller’s
data area to hold the reply VUD data.

reply_key_block_address is a character string containing the address of the caller’s
data area to hold the reply KEY data.

reply_data_block_length is an integer that represents the length of the Reply Data
Block.

reply_data_block is a character string containing the Reply Data Block. This will
be a blank character if the reply_data_block_length specifies a length of zero.

Return and Reason Codes
Common return codes (decimal values in register 15) and reason codes (returned
in register 0 and in the reason_code parameter) generated by this routine are:

4-22 UDX Reference and Guide

 16-NOV-01, 14:51 CSFADSPI - Communication Between Services and Coprocessor

Return
Code
(dec)

Reason Code Meaning

0 0 The operation was successful.

8 11000 Invalid length field.

12 11056 Incomplete response from the PCICC.

16 4 Your call to an ICSF callable service resulted in an
abnormal ending.

Abend
Code

Reason Code Meaning

X'18F' 165 Bad internal parameters between internal service calls

 Chapter 4. Communications Functions 4-23

 CSFASEC - Check Authorization 16-NOV-01, 14:51

CSFASEC - Check Authorization
Note: This function is available on the host.

CSFASEC checks authorization to a RACF-protected or security exit-protected
resource.

 Function Prototype
call CSFASEC

(return_code,

 reason_code,

 resource,

 resource_length,

 resource_class,

 SPB)

 Input
On entry to this routine:

resource is a character string containing the name of the resource to be
authority-checked.

resource_length is an integer that represents the length of the resource name.

resource_class is a character string containing 8 EBCDIC characters, CSFKEYS or
CSFSERV.

SPB is a character string containing the service parameter block (SPB).

 Output
On successful exit from this routine:

return_code is an integer that represents the general result of the callable service.

reason_code is an integer that represents the result of the callable service that is
returned to the application program. Each return code has different reason codes
assigned to it that indicate specific processing problems.

Return and Reason Codes
Common return codes (decimal values in register 15) and reason codes (returned
in register 0 and in the reason_code parameter) generated by this routine are:

Return
Code
(dec)

Reason Code Meaning

0 0 The operation was successful.

8 16000 Authorization failed.

4-24 UDX Reference and Guide

 16-NOV-01, 14:51 BuildParmBlock - Build a Parameter Block

BuildParmBlock - Build a Parameter Block
Note: This function is available on the coprocessor.

BuildParmBlock constructs a parameter block, containing a two-byte length field,
followed by a variable number of data fields. The function accepts pairs of data
descriptors, each consisting of a pointer to the data item, and a value containing
the item’s length. For each pair, the first value is an unsigned short containing the
length, and the second value is an unsigned char pointer giving the location of the
data.

BuildParmBlock is used in building the Reply Parameter Block for the response to a
host request.

The function result contains the total length of the block built by the function.

 Function Prototype
USHORT BuildParmBlock

(

 UCHAR
pBuffer,

 USHORT pairs,

 USHORT Data1_length,

 UCHAR
pData1

 ...)

 Input
On entry to this routine:

pBuffer is the starting address of the parameter block section to be built.

pairs is the number of argument pairs which are to be added to the parameter
block section.

Datai_length is the length of the ith. item, in bytes.

Datai is a pointer to the ith data item to be added.

Note: If no items are to be added, Data1_length = 0 and Data1 = NULL.

If 2 or more items of verb unique data are to be added, each item should be
preceded by a short field containing the length of the individual item +2. This will
allow the function FindNextDataBlock to parse the result.

 Chapter 4. Communications Functions 4-25

 BuildParmBlock - Build a Parameter Block 16-NOV-01, 14:51

BlockLength = F;

pCprb = (CPRB
)&(Buffer.request_parm_buffer[F]);

pRequestBlock = &(Buffer.request_parm_buffer[F]) +sizeof(CPRB_structur

CPRB
Structure

(Empty) reply parameter block

pRequestBlock

5120 bytes 5120 bytes

Buffer.reply_parm_block

REQUEST_REPLY_BUFFER

Step one: add the subfunction code

BlockLength +=2;

((USHORT
) pReqBlk) = htoas (CCAXFNC1_ID) ;

CPRB
Structure

(Empty) reply parameter block

Subfunction code

(Empty)

Step two: add the rule array

BlockLength += BuildParmBlock(pRequestBlock+BlockLength,

1, /
 adding 1 rule array
/

(
pRuleArrayCount)
8, /
 length of rule array
/

 pRuleArray);

CPRB
Structure

(Empty) (Empty) reply parameter block

SectionLength, return value of BuildParmBlock

Rule array
Section length
Subfunction code

4-26 UDX Reference and Guide

 16-NOV-01, 14:51 BuildParmBlock - Build a Parameter Block

Step three: add the verb unique data

Data1Length = Data1Size + sizeof(short);

Data2Length = Data2Size + sizeof(short);

BlockLength += BuildParmBlock(pRequestBlock + BlockLength,

4, /
 adding 2 data items, plus their lengths
/

sizeof(short), &Data1Length, /
 length of 1st item, including this field
/

Data1Size, pData1,

sizeof(short), &Data2Length, /
 length of 2nd item, including this field
/

Data2Size, pData2);

CPRB
Structure

(Empty) (Empty) reply parameter block

SectionLength, return value of BuildParmBlock

Data1Length

Data2

Data2Length
Data1

SectionLength

Data1Length

Rule Array

SectionLength

Subfunction code

Step four: add the key blocks

KeyHeaderI.Length = KeyTokenLength + sizeof(KEY_FIELD_HEADER);

KeyHeaderI.Flags = storageOptions;

BlockLength = BuildParmBlock(pRequestBlock + BlockLength,

2, /
adding a key block header and a key token
/

 sizeof(KEY_FIELD_HEADER), &KeyHeaderI,

 KeyTokenLength, &KeyToken):

 Output
On successful exit from this function:

BuildParmBlock returns the total length of the block built by the function. The buffer
at pBuffer contains the parameter block.

Return and Reason Codes
This function has no return codes.

 Chapter 4. Communications Functions 4-27

 BuildParmBlock - Build a Parameter Block 16-NOV-01, 14:51

 Notes
Building the Parameter Blocks

There are three types of parameter blocks: the rule array block, the verb unique
data block, and the key block. They must all be present in the CPRB message, in
this order. If any of the blocks is unnecessary, a length field of 2 must be present
to indicate an empty parameter block. This may be achieved by calling
BuildParmBlock(pBuffer, 0,0,NULL);

The rule array is a byte array, with 8 bytes for each rule present. Each rule is 8
bytes long, padded on the right with spaces. It is important to note that the entire 8
bytes are compared - these are not strings as C and C++ define them. No
allowance is made for a null terminator, so be careful when copying rule data into
the array. No more than one rule array is used per call, although up to 5 separate
rules can be included in the array.

For more information about key block structures, see “Key Blocks” on page 1-12.

See Appendix A, UDX Sample Code - Host Piece - Service for sample code which
includes key label to token translation and parameter block building.

Byte Alignment of Structures

It is important that all structures which are passed from the host to the coprocessor
or the coprocessor to the host be aligned on 1-byte boundaries. If you are passing
a user-defined structure to the coprocessor, either as verb unique data or as key
data, you must ensure that your compiler aligns the structure on one-byte
boundaries. This can be done by adding a “#pragma pack(1)” directive in the
include file before the structure is defined, or by compiling with the “/Zp1” (for
MSVC++) or “Sp1” (for VACPP) directives in the makefile.

4-28 UDX Reference and Guide

 16-NOV-01, 14:51 Cas_proc_retc - Prioritize Return Code

Cas_proc_retc - Prioritize Return Code
Note: This function is available on the coprocessor.

Cas_proc_retc is used when you encounter an error, and need to set a return code
in the reply CPRB. The function compares your new return code, passed in msg,
with the return code already present in the CPRB. It uses a priority evaluation
scheme to decide whether your new return code, or the one already in the CPRB
indicates a more critical error, and it leaves whichever is higher priority in the
CPRB.

 Function Prototype
long Cas_proc_retc

(

 CPRB_structure
pCprb,

 long msg

)

 Input
On entry to this routine:

pCprb is a pointer to the reply CPRB structure.

msg is the CCA (SAPI) return code for the error just encountered.

 Output
On successful exit from this routine:

pCprb->return_code and pCprb->reason_code contain the reason codes of msg, if
the return code of msg was greater than the return code formerly in
pCprb->return_code.

Return and Reason Codes
Common return codes generated by this routine are:

OK The operation was successful.

ERROR The return code in msg was greater than Warning level (level 4).

 Chapter 4. Communications Functions 4-29

 FindFirstDataBlock - Search for Address of First Data Block 16-NOV-01, 14:51

FindFirstDataBlock - Search for Address of First Data Block
Note: This function is available on the coprocessor.

FindFirstDataBlock locates the address of the first data block in the Verb Unique
Data (VUD) section of the parameter block attached to the specified CPRB. If the
parameter block contains Verb Unique Data, the address of the first data block is
returned and the function result is set to TRUE. If there is no Verb Unique Data,
the function result is set to FALSE.

 Function Prototype
boolean FindFirstDataBlock(CPRB_structure
pCprb,

 unsigned int ParmBlockChoice,

 VUD_DATA_RECORD

ppFirstDataBlock)

 Input
On entry to this routine:

pCprb is a pointer to the CPRB, which has the parameter block attached.

ParmBlockChoice is a value of either SEL_REQ_BLK or SEL_REPLY_BLK,
indicating whether the structure you have passed is a Request Parameter Block or
a Reply Parameter Block.

 Output
On successful exit from this routine:

ppFirstDataBlock is a location where the function stores the address of the first
data block in the Verb Unique Data.

Return and Reason Codes
This function has no return codes.

4-30 UDX Reference and Guide

 16-NOV-01, 14:51 FindNextDataBlock - Search for Address of Next Data Block

FindNextDataBlock - Search for Address of Next Data Block
Note: This function is available on the coprocessor.

Given the address of a block in the Verb Unique Data (VUD) section of a
parameter block, find and return the address of the next data block within the same
parameter block. If another data block exists, return its address and set the function
result to TRUE. If there is no other data block, set the function result to FALSE.

 Function Prototype
boolean FindNextDataBlock(CPRB_structure
pCprb,

 unsigned int ParmBlockChoice,

 VUD_DATA_RECORD
pThisDataBlock,

VUD_DATA_RECORD

ppNextDataBlock)

 Input
On entry to this routine:

pCprb is a pointer to the CPRB, which has the parameter block attached.

ParmBlockChoice is a value of either SEL_REQ_BLK or SEL_REPLY_BLK,
indicating whether the structure you have passed is a Request Parameter Block or
a Reply Parameter Block.

pThisDataBlock is a pointer to the current data block. The function attempts to find
the data block following the one that this parameter points to.

 Output
On successful exit from this routine:

ppNextDataBlock is a location where the function stores the address of the data
block after pThisDataBlock or Null if none was found.

FindNextDataBlock returns a boolean value indicating whether a block was found.

Return and Reason Codes
This function has no return codes.

 Chapter 4. Communications Functions 4-31

 find_first_key_block - Search for First Key Data Block 16-NOV-01, 14:51

find_first_key_block - Search for First Key Data Block
Note: This function is available on the coprocessor.

find_first_key_block finds the address of the first key data block attached to the
specified Parameter Block. If there is key data in the parameter block, it returns
the address of the first key block, and sets the function result to TRUE. If there is
no key data, it sets the function result to FALSE.

This function is used in conjunction with find_next_key_block, which is used to
locate key blocks after the first one in the parameter block.

 Function Prototype
boolean find_first_key_block(CPRB_structure
pCprb,

 key_data_structure

first_keyblock,

 unsigned int parm_block_choice)

 Input
On entry to this routine:

pCprb is a pointer to the CPRB. The parameter block is expected to be
concatenated to the CPRB.

parm_block_choice is a value of either SEL_REQ_BLK or SEL_REPLY_BLK,
indicating whether the structure you have passed is a Request Parameter Block or
a Reply Parameter Block.

 Output
On successful exit from this routine:

first_keyblock is a location which receives the address of the first key block
contained in the parameter block attached to pCprb.

find_first_key_block returns a boolean value of true if key data was found, false
otherwise.

Return and Reason Codes
This function has no return codes.

4-32 UDX Reference and Guide

 16-NOV-01, 14:51 find_next_key_block - Find Address of Next Key Data Block

find_next_key_block - Find Address of Next Key Data Block
Note: This function is available on the coprocessor.

Given the address of a key data block, find and return the address of the next key
data block within the specified Parameter Block. If the requested block exist, return
its address and set the function result to TRUE. If the block does not exist, set the
function result to FALSE.

This function is used in conjunction with find_first_key_block, which is used to
locate the first key block in the parameter block.

Argument parm_block_choice indicates whether the parameter block being
examined is a Request Parameter Block or a Reply Parameter Block.

 Function Prototype
boolean find_next_key_block(CPRB_structure
pCprb,

 key_data_structure
this_keyblock,

 key_data_structure

next_keyblock,

 unsigned int parm_block_choice)

 Input
On entry to this routine:

pCprb is a pointer to the CPRB. The parameter block is expected to be
concatenated to the CPRB.

this_keyblock is a pointer to a key block within the parameter block. The function
attempts to locate the key block following this one.

parm_block_choice is a value of either SEL_REQ_BLK or SEL_REPLY_BLK,
indicating whether the structure you have passed is a Request Parameter Block or
a Reply Parameter Block.

 Output
On successful exit from this routine:

next_keyblock is a pointer to a location where the function puts the address of the
key block following the one specified by this_keyblock or NULL if none was found.

find_next_key_block returns a boolean value indicating whether new key data was
found.

Return and Reason Codes
This function has no return codes.

 Chapter 4. Communications Functions 4-33

 InitCprbParmPointers - Initialize CPRB Parameter Pointers 16-NOV-01, 14:51

InitCprbParmPointers - Initialize CPRB Parameter Pointers
Note: This function is available on the coprocessor.

InitCprbParmPointers initializes the pointers to the request and reply data buffers
for both the input and the output CPRBs. It assumes that these buffers
immediately follow the CPRB blocks.

 Function Prototype
void InitCprbParmPointers

(

 CPRB_structure
pInputCprb,

 CPRB_structure
pOutputCprb

)

 Input
On entry to this routine:

pInputCprb is a pointer to the input CPRB block, which has been passed to the
coprocessor.

pOutputCprb is a pointer to the output CPRB block, which is returned to the host.

 Output
This function has no output. On successful exit from this routine:

The req_parm_block and reply_parm_block fields of InputCprb and OutputCprb are
correctly initialized.

Return and Reason Codes
This function has no return codes.

4-34 UDX Reference and Guide

 16-NOV-01, 14:51 keyword_in_rule_array - Search for Rule Array Keyword

keyword_in_rule_array - Search for Rule Array Keyword
Note: This function is available on the coprocessor.

keyword_in_rule_array determines whether a specified rule array keyword is
present in the rule array passed with the given CPRB. The CPRB contains a
pointer to the request parameter block, which in turn contains the rule array and
related data.

Input parameters are a pointer to the CPRB, and a string containing the desired
keyword. Note that comparisons are case-sensitive (although this should not
matter, since all keywords should be in uppercase).

The function returns TRUE if the keyword is in the rule array, and FALSE if it is not.

Note: Before using this function, the caller should have verified the integrity of the
CPRB using function parm_block_valid. See page 4-36 for information about
parm_block_valid.

 Function Prototype
boolean keyword_in_rule_array

(

 CPRB_structure
pCprb,

 rule_array_element keyword

)

 Input
On entry to this routine:

pCprb is a pointer to the CPRB structure. The parameter block is expected to be
concatenated to the end of the CPRB.

keyword is the keyword you are looking for in the rule array.

 Output
On successful exit from this routine:

keyword_in_rule_array returns a boolean value indicating TRUE if the keyword is
in the rule array, and FALSE if it is not.

Return and Reason Codes
This function has no return codes.

 Chapter 4. Communications Functions 4-35

 parm_block_valid - Examine and Verify a Parameter Block 16-NOV-01, 14:51

parm_block_valid - Examine and Verify a Parameter Block
Note: This function is available on the coprocessor.

parm_block_valid examines the parameter block associated with a specified
cooperative processing request block (CPRB), and verifies that the parameter block
is valid. In particular, it verifies that all the sub-fields and their data are present, so
that other functions can use that data with confidence that it is valid. It also verifies
that the function ID in the CPRB is that which is expected.

The function returns a value of TRUE if the parameter block is OK, and returns
FALSE if it is not.

 Function Prototype
boolean parm_block_valid

(

 CPRB_structure
pCprb,

 unsigned int parm_block_choice

)

 Input
On entry to this routine:

pCprb is a pointer to the CPRB structure. The parameter block is expected to be
concatenated to the end of the CPRB.

parm_block_choice is a value of either SEL_REQ_BLK or SEL_REPLY_BLK,
indicating whether the CPRB contains a Request Parameter Block or a Reply
Parameter Block.

 Output
On successful exit from this routine:

parm_block_valid returns a boolean value of TRUE if the parameter block is OK,
and returns FALSE if it is not.

Return and Reason Codes
This function has no return codes.

4-36 UDX Reference and Guide

 16-NOV-01, 14:51 rule_check - Verify Rule Array

rule_check - Verify Rule Array
Note: This function is available on the coprocessor.

rule_check can be used to verify the contents of the rule array in a received
Request Parameter Block. In the simplest use, it gives a quick indication whether
your rule array contains a valid combination of keywords. The function returns a
value of TRUE if the rule array appears to be valid, or FALSE if it does not. If it
returns FALSE, parameter pReturn_Message indicates the cause of the error.

The more complex way to use rule_check enables you to determine exactly what
rule array elements appear in the request parameter block, without having to
search through them yourself. It provides an ordered index, returned in parameter
pRule_value, where each element of the index corresponds to one keyword, or one
group of keywords where only one should be in the rule array. In each index
element, the function returns a value indicating exactly what rule array keyword
appeared, which is useful for the case where one keyword should be used out of a
group. Examples later in this section may help clarify the process.

The function operates on the basis of a rule map, which describes the rule array
elements you expect, and how they should be reported. The map is an array of
RULE_MAP structures, where RULE_MAP is defined as follows.

typedef struct

{

UCHAR keyword[9]; /
 8 characters plus null terminator
/

BYTE order_no; /
 Rule array grouping number.
/

int map_value; /
 Element value within rule array grp
/

} RULE_MAP;

Figure 4-1. The RULE_MAP Structure

The rule map contains one of these structures for each keyword that you expect for
your verb. The three elements of the structure have the following meanings.

keyword This is the eight-character rule array keyword.

order_no This integer indicates which element of the returned pRule_value
array should be set if the keyword in keyword is present in your rule
array.

A value of 1 refers to the first element of the array, corresponding to
a C-language array index of 0.

map_value This is the value that is stored in the output array pRule_value if the
rule array keyword in keyword is in your rule array. The value is
stored in the element indicated by order_no.

 Function Prototype
boolean rule_check(

 RULE_BLOCK
pParm_block,

unsigned int rule_map_count,

 RULE_MAP
pRule_map,

 int
pRule_value,

 long
pReturn_message)

 Chapter 4. Communications Functions 4-37

 rule_check - Verify Rule Array 16-NOV-01, 14:51

 Input
On entry to this routine:

pParm_block is a pointer to the start of the rule array block in your Request
Parameter Block. This should point to the start of the length field, not to the start of
the first rule array element.

rule_map_count is the number of elements in the array specified by the pRule_map
parameter.

pRule_map is a pointer to the rule map for this verb.

pRule_value is a pointer to the array that receives the output rule array index.

Note: On input, all elements of pRule_value must be set to the value
INVALID_RULE.

 Output
On successful exit from this routine:

pReturn_message is a pointer to the location where the function stores the error
code, if the rule array is not correct.

pRule_value contains an array of integers, the ith integer is the map value of the
keyword from the ith set which is present in the rule array, or INVALID_RULE if
there is no keyword from that set.

Return and Reason Codes
Common return codes generated by this routine are:

E_RULE_ARRAY_KWD Indicates that a required rule array keyword was
missing. This also applies if only one keyword must
be present out of a group of keywords, but none
from the group are in your rule array.

E_RULE_ARRAY_COMBINE Indicates that a rule array keyword appears more
than one time in the input rule array. It can also
indicate that more than one keyword appears from a
group, where only one from the group is supposed
to be present.

 Examples
The following examples may help clarify the use of this function.

Checking the Rule Array for Verb CSNBPKI

CSNBPKI (Key Part Import) requires a rule array that contains exactly one of the
following keywords.

 � FIRST
 � MIDDLE
 � LAST

To check the incoming rule array for validity, rule_check can be used with the
following three-element rule map.

4-38 UDX Reference and Guide

 16-NOV-01, 14:51 rule_check - Verify Rule Array

static RULE_MAP RuleMap[3] = { { "FIRST ", 1, 1 } ,

{ "MIDDLE ", 1, 2 } ,

{ "LAST ", 1, 3 } };

Figure 4-2. Example Rule Map for Verb CSNBPKI

This is a group of keywords that are mutually exclusive. Only one can appear in
the rule array, and for this verb, there are no other keywords that can appear. In
the rule map, the values for order_no are the same for each keyword; they all
specify a value of 1. This means that when any of these keywords appear in the
rule array, the first element of the output array pRule_value is set. The value that
goes into the first element of the output array is 1 for FIRST, 2 for MIDDLE, and 3
for LAST, as defined by the map_value elements of the rule map.

Since all three keywords have the same value for order_no, error code
pReturn_message is set to E_RULE_ARRAY_COMBINE if more than one of the
three keywords is present in your rule array.

Checking the Rule Array for Verb CSUAACI

CSUAACI (Access Control Initialization) has a slightly more complicated rule array
than CSNBPKI described previously. It has the following characteristics.

� The rule array must contain exactly one of the following keywords.

 – INIT-AC
 – CHGEXPDT
 – CHG-AD
 – RESET-FC

� The rule array can optionally contain the keyword PROTECTD.

� The rule array can optionally contain the keyword REPLACE.

To check this rule array, we can use the following six-element rule map.

static RULE_MAP RuleMap[6] = { { "INIT-AC ", 1, 1 } ,

{ "CHGEXPDT", 1, 2 } ,

{ "CHG-AD ", 1, 3 } ,

{ "RESET-FC", 1, 4 } ,

{ "PROTECTD", 2, 5 } ,

{ "REPLACE ", 3, 6 } };

Figure 4-3. Example Rule Map for Verb CSUAACI

The first four elements describe the keywords for which only one must be present.
The order_no for each of these is the same; a value of 1. Thus, the first element of
output array pRule_value is set when any of these keywords are found in the rule
array. The value for map_value is the value that goes into that element of the
output array. Thus, if the rule array contains CHGEXPDT, the first element of the
output array is set to 2. If more than one of these four keywords is in the rule
array, the return code variable pReturn_message is set to
E_RULE_ARRAY_COMBINE.

The last two elements, for PROTECTD and REPLACE, describe optional keywords.
Any combination of these two is valid - neither, one, or both can be in the rule
array. Thus, we treat these independently from any other keywords. They are
assigned, respectively, to elements 2 and 3 of the output array, and the values to
be stored there are 5 if PROTECTD is present, and 6 if REPLACE is present.

 Chapter 4. Communications Functions 4-39

 rule_check - Verify Rule Array 16-NOV-01, 14:51

For the following set of rules, where either COPY or REVERSE is required, and
OFFSET is optional:

int RuleValue[2]; /
 to hold the rule values only 2
/

USHORT RuleMapCount = 3;

static RULE_MAP RuleMap[] = { {"COPY ", 1 , COPY },

{"REVERSE ", 1 , REVERSE },

{"OFFSET ", 2 , OFFSET },};

/

error checking, etc.

/

/

 Compare for valid rule array values.

/

RuleValue[F] = INVALID_RULE; /
 initialize
/

RuleValue[1] = INVALID_RULE;

if (rule_check ((RULE_BLOCK
) &pReqBlk->rule_array_length,

 RuleMapCount,

&RuleMap[F], &RuleValue[F], &ReturnMsg)

 == false)

{

 Cas_proc_retc(pCprbOut, ReturnMsg);

 return;

}

/

verb unique data and keys, if needed

/

if (RuleValue[1] == OFFSET)

{

/
 Do what OFFSET requires
/

} else

{

/
 Do default things
/

}

if (RuleValue[F] == COPY)

{

/
 copy the data
/

} else if (RuleValue[F] = REVERSE)

{

/
 reverse the data
/

}

/
Return needed data
/

4-40 UDX Reference and Guide

 16-NOV-01, 14:51

Chapter 5. Function Control Vector Management Functions

This section describes functions used to interact with the function control vector
(FCV) in the coprocessor. The FCV contains information describing what
operations are permitted on this coprocessor, based on the export regulations
governing the coprocessor’s location and the business of its owner.

Note: All functions within this chapter are available only on the coprocessor.

Header Files for Function Control Vector Management Functions
When using these functions, your program must include the following header files.

#include "cmncryt2.h" /
 Crypto ESSS definitions
/

#include "cam_fcv.h" /
 Function control vector def.
/

Summary of Functions
Functions that interact with FCV include the following:

getSymmetricMaxModulusLength Gets the maximum RSA key length.

isFunctionEnabled Determines whether the FCV allows a
particular function.

 Chapter 5. Function Control Vector Management Functions 5-1

 getSymmetricMaxModulusLength - Get RSA Key Length 16-NOV-01, 14:51

getSymmetricMaxModulusLength - Get RSA Key Length
getSymmetricMaxModulusLength returns the maximum RSA key modulus length (in
bits) that can be used for encrypting symmetric algorithm encryption keys.

 Function Prototype
long getSymmetricMaxModulusLength(

unsigned short
 pModLength)

 Input
pModLength is a pointer to an unsigned short variable.

 Output
On successful exit from this routine:

pModLength contains the modulus maximum length.

 Return Codes
Common return codes generated by this routine are:

OK The operation was successful.

srdi_ALLOC_ERROR Out of memory to open the FCV.

srdi_READ_ERROR Error reading the FCV.

srdi_GENERAL_ERROR Could not read the FCV.

srdi_NOT_FOUND The FCV was not found.

5-2 UDX Reference and Guide

 16-NOV-01, 14:51 isFunctionEnabled - Check Whether a Function is Enabled

isFunctionEnabled - Check Whether a Function is Enabled
isFunctionEnabled returns a boolean value indicating whether the specified function
is enabled or disabled in the Function Control Vector. This is used to determine
whether a function is permitted under the export rules governing this particular
coprocessor.

The function result is TRUE if the specified function is enabled, and FALSE if it is
disabled.

 Function Prototype
boolean isFunctionEnabled(

 long FunctionByteIndex,

unsigned char FunctionBitSelect)

 Input
On entry to this routine:

FunctionByteIndex is an index into the Function Control Vector, giving the location
of the byte to be checked. See Figure 5-1 on page 5-4 for a list of possible
values.

FunctionBitSelect is the bit to be checked in the specified Function Control Vector
byte. See Figure 5-1 on page 5-4 for a list of possible values.

 Output
On successful exit from this routine:

isFunctionEnabled returns a boolean value indicating whether the specified
function is enabled or disabled in the Function Control Vector.

 Chapter 5. Function Control Vector Management Functions 5-3

 isFunctionEnabled - Check Whether a Function is Enabled 16-NOV-01, 14:51

 Notes
The following figure shows how the byte or bit corresponds to a particular function.

Figure 5-1. Possible Values

Function Byte Name Function Bit Name Description

CCA_BASE_FUNCTION_BYTE Byte index of the
CCA base services
bits.

FCV_CCA_BASE Base CCA
services-enabled bit.

DES_FUNCTION_BYTE Byte index of the
DES-enabled bits.

FCV_CDMF_DES CDMF
function-enabled bit

FCV_56_BIT_DES 56-bit DES enabled
bit

FCV_TRIPLE_DES Triple DES enabled
bit

SET_FUNCTION_BYTE Byte index of the bits
that are SET
enabled

FCV_SET_SERVICES SET services
enabled bits

 Return Codes
This function has no return codes.

 Examples
To determine whether SET functions for encoding and decoding are enabled in the
coprocessor:

if (! IsFunctionEnabled(SET_FUNCTION_BYTE, FCV_SET_SERVICES))

{

/
 cancel this section, SET functions are not allowed.
/

}

To see if 56-bit DES encryption is allowed:

if (IsFunctionEnabled(DES_FUNCTION_BYTE, FCV_56_BIT_DES))

{

/
 use 56-bit DES encryption
/

}

5-4 UDX Reference and Guide

 16-NOV-01, 14:51

Chapter 6. CCA Master Key Manager Functions

Header Files for Master Key Manager Functions
When using these functions, your program must include the following header files.

#include "cmncrypt.h" /
 Cryptographic definitions
/

#include "cam_xtrn.h" /
 SRDI manager definitions
/

The CCA Master Key Manager provides access to the CCA master key registers on
the PCI cryptographic coprocessor, as required by the CCA application. The CCA
command processors never access the master keys directly, and in fact they have
no need to know how or where the master keys and related information are stored.
The Master Key Manager provides a set of functions to load the key values, and to
use the keys to encipher and decipher data. It can be viewed as an object, with
internal data, and with methods that can be used to operate on and with that data.

Since the master key storage mechanism is hidden from master key users, that
mechanism can be changed without affecting any command processors that make
use of the master keys. In the coprocessor, the master key data is stored in flash
EPROM.

Note: All functions within this chapter are available only on the coprocessor.

Overview of the Coprocessor CCA Master Keys
The coprocessor uses triple-length master keys, each consisting of three
independent eight-byte DES keys. The master keys are used to protect other data
in the following two ways.

� Single-length (eight-byte) keys are protected using EDE encryption, with three
independent keys. To encrypt an eight-byte key K with master key M, the
process is as follows:

1. Encrypt K using part 1 of key M.
2. Decrypt the result of step 1 using part 2 of key M.
3. Encrypt the result of step 2 using part 3 of key M.

� Data longer than eight bytes, such as PKA key components, is encrypted using
the EDE3 triple encryption algorithm.

CCA supports two sets of master keys, one set for PKA keys (ASYM_MK) and a
second set for DES keys (SYM_MK). Each set consists of three master key
values.

� Old Master Key (OMK)—The version of the master key that was in use prior to
the current value. It is maintained to permit recovery of keys that were
enciphered under the old master key.

� Current Master Key (CMK)—The current, operational master key. All keys in
use in the system are enciphered under this key.

� New Master Key (NMK)—A new master key, which is being entered into the
system to replace the current master key. It is entered in the form of one or
more key parts, which are combined to form the final key.

 Chapter 6. CCA Master Key Manager Functions 6-1

 16-NOV-01, 14:51

zSeries supports sixteen cryptographic domains. There is a separate set of master
keys for each domain (that is, associated with each domain is an old, current, and
new master key value for PKA keys (ASYM_MK) and for DES keys (SYM_MK)).
The mk_set parameter of the mk_selectors variable type identifies the set of master
keys to be processed by a function.

Each of the three master keys is stored in a logical register within the Master Key
Manager. In addition, the Master Key Manager holds data associated with each of
these key values.

� A Verification Pattern is stored for each of the three keys. The verification
pattern is a 20-byte value which is calculated using a strong one-way function
on the key value. This value can be used to verify that the key value matches
another key, or the key originally used in some process. The verification
pattern can be public, without endangering the value of the key itself.

For the SYM_MK master key, if the first and third key parts are the same, this
value is calculated using the z/OS ICSF algorithm. Otherwise, this value is
calculated using SHA-1. For the ASYM_MK master key, two verification values
are stored. One value is calculated using SHA-1 and one value is calculated
using MDC-4. (For zSeries, only the MDC-4 verification value is stored.)

� The status of the key. For the CMK and the OMK, two status values are
possible.

– The register contains a valid key value.
– The register does not contain a valid key value.

For the NMK register, three status values are possible.

– The register is empty. It does not contain any portion of a new master key
value.

– The register is partially full. The last key part has not yet been combined
into the value in the register.

– The NMK register is full. All key parts have been combined to form the
final key value.

The verification pattern and the status can be read from the Master Key Manager
using its interface functions. The values of the keys themselves can never be read.

Location of the Master Keys
The master keys and their associated data are Security Relevant Data Items
(SRDIs). Their secure storage and retrieval are handled through use of the SRDI
Manager, and its API functions.

Each SRDI has an eight character name. The master key data SRDI for DES keys
is named MSTRKEYS. The master key data SRDI for asymmetric keys is ASYMKMKS.

Initialization of the Master Key SRDI
When the CCA application is first loaded into a new coprocessor, no master key
SRDI exists in the flash EPROM. The Master Key Manager includes an
initialization function init_master_keys(), which creates and initializes this SRDI the
first time it is called. The SRDI is initialized with the following values.

� The three master key registers, NMK, CMK, and OMK, are all set to binary
zeroes.

6-2 UDX Reference and Guide

 16-NOV-01, 14:51

� The state of CMK and OMK is set to invalid. The state of NMK is set to Empty.

� The master key verification patterns are set to binary zeroes.

CCA Master Key Manager Interface Functions
The following sections describe the functions that comprise the Master Key
Manager interface. CCA command processors use these functions to encipher or
decipher data using the master keys.

Each of these functions returns an error code as the function result.

Common Entry Processing
A portion of the processing is common to all of the Master Key Manager interface
functions. This code is in a common function, which is called by each of the API
functions listed as follows.

The common entry processing performs the following functions.

1. If the Master Key Manager has already opened the Master Key SRDI, then
error code mk_NO_ERROR is returned to the caller. Otherwise, continue with
step 2.

2. Open the Master Key SRDI, specified by the mk_selectors variable. (See
below.) If no error occurs opening the SRDI, then error code mk_NO_ERROR
is returned to the caller. Otherwise, error code mk_SRDI_OPEN_ERROR is
returned.

 Required Variables
In order to specify which master key register is to be used, many of the master key
functions require a variable of type mk_selectors. This variable has three
parameters:

� The master key set (mk_set) that specifies which set of master keys is to be
accessed, for environments where more than one set of master keys may exist.
If more than one set of master keys exist, the mk_set is identified by the
cryptographic domain. The domain number serves as an index to the Master
Key SRDI, which is an array of sixteen sets of master keys. In environments
which support more than one master key set, the cryptographic domain is
passed by the host to the coprocessor in the CPRB. Where there is only one
set of master keys, mk_set must be set to MK_SET_DEFAULT.

� The master key register (mk_register) within the specified master key set. This
can be any of the defined values old_mk, current_mk, or new_mk, representing
the old master key, the current master key, and the new master key.

� The master key type (type_mks) which defines the type of key to be encrypted
with this set of master keys. This variable can be any of ASYM_MK, SYM_MK,
or BOTH_MK.

The following functions are summarized in this chapter.

Function Page

ede3_triple_decrypt_under_master_key 6-10

ede3_triple_encrypt_under_master_key 6-11

 Chapter 6. CCA Master Key Manager Functions 6-3

 16-NOV-01, 14:51

Function Page

get_mk_verification_pattern 6-8

mkmGetMasterKeyStatus 6-6

TDESDecryptUnderMasterKey 6-12

TDESEncryptUnderMasterKey 6-13

triple_decrypt_under_master_key 6-14

triple_decrypt_under_master_key_with_CV 6-15

triple_encrypt_under_master_key 6-16

triple_encrypt_under_master_key_with_CV 6-17

6-4 UDX Reference and Guide

 16-NOV-01, 14:51

Functions to Check Master Key Values and Status

Summary of Functions
get_mk_verification_pattern Returns the 20-byte master key

verification pattern for a specified
master key.

mkmGetMasterKeyStatus Returns the status of the master key
register.

 Chapter 6. CCA Master Key Manager Functions 6-5

 mkmGetMasterKeyStatus - Get Master Key Status 16-NOV-01, 14:51

mkmGetMasterKeyStatus - Get Master Key Status

mkmGetMasterKeyStatus returns the status of the three master key registers for
the mk_set being processed. The results indicate whether the register holds a valid
value, and whether a value in the NMK register is complete.

 Function Prototype
long mkmGetMasterKeyStatus(mk_selectors MKSelector,

 mk_status_var
mk_status);

long get_master_key_status(mk_status_var
mk_status);

The get_master_key_status function is the equivalent of calling the
mkmGetMasterKeyStatus with the MKSelector parameter set to {MK_SET_DEFAULT,
current_mk, SYM_MK}.

 Input
On entry to this routine:

MKSelector is a parameter of type mk_selectors, indicating which set of master
keys to use in this function. This variable must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register is ignored as an input field.
� type_mks should be set to ASYM_MK if the request is to get the status of the

asymmetric-keys master key or to SYM_MK if the request is to get the status of
the symmetric-keys master key.

mk_status is a pointer to a one-byte variable.

 Output
On successful exit from this routine:

mk_status contains the status of the 3 master key registers as a bitmapped value.
Individual bits have the meanings defined in Figure 6-1.

mk_status returns a code indicating the success or failure of the operation.

Figure 6-1. Master Key Status Bits

Bit 0 (LSB) NMK register is empty.

Bit 1 NMK register is partially full.

Bit 2 NMK register is full.

Bit 3 CMK register holds a valid value.

Bit 4 OMK register holds a valid value.

Bits 5-7 Reserved, set to 0.

6-6 UDX Reference and Guide

 16-NOV-01, 14:51 mkmGetMasterKeyStatus - Get Master Key Status

 Return Codes
Common return codes generated by this routine are:

mk_NO_ERROR The operation was successful.

mk_SRDI_OPEN_ERROR Unable to open the SRDI item.

mk_SEM_CLAIM_FAILED Unable to access the SRDI Manager.

 Chapter 6. CCA Master Key Manager Functions 6-7

 get_mk_verification_pattern 16-NOV-01, 14:51

 get_mk_verification_pattern
get_mk_verification_pattern returns the pre-computed 20-byte master key
verification pattern (MKVP) for a specified master key. This value is computed and
saved when the master key is first loaded, and may be used to determine which of
the master keys was used to encrypt a given operational key.

 Function Prototype
long get_mk_verification_pattern(UCHAR
ver_pattern,

 mk_selectors
mk_selector);

 Input
On entry to this routine:

ver_pattern is a pointer to a 20-byte location where the master key verification
pattern is returned.

mk_selector is a pointer to a variable which must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register is set to either old_mk, current_mk, or new_mk, representing the
key to be queried.

� type_mks should be set to ASYM_MK if the request is to get the verification
pattern of the asymmetric-keys master key or to SYM_MK if the request is to
get the verification pattern of the symmetric-keys master key.

 Output
On successful exit from this routine:

ver_pattern contains the verification pattern.

 Return Codes
Common return codes generated by this routine are:

mk_NO_ERROR The operation was successful.

mk_INVALID_KEY_SELECTOR The input parameters are not valid.

mk_SEM_CLAIM_FAILED Unable to access the SRDI Manager.

mk_KEY_NOT_VALID The selected key was not in a valid state.

6-8 UDX Reference and Guide

 16-NOV-01, 14:51

Functions to Encrypt and Decrypt Using the Master Key

Summary of Functions
ede3_triple_decrypt_under_master_key Triple decrypts multiple 8-byte

data strings using EDE3 triple
DES.

ede3_triple_encrypt_under_master_key Triple encrypts multiple 8-byte
data strings using EDE3 triple
DES.

TDESDecryptUnderMasterKey Triple-DES decrypts data using
the master key.

TDESEncryptUnderMasterKey Triple-DES encrypts data under
the master key.

triple_decrypt_under_master_key Triple-DES decrypts an 8-byte
block of data.

triple_decrypt_under_master_key_with_CV Triple-DES decrypts an 8-byte
block of data using a control
vector.

triple_encrypt_under_master_key Triple-DES encrypts an 8-byte
block of data.

triple_encrypt_under_master_key_with_CV Triple-DES encrypts an 8-byte
block of data using a control
vector.

 Chapter 6. CCA Master Key Manager Functions 6-9

 ede3_triple_decrypt_under_master_key 16-NOV-01, 14:51

 ede3_triple_decrypt_under_master_key
ede3_triple_decrypt_under_master_key triple decrypts a string of data using EDE3
triple DES. The data length must be a multiple of eight bytes.

 Function Prototype
long ede3_triple_decrypt_under_master_key(mk_selectors
mk_selector,

 UCHAR
cleartext,

 UCHAR
ciphertext,

 ULONG data_length);

 Input
On entry to this routine:

mk_selector is a pointer to a variable which must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register is set to either old_mk, current_mk, or new_mk, representing the
key to be used for decryption.

� type_mks should be set to ASYM_MK if the data is to be decrypted with the
asymmetric-keys master key or to SYM_MK if the data is to be decrypted with
the symmetric-keys master key.

cleartext is a pointer to a buffer large enough to store the ciphertext. This may
be the same as the ciphertext buffer.

ciphertext is a pointer to a buffer containing the data to be deciphered.

data_length is the number of bytes of data to be deciphered. This value must be a
multiple of eight.

 Output
On successful exit from this routine:

cleartext contains where the deciphered data is placed. This buffer may be the
same as the ciphertext buffer, if desired.

 Return Codes
Common return codes generated by this routine are:

mk_NO_ERROR The operation was successful.

mk_INVALID_DATA_LENGTH The data length is not a multiple of eight.

mk_SRDI_OPEN_ERROR Could not open the master key SRDI.

mk_SEM_CLAIM_FAILED Unable to access the SRDI Manager.

mk_KEY_NOT_VALID The designated master key is not valid.

mk_INVALID_KEY_SELECTOR The input parameters are not valid.

6-10 UDX Reference and Guide

 16-NOV-01, 14:51 ede3_triple_encrypt_under_master_key

 ede3_triple_encrypt_under_master_key
ede3_triple_encrypt_under_master_key triple encrypts a string of data using EDE3
triple DES. The data length must be a multiple of eight bytes.

 Function Prototype
long ede3_triple_encrypt_under_master_key(mk_selectors
mk_selector,

 UCHAR
cleartext,

 UCHAR
ciphertext,

 ULONG data_length);

 Input
On entry to this routine:

mk_selector is a pointer to a variable which must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register is set to either old_mk, current_mk, or new_mk, representing the
key to be used for encryption.

� type_mks should be set to ASYM_MK if the data is to be encrypted with the
asymmetric-keys master key or to SYM_MK if the data is to be encrypted with
the symmetric-keys master key.

cleartext is a pointer to a buffer containing the data to be enciphered.

ciphertext is a pointer to a buffer large enough to store the cleartext. This buffer
may be the same as the cleartext buffer.

data_length is the number of bytes of data to be enciphered. This value must be a
multiple of eight.

 Output
On successful exit from this routine:

ciphertext contains where the enciphered data is placed. This buffer may be the
same as the cleartext buffer, if desired.

 Return Codes
Common return codes generated by this routine are:

mk_NO_ERROR The operation was successful.

mk_INVALID_DATA_LENGTH The data length is not a multiple of eight.

mk_SRDI_OPEN_ERROR Could not open the master key SRDI.

mk_SEM_CLAIM_FAILED Unable to access the SRDI Manager.

mk_KEY_NOT_VALID The designated master key is not valid.

mk_INVALID_KEY_SELECTOR The input parameters are not valid.

 Chapter 6. CCA Master Key Manager Functions 6-11

 TDESDecryptUnderMasterKey 16-NOV-01, 14:51

 TDESDecryptUnderMasterKey
TDESDecryptUnderMasterKey decrypts data which has been encrypted with a
master key using the Triple DES algorithm. The master key which was used for
encryption must be specified, and the cipher text provided must be a multiple of 8
bytes long.

 Function Prototype
long mkmTDESDecryptUnderMasterKey(mk_selectors MKSelector,

 UCHAR
cipher_text,

 UCHAR
clear_text,

 ULONG text_length);

 Input
On entry to this routine:

MKSelector is a pointer to a variable which must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register is set to either old_mk, current_mk, or new_mk, representing the
key to be used for decryption.

� type_mks should be set to ASYM_MK if the data is to be decrypted with the
asymmetric-keys master key or to SYM_MK if the data is to be decrypted with
the symmetric-keys master key.

cipher_text is a pointer to a buffer which contains the encrypted text. This text
must be a multiple of 8 bytes long.

clear_text is a pointer to a buffer to hold the decrypted text. This buffer must be
as long as text_length.

text_length is the number of bytes of data in the cipher_text buffer. This is also
the number of bytes of encrypted text returned in the clear_text buffer.

 Output
On successful exit from this routine:

clear_text contains text_length bytes of data decrypted from the cipher_data

using the Triple DES algorithm.

 Return Codes
Common return codes generated by this routine are:

mk_NO_ERROR The operation was successful.

mk_INVALID_DATA_LENGTH The data length is not a multiple of eight.

mk_SRDI_OPEN_ERROR Could not open the master key SRDI.

mk_SEM_CLAIM_FAILED Unable to access the SRDI Manager.

mk_KEY_NOT_VALID The designated master key is not valid.

mk_INVALID_KEY_SELECTOR The input parameters are not valid.

6-12 UDX Reference and Guide

 16-NOV-01, 14:51 TDESEncryptUnderMasterKey

 TDESEncryptUnderMasterKey
TDESEncryptUnderMasterKey takes a variable amount of data in a multiple of 8
bytes and encrypts it using the Triple DES algorithm.

 Function Prototype
long mkmTDESEncryptUnderMasterKey(mk_selectors MKSelector,

 UCHAR
clear_text,

 UCHAR
cipher_text,

 ULONG text_length);

 Input
On entry to this routine:

MKSelector is a pointer to a variable which must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register is set to either old_mk, current_mk, or new_mk, representing the
key to be used for encryption.

� type_mks should be set to ASYM_MK if the data is to be encrypted with the
asymmetric-keys master key or to SYM_MK if the data is to be encrypted with
the symmetric-keys master key.

clear_text is a pointer to the text which you wish to encipher. This text must be a
multiple of 8 bytes long.

cipher_text is a pointer to a buffer in which to store the encrypted text. This buffer
must be at least as long as the clear_text.

text_length is the number of bytes of data in the clear_text buffer. This is also
the number of bytes of encrypted text returned in the cipher_text buffer.

 Output
On successful exit from this routine:

cipher_text contains text_length bytes of data encrypted from the clear_data

using the Triple DES algorithm.

 Return Codes
Common return codes generated by this routine are:

mk_NO_ERROR The operation was successful.

mk_INVALID_DATA_LENGTH The data length is not a multiple of eight.

mk_SRDI_OPEN_ERROR Could not open the master key SRDI.

mk_SEM_CLAIM_FAILED Unable to access the SRDI Manager.

mk_KEY_NOT_VALID The designated master key is not valid.

mk_INVALID_KEY_SELECTOR The input parameters are not valid.

 Chapter 6. CCA Master Key Manager Functions 6-13

 triple_decrypt_under_master_key 16-NOV-01, 14:51

 triple_decrypt_under_master_key
triple_decrypt_under_master_key triple decrypts eight bytes of data with the EDE
algorithm, using the specified master key register.

 Function Prototype
long triple_decrypt_under_master_key(mk_selectors
mk_selector,

 UCHAR
ciphertext,

 UCHAR
cleartext);

 Input
On entry to this routine:

mk_selector is a pointer to a variable which must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register is set to either old_mk, current_mk, or new_mk, representing the
key to be used for decryption.

� type_mks should be set to ASYM_MK if the data is to be decrypted with the
asymmetric-keys master key or to SYM_MK if the data is to be decrypted with
the symmetric-keys master key.

ciphertext is a pointer to a buffer containing the data to be deciphered.

cleartext is a pointer to a buffer 8 bytes in length. This may be the same as the
ciphertext buffer.

 Output
On successful exit from this routine:

cleartext contains where the deciphered data is placed. This buffer may be the
same as the ciphertext buffer, if desired.

 Return Codes
Common return codes generated by this routine are:

mk_NO_ERROR The operation was successful.

mk_SRDI_OPEN_ERROR Could not open the master key SRDI.

mk_KEY_NOT_VALID The master key could not be validated,
therefore cleartext is unchanged.

mk_INVALID_KEY_SELECTOR The input parameters are not valid.

6-14 UDX Reference and Guide

 16-NOV-01, 14:51 triple_decrypt_under_master_key_with_CV

 triple_decrypt_under_master_key_with_CV
triple_decrypt_under_master_key_with_CV triple decrypts eight bytes of data with
the EDE algorithm, using a control vector with the specified master key.

Note: This function does not check the validity of the control vector.

 Function Prototype
long triple_decrypt_under_master_key_with_CV(mk_selectors
mk_selector,

 eightbyte
cv,

 UCHAR
ciphertext,

 UCHAR
cleartext)

 Input
On entry to this routine:

mk_selector is a pointer to a variable which must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register is set to either old_mk, current_mk, or new_mk, representing the
key to be used for decryption.

� type_mks should be set to ASYM_MK if the data is to be decrypted with the
asymmetric-keys master key or to SYM_MK if the data is to be decrypted with
the symmetric-keys master key.

cv is a pointer to a double-length CCA control vector, which is exclusive-ORed with
the specified key value before the key is used.

ciphertext is a pointer to a buffer containing the data to be deciphered.

cleartext is a pointer to a buffer 8 bytes in length. This may be the same as the
ciphertext buffer.

 Output
On successful exit from this routine:

cleartext is a pointer to the buffer where the deciphered data is placed. This
buffer may be the same as the ciphertext buffer, if desired.

 Return Codes
Common return codes generated by this routine are:

mk_NO_ERROR The operation was successful.

mk_SRDI_OPEN_ERROR Could not open the master key SRDI.

mk_SEM_CLAIM_FAILED Unable to access the SRDI Manager.

mk_INVALID_KEY_SELECTOR The input parameters are not valid.

 Chapter 6. CCA Master Key Manager Functions 6-15

 triple_encrypt_under_master_key 16-NOV-01, 14:51

 triple_encrypt_under_master_key
triple_encrypt_under_master_key triple encrypts eight bytes of data with the EDE
algorithm, using the specified master key register.

 Function Prototype
long triple_encrypt_under_master_key(mk_selectors
mk_selector,

 UCHAR
cleartext,

 UCHAR
ciphertext);

 Input
On entry to this routine:

mk_selector is a pointer to a variable which must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register is set to either old_mk, current_mk, or new_mk, representing the
key to be used for encryption.

� type_mks should be set to ASYM_MK if the data is to be encrypted with the
asymmetric-keys master key or to SYM_MK if the data is to be encrypted with
the symmetric-keys master key.

cleartext is a pointer to a buffer containing the data to be enciphered.

ciphertext is a pointer to a buffer which is 8 bytes in length. This may be the same
as the cleartext buffer.

 Output
On successful exit from this routine:

ciphertext is a pointer to the buffer where the enciphered data is placed. This
buffer may be the same as the cleartext buffer, if desired.

 Return Codes
Common return codes generated by this routine are:

mk_NO_ERROR The operation was successful.

mk_SRDI_OPEN_ERROR Could not open the master key SRDI.

mk_SEM_CLAIM_FAILED Unable to access the SRDI Manager.

mk_KEY_NOT_VALID The master key (OMK, CMK, or NMK) is not a
valid key.

mk_INVALID_KEY_SELECTOR The input parameters are not valid.

6-16 UDX Reference and Guide

 16-NOV-01, 14:51 triple_encrypt_under_master_key_with_CV

 triple_encrypt_under_master_key_with_CV
triple_encrypt_under_master_key_with_CV triple encrypts eight bytes of data with
the EDE algorithm, using a control vector with the specified master key.

Note: This function does not check the validity of the control vector.

 Function Prototype
long triple_encrypt_under_master_key_with_CV(mk_selectors
mk_selector,

 eightbyte
cv,

 UCHAR
cleartext,

 UCHAR
ciphertext)

 Input
On entry to this routine:

mk_selector is a pointer to a variable which must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register is set to either old_mk, current_mk, or new_mk, representing the
key to be used for encryption.

� type_mks should be set to ASYM_MK if the data is to be encrypted with the
asymmetric-keys master key or to SYM_MK if the data is to be encrypted with
the symmetric-keys master key.

cv is a pointer to a double-length CCA control vector, which is exclusive-ORed with
the specified key value before the key is used.

cleartext is a pointer to a buffer containing the data that is enciphered.

ciphertext is a pointer to a buffer which can hold 8 bytes of data. This may be the
same as the cleartext buffer.

 Output
On successful exit from this routine:

ciphertext is a pointer to the buffer where the enciphered data is placed. This
buffer may be the same as the cleartext buffer, if desired.

 Return Codes
Common return codes generated by this routine are:

mk_NO_ERROR The operation was successful.

mk_SRDI_OPEN_ERROR Could not open the master key SRDI.

mk_SEM_CLAIM_FAILED Unable to access the SRDI Manager.

 Chapter 6. CCA Master Key Manager Functions 6-17

 triple_encrypt_under_master_key_with_CV 16-NOV-01, 14:51

6-18 UDX Reference and Guide

 16-NOV-01, 14:51

 Chapter 7. SHA-1 Functions

The functions described in this chapter allow a UDX to compute the hash of a block
of data using the Secure Hash Algorithm (SHA-1) as defined in FIPS Publication
180-1.

Note: All functions within this chapter are available only on the coprocessor.

Header Files for SHA-1 Functions
When using these functions, your program must include the following header files:

#include "cmncryt2.h" /
 Cryptographic types
/

#include "cmn_sha.h" /
 SHA external definitions.
/

Summary of Functions
The following functions are described in this chapter:

computeHMAC_SHA1 Compute a keyed-hash for message authentication
code (HMAC) for a given set of data using the
Secure Hash Algorithm (SHA-1).

do_sha_hash_message Compute the hash of a block of data using the
SHA-1 algorithm.

do_sha_hash_msg_to_bfr “wrapper” for sha_hash_message.

hw_sha_hash_message Compute a SHA-1 hash of the requested data on
the hashing hardware.

sha_hash_message Compute the hash of a block of data using the
SHA-1 algorithm.

sha_hash_msg_to_bfr “wrapper” for sha_hash_message.

 Chapter 7. SHA-1 Functions 7-1

 computeHMAC_SHA1 - Compute HMAC using SHA-1 Algorithm 16-NOV-01, 14:51

computeHMAC_SHA1 - Compute HMAC using SHA-1 Algorithm
computeHMAC_SHA1 computes a keyed-hash for message authentication code
(HMAC) for a given set of data, using the SHA-1 algorithm and a provided key.

 Function Prototype
void computeHMAC_SHA1 (char
pBuffer, int buffer_length,

 char
pKey, int key_length,

 char
pHmac);

 Input
On entry to this routine:

pBuffer is a pointer to an array which holds the data to be hashed for message
authentication codes.

buffer_length is the number of bytes of data in pbuffer.

pKey is a pointer to a key (a random string of bits, preferably 64 bytes long).

key_length is the number of bytes of data in pKey.

pHmac is a pointer to a buffer 20 bytes long, which will hold the returned data.

 Output
On successful exit from this routine:

pHmac contains the HMAC-SHA1 of the data in pBuffer.

 Return Codes
This function has no return codes.

7-2 UDX Reference and Guide

 16-NOV-01, 14:51 do_sha_hash_message - Calculate SHA-1 Hash Hardware/Software

do_sha_hash_message - Calculate SHA-1 Hash Hardware/Software
do_sha_hash_message calculates the SHA-1 hash of the data using the
coprocessor hardware if the data is longer than 8192 bits, or the software if the
data is shorter.

 Function Prototype
ULONG do_sha_hash_message (UCHAR
pBlock,

 UCHAR
pHash,

 dbl_ulong
pBitCount,

 sha_context
pContext,

 owh_sequence MsgPart);

 Input
On entry to this routine:

MsgPart controls the operation of the function and must be one of the following
constants:

only The input data constitutes the entire block of data to be hashed. The
hash value is computed and returned.

first The input data constitutes the first portion of a block of data to be
hashed. See “Chained Operations” on page 7-4 for details.

middle The input data constitutes an additional portion of a block of data to be
hashed. See “Chained Operations” on page 7-4 for details.

final The input data constitutes the final portion of a block of data to be
hashed. See “Chained Operations” on page 7-4 for details.

pBlock must contain the address of the block of data that is to be incorporated into
the hash.

pHash must contain the address of a buffer to which the hash value may be written.
The buffer must be at least 20 bytes long. pHash is used only if MsgPart specifies
only or final.

pBitCount must contain the address of a buffer that contains the length in bits of
the block of data referenced by pBlock.
pBitCount is interpreted as a 64-bit
integer. pBitCount->upper contains the most-significant 32 bits of
pBitCount and
pBitCount->lower contains the least-significant 32 bits of
pBitCount.

Note: Both fields are regular 32-bit integers (that is, C unsigned longs) that are
stored in the native byte order of the processor on which the code is running.

For example, pBitCount->lower and pBitCount->upper are stored in little-endian
order on the coprocessor.

If MsgPart specifies first or middle,
pBitCount must be a multiple of 512, or data
will be lost.

pContext must contain the address of a context buffer from which the function may
initialize its internal state and to which the function may write its final internal state.
See “Chained Operations” on page 7-4 for details.

If MsgPart specifies only or first, the initial value of
pContext is ignored.

 Chapter 7. SHA-1 Functions 7-3

 do_sha_hash_message - Calculate SHA-1 Hash Hardware/Software 16-NOV-01, 14:51

 Output
On successful exit from this routine:

The buffer referenced by pHash contains the hash value of the input data if MsgPart
specifies only or final. In the latter case, the hash value incorporates the initial
hash value provided in
pContext.

pContext has been updated to incorporate changes to the function’s internal state
caused by incorporating
pBlock into the hash.

 Notes
Chained Operations

A block of data to be hashed may be processed in a single operation. It may be
necessary, however, to break the operation into several steps, each of which
processes only a portion of the block. (For example, an application may want to
compute a hash that covers several discontiguous fields in a structure.)

A chained operation is initiated by calling do_sha_hash_message with MsgPart set
to first and the first piece of the block of data to hash identified by pBlock and

pBitCount. On return,
pContext contains context information that must be
preserved and passed to sha_hash_message when the next piece of the block of
data to hash is processed.

Subsequent pieces of the block are processed by calling sha_hash_message with
MsgPart set to middle (or to final if the piece in question is the last) and the
location and length of the piece identified by pBlock and
pBitCount.
pContext

must contain the value returned in that structure by the call to sha_hash_message
that processed the previous piece of the block. The function hashes the piece and
updates
pContext and pHash appropriately.

 Return Codes
Common return codes generated by this routine are:

sh_NO_ERROR (i.e., 0) The operation was successful.

sh_MSG_PART_INVALID The MsgPart argument was not only, first, middle, or
last.

 Examples
To compute the SHA-1 hash of a contiguous block of 150 bytes of text at pBlock:

BitCount = ((dbl_ulong) 15F)
8;

memset ((UCHAR
)pContext, FxFF, sizeof(sha_context));

do_sha_hash_message(pBlock, &Hash, &BitCount, pContext, only);

7-4 UDX Reference and Guide

 16-NOV-01, 14:51 do_sha_hash_message - Calculate SHA-1 Hash Hardware/Software

To compute the SHA-1 hash of only the name fields of the following structure:

struct emp_data{

 char ID[1F];

 double salary;

 char name[64];

}employee[MAX_EMP];

BitCount = (dbl_ulong)512;

memclr ((UCHAR
)&Context, FxFF, sizeof(sha_context));

/
 Start the hash with "first"
/

sha_hash_message(employee[i].name, &Hash, &Bitcount, &Context, first);

/
 hash the middle portions
/

for (i = 1; i< MAX_EMP-1; i++)

{

/
 it is important that the value in BitCount is divisible by 512
/

do_sha_hash_message(employee[i].name, &Hash, &BitCount, &Context, middle);

}

/
 hash the final portion
/

sha_hash_message(employee[MAX_EMP-1].name, &Hash, &BitCount, &Context,final);

/
 at this point, the value in Hash is the SHA-1 hash of the names
/

 Chapter 7. SHA-1 Functions 7-5

 do_sha_hash_msg_to_bfr - SHA-1 Hash 16-NOV-01, 14:51

do_sha_hash_msg_to_bfr - SHA-1 Hash
do_sha_hash_msg_to_bfr is a wrapper for sha_hash_message that simplifies the
interface when chained operations (see page 7-4) are not necessary.

 Function Prototype
void do_sha_hash_msg_to_bfr(UCHAR
pBlock,

 UCHAR
pHash,

 dbl_ulong
pBitCount);

 Input
On entry to this routine:

pBlock must contain the address of the block of data that is to be hashed.

pHash must contain the address of a buffer to which the hash value may be written.
The buffer must be at least 20 bytes long.

pBitCount must contain the address of a buffer that contains the length in bits of
the block of data referenced by pBlock.
pBitCount is interpreted as a 64-bit
integer. pBitCount->upper contains the most-significant 32 bits of
pBitCount and
pBitCount->lower contains the least-significant 32 bits of
pBitCount.

Note: Both fields are regular 32-bit integers (that is, C unsigned longs) that are
stored in the native byte order of the processor on which the code is running.

For example, pBitCount->lower and pBitCount->upper are stored in little-endian
order on the coprocessor.

 Output
On successful exit from this routine:

The buffer referenced by pHash contains the hash value of the input data.

 Notes
Function Wraps sha_hash_message

sha_hash_msg_to_bfr(pBlock,pHash,pBitCount) performs the same function as

{

 sha_context Context;

 memset(&Context,F,sizeof(Context));

 do_sha_hash_message(pBlock,pHash,pBitCount,&Context,only);

}

 Return Codes
This function has no return codes.

7-6 UDX Reference and Guide

 16-NOV-01, 14:51 hw_sha_hash_message - Compute SHA-1 Hash in Hardware

hw_sha_hash_message - Compute SHA-1 Hash in Hardware
hw_sha_hash_message computes a SHA-1 hash of the requested data on the
hashing hardware in the coprocessor.

 Function Prototype
void hw_sha_hash_message(UCHAR
pText,

 long text_length,

 sha_context
chain_vector,

 long RequestId,

 ULONG options,

 UCHAR
final_data,

 long
pMsg);

 Input
On entry to this routine:

pText is a pointer to the data which is to be hashed.

text_length is the number of bytes of data at pText.

chain_vector is the context of this request. If this is the first block of data, or the
only block, this variable should be initialized to zeros. On subsequent calls, this
variable should be returned to the next call without change.

RequestId is the ID of the caller.

options may include SHA_MSGPART_FIRST, SHA_MSGPART_MIDDLE,
SHA_MSGPART_FINAL, or SHA_MSGPART_ONLY, as well as
SHA_INTERNAL_INPUT or SHA_EXTERNAL_INPUT. These constants are
defined in the scc_int.h header file.

final_data is a pointer to a buffer at least 20 bytes long, to hold the result of the
hash.

pMsg is a pointer to a 4-byte block.

 Output
On successful exit from this routine:

chain_vector contains the chaining information for the next call to the function,
unless this call was with the final or only block of data. This variable should be
passed unchanged to the next call.

final_data contains the final hash value, if this call was with the final or only data
block.

pMsg contains the return code for the function.

 Chapter 7. SHA-1 Functions 7-7

 hw_sha_hash_message - Compute SHA-1 Hash in Hardware 16-NOV-01, 14:51

 Return Codes
Common return codes generated by this routine are:

OK The operation was successful.

SHA1_DATA64_ERROR The options argument specified
SHA_MSGPART_FIRST or
SHA_MSGPART_MIDDLE but the length of the
data to process is not a multiple of 64.

SHA1_DATA32MB_ERROR The length of the data to process is 32M or
greater.

SHA1_FINAL_ERROR An error occurred while attempting to pad the
input data as directed by the SHA-1 algorithm or
while attempting to hash the pad bytes.

7-8 UDX Reference and Guide

 16-NOV-01, 14:51 sha_hash_message - SHA-1 Hash with Chaining

sha_hash_message - SHA-1 Hash with Chaining
sha_hash_message computes the hash of a block of data using the Secure Hash
Algorithm (SHA-1) and optionally incorporates the result into an initial hash value.
This function calculates the hash in software.

 Function Prototype
ULONG sha_hash_message (UCHAR
pBlock,

 UCHAR
pHash,

 dbl_ulong
pBitCount,

 sha_context
pContext,

 owh_sequence MsgPart);

 Input
On entry to this routine:

MsgPart controls the operation of the function and must be one of the following
constants:

only The input data constitutes the entire block of data to be hashed. The
hash value is computed and returned.

first The input data constitutes the first portion of a block of data to be
hashed. See “Chained Operations” on page 7-10 for details.

middle The input data constitutes an additional portion of a block of data to be
hashed. See “Chained Operations” on page 7-10 for details.

final The input data constitutes the final portion of a block of data to be
hashed. See “Chained Operations” on page 7-10 for details.

pBlock must contain the address of the block of data that is to be incorporated into
the hash.

pHash must contain the address of a buffer to which the hash value may be written.
The buffer must be at least 20 bytes long. pHash is used only if MsgPart specifies
only or final.

pBitCount must contain the address of a buffer that contains the length in bits of
the block of data referenced by pBlock.
pBitCount is interpreted as a 64-bit
integer. pBitCount->upper contains the most-significant 32 bits of
pBitCount and
pBitCount->lower contains the least-significant 32 bits of
pBitCount.

Note: Both fields are regular 32-bit integers (that is, C unsigned longs) that are
stored in the native byte order of the processor on which the code is running.

For example, pBitCount->lower and pBitCount->upper are stored in little-endian
order on the coprocessor.

If MsgPart specifies first or middle,
pBitCount must be a multiple of 512, or data
will be lost.

pContext must contain the address of a context buffer from which the function may
initialize its internal state and to which the function may write its final internal state.
See “Chained Operations” on page 7-10 for details.

If MsgPart specifies only or first, the initial value of
pContext is ignored.

 Chapter 7. SHA-1 Functions 7-9

 sha_hash_message - SHA-1 Hash with Chaining 16-NOV-01, 14:51

 Output
On successful exit from this routine:

The buffer referenced by pHash contains the hash value of the input data if MsgPart
specifies only or final. In the latter case, the hash value incorporates the initial
hash value provided in
pContext.

pContext has been updated to incorporate changes to the function’s internal state
caused by incorporating
pBlock into the hash.

 Notes
Chained Operations

A block of data to be hashed may be processed in a single operation. It may be
necessary, however, to break the operation into several steps, each of which
processes only a portion of the block. (For example, an application may want to
compute a hash that covers several discontiguous fields in a structure.)

A chained operation is initiated by calling sha_hash_message with MsgPart set to
first and the first piece of the block of data to hash identified by pBlock and

pBitCount. On return,
pContext contains context information that must be
preserved and passed to sha_hash_message when the next piece of the block of
data to hash is processed.

Subsequent pieces of the block are processed by calling sha_hash_message with
MsgPart set to middle (or to final if the piece in question is the last) and the
location and length of the piece identified by pBlock and
pBitCount.
pContext

must contain the value returned in that structure by the call to sha_hash_message
that processed the previous piece of the block. The function hashes the piece and
updates
pContext and pHash appropriately.

 Return Codes
Common return codes generated by this routine are:

sh_NO_ERROR (i.e., 0) The operation was successful.

sh_MSG_PART_INVALID The MsgPart argument was not only, first, middle, or
last.

 Examples
To compute the SHA-1 hash of a contiguous block of 150 bytes of text at pBlock:

BitCount = ((dbl_ulong) 15F)
8;

memset ((UCHAR
)pContext, FxFF, sizeof(sha_context));

sha_hash_message(pBlock, &Hash, &BitCount, pContext, only);

7-10 UDX Reference and Guide

 16-NOV-01, 14:51 sha_hash_message - SHA-1 Hash with Chaining

To compute the SHA-1 hash of only the name fields of the following structure:

struct emp_data{

 char ID[1F];

 double salary;

 char name[64];

}employee[MAX_EMP];

BitCount = (dbl_ulong)512;

memclr ((UCHAR
)&Context, FxFF, sizeof(sha_context));

/
 Start the hash with "first"
/

sha_hash_message(employee[i].name, &Hash, &Bitcount, &Context, first);

/
 hash the middle portions
/

for (i = 1; i< MAX_EMP-1; i++)

{

/
 it is important that the value in BitCount is divisible by 512
/

sha_hash_message(employee[i].name, &Hash, &BitCount, &Context, middle);

}

/
 hash the final portion
/

sha_hash_message(employee[MAX_EMP-1].name, &Hash, &BitCount, &Context,final);

/
 at this point, the value in Hash is the SHA-1 hash of the names
/

 Chapter 7. SHA-1 Functions 7-11

 sha_hash_msg_to_bfr - SHA-1 Hash 16-NOV-01, 14:51

sha_hash_msg_to_bfr - SHA-1 Hash
sha_hash_msg_to_bfr is a wrapper for sha_hash_message that simplifies the
interface when chained operations (see page 7-10) are not necessary.

 Function Prototype
void sha_hash_msg_to_bfr(UCHAR
pBlock,

 UCHAR
pHash,

 dbl_ulong
pBitCount);

 Input
On entry to this routine:

pBlock must contain the address of the block of data that is to be hashed.

pHash must contain the address of a buffer to which the hash value may be written.
The buffer must be at least 20 bytes long.

pBitCount must contain the address of a buffer that contains the length in bits of
the block of data referenced by pBlock.
pBitCount is interpreted as a 64-bit
integer. pBitCount->upper contains the most-significant 32 bits of
pBitCount and
pBitCount->lower contains the least-significant 32 bits of
pBitCount.

Note: Both fields are regular 32-bit integers (that is, C unsigned longs) that are
stored in the native byte order of the processor on which the code is running.

For example, pBitCount->lower and pBitCount->upper are stored in little-endian
order on the coprocessor.

 Output
On successful exit from this routine:

The buffer referenced by pHash contains the hash value of the input data.

 Notes
Function Wraps sha_hash_message

sha_hash_msg_to_bfr(pBlock,pHash,pBitCount) performs the same function as

{

 sha_context Context;

 memset(&Context,F,sizeof(Context));

 sha_hash_message(pBlock,pHash,pBitCount,&Context,only);

}

 Return Codes
This function has no return codes.

7-12 UDX Reference and Guide

 16-NOV-01, 14:51

Chapter 8. DES Utility Functions

This chapter describes functions to assist in the use of key tokens and other
cryptographic structures.

You should understand the use of the CCA control-vector before using the
functions in this chapter. Control vectors are explained and described in Appendix
C of the CCA Basic Services Reference and Guide. Three bits in the basic control
vector have been reserved for UDX developers. Setting Bit 61 will prevent a key
token from being used in any CCA standard verb except the import and export
verbs. Bits 4 and 5 of the control vector will be checked by any standard CCA
code. This allows developers to use these three bits to indicate their own, UDX
specific keys, which can be used only by UDX verbs. (These verbs must be written
to test the required bits.)

Note: All functions within this chapter are available only on the coprocessor.

Header Files for DES Utility Functions
When using these functions, your program must include the following header files.

#include "cmncryt2.h" /
 T2 structures, constants, functions
/

#include "castyped.h" /
 Adapter typedefs and structures
/

#include "cassub.h" /
 DES 96 function prototypes
/

#include "casfunct.h"

Summary of Functions
DES utility routines includes the following functions.

CasBuildCv Builds a default control vector. See page
8-5.

CasBuildToken Builds a default DES key token. See page
8-6.

CasCurrentMkvp Returns the current master key verification
pattern. See page 8-8.

CasOldMkvp Returns the old master key verification
pattern. See page 8-9.

CasMasterKeyCheck Performs a master key version check. See
page 8-14.

cas_adjust_parity Adjusts the parity of a DES key token. See
page 8-4.

cas_des_key_token_check Verifies the integrity of a DES key token.
See page 8-10.

cas_get_key_type Returns the type of DES key token. See
page 8-11.

cas_key_length Returns the length of a DES key. See page
8-12.

 Chapter 8. DES Utility Functions 8-1

 16-NOV-01, 14:51

cas_key_tokentvv_check Verifies a DES key token validation value.
See page 8-13.

cas_parity_odd Determines whether a DES key has odd
parity. See page 8-16.

RecoverDesDataKeyWithMK Recovers the cleartext form of a DES
importer data key. See page 8-17.

RecoverDesKekImporterWithMK Recovers the cleartext form of a DES key
encrypting key (KEK). See page 8-19.

8-2 UDX Reference and Guide

 16-NOV-01, 14:51

 Overview
The routines described in this chapter are used to analyze, modify, and validate
CCA DES key tokens.

Refer to the IBM 4758 PCI Cryptographic Coprocessor CCA Basic Services
Reference and Guide for more information. Chapter 5, “Basic CCA DES Key
Management” includes an in-depth discussion of DES key token management
within CCA. You can also refer to Appendix B, “Data Structures” for a description
of the DES key tokens structures and Appendix C, “CCA Control Vector Definitions
and Key Encryption” for a discussion of control vectors.

Keys used in these functions are one of the following KEY_TYPES:

DATA_KEY For the encryption and decryption of data.

DATAXLATE_KEY To re-encipher data from one key to another.

CIPHER_KEY A symmetric key to encipher and decipher data.

ENCIPHER_KEY A non-symmetric key, which only enciphers data.

DECIPHER_KEY A non-symmetric key, which only deciphers data.

MAC_KEY For generating and verify Message Authentication Codes.

MACVER_KEY For verifying Message Authentication Codes.

IMPORTER_KEY For decoding keys imported from other engines, or
translating keys from one encoding to another.

EXPORTER_KEY For encoding keys for export (to other engines), or
translating keys from one encoding to another.

IKEYXLATE_KEY For inputting a key translation.

OKEYXLATE_KEY For outputting a key translation.

PINGEN_KEY For generating PINs.

PINVER_KEY For verifying PINs.

IPINENC_KEY For importing PINs.

OPINENC_KEY For exporting PINs.

KEYGEN_KEY Used for key generation.

KEY_TYPE_TOKEN A key token, rather than a key.

 Chapter 8. DES Utility Functions 8-3

 cas_adjust_parity - Adjust Parity 16-NOV-01, 14:51

cas_adjust_parity - Adjust Parity
cas_adjust_parity adjusts each byte of the passed string, as necessary, so that
every byte has odd parity. This is useful when adjusting DES keys for correct
parity.

 Function Prototype
void cas_adjust_parity(UCHAR
DataBytes,

 unsigned int Length)

 Input
On entry to this routine:

DataBytes is a pointer to the string that is to be parity-adjusted.

Length is the number of bytes in the string at location DataBytes.

 Output
On successful exit from this routine:

DataBytes is a pointer to the string that has been parity-adjusted.

 Return Codes
This function has no return codes.

8-4 UDX Reference and Guide

 16-NOV-01, 14:51 CasBuildCv - Build a Default Control Vector

CasBuildCv - Build a Default Control Vector

CasBuildCv builds a default control vector for the specified key type.

 Function Prototype
boolean CasBuildCv (KEY_TYPES KeyType,

 CV_LENGTHS CV_Length,

 UCHAR
pCV)

void cas_build_default_cv(KEY_TYPES KeyType,

 UCHAR
pCV)

cas_build_default_cv has the same effect as calling CasBuildCv after setting the
CV_Length parameter to CV_DEFAULT.

 Input
On entry to this routine:

KeyType is the type of key your control vector is used with.

pCv is a pointer to a 20-byte location which will hold the new control vector.

CV_Length is one of CV_DOUBLE, CV_SINGLE, or CV_DEFAULT, depending on
what length of key you are building a control vector for.

 Output
On successful exit from this routine:

CasBuildCv returns true if the build was successful, and false otherwise. (For
example, if the length requested was not legal for the key type.)

pCV contains the new control vector.

 Return Codes
This function has no return codes.

 Chapter 8. DES Utility Functions 8-5

 CasBuildToken - Build a Default Token 16-NOV-01, 14:51

CasBuildToken - Build a Default Token

CasBuildToken builds a default key token, of the type specified by parameter
KeyType for the mk_set being processed.

 Function Prototype
boolean CasBuildToken (UCHAR TokenFlag,

 KEY_TYPES KeyType,

 CV_LENGTHS CV_Length,

 mk_selectors
pMKSelector,

des_key_token_structure
pKeyToken)

void cas_build_default_token(UCHAR TokenFlag,

 KEY_TYPES KeyType,

des_key_token_structure
pKeyToken)

cas_build_default_token has the same effect as calling CasBuildToken with
CV_Length set to CV_DEFAULT and MKSelector set to {MK_SET_DEFAULT,
current_mk, SYM_MK}.

 Input
On entry to this routine:

TokenFlag is the token flag used in constructing the new key token. Legal values
for this field are INTERNAL_TOKEN_FLAG and EXTERNAL_TOKEN_FLAG.

KeyType is the type of key token to be generated. Examples include data key,
exporter key, and MAC key.

CV_Length is one of CV_DOUBLE, CV_SINGLE, or CV_DEFAULT, depending on
what length of key you are building a control vector for.

MKSelector is a parameter of type mk_selectors, indicating which set of master
keys to use in this function. This variable must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register must be set to current_mk.
� type_mks should be set to SYM_MK.

pKeyToken is a pointer to a 64-byte buffer which can store a key token.

8-6 UDX Reference and Guide

 16-NOV-01, 14:51 CasBuildToken - Build a Default Token

 Output
On successful exit from this routine:

pKeyToken contains the token constructed by the function.

 Return Codes
This function has no return codes.

 Chapter 8. DES Utility Functions 8-7

 CasCurrentMkvp - Current Master Key Verification Pattern 16-NOV-01, 14:51

CasCurrentMkvp - Current Master Key Verification Pattern

CasCurrentMkvp returns the 20-byte master key verification pattern (MKVP) for the
current master key for the mk_set being processed. The MKVP is a
cryptographically calculated checksum on the master key value. It is used in all
internal (master-key encrypted) DES key tokens, to indicate which master key was
used to encrypt the key.

 Function Prototype
boolean CasCurrentMkvp (mk_selectors
pMKSelector,

 UCHAR
pMKVP)

boolean cas_current_mkvp(UCHAR
pMKVP)

cas_current_mkvp has the same effect as calling CasCurrentMkvp with the
pMKSelector parameter set to {MK_SET_DEFAULT, current_mk, SYM_MK}.

 Input
On entry to this routine:

MKSelector is a parameter of type mk_selectors, indicating which set of master
keys to use in this function. This variable must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register must be set to new_mk or current_mk.
� type_mks should be set to SYM_MK.

pMKVP must contain the address of a variable in which a 20-byte master key
verification pattern can be stored.

 Output
On successful exit from this routine:

pMKVP contains the current master key verification pattern.

cas_current_mkvp returns TRUE if the verification pattern was found, and FALSE
otherwise.

 Return Codes
This function has no return codes.

8-8 UDX Reference and Guide

 16-NOV-01, 14:51 CasOldMkvp - Old Master Key Verification Pattern

CasOldMkvp - Old Master Key Verification Pattern

CasOldMkvp returns the 20-byte master key verification pattern (MKVP) for the old
master key for the mk_set being processed. The MKVP is a cryptographically
calculated checksum on the master key value. It is used in all internal (master-key
encrypted) DES key tokens, to indicate which master key was used to encrypt the
key.

 Function Prototype
boolean CasOldMkvp (mk_selectors
pMKSelector,

 UCHAR
pMKVP)

boolean cas_old_mkvp(UCHAR
pMKVP)

cas_old_mkvp has the same effect as calling CasOldMkvp with the pMKSelector
parameter set to {MK_SET_DEFAULT, current_mk, SYM_MK}.

 Input
On entry to this routine:

MKSelector is a parameter of type mk_selectors, indicating which set of master
keys to use in this function. This variable must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register must be set to new_mk or current_mk.
� type_mks should be set to SYM_MK.

pMKVP must contain the address of a variable in which a 20-byte master key
verification pattern can be stored.

 Output
On successful exit from this routine:

pMKVP contains the current master key verification pattern.

cas_current_mkvp returns TRUE if the verification pattern was found, and FALSE
otherwise.

 Return Codes
This function has no return codes.

 Chapter 8. DES Utility Functions 8-9

 cas_des_key_token_check - Verify the DES Key Token 16-NOV-01, 14:51

cas_des_key_token_check - Verify the DES Key Token
cas_des_key_token_check performs the following checks to verify the integrity of
an internal DES key token.

� Check that all reserved fields are zero.

� Check the token flag.

� Check the version number.

� Check the flags.

If no errors are found, the function returns TRUE. If there is an error, the function
returns FALSE and parameter pMessageFlag indicates the cause of the error.

Either version 0 or version 1 DES key tokens may be validated.

 Function Prototype
boolean cas_des_key_token_check(des_key_token_structure
pKeyToken,

 DES_TOKEN_CHECK
pMessageFlag)

 Input
On entry to this routine:

pKeyToken is a pointer to the internal DES key token that is to be checked.

 Output
On successful exit from this routine:

pMessageFlag is a pointer to a location where the function stores an error code, if
the key token is found to have an error.

cas_des_key_token_check returns a boolean value of TRUE, if the token has no
errors, or FALSE otherwise.

 Return Codes
Common return codes generated by this routine are:

DES_TOKEN_CHECK_VALID The token is valid.

DES_TOKEN_CHECK_TOKENFLAG The token is not an internal DES key token.

DES_TOKEN_CHECK_RESERVEDi Reserved field i is incorrectly set.

DES_TOKEN_CHECK_VERSION The version number is incorrect.

DES_TOKEN_CHECK_FLAGBYTES The token flag is incorrect.

DES_TOKEN_CHECK_FLAG_NOCV The token has no control vector set.

DES_TOKEN_CHECK_NOKEY The token does not contain a key.

8-10 UDX Reference and Guide

 16-NOV-01, 14:51 cas_get_key_type - Return Key Type

cas_get_key_type - Return Key Type
cas_get_key_type returns the key type corresponding to the specified key token.

 Function Prototype
KEY_TYPES cas_get_key_type(des_key_token_structure
pKeyToken)

 Input
On entry to this routine:

pKeyToken is a pointer to the key token which is to be examined.

 Output
This function returns no output. On successful exit from this routine:

cas_get_key_type returns the key type corresponding to the specified key token.

 Return Codes
This function has no return codes.

 Chapter 8. DES Utility Functions 8-11

 cas_key_length - Return Key Length 16-NOV-01, 14:51

cas_key_length - Return Key Length
cas_key_length determines the length of a key, based on the Control Vector. The
key length is returned as the function result.

 Function Prototype
LENGTH_KEYWORD cas_key_length(eightbyte CvBase,

eightbyte CvExtension)

 Input
On entry to this routine:

CvBase is the control vector base.

CvExtension is the control vector extension.

 Output
On successful exit from this routine:

cas_key_length returns SINGLE or DOUBLE, depending on whether the specified
key is single or double length.

 Examples
To determine the length of the key stored in DataKey:

switch(cas_key_length(DataKey,cvBase, DataKey.cvExten))

{

 case SINGLE:

/
 deal with a single length key
/

 break;

 case DOUBLE:

/
 deal with a double length key
/

 break;

 default :

/
return with an error
/

}

 Return Codes
This function has no return codes.

8-12 UDX Reference and Guide

 16-NOV-01, 14:51 cas_key_tokentvv_check - Verify the Token Validation Value

cas_key_tokentvv_check - Verify the Token Validation Value
cas_key_tokentvv_check verifies the Token Validation Value (TVV) in the specified
internal DES key token. The TVV is an integrity check value used to detect
corruption of the token.

The function returns TRUE if the TVV verifies, and FALSE if not.

 Function Prototype
boolean cas_key_tokentvv_check(des_key_token_structure
pKeyToken)

 Input
On entry to this routine:

pKeyToken is a pointer to the internal DES key token that you want to check.

 Output
On successful exit from this routine:

cas_key_token_tvv_check returns a boolean value of TRUE if the TVV verifies, and
FALSE if not.

 Return Codes
This function has no return codes.

 Chapter 8. DES Utility Functions 8-13

 CasMasterKeyCheck - Master Key Version Check 16-NOV-01, 14:51

CasMasterKeyCheck - Master Key Version Check

CasMasterKeyCheck determines which version of the master key was used to
encrypt the specified key token for the mk_set being processed. The response
indicates whether the key token is encrypted using the current master key, the old
master key, or a master key that is no longer available.

 Function Prototype
UNDER_MASTER_KEY CasMasterKeyCheck (mk_selectors
pMKSelector,

des_key_token_structure
pKeyToken)

UNDER_MASTER_KEY cas_master_key_check(des_key_token_structure
pKeyToken)

cas_master_key_check has the same effect as calling CasMasterKeyCheck with the
pMKSelector parameter set to {MK_SET_DEFAULT, current_mk, SYM_MK}.

 Input
On entry to this routine:

MKSelector is a parameter of type mk_selectors, indicating which set of master
keys to use in this function. This variable must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register must be set to new_mk or current_mk.
� type_mks should be set to SYM_MK.

pKeyToken is a pointer to the key token which is to be examined.

 Output
On successful exit from this routine:

cas_master_key_check returns either OLD, CURRENT, or OUT_OF_DATE which
identifies which master key (old, current, or no longer available) the key token is
encrypted under.

 Notes
In CCA, an “operational key” is a key that has been multiply-enciphered with the
master key. In order to use an operational key, it must first be deciphered using
the master key.

When the user (security officers, and so on) updates the master key, CCA
maintains a copy of the old master key. This routine determines which version of
the master key was used to encipher the specified key token (CCA does this by
maintaining a hash value of the master key called the master key verification
pattern which is stored in the DES key token). Refer to Appendix B of the IBM
4758 PCI Cryptographic Coprocessor CCA Basic Services Reference and Guide for
more information.

8-14 UDX Reference and Guide

 16-NOV-01, 14:51 CasMasterKeyCheck - Master Key Version Check

Since CCA only stores 2 versions of the master key (current and old), upon
encountering a key token enciphered with the old master key, the UDX developer
may opt to re-encipher the key token using the current master key.

 Return Codes
This function has no return codes.

 Chapter 8. DES Utility Functions 8-15

 cas_parity_odd - Verify Parity 16-NOV-01, 14:51

cas_parity_odd - Verify Parity
cas_parity_odd determines whether the specified byte has odd or even parity.

 Function Prototype
boolean cas_parity_odd(UCHAR DataByte)

 Input
On entry to this routine:

DataByte is the byte that is to be checked.

 Output
On successful exit from this routine:

cas_parity_odd returns TRUE if the specified byte has odd parity, or FALSE if it
has even parity.

 Return Codes
This function has no return codes.

8-16 UDX Reference and Guide

 16-NOV-01, 14:51 RecoverDesDataKeyWithMK - Recover DES Data Key

RecoverDesDataKeyWithMK - Recover DES Data Key

RecoverDesDataKeyWithMK recovers the cleartext form of a DES data key that
has been enciphered with the master key for the mk_set being processed. The
input token is checked to ensure it is valid.

 Function Prototype
long RecoverDesDataKeyWithMK (des_key_token_structure
pDesToken,

 mk_selectors
pMKSelector,

 UCHAR
pClearKey,

 long
pMsg)

long RecoverDesDataKey (des_key_token_structure
pDesToken,

 UCHAR
pClearKey,

 long
pMsg)

RecoverDesDataKey is the equivalent of calling RecoverDesDataKeyWithMK after
setting the MKSelector parameter to {MK_SET_DEFAULT, current_mk, SYM_MK}.

 Input
On entry to this routine:

pDesToken is a pointer to the input key token.

MKSelector is a parameter of type mk_selectors, indicating which set of master
keys to use in this function. This variable must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register must be set to new_mk or current_mk.
� type_mks should be set to SYM_MK.

 Output
On successful exit from this routine:

pClearKey is a pointer to the location where the function stores the recovered,
cleartext key.

pMsg is the error code.

 Return Codes
Common return codes generated by this routine are:

OK The operation was successful.

ERROR pMsg contains the error code.

RT_OMK_TOKEN_USED The key was encrypted with the Old master key
(warning).

E_INTRN_TOKEN_TVV The token is not valid.

mk_SRDI_OPEN_ERROR Could not open the master key SRDI.

 Chapter 8. DES Utility Functions 8-17

 RecoverDesDataKeyWithMK - Recover DES Data Key 16-NOV-01, 14:51

mk_SEM_CLAIM_FAILED Unable to access the master key SRDI.

RT_KEY_INV_MKVN The key was encrypted using an out-of-date master
key.

RT_KDATA_NOTODD The cleartext key failed a parity check.

8-18 UDX Reference and Guide

 16-NOV-01, 14:51 RecoverDesKekImporterWithMK - Recover DES Importer KEK

RecoverDesKekImporterWithMK - Recover DES Importer KEK

RecoverDesKekImporterWithMK recovers the cleartext form of a DES importer key
encrypting key (KEK) that has been enciphered with the master key for the mk_set
being processed. The token validation value is then confirmed, and the key is
checked for parity.

 Function Prototype
long RecoverDesKekImporterWithMK (des_key_token_structure
pDesToken,

 mk_selectors
pMKSelector,

 UCHAR
pClearKey,

 long
pMsg)

long RecoverDesKekImporter (des_key_token_structure
pDesToken,

 UCHAR
pClearKey,

 long
pMsg)

RecoverDesKekImporter is the equivalent of calling RecoverDesKekImporterWithMK

with the MKSelector parameter set to {MK_SET_DEFAULT, current_mk, SYM_MK}.

 Input
On entry to this routine:

pDesToken is a pointer to the input key token.

MKSelector is a parameter of type mk_selectors, indicating which set of master
keys to use in this function. This variable must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register must be set to new_mk or current_mk.
� type_mks should be set to SYM_MK.

 Output
On successful exit from this routine:

pClearKey is a pointer to the location where the function stored the recovered,
cleartext key.

pMsg is the error code.

 Return Codes
Common return codes generated by this routine are:

OK The operation was successful.

ERROR pMsg contains the error code.

RT_OMK_TOKEN_USED The key was encrypted with the Old master key
(warning).

E_INTRN_TOKEN_TVV The token is not valid.

mk_SRDI_OPEN_ERROR Could not open the master key SRDI.

mk_SEM_CLAIM_FAILED Unable to access the master key SRDI.

 Chapter 8. DES Utility Functions 8-19

 RecoverDesKekImporterWithMK - Recover DES Importer KEK 16-NOV-01, 14:51

RT_KEY_INV_MKVN The key was encrypted using an out-of-date
master key.

RT_KDATA_NOTODD The cleartext key failed a parity check.

8-20 UDX Reference and Guide

 16-NOV-01, 14:51

 Chapter 9. RSA Functions

This chapter contains functions for dealing with RSA keys and key tokens.

Refer to Appendix B of the IBM 4758 PCI Cryptographic Coprocessor CCA Basic
Services Reference and Guide for an overview of public and private key token
structures.

Note: All functions within this chapter are available only on the coprocessor.

Header Files for RSA Functions
When using these functions, your program must include the following header files.

#include "cmncryt2.h" /
 T2 CPRB definitions
/

#include "scc_int.h" /
 CP/Q++ API
/

#include "cam_xtrn.h" /
 CCA managers
/

#include "cacdtkn.h" /
 public header file
/

#include "casfunct.h"

#include "cacmkld.h" /
 functions for generating RSA

/
 signatures and registered keys
/

Summary of Functions
RSA keys and key tokens include the following functions.

CalculatenWordLength Returns the word length. See
page 9-6.

CreateInternalKeytokenWithMK Receives a clear key token and
creates the internal form. See
page 9-7.

CreateRsaInternalSectionWithMK Creates the RSA internal section.
See page 9-8.

delete_KeyToken Remove a registered public or
private key from storage. See
page 9-9.

GenerateCcaRsaToken Generates a CCA RSA key token
from an internal format key token
and a CCA PKA skeleton token.
See page 9-10.

GenerateRsaInternalToken Creates an internal RSA token
from a CCA RSA key token. See
page 9-11.

generate_dSig Receives an RSA key token (in
operational format) and a buffer
of data (with the length and the
digital signature). See page
9-12.

GeteLength Returns the RSA public exponent
byte length. See page 9-14.

 Chapter 9. RSA Functions 9-1

 16-NOV-01, 14:51

getKeyToken Retrieves a PKA token from the
SRDI where it is stored. See
page 9-15.

GetModulus Extracts and copies the RSA
modulus. See page 9-16.

GetnBitLength Returns the bit length of the RSA
modulus. See page 9-17.

GetnByteLength Returns the byte length of the
RSA modulus. See page 9-18.

GetPublicExponent Extracts and copies the RSA key
public exponent. See page 9-19.

GetRsaPrivateKeySection Returns a pointer to the private
key section of an RSA key token.
See page 9-20.

GetRsaPublicKeySection Returns a pointer to the public
key section of an RSA key token.
See page 9-21.

GetTokenLength Returns the length of the
specified token. See page 9-22.

IsPrivateExponentEven Verifies whether the RSA private
exponent is an even valued
integer. See page 9-23.

IsPrivateKeyEncrypted Verifies whether the private key
section of the specified key token
is encrypted. See page 9-24.

IsPublicExponentEven Verifies whether the RSA public
exponent is an even valued
integer. See page 9-25.

IsRsaToken Verifies whether the key token
contains an RSA key. See page
9-26.

IsTokenInternal Identifies whether the key token
is in internal format. See page
9-27.

PkaHashQueryWithMK Returns the master key version
used to encrypt the specified
token. See page 9-28.

PkaMkvpQueryWithMK Returns a value indicating which
master key was used to encrypt
the specified key token. See
page 9-29.

pka96_tvvgen Calculates the token validation
value (TVV) for the specified key
token. See page 9-30.

9-2 UDX Reference and Guide

 16-NOV-01, 14:51

RecoverPkaClearKeyTokenUnderMkWithMK Recovers the PKA clear key
token under the master key. See
page 9-31.

RecoverPkaClearKeyTokenUnderXport Recovers the PKA clear key
token under the DES export key.
See page 9-33.

ReEncipherPkaKeyTokenWithMK Re-enciphers an internal PKA
key token from the old master
key to the current master key.
See page 9-34.

RequestRSACrypto Performs an RSA operation. See
page 9-35.

store_KeyToken Saves a public or private key to
the SRDI. See page 9-36.

TokenMkvpMatchMasterKey Tests whether the key token was
encrypted using a specified
version of the master key. See
page 9-37.

ValidatePkaToken Verifies that the RSA key token is
valid for use in the system. See
page 9-38.

VerifyKeyTokenConsistency Verifies the consistency of a key
token. See page 9-39.

verify_dSig Verifies the RSA key token
signature. See page 9-40.

 Chapter 9. RSA Functions 9-3

 16-NOV-01, 14:51

 Overview
An RSA key consists of a public modulus which is the product of two large prime
numbers, a public exponent which is relatively prime to the modulus, and a private
exponent d. In the coprocessor, keys may be stored in CCA RSA tokens in the key
storage file and used in the SCC complete tokens. Either form of key has a public
and a private version.

The public version SCC complete token of a key contains the modulus and the
public exponent of the key, and the length of each. The private version may be in
either modulus exponent or Chinese remainder format, and contains the modulus
and public and private exponents for each. This version of a key is used in the
cryptographic engine for sccRSA() requests and is the type returned by
sccRSAKeyGenerate().

CCA RSA tokens consist of a token header, followed by

1. an optional private key section which holds the decrypting information (the
private key and the public modulus), verification data, and key-encryption data

2. and a required public key section which holds encryption information (the public
exponent and the modulus.)

Parts of the private key section may be encrypted under the master key (internal
keys) or under a transport key (external keys). This is the version of a key which is
stored in the key-storage file.

The functions in this chapter can be separated into the following categories:

Informational: (All of these functions operate on CCA RSA key tokens)

CalculatenWordLength Returns the length of the modulus in 16-bit words.
GeteLength Returns the length of the public exponent.
GetnBitLength Returns the length of the modulus in bits.
GetnByteLength Returns the length of the modulus in bytes.
GetTokenLength Returns the length of the CCA RSA key token.

Key checking

IsPrivateExponentEven Verifies whether the private exponent of the CCA
RSA key token is even.

IsPrivateKeyEncrypted Verifies whether the private key section of the
CCA RSA key token is encrypted.

IsPublicExponentEven Verifies whether the public exponent of the CCA
RSA key token is encrypted.

IsRsaToken Verifies whether the supplied token is an RSA
token.

IsTokenInternal Verifies whether the CCA RSA key token has
been encrypted with the master key (that is, an
internal token).

PkaMkvpQuery Identifies which master key was used to encrypt
the specified internal CCA RSA key token.

TokenMkvpMatchMasterKey Tests whether the internal CCA RSA key token
was encrypted with the specified master key.

ValidatePkaToken Verifies that a CCA RSA key token is valid for use
in the system.

9-4 UDX Reference and Guide

 16-NOV-01, 14:51

VerifyKeyTokenConsistency Tests the length fields of the CCA RSA key token,
ensuring that they are consistent.

Key manipulation

CreateInternalKeyToken Receives a clear CCA RSA key
token and encrypts the private
key data, creating an internal
CCA RSA key token.

CreateRsaInternalSection Receives an SCC complete token
and creates an internal CCA RSA
key token, including encrypting
with the master key.

GenerateRsaInternalToken Receives a CCA RSA key token
and creates an SCC complete
token.

GetModulus Returns the public modulus of the
CCA RSA key token.

GetPublicExponent Returns the public exponent of
the CCA RSA key token.

GetRsaPrivateKeySection Returns a pointer to the private
key section of the CCA RSA key
token.

GetRsaPublicKeySection Returns a pointer to the private
key section of the CCA RSA key
token.

pka96_tvvgen Calculates the token validation
value for the CCA RSA key
token.

RecoverPkaClearKeyTokenUnderMkWithMK Decrypts an internal CCA RSA
key token.

RecoverPkaClearKeyTokenUnderXport Decrypts an external CCA RSA
key token.

ReEncipherPkaKeyToken Decrypts a CCA RSA key token
with the old master key and
encrypts it with the current
master key.

RequestRSACrypto Performs an encryption or
decryption operation with the
CCA RSA key token.

 Chapter 9. RSA Functions 9-5

 CalculatenWordLength - Return Word Length of Modulus 16-NOV-01, 14:51

CalculatenWordLength - Return Word Length of Modulus
CalculatenWordLength returns the length of the modulus in terms of the number of
16-bit words it occupies.

 Function Prototype
USHORT CalculatenWordLength (RsaKeyTokenHeader
pToken)

 Input
On entry to this routine:

pToken is a pointer to the key token.

 Output
On successful exit from this routine:

CalculatenWordLength returns the length of the modulus in 16-bit words.

 Return Codes
This function has no return codes.

9-6 UDX Reference and Guide

 16-NOV-01, 14:51 CreateInternalKeyTokenWithMK - Create Internal Key Token

CreateInternalKeyTokenWithMK - Create Internal Key Token

CreateInternalKeyTokenWithMK receives a clear CCA RSA key token and creates
the internal form by encrypting the private key areas under the master key for the
mk_set being processed.

 Function Prototype
long CreateInternalKeyTokenWithMK (RsaKeyTokenHeader
pTokenIn,

 mk_selectors
pMKSelector,

 RsaKeyTokenHeader
pTokenOut)

long CreateInternalKeyToken (RsaKeyTokenHeader
pTokenIn,

 RsaKeyTokenHeader
pTokenOut)

CreateInternalKeyToken has the same effect as calling
CreateInternalKeyTokenWithMK after setting the MKSelector parameter to
{MK_SET_DEFAULT, current_mk, ASYM_MK}.

 Input
On entry to this routine:

pTokenIn is a pointer to the cleartext key token.

MKSelector is a parameter of type mk_selectors, indicating which set of master
keys to use in this function. This variable must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register must be set to current_mk
� type_mks should be set to ASYM_MK.

 Output
On successful exit from this routine:

pTokenOut is a pointer to a location which contains the encrypted internal key token.

 Return Codes
Common return codes generated by this routine are:

ERROR The token is not an RSA token, or already has an
internal section.

mk_KEY_NOT_VALID The current master key is not valid.

mk_SEM_CLAIM_FAILED Could not access the master keys.

 Chapter 9. RSA Functions 9-7

 CreateRsaInternalSectionWithMK - Create RSA Internal Section 16-NOV-01, 14:51

CreateRsaInternalSectionWithMK - Create RSA Internal Section

CreateRsaInternalSectionWithMK receives an SCC complete token and creates an
internal CCA RSA key token by calculating the validation values and encrypting
under the master key for the mk_set being processed.

 Function Prototype
long CreateRsaInternalSectionWithMK (RsaKeyTokenHeader
pTokenOut,

 mk_selectors
pMKSelector,

 sccRSAKeyToken_t
pRsaTokenIn)

long CreateRsaInternalSection (RsaKeyTokenHeader
pTokenOut,

 sccRSAKeyToken_t
pRsaTokenIn)

CreateRsaInternalSection has the same effect as calling
CreateRsaInternalSectionWithMK after setting the MKSelector parameter to
{MK_SET_DEFAULT, current_mk, ASYM_MK}.

Note: This function only works with version 0 tokens.

 Input
On entry to this routine:

pTokenOut is a pointer to a variable which will hold the new CCA RSA key token.

MKSelector is a parameter of type mk_selectors, indicating which set of master
keys to use in this function. This variable must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register must be set to current_mk.
� type_mks should be set to ASYM_MK.

pRsaTokenIn is a pointer to the internal SCC key structure.

 Output
This function returns no output. On successful exit from this routine:

The internal section of the CCA RSA key token is created.

pTokenOut contains the new CCA RSA token.

 Return Codes
Common return codes generated by this routine are:

OK The operation was successful.

mk_KEY_NOT_VALID The current master key is not valid.

mk_SEM_CLAIM_FAILED Could not access the master keys.

9-8 UDX Reference and Guide

 16-NOV-01, 14:51 delete_KeyToken - Delete a Key From On-Board Storage

delete_KeyToken - Delete a Key From On-Board Storage
delete_KeyToken permanently removes a registered public key or retained private
key from storage in the coprocessor.

 Function Prototype
delete_KeyToken (char
pKeyName)

 Input
On entry to this routine:

pKeyName is a pointer to a 64 byte array containing the name of the key to be
deleted.

 Output
This function returns no output. On successful exit from this routine:

The key referenced by pKeyName is no longer in storage, and the key storage SRDI
has been resized.

 Return Codes
Common return codes generated by this routine are:

OK The operation was successful.

Key_NAME_NOT_FOUND The key was not found in the list.

CP_MEMORY_NAVAIL Out of memory error.

PKEY_SRDI_ERROR Unable to access the key storage SRDI.

 Chapter 9. RSA Functions 9-9

 GenerateCcaRsaToken - Generate CCA RSA Key Token 16-NOV-01, 14:51

GenerateCcaRsaToken - Generate CCA RSA Key Token
GenerateCcaRsaToken generates a CCA RSA key token from an internal (CP/Q++)
format key token and a CCA PKA skeleton token. The skeleton token must be
initialized to indicate the required format of the final token.

 Function Prototype
long GenerateCcaRsaToken (RsaKeyTokenHeader
pPkaToken,

 sccRSAKeyToken_t
pRsaKeyToken,

 short int internal)

 Input
On entry to this routine:

pPkaToken must be a pointer to a CCA RSA key token header whose nextSection
field contains the desired CCA Key token type (RSA_PRIVATE_SECTION_NOPT,
RSA_PRIVATE_SECTION_CR, RSA_PRIVATE_SECTION_NOPT_VAR, (for
version 0 keys) or RSA_PRIVATE_SECTION_NOPT_NEW or
RSA_PRIVATE_SECTION_CR_NEW (for version 1 keys)).

pRsaKeyToken must be a pointer to a valid internal (CP/Q++) RSA key token.

internal must be initialized to the version of the requested token.

 Output
On successful exit from this routine:

pPkaToken contains a valid CCA RSA token of the type desired.

 Return Codes
Common return codes generated by this routine are:

OK The operation was successful.

ERROR The skeleton token was not initialized.

9-10 UDX Reference and Guide

 16-NOV-01, 14:51 GenerateRsaInternalToken - Generate RSA Key Token

GenerateRsaInternalToken - Generate RSA Key Token
GenerateRsaInternalToken receives a CCA RSA key token and creates an SCC
complete token with all data aligned on 4-byte boundaries, for use in RSA
computations.

 Function Prototype
long GenerateRsaInternalToken

(

 RsaKeyTokenHeader
pPkaTokenIn,

 sccRSAKeyToken_t
pRsaKeyTokenOut

)

 Input
On entry to this routine:

pPkaTokenIn is a pointer to the CCA RSA key token.

 Output
On successful exit from this routine:

pRsaKeyTokenOut is a pointer to the location where the function stores the internal
SCC complete key token it creates from the specified CCA RSA token.

 Return Codes
Common return codes generated by this routine are:

OK The operation was successful.

ERROR The input key token is not an RSA key token.

 Chapter 9. RSA Functions 9-11

 generate_dSig - Receives RSA Key Token 16-NOV-01, 14:51

generate_dSig - Receives RSA Key Token
generate_dSig receives an RSA key token in operational format and a buffer of
data, with the length of the data and the expected length of the digital signature.
The key token is deciphered and the input data is hashed with SHA-1, then the
data is formatted according to the requested Type before signing with the clear key.
The format may be one of ISO-9796, PKCS #1 block type 0 or 1, or zero-padded.

 Function Prototype
long generate_dSig (RsaKeyTokenHeader
pTokenIn,

 UCHAR
pDataIn,

 long DataLength,

 UCHAR
pSignatureOut,

 USHORT
pSignatureBitLength,

 UCHAR Type)

 Input
On entry to this routine:

pTokenIn is a pointer to the operational key token.

pDataIn is a pointer to the data which is to be signed.

DataLenth is the length of the data to be signed, in bytes.

pSignatureOut is a pointer to a buffer which is to hold the returned signature.

pSignatureBitLength is a pointer to the length of the buffer pSignatureOut, in bits.

Type is one of the following:

� M_ISO9796 if the data is to be formatted according to the ISO-9796 standard
before signing.

� M_PKCS1F if the data is to be formatted as specified in the RSADataSecurity,
Inc., Public Key Cryptography Standards #1 block type 00 before signing.

� M_PKCS11 if the data is to be formatted as specified in the RSADataSecurity,
Inc., Public Key Cryptography Standards #1 block type 01 before signing.

� M_ZEROPAD if the Data is to be placed in the low-order bits of a bit-string of the
same length as the modulus with all other bit-positions set to zero before
signing.

 Output
On successful exit from this routine:

pSignatureBitLength contains the length (in bits) of the calculated digital signature.

pSignatureOut contains the digital signature.

9-12 UDX Reference and Guide

 16-NOV-01, 14:51 generate_dSig - Receives RSA Key Token

 Return Codes
Common return Codes generated by this routine are:

OK The operation was successful.

E_SIZE The provided buffer was not large enough to contain the
signature.

PKABadAddr The key token is not valid.

 Chapter 9. RSA Functions 9-13

 GeteLength - Return RSA Public Exponent Byte Length 16-NOV-01, 14:51

GeteLength - Return RSA Public Exponent Byte Length
GeteLength returns the byte length of the RSA public exponent field, as contained
in the member field of the key token.

Note: The member field is a 16-bit field and is in zSeries (big-endian) format.
This routine returns the 16-bit integer in Intel** (little-endian) format.

 Function Prototype
USHORT GeteLength (RsaKeyTokenHeader
pToken)

 Input
On entry to this routine:

pToken is a pointer to the key token.

 Output
On successful exit from this routine:

GeteLength returns the byte length of the RSA public exponent field.

 Return Codes
This function has no return codes.

9-14 UDX Reference and Guide

 16-NOV-01, 14:51 getKeyToken - Get a PKA Token From On-Board Storage

getKeyToken - Get a PKA Token From On-Board Storage
getKeyToken retrieves a PKA retained private key or registered public key from the
SRDI where it is stored.

 Function Prototype
long getKeyToken (char
pLabel,

 char
pKey,

USHORT
pFlags)

 Input
On entry to this routine:

pLabel is a pointer to a string containing the label associated with the requested
key.

pKey is a pointer to a buffer in which the key token can be written. The maximum
length required is 2500 bytes.

pFlags is a pointer to a 2-byte buffer which can hold returned flags from the key
token.

 Output
On successful exit from this routine:

pKey contains the clear key token associated with the label at pLabel.

pFlags contains the flags associated with the key.

 Return Codes
Common return codes generated for this function are:

srdi_NO_ERROR The command completed successfully.

PKEY_NOT_REGISTER The key was not found.

PKEY_SRDI_ERROR The registered key manager could not be accessed.

 Chapter 9. RSA Functions 9-15

 GetModulus - Extract and Copy RSA Modulus 16-NOV-01, 14:51

GetModulus - Extract and Copy RSA Modulus
GetModulus extracts the RSA key modulus from the specified key token, and
copies it to the buffer provided.

 Function Prototype
void GetModulus (RsaKeyTokenHeader
pToken,

 UCHAR
pModulus)

 Input
On entry to this routine:

pToken is a pointer to the key token.

pModulus is a pointer to a buffer for the modulus.

 Output
On successful exit from this routine:

pModulus is a pointer to the provided buffer where the RSA key modulus is stored.

 Return Codes
This function has no return codes.

9-16 UDX Reference and Guide

 16-NOV-01, 14:51 GetnBitLength - Return RSA Modulus Bit Length

GetnBitLength - Return RSA Modulus Bit Length
GetnBitLength returns the bit length of the RSA modulus as contained in the
member field of the key token.

Note: The member field is a 16-bit field and is in zSeries (big-endian) format.
This routine returns the 16-bit integer in Intel** (little-endian) format.

 Function Prototype
USHORT GetnBitLength (RsaKeyTokenHeader
pToken)

 Input
On entry to this routine:

pToken is a pointer to the key token.

 Output
On successful exit from this routine:

GetnBitLength returns the bit length of the RSA modulus.

 Return Codes
This function has no return codes.

 Chapter 9. RSA Functions 9-17

 GetnByteLength - Return RSA Modulus Byte Length 16-NOV-01, 14:51

GetnByteLength - Return RSA Modulus Byte Length
GetnByteLength returns the length of the RSA modulus, in bytes.

Note: The key token contains a member field which indicates the modulus byte
length. This field may not be the actual byte length, but is an indication of the
length of the field containing the modulus. This function returns the actual byte
length of the modulus by calculating it from the bit length. It does not use the byte
length member field from the key token.

 Function Prototype
USHORT GetnByteLength (RsaKeyTokenHeader
pToken)

 Input
On entry to this routine:

pToken is a pointer to the key token.

 Output
On successful exit from this routine:

GetnByteLength returns the length of the RSA modulus, in bytes.

 Return Codes
This function has no return codes.

9-18 UDX Reference and Guide

 16-NOV-01, 14:51 GetPublicExponent - Extract and Copy Public Exponent

GetPublicExponent - Extract and Copy Public Exponent
GetPublicExponent extracts the RSA key public exponent from the specified key
token, and copies it to the provided buffer pDest.

 Function Prototype
USHORT GetPublicExponent (RsaKeyTokenHeader
pToken,

 UCHAR
pDest)

 Input
On entry to this routine:

pToken is a pointer to the key token.

pDest is a pointer to the 64-byte buffer provided for the exponent.

 Output
On successful exit from this routine:

pDest is a pointer to the caller’s buffer where the RSA key public exponent is
stored.

GetPublicExponent returns the length of the exponent.

 Return Codes
This function has no return codes.

 Chapter 9. RSA Functions 9-19

 GetRsaPrivateKeySection - Return Private Key 16-NOV-01, 14:51

GetRsaPrivateKeySection - Return Private Key
GetRsaPrivateKeySection returns a pointer to the private key section of an RSA
key token, if it is present. Otherwise, the function returns a null pointer.

 Function Prototype
void
 GetRsaPrivateKeySection (RsaKeyTokenHeader
pToken)

 Input
On entry to this routine:

pToken is a pointer to the RSA key token.

 Output
This function returns no output. On successful exit from this routine:

GetRsaPrivateKeySection returns a pointer to the private key section of an RSA
key token.

 Notes
Refer to Appendix B of the IBM 4758 PCI Cryptographic Coprocessor CCA Basic
Services Reference and Guide for a diagram of the key token structure.

A typical RSA key token looks similar to the following:

Header

Private
Section

Public
Section

or

Header

Public
Section

 Return Codes
This function has no return codes.

9-20 UDX Reference and Guide

 16-NOV-01, 14:51 GetRsaPublicKeySection - Return Public Key

GetRsaPublicKeySection - Return Public Key
GetRsaPublicKeySection returns a pointer to the public key section of an RSA key
token, if it is present. If not, the function returns a null pointer.

Note: If no public key section is present an internal error has occurred, since all
RSA tokens should contain a public key section.

 Function Prototype
void
 GetRsaPublicKeySection (RsaKeyTokenHeader
pToken)

 Input
On entry to this routine:

pToken is a pointer to the RSA key token.

 Output
On successful exit from this routine:

GetRsaPublicKeySection returns a pointer to the public key section of an RSA key
token.

 Return Codes
This function has no return codes.

 Chapter 9. RSA Functions 9-21

 GetTokenLength - Return Key Token Length 16-NOV-01, 14:51

GetTokenLength - Return Key Token Length
GetTokenLength returns the length of the specified token, as contained in the
member field of the header.

Note: The member field is a 16-bit field and is in zSeries (big-endian) format.
This routine returns the 16-bit integer in Intel** (little-endian) format.

 Function Prototype
USHORT GetTokenLength (RsaKeyTokenHeader
pToken)

 Input
On entry to this routine:

pToken is a pointer to the key token.

 Output
On successful exit from this routine:

GetTokenLength returns the length of the specified token.

 Return Codes
This function has no return codes.

9-22 UDX Reference and Guide

 16-NOV-01, 14:51 IsPrivateExponentEven - Verify RSA Private Exponent

IsPrivateExponentEven - Verify RSA Private Exponent
IsPrivateExponentEven returns TRUE if the private exponent in the specified key
token is an even valued integer; otherwise, it returns FALSE.

 Function Prototype
boolean IsPrivateExponentEven (RsaKeyTokenHeader
pToken)

 Input
On entry to this routine:

pToken is a pointer to the key token.

 Output
On successful exit from this routine:

IsPrivateExponentEven returns TRUE if the private exponent in the specified key
token is an even valued integer, and FALSE if it is not.

 Return Codes
This function has no return codes.

 Chapter 9. RSA Functions 9-23

 IsPrivateKeyEncrypted - Verify Private Key Encryption 16-NOV-01, 14:51

IsPrivateKeyEncrypted - Verify Private Key Encryption
IsPrivateKeyEncrypted returns TRUE if the private key section of the specified PKA
key token is in encrypted form, or FALSE if not.

 Function Prototype
boolean IsPrivateKeyEncrypted (RsaKeyTokenHeader
pToken)

 Input
On entry to this routine:

pToken is a pointer to the key token.

 Output
On successful exit from this routine:

IsPrivateKeyEncrypted returns TRUE if the private key section of the specified
PKA key token is in encrypted form, and FALSE if it is not.

 Return Codes
This function has no return codes.

9-24 UDX Reference and Guide

 16-NOV-01, 14:51 IsPublicExponentEven - Verify RSA Public Exponent

IsPublicExponentEven - Verify RSA Public Exponent
IsPublicExponentEven returns TRUE if the public exponent in the specified key
token is an even valued integer; otherwise, it returns FALSE.

 Function Prototype
boolean IsPublicExponentEven (RsaKeyTokenHeader
pToken)

 Input
On entry to this routine:

pToken is a pointer to the key token.

 Output
On successful exit from this routine:

IsPublicExponentEven returns TRUE if the public exponent in the specified key
token is an even valued integer, and FALSE if it is not.

 Return Codes
This function has no return codes.

 Chapter 9. RSA Functions 9-25

 IsRsaToken - Verify RSA Key 16-NOV-01, 14:51

IsRsaToken - Verify RSA Key
IsRsaToken returns TRUE if the specified key token contains an RSA key, or
FALSE if it does not.

 Function Prototype
boolean IsRsaToken (RsaKeyTokenHeader
pToken)

 Input
On entry to this routine:

pToken is a pointer to the key token.

 Output
On successful exit from this routine:

IsRsaToken returns TRUE if the specified key token contains an RSA key, and
FALSE if it is not an RSA key token.

 Return Codes
This function has no return codes.

9-26 UDX Reference and Guide

 16-NOV-01, 14:51 IsTokenInternal - Key Token Format

IsTokenInternal - Key Token Format
IsTokenInternal returns TRUE if the specified key token is in internal format, or
FALSE if it is in external format.

 Function Prototype
boolean IsTokenInternal (RsaKeyTokenHeader
pToken)

 Input
On entry to this routine:

pToken is a pointer to the key token.

 Output
On successful exit from this routine:

IsTokenInternal returns TRUE if the specified key token is in internal format, or
FALSE if it is in external format.

 Notes
Internal key tokens contain private key information that has been
multiply-enciphered with the master key. RecoverPkaClearKeyTokenUnderMk() is
used to decipher an internal key token so that it may be used.

 Return Codes
This function has no return codes.

 Chapter 9. RSA Functions 9-27

 PkaHashQueryWithMK - Return Master Key Version 16-NOV-01, 14:51

PkaHashQueryWithMK - Return Master Key Version
PkaHashQueryWithMK returns a value indicating which master key was used to
encrypt the specified key token for the mk_set being processed.

 Function Prototype
MK_VERSION PkaHashQueryWithMK (RsaKeyTokenHeader
pToken,

 mk_selectors
pMKSelector)

 Input
On entry to this routine:

pToken is a pointer to a variable which will hold the new CCA RSA key token.

MKSelector is a parameter of type mk_selectors, indicating which set of master
keys to use in this function. This variable must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register must be set to new_mk, current_mk, or old_mk.
� type_mks should be set to ASYM_MK.

 Output
This function returns no output. On successful exit from this routine: pToken

returns the version of the master key (MK_CURRENT, MK_OLD, or
MK_OUT_OF_DATE) that was used to encrypt the specified key token.

 Return Codes
Common return codes generated by this routine are:

OK The operation was successful.

mk_KEY_NOT_VALID The current master key is not valid.

mk_SEM_CLAIM_FAILED Could not access the master keys.

9-28 UDX Reference and Guide

 16-NOV-01, 14:51 PkaMkvpQueryWithMK - Return Master Key Version

PkaMkvpQueryWithMK - Return Master Key Version

PkaMkvpQueryWithMK returns a value indicating which master key was used to
encrypt the specified key token for the mk_set being processed.

 Function Prototype
MK_VERSION PkaMkvpQueryWithMK (RsaKeyTokenHeader
pToken,

 mk_selectors
pMKSelector

MK_VERSION PkaMkvpQuery (RsaKeyTokenHeader
pToken)

PkaMkvpQuery has the same effect as calling PkaMkvpQueryWithMK after setting the
MKSelector parameter to {MK_SET_DEFAULT, current_mk, ASYM_MK}.

This function only works with version 0 tokens.

 Input
On entry to this routine:

pToken is a pointer to the key token that is checked.

MKSelector is a parameter of type mk_selectors, indicating which set of master
keys to use in this function. This variable must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register must be set to current_mk
� type_mks should be set to ASYM_MK.

 Output
On successful exit from this routine:

PkaMkvpQuery returns the version of the master key (MK_CURRENT, MK_OLD, or
MK_OUT_OF_DATE) that was used to encrypt the specified key token.

 Return Codes
This function has no return codes.

 Chapter 9. RSA Functions 9-29

 pka96_tvvgen - Calculate Token Validation Value 16-NOV-01, 14:51

pka96_tvvgen - Calculate Token Validation Value
pka96_tvvgen calculates the token validation value (TVV) for the specified key
token.

 Function Prototype
void pka96_tvvgen (USHORT token_len, UCHAR
key_token_ptr, ULONG
tvv)

 Input
On entry to this routine:

token_len is the length of the token specified with parameter key_token_ptr.

key_token_ptr is a pointer to the key token whose TVV is calculated.

 Output
On successful exit from this routine:

tvv is a pointer to the location where the calculated TVV is stored.

 Return Codes
This function has no return codes.

9-30 UDX Reference and Guide

 16-NOV-01, 14:51 RecoverPkaClearKeyTokenUnderMkWithMK

RecoverPkaClearKeyTokenUnderMkWithMK

RecoverPkaClearKeyTokenUnderMkWithMK receives a PKA key token which is
encrypted under the master key for the mk_set which is currently in use. If the key
is in the on-board cache of decrypted keys, this key is returned to the calling
function. Otherwise, the clear form of the key is recovered by decrypting the
private areas of the key and verifying the SHA-1 hashes of those sections. The
clear key is then added to the on-board cache before being returned to the calling
function.

 Function Prototype
long RecoverPkaClearTokenUnderMkWithMK(RsaKeyTokenHeader
pTokenIn,

 RsaKeyTokenHeader
pTokenOut,

 mk_selectors
pMKSelector,

 long
pMsg)

long RecoverPkaClearKeyTokenUnderMk (RsaKeyTokenHeader
pTokenIn,

 RsaKeyTokenHeader
pTokenOut,

 long
pMsg)

RecoverPkaClearKeyTokenUnderMk has the same effect as calling
RecoverPkaClearTokenUnderMkWithMK after setting the MKSelector parameter to
{MK_SET_DEFAULT, current_mk, ASYM_MK}.

 Input
On entry to this routine:

pTokenIn is a pointer to the encrypted key token.

MKSelector is a parameter of type mk_selectors, indicating which set of master
keys to use in this function. This variable must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register must be set to new_mk or current_mk
� type_mks should be set to ASYM_MK.

 Output
On successful exit from this routine:

pTokenOut is a pointer to the location which contains the decrypted key token.

pMsg is the error code.

 Notes
RecoverPkaClearKeyTokenUnderMk determines which master key was used to
encipher.

This function does not change the value of byte 28 of the private key, the Key
format and Security byte. If you are planning to store this key in clear form, you
should change this byte to the appropriate value before storing. Refer to Appendix
B of the CCA Basic Services Reference and Guide for the appropriate values for
different RSA key token formats.

 Chapter 9. RSA Functions 9-31

 RecoverPkaClearKeyTokenUnderMkWithMK 16-NOV-01, 14:51

 Return Codes
Common return codes generated by this routine are:

OK The operation was successful.

ERROR pRC returns a CP/Q error indicating the cause of the
error.

RT_TKN_UNUSEABLE The token was not an RSA token.

RT_KEY_INV_MKVN The key was encrypted with an invalid master key.

mk_SRDI_OPEN_ERROR Could not open the master key.

mk_SEM_CLAIM_FAILED Unable to access the SRDI Manager.

9-32 UDX Reference and Guide

 16-NOV-01, 14:51 RecoverPkaClearKeyTokenUnderXport

 RecoverPkaClearKeyTokenUnderXport
RecoverPkaClearKeyTokenUnderXport receives a PKA key token which is
encrypted under a DES export key, and recovers the clear form by decrypting the
private key areas and then verifying the SHA-1 hashes contained in those areas.

 Function Prototype
long RecoverPkaClearKeyTokenUnderXport(RsaKeyTokenHeader
pTokenIn,

 double_length_key
desKey,

 RsaKeyTokenHeader
pTokenOut)

 Input
On entry to this routine:

pTokenIn is a pointer to the encrypted key token.

desKey is a pointer to the DES exporter key token.

pTokenOut is a pointer to a location which can store a key token.

 Output
On successful exit from this routine:

pTokenOut contains the cleartext key token that it recovers.

 Return Codes
Common return codes generated by this routine are:

OK The operation was successful.

ERROR The operation failed.

 Chapter 9. RSA Functions 9-33

 ReEncipherPkaKeyTokenWithMK - Re-Encipher PKA Key Token 16-NOV-01, 14:51

ReEncipherPkaKeyTokenWithMK - Re-Encipher PKA Key Token

ReEncipherPkaKeyTokenWithMK re-enciphers an internal PKA key token from the
old master key to the current master key for the mk_set being processed.

 Function Prototype
long ReEncipherPkaKeyTokenWithMK(RsaKeyTokenHeader
pToken,

 mk_selectors
pMKSelector,

 UCHAR
pWorkArea)

long ReEncipherPkaKeyToken (RsaKeyTokenHeader
pToken,

 UCHAR
pWorkArea)

ReEncipherPkaKeyToken has the same effect as calling
ReEncipherPkaKeyTokenWithMK after setting the PMKSelector parameter to
{MK_SET_DEFAULT, current_mk, ASYM_MK}.

 Input
On entry to this routine:

pToken is a pointer to the input key token, enciphered under the old master key.

MKSelector is a parameter of type mk_selectors, indicating which set of master
keys to use in this function. This variable must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register must be set to new_mk or current_mk
� type_mks should be set to ASYM_MK.

pWorkArea is a pointer to a variable which can hold a private key. This is used as a
work area when decrypting.

 Output
On successful exit from this routine:

pToken contains the key token, which has been enciphered under the current
master key.

 Return Codes
Common return codes generated by this routine are:

OK The operation was successful.

ERROR The input token is not an RSA token.

FALSE Unable to verify the current master key.

9-34 UDX Reference and Guide

 16-NOV-01, 14:51 RequestRSACrypto - Perform an RSA Operation

RequestRSACrypto - Perform an RSA Operation
RequestRSACrypto converts the specified CCA RSA key token to the RSA internal
key token format that the RSA engine requires, and then requests that the RSA
engine perform the specified RSA function.

Note: Prior to using this routine, ensure that you’ve deciphered the private key (if
you’re using it) using the routine RecoverPkaClearKeyTokenUnderMkWithMk().

 Function Prototype
long RequestRSACrypto

(

 void
pInput,

 RsaKeyTokenHeader
pKeyToken,

 void
pOutput,

 ULONG DataBitLength,

 ULONG RsaOperation

)

 Input
On entry to this routine:

pInput is a pointer to the input data for the RSA operation.

pKeyToken is a pointer to the key token for the RSA key. This is a CCA format RSA
key token.

DataBitLength is the length of the input data, in bits. This number is presumed to
be equal to the length of the output data buffer, in bits. If this number is larger than
the modulus length in bits, the data which will be operated on is in the rightmost
modulusLength bits of the input data buffer, and the result will be placed in the
rightmost modulusLength bits of the output data buffer.

RsaOperation is the requested RSA operation, such as RSA_ENCRYPT (public key
operation) or RSA_DECRYPT (private key operation).

 Output
On successful exit from this routine:

pOutput is a pointer to a buffer that receives the results of the requested RSA
operation.

 Return Codes
Common return codes generated by this routine are:

OK The operation was successful.

ERROR Could not create a buffer to receive the RSA key token.

E_SIZE The data is smaller than the modulus.

PKABadAddr The key token is not valid.

PKANoSpace Unable to allocate sufficient memory.

 Chapter 9. RSA Functions 9-35

 store_KeyToken - Store Registered or Retained Key 16-NOV-01, 14:51

store_KeyToken - Store Registered or Retained Key
store_KeyToken saves a registered public key or retained private key to the key
retain SRDI on the coprocessor. Once stored in this area, a key may not be
changed except by deleting with delete_KeyToken.

 Function Prototype
long store_KeyToken (KEY_register_data_t
pKey)

 Input
On entry to this routine:

pKey is a pointer to a KEY_register_data_t, whose fields must be initialized as
follows:

� version - The version of the key token stored in this record. Legal values are 0
and 1.

� reservd - This short variable must be initialized to 0.
� length - The length of this record, in little-endian format.
� label - Contains a 64-byte key name.
� flags - Valued to CCA_CLONE if this key is allowed to participate in master

key cloning operations, or 0 otherwise.
� keydata - The beginning of the actual key token.

 Output
This function returns no output. On successful exit from this routine:

The KeyRetain SRDI has been expanded to include the data a pKey.

 Return Codes
Common return codes generated by this routine are:

srdi_NO_ERROR The operation was successful.

CP_MEMORY_NAVAIL Out of memory error.

PK_SRDI_ERROR Unable to access the key storage SRDI.

DUPLICATE_NAME A key with the same name is already registered.

9-36 UDX Reference and Guide

 16-NOV-01, 14:51 TokenMkvpMatchMasterKey - Test Encryption of RSA Key

TokenMkvpMatchMasterKey - Test Encryption of RSA Key
TokenMkvpMatchMasterKey tests whether the specified key token was encrypted
using a specified version of the master key. The Master Key Verification Pattern
(MKVP) of the specified key token is compared to the MKVP for the specified
master key. If the two are equal, the function returns TRUE; if not, it returns
FALSE.

 Function Prototype
boolean TokenMkvpMatchMasterKey(mk_selectors
mk_selector,

RsaKeyTokenHeader
pToken)

 Input
On entry to this routine:

mk_selector is a pointer to a variable which must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register is set to either old_mk, current_mk, or new_mk, representing the
key which should be cleared.

� type_mks should be set to ASYM_MK.

pToken is a pointer to the key token that you want to test.

 Output
On successful exit from this routine:

TokenMkvpMatchMasterKey returns TRUE if the MKVP of the specified key token is
equal to the MKVP for the specified master key, and FALSE if it is not.

 Return Codes
This function has no return codes.

 Chapter 9. RSA Functions 9-37

 ValidatePkaToken - Validate RSA Key Token 16-NOV-01, 14:51

ValidatePkaToken - Validate RSA Key Token
ValidatePkaToken accepts a cleartext RSA key token, and verifies that the token is
valid for use in the system.

 Function Prototype
long ValidatePkaToken(RsaKeyTokenHeader
pToken,

 long
pErrorCode)

 Input
On entry to this routine:

pToken is a pointer to the RSA key token.

pErrorCode is a pointer to the location where the function stores an error code, if a
critical error occurs.

 Output
This function returns no output.

 Return Codes
Common return codes generated by this routine are:

OK The operation was successful.

ERROR The input token is not an RSA key token.

RSA_KEY_INVALID The input token is not an internal or external RSA key
token.

RT_TKN_UNUSEABLE The input token is not an RSA key token.

E_KEY_TKNVER Incorrect version data in input token.

E_PKA_KEYINVALID An error was found in the token.

9-38 UDX Reference and Guide

 16-NOV-01, 14:51 VerifyKeyTokenConsistency - Verify Key Token Consistency

VerifyKeyTokenConsistency - Verify Key Token Consistency
VerifyKeyTokenConsistency verifies that the length specified in the input matches
the length of the RSA key token, and that the length contained in the token is
consistent with the lengths of all of the parts of the token.

 Function Prototype
long VerifyKeyTokenConsistency(RsaKeyTokenHeader
pToken,

 USHORT tokenLengthIn)

 Input
On entry to this routine:

pToken is a pointer to the key token.

tokenLengthIn is the length of the token specified by pToken.

 Output
On successful exit from this routine:

VerifyKeyTokenConsistency returns OK if the key token was consistent, and FALSE
otherwise.

 Return Codes
This function has no return codes.

 Chapter 9. RSA Functions 9-39

 verify_dSig - Verify RSA Key Token Signature 16-NOV-01, 14:51

verify_dSig - Verify RSA Key Token Signature
verify_dSig receives an RSA key token in operational form, a buffer of data (with
the length of the data), a digital signature and the length of the digital signature (in
bytes), as well as the format of the digital signature. The data is hashed with
SHA-1 and formatted according to the Type variable before being compared with
the encrypted signature. The return code indicates whether the signature was
verified.

 Function Prototype
long verify_dSig (RsaKeyTokenHeader
pTokenIn,

 UCHAR
pDataIn,

 long DataLength,

 UCHAR
pDigitalSignature,

 USHORT SignatureLength,

 UCHAR Type)

 Input
On entry to this routine:

pTokenIn is a pointer to the operational key token.

pDataIn is a pointer to the data which is to be hashed and compared with the
encrypted signature.

DataLenth is the length of the data to be signed, in bytes.

pSignatureOut is a pointer to a buffer which contains the signature to be verified.

SignatureLength is the length of the buffer pSignatureOut, in bytes.

Type is one of the following:

� M_ISO9796 if the data is to be formatted according to the ISO-9796 standard
before signing.

� M_PKCS1F if the data is to be formatted as specified in the RSADataSecurity,
Inc., Public Key Cryptography Standards #1 block type 00 before signing.

� M_PKCS11 if the data is to be formatted as specified in the RSADataSecurity,
Inc., Public Key Cryptography Standards #1 block type 01 before signing.

� M_ZEROPAD if the Data is to be placed in the low-order bits of a bit-string of the
same length as the modulus with all other bit-positions set to zero before
signing.

 Return Codes
Common return Codes generated by this routine are:

OK The operation was successful.

DSIG_NOT_VERIFIED The digital signature was not verified.

E_SIZE The provided buffer was not large enough to contain the
signature.

PKABadAddr The key token is not valid.

9-40 UDX Reference and Guide

 16-NOV-01, 14:51

Chapter 10. CCA SRDI Manager Functions

This section describes the CCA SRDI Manager, which manages the storage and
retrieval of persistent data in the coprocessor.

Note: All functions within this chapter are available only on the coprocessor.

Header Files for SRDI Manager Functions
When using these functions, your program must include the following header files.

#include "cmncrypt.h" /
 Cryptographic definitions
/

#include "cam_xtrn.h" /
 SRDI manager definitions
/

 Overview
The security relevant data item (SRDI)1 Manager is the single interface through
which all CCA-related functions access security related data. Only the SRDI
Manager interacts with the physical medium on which the SRDI data is stored. The
CCA verbs and any other CCA code read and write SRDI information only through
the SRDI Manager interface. In turn, the SRDI Manager accesses the physical
SRDI storage through the CP/Q++ PPD Manager, which controls the flash EPROM
and BBRAM memories. This relationship is shown in Figure 10-1 on page 10-2.

1 SRDI’s are the sensitive data elements owned by the cryptographic application, and requiring protection. Examples include
cryptographic keys and access control profiles.

 Chapter 10. CCA SRDI Manager Functions 10-1

 16-NOV-01, 14:51

Flash EPROM BBRAM

Flash Interface BBRAM Interface

Kernel PPD Manager

SRDI Manager

Command
Processor

Command
Processor

Command
Processor

Figure 10-1. Master SRDI Manager Overview

Encapsulation of the SRDI physical storage mechanism makes it possible to
change that mechanism without any effect on the CCA application code.

Each SRDI is identified by a name, much like a file name. The SRDI name is an
eight character ASCII string, with no null terminator. Names that are less than
eight characters should be left-justified, and padded on the right with ASCII spaces.

10-2 UDX Reference and Guide

 16-NOV-01, 14:51

CCA SRDI Manager Operation
The CP/Q++ PPD Manager can store SRDI data in either of two physical memory
types.

Flash EPROM The flash memory is very large, but very slow to write. In addition,
it has a limited lifetime in terms of write cycles; after 100,000 writes
to any single memory cell, that cell may fail.

The flash memory can only be written in segments of 64K bytes.
Thus, when any SRDI is written to flash, the CP/Q++ PPD Manager
will usually have to rewrite a large amount of data that is not
associated with that particular SRDI, but happens to lie in the
same 64K byte page. This means that the 100,000 cycle lifetime
may be reached much more quickly than expected, if a calculation
is made based only on the number of times a specific SRDI is
stored.

These characteristics make flash the appropriate location for SRDI
data that is large, and infrequently changed. Examples include
access control profiles, and stable cryptographic keys.

BBRAM BBRAM is small, but fast, and it has no limitations on the number
of times it can be written. This makes it the appropriate choice for
SRDI data that is small, and frequently updated. Examples include
session keys, sequence counters, and state information.

The interface functions provide a parameter to select whether an SRDI is created in
flash or BBRAM.

CCA applications do not have direct access to the SRDI information in the
persistent memories.2 When an SRDI is opened, the SRDI Manager creates a
cleartext copy in RAM, in the CCA application address space. The caller receives
a pointer to this location in RAM, and uses that space for all read and write
references to the SRDI.

Only one working copy of an SRDI exists in RAM at any time, regardless of how
many different callers open that same SRDI. The SRDI Manager maintains an
open count for each open SRDI, indicating how many callers are using it. This
count is initialized to one when the first caller opens the SRDI, and incremented for
each additional open request on the same SRDI. When a caller closes the SRDI,
the count is decremented. If the count reaches zero, indicating that no callers are
using the SRDI, the working copy is deleted from memory.

When the caller asks to store the SRDI data, the SRDI Manager copies it to the
persistent memory. Since there is only one physical working copy of the data at
any one time, each caller’s changes are made to the same SRDI data area, and all
are saved when any of the callers requests that the SRDI be stored.

2 Persistent memories are those that preserve their contents even when power is turned off. In the coprocessor, the flash EPROM
and the BBRAM are persistent. The main system RAM used for executing programs and their data is not persistent.

 Chapter 10. CCA SRDI Manager Functions 10-3

 16-NOV-01, 14:51

An Example: Opening an SRDI
Figures 10-2, 10-3, and 10-4 describe the steps when an SRDI is opened. The
following text explains the sequence of events, using reference numbers that match
those on the figures.

Step Description

1. A CCA command processor sends a request to the CCA SRDI Manager,
asking for access to an SRDI named ABC, which resides in flash EPROM.

At this time, SRDI ABC is not open. No copy of the SRDI data exists in the
CCA application RAM address space.

2. The CCA Manager sends a request to the Kernel PPD Manager, asking for the
length of SRDI ABC. It needs to know the length, so it can allocate the
required buffer in RAM.

3. The Kernel PPD Manager returns the length of SRDI ABC.

4. The CCA SRDI Manager allocates a buffer to hold ABC. This buffer is in RAM
addressable by the CCA application.

RAM - CCA application addr. spaceFlash EPROM

CCA Command Processor
Kernel PPD

Manager
CCA SRDI

Manager

SRDI "ABC"

1 open_cca_srdi()
2 sccGetSRDILen()

SRDI length3

Alloc. m
em.

4

Figure 10-2. Master SRDI Read Illustration, Part 1

10-4 UDX Reference and Guide

 16-NOV-01, 14:51

Step Description

5. The CCA SRDI Manager sends a request to the Kernel PPD Manager, asking it
to read ABC into the buffer allocated in step 4 above.

6. The SRDI is read from flash EPROM, decrypted, and deposited in the specified
buffer.

RAM - CCA application addr. spaceFlash EPROM

CCA Command Processor
Kernel PPD

Manager
CCA SRDI

Manager

SRDI "ABC"

5 sccGetSRDI()

6 Read, decrypt, and store SRDI

(allocated
memory)

Figure 10-3. Master SRDI Read Illustration, Part 2

Step Description

7. The CCA SRDI Manager returns the buffer address to the CCA command
processor. The command processor then uses the RAM copy of the SRDI
whenever it needs to read or alter ABC.

RAM - CCA application addr. spaceFlash EPROM

CCA Command Processor
Kernel PPD

Manager
CCA SRDI

Manager

SRDI "ABC"

7 Return SRDI length, and addr. in RAM

SRDI "ABC"
working copy

Figure 10-4. Master SRDI Read Illustration, Part 3

 Chapter 10. CCA SRDI Manager Functions 10-5

 16-NOV-01, 14:51

Controlling Concurrent Access to an SRDI
Since the CCA application is multi-threaded, different callers may access an SRDI
at the same time. If one caller is altering data in the SRDI while a different caller is
either reading or writing that same data, corruption results.

Serialization semaphores are used to prevent this from occurring. Each time the
SRDI Manager retrieves an SRDI from flash EPROM or BBRAM, it allocates a
semaphore for that SRDI. The SVid which identifies this semaphore is passed
back to the caller whenever an SRDI is opened.

Every SRDI user in the CCA application is required to gain ownership of the
semaphore before either reading or writing to the SRDI. This guarantees that no
other caller is simultaneously accessing that same SRDI. As soon as the SRDI is
no longer needed, the semaphore is released so that others can use the SRDI.

The semaphore is controlled by use of the CP/Q system calls CPSemClaim and
CPSemRelease. The CCA application should never, under any circumstances,
destroy the semaphore; this is done by the SRDI Manager when the last user
closes the SRDI.

10-6 UDX Reference and Guide

 16-NOV-01, 14:51

Summary of Functions
These functions are used by the CCA command processor to read and write SRDI
data.

close_cca_srdi Closes the open copy of an SRDI.

create_cca_srdi Creates an SRDI.

create4update_cca_srdi Creates an SRDI in BBRAM.

delete_cca_srdi Deletes an SRDI from memory.

get_cca_srdi_length Obtains the length of an SRDI, in bytes.

open_cca_srdi Opens and gains access to an SRDI.

resize_cca_srdi Increases or decreases the length of an SRDI, in
bytes.

save_cca_srdi Stores SRDI data.

update_cca_srdi Updates an SRDI with the provided data.

 Chapter 10. CCA SRDI Manager Functions 10-7

 close_cca_srdi - Close CCA SRDI 16-NOV-01, 14:51

close_cca_srdi - Close CCA SRDI
close_cca_srdi deactivates the open copy of the SRDI, which is managed by the
SRDI Manager. If no other applications are using the SRDI, the RAM which held
the working copy of the SRDI is released.

Note: If the working copy of the SRDI has been changed, the application must
issue the save_cca_srdi() function in order to have the SRDI saved. SRDI data is
not automatically saved when the SRDI is closed.

 Function Prototype
long close_cca_srdi(char
srdi_name);

 Input
On entry to this routine

srdi_name is a pointer to an eight character ASCII string containing the name of the
desired SRDI. This string does not contain a null terminator.

 Output
This function returns no output. On successful exit from this routine:

close_cca_srdi deactivates the open copy of the SRDI.

 Return Codes
Common return codes generated by this routine are:

srdi_NO_ERROR The operation was successful.

srdi_GENERAL_ERROR Can not access the SRDI Manager, the operation
cannot be completed.

srdi_NOT_OPEN The SRDI item is not in the open state.

10-8 UDX Reference and Guide

 16-NOV-01, 14:51 create_cca_srdi - Create CCA SRDI

create_cca_srdi - Create CCA SRDI
create_cca_srdi creates an SRDI in flash EPROM or BBRAM using the specified
name.

 Function Prototype
long create_cca_srdi(char
srdi_name, ULONG srdi_options,

char
srdi_addr, ULONG srdi_length);

 Input
On entry to this routine:

srdi_name is a pointer to an eight character ASCII string containing the name of the
desired SRDI. This string does not contain a null terminator, and should be padded
on the right with blanks.

srdi_options holds bit-significant options which are passed on to the CP/Q++ PPD
Manager’s sccSaveSRDI() function. There are two fields in the options value:

1. A value that indicates whether the SRDI data should be stored in flash
EPROM, or in BBRAM. Flash is large, but slow to access, and each cell has a
limited number of possible write cycles before it fails. BBRAM is fast and has
unlimited write cycles, but it is much smaller than the flash.

2. A value which indicates how the SRDI data should be encrypted, if it is to be
stored in flash EPROM.3 There are three options.

a. Do not encrypt the data at all.

b. Single-encrypt with DES.

c. Triple-encrypt with DES.

The options are defined with constants in header file scc_int.h. The values defined
there are as follows.

srdi_addr is a pointer to the address of the SRDI data. This data is written to the
newly created SRDI.

srdi_length is the length of the SRDI data, in bytes.

Symbol Value Description

PPD_BBRAM X'01' Store in BBRAM

PPD_SINGLE X'10' Store in flash, encrypted using a
single-length DES key.

PPD_TRIPLE X'30' Store in flash, encrypted using DES triple
encryption.

PPD_NONE X'00' Store in flash, unencrypted.

3 Data is only encrypted when stored in the flash EPROM; it is never encrypted in BBRAM. The BBRAM contents are destroyed on
intrusion, so there is no need to protect the data there by way of encryption.

 Chapter 10. CCA SRDI Manager Functions 10-9

 create_cca_srdi - Create CCA SRDI 16-NOV-01, 14:51

 Output
This function returns no output. On successful exit from this routine:

create_cca_srdi creates an SRDI in flash EPROM or BBRAM using the specified
name.

 Return Codes
Common return codes generated by this routine are:

srdi_NO_ERROR The operation was successful.

srdi_GENERAL_ERROR Can not access the SRDI Manager, the operation
cannot be completed.

srdi_EXISTS The SRDI item already exists.

10-10 UDX Reference and Guide

 16-NOV-01, 14:51 create4update_cca_srdi - Create CCA SRDI for Update Only

create4update_cca_srdi - Create CCA SRDI for Update Only
create4update_cca_srdi creates an SRDI in BBRAM. The SRDI may not be
resized after creation. The SRDI is stored in unencrypted form.

 Function Prototype
long create4update_cca_srdi(char
pSrdiName,

 char
pSrdiAddr,

 ULONG SrdiLength);

 Input
On entry to this routine:

pSrdiName is a pointer to an eight character ASCII string containing the name of the
desired SRDI. This string does not contain a null terminator, and should be padded
on the right with blanks.

pSrdiAddr is a pointer to the data which should be written to the SRDI.

SrdiLength contains the length of the data pointed to by pSrdiAddr, and the
permanent length of this SRDI.

 Output
This function returns no output. On successful exit from this routine, the data has
been stored in BBRAM under the requested name.

 Return Codes
Common return codes generated by this routine are:

srdi_NO_ERROR The operation was successful.

srdi_EXISTS The SRDI item already exists.

srdi_GENERAL_ERROR The SRDI Manager was unable to create the SRDI.

 Chapter 10. CCA SRDI Manager Functions 10-11

 delete_cca_srdi - Delete CCA SRDI 16-NOV-01, 14:51

delete_cca_srdi - Delete CCA SRDI
delete_cca_srdi deletes an SRDI from the persistent memory area where it is
stored (either flash EPROM or BBRAM). This is equivalent to erasing a file from a
hard disk.

 Function Prototype
long delete_cca_srdi(char
srdi_name);

 Input
On entry to this routine:

srdi_name is a pointer to an eight character ASCII string containing the name of the
desired SRDI. This string does not contain a null terminator, and should be padded
on the right with blanks.

 Output
This function returns no output. On successful exit from this routine:

delete_cca_srdi deletes an SRDI from the persistent memory area where it is
stored.

 Return Codes
Common return codes generated by this routine are:

srdi_NO_ERROR The operation was successful.

srdi_GENERAL_ERROR Can not access the SRDI Manager, the operation
cannot be completed.

srdi_NOT_FOUND SRDI item does not exist.

srdi_OPEN The SRDI item is not in the closed state.

Note: An SRDI cannot be deleted if it is in the “open” state, since another
application may be using it.

10-12 UDX Reference and Guide

 16-NOV-01, 14:51 get_cca_srdi_length - Get CCA SRDI Length

get_cca_srdi_length - Get CCA SRDI Length
get_cca_srdi_length obtains the length of the specified SRDI, in bytes.

 Function Prototype
long get_cca_srdi_length(char
srdi_name, ULONG
srdi_length);

 Input
On entry to this routine:

srdi_name is a pointer to an eight character ASCII string containing the name of the
desired SRDI. This string does not contain a null terminator.

srdi_length is a pointer to the ULONG variable.

 Output
On successful exit from this routine:

srdi_length contains the length of the SRDI data, in bytes.

 Return Codes
Common return codes generated by this routine are:

srdi_NO_ERROR The operation was successful.

srdi_GENERAL_ERROR Can not access the SRDI Manager, the operation
cannot be completed.

srdi_READ_ERROR Unable to read the SRDI item from BBRAM or flash.

 Chapter 10. CCA SRDI Manager Functions 10-13

 open_cca_srdi - Open CCA SRDI 16-NOV-01, 14:51

open_cca_srdi - Open CCA SRDI
open_cca_srdi opens an SRDI, gaining access to its contents. The function returns
the address and length of the SRDI data, where the address points to a cleartext
working copy of the actual SRDI, which is stored in flash EPROM or BBRAM.

If multiple callers open the same SRDI, they all have access to the same shared
copy in RAM. Any modifications to the SRDI are visible immediately to all functions
that open that SRDI.

In addition to the SRDI address and length, the function returns a semaphore ID for
the selected SRDI. This semaphore is used to gain exclusive access to the SRDI,
to prevent errors when one thread is writing data, while another is simultaneously
either reading or writing that same data. See “Controlling Concurrent Access to an
SRDI” on page 10-6 for further details.

 Function Prototype
long open_cca_srdi(char
srdi_name, char

srdi_addr, ULONG
srdi_length

 ULONG
semSVid);

 Input
On entry to this routine:

srdi_name is a pointer to an eight character ASCII string containing the name of the
desired SRDI. This string does not contain a null terminator.

 Output
On successful exit from this routine:

srdi_addr is a pointer to a pointer variable, in which the SRDI Manager returns the
address of the SRDI. This is an address in RAM, where the SRDI Manager places
a copy of the SRDI data.

srdi_length is a pointer to a location where the SRDI Manager stores the length of
the SRDI data, in bytes.

semSVid is the SVid for the semaphore assigned to the specified SRDI.

 Return Codes
Common return codes generated by this routine are:

srdi_NO_ERROR The operation was successful.

srdi_NOT_FOUND The SRDI item could not be found.

srdi_READ_ERROR Unable to read the SRDI item from BBRAM or flash.

srdi_ALLOC_ERROR Unable to allocate memory for the SRDI item.

srdi_GENERAL_ERROR Could not access the SRDI Manager, the operation
was not completed.

10-14 UDX Reference and Guide

 16-NOV-01, 14:51 resize_cca_srdi - Resize CCA SRDI

resize_cca_srdi - Resize CCA SRDI
resize_cca_srdi increases or decreases the length of the specified CCA SRDI, in
bytes.

An SRDI can only be resized if you are the only requestor who has it open. If the
SRDI is opened by more than one user concurrently, it cannot be resized; the
address of the RAM copy changes when it is resized, and there is no way to notify
other callers of this.

 Function Prototype
long resize_cca_srdi(char
srdi_name, ULONG srdi_length,

 char

new_srdi_addr);

 Input
On entry to this routine:

srdi_name is a pointer to an eight character ASCII string containing the name of the
desired SRDI. This string does not contain a null terminator.

srdi_length is the new length for the SRDI, in bytes.

 Output
On successful exit from this routine:

new_srdi_addr is a pointer to a location where the function returns the address of
the resized SRDI. After resizing, the SRDI buffer is relocated from its previous
address.

 Return Codes
Common return codes generated by this routine are:

srdi_NO_ERROR The operation was successful.

srdi_NOT_FOUND The SRDI item could not be found.

srdi_READ_ERROR Unable to read the SRDI item from BBRAM or flash.

srdi_ALLOC_ERROR Unable to allocate memory for the SRDI item.

srdi_GENERAL_ERROR Could not access the SRDI Manager, the operation
was not completed.

 Chapter 10. CCA SRDI Manager Functions 10-15

 save_cca_srdi - Save CCA SRDI 16-NOV-01, 14:51

save_cca_srdi - Save CCA SRDI
save_cca_srdi stores the SRDI data on a persistent storage medium (flash or
BBRAM) using the encryption method specified when the SRDI was created.

This function ensures that no thread is updating the SRDI while it is being stored by
gaining exclusive access rights using the SRDI semaphore. See “Controlling
Concurrent Access to an SRDI” on page 10-6 for details on this semaphore.

 Function Prototype
long save_cca_srdi(char
srdi_name);

 Input
On entry to this routine:

srdi_name is a pointer to an eight character ASCII string containing the name of the
desired SRDI. This string does not contain a null terminator.

Note: No two SRDI’s can have the same name, even if one resides in flash
EPROM and the other resides in BBRAM. The CP/Q++ PPD Manager enforces this
restriction.

 Output
This function returns no output. On successful exit from this routine:

save_cca_srdi stores the SRDI data on a persistent storage medium.

 Return Codes
Common return codes generated by this routine are:

srdi_NO_ERROR The operation was successful.

srdi_NOT_OPEN The SRDI item is not in the open state.

srdi_WRITE_ERROR Unable to write to flash or BBRAM.

srdi_GENERAL_ERROR Could not access the SRDI Manager, the operation
was not completed.

10-16 UDX Reference and Guide

 16-NOV-01, 14:51 update_cca_srdi - Update an SRDI Item

update_cca_srdi - Update an SRDI Item
update_cca_srdi updates an SRDI with provided data.

 Function Prototype
long update_cca_srdi(char
pSrdiName,

 char
pDatabuffer,

unsigned long Datalength,

unsigned long Dataoffset);

 Input
On entry to this routine:

pSrdiName is a pointer to an eight character string containing the name of the SRDI
to be changed. This string does not contain a null terminator and should be
padded on the right with blanks. This SRDI must have been opened using the
open_cca_srdi call.

pDatabuffer is a pointer to a buffer containing the data with which to update the
SRDI.

Datalength contains the length of the data to be changed, in bytes.

Dataoffset contains the offset of the first byte of data to change from pDatabuffer.

 Output
This function returns no output. On successful exit from this routine, the SRDI item
has been changed.

 Return Codes
Common return codes generated by this routine are:

srdi_NO_ERROR The operation was successful.

srdi_WRITE_ERROR The operation could not be completed.

 Chapter 10. CCA SRDI Manager Functions 10-17

 16-NOV-01, 14:51

 Example Code
The following C-language code shows a general structure for the way a CCA
application would open, use, and close an SRDI.

1 #define QSVCgood F /
 CP/Q semaphore fcn. error code
/

2 #define TIMEOUT_FOREVER FxFFFFFFFF /
 Parameter for CPSemClaim
/

3 #define MY_SRDI_NAME "MY_SRDI " /
 Name of SRDI we're using
/

 4

5 USHORT srdi_rc; /
 SRDI fcn. return code
/

6 char
 my_srdi_addr; /
 Pointer to clear SRDI data in RAM
/

7 ULONG my_srdi_length; /
 Length of SRDI data, in bytes
/

8 ULONG semaphore_id; /
 SVid of SRDI access semaphore
/

 9

 1F void srdi_stuff(void)
 11 ┌{

 12 │

13 │ /
 Open the SRDI
/

 14 │

15 │ srdi_rc = open_cca_srdi(MY_SRDI_NAME, &my_srdi_addr, &my_srdi_length,

 │ &semaphore_id);

 16 │

17 │ if (srdi_NO_ERROR == srdi_rc) /
 If no errors opening SRDI...
/

 18 │ ┌{

19 │ │ /
 do other stuff as needed...
/

 2F │ │

21 │ │ /
 Gain exclusive access rights to the SRDI
/

 22 │ │

23 │ │ if (QSVCgood == CPSemClaim(semaphore_id, TIMEOUT_FOREVER))
24 │ │ ┌{

25 │ │ │

26 │ │ │ /
 This is where the code will read and/or write to the SRDI data,

27 │ │ │ in the area pointed to by my_srdi_addr.
/

28 │ │ │

29 │ │ │ /
 Release semaphore, allowing others to access the SRDI
/

3F │ │ │

31 │ │ │ if (QSVCgood == CPSemRelease(semaphore_id))
32 │ │ │ ┌{

33 │ │ │ │

34 │ │ │ │ /
 do other stuff as needed...
/

35 │ │ │ │

36 │ │ │ └}

37 │ │ │ else
38 │ │ │ ┌{

39 │ │ │ │ /
 handle semaphore release error...
/

4F │ │ │ └}

41 │ │ │

42 │ │ └}

 43 │ │

 44 │ │ else
45 │ │ ┌{

46 │ │ │ /
 handle semaphore claim error...
/

47 │ │ └}

 48 │ │

49 │ │ /
 Close the SRDI
/

 5F │ │

51 │ │ srdi_rc = close_cca_srdi(MY_SRDI_NAME);
 52 │ │

53 │ │ if (srdi_NO_ERROR != srdi_rc)
 54 │ │ ┌{

55 │ │ │ /
 handle SRDI close error...
/

 56 │ │ └}

 57 │ │

 58 │ └}

 59 │

6F │ else
 61 │ ┌{

62 │ │ /
 handle SRDI open error...
/

 63 │ └}

 64 └}

10-18 UDX Reference and Guide

 16-NOV-01, 14:51

Chapter 11. Cache Management Functions

This section describes functions used to maintain an on-board cache of security
relevant data. For example, the CCA API currently uses these functions to maintain
a cache of decrypted private keys.

Note: All functions within this chapter are available only on the coprocessor.

Header Files for Caching Functions
When using these functions, your program must include the following header file.

#include "cache.h" /
 Cache management functions
/

Overview of Cache Management Functions
The cache management functions allow the operation of a cache of data in the
DRAM of the coprocessor. Each entry in the cache consists of a data item and its
unique identifier. The cache is indexed on two bytes of data supplied by the user,
for example a predefined label or two chosen bytes of a hash of the item or two
bytes of the unique identifier. The cache uses a Least Recently Used (LRU)
replacement system, eliminating the item which has been unused the longest when
more space is needed in the cache.

Data in the cache is stored and accessed using a two-level lookup process. An
item is referenced using a “tag”, which is any arbitrary-length byte string that
uniquely identifies an item. In addition, every access to an item passes a 2-byte
“short” tag, which should also be as unique as possible to the item being accessed.
It is up to the user to decide how to create the short tags - examples might include
a hash of the full tag, the first two bytes of the full tag, or two fixed-position bytes of
ciphertext for items that contain encrypted data.

The short tag is broken into two separate one-byte tags, referred to as tag1 and
tag2. Tag1 is used as an index into a 256-entry array, where each element either
contains a pointer to a list of items that are further addressed using tag2, or NULL
if the cache does not contain any items with the indexed tag1 value.

The tag2 lists are linked-lists, where each element contains the data of a cached
item. The linked-list, once addressed through the tag1 array, is searched linearly
for items with tag2 entries matching the passed tag2 value. For each tag2 match,
the entire full tag is compared with that stored in the item, to find the one that is the
desired object. (Note that it is possible for multiple items to share identical tag1
and tag2 values, although it is unlikely for good choices of tag1/tag2 computation
methods, unless the cache holds a very large number of items.)

 Chapter 11. Cache Management Functions 11-1

 16-NOV-01, 14:51

Summary of Functions
These functions are used by the cache manager to manage the cache.

cache_clear Remove all entries from a cache.

cache_delete Remove an existing cache.

cache_delete_item Remove a specific item from the cache.

cache_get_item Retrieve an item from the cache, copying it into a
user-supplied buffer.

cache_get_item_b Retrieve an item from the cache after allocating
memory to hold it.

cache_init Open a new cache.

cache_status Check the status of an existing cache.

cache_write_item Store an item in the cache.

11-2 UDX Reference and Guide

 16-NOV-01, 14:51 cache_clear

 cache_clear
cache_clear clears all data from the specified cache.

 Function Prototype
cacheError cache_clear(cacheHandle handle);

 Input
On entry to this routine:

handle must be set to a valid cacheHandle.

 Output
This function returns no output. On successful exit, all data has been cleared from
the specified cache.

 Return Codes
Common return codes generated by this routine are:

ce_OK The function completed successfully.

ce_BAD_HANDLE The specified cache does not exist.

 Chapter 11. Cache Management Functions 11-3

 cache_delete 16-NOV-01, 14:51

 cache_delete
cache_delete will remove an existing cache, recovering all memory.

 Function Prototype
cacheError cache_delete(cacheHandle handle);

 Input
On entry to this routine:

handle must be set to a valid cacheHandle.

 Output
This function returns no output. On successful exit, all data has been cleared from
the specified cache, the cache has been removed, and all associated memory
objects have been freed.

 Return Codes
Common return codes generated by this routine are:

ce_OK The function completed successfully.

ce_BAD_HANDLE The specified cache does not exist.

11-4 UDX Reference and Guide

 16-NOV-01, 14:51 cache_delete_item

 cache_delete_item
cache_delete_item deletes the specified item from the cache.

 Function Prototype
cacheError cache_delete_item(cacheHandle handle,

 short_tag_t short_tag,

 ULONG full_tag_length,

 UCHAR
full_tag);

 Input
On entry to this routine:

handle contains the handle of the specified cache.

short_tag is the two-byte tag used for indexing the cache items.

full_tag_length is the length of the unique identifier of the item to be deleted.

full_tag is a buffer which contains the unique identifier of the item to be deleted.

 Output
This function returns no output. On successful completion, the data item referenced
by the short_tag and the full_tag has been removed from the cache.

 Return Codes
Common return codes generated by this routine are:

ce_OK The function completed successfully.

ce_BAD_HANDLE The specified cache does not exist.

ce_ITEM_NOT_FOUND The specified item was not found in the cache.

 Chapter 11. Cache Management Functions 11-5

 cache_get_item 16-NOV-01, 14:51

 cache_get_item
cache_get_item retrieves a specific item from the cache and copies it into a buffer
supplied by the user.

 Function Prototype
cacheError cache_get_item(cacheHandle handle,

 ULONG
bfrSize,

 UCHAR
bfr,

 short_tag_t short_tag,

 ULONG full_tag_length,

 UCHAR
full_tag);

 Input
On entry to this routine:

handle contains the handle for the specified cache.

bfrSize is a pointer to the length of the available space in the supplied buffer.

bfr is a pointer to the buffer in which the retrieved item will be returned.

short_tag is the two-byte tag which is used to index the item in the cache.

full_tag_length is the length of the unique identifier of the item in the cache.

full_tag is the unique identifier of the item to be retrieved from the cache.

 Output
On successful exit to this routine:

bfrSizeis a pointer to the length of the item which was retrieved from the cache.

bfrcontains the item which was retrieved.

 Return Codes
Common return codes generated by this routine are:

ce_OK The function completed successfully.

ce_BAD_HANDLE The specified cache does not exist.

ce_ITEM_NOT_FOUND The specified item was not found in the cache.

ce_BFR_TOO_SMALL The provided buffer was not large enough to hold the
item.

11-6 UDX Reference and Guide

 16-NOV-01, 14:51 cache_get_item_b

 cache_get_item_b
cache_get_item retrieves a specific item from the cache and copies it into a buffer
which is allocated by the function. This function is useful when the cache holds
items with very different sizes.

Note: The calling function is responsible for freeing the memory allocated for the
item when the item is no longer needed. However, if the function fails to complete
successfully, the buffer is not allocated.

 Function Prototype
cacheError cache_get_item_b(cacheHandle handle,

 ULONG
bfrSize,

 UCHAR

bfr,

 short_tag_t short_tag,

 ULONG full_tag_length,

 UCHAR
full_tag);

 Input
On entry to this routine:

handle is the handle which specifies the required cache.

short_tag is the two-byte tag used to index the item within the cache.

full_tag_length is the length of the unique identifier for the item.

full_tag is the unique identifier of the item.

 Output
On successful exit from this routine:

bfrSize is a pointer to the size of the buffer returned.

bfr is a pointer to a buffer containing the recovered item. This buffer has been
allocated by the function.

 Return Codes
Common return codes generated by this routine are:

ce_OK The function completed successfully.

ce_BAD_HANDLE The specified cache does not exist.

ce_ITEM_NOT_FOUND The specified item was not found in the cache.

ce_MEM_ALLOC_ERROR The function was unable to allocate memory for the
buffer to return the item.

 Chapter 11. Cache Management Functions 11-7

 cache_init 16-NOV-01, 14:51

 cache_init
cache_init opens a new cache, returning a handle with which to access the cache.
The caller specifies the maximum size of the cache and the maximum size of the
items within the cache.

 Function Prototype
cacheError cache_init(ULONG maxBytes,

 ULONG maxItemBytes,

 cacheHandle
handle);

 Input
On entry to this routine:

maxBytes contains the maximum number of bytes to be used in the cache. This
number must be large enough to hold at least one item of maxItemBytes, along with
extra room for control structures. This number determines at which point the LRU
algorithm will come into play, replacing old items with new ones.

maxItemBytes contains the maximum number of bytes which an item will occupy.
This value should include both the maximum size of the item and the maximum
size of the unique identifier.

handle is a pointer to an item of cacheHandle type, in which the function will return
the handle for accessing the cache.

 Output
On successful exit from this routine:

handle contains the cacheHandle used to access the new cache.

 Return Codes
Common return codes generated by this routine are:

ce_OK The function completed successfully.

ce_ITEM_TOO_LARGE The maxItemBytes parameter is too large for the
maxBytes.

ce_MEM_ALLOC_ERROR The function was unable to allocate memory for the
cache overhead.

11-8 UDX Reference and Guide

 16-NOV-01, 14:51 cache_status

 cache_status
cache_status returns the status of the specified cache, that is bytes used by each
item (including overhead), bytes used altogether, number of items currently in the
cache.

 Function Prototype
cacheError cache_status(cacheHandle handle,

 ULONG
maxBytes,

 ULONG
maxItemBytes,

 ULONG
bytesUsed,

 ULONG
itemsStored) ;

 Input
On entry to this routine:

handle is the handle of the cache to be queried.

maxBytes is a pointer to a long data item.

maxItemBytes is a pointer to a long data item.

bytesUsed is a pointer to a long data item.

itemsStored is a pointer to a long data item.

 Output
On successful exit from this routine:

maxBytes is a pointer to the maximum number of bytes to be used in the cache,
including overhead.

maxItemBytes is a pointer to the maximum number of bytes each entry will use,
including the data item, the unique identifier, and the overhead.

bytesUsed is a pointer to the number of bytes currently used in the cache, including
data and overhead.

itemsStored is a pointer to the number of items which are currently stored in the
cache.

 Return Codes
Common return codes generated by this routine are:

ce_OK The function completed successfully.

ce_NULL_POINTER One of the parameters was a null pointer.

ce_BAD_HANDLE The specified cache does not exist.

 Chapter 11. Cache Management Functions 11-9

 cache_write_item 16-NOV-01, 14:51

 cache_write_item
cache_write_item writes an item to the specified cache. If the cache is full, the
function will delete the least recently used item from the cache before storing the
new item.

 Function Prototype
cacheError cache_write_item(cacheHandle handle,

 ULONG item_length,

 UCHAR
item,

 short_tag_t short_tag,

 ULONG full_tag_length,

 UCHAR
full_tag) ;

 Input
On entry to this routine:

handle is the handle which identifies the cache.

item_length is the length of the item to be stored. This length plus the
full_tag_length must be smaller than the maxItemBytes specified when the cache
was initialized.

item is a pointer to a buffer containing the item to be stored.

short_tag is the two-byte tag to be used to index this item within the cache.

full_tag_length is the length of the unique identifier for the item. This length plus
item_length must be less than the maxItemBytes specified when the cache was
initialized.

full_tag is the unique identifier for this data item.

 Output
This function returns no output. On successful completion, the item has been added
to the cache.

 Return Codes
Common return codes generated by this routine are:

ce_OK The function completed successfully.

ce_NULL_POINTER One of the parameters was a null pointer.

ce_BAD_HANDLE The specified cache does not exist.

ce_ITEM_TOO_LARGE The sum of the full_tag_length and the item_length is
greater than the maximum item size for the cache.

11-10 UDX Reference and Guide

 16-NOV-01, 14:51

 Chapter 12. Miscellaneous Functions

This chapter describes functions that do not fit into any of the previously described
categories.

Header Files for Miscellaneous Functions
When using these functions, your program must include the following header files.

#include "cassub.h" /
 DES 96 function prototypes
/

#include "camacm.h"

#include "cmnfunct.h"

Summary of Functions
check_access_auth_fcn Verifies the user’s authority.

GetKeyLength Returns the length of a specified key token.

intel_long_reverse Byte-reverses a 4-byte block of data.

intel_word_reverse Byte-reverses a 2-byte block of data.

 Chapter 12. Miscellaneous Functions 12-1

 check_access_auth_fcn - Verify User Authority 16-NOV-01, 14:51

check_access_auth_fcn - Verify User Authority
Note: This function is available on the coprocessor.

check_access_auth_fcn performs operations that are necessary before executing a
requested CCA command.

1. It checks to see if the user who sent the request is authorized to perform the
requested function. This is done by passing a function code, known as an
Access Control Point. A user’s role contains a list of the Access Control Points
corresponding to functions that the user is permitted to execute.

2. If the user is authorized to execute the command, the reply CPRB and
parameter block are initialized.

The function returns a boolean value in pGranted to indicate whether the specified
function was authorized.

 Function Prototype
#define CHECK_ACCESS_AUTH(Rqc, Rpc,r,c,g) check_access_auth_fcn(Rqc, Rpc, r, c, g)

ULONG check_access_auth_fcn(CPRB_ptr pRequestCprb,

 CPRB_ptr pReplyCprb,

 role_id_t rolelID,

 USHORT requested_fcn_code,

 boolean
pGranted)

 Input
On entry to this routine:

pRequestCprb is a pointer to the request (input) CPRB structure.

pReplyCprb is a pointer to a buffer which receives the initialized reply (output)
CPRB structure.

rolelID is the eight-character Role ID defining the access control role for the user
who sent this request. The Role ID is an input parameter, passed to every CCA
command processor when it is called.

requested_fcn_code is the Access Control Point corresponding to the CCA verb
you are executing. The Access Control Manager determines if the user is allowed
to execute this verb, based on whether the Access Control Point is enabled in the
user’s role.

 Output
On successful exit from this routine:

pGranted is a pointer to a location where the boolean result is returned. The value
stored in pGranted is TRUE if the user has authorization, and FALSE if not.

12-2 UDX Reference and Guide

 16-NOV-01, 14:51 check_access_auth_fcn - Verify User Authority

 Notes
Access is granted to role IDs using the csuncnm utility. New access control points
are added to the file csuap.def.

This function may also be called using the macro CHECK_ACCESS_AUTH, with
the same parameters as previously described.

 Return Codes
Common return codes generated by this routine are:

OK The operation was successful.

acm_ROLE_NOT_FOUND The role is not in the SRDI.

 Chapter 12. Miscellaneous Functions 12-3

 GetKeyLength - Get Length of Key Token 16-NOV-01, 14:51

GetKeyLength - Get Length of Key Token
Note: This function is available on the host.

GetKeyLength returns the length of a specified key token.

 Function Prototype
USHORT GetKeyLength

(

UCHAR
 keyid_ptr,

 long
 key_parm_length_ptr,

 long
 message_ptr

)

 Input
On entry to this routine:

keyid_ptr is a pointer to the start of the input key data.

key_parm_length_ptr is a pointer to the expected key length, if this is an RSA key
token, or NULL if not an RSA token. (RSA tokens are passed to the host with a
parameter length, because they are variable sized. This function returns an error if
the RSA token is larger than this expected size.)

message_ptr is a pointer to an address which stores the return code.

 Output
On successful exit to this routine:

GetKeyLength returns the length of the token, or -1 if an error occurred.

message_ptr contains the return code. If there is no error, this is set to S_OK (0).

 Return Codes
Common return codes generated by this routine are:

ERROR If the error code pointed to by message_ptr is S_OK, the function
result is set to the length of the key. Otherwise, the function
returns a value of ERROR (-1), and the value pointed to by
message_ptr is a SAPI error code.

E_KEY_LEN The key has a length less than 1 byte.

E_SIZE The key is longer than the expected length in
key_parm_length_ptr.

E_KEY_TOKEN keyid_ptr was not pointing at a valid key token.

12-4 UDX Reference and Guide

 16-NOV-01, 14:51 intel_long_reverse - Convert Long Values

intel_long_reverse - Convert Long Values
Note: This function is available on both the host and the coprocessor.

intel_long_reverse reverses the order of the bytes in a long (4-byte) integer. This is
used to convert long values between big-endian and little-endian formats.

 Function Prototype
ULONG intel_long_reverse(ULONG long_val)

For portability reasons, the following macros have been conditionally defined for
integer translation.

#ifdef BIG_ENDIAN

#define xtohl(d) ((ULONG)d)

#define htoxl(d) ((ULONG)d)

#define atohl(d) intel_long_reverse((ULONG)d)

#define htoal(d) intel_long_reverse((ULONG)d)

#else

#define xtohl(d) intel_long_reverse((ULONG)d)

#define htoxl(d) intel_long_reverse((ULONG)d)

#define atohl(d) ((ULONG)d)

#define htoal(d) ((ULONG)d)

#endif

 Input
On entry to this routine:

long_val is the input value. It is reversed in byte order, and returned as the
function result.

 Output
This function returns no output. On successful exit to this routine:

intel_long_reverse returns the bytes from long_val in reverse order.

 Return Codes
This function has no return codes.

 Chapter 12. Miscellaneous Functions 12-5

 intel_word_reverse - Convert 2-Byte Values 16-NOV-01, 14:51

intel_word_reverse - Convert 2-Byte Values
Note: This function is available on both the host and the coprocessor.

intel_word_reverse reverses the order of the bytes in a word (2-bytes) of data. This
is used to convert 2-byte values between big-endian and little-endian formats.

For portability reasons, the following macros have been conditionally defined for
integer translation.

#ifdef BIG_ENDIAN

#define xtohs(d) ((USHORT)d)

#define htoxs(d) ((USHORT)d)

#define atohs(d) intel_word_reverse((USHORT)d)

#define htoas(d) intel_word_reverse((USHORT)d)

#else

#define xtohs(d) intel_word_reverse((USHORT)d)

#define htoxs(d) intel_word_reverse((USHORT)d)

#define atohs(d) ((USHORT)d)

#define htoas(d) ((USHORT)d)

#endif

where:

x External
h Host
a Adapter

 Function Prototype
USHORT intel_word_reverse(USHORT intel_int)

 Input
On entry to this routine:

intel_int is the input word. It is reversed in byte order, and returned as the
function result.

 Output
On successful exit from this routine:

intel_word_reverse returns the bytes from intel_int in reverse order.

 Return Codes
This function has no return codes.

12-6 UDX Reference and Guide

 16-NOV-01, 14:51 TOKEN_IS_A_LABEL - Identifies the Token as a Label

TOKEN_IS_A_LABEL - Identifies the Token as a Label
This macro has a value of TRUE when the first byte of the key identifier input is
valid for a key label. All key labels have a first byte between 0x20 and 0xFE.
TOKEN_IS_A_LABEL should be used when a token is available for checking.

#define TOKEN_IS_A_LABEL(keyid) \

((keyid[F] >= MIN_FOR_LABEL) && (keyid[F] <= MAX_FOR_LABEL))

 Chapter 12. Miscellaneous Functions 12-7

 TOKEN_LABEL_CHECK - Determine if Key Identifier is a Label 16-NOV-01, 14:51

TOKEN_LABEL_CHECK - Determine if Key Identifier is a Label
This macro has a value of TRUE when the character input is valid for a key label.
All key labels have a first byte between 0x20 and 0xFE. TOKEN_LABEL_CHECK
should be used when only one byte is available for checking.

#define TOKEN_LABEL_CHECK(keyid) \

((keyid >= MIN_FOR_LABEL) && (keyid <= MAX_FOR_LABEL))

12-8 UDX Reference and Guide

 16-NOV-01, 14:51

Appendix A. UDX Sample Code - Host Piece - Service

This appendix contains a listing of the sample file zudxsvc.bal. This file is a
skeleton for the design of the host piece of a CCA extension.

TITLE 'ZUDXSVC: Sample UDX - PIN Block Processing Service'

ZUDXSVC CSECT

ZUDXSVC AMODE 31

ZUDXSVC RMODE ANY

 Sample callable service for UDX.

 (C) Copyright IBM Corp. 2FF1

 Function: This program will process an encrypted PIN block

 (assume a proprietary block form) and return the

 block encrypted under the original or a second key.

 Inputs: Rule Array Count Number of keywords passed in rule

 array

 Rule Array Keywords (F, 1 or 2 keywords may

 be passed)

 Input Pin Key Id Input PIN encrypting key identifier.

 The input PIN block is enciphered

 under this key. The identifier may

 be a token or label.

 Input Pin Block Enciphered PIN block to be

 processed.

 Output Pin Key Id Output PIN encrypting key identifi-

 er or a null token. The identifier

 may be a token or label. If the key

 is not used, a null token is

 supplied.

 Extra Data Extra data to be used in processing

 the PIN block (always 8 bytes).

 Processing: 1. Copy the parameter address block to the ICSF

 address space.

 2. Copy all input parameters to the ICSF address

 space.

 3. Validate the rule array count.

 4. Check that the caller is authorized to use this

 protected resource (RACF check).

 5. Process the InputPinKeyId. If the identifier is

 a label, retrieve the token from the CKDS.

 6. Process the OutputPinKeyId. If the identifier is

 a label, retrieve the token from the CKDS.

 Set a flag if the identifier is a null token.

 7. Call CSFADSPI to perform the following:

 - Create the request CPRB for the function.

 - Submit the request CPRB to the PCICC

 - Validate the reply CPRB.

 8. Parse the PIN block from the verb unique data

 block and copy it to the output parameter.

 9. If the return/reason code indicates that a token

 Appendix A. UDX Sample Code - Host Piece - Service A-1

 16-NOV-01, 14:51

 was enciphered under the old master key, parse

 the key block and copy the reenciphered keys

 to the appropriate identifiers. Labels are not

 updated.

 1F. Return to caller.

 Outputs: Return Code Return code from processing

 Reason Code Reason code from processing

 Output Pin Block Processed enciphered PIN block

 Input Pin Key Id Reenciphered token if the key was

 enciphered under the old master key.

 Output Pin Key Id Reenciphered token if the key was

 enciphered under the old master key.

 External routines:

 CSFACKDS - Retrieve a DES key from the CKDS

 CSFADSPI - Invoke PCICC

 CSFASEC - Check authorization to a RACF-protected

 or security-exit-protected resource

 External executable macros:

 CSFAGET - Obtain dynamic storage

 CSFAFREE - Release dynamic storage

 Register usage:

 RF = Work register

 R1 = Address of parameter lists

 R2-R6 = Work registers

 R7 = CCVT address

 R8 = SPB address

 R9 = GSVT address and work register

 R1F = CCVE address and work register

 R11 = Dynamic data area address

 R12 = Module base register

 R13 = unused

 R14-R15 = Linkage registers

 Change History

 Date Programmer Description

 -------- ---------- -----------

 F9/26/99 kbk Created

 F1/31/F1 mce Converted to Assembler language

 EJECT

 MACRO

&LABEL COPYPARMS &SOURCE=,&SRCALET=,©LEN=,&TARGET=,&TGTALET=,

 ©DIR=

 L R1F,&SOURCE

 ST R1F,SOURCE_ADDR

 LA R1F,&SRCALET

 ST R1F,SOURCE_ALET

 L R1F,©LEN

 ST R1F,COPY_LENGTH

 L R1F,&TARGET

 ST R1F,TARGET_ADDR

 LA R1F,&TGTALET

 ST R1F,TARGET_ALET

 L R1F,©DIR

 ST R1F,COPY_DIRECTION

 BAS R14,COPY

 MEND

A-2 UDX Reference and Guide

 16-NOV-01, 14:51

 EJECT

 Main entry for module

MAINENT DS FH

 USING
,R15

 B PROLOG

 DC AL1(18)

 DC C'ZUDXSVC 2FF1.F31'

 DROP R15

PROLOG BSM R14,F

 BAKR R14,F

 LAE R12,F

 LR R12,R15

PSTART EQU ZUDXSVC

 USING PSTART,R12

 LAE R1F,F(,R1)

 L RF,DYNDATA_SIZE

 LA R15,F

 CPYA AR1,AR12

 SAC 512

 CSFAGET OBTAIN,LENGTH=(RF),SP=(R15),LINKAGE=SYSTEM

 LAE R11,F(,R1)

 USING DATD,R11

 EREG R14,R1

 CPYA AR1,AR1F

 MVC PARAMETER_LIST(PARMLLEN),F(R1)

 LR R8,RF

 CPYA AR8,AR12

 USING SPB,R8

 Save the address of the caller's parameter block

 LR R6,R1

 Clear the processing flags and local variables

 XC PROCESSING_FLAGS(1),PROCESSING_FLAGS

 SLR R7,R7

 ST R7,LOCAL_REASON_CODE

 ST R7,LOCAL_RETURN_CODE

 ST R7,SERVICE_RC

 ST R7,SERVICE_RS

MAINPROC DS FH

 Check the environment and copy the parameters to local storage.

 BAS R14,VALIDATE_AND_COPY

 L R9,LOCAL_RETURN_CODE

 LTR R9,R9

 BP ENDMAIN

 Process the key identifiers.

 BAS R14,PROCESS_KEYS

 L R1F,LOCAL_RETURN_CODE

 LTR R1F,R1F

 BP ENDMAIN

 Process the request.

 BAS R14,PROCESS_REQUEST

 Appendix A. UDX Sample Code - Host Piece - Service A-3

 16-NOV-01, 14:51

 L R9,LOCAL_RETURN_CODE

 LTR R9,R9

 BP ENDMAIN

 Copy the output PIN block to the output parameter.

 Call the COPY routine with parameters as follows:

 Address of returned encrypted PIN block (PIN_BLOCK@)

 ICSF's ALET

 Length of LOCAL_OUTPUT_PIN_BLOCK

 OUTPUT_PIN_BLOCK@

 Application ALET

 TO_CALLER

 COPYPARMS SOURCE=PIN_BLOCK@,SRCALET=ICSF_ALET,

 COPYLEN=PIN_BLOCK_LEN,TARGET=OUTPUT_PIN_BLOCK@,

 TGTALET=APPL_ALET,COPYDIR=TO_CALLER

 Check return and reason code to see if a token was enciphered

 under the old master key. (RC=F, RS=1FFF1)

 (We assume any necessary reencipherment was performed by

 the UDX code in the PCICC.)

 If so, copy the reenciphered tokens back to the caller.

 CLC LOCAL_REASON_CODE(4),OMK_TOKEN_USED

 BNE ENDMAIN

 Process the input pin key id first. (Only process the key

 if the input key identifier is not a label.)

 TM PROCESSING_FLAGS,INPUT_KEY_IS_LABEL

 BNZ CHKOUTKY

 Copy the (possibly) reenciphered input PIN key back to the

 caller's parameter area.

 Call the COPY routine with parameters as follows:

 Address of LOCAL_INPUT_KEY_TOKEN

 ICSF's ALET

 Length of LOCAL_INPUT_KEY_TOKEN

 INPUT_PIN_KEY_ID@

 Application ALET

 TO_CALLER

 LA R1F,LOCAL_INPUT_KEY_TOKEN

 ST R1F,SOURCE_ADDRESS

 COPYPARMS SOURCE=SOURCE_ADDRESS,SRCALET=ICSF_ALET,

 COPYLEN=TOKEN_LENGTH,TARGET=INPUT_PIN_KEY_ID@,

 TGTALET=APPL_ALET,COPYDIR=TO_CALLER

 Now process the output pin key id. (Only process the key

 if the key identifier is not a label and the output key is

 not null.)

CHKOUTKY TM PROCESSING_FLAGS,OUTPUT_KEY_IS_LABEL

 BNZ ENDMAIN

 TM PROCESSING_FLAGS,OUTPUT_KEY_IS_NULL

 BNZ ENDMAIN

 Copy the (possibly) reenciphered output PIN key back to the

 caller's parameter area.

 Call the COPY routine with parameters as follows:

A-4 UDX Reference and Guide

 16-NOV-01, 14:51

 Address of LOCAL_OUTPUT_KEY_TOKEN

 ICSF's ALET

 Length of LOCAL_OUTPUT_KEY_TOKEN

 OUTPUT_PIN_KEY_ID@

 Application ALET

 TO_CALLER

 LA R1F,LOCAL_OUTPUT_KEY_TOKEN

 ST R1F,SOURCE_ADDRESS

 COPYPARMS SOURCE=SOURCE_ADDRESS,SRCALET=ICSF_ALET,

 COPYLEN=TOKEN_LENGTH,TARGET=OUTPUT_PIN_KEY_ID@,

 TGTALET=APPL_ALET,COPYDIR=TO_CALLER

ENDMAIN EQU

 Return to the caller with return reason in register F.

 Set RETURN_CODE equal to LOCAL_RETURN_CODE

 L R14,LOCAL_RETURN_CODE

 LA R1F,APPL_ALET

 SAR AR15,R1F

 L R15,RETURN_CODE@

 ST R14,F(,R15)

 Set REASON_CODE equal to LOCAL_REASON_CODE

 L R15,LOCAL_REASON_CODE

 SAR AR1F,R1F

 L R1F,REASON_CODE@

 ST R15,F(,R1F)

 Free dynamic storage and return to caller with return code

 in register 15.

LR R1F,R14 Save return code around call

LR R3,R15 Save reason code around call

 CPYA AR3,ARF

L RF,DYNDATA_SIZE Size of area to free

 LA R15,F

 LR R1,R11

 CPYA AR1,AR11

 CSFAFREE RELEASE,LENGTH=(RF),ADDR=(R1),SP=(R15),LINKAGE=SYSTEM

LR RF,R3 Reason code into register F

 CPYA ARF,AR3

LR R15,R1F Return code into register 1F

 PR

 EJECT

 Subroutines

 Validate and Copy

 Explicit Inputs: none

 Implicit Inputs: CCVT Crypto communication vector table

 PARAMETER_LIST

 All input parameters

 Process: 1. Validate that ICSF is running on CMOS hardware.

 2. Check that at least one PCICC is active.

 3. Call RACF (or equivalent) to see if the caller is

 authorized to run this program.

 4. Copy the parameter address list into ICSF storage

 using the caller's key.

 Appendix A. UDX Sample Code - Host Piece - Service A-5

 16-NOV-01, 14:51

 5. Copy the input parameters to local storage using

 the caller's key.

 Explicit Outputs: None

 Implicit Outputs: LOCAL_RETURN_CODE

 LOCAL_REASON_CODE

 LOCAL_RULE_ARRAY_COUNT

 LOCAL_RULE_ARRAY

 LOCAL_INPUT_KEY_ID

 LOCAL_INPUT_PIN_BLOCK

 LOCAL_EXTRA_DATA

 LOCAL_OUTPUT_KEY_ID

VALIDATE_AND_COPY EQU

 STM R14,R12,SAVEAREA

 STAM AR14,AR12,SAVEAREA+6F

 Check the environment.

 Check that ICSF is active (Bit CCVTMK in the CCVT is equal to 1)

 L R7,SPBCCVT

 USING CCVT,R7

 CPYA AR7,AR12

 TM CCVTSFG1,CCVTMK

 BO CHKCCP

 If ICSF is not active, set LOCAL_RETURN_CODE to 12 and

 LOCAL_REASON_CODE to F

 LA R1F,RC_CSF_ERROR

 ST R1F,LOCAL_RETURN_CODE

 SLR R1F,R1F

 ST R1F,LOCAL_REASON_CODE

 B ENDVAL

 Check that at least one CCP is available for the service.

 (Bit CCVTCCP in the CCVT is equal to 1)

CHKCCP EQU

 TM CCVTFLAG,CCVTCCP

 BO CHKAUTH

 If no CCP is available, set LOCAL_RETURN_CODE to 12 and

 LOCAL_REASON_CODE to 11F6F

 LA R1F,RC_CSF_ERROR

 ST R1F,LOCAL_RETURN_CODE

 MVC LOCAL_REASON_CODE(4),RS_12_CCP_NOT_AVAILABLE

 B ENDVAL

 Call CSFASEC to see if the caller is authorized to use this

 program.

 Call CSFASEC with parameters as follows:

 LOCAL_RETURN_CODE

 LOCAL_REASON_CODE

 RESOURCE_NAME

 RESOURCE_LENGTH

 ASEC_CSFSERV

A-6 UDX Reference and Guide

 16-NOV-01, 14:51

 SPB

CHKAUTH EQU

 XC PARMS_FOR_CALL,PARMS_FOR_CALL

 LA R7,LOCAL_RETURN_CODE

 ST R7,PARMS_FOR_CALL

 LA R9,LOCAL_REASON_CODE

 ST R9,PARMS_FOR_CALL+4

 LA R1F,RESNAME

 ST R1F,PARMS_FOR_CALL+8

 LA R7,RESLEN

 ST R7,PARMS_FOR_CALL+12

 LA R9,RESCLASS

 ST R9,PARMS_FOR_CALL+16

 ST R8,PARMS_FOR_CALL+2F SPB pointer

 L R7,SPBCCVT

 L R1F,CCVTCCVE

 USING CCVE,R1F

 SLR R9,R9

 SAR AR1F,R9

 L R9,CCVEGSVT

 CPYA AR9,AR1F

 USING GSVT,R9

 L R15,GSVT_ASEC

 LAE R1,PARMS_FOR_CALL

BALR R14,R15 Branch to CSFASEC

 If CSFASEC returns a return code greater than zero,

 return to caller with CSFASEC's return code.

 L R7,LOCAL_RETURN_CODE

 LTR R7,R7

 BP ENDVAL

 Copy the parameter address list into ICSF's address space.

 SLR R1,R1

IC R1,SPBPSWKY PSW key into register 1

 LA R2,PARAMETER_LIST Target address

 SLR R3,R3

 SAR AR2,R3 Target space

LR R4,R6 Source address (address of

 caller's parameter block)

 LA R5,APPL_ALET Caller's ALET

 SAR AR4,R5 Target space

LA RF,PARMLLEN Length in register F

 BCTR RF,F

OI SPBF1,SPBTERM Set recovery flag

 MVCSK F(R2),F(R4)

NI SPBF1,X'FF'-SPBTERM Reset recovery flag

 Copy the parameters to local storage.

 Call the COPY routine with parameters as follows:

 Address of caller's parameter to be copied

 Application ALET

 Length of local area to hold copied parameter

 Address of local area to hold the copied parameter

 ICSF's ALET

 Direction to copy: TO_ICSF

 Copy the Rule Array Count

 LA R1F,LOCAL_RULE_ARRAY_COUNT

 ST R1F,TARGET_ADDRESS

 COPYPARMS SOURCE=RULE_ARRAY_COUNT@,SRCALET=APPL_ALET,

 COPYLEN=WORDSIZE,TARGET=TARGET_ADDRESS,

 Appendix A. UDX Sample Code - Host Piece - Service A-7

 16-NOV-01, 14:51

 TGTALET=ICSF_ALET,COPYDIR=TO_ICSF

 Validate the rule array count.

 LOCAL_RULE_ARRAY_COUNT must be F, 1, or 2

 L R1F,LOCAL_RULE_ARRAY_COUNT

 LTR R1F,R1F

 BM BADCOUNT

 LA R9,MAX_RULE_COUNT

 CR R1F,R9

 BNH COPYRA

BADCOUNT DS FH

 Return to caller with return code = 8, reason code = 2F12

 LA R1F,RC_APPLICATION_ERROR

 ST R1F,LOCAL_RETURN_CODE

 LA R1F,RS_8_IV_RA_COUNT

 ST R1F,LOCAL_REASON_CODE

 B ENDVAL

 Copy the Rule Array

COPYRA EQU

 L R9,LOCAL_RULE_ARRAY_COUNT

LTR R9,R9 Are there rules to copy?

 BZ COPYIPIN No rules

 SLA R9,3 Multiply LOCAL_RULE_ARRAY_COUNT

 by 8

 ST R9,RULES_LENGTH

 LA R1F,LOCAL_RULE_ARRAY

 ST R1F,TARGET_ADDRESS

 COPYPARMS SOURCE=RULE_ARRAY@,SRCALET=APPL_ALET,

 COPYLEN=RULES_LENGTH,TARGET=TARGET_ADDRESS,

 TGTALET=ICSF_ALET,COPYDIR=TO_ICSF

 Input PIN Key Id

COPYIPIN EQU

 LA R1F,LOCAL_INPUT_KEY_ID

 ST R1F,TARGET_ADDRESS

 COPYPARMS SOURCE=INPUT_PIN_KEY_ID@,SRCALET=APPL_ALET,

 COPYLEN=TOKEN_LENGTH,TARGET=TARGET_ADDRESS,

 TGTALET=ICSF_ALET,COPYDIR=TO_ICSF

 MVC LOCAL_INPUT_KEY_TOKEN,LOCAL_INPUT_KEY_ID

 Input PIN Block

COPYIPBK EQU

 LA R1F,LOCAL_INPUT_PIN_BLOCK

 ST R1F,TARGET_ADDRESS

 COPYPARMS SOURCE=INPUT_PIN_BLOCK@,SRCALET=APPL_ALET,

 COPYLEN=PIN_BLOCK_LEN,TARGET=TARGET_ADDRESS,

 TGTALET=ICSF_ALET,COPYDIR=TO_ICSF

 Extra Data

 LA R1F,LOCAL_EXTRA_DATA

 ST R1F,TARGET_ADDRESS

 COPYPARMS SOURCE=EXTRA_DATA@,SRCALET=APPL_ALET,

 COPYLEN=EXTRA_DATA_LEN,TARGET=TARGET_ADDRESS,

 TGTALET=ICSF_ALET,COPYDIR=TO_ICSF

A-8 UDX Reference and Guide

 16-NOV-01, 14:51

 Output PIN Key Id

COPYOPIN EQU

 LA R1F,LOCAL_OUTPUT_KEY_ID

 ST R1F,TARGET_ADDRESS

 COPYPARMS SOURCE=OUTPUT_PIN_KEY_ID@,SRCALET=APPL_ALET,

 COPYLEN=TOKEN_LENGTH,TARGET=TARGET_ADDRESS,

 TGTALET=ICSF_ALET,COPYDIR=TO_ICSF

 MVC LOCAL_OUTPUT_KEY_TOKEN,LOCAL_OUTPUT_KEY_ID

ENDVAL DS FH

 LM R14,R12,SAVEAREA

 LAM AR14,AR12,SAVEAREA+6F

BR R14 Return to caller

 Process Keys

 Function: Check the input key identifiers. Retrieve the token

 from the CKDS if the identifier is a label.

 Explicit Inputs: None

 Implicit Inputs: INPUT_PIN_KEY_IDENTIFIER

 OUTPUT_PIN_KEY_IDENTIFIER

 Process: 1. Check the INPUT_PIN_KEY_IDENTIFIER.

 2. Check the OUTPUT_PIN_KEY_IDENTIFIER.

 Explicit Outputs: None

 Implicit Outputs: LOCAL_RETURN_CODE

 LOCAL_REASON_CODE

 LOCAL_INPUT_KEY_TOKEN

 LOCAL_OUTPUT_KEY_TOKEN

 OUTPUT_KEY_IS_LABEL

 INPUT_KEY_IS_LABEL

 OUTPUT_KEY_IS_NULL

PROCESS_KEYS EQU

 STM R14,R12,SAVEAREA

 STAM AR14,AR12,SAVEAREA+6F

 Process the input PIN encrypting key. Check to see if the

 identifier is a label. The first character must be greater

 than a blank if it is a label.

 LA R9,LOCAL_INPUT_KEY_ID

 SLR R1F,R1F

 SAR AR9,R1F

 CLI F(R9),FIRST_LABEL_CHAR

 BNH NOTLABEL

 OI PROCESSING_FLAGS,INPUT_KEY_IS_LABEL Set flag

 Identifier is a label, call CSFACKDS to retrieve the key.

 Appendix A. UDX Sample Code - Host Piece - Service A-9

 16-NOV-01, 14:51

 Call CSFACKDS with parameters as follows:

 LOCAL_RETURN_CODE

 LOCAL_REASON_CODE

 NULL_EXIT_LENGTH

 NULL_EXIT_DATA

 ACKDS_ENTRY_TOKEN

 LOCAL_INPUT_KEY_ID

 ACKDS_TYPE_ANY

 LOCAL_INPUT_KEY_TOKEN

 SPB

 XC PARMS_FOR_CALL,PARMS_FOR_CALL

 LA R1F,LOCAL_RETURN_CODE

 ST R1F,PARMS_FOR_CALL

 LA R1F,LOCAL_REASON_CODE

 ST R1F,PARMS_FOR_CALL+4

 LA R1F,NULL_EXIT_LENGTH

 ST R1F,PARMS_FOR_CALL+8

 LA R1F,NULL_EXIT_DATA

 ST R1F,PARMS_FOR_CALL+12

 LA R1F,ACKDS_ENTRY_TOKEN

 ST R1F,PARMS_FOR_CALL+16

 ST R9,PARMS_FOR_CALL+2F

 LA R9,TYPEANY

 ST R9,PARMS_FOR_CALL+24

 LA R1F,LOCAL_INPUT_KEY_TOKEN

 ST R1F,PARMS_FOR_CALL+28

 ST R8,PARMS_FOR_CALL+32

 L R7,SPBCCVT

 L R1F,CCVTCCVE

 SLR R9,R9

 SAR AR1F,R9

 L R9,CCVEGSVT

 CPYA AR9,AR1F

 L R15,GSVT_ACKDS

 LAE R1,PARMS_FOR_CALL

 BALR R14,R15 Call CSFACKDS

 If CSFACKDS returns a return code greater than zero,

 return to caller with CSFACKDS's return code.

NOTLABEL L R9,LOCAL_RETURN_CODE

 LTR R9,R9

 BP ENDPRKEY

 Process the output PIN encrypting key. Check to see if the

 identifier is a null token. The first character will be 'FF'x.

 LA R9,LOCAL_OUTPUT_KEY_ID

 CLI F(R9),X'FF'

 BNE NOTNULL

 OI PROCESSING_FLAGS,OUTPUT_KEY_IS_NULL Set flag

 B ENDPRKEY

NOTNULL DS FH

 Check to see if the identifier is a label. The first

 character must be greater than a blank.

 CLI F(R9),FIRST_LABEL_CHAR

 BNH ENDPRKEY

 OI PROCESSING_FLAGS,OUTPUT_KEY_IS_LABEL Set flag

 Identifier is a label, call CSFACKDS to retrieve the key.

 Call CSFACKDS with parameters as follows:

 LOCAL_RETURN_CODE

 LOCAL_REASON_CODE

 NULL_EXIT_LENGTH

A-10 UDX Reference and Guide

 16-NOV-01, 14:51

 NULL_EXIT_DATA

 ACKDS_ENTRY_TOKEN

 LOCAL_OUTPUT_KEY_ID

 ACKDS_TYPE_ANY

 LOCAL_OUTPUT_KEY_TOKEN

 SPB

 XC PARMS_FOR_CALL,PARMS_FOR_CALL

 LA R1F,LOCAL_RETURN_CODE

 ST R1F,PARMS_FOR_CALL

 LA R1F,LOCAL_REASON_CODE

 ST R1F,PARMS_FOR_CALL+4

 LA R1F,NULL_EXIT_LENGTH

 ST R1F,PARMS_FOR_CALL+8

 LA R1F,NULL_EXIT_DATA

 ST R1F,PARMS_FOR_CALL+12

 LA R1F,ACKDS_ENTRY_TOKEN

 ST R1F,PARMS_FOR_CALL+16

 ST R9,PARMS_FOR_CALL+2F

 LA R9,TYPEANY

 ST R9,PARMS_FOR_CALL+24

 LA R1F,LOCAL_OUTPUT_KEY_TOKEN

 ST R1F,PARMS_FOR_CALL+28

 ST R8,PARMS_FOR_CALL+32

 L R7,SPBCCVT

 L R1F,CCVTCCVE

 SLR R9,R9

 SAR AR1F,R9

 L R9,CCVEGSVT

 CPYA R9,R1F

 L R15,GSVT_ACKDS

 LAE R1,PARMS_FOR_CALL

 BALR R14,R15

ENDPRKEY DS FH

 LM R14,R12,SAVEAREA

 LAM AR14,AR12,SAVEAREA+6F

 BR R14

 Process Request

 Explicit Inputs: none

 Implicit Inputs: LOCAL_RULE_ARRAY_COUNT

 LOCAL_RULE_ARRAY

 LOCAL_EXTRA_DATA

 LOCAL_INPUT_PIN_BLOCK

 LOCAL_INPUT_KEY_TOKEN

 LOCAL_OUTPUT_KEY_TOKEN

 Process: Call CSFADSPI to perform the following:

 1. Create the CPRB for the request.

 2. Submit the request to the PCICC.

 3. Validate the reply CPRB.

 4. Parse the reply parameter block.

 Explicit Outputs: None

 Implicit Outputs: LOCAL_RETURN_CODE

 LOCAL_REASON_CODE

 Appendix A. UDX Sample Code - Host Piece - Service A-11

 16-NOV-01, 14:51

 PIN_BLOCK@

 LOCAL_INPUT_KEY_TOKEN

 LOCAL_OUTPUT_KEY_TOKEN

PROCESS_REQUEST EQU

 STM R14,R12,SAVEAREA

 STAM AR14,AR12,SAVEAREA+6F

 SLR R9,R9

ST R9,PIN_BLOCK@ Clear variable to hold address of

 returned PIN Block

 Set up parameters for CSFADSPI invocation

 Set flags to zero

 XC ADSPI_FLAGS,ADSPI_FLAGS

 Set PCICC_INDEX to -1 (ANY PCICC)

 SLR R1F,R1F

 BCTR R1F,F

 ST R1F,PCICC_INDEX

 Set PCICC_SERIAL_NUMBER to "NOT APPL"

 MVC PCICC_SERIAL_NUMBER(8),SERIAL_NUMBER_NOT_APPLICABLE

 Set PCICC_DOMAIN to -1 (Not Applicable)

 SLR R1F,R1F

 BCTR R1F,F

 ST R1F,PCICC_DOMAIN

 Set ALET to ICSF's ALET

 LA R1F,ICSF_ALET

 ST R1F,SOURCE_ALET

 Set up VUD List

 LA R1F,VUD_ELEMENT_LENGTH

 ST R1F,VUD1_LENGTH

 ST R1F,VUD2_LENGTH

 L R1F,VUD_FLAGS

 ST R1F,VUD1_FLAG

 ST R1F,VUD2_FLAG

 LA R1F,LOCAL_INPUT_PIN_BLOCK

 ST R1F,VUD1_STRING

 LA R1F,LOCAL_EXTRA_DATA

 ST R1F,VUD2_STRING

 Set up KEY List

 L R1F,TOKEN_LENGTH

 ST R1F,KEY1_LENGTH

 ST R1F,KEY2_LENGTH

 L R1F,KEY_FLAGS

 ST R1F,KEY1_FLAG

 ST R1F,KEY2_FLAG

 LA R1F,LOCAL_INPUT_KEY_TOKEN

 ST R1F,KEY1_STRING

 LA R1F,LOCAL_OUTPUT_KEY_TOKEN

 ST R1F,KEY2_STRING

 LA R1F,UDX_KEYNUM

 ST R1F,NUMBER_OF_KEYS

 XC RETURNED_KEY_BLOCK(138),RETURNED_KEY_BLOCK

 LA R9,RETURNED_KEY_BLOCK

 ST R9,RETURNED_KEY_BLOCK_ADDRESS

 LA R1F,UDX_VUDNUM

 ST R1F,NUMBER_OF_VUDS

A-12 UDX Reference and Guide

 16-NOV-01, 14:51

 XC RETURNED_VUD_BLOCK(1F),RETURNED_VUD_BLOCK

 LA R1F,RETURNED_VUD_BLOCK

 ST R1F,RETURNED_VUD_BLOCK_ADDRESS

 Submit the request.

 LA R1F,SERVICE_RC

 ST R1F,ADSPI_RC_@

 LA R1F,SERVICE_RS

 ST R1F,ADSPI_RS_@

 LA R1F,ADSPI_FLAGS

 ST R1F,ADSPI_FLAGS_@

 LA R1F,FUNCTION_CODE_UDX39F

 ST R1F,ADSPI_SUBFUNC_@

 LA R1F,PCICC_INDEX

 ST R1F,ADSPI_CCP_INDX_@

 LA R1F,PCICC_SERIAL_NUMBER

 ST R1F,ADSPI_CCP_SN_@

 LA R1F,PCICC_DOMAIN

 ST R1F,ADSPI_CCP_DOM_@

 LA R1F,SOURCE_ALET

 ST R1F,ADSPI_ALET_@

 LA R1F,LOCAL_RULE_ARRAY_COUNT

 ST R1F,ADSPI_RULES_COUNT_@

 LA R1F,LOCAL_RULE_ARRAY

 ST R1F,ADSPI_RULES_@

 LA R1F,NUMBER_OF_VUDS

 ST R1F,ADSPI_NUM_VUDS_@

 LA R1F,VUD_LIST

 ST R1F,ADSPI_VUD_LIST_PARM_@

 LA R1F,NUMBER_OF_KEYS

 ST R1F,ADSPI_NUM_KEYS_@

 LA R1F,KEY_LIST

 ST R1F,ADSPI_KEY_LIST_PARM_@

 LA R1F,RETURNED_VUD_BLOCK_LENGTH

 ST R1F,ADSPI_VUD_BLOCK_LEN_@

 LA R1F,RETURNED_VUD_BLOCK_ADDRESS

 ST R1F,ADSPI_VUD_BLOCK_PTR_@

 LA R1F,RETURNED_KEY_BLOCK_LENGTH

 ST R1F,ADSPI_KEY_BLOCK_LEN_@

 LA R1F,RETURNED_KEY_BLOCK_ADDRESS

 ST R1F,ADSPI_KEY_BLOCK_PTR_@

 LA R1F,NULL_LENGTH

 ST R1F,ADSPI_REQ_DATA_BLK_LEN_@

 LA R1F,NULL_POINTER

 ST R1F,ADSPI_REQ_DATA_PTR_LEN_@

 LA R1F,NULL_LENGTH

 ST R1F,ADSPI_REP_DATA_BLK_LEN_@

 LA R1F,NULL_POINTER

 ST R1F,ADSPI_REP_DATA_PTR_LEN_@

 ST R8,ADSPI_SPB_@

 L R7,SPBCCVT

 L R1F,CCVTCCVE

 SLR R9,R9

 SAR AR1F,R9

 L R9,CCVEGSVT

 CPYA R9,R1F

 L R15,GSVT_ADSPI

 LAE R1,ADSPI_PARMS

 BALR R14,R15

 Check return code from CSFADSPI

 L R1F,SERVICE_RC

 LTR R1F,R1F

 BNZ ADSPIERR

 Process the output if the service completed successfully.

 Parse the output PIN block from the VUD.

 Appendix A. UDX Sample Code - Host Piece - Service A-13

 16-NOV-01, 14:51

 VUD structure

 | overall | output pin | The PIN block is eight bytes long.

 | length | block | The overall length should be 1F.

 2 bytes 8 bytes

 Get address of returned encrypted PIN Block from VUD

 LA R1F,RET_ENCRYPTED_PIN_BLOCK

 ST R1F,PIN_BLOCK@

 If either key was enciphered under the old master key,

 the reenciphered key will be returned in the key block,

 with the input PIN key first and the output PIN key second.

 Check to see if the input PIN key was updated. If the token

 returned is a null token, then the key was not updated.

 CLI RET_KEY1,X'FF'

 BE CHKOPKEY

 MVC LOCAL_INPUT_KEY_TOKEN(64),RET_KEY1

 Check to see if the output PIN key was updated. If the

 token returned is a null token, then the key was not

 updated.

CHKOPKEY DS FH

 CLI RET_KEY2,X'FF'

 BE KEYSDONE

 MVC LOCAL_OUTPUT_KEY_TOKEN(64),RET_KEY2

ADSPIERR DS FH

KEYSDONE DS FH

 Save the return and reason codes.

 L R1F,SERVICE_RC

 ST R1F,LOCAL_RETURN_CODE

 L R1F,SERVICE_RS

 ST R1F,LOCAL_REASON_CODE

 Return to caller

ENDPRREQ DS FH

 LM R14,R12,SAVEAREA

 LAM AR14,AR12,SAVEAREA+6F

 BR R14

 Copy

 Function: Copy storage between the caller's address space and

 ICSF's address space in either direction. This

 routine can copy any length of storage. The 'move

 with source key (MVCSK)' and 'move with destination

 key (MVCDK)' instructions are used.

A-14 UDX Reference and Guide

 16-NOV-01, 14:51

 Notes: When copying back to the caller, the target address is

 the original address copied from the parameter block.

 Explicit Inputs: SOURCE_ADDRESS Address of the source data

 SOURCE_ALET ALET of the source data

 COPY_LENGTH Length of the data

 TARGET_ADDRESS Address of the target data

 TARGET_ALET ALET of the target data

 COPY_DIRECTION Flag indicating which dir-

 ection to copy the data.

 Implicit Inputs: SPB Secondary parameter block.

 Process: Copy the data from the source ALET to the target ALET

 256 bytes at a time. If copying to the caller's ALET,

 the parameters are compared. If they are equal, then

 the parameter is NOT moved back to user storage. This

 allows the user to pass in write-protected, read-only

 storage as a parameter.

 Explicit Outputs: None

 Implicit Outputs: None

COPY EQU

 STM R14,R12,COPYSAVE

 STAM AR14,AR12,COPYSAVE+6F

OI DO_COPY,COPY_YES Initialize flag to require a

 copy. (A copy is always

 required if the copy direction

 is TO_ICSF.)

L R9,COPY_LENGTH Length to copy

 SLR R1,R1

IC R1,SPBPSWKY PSW key in register 1

 L R2,TARGET_ADDR

 L R5,TARGET_ALET

 SAR AR2,R5

 L R4,SOURCE_ADDR

 L R1F,SOURCE_ALET

 SAR AR4,R1F

 If copying back to caller ALET, compare the storage

 (There is no need to perform the copy if the area has

 not changed.)

 See if direction to copy is "TO_CALLER"

 L R1F,COPY_DIRECTION

 LTR R1F,R1F

 BNZ ENDCOMP

LR R3,R9 Length to compare

LR R5,R9 Length to compare

 NI DO_COPY,COPY_NO Initialize flag

 CLCL R2,R4 Compare operands

BC 8,ENDCOMP No copy necessary if equal

OI DO_COPY,COPY_YES Set copy flag if not equal

ENDCOMP DS FH

 Check if a copy operation is required. A copy must be

 performed if the DO_COPY flag is on.

 TM DO_COPY,COPY_YES

 Appendix A. UDX Sample Code - Host Piece - Service A-15

 16-NOV-01, 14:51

 BNO ENDCOPY

 B TESTLEN

MOVELOOP DS FH

 Set amount to move. The amount is the lesser of

 the LOCAL_COPY_LENGTH or the MAXIMUM_MOVE amount (256 bytes).

 If the LOCAL_COPY_LENGTH is greater than 256 bytes, we will

 loop doing the move for 256 bytes at a time until the

 entire amount has been copied.

 LA RF,MAXIMUM_MOVE

 CR RF,R9

 BNH USEMAX

 LR RF,R9

USEMAX BCTR RF,F

 MVCxK instruction only moves 'MAXIMUM_MOVE' bytes at a

 time. The instructions require the following input:

 Register F is the length. Register 1 is the storage key

 (xxxxxxKx). Register 2 is the target storage. Register 4

 is the source storage.

OI SPBF1,SPBTERM Set recovery flag

 LA R3,COPY_DIRECTION

 CLC F(4,R3),TO_ICSF

 BNE TOCALLER

TOICSF DS FH Copy to ICSF's storage

 MVCSK F(R2),F(R4)

 B MVCDONE

TOCALLER DS FH Copy to caller's storage

 MVCDK F(R2),F(R4)

MVCDONE NI SPBF1,X'FF'-SPBTERM Reset recovery flag

 Set up to do another MVCxK if necessary

 LA R5,MAXIMUM_MOVE

ALR R2,R5 Next target address for move

ALR R4,R5 Next address to move

 LA R3,MAXIMUM_MOVE

 LCR R3,R3

ALR R9,R3 Subtract MAXIMUM_MOVE amount

 from LOCAL_COPY_LENGTH

TESTLEN LTR R9,R9 Is there more to move?

 BP MOVELOOP

ENDCOPY DS FH

 LM R14,R12,COPYSAVE

 LAM AR14,AR12,COPYSAVE+6F

BR R14 Return to caller

 DS FH

 EJECT

 DECLARES

DYNDATA_SIZE DS FA

 DC A(DYNSIZE)

 DS FD

 LOCAL NON-VARIABLE FIELDS

TO_ICSF DC F'1'

TO_CALLER DC F'F'

PIN_BLOCK_LEN DC F'8'

EXTRA_DATA_LEN DC F'8'

A-16 UDX Reference and Guide

 16-NOV-01, 14:51

TOKEN_LENGTH DC F'64'

WORDSIZE DC F'4'

RESNAME DC CL8'ZUDXSVC '

RESLEN DC F'7'

RESCLASS DC CL8'CSFSERV '

RS_12_CCP_NOT_AVAILABLE DC F'11F6F'

ACKDS_ENTRY_TOKEN DC F'1' CSFACKDS is to return a token

TYPEANY DC CL8'ANY '

FUNCTION_CODE_UDX39F DC XL2'5852'

OMK_TOKEN_USED DC F'1FFF1'

RETURNED_VUD_BLOCK_LENGTH DC F'1F'

RETURNED_KEY_BLOCK_LENGTH DC F'138'

NULL_POINTER DC F'F'

NULL_LENGTH DC F'F'

NULL_EXIT_LENGTH DC F'F'

NULL_EXIT_DATA DC F'F'

SERIAL_NUMBER_NOT_APPLICABLE DC CL8'NOT APPL'

VUD_FLAGS DC XL4'FFFFFFFF'

KEY_FLAGS DC XL4'FFFFFFFF'

 REGISTER EQUATES

RF EQU F

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R1F EQU 1F

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

 ACCESS REGISTER EQUATES

ARF EQU F

AR1 EQU 1

AR2 EQU 2

AR3 EQU 3

AR4 EQU 4

AR5 EQU 5

AR6 EQU 6

AR7 EQU 7

AR8 EQU 8

AR9 EQU 9

AR1F EQU 1F

AR11 EQU 11

AR12 EQU 12

AR13 EQU 13

AR14 EQU 14

AR15 EQU 15

 CONSTANT EQUATES

RC_APPLICATION_ERROR EQU 8

RC_CSF_ERROR EQU 12

RS_12_SERV_NOTAVAIL EQU 8

RS_8_IV_RA_COUNT EQU 2F12

APPL_ALET EQU 1

ICSF_ALET EQU F

 Appendix A. UDX Sample Code - Host Piece - Service A-17

 16-NOV-01, 14:51

MAX_RULE_COUNT EQU 2

COPY_NO EQU B'F1111111'

COPY_YES EQU B'1FFFFFFF'

MAXIMUM_MOVE EQU 256

FIRST_LABEL_CHAR EQU X'4F'

OUTPUT_KEY_IS_NULL EQU X'8F'

INPUT_KEY_IS_LABEL EQU X'4F'

OUTPUT_KEY_IS_LABEL EQU X'2F'

UDX_VUDNUM EQU 2

UDX_KEYNUM EQU 2

VUD_ELEMENT_LENGTH EQU 8

 LTORG

 EJECT

 Dynamic Data definitions

DATD DSECT

 DS FF

 Saveareas

SAVEAREA DS 3FF

COPYSAVE DS 3FF

 Parameter lists

COPY_PLIST DS 6F Parameter list for COPY_PARMS

 ORG COPY_PLIST

SOURCE_ADDR DS A

SOURCE_ALET DS A

COPY_LENGTH DS A

TARGET_ADDR DS A

TARGET_ALET DS A

COPY_DIRECTION DS A

PARMS_FOR_CALL DS 17A Parameter list used by internal calls

ADSPI_PARMS DS FF Parameter list to call CSFADSPI

ADSPI_RC_@ DS A

ADSPI_RS_@ DS A

ADSPI_FLAGS_@ DS A

ADSPI_SUBFUNC_@ DS A

ADSPI_CCP_INDX_@ DS A

ADSPI_CCP_SN_@ DS A

ADSPI_CCP_DOM_@ DS A

ADSPI_ALET_@ DS A

ADSPI_RULES_COUNT_@ DS A

ADSPI_RULES_@ DS A

ADSPI_NUM_VUDS_@ DS A

ADSPI_VUD_LIST_PARM_@ DS A

ADSPI_NUM_KEYS_@ DS A

ADSPI_KEY_LIST_PARM_@ DS A

ADSPI_VUD_BLOCK_LEN_@ DS A

ADSPI_VUD_BLOCK_PTR_@ DS A

ADSPI_KEY_BLOCK_LEN_@ DS A

ADSPI_KEY_BLOCK_PTR_@ DS A

ADSPI_REQ_DATA_BLK_LEN_@ DS A

ADSPI_REQ_DATA_PTR_LEN_@ DS A

ADSPI_REP_DATA_BLK_LEN_@ DS A

ADSPI_REP_DATA_PTR_LEN_@ DS A

ADSPI_SPB_@ DS A

 Caller's parameter address list (input to ZUDXSVC)

PARAMETER_LIST DS CL36

 ORG PARAMETER_LIST

RETURN_CODE@ DS AL4

A-18 UDX Reference and Guide

 16-NOV-01, 14:51

REASON_CODE@ DS AL4

RULE_ARRAY_COUNT@ DS AL4

RULE_ARRAY@ DS AL4

INPUT_PIN_KEY_ID@ DS AL4

INPUT_PIN_BLOCK@ DS AL4

EXTRA_DATA@ DS AL4

OUTPUT_PIN_KEY_ID@ DS AL4

OUTPUT_PIN_BLOCK@ DS AL4

 ORG PARAMETER_LIST+36

PARMLEND DS FX

PARMLLEN EQU (PARMLEND-PARAMETER_LIST) Length of list of parameter

 addresses

 Local copies of caller's parameters

LOCAL_RETURN_CODE DS F

LOCAL_REASON_CODE DS F

LOCAL_RULE_ARRAY_COUNT DS F

LOCAL_RULE_ARRAY DS CL16

LOCAL_INPUT_KEY_ID DS CL64

LOCAL_INPUT_PIN_BLOCK DS CL8

LOCAL_EXTRA_DATA DS CL8

LOCAL_OUTPUT_KEY_ID DS CL64

LOCAL_INPUT_KEY_TOKEN DS CL64

LOCAL_OUTPUT_KEY_TOKEN DS CL64

 Other variables

SOURCE_ADDRESS DS A

TARGET_ADDRESS DS A

SERVICE_RC DS F

SERVICE_RS DS F

PCICC_INDEX DS F

PCICC_DOMAIN DS F

PIN_BLOCK@ DS A

RULES_LENGTH DS F

ADSPI_FLAGS DS BL32

NUMBER_OF_VUDS DS F

NUMBER_OF_KEYS DS F

DO_COPY DS BL8

RETURNED_KEY_BLOCK_ADDRESS DS A

RETURNED_VUD_BLOCK_ADDRESS DS A

RETURNED_VUD_BLOCK DS CL1F

 ORG RETURNED_VUD_BLOCK

RET_VUD_LENGTH DS CL2

RET_ENCRYPTED_PIN_BLOCK DS CL8

 ORG RETURNED_VUD_BLOCK+1F

RETURNED_KEY_BLOCK DS CL138

 ORG RETURNED_KEY_BLOCK

RET_KEY__OVERALL_BLK_LEN DS CL2

RET_KEY1_LENGTH DS CL2

RET_KEY1_FLAG DS CL2

RET_KEY1 DS CL64

RET_KEY2_LENGTH DS CL2

RET_KEY2_FLAG DS CL2

RET_KEY2 DS CL64

 ORG RETURNED_KEY_BLOCK+138

PROCESSING_FLAGS DS CL1

SUBFUNCTION_CODE DS CL2

PCICC_SERIAL_NUMBER DS CL8

VUD_LIST DS 6F

 ORG VUD_LIST

VUD1_LENGTH DS F

VUD1_FLAG DS XL2

VUD1_NO_FLAG DS XL2

VUD1_STRING DS A

VUD2_LENGTH DS F

VUD2_FLAG DS XL2

 Appendix A. UDX Sample Code - Host Piece - Service A-19

 16-NOV-01, 14:51

VUD2_NO_FLAG DS XL2

VUD2_STRING DS A

KEY_LIST DS 6F

 ORG KEY_LIST

KEY1_LENGTH DS F

KEY1_FLAG DS XL2

 DS CL2

KEY1_STRING DS A

KEY2_LENGTH DS F

KEY2_FLAG DS XL2

 DS CL2

KEY2_STRING DS A

 ORG
+1-(
-DATD)/(
-DATD)

ENDDATD DS FX

DYNSIZE EQU ((ENDDATD-DATD+7)/8)
8

 THE FOLLOWING INSTRUCTION WILL CAUSE AN ASSEMBLY ERROR IF THE

 SIZE OF THE AUTOMATIC STORAGE AREA IS GREATER THAN 12288 BYTES.

 (12288 bytes is the maximum that can be obtained/released by

 CSFAGET/CSFAFREE.)

 ORG DATD+(12288-(
-DATD))

 ORG ENDDATD

 Mapping macros

 EJECT

 CSFCCVT

 EJECT

 CSFCCVE

 EJECT

 CSFASPB

 EJECT

 CSFGSVT

 EJECT

 END ZUDXSVC

A-20 UDX Reference and Guide

 16-NOV-01, 14:51

Appendix B. UDX Sample Code - Host Piece - Service Stub

This appendix contains a listing of the sample file zudxstub.bal. This file is a
skeleton for the design of the host piece of a CCA extension.

 START OF SPECIFICATIONS

 FFF1FF15

 FFF2FF15

 MODULE NAME = UDXSTUB
 FFF3FF62

 DESCRIPTIVE NAME = UDX Service Stub Sample
 FFF4FF62

 FFF5FF15

 FUNCTION =
 FFF5F115

 THIS IS A SAMPLE SERVICE STUB. IT IS MEANT TO BE LINKEDITED
 FFF5F215

 WITH THE APPLICATION AND ENTERED VIA A CALL (CALL UDXSTUB). THIS
 FFF5F362

 STUB CAUSES THE EXECUTION OF THE SERVICE WITH SERVICE NUMBER = 49
 FFF5F415

 (DECIMAL).
 FFF5F515

 FFF5F615

 MODULE TYPE = ASSEMBLER
 FFF5F715

 PROCESSOR = ASSEMBLER
 FFF5F815

 MODULE SIZE = ONE BASE REGISTER
 FFF5F915

 FFF51F15

 TO MODIFY THE STUB FOR USE:
 FFF51115

 1. CHANGE THE VALUE OF 'UDXNUM' FROM 49 TO THE DECIMAL NUMBER OF
 FFF51215

 YOUR SERVICE.
 FFF51315

 2. ISSUE A GLOBAL CHANGE TO CHANGE THE STUB NAME OF 'UDXSTUB' TO
 FFF51462

 THE NAME OF YOUR SERVICE STUB.
 FFF51515

 FFF51615

 END OF SPECIFICATIONS

 FFF51715

UDXSTUB START F FFF51862

UDXSNUM EQU 49 FFF51915

UDXSTUB CSECT FFF52F62

MAINENT DS FH FFF52121

 USING
,R15 FFF53F19

 LAE R15,F(R15,F) FFF54F2F

 L R15,=A(CICSTEST) FFF55F15

BAKR F,R15 PR from CICSTEST will restore GPRs FFF56116

 LTR R15,R15 FFF57F15

 BC 2,NOCICS FFF58F58

 FFF59F15

YESCICS DS FH FFF59139

 SAC F FFF6FF39

 STM R14,R12,12(R13) FFF7FF33

 LR R12,R15 FFF71F63

 DROP R15 FFF9FF38

 USING MAINENT,R12 FF1FFF19

 LR R3,RF FF11FF15

 B NORMAL FF12FF15

 FF121F27

NOCICS DS FH FF121139

 USING MAINENT,R12 FF122F39

 BSM R14,F FF13FF39

 BAKR R14,F FF131F15

 LAE R12,F FF133F63

 LR R12,R15 FF134F6F

 SLR R13,R13 FF135F15

 FF136F15

 At this point, RF must contain the service number. FF137F15

 If we are to call the TRUE, R13 is non-zero FF138F15

 R1 points to the caller's parameter list. FF139F15

 FF14FF15

NORMAL DS FH FF14F115

LA RF,UDXSNUM RF gets service number FF14F415

 SLR R1F_ZERO,R1F_ZERO FF14F515

 LR RC,R1F_ZERO FF14F615

 L R2,CVTPTR FF14F715

 USING CVT,R2 FF14F859

 L R2,CVTABEND FF14F959

 CLR R2,R1F_ZERO FF141F58

 BC 8,NOICSF FF141158

 USING SCVTSECT,R2 FF141259

 Appendix B. UDX Sample Code - Host Piece - Service Stub B-1

 16-NOV-01, 14:51

 L R2,SCVTCCVT FF141359

 CLR R2,R1F_ZERO FF141458

 BC 8,NOICSF FF141558

 USING CCVT,R2 FF141615

TM CCVTSFG1,B'FF11FFFF' IS ICSF ACTIVE FF141852

 BC 1,YESICSF FF142F58

NOICSF LA RC,12 Set return code to 12 decimal FF143415

 L R7,RETURN_CODE_PTR(,R1) FF143515

 ST RC,RETURN_CODE(,R7) FF143615

 SLR RF,RF FF143715

 L R7,REASON_CODE_PTR(,R1) FF143815

 ST RF,REASON_CODE(,R7) FF143915

 B FINISHED FF144F15

YESICSF DS FH FF144115

 FF144215

 Note that, if we're in CICS, the prolog code pointed R3 at the AFCB FF144315

 and R13 at the caller's savearea--they're still pointing. Also, RF FF144415

 contains the service number, with the high order bit ON if the TRUE FF144515

 has been tried and found wanting. In this last case, CSFAPRPD will FF144615

 check the high order bit and not attempt to call the TRUE. FF144715

 If R13 is zero, we're using the linkage stack. That means we can FF144815

 call CSFAPRPC. FF144915

 If R13 is not zero, we're using non-stack linkage. That means the FF145F15

 caller's savearea will be used. CSFAPRPD uses this kind of linkage. FF145115

 But note that CSFAPRPD won't return here. Instead, it will return FF145215

 directly to the caller--that is, to the owner of the only save FF145315

 area around. FF145415

 FF145515

 CLR R13,R1F_ZERO FF145715

 BC 8,EXECPRPC FF145858

 L R15,CCVTPRPD FF145915

 BALR R14,R15 FF146F15

 LR RC,R15 FF146115

 B FINISHED FF146215

EXECPRPC L R15,CCVTPRPC FF146315

 BALR R14,R15 FF146415

 LR RC,R15 FF146515

FINISHED DS FH FF146615

 FF146715

 FF146815

 This routine uses the linkage stack to save the caller's regs FF146915

 if this is not a CICS environment. In CICS, it uses the save FF147F15

 area pointed to by register 13. So the epilog code takes one FF147115

 of two forms. If this is CICS (i.e. if R13 is non-zero), FF147263

 return is via LM and BR 14. If this is not CICS, return is FF147363

 via PR. FF147463

 FF147563

 On return, the PR of ESA linkage does not restore registers FF147663

 F, 1, 14 and 15. In the LM of normal BR 14 linkage, however, FF147763

 everything but 13 gets restored. Since this routine has no FF147863

 autodata, there's no way to pass back return and reason codes FF147963

 unless we leave F and 15 intact. The solution is to deviate FF148F63

 slightly from normal BR 14 linkage and restore only registers FF148163

 1 through 12 and 14. FF148263

 FF148363

 LTR R13,R13 FF14846F

 BC 8,ENDNOCICS FF14856F

ENDCICS LR R15,RC FF14866F

 L R14,SAVE14(,R13) FF14886F

 LM R1,R12,24(R13) FF148963

 BR R14 FF149F6F

 FF14916F

ENDNOCICS DS FH FF149355

 LR R15,RC FF149455

 PR FF149757

 FF149855

 FF14996F

 CICSTEST: Decides whether this is a CICS environment FF15FF6F

 FF15F16F

 FF15F26F

CICSTEST DS FH FF15F36F

LAE R12,F Clear AR 12 FF15F56F

B-2 UDX Reference and Guide

 16-NOV-01, 14:51

LR R12,R15 Addressability via R12 FF15F66F

 USING CICSTEST,R12 FF15F76F

L R15,=A(UDXSTUB) R15 gets caller's base reg FF151F62

L R2,CVTPTR GET CVT POINTER FF16FF15

 USING CVT,R2 FF17FF15

L R2,CVTABEND AND SECONDARY CVT POINTER FF18FF51

 USING SCVTSECT,R2 FF19FF51

L R2,SCVTCCVT POINT TO CSF CCVT FF2FFF51

LTR R2,R2 IS CRYPTO INSTALLED? FF21FF51

BZ RETRN IF NOT, GO HOME FF22FF15

 USING CCVT,R2 FF23FF51

TM CCVTSFG1,B'FF11FFFF' IS ICSF ACTIVE FF24FF15

BNO RETRN IF NOT , GO HOME FF25FF15

 Check for wait list routine FF26FF15

TM CCVTCICS,B'1FFFFFFF' Q. CCVTPRPA ON? FF27FF15

BZ RETRN no---No CICS capability FF28FF15

TM CCVTCICS,B'F1FFFFFF' Q. CCVTCKWL ON? FF29FF15

BZ CKWLHERE no---use imbedded routine FF3FFF15

 yes--use installed routine FF31FF15

LA RF,UDXSNUM RF gets service number FF32FF15

LR R3,R1 R3 saves R1 FF33FF15

LR R4,R14 R4 saves R14 FF34FF48

LR R5,R15 R5 saves R15 FF35FF48

L R15,CCVTCKWL R15 gets routine address FF36FF15

BALR R14,R15 Got check for CICS FF37FF15

LR RF,R15 Save return code in RF FF38FF63

 LR R15,R5 Restore R15 FF39FF48

 LR R14,R4 Restore R14 FF4FFF48

 LR R1,R3 Restore R1 FF41FF15

 LTR RF,RF Q. CICS? FF43FF15

 BZ RETRN no---return FF44FF15

 yes--pass info along FF45FF15

O R15,M_CICS Enable high bit of R15 to CICS FF46FF15

 B RETRN Return FF47FF15

 Cannot use installed routine. Use imbedded routine FF48FF15

CKWLHERE DS FH Imbedded check for TRUE routine FF49FF15

SLR RF,RF Init RF to F FF5FFF15

CPYA R8,R12 Zero AR 8 FF51FF15

SLR R8,R8 Init R8 to F FF52FF63

 USING PSA,R8 FF53FF15

 L R8,PSATOLD R8->TCB FF54FF15

 USING TCB,R8 FF55FF15

LTR R8,R8 Q. Is there a TCB? FF56FF15

 BC 8,RETRN no---return FF57FF61

 yes--check state and key FF58FF15

CPYA R11,R12 Zero AR 11 FF59FF15

LA R11,1 Get PSW state and key in R6 FF6FFF15

 ESTA R6,R11 FF61FF15

LR R7,R6 Copy of state & key in R7 FF62FF15

 N R7,M_KEY Q. problem key? FF63FF15

 BZ RETRN no---return FF64FF15

 yes--check state FF65FF15

 N R6,M_STATE Q. problem state? FF66FF15

 BZ RETRN no---return FF67FF15

 yes--get the CICS eye-catcher FF68FF15

LA R6,2 Set ARs 6 and 8 to home FF69FF15

 SAR R6,R6 FF7FFF15

 SAR R8,R6 FF71FF15

 L R8,TCBEXT2 R8->TCB extension FF72FF15

 USING TCBXTNT2,R8 FF73FF15

ICM R4,B'1111',TCBCAUF R4 gets AFCX address FF74FF15

 Q. Address there? FF75FF15

 BZ RETRN no---return FF76FF15

 yes--check eye-catch FF77FF15

 CLC F(4,R4),CICS_EYE Q. CICS? FF78FF15

 BNE RETRN no---return FF79FF15

 yes--pass info along FF8FFF15

LR RF,R4 RF gets the AFCX pointer FF81FF15

O R15,M_CICS Enable high order bit of R15 FF82FF15

RETRN DS FH FF83FF15

 DROP R12 Free R12 FF84FF15

 Appendix B. UDX Sample Code - Host Piece - Service Stub B-3

 16-NOV-01, 14:51

PR Return from CICSTEST subroutine FF85FF15

 FF86FF15

 LTORG FF87FF15

 DS FD FF88FF15

 FF89FF15

UDXDATA DS FF FF9FFF15

R1F_ZERO EQU 1F FF91FF15

RC EQU F5 FF92FF15

RF EQU F FF93FF15

R1 EQU 1 FF94FF15

R2 EQU 2 FF95FF15

R3 EQU 3 FF96FF15

R4 EQU 4 FF97FF15

R5 EQU 5 FF98FF15

R6 EQU 6 FF99FF15

R7 EQU 7 F1FFFF15

R8 EQU 8 F1F1FF15

R9 EQU 9 F1F2FF15

R1F EQU 1F F1F3FF15

R11 EQU 11 F1F4FF15

R12 EQU 12 F1F5FF15

R13 EQU 13 F1F6FF15

R14 EQU 14 F1F7FF15

R15 EQU 15 F1F8FF15

 F1F9FF15

INPUT_PARMS EQU F,8,C'C' F11FFF63

RETURN_CODE_PTR EQU INPUT_PARMS,4,C'A' F111FF15

REASON_CODE_PTR EQU INPUT_PARMS+4,4,C'A' F112FF15

RETURN_CODE EQU F,4,C'F' F113FF63

REASON_CODE EQU F,4,C'F' F114FF63

 F1141F63

SAVAREA EQU F,72,C'C' F115FF15

SAVE14 EQU SAVAREA+12,4,C'A' F116FF15

SAVEF1 EQU SAVAREA+24,4,C'A' F117FF15

SCVTSPTR EQU CVTABEND,4,C'F' F119FF15

TCBPTR EQU PSATOLD,4,C'F' F12FFF15

 DS FD F121FF15

 F122FF15

 DS FF Align F123FF15

M_KEY DC X'FF8FFFFF' Problem key mask F124FF15

M_STATE DC X'FFF1FFFF' Problem state mask F125FF15

M_NOCICS DC X'7FFFFFFF' Not-CICS mask F126FF15

M_CICS DC X'8FFFFFFF' Yes-CICS mask F127FF15

 DS FD F128FF15

CICS_EYE DC CL4'AFCX' CICS eye catcher F129FF15

 F13FFF15

 IHAPSA F131FF15

TITLE 'DSECT CVT' F132FF15

 CVT DSECT=YES F133FF15

TITLE 'DSECT SCVT' F134FF15

 IHASCVT DSECT=YES F135FF15

TITLE 'DSECT TCB' F136FF15

 IKJTCB F137FF15

TITLE 'DSECT CCVT' F138FF15

 CSFCCVT F139FF15

 F14FFF15

 END F141FF15

B-4 UDX Reference and Guide

 16-NOV-01, 14:51

Appendix C. UDX Sample Code - Host Piece - CSFPCI
Post-Processing Exit

This appendix contains a listing of the sample file zudxexit.bal. This file is a
skeleton for the design of the host piece of a CCA extension.

 START OF SPECIFICATIONS

 FFFF1F2F

 FFFF2F2F

 MODULE NAME = ZUDXEXIT
 FFFF3F2F

 DESCRIPTIVE NAME = Sample Post-Processing exit for CSFPCI
 FFFF4F2F

 FFFF5F2F

 FFFF6F2F

 END OF SPECIFICATIONS

 FFFF7F2F

ZUDXEXIT CSECT , FFFF8F2F

ZUDXEXIT AMODE 31 FFFF9F2F

ZUDXEXIT RMODE ANY FFF1FF2F

MAINENT DS FH FFF2FF2F

 USING
,R15 FFF3FF2F

 B PROLOG FFF4FF2F

 DC AL1(42) FFF5FF2F

DC C'ZUDXEXIT - UDX CSFPCI POST-PROCESSING EXIT' FFF6FF2F

 DROP R15 FFF7FF2F

PROLOG BSM R14,F FFF8FF2F

 BAKR R14,F FFF9FF2F

 LAE R12,F FF1FFF2F

 LR R12,R15 FF11FF2F

PSTART EQU ZUDXEXIT FF12FF2F

 USING PSTART,R12 FF13FF2F

 L RFF,DYNDATA_SIZE FF14FF29

 LA R15,F FF15FF2F

 CPYA ARF1,AR12 FF16FF2F

 SAC 512 FF17FF2F

 CSFAGET OBTAIN,LENGTH=(F),SP=(15),LINKAGE=SYSTEM FF18FF2F

 LAE R11,F(,RF1) FF19FF2F

 USING DATAD,R11 FF2FFF2F

--- FF2F1F2F

 SAVE THE ADDRESS OF THE XPB FF2F2F2F

--- FF2F3F2F

 EREG RFF,RF1 FF2F4F29

 LR RF3_EXPBPTR,RFF FF2F422F

 USING XPB,RF3 FF2F432F

 CPYA RF3_EXPBPTR,AR12 FF2F442F

--- FF2F452F

 IS THIS INVOKED AS PART OF PRE-PROCESSING OR POST-PROCESSING ? FF2F4629

--- FF2F472F

 TM XPBFLAG1,XPBEXIT_TERM_CALL FF2F482F

 BNZ POSTPROC FF2F492F

PREPROC DS FH START PRE_PROCESSING FF2F5F2F

 LA R14,1 FF2F6F2F

 SAR AR14,R14 FF2F7F2F

 LR R14,RF1 FF2F8F2F

 L R14,REPLY_PARM_DB_LEN_PTR(,R14) FF2F9F2F

 L RFF,REPLY_PARM_DATA_BLOCK_LEN(,R14) SAVE LENGTH FF21FF2F

 ST RFF,XPBWORD FF22FF2F

 B RCISZERO FF23FF2F

-- FF24FF2F

 If the Rule Array indicates to Query Access Control Points, then FF25FF2F

 copy the UDX access control points to the Reply Parameter Data Block FF26FF2F

-- FF27FF2F

POSTPROC DS FH FF28FF2F

 LA RF6,1 FF29FF2F

 SAR ARF6,RF6 FF3FFF2F

LR RF6,RF1 GET PARAMETER LIST ADDR FF31FF2F

L RF6,RA_PTR(,RF6) GET RULE ARRAY ADDR FF32FF2F

MVC LOC_RA(8),RULE_ARRAY(RF6) COPY RULE ARRAY FF33FF2F

OC LOC_RA(8),RA_BLANK FOLD IT TO UPPER CASE FF34FF2F

CLC LOC_RA(8),ACPOINTS IS IT "ACPOINTS" CALL ? FF35FF2F

 Appendix C. UDX Sample Code - Host Piece - CSFPCI Post-Processing Exit C-1

 16-NOV-01, 14:51

BNE NOT_ACP CALL WAS NOT FOR ACPOINTS FF36FF2F

 FF37FF2F

GET_ACP DS FH START OF COPY ACPOINTS CODE FF38FF2F

 LA R14,1 FF39FF2F

 SAR AR14,R14 FF4FFF2F

LR R14,RF1 GET PARAMETER LIST ADDR FF41FF2F

 L R14,REPLY_PARM_DB_LEN_PTR(,R14) FF42FF2F

 L RF8,REPLY_PARM_DATA_BLOCK_LEN(,R14) FF43FF2F

LR RF9,RF8 SAVE CURRENT DATA BLOCK LEN FF44FF2F

LA RFF,ACPTLEN GET ACPT LENGTH FF45FF2F

ALR RF8,RFF FIND TOTAL ACP LENGTH FF46FF21

CL RF8,XPBWORD IS THERE ENOUGH ROOM ? FF47FF21

BNH BUFLENOK YES, BUFFER LENGTH IS OK FF48FF2F

--- FF49FF2F

 THERE IS NOT ENOUGH ROOM IN THE BUFFER TO HOLD THE ADDITIONAL FF5FFF2F

 UDX ACCESS CONTROL POINTS, SO WE WILL FAIL. FF51FF2F

--- FF52FF2F

BUFLENER DS FH NO, BUFFER LENGTH ERROR FF53FF2F

 LA RF4_LOCAL_RC,8 APPLICATION ERROR FF54FF2F

LA RF5_LOCAL_RS,6F5 BUFFER LENGTH ERROR FF55FF2F

 OI XPB_USERCRS,B'FF1FF1FF' FF56FF2F

 B FINISHED FF57FF2F

--- FF58FF2F

 THERE IS ENOUGH ROOM IN THE BUFFER TO HOLD THE ADDITIONAL UDX FF59FF2F

 ACCESS CONTROL POINTS, SO COPY THEM TO THE REPLY DATA BLOCK FF6FFF2F

--- FF61FF2F

BUFLENOK DS FH FF62FF2F

 LR RF6,RF1 FF67FF2F

 L RF6,REPLY_PARM_DB_PTR(,RF6) FF671F2F

 ALR RF6,RF9 FF68FF2F

LA RF7,ACPTLEN GET ACPT LENGTH FF681F27

 LA RF4,F FF682F25

 SAR ARF4,RF4 FF683F25

 LA RF4,UACPTS FF69FF25

LA RF5,ACPTLEN GET ACPT LENGTH FF691F27

 MVCL RF6,RF4 FF7FFF25

 ST RF8,REPLY_PARM_DATA_BLOCK_LEN(,R14) FF71FF2F

NOT_ACP DS FH FF72FF2F

RCISZERO DS FH FF73FF2F

 LA RF4_LOCAL_RC,F FF74FF21

 LA RF5_LOCAL_RS,F FF75FF21

 FF76FF2F

FINISHED DS FH FF77FF2F

 L RFF,DYNDATA_SIZE FF78FF29

 LA R15,F FF79FF2F

 LR RF1,R11 FF8FFF2F

 CSFAFREE RELEASE,LENGTH=(F),ADDR=(1),SP=(15),LINKAGE=SYSTEM FF81FF2F

 EREG RF1,RF1 FF82FF2F

 LR RFF,RF5_LOCAL_RS FF83FF2F

 LR R15,RF4_LOCAL_RC FF84FF2F

 PR FF85FF2F

 FF86FF2F

 Storage Declares FF87FF2F

 FF88FF2F

DYNDATA_SIZE DS FA FF89FF2F

 DC A(DYNSIZE) FF92FF2F

 DS FD FF93FF2F

--- FF94FF2F

 Register Equates FF95FF2F

--- FF96FF2F

RFF EQU F FF97FF2F

RF1 EQU 1 FF98FF2F

RF2 EQU 2 FF99FF2F

RF3 EQU 3 F1FFFF2F

RF4 EQU 4 F1F1FF2F

RF5 EQU 5 F1F2FF2F

RF6 EQU 6 F1F3FF2F

RF7 EQU 7 F1F4FF2F

RF8 EQU 8 F1F5FF2F

RF9 EQU 9 F1F6FF2F

R1F EQU 1F F1F7FF2F

R11 EQU 11 F1F8FF2F

C-2 UDX Reference and Guide

 16-NOV-01, 14:51

R12 EQU 12 F1F9FF2F

R13 EQU 13 F11FFF2F

R14 EQU 14 F111FF2F

R15 EQU 15 F112FF2F

--- F113FF2F

 Access Register Equates F114FF2F

--- F115FF2F

ARFF EQU F F116FF2F

ARF1 EQU 1 F117FF2F

ARF2 EQU 2 F118FF2F

ARF3 EQU 3 F119FF2F

ARF4 EQU 4 F12FFF2F

ARF5 EQU 5 F121FF2F

ARF6 EQU 6 F122FF2F

ARF7 EQU 7 F123FF2F

ARF8 EQU 8 F124FF2F

ARF9 EQU 9 F125FF2F

AR1F EQU 1F F126FF2F

AR11 EQU 11 F127FF2F

AR12 EQU 12 F128FF2F

AR13 EQU 13 F129FF2F

AR14 EQU 14 F13FFF2F

AR15 EQU 15 F131FF2F

--- F1311F29

 Parameter block Equates F1312F29

--- F1313F29

PARMBLOCK EQU F,64,C'C' F1314F3F

RA_COUNT_PTR EQU PARMBLOCK+16,4,C'A' F1315F3F

RA_PTR EQU PARMBLOCK+2F,4,C'A' F1316F3F

REPLY_PARM_DB_LEN_PTR EQU PARMBLOCK+56,4,C'A' F131613F

REPLY_PARM_DB_PTR EQU PARMBLOCK+6F,4,C'A' F131623F

 F1317F29

RULE_ARRAY_COUNT EQU F,4,C'F' F1318F3F

RULE_ARRAY EQU F,8,C'C' F1319F3F

REPLY_PARM_DATA_BLOCK_LEN EQU F,4,C'F' F1319429

REPLY_PARM_DATA_BLOCK EQU F,,C'C' F131953F

END_REPLY_PARM_DATA_BLOCK EQU F,,C'C' F1319629

--- F132FF2F

 Variable Equates F133FF2F

--- F134FF2F

RF3_EXPBPTR EQU RF3 F135FF2F

RF4_LOCAL_RC EQU RF4 F136FF2F

RF5_LOCAL_RS EQU RF5 F137FF2F

--- F138FF2F

 Variable Data Areas F139FF2F

--- F14FFF2F

 LTORG F14F1F28

--- F141FF2F

 Constants F142FF2F

--- F143FF2F

ACPOINTS DC CL8'ACPOINTS' F144FF2F

RA_BLANK DC CL8' ' F145FF2F

 F1451F23

== F1452F28

== F1453F28

 F1454F28

 START OF THE UDX ACCESS CONTROL POINT TABLE STRUCTURE (UACPTS) F1455F28

 F1456F28

 The UACPTS has Group Information followed by one or more entries F1457F28

 of Access Control Point Information. The Group Information should F1458F28

 NOT be changed. The Access Control Point Information (ACPT) can be F1459F28

 copied and most of it modified to describe your UDX Access Control F146FF28

 Point. F147FF28

 F1471F28

 Descriptions of the 2 types of entries are as follows: F1472F28

 F1473F28

 ACP Group Information (This information must not be changed) : F1474F28

 TYPE - Type of table entry, F1 is grouping information entry F1475F28

 TXT_LEN - Length of TXT field F1476F28

 TXT - ASCII description of the Group F1477F28

 F1478F28

 ACPT Information: F1479F28

 Appendix C. UDX Sample Code - Host Piece - CSFPCI Post-Processing Exit C-3

 16-NOV-01, 14:51

 TYPE - Type of table entry, F2 is an access control point F1479128

 entry. THIS VALUE MUST ALWAYS BE X'F2'. F1479228

 CODE - The hexidecimal value of the Access Control Point F1479328

 TXT_LEN - Length of TXT field F1479428

 TXT - ASCII description of this Access Control Point F1479528

 FLAG - THIS VALUE MUST ALWAYS BE X'FFFFFFFF'. F1479629

 ACPTS_CNT - The number of other ACPTs listed in ACPTS F1479828

 ACPTS - The hexidecimal value of the other ACPTs that must be F1479928

 enabled if this ACPT is enabled. F148FF28

 F148F128

 To add a UDX ACPT: F148F228

 1. Increase the size of the 'UACPTS' to include the new ACPT F148F328

 Information. This increase will vary based on the length of F148F428

 the descriptive text and the number of ACPTs needing to be F148F528

 enabled for this ACPT. F148F628

 2. Copy the lines of code between the comments: F148F728

 COPY STARTING HERE F148F828

 ENDING HERE F148F928

 And put them before the comment: F1481F28

 PLACE BEFORE THIS LINE F1481128

 3. Change: F1481228

 a. The names of the lines, for exapmle AF1_... would become F1481328

 AF3_... for the third Access Control Point. F1481428

 b. The length of the ACP section, 'AF3 DS CL??'. where F1481528

 ?? is the actual length of the ACPT information being added. F1481628

 This value may be different for each ACPT depending on the F1481728

 length of the text and the number of other ACPTs needing to F1481828

 be enabled. F1481928

 c. '_CODE' to the 2 byte hexidecimal ACPT value assigned to the F1482F28

 UDX. F1482128

 d. '_TXT_LEN' to the length of the descriptive text. F1482228

 e. '_TXT' to the ASCII repersentation of the descriptive text F1482328

 for this UDX. F1482428

 f. '_ACPTS_CNT' to the number of ACPTS to be listed in the F1482629

 following field. F1482728

 g. '_ACPTS' all the 2 byte hexidecimal value of the ACPTs which F1482829

 need to be active for this UDX to function. F1482928

 4. Add the OFFSET of this UDX ACPT Information block with the F1483F28

 length of this UDX ACPT Information Block and change the F1483128

 offset to the next UDX ACPT Information Block. NOTE: This F1483228

 new offset should be the same as the length of the 'UACPTS' F1483328

 from step 1. F1483428

 F1483528

== F1483628

== F1483728

ACPTSTRT DS FX F1483828

UACPTS DS CL77 WILL CHANGE TO NEW LENGTH F1483928

 ORG UACPTS F1484F28

=- F1484128

 ACP GROUP INFORMATION - SHOULD NEVER BE CHANGED F1484228

=- F1484328

GRP DS CL9 LENGTH OF GROUP INFORMATION F1484428

 ORG GRP F1484528

GRP_TYPE DC X'F1' GROUP TYPE OF F1 F1484628

GRP_TXT_LEN DC X'FFFFFFF4' TEXT LENGTH F1484728

GRP_TXT DC X'55445873' TEXT IS ASCII 'UDXs' F1484828

=- F1484928

 Access Control Point (ACPT) Information block for the 1st ACPT F1485F28

=- F1485128

ORG UACPTS+9 AF1 STARTING OFFSET F1485228

AF1 DS CL45 AF1 LENGTH F1485328

 ORG AF1 AF1 BREAKDOWN F1485428

AF1_TYPE DC X'F2' AF1 TYPE -->MUST REMAIN X'F2' F1485528

AF1_CODE DC X'8FF1' AF1 ACCESS CONTROL POINT F1485628

AF1_TXT_LEN DC X'FFFFFF1E' AF1 TEXT LENGTH F1485728

AF1_TXT DC X'46495253542F5544582F4143434553532F434F4E54524F4C2F5F
F1485828

4F494E54' AF1 ASCII DESCRIPTION OF ACP F1485928

AF1_FLAG DC X'FFFFFFFF' AF1 FLAGS F1486F28

AF1_ACPTS_CNT DC X'FFFFFFFF' AF1 ACPS ENABLE COUNT - NONE F1486128

AF1_ACPTS DS FF AF1 ACPS NEEDING ENABLED - NONE F1486228

=- F1486328

C-4 UDX Reference and Guide

 16-NOV-01, 14:51

 Access Control Point (ACPT) Information block for the 2nd ACPT F1486428

=- F1486528

ORG UACPTS+54 AF2 STARTING OFFSET F1486628

 COPY STARTING HERE F1486728

AF2 DS CL23 AF2 LENGTH F1486828

 ORG AF2 AF2 BREAKDOWN F1486928

AF2_TYPE DC X'F2' AF2 TYPE F1487F28

AF2_CODE DC X'8FFF' AF2 ACCESS CONTROL POINT F1487129

AF2_TXT_LEN DC X'FFFFFFF6' AF2 TEXT LENGTH F1487228

AF2_TXT DC X'41435F542F32' AF2 ASCII DESCRIPTION OF ACP F1487328

AF2_FLAG DC X'FFFFFFFF' AF2 FLAGS F1487428

AF2_ACPTS_CNT DC X'FFFFFFF1' AF2 ACPS ENABLE COUNT - ONE F1487528

AF2_ACPTS DC X'8FF1' AF2 ACPS NEEDING ENABLED F1487628

=- F1487728

 Access Control Point (ACPT) Information block for the NEXT ACPT F1487828

=- F1487928

ORG UACPTS+77 NEXT UDX ACPT OFFSET F1488F28

 ENDING HERE F1488128

 PLACE BEFORE THIS LINE F1488228

 F1488328

ACPTEND DS FX F1488428

ACPTLEN EQU (ACPTEND-ACPTSTRT) F1488528

== F1488628

== F1488728

 F1488828

 END OF THE ACP STRUCTURE F1488928

 F1489F28

== F1489128

== F1489228

 F1489328

 F148942F

 Dynamic Data Definitions F149FF2F

 F15FFF2F

DATAD DSECT FF F151FF2F

 DS FD F152FF2F

--- F168FF2F

LOC_RA DS CL8 F17F1F27

 F291FF2F

 ORG
+1-(
-DATAD)/(
-DATAD) F292FF2F

ENDDATAD DS FX F293FF2F

 F294FF2F

DYNSIZE EQU ((ENDDATAD-DATAD+7)/8)
8 F295FF2F

 F296FF2F

 THE FOLLOWING INSTRUCTION WILL CAUSE AN ASSEMBLY ERROR IF THE F297FF2F

 SIZE OF THE AUTOMATIC STORAGE AREA IS GREATER THAN 4F96 BYTES. F298FF2F

 ORG DATAD+(12288-(
-DATAD)) F299FF2F

 ORG ENDDATAD F3FFFF2F

 F3F2F32F

 CSFASPB F3F21F2F

 CSFEXPB F3F3FF2F

 CSFCCVT F3F4FF2F

 CSFCCVE F3F5FF2F

 F3F6FF2F

 END ZUDXEXIT F3F7FF2F

 Appendix C. UDX Sample Code - Host Piece - CSFPCI Post-Processing Exit C-5

 16-NOV-01, 14:51

C-6 UDX Reference and Guide

 16-NOV-01, 14:51

Appendix D. UDX Sample Code - Coprocessor Piece

This appendix contains a listing of the sample file zudxsamp.c.

/

/

/

/

/
 Module Name: ZUDXSAMP.C
/

/

/

/
 Descriptive Name: User Defined Extension zudxPIN1
/

/

/

/
--
/

/
 (C) Copyright IBM Corporation 1999
/

/
--
/

/

/

/
 Version FF1, Release FFF, Level FFF
/

/

/

/
 Author: Kenneth B Kerr
/

/

/

/
 Function:
/

/
 This module is the command processor for the user defined
/

/
 extension (verb) zudxPIN1.
/

/

/

/
 Module Type:
/

/
 Attributes: Serial usable
/

/
 Language: IBM Visual Age C++ Version 3.FF
/

/

/

/
 Entry Points:
/

/
 zudxPIN1
/

/

/

/
 Input:
/

/
 pCprbIn Request CPRB
/

/
 RequestId Identifier number of the request
/

/

/

/
 Output:
/

/
 pCprbOut Reply CPRB
/

/

/

/
--
/

/
 Change history:
/

/
 Date Programmer Description
/

/
 -------- ---------- -----------
/

/
 F8/26/99 kbk Created
/

/

/

/

/

/

/

/

/

/
 Include files.
/

/

/

#include <stdlib.h>

#include <string.h>

#include "cmncryt2.h" /
 Cryptographic T2 definitions.
/

#include "cmnerrcd.h" /
 Common error codes.
/

#include "cam_xtrn.h" /
 CCA managers
/

#include "casfunct.h" /
 Common command processor funct's
/

#include "camacm.h" /
 Needed for access check
/

#include "cxt_cmds.h" /
 UDX access control codes
/

#include "camdmgr.h" /
 Domain manager prototypes
/

#include "cassub.h" /
 Common subroutines
/

/

/

/
 Constants
/

/

/

#define RA_COUNT_ZERO 2 /
 Rule array length for zero keywords
/

#define RA_COUNT_ONE 1F /
 Rule array length for one keyword
/

#define RA_COUNT_TWO 18 /
 Rule array length for two keywords
/

#define PIN_BLOCK_SIZE 8

#define EXTRA_DATA_SIZE 8

#define EXPECTED_VUD_LENGTH 18

 Appendix D. UDX Sample Code - Coprocessor Piece D-1

 16-NOV-01, 14:51

#define SIZE_OF_DES_KEY 8

#define PINENCI Fx21 /
 PIN-Encrypting IN Key: IPINENC
/

#define PINENCO Fx24 /
 PIN-Encrypting OUT Key: OPINENC
/

typedef enum { PIN1_KEYWORD_1W, PIN1_KEYWORD_2W, PIN1_KEYWORD_3W } PIN1_RULE1;

typedef enum { PIN1_KEYWORD_1O, PIN1_KEYWORD_2O } PIN1_RULE2;

/

 ENTER

 your CCA command extension array entry after this comment.

 ==

 Each element of the table is a CCAX_CP_DEF type. That is, it

 contains one 2 character sub-function code, and a pointer to

 the corresponding command processor function.

/

CCAX_CP_DEF ccax_cp_listffl“ = { { ZUDX_CODE, zudxPIN1 }};

 /

 Declare a variable which holds the number of CCA extension verbs

 defined in the ccax_cp_list table above.

/

ULONG ccax_cp_list_size = (sizeof(ccax_cp_list) / sizeof(CCAX_CP_DEF));

void zudxPIN1(

CPRB_structure
pCprbIn, /
 (input) request CPRB
/

CPRB_structure
pCprbOut, /
 (output) reply CPRB
/

unsigned long RequestId, /
 (input) Adapter request identifier
/

role_id_t roleID) /
 (input) role ID ptr
/

{

 /

/

 /
 Declarations
/

 /

/

/
 CPRB processing variables
/

ESSS_request_block_structure
pReqBlk; /
 Pointer to request parm block
/

ESSS_request_block_structure
pRepBlk; /
 Pointer to reply parm block
/

UCHAR
pReplyBlockPtr; /
 Pointer for building reply block
/

int ReplyBlockLength; /
 Length of the data added to the
/

/
 reply parameter block
/

/
 VUD block processing variables
/

verb_unique_data_structure
pVUDBlock; /
 VUD structure
/

unsigned char
pPinBlock; /
 Pointer to input PIN block
/

unsigned char
pExtraData; /
 Pointer to extra data block
/

/
 Key block processing variables
/

key_data_structure
pThiskey; /
 Key token from request block
/

key_data_structure
pNextkey; /
 Key token from request block
/

generic_key_block_structure
pToken; /
 Key in parameter block
/

des_key_token_structure
pInputPinKeyToken; /
 Input PIN key token
/

des_key_token_structure
pOutputPinKeyToken; /
 Output PIN key token
/

KEY_FIELD_HEADER InputKeyHeader; /
 header for key in reply block
/

KEY_FIELD_HEADER OutputKeyHeader; /
 header for key in reply block
/

/
 local variables
/

long ReturnMsg; /
 Return code from function calls
/

 mk_status_var MstrKeyStatus; /
 Master key status
/

mk_selectors MKSelector; /
 Master key selector
/

boolean Authorized; /
 Truth value that the caller is
/

/
 authorized to execute this command
/

unsigned char OutputPinBlockffl 8 “; /
 Output PIN block
/

int i; /
 Iteration variable
/

DES_TOKEN_CHECK ErrorMessage; /
 error message from DES token check
/

D-2 UDX Reference and Guide

 16-NOV-01, 14:51

UCHAR MKVPffl MKVP_LENGTH “; /
 master key verification pattern
/

ULONG TVV; /
 calculated TVV for output key token
/

/
 Rule array processing variables
/

int RuleValueffl 2 “; /
 Output for rule_check
/

USHORT RuleMapCount = 5; /
 Number of entries in the rule map
/

static RULE_MAP RuleMapffl 5 “ = { { "KEYW1 ", 1, PIN1_KEYWORD_1W },

{ "KEYW2 ", 1, PIN1_KEYWORD_2W },

{ "KEYW3 ", 1, PIN1_KEYWORD_3W },

{ "KEYO1 ", 2, PIN1_KEYWORD_1O },

{ "KEYO2 ", 2, PIN1_KEYWORD_2O } } ;

 PIN1_RULE1 Rule1; /
 Rule 1 specified
/

 PIN1_RULE2 Rule2; /
 Rule 2 specified
/

 /

/

/
 Begin executable code.
/

 /

/

if (RequestId == F) /
 Do nothing statement to get rid of compiler
/

ReturnMsg = F; /
 warning messages because RequestId is not used.
/

 /

/

/
 Copy input CPRB to the output area.
/

 /

/

memcpy(pCprbOut, pCprbIn, pCprbIn->CPRB_length);

 /

/

/
 Initialize the CPRB request/reply parameter pointers and then
/

/
 set my local pointers to the request and reply parameter blocks.
/

 /

/

InitCprbParmPointers(pCprbIn, pCprbOut);

pReqBlk = pCprbIn->req_parm_block;

pRepBlk = pCprbOut->reply_parm_block;

 /

/

/
 Set the reply subfunction code early, because the Cas_proc_retc
/

/
 routine needs it set for negative return codes.
/

 /

/

pRepBlk->subfunction_code = pReqBlk->subfunction_code ;

 /

/

/
 Check that the caller is authorized to use this domain.
/

/
 Set the domain in the master key selector.
/

 /

/

if (! dmDomainCheck(pCprbIn))

 {

Cas_proc_retc(pCprbOut, DOMAIN_MANAGER_ERROR);

 return;

 }

 /

/

/
 Initialize the master key selector.
/

 /

/

MKSelector.mk_set = pCprbIn->Domain;

MKSelector.type_mks = SYM_MK;

 /

/

/
 Make sure this service is authorized before we go any further
/

 /

/

 CHECK_ACCESS_AUTH(pCprbIn,

 pCprbOut,

 roleID,

 UDX_COMMAND_PIN1,

 &Authorized);

if (!Authorized)

 {

Cas_proc_retc (pCprbOut, CP_NOT_AUTH) ;

 return ;

 }

/

/

 Appendix D. UDX Sample Code - Coprocessor Piece D-3

 16-NOV-01, 14:51

 /

/

/
 Make sure the current master key is valid before we go any further.
/

 /

/

ReturnMsg = mkmGetMasterKeyStatus (MKSelector, &MstrKeyStatus);

switch (ReturnMsg)

 {

case MK_NO_ERROR :

if ((MstrKeyStatus & mks_CMK_VALID) != mks_CMK_VALID)

 {

 Cas_proc_retc(pCprbOut, MASTER_KEY_ERROR);

 return ;

 }

 break ;

case MK_SRDI_OPEN_ERROR :

Cas_proc_retc (pCprbOut, FT_MK_SRDI_OPENERR) ;

 return ;

 break ;

 default :

 Cas_proc_retc(pCprbOut, MASTER_KEY_ERROR);

 return ;

 }

 /

/

/
 Perform consistency check on the request parameter block
/

 /

/

if (parm_block_valid(pCprbIn, SEL_REQ_BLK) == false)

 {

Cas_proc_retc (pCprbOut, RT_CONSISTENCY_ERROR) ;

 return ;

 }

 /

/

/
 Perform consistency check on the rule array - for this verb, the
/

/
 rule array may have zero, one or two values.
/

 /

/

switch(pReqBlk->rule_array_length)

 {

case RA_COUNT_ZERO: /
 use default values
/

Rule1 = PIN1_KEYWORD_1W; /
 default
/

Rule2 = PIN1_KEYWORD_2O; /
 default
/

 break;

case RA_COUNT_ONE :

case RA_COUNT_TWO :

RuleValueffl F “ = INVALID_RULE; /
 rule_check requires this initialization.
/

RuleValueffl 1 “ = INVALID_RULE;

if (rule_check ((RULE_BLOCK
) &pReqBlk->rule_array_length,

 RuleMapCount,

 &RuleMapfflF“,

(int
) &RuleValue,

&ReturnMsg) == false)

 {

Cas_proc_retc (pCprbOut, ReturnMsg) ;

 return ;

 }

if (RuleValueffl F “ == INVALID_RULE)

Rule1 = PIN1_KEYWORD_1W; /
 default
/

 else

Rule1 = (PIN1_RULE1) RuleValueffl F “;

if (RuleValueffl 1 “ == INVALID_RULE)

Rule2 = PIN1_KEYWORD_2O; /
 default
/

 else

Rule2 = (PIN1_RULE2) RuleValueffl 1 “;

 break;

default: /
 count not valid
/

Cas_proc_retc(pCprbOut, E_RULE_ARRAY_CNT);

D-4 UDX Reference and Guide

 16-NOV-01, 14:51

 return ;

 }

 /

/

/
 Perform consistency check on the verb unique data. Parse the PIN block
/

/
 and extra data block from the VUD.
/

 /

/

pVUDBlock = (verb_unique_data_structure
)

((UCHAR
)&pReqBlk->rule_array_length +

 pReqBlk->rule_array_length);

if (pVUDBlock->verb_unique_data_length != EXPECTED_VUD_LENGTH)

 {

Cas_proc_retc(pCprbOut, RT_CONSISTENCY_ERROR);

 return;

 }

pPinBlock = (unsigned char
) &pVUDBlock->verb_unique_data;

pExtraData = (unsigned char
) pPinBlock + PIN_BLOCK_SIZE;

 /

/

/
 Parse the PIN Encrypting Keys from the key block.
/

 /

/

if (! find_first_key_block(pCprbIn, &pThiskey, SEL_REQ_BLK))

 {

Cas_proc_retc(pCprbOut, RT_CONSISTENCY_ERROR);

 return;

 }

pToken = (generic_key_block_structure
) pThiskey;

pInputPinKeyToken = (des_key_token_structure
) ((UCHAR
) &pToken->label_or_token);

 /

/

 /
 Get the output PIN encrypting key token from the request block.
/

 /

/

if (! find_next_key_block(pCprbIn, pThiskey, &pNextkey, SEL_REQ_BLK))

 {

Cas_proc_retc(pCprbOut, RT_CONSISTENCY_ERROR);

 return;

 }

pToken = (generic_key_block_structure
) pNextkey;

pOutputPinKeyToken = (des_key_token_structure
) ((UCHAR
) &pToken->label_or_token);

 /

/

/
 Check the input PIN Encrypting Key.
/

 /

/

if (! cas_des_key_token_check(pInputPinKeyToken, &ErrorMessage))

switch(ErrorMessage)

 {

case DES_TOKEN_CHECK_VERSION :

Cas_proc_retc(pCprbOut, E_INV_TKNVER);

 return;

 break;

case DES_TOKEN_CHECK_TOKENFLAG :

Cas_proc_retc(pCprbOut, E_KEK_ID_FORM);

 return;

 break;

 default :

Cas_proc_retc(pCprbOut, RT_TKN_UNUSEABLE);

 return;

} /
 select on error message
/

if (cas_key_tokentvv_check(pInputPinKeyToken) == false)

 {

Cas_proc_retc(pCprbOut, E_INTRN_TOKEN_TVV);

 return;

 }

 Appendix D. UDX Sample Code - Coprocessor Piece D-5

 16-NOV-01, 14:51

 /

/

/
 Check the output PIN Encrypting Key if it's not a null token.
/

 /

/

if (pOutputPinKeyToken->tokenFlag != EMPTY_TOKEN_FLAG)

 {

if (! cas_des_key_token_check(pOutputPinKeyToken, &ErrorMessage))

switch(ErrorMessage)

 {

case DES_TOKEN_CHECK_VERSION :

Cas_proc_retc(pCprbOut, E_INV_TKNVER);

 return;

 break;

case DES_TOKEN_CHECK_TOKENFLAG :

Cas_proc_retc(pCprbOut, E_KEK_ID_FORM);

 return;

 break;

 default :

Cas_proc_retc(pCprbOut, RT_TKN_UNUSEABLE);

 return;

} /
 select on error message
/

if (cas_key_tokentvv_check(pOutputPinKeyToken) == false)

 {

Cas_proc_retc(pCprbOut, E_INTRN_TOKEN_TVV);

 return;

 }

 }

 /

/

/
 Control vector checking.
/

 /

/

/
 Perform any necessary checking of the control vector.
/

/
 Add other checks as appropriate.
/

/
 Check that the input PIN Key is of the input PIN encrypting class
/

if (pInputPinKeyToken->cvBaseffl1“ != PINENCI)

 {

Cas_proc_retc(pCprbOut, RT_CV_CONFLICT);

 return;

 }

/
 If Rule2 is PIN1_KEYWORD_2O, check the output PIN Key
/

if (Rule2 == PIN1_KEYWORD_2O)

 {

if (pOutputPinKeyToken->cvBaseffl1“ != PINENCO)

 {

Cas_proc_retc(pCprbOut, RT_CV_CONFLICT);

 return;

 }

 }

 /

/

/
 Determine which master key to use to decipher the input PIN key.
/

 /

/

switch(cas_master_key_check(pInputPinKeyToken))

 {

case OLD :

 /

/

/
 The key token's MKVP matches the old master key's MKVP. Generate a
/

/
 warning reason code that a key is encrypted under the old master key.
/

 /

/

MKSelector.mk_register = old_mk;

Cas_proc_retc(pCprbOut, RT_OMK_TOKEN_USED);

 break;

D-6 UDX Reference and Guide

 16-NOV-01, 14:51

case CURRENT :

 /

/

/
 The key token's MKVP matches the current master key's MKVP.
/

 /

/

MKSelector.mk_register = current_mk;

 break;

case OUT_OF_DATE :

 default :

 /

/

/
 The key token's MKVP doesn't match current or old master key's
/

/
 MKVP. We don't know what to do with the key token.
/

 /

/

Cas_proc_retc(pCprbOut, RT_KEY_INV_MKVN);

 return;

 break;

 }

 /

/

/
 Decipher the input PIN key under the corresponding master key.
/

 /

/

ReturnMsg = triple_decrypt_under_master_key_with_CV(&MKSelector,

 &(pInputPinKeyToken->cvBase),

 &(pInputPinKeyToken->keyLeftfflF“),

 &(pInputPinKeyToken->keyLeftfflF“));

if (ReturnMsg != mk_NO_ERROR)

 {

Cas_proc_retc(pCprbOut, ReturnMsg);

 return;

 }

ReturnMsg = triple_decrypt_under_master_key_with_CV(&MKSelector,

 &(pInputPinKeyToken->cvExten),

 &(pInputPinKeyToken->keyRightfflF“),

 &(pInputPinKeyToken->keyRightfflF“));

if (ReturnMsg != mk_NO_ERROR)

 {

Cas_proc_retc(pCprbOut, ReturnMsg);

 return;

 }

 /

/

/
 Generate warning return code if the PIN key does not have odd parity.
/

 /

/

for (i = F; i < SIZE_OF_DES_KEY; i++)

 {

if ((cas_parity_odd(pInputPinKeyToken->keyLeftffli“) == FALSE) ||

(cas_parity_odd(pInputPinKeyToken->keyRightffli“) == FALSE))

 {

Cas_proc_retc(pCprbOut, CP_KDATA_NOTODD);

 break;

 }

 }

 /

/

/
 If the output PIN key is used, determine which master key to use to
/

/
 decipher the output PIN key.
/

 /

/

if (Rule2 == PIN1_KEYWORD_2O)

 {

switch(cas_master_key_check(pOutputPinKeyToken))

 {

case OLD :

 /

/

/
 The key token's MKVP matches the old master key's MKVP. Generate a
/

/
 warning reason code that a key is encrypted under the old master
/

 /
 key.
/

 /

/

MKSelector.mk_register = old_mk;

 Appendix D. UDX Sample Code - Coprocessor Piece D-7

 16-NOV-01, 14:51

Cas_proc_retc(pCprbOut, RT_OMK_TOKEN_USED);

 break;

case CURRENT :

 /

/

/
 The key token's MKVP matches the current master key's MKVP.
/

 /

/

MKSelector.mk_register = current_mk;

 break;

case OUT_OF_DATE :

 default :

 /

/

/
 The key token's MKVP doesn't match current or old master key's
/

/
 MKVP. We don't know what to do with the key token.
/

 /

/

Cas_proc_retc(pCprbOut, RT_KEY_INV_MKVN);

 return;

 break;

 }

 /

/

/
 Decipher the input PIN key under the corresponding master key.
/

 /

/

ReturnMsg = triple_decrypt_under_master_key_with_CV(&MKSelector,

 &(pOutputPinKeyToken->cvBase),

 &(pOutputPinKeyToken->keyLeftfflF“),

 &(pOutputPinKeyToken->keyLeftfflF“));

if (ReturnMsg != mk_NO_ERROR)

 {

Cas_proc_retc(pCprbOut, ReturnMsg);

 return;

 }

ReturnMsg = triple_decrypt_under_master_key_with_CV(&MKSelector,

 &(pOutputPinKeyToken->cvExten),

 &(pOutputPinKeyToken->keyRightfflF“),

 &(pOutputPinKeyToken->keyRightfflF“));

if (ReturnMsg != mk_NO_ERROR)

 {

Cas_proc_retc(pCprbOut, ReturnMsg);

 return;

 }

 /

/

/
 Generate warning return code if the PIN key does not have odd parity.
/

 /

/

for (i = F; i < SIZE_OF_DES_KEY; i++)

 {

if ((cas_parity_odd(pOutputPinKeyToken->keyLeftffli“) == FALSE) ||

(cas_parity_odd(pOutputPinKeyToken->keyRightffli“) == FALSE))

 {

Cas_proc_retc(pCprbOut, CP_KDATA_NOTODD);

 break;

 }

 }

} /
 Rule2 is keyword 2o
/

 /

/

/
 Processing required for this verb based on inputs.
/

 /

/

/
 ...
/

for (i = F; i < 8; i++)

 {

if(Rule1 == PIN1_KEYWORD_1W)

OutputPinBlockffl i “ = pExtraDataffl i “ ¬ pPinBlockffl i “;

 else

OutputPinBlockffl i “ = pExtraDataffl i “ & pPinBlockffl i “;

 }

D-8 UDX Reference and Guide

 16-NOV-01, 14:51

 /

/

/
 Reencipher the key token if the token was enciphered under the old
/

/
 master key.
/

 /

/

if (pCprbOut->secy_return_code == RT_OMK_TOKEN_USED)

 {

if (cas_master_key_check(pInputPinKeyToken) == OLD)

 {

MKSelector.mk_register = current_mk;

 /

/

/
 Encipher the input PIN key under the new master key.
/

 /

/

ReturnMsg = triple_encrypt_under_master_key_with_CV(&MKSelector,

 &(pInputPinKeyToken->cvBase),

 &(pInputPinKeyToken->keyLeftfflF“),

 &(pInputPinKeyToken->keyLeftfflF“));

if (ReturnMsg != mk_NO_ERROR)

 {

Cas_proc_retc(pCprbOut, ReturnMsg);

 return;

 }

ReturnMsg = triple_encrypt_under_master_key_with_CV(&MKSelector,

 &(pInputPinKeyToken->cvExten),

 &(pInputPinKeyToken->keyRightfflF“),

 &(pInputPinKeyToken->keyRightfflF“));

if (ReturnMsg != mk_NO_ERROR)

 {

Cas_proc_retc(pCprbOut, ReturnMsg);

 return;

 }

 /

/

/
 Complete the target key token.
/

 /

/

/
 Get the MKVP of the current master key and put it in the token.
/

 /

/

CasCurrentMkvp(&MKSelector, (UCHAR
) &MKVP);

 memcpy(pInputPinKeyToken->mkvp,

 &MKVP,

sizeof(pInputPinKeyToken->mkvp));

 /

/

/
 Calculate the TVV and copy it to the token.
/

 /

/

pka96_tvvgen(DES_TOKEN_LENGTH, (UCHAR
) pInputPinKeyToken, &TVV);

memrev((UCHAR
) &(pInputPinKeyToken->tvv), (UCHAR
) &TVV, TVV_LENGTH);

} /
 input PIN key enciphered under the old master key
/

if (Rule2 == PIN1_KEYWORD_2O)

 {

if (cas_master_key_check(pOutputPinKeyToken) == OLD)

 {

MKSelector.mk_register = current_mk;

 /

/

/
 Encipher the input PIN key under the new master key.
/

 /

/

ReturnMsg = triple_encrypt_under_master_key_with_CV(&MKSelector,

 &(pOutputPinKeyToken->cvBase),

 &(pOutputPinKeyToken->keyLeftfflF“),

 &(pOutputPinKeyToken->keyLeftfflF“));

if (ReturnMsg != mk_NO_ERROR)

 {

Cas_proc_retc(pCprbOut, ReturnMsg);

 return;

 Appendix D. UDX Sample Code - Coprocessor Piece D-9

 16-NOV-01, 14:51

 }

ReturnMsg = triple_encrypt_under_master_key_with_CV(&MKSelector,

 &(pOutputPinKeyToken->cvExten),

 &(pOutputPinKeyToken->keyRightfflF“),

 &(pOutputPinKeyToken->keyRightfflF“));

if (ReturnMsg != mk_NO_ERROR)

 {

Cas_proc_retc(pCprbOut, ReturnMsg);

 return;

 }

 /

/

/
 Complete the target key token.
/

 /

/

/
 Get the MKVP of the current master key and put it in the token.
/

 /

/

CasCurrentMkvp(&MKSelector, (UCHAR
) &MKVP);

 memcpy(pOutputPinKeyToken->mkvp,

 &MKVP,

sizeof(pOutputPinKeyToken->mkvp));

 /

/

/
 Calculate the TVV and copy it to the token.
/

 /

/

pka96_tvvgen(DES_TOKEN_LENGTH, (UCHAR
) pOutputPinKeyToken, &TVV);

memrev((UCHAR
) &(pOutputPinKeyToken->tvv),

(UCHAR
) &TVV,

 TVV_LENGTH);

} /
 output PIN key enciphered under the old master key
/

 }

 }

 /

/

/
 Build the reply CPRB.
/

 /
 --
/

 /
 |Sub- |Rule |Rule |Verb |Verb |Key |Key Fields|
/

/
 |Function|Array |Array |Data |Unique |Block | |
/

/
 |Code |Block |Elements |Block |Data |Length| |
/

/
 | |Length| |Length| | | |
/

 /
 | ---
/

/
 | | (Length = X) | (Length = Y) | (Length = Z) |
/

 /
 | ---
/

 /
 |F |2 |4 |4+X |6+X |6+X+Y |8+X+Y |8+X+Y+Z
/

 /
 --
/

/
 For UDX zudxPIN1, the output PIN block and the key tokens are returned
/

/
 to the caller.
/

 /

/

pCprbOut->reply_parm_block = pRepBlk;

pReplyBlockPtr = (UCHAR
) pRepBlk;

ReplyBlockLength = 4;

 /

/

/
 Add the rule array which is empty.
/

 /

/

pRepBlk->rule_array_length = NO_RULEARRAY;

 /

/

/
 Add the output PIN block to the VUD.
/

 /

/

ReplyBlockLength += BuildParmBlock(pReplyBlockPtr + ReplyBlockLength, 1,

(USHORT) PIN_BLOCK_SIZE, &OutputPinBlock);

 /

/

/
 Add the key block.
/

 /

/

InputKeyHeader.Length = KEY_HDR_LEN + DES_TOKEN_LENGTH;

InputKeyHeader.Flags = DES96_TYPE | ACTION_NOOP;

OutputKeyHeader.Length = KEY_HDR_LEN + DES_TOKEN_LENGTH;

OutputKeyHeader.Flags = DES96_TYPE | ACTION_NOOP;

D-10 UDX Reference and Guide

 16-NOV-01, 14:51

ReplyBlockLength += BuildParmBlock(

pReplyBlockPtr + ReplyBlockLength, 4,

 KEY_HDR_LEN, &InputKeyHeader,

(USHORT) DES_TOKEN_LENGTH, pInputPinKeyToken,

 KEY_HDR_LEN, &OutputKeyHeader,

(USHORT) DES_TOKEN_LENGTH, pOutputPinKeyToken);

 /

/

/
 Enough room in the CRPB?
/

 /

/

pCprbOut->replied_parm_block_length = ReplyBlockLength;

if (pCprbOut->reply_parm_block_length < pCprbOut->replied_parm_block_length)

 {

Cas_proc_retc(pCprbOut, REPLY_TOO_LONG);

 return;

 }

 /

/

/
 Return to the caller.
/

 /

/

Cas_proc_retc (pCprbOut, S_OK) ;

 return;

} /
 end-of zudxPIN1()
/

 Appendix D. UDX Sample Code - Coprocessor Piece D-11

 16-NOV-01, 14:51

D-12 UDX Reference and Guide

 16-NOV-01, 14:51

Appendix E. UDX Sample Code - Workstation Host - Test
Code

This appendix contains a listing of the sample file sxt_samp.c. This file is a
skeleton for the design of the workstation host piece of a CCA extension for use in
the initial testing of the coprocessor piece of the UDX.

/
--
/

/
 Module Name: SXT_SAMP.C
/

/

/

/
 Sample callable service for UDX - PIN Block Processing Service
/

/

/

/
 (C) Copyright IBM Corporation, 2FF1
/

/
--
/

/
 Function: This file contains the sample SAPI CCA API extension verb
/

/
 zPIN1. It illustrates interfacing with the application and
/

/
 shows how to send the request to the cryptographic adapter
/

/
 card. This program will process an encrypted PIN block (assume
/

/
 a proprietary block form) and return the block encrypted under
/

/
 the original or a second key.
/

/

/

/
 Module Type:
/

/
 Attributes: Serial usable
/

/
 Language: IBM Visual Age C++ Version 3.FF
/

/

/

/
 Entry Points:
/

/
 zPIN1
/

/

/

/
 Inputs: Rule Array Count Number of keywords passed in rule array
/

/

/

/
 Rule Array Keywords (F, 1 or 2 keywords may be passed.
/

/

/

/
 Input Pin Key Id Input PIN encrypting key identifier. The
/

/
 input PIN block is enciphered under this key.
/

/
 The identifier is a token.
/

/

/

/
 Input Pin Block Enciphered PIN block to be processed.
/

/

/

/
 Output Pin Key Id Output PIN encrypting key identifier or a
/

/
 null token. The identifier is a token. If
/

/
 the key is not used, a null token is supplied
/

/

/

/
 Extra Data Extra data to be used in processing the PIN
/

/
 block (always 8 bytes).
/

/

/

/
 Processing: 1. Build the request parameter block and request CRPB.
/

/
 2. Submit the request.
/

/
 3. Process the reply CPRB and parameter block.
/

/
 4. Return to caller.
/

/

/

/
 Outputs: Return Code Return code from processing
/

/

/

/
 Reason Code Reason code from processing
/

/

/

/
 Output Pin Block Processed enciphered PIN block
/

/

/

/
 Input Pin Key Id Reenciphered token if the key was
/

/
 enciphered under the old master key.
/

/

/

/
 Output Pin Key Id Reenciphered token if the key was
/

/
 enciphered under the old master key.
/

/

/

/
 Change History
/

/

/

/
 Date Programmer Description
/

/
 -------- ---------- -----------
/

/
 F3/14/F1 kbk Created
/

 Appendix E. UDX Sample Code - Workstation Host - Test Code E-1

 16-NOV-01, 14:51

/

/

/
--
/

/
--
/

/
 Define compiler variable so entry points are not redefined.
/

/
--
/

#define CSUC_32BIT_SOURCE

#include "csunincl.h" /
 Callable services prototypes
/

/
--
/

/
 Includes and local defines.
/

/
--
/

#include <string.h>

#include <stdlib.h>

#include "cmncryt2.h"

#include "cmnerrcd.h"

#include "safhead1.h"

#include "safcextn.h"

#define EXTRA_DATA_LENGTH 8

#define PIN_BLOCK_LENGTH 8

#define ZUDX_CODE Fx5258

/
--
/

/
 FUNCTION : zPIN1
/

/
--
/

void SECURITYAPI zPIN1(

 long
pReturnCode,

 long
pReasonCode,

 long
pRuleArrayCount,

 UCHAR
pRuleArray,

 UCHAR
pInputPINKeyId,

 UCHAR
pInputPINBlock,

 UCHAR
pExtraData,

 UCHAR
pOutputPINKeyId,

UCHAR
pOutputPINBlock)

{

CPRB_ptr pCprb; /
 CPRB pointer
/

REQUEST_REPLY_BUF
pRequestReplyBuffer; /
 buffer area pointer for request
/

/
 and reply CPRB/parameter areas.
/

UCHAR
 pRequestParmBlock; /
 request parm blk pointer
/

USHORT rqpb_len; /
 request parm buffer length
/

KEY_FIELD_HEADER key_hdr_input; /
 header for key parm
/

KEY_FIELD_HEADER key_hdr_output; /
 header for key parm
/

long msg; /
 message of SAPI routines
/

UCHAR
 pReturnVUD; /
 pointer to returned PIN block
/

 /

/

/
 Check if return code or reason code is NULL.
/

 /

/

if (pReturnCode == NULL]] pReasonCode == NULL)

return; /
 return right away
/

 /

/

/
 Check if pointers are NULL.
/

 /

/

if (pInputPINBlock == NULL]] pInputPINKeyId == NULL]]

pExtraData == NULL]] pOutputPINKeyId == NULL)

 {

CSUC_PROCRETC(pReturnCode, pReasonCode, E_NULL_PTR);

return; /
 return error if any of
/

} /
 the conditions are met
/

 /

/

/
 Set return code and reason code to zero.
/

 /

/

pReturnCode = F;

pReasonCode = F;

 /

/

/
 Allocate space for a working area.
/

E-2 UDX Reference and Guide

 16-NOV-01, 14:51

 /

/

pRequestReplyBuffer = malloc(sizeof(REQUEST_REPLY_BUF));

if (pRequestReplyBuffer == NULL)

 {

CSUC_PROCRETC(pReturnCode, pReasonCode, E_ALLOCATE_MEM);

 return;

 }

pCprb = (CPRB_ptr) &(pRequestReplyBuffer->request_buf[F]);

pRequestParmBlock = &(pRequestReplyBuffer->request_buf[F])

+ sizeof(CPRB_structure);

 /

/

/
 Request parameter block
/

 /

/

 /
 +---------+------+-------//-+------+------//-+------+-----//--+
/

 /
]Sub-]Rule]Rule]Verb Unique]Key Block]
/

/
]Function]Array]Array]Data Fields]Fields]
/

/
]Code]Block]Elements]]]]]
/

 /
]]Length]]Length] Data]Length] Fields]
/

/
]]------+-------//-+------+------//-+------+-----//--+
/

/
]] (Length = X)] (Length = Y)] (Length = Z)]
/

/
]]------+-------//-+------+------//-+------+-----//--+
/

 /
]F]2]4]2+X]4+X]2+X+Y]4+X+Y]
/

 /
 +---------+------+-------//-+------+------//-+------+-----//--+
/

 /

/

/
 Part 1 of 4. 2-byte subfunction code
/

 /

/

((USHORT
)pRequestParmBlock) = htoas(ZUDX_CODE);

rqpb_len = 2;

 /

/

/
 Part 2 of 4. Rule array block
/

 /

/

if ((
pRuleArrayCount < RAC_MIN)]]

(
pRuleArrayCount > RAC_MAX))

 {

free(pRequestReplyBuffer);

CSUC_PROCRETC(pReturnCode, pReasonCode, E_RULE_ARRAY_CNT);

 return;

 }

 else

 {

rqpb_len += BuildParmBlock(pRequestParmBlock + rqpb_len, 1,

(USHORT) (8

pRuleArrayCount), pRuleArray);

 }

 /

/

/
 Part 3 of 4. Verb-unique data block: Input PIN block and extra data
/

 /

/

rqpb_len += BuildParmBlock(pRequestParmBlock + rqpb_len, 2,

 PIN_BLOCK_LENGTH, pInputPINBlock,

EXTRA_DATA_LENGTH, pExtraData);

 /

/

/
 Part 4 of 4. Key block
/

/
 The keys are in this order:
/

/
 Input PIN Key Id (token)
/

/
 Output PIN Key Id (token)
/

 /

/

/
 Input PIN Key Id
/

key_hdr_input.Length = htoas(KEY_HDR_LEN + DES_TOKEN_LENGTH);

key_hdr_input.Flags = htoas(DES96_TYPE] ACTION_NOOP);

/
 Output PIN Key Id
/

key_hdr_output.Length = htoas(KEY_HDR_LEN + DES_TOKEN_LENGTH);

key_hdr_output.Flags = htoas(DES96_TYPE] ACTION_NOOP);

 /

/

/
 Build the key block.
/

 /

/

rqpb_len += BuildParmBlock(pRequestParmBlock + rqpb_len, 4,

 Appendix E. UDX Sample Code - Workstation Host - Test Code E-3

 16-NOV-01, 14:51

 KEY_HDR_LEN, &key_hdr_input,

 (USHORT)DES_TOKEN_LENGTH, pInputPINKeyId,

 KEY_HDR_LEN, &key_hdr_output,

 (USHORT)DES_TOKEN_LENGTH, pOutputPINKeyId);

 /
--
/

/
 build CPRB
/

 /
--
/

 CSUC_BULDCPRB(pCprb,

(UCHAR
) ESSS_FUNCTION_ID_S,

 rqpb_len,

pRequestParmBlock, /
 Request parm. buffer
/

F, (UCHAR
) NULL, /
 Request data buffer
/

sizeof(pRequestReplyBuffer->reply_buf),

pRequestReplyBuffer->reply_buf, /
 Reply parameter buffer
/

F, (UCHAR
) NULL); /
 Reply data buffer
/

 /
--
/

/
 Call Security Server using function CSNC_SP_SCSRFBSS.
/

 /
--
/

CSNC_SP_SCSRFBSS((CPRB_ptr) pCprb, (long
) &msg);

/
 Note: CSUC_PROCRETC returns ERROR if the error code in msg is higher
/

/
 than the error code already in
pReturn_code and
pReason_code.
/

/
 msg is the return code and reason code, concatenated in a single long
/

/
 integer - for example, msg=FFF8FF12 is equivalent to return code 8,
/

/
 reason code 12.
/

if ((msg != S_OK)

&& (CSUC_PROCRETC(pReturnCode, pReasonCode, msg) == ERROR))

 {

free(pRequestReplyBuffer);

 return;

 }

 /
--
/

/
 Process the returned data, which is in the Reply Parameter Block.
/

 /
--
/

/
 Examine the Reply Parameter Block to make sure it is OK. If not,
/

/
 something is wrong in the adapter - it should return valid data.
/

if (! parm_block_valid((CPRB_structure
) pCprb, SEL_REPLY_BLK))

CSUC_PROCRETC(pReturnCode, pReasonCode, CP_DEV_HWERR);

 else

 {

/
 The output PIN block is returned in the VUD block. Since the rule
/

/
 array block is empty, the VUD block is two bytes after the
/

/
 rule array block. This corresponds to the first rule array element.
/

pReturnVUD = &pCprb->reply_parm_block->first_rule_array_element;

memcpy(pOutputPINBlock, pReturnVUD, PIN_BLOCK_LENGTH);

 }

free(pRequestReplyBuffer);

 return;

} /
 end of zPIN1
/

E-4 UDX Reference and Guide

 16-NOV-01, 14:51

Appendix F. Moving a UDX from the Model 1 Card to the
Model 2 Card

Because of the changes in the functionality of CCA, transferring code from a model
1 environment to a model 2 environment may require changes to the UDX code,
particularly in the following segments:

Master Key Manager Changes
For the model 2 PKA token structures, the verification pattern stored in the
operational key is the 16-byte MDC4 hash of the master key. Thus, there are new
master key structures which contain this 16-byte field as well as the 20-byte SHA-1
hash of the older PKA tokens. This has no effect on your UDX code unless you
are building your own master keys. (The functions provided (combine_mk_parts,
load_mk_from_shares, and so on) will take care of this automatically.)

Because of the separate verification pattern, separate master keys are stored for
the PKA keys and the DES keys. The mk_selectors structure has a new field,
type_mks, which may be one of SYM_MK (for symmetric keys), ASYM_MK (for
PKA keys), BOTH_MK (if you are using only one master key set). This structure
must be updated/set if you are using any of the functions in Chapter 6, CCA
Master Key Manager Functions, especially:

 clear_master_keys
 get_mk_verification_pattern
 ede3_triple_decrypt_under_master_key_with_CV
 ede3_triple_encrypt_under_master_key_with_CV
 ede3_triple_decrypt_under_master_key_with_CV
 ede3_triple_encrypt_under_master_key_with_CV
 triple_decrypt_under_master_key
 triple_encrypt_under_master_key
 triple_decrypt_under_master_key_with_CV
 triple_encrypt_under_master_key_with_CV

These functions already used the mk_selectors parameter, so the structure will be
filled improperly unless the code is changed.

All of other master key manager functions except init_master_keys() and
reinit_master_keys() now take the mk_selectors parameter. The functions used in
the old toolkit are still available, however they map to the SYM_MK keyset
automatically. Any calls to these functions should be checked and if necessary,
changed to use the appropriate set of keys. For example, if you are using PKA
keys, you will want to replace any calls to generate_random_master_key() with:

 mk_selector.mk_set=MK_SET_DEFAULT;
mk_selector.mk_register = MK_NEW;
mk_selector.mk_type = ASYM_MK;

 mkmGenerateRandomMK(mk_selector);

The KEY_STORE_MKVP_TOKEN structure, the first structure in the key storage
file, has changed (names only, not the actual byte information.) If you have written
a function which sets up a key storage file which uses the CCA key storage
structures, this will need to be changed.

 Appendix F. Moving a UDX from the Model 1 Card to the Model 2 Card F-1

 16-NOV-01, 14:51

The CPRB structure has changed (again, only in the names of the fields). Some
fields which were included in reserved fields have been added to allow closer
linkage with zSeries functions (domain, and so on). There will be no issues here
as long as you have initialized the CPRB structure to 0x00 before filling, or use the
CSUC_BULDCPRB() function to fill the CPRB structure.

 Makefile Changes
The UDX toolkit for the Model 2 card uses a different set of basic library functions.
When building the card-side portion of the UDX, it is important to link clib.lib from
the ...\UDXTK\002\lib\nt\msvc or ...\UDXTK\002\lib\zSeries\msvc, or
...\UDXTK\002\lib\nt\vac or ...\UDXTK\002\lib\zSeries\vac directory, rather than
scctk\002\lib\scc\nt\msvcmasm or scctk\002\lib\scc\nt\vacppmsm. Adjust your
makefiles accordingly. The other scctk libraries may be included from the scctk
library directories, as they were for the Model 1.

F-2 UDX Reference and Guide

 16-NOV-01, 14:51

 Appendix G. Reserved Values

Certain values have been reserved for the use of UDX developers. IBM will not use
these values in future upgrades to the CCA, so there will be no overlap between a
UDX using these values and an upgrade of the toolkit. The specific values are as
follows:

For completion codes: The values between 0x5000 and 0x5FFF have been
reserved for UDX writers.

For access control points: For zSeries, the values between 0x8000 and
0xEFFF may be used. (Values between 0xF000 and 0xFFFF will be used on
zSeries by IBM UDX writers.)

For subfunction codes: The values between “XA” (0x5841) to “XZ” (0x585A),
“YA” (0x5941) to “YZ” (0x595A), “X0” (0x5830) to “X9” (0x5839), and “Y0”
(0x5930), to “Y9” (0x5939) are reserved for UDX writers. The values between
“WA” (0x5741) to “WZ” (0x575A) and “W0” (0x5730) to “W9” (0x5739) are also
reserved for UDX writers. On the zSeries server, these values (beginning with
“W”) will be used by IBM UDX writers. On other platforms, they are available
for all UDX writers.

For DES control vectors: Bits 4, 5, and 61 will not affect or be affected by the
import or export of a key. Bits 4 and 5 will be ignored by the CCA at all times.
Bit 61 will prevent a key from use in any standard CCA verb, thus reserving a
key for use only in a UDX function.

 Appendix G. Reserved Values G-1

 16-NOV-01, 14:51

G-2 UDX Reference and Guide

 16-NOV-01, 14:51

 Appendix H. Data Structures

This appendix identifies useful data structures from the toolkit header files.

Structures Used in Communications Between NT Host and
Coprocessor

These structures may be used on the coprocessor or on the NT host machine. If
you are writing code for the zSeries 4758, the host side instructions in this section
will be useful only for building the NT test DLL.

A REQUEST_REPLY_BUF structure should be declared in the host function to allocate
the data storage for the CPRB Structures and the request and reply buffers. This
structure has two fields, both of 5120 bytes (BLK_LEN_MAX).

REQUEST_REPLY_BUF

The REQUEST_REPLY_BUF structure is filled with the following structures (hence they
are declared as pointers into the REQUEST_REPLY_BUF structure).

First, a CPRB structure:

Note that the (request) CPRB structure is filled (as completely as it needs to be) by
calling CSUC_BULDCPRB() with the appropriate lengths and pointers from within the
host function. Fields not filled by this function will be filled by the Security Server
when the coprocessor is called. Within the coprocessor code, the output CPRB
fields are filled by copying the values from the input CPRB. Changing the values of
these fields is not recommended, except for the replied_parm_block_length and
replied_data_block_length fields in the coprocessor code.

Changing the values in a “FILLED AUTOMATICALLY” field will have one of two
effects:

1. SECY will overwrite the changed value with the correct value.
2. The call will fail because of an invalid value.

Since the CPRB_structure is used exclusively as a pointer into the
REQUEST_REPLY_BUF structure, the type CPRB_ptr has been typedefed as a pointer to
the CPRB_structure.

CPRB_structure, or *CPRB_ptr

Field name Size of field Purpose

request_buf 5120 bytes Holds the CPRB structure and the request
block.

reply_buf 5120 bytes Holds the (return) CPRB structure and the
reply block.

Field name Size/Type Purpose

CPRB_length USHORT This field should contain D'112'
(little endian).

 Appendix H. Data Structures H-1

 16-NOV-01, 14:51

Field name Size/Type Purpose

cprb_version_id 1 byte Flag indicating the version of this
structure.

MAC_content_flags 1 byte Flags for the message
authentication function. FILLED
AUTOMATICALLY

SRPI_return_code unsigned long Return code from SECY.

SRPI_verb_type 1 byte This field should have the value
X'1' . FILLED AUTOMATICALLY

reserved_1 1 byte This field should contain X'0'.

function_id 2 bytes This field should contain 'T2'

S390Checkpoint 1 byte FILLED AUTOMATICALLY.

reserved_2 1 byte This field should contain X'0'.

req_parm_block_length unsigned short Request parameter block length
(little-endian).

req_parm_block pointer (4
bytes)

Address of the request parameter
block.

req_data_block_length unsigned long Request data block length
(little-endian)

req_data_block_addr pointer (4
bytes)

Address of request data block.

reply_parm_block_length unsigned short Reply parameter block length
(little-endian)

pad_001 unsigned short Number of bytes to pad to ensure
proper alignment. FILLED
AUTOMATICALLY. (little-endian)

reply_parm_block pointer (4
bytes)

Address of reply parameter block.

reply_data_block_length unsigned long Reply data block length
(little-endian)

reply_data_block pointer (4
bytes)

Address of reply data block

secy_return_code unsigned long This is the
returnCode]]reasonCode
combination.

replied_parm_block_length unsigned short The length of the reply data
returned from the coprocessor in
the reply parameter block.

MAC_data_length unsigned short The length of the data to be
authenticated. FILLED
AUTOMATICALLY. (little-endian)

replied_data_block_length unsigned long The length of the reply data
returned from the coprocessor in
the reply DATA block.
(little-endian)

requestor_id unsigned short ID of requestor FILLED BY
ROUTER.

resource_origin 8 bytes FILLED AUTOMATICALLY.

H-2 UDX Reference and Guide

 16-NOV-01, 14:51

On the host side, you will only need one CPRB_ptr, since the request CPRB you
build will be replaced by the reply CPRB from the coprocessor during the call to
CSNC_SP_SCSRFBSS(). On the coprocessor, two of the parameters for a command
function are pCprbIn, and pCprbOut. Therefore, you do not need to declare either a
REQUEST_REPLY_BUF or a CPRB_ptr.

Following the CPRB_structure in the buffer is a request block:

The ESSS_request_block_structure defines the structure for the request or reply
block. Since request and reply blocks are variable length, this structure is used
purely as a pointer into the request_buf or reply_buf field of the
REQUEST_REPLY_BUF structure. RBFPTR is typedefed as a pointer to an
ESSS_request_block_structure, and thus is more commonly used.

On the host side, you may want to declare an RBFPTR for the request buffer. On the
coprocessor code, you may want to declare an RBFPTR for both the request buffer
and the reply buffer.

ESSS_request_block_structure, or *RBFPTR

Field name Size/Type Purpose

MAC_value 4 bytes FILLED AUTOMATICALLY.

logon_identifier 8 bytes FILLED AUTOMATICALLY.

Domain unsigned short Usage/control domain. FILLED
AUTOMATICALLY.

UsageDomainMask 4 bytes Usage domain mask. FILLED
AUTOMATICALLY.

ControlDomainMask 4 bytes Control domain mask. FILLED
AUTOMATICALLY.

S390EnforcementMask 4 bytes S390 Enforcement mask. FILLED
AUTOMATICALLY.

reserved_for_requestors 6 bytes Reserved for requestors. FILLED
AUTOMATICALLY.

secy_name_length unsigned short Length of the security server
name (8 bytes) FILLED
AUTOMATICALLY.

server_name 8 bytes Security server name
(“SECY ”)FILLED
AUTOMATICALLY.

Field name Size of field Purpose

subfunction_code unsigned short Holds the two-byte subfunction
code in little-endian format.

rule_array_length unsigned short Total length of rule array and this
field, in little-endian format.

first_rule_array_element 1 byte First character of first rule array
element, if rule_array_length is
greater than 2. Otherwise, this
will be the first byte of the verb
unique data length field.

 Appendix H. Data Structures H-3

 16-NOV-01, 14:51

Filling the rule array is easy using the BuildParmBlock() function:

 BuildParmBlock (ptr1,

 1,

SIZE_OF_RULE
 (
pRuleCount), pRuleArray);

To parse a rule array with the rule_check() function, two more structures are
used. A pointer to a RULE_BLOCK is passed to the function to be parsed. Note that
the rule array format within the ESSS_request_block structure is, in fact, a
RULE_BLOCK:

RULE_BLOCK

The other structure required is a RULE_MAP structure. This maps 8-byte strings into
a value array, assigning a unique value to each string, and 1 or more strings to
each position in the array, depending on mutual exclusion issues.

RULE_MAP

To check the values in the rule array, use the rule_check() function:

 rule_check((RULE_BLOCK
)&pReq->rule_array_length,

 sizeof(aRuleMap)/sizeof(RULE_MAP),

 aRuleMap,

 aRuleValue,

 &returnMessage);

Immediately following the rule array in the REQUEST_REPLY_BUF is the verb unique
data. Two types of structures are supplied for working with verb unique data, the
VUD_DATA_RECORD, which is a length/tag/data structure (the data preceded by a
DATA_RECORD_HEADER structure), and the verb_unique_data_structure, which is a
length/data structure.

DATA_RECORD_HEADER

Field name Size/Type Purpose

length unsigned short Total length of rule block. (little-endian)

data 80 bytes Up to 10 (8-byte) rules.

Field name Size/Type Purpose

keyword 9 bytes (8 chars
plus null
terminator)

String to be matched in rule array.

order_no 1 byte Group number: all rules which are
mutually exclusive to each other will have
the same group number.

map_value int (4 bytes) The numeric value associated with this
rule.

Field name Size Purpose

Length unsigned short Length of this verb data.

Flag unsigned short User defined: usually type of data.

H-4 UDX Reference and Guide

 16-NOV-01, 14:51

 #define DATA_HEADER_LENGTH sizeof(DATA_RECORD_HEADER)

If you want to use the length/tag/data format for your verb unique data, declare a
DATA_RECORD_HEADER structure to place before the data, and use the
BuildParmBlock() function to place it before the data.

 BuildParmBlock(ptr,

 2,

 DATA_HEADER_LENGTH, &DataHeader,

 dataLength, &Data[F]);

The FindFirstDataBlock() function returns a pointer to a VUD_DATA_RECORD, so that
you can access your data in this format easily:

VUD_DATA_RECORD

 FindFirstDataBlock(pCPRB, SEL_REPLY_BLK, &pVerbDataRecord);

if(pVerbDataRecord->Flag == EncryptedKey)

 {

 memcpy(pKeyParameter, &pVerbDataRecord->Data,

pVerbDataRecord->Length - DATA_HEADER_LENGTH);

 }

On the other hand, if you have no need to access the Flags field, you can use the
verb_unique_data_structure type instead:

verb_unique_data_structure

 BuildParmBlock(ptr,

 2,

 sizeof(short), &vudLength,

 dataLength, &Data);

To retrieve the above data, you must first cast the verb_unique_data_structure as
a VUD_DATA_RECORD:

 FindFirstDataBlock (pCPRB, SEL_REPLY_BLK, (VUD_DATA_RECORD

)&pVerbUniqueDataStructure);

pLengthParm = atohs(pVerbUniqueDataStructure->

verb_unique_data_length) - LENGTH_FIELD_SIZE;

 memcpy(pReturnedData,

 &pVerbUniqueDataStructure->verb_unique_data,
pLengthParm);

If the only piece of data which is being passed has a fixed length (for example, if it
is a structure), you need not use either of the verb structures shown:

Field name Size/Type Purpose

Length unsigned short Length of this verb data

Flag unsigned short See above DATA_RECORD_HEADER

Data 1 byte The first byte of the data.

Field name Size/Type Purpose

verb_unique_data_length unsigned short Length of this verb data

verb_unique_data 1 byte The first byte of the data

 Appendix H. Data Structures H-5

 16-NOV-01, 14:51

 BuildParmBlock(ptr,

 1,

 sizeof(Structure), &Structure);

Then to access the data:

 FindFirstDataBlock(pCPRB, SEL_REPLY_BLOCK, (VUD_DATA_RECORD

)&pData);

memcpy(&Structure, pData, sizeof(Structure));

If you use this method, you must not pass more than one piece of verb unique
data, as the FindNextDataBlock() function uses the length field to determine where
to look for the next piece of data.

Following the verb unique data, the key data is organized into key fields and key
data structures. Each key is preceded by a KEY_FIELD_HEADER structure:

KEY_FIELD_HEADER

On the host side, you will need to declare a KEY_FIELD_HEADER structure for each
key you will be passing to the coprocessor. On the coprocessor, you will need to
declare a KEY_FIELD_HEADER structure for each key you will be passing to the host.
If you are passing a token to be written to the key storage file, you must declare
two KEY_FIELD_HEADER structures, and pass first the label of the key to write to, then
the key token to write into the key storage file.

 BuildParmBlock(ptr,

4, // 2 for each key you will be passing

 sizeof(KEY_FIELD_HEADER), &keyFieldHeader1,

 KEY_LABEL_LENGTH, keyLabel,

 sizeof(KEY_FIELD_HEADER), &keyFieldHeader2,

 keyTokenLength, keyToken);

The find_first_key_block() function returns a pointer to a key_data_structure:

key_data_structure

Since there is no reason to access the first byte of the keyFieldHeader.Flags field,
you will usually declare a generic_key_block_structure pointer, and cast it as a
key_data_structure in the function call.

generic_key_block_structure

Field name Size/Type Purpose

Length unsigned short Total length of this key block.
(little-endian)

Flags unsigned short Flags indication action required by the
Security Server and type of key.

Field name Size/Type Purpose

key_field_data_length unsigned short Total length of this key data.

key_data 1 byte First byte of keyFieldHeader.Flags

H-6 UDX Reference and Guide

 16-NOV-01, 14:51

 find_first_key_block(pCprb, (key_data_structure

)&pGenericKeyBlockStructure,SEL_REQ_BLK);

keyLength = atohs(pGenericKeyBlockStructure->length) -

 sizeof(KEY_FIELD_HEADER);

pKeyToken = &pGenericKeyBlockStructure->label_or_token;

Notice that the value of the byte in the label_or_token field can be used in the
macro TOKEN_LABEL_CHECK to determine whether the token is a key token with key
data or the label of a key in key storage.

If the key which has been passed is an RSA key, some of the functions which
manipulate and check it take parameters of type RsaKeyTokenHeader:

RsaKeyTokenHeader

In most cases, you should simply cast the pointer to the token as an
RsaKeyTokenHeader pointer.

Field name Size/Type Purpose

length unsigned short Total length of this key data. (little-endian)

flags unsigned short Flag bytes (little-endian) (ignore)

label_or_token 1 byte First byte of key token or label.

Field name Size/Type Purpose

tokenId 1 byte Indicates Internal PKA, External PKA,
Label, or “not RSA”

version 1 byte Version of RSA token

tokenLength unsigned short Total length of token (big-endian)

reserved 4 bytes valued to 0

nextSection 1 byte First byte of next token section - indicates
public or privateModexponent, private
Chinese remainder, and so on.

Data Structures for Caching Functions
Only one new data structure is required for the use of the cache functions, the
short_tag_t:

short_tag_t

You may choose to cast a 2-byte value as a short_tag_t for the function call.

Field name Size/Type Purpose

tag_1 1 byte First byte of 2 byte short tag, index into
linked list of second bytes.

tag_2 1 byte Second byte of 2 byte short tag, index
into linked list of entries.

 Appendix H. Data Structures H-7

 16-NOV-01, 14:51

Other Useful Data Structures
The mk_selectors data structure is used to indicate which of several master keys to
use in a given master key function.

mk_selectors

The RsaRecoverClearKeyTokenUnderXport() function requires a type of
double_length_key.

double_length_key

The functions load_first_mk_part() and combine_mk_parts() require a
TRIPLE_LENGTH_KEY:

TRIPLE_LENGTH_KEY

The dbl_ulong (double, unsigned, long) data type is used to pass the number of
bits of data for SHA1 hashing:

dbl_ulong

Field name Size/Type Purpose

mk_set unsigned short Domain of master key set: This should
contain the same value as the domain
field in the input CPRB structure.

mk_register enumeration old_mk, current_mk, new_mk to
determine which of the three registers to
access.

type_mks enumeration SYM_MK, ASYM_MK, Both_MK, to
determine which type of master key to
use or change.

Field name Size/Type Purpose

left 8 bytes First 8 bytes of key.

right 8 bytes Second 8 bytes of key.

Field name Size/Type Purpose

first 8 bytes First 8 bytes of key.

middle 8 bytes Second 8 bytes of key.

last 8 bytes Third 8 bytes of key.

Field name Size/Type Purpose

upper unsigned long The high-order 8 bytes of the value.

lower unsigned long The low-order 8 bytes of the value.

H-8 UDX Reference and Guide

 16-NOV-01, 14:51

 Appendix I. Notices

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY, 10504-1785, USA.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this publication
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information that you supply in any way it
believes appropriate without incurring any obligation to you.

COPYRIGHT LICENSE: This information contains sample application programs in
source language, which illustrates programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written.
These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. You may copy, modify, and distribute these sample programs in any
form without payment to IBM for the purposes of developing, using, marketing, or
distributing application programs conforming to IBM’s application programming
interfaces.

 Appendix I. Notices I-1

 16-NOV-01, 14:51

Copying and Distributing Softcopy Files
For online versions of this book, we authorize you to:

� Copy, modify, and print the documentation contained on the media, for use
within your enterprise, provided you reproduce the copyright notice, all warning
statements, and other required statements on each copy or partial copy.

� Transfer the original unaltered copy of the documentation when you transfer the
related IBM product (which may be either machines you own, or programs, if
the program's license terms permit a transfer). You must, at the same time,
destroy all other copies of the documentation.

You are responsible for payment of any taxes, including personal property taxes,
resulting from this authorization.

THERE ARE NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING THE
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Some jurisdictions do not allow the exclusion of implied warranties, so the above
exclusion may not apply to you.

Your failure to comply with the terms above terminates this authorization. Upon
termination, you must destroy your machine readable documentation.

 Trademarks
The following terms are trademarks or registered trademarks of the IBM
Corporation in the United States, or other countries, or both:

Intel is a registered trademark of Intel Corporation in the United States, or other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks or
registered trademarks of Microsoft Corporation in the United States, or other
countries, or both.

SET and the SET Logo are trademarks owned by SET Secure Electronic
Transaction LLC.

UNIX is a registered trademark in the United States, or other countries, or both and
is licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be the trademarks or service
marks of others.

AIX Multiprise
IBM OS/390
OS/2 RACF
S/390 S/390 Parallel Enterprise Server
e (logo)

I-2 UDX Reference and Guide

 16-NOV-01, 14:51

List of Abbreviations and Acronyms

AIX Advanced Interactive Executive
(operating system)

API application program interface

ASCII American Standard Code for
Information Interchange

BBRAM battery-backed random access
memory

CCA Common Cryptographic Architecture

CDMF Commercial Data Masking Facility

CMK current master key

CP/Q Control Program/Q

CPRB Cooperative Processing Request
Block

DES Data Encryption Standard

DLL dynamic load library

EPROM erasable programmable read-only
memory

FIPS Federal Information Processing
Standard

KEK key encrypting key

IBM International Business Machines

MAC message authentication code

MKVP master key verification pattern

NMK new master key

OMK old master key

OS/2 Operating System/2

PCI peripheral component interconnect

PDF portable document format

PIN personal identification number

PKA public key algorithm

PPD program proprietary data

RAM random access memory

RNG random number generator

RSA Rivest-Shamir-Adleman (algorithm)

SCC secure cryptographic coprocessor

SET Secure Electronic Transaction

SHA Secure Hash Algorithm

SRDI security relevant data item

TVV token validation value

UDX user-defined extensions

VUD verb unique data

 List of Abbreviations and Acronyms X-1

 16-NOV-01, 14:51

X-2 UDX Reference and Guide

 16-NOV-01, 14:51

 Glossary

This glossary includes terms and definitions from the
IBM Dictionary of Computing, New York: McGraw Hill,
1994. This glossary also includes terms and definitions
taken from:

� The American National Standard Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute
(ANSI). Copies may be purchased from the
American National Standards Institute, 11 West 42
Street, New York, New York 10036. Definitions are
identified by the symbol (A) following the definition.

� The Information Technology Vocabulary, developed
by Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC JTC1/SC1). Definitions of published parts
of this vocabulary are identified by the symbol (I)
following the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) following
the definition, indicating that final agreement has not
yet been reached among the participating National
Bodies of SC1.

A
access. In computer security, a specific type of
interaction between a subject and an object that results
in the flow of information from one to the other.

access control. Ensuring that the resources of a
computer system can be accessed only by authorized
users and in authorized ways.

Advanced Interactive Executive (AIX) operating
system. The IBM implementation of the UNIX**
operating system.

agent. (1) An application that runs within the IBM
zSeries PCI Cryptographic Coprocessor (2) Synonym
for secure cryptographic coprocessor application.

AIX operating system. Advanced Interactive
Executive operating system.

American National Standards Institute (ANSI). An
organization consisting of producers, consumers, and
general interest groups that establishes the procedures
by which accredited organizations create and maintain
voluntary industry standards for the United States. (A)

ANSI. American National Standards Institute.

APF. Authorized Program Facility. A facility that
permits identification of programs authorized to use
restricted functions.

API. Application program interface.

application program interface (API). A functional
interface supplied by the operating system, or by a
separate program, that allows an application program
written in a high-level language to use specific data or
functions of the operating system or that separate
program.

authentication. (1) A process used to verify the
integrity of transmitted data, especially a message. (T)
(2) In computer security, a process used to verify the
user of an information system or protected resource.

authorization. (1) In computer security, the right
granted to a user to communicate with or make use of a
computer system. (T) (2) The process of granting a
user either complete or restricted access to an object,
resource, or function.

authorize. To permit or give authority to a user to
communicate with or make use of an object, resource,
or function.

B
battery-backed random access memory (BBRAM).
Random access memory that uses battery power to
retain data while the system is powered off. The IBM
zSeries PCI Cryptographic Coprocessor uses BBRAM
to store persistent data for SCC applications, as well as
the coprocessor device key.

BBRAM. Battery-backed random access memory.

C
call. The action of bringing a computer program, a
routine, or a subroutine into effect, usually by specifying
the entry conditions and jumping to an entry point.
(I) (A)

card. (1) An electronic circuit board that is plugged
into an expansion slot of a system unit. (2) A plug-in
circuit assembly.

CBC. Cipher Block Chain.

CCA. Common Cryptographic Architecture.

 Glossary X-3

 16-NOV-01, 14:51

CDMF algorithm. Commercial Data Masking Facility
algorithm.

ciphertext. (1) Data that has been altered by any
cryptographic process. (2) See clear data.

cipher block chain (CBC). A mode of operation that
cryptographically connects one block of ciphertext to the
next clear data block.

CKDS. Cryptographic Key Data Set. In OS/390 ICSF,
a VSAM data set that contains DES cryptographic keys
used by an installation. Besides the encrypted key
value, an entry in the cryptographic key data set
contains information about the key.

cleartext. (1) Data that has not been altered by any
cryptographic process. (2) See clear data. (3) See
also ciphertext.

clear data. Data that is not enciphered.

Commercial Data Masking Facility (CDMF)
algorithm. An algorithm for data confidentiality
applications; it is based on the DES algorithm and has
an effective key strength of 40 bits.

Common Cryptographic Architecture (CCA). A
comprehensive set of cryptographic services that
furnishes a consistent approach to cryptography on
major IBM computing platforms. Application programs
can access these services through the CCA application
program interface.

Common Cryptographic Architecture (CCA) API.
The application program interface used to call Common
Cryptographic Architecture functions; it is described in
the IBM 4758 PCI Cryptographic Coprocessor CCA
Basic Services Reference and Guide.

Control Program/Q (CP/Q). The operating system
embedded within the IBM 4758 PCI Cryptographic
Coprocessor. The version of CP/Q used by the
coprocessor—including extensions to support
cryptographic and security-related functions—is known
as CP/Q++.

coprocessor. (1) A supplementary processor that
performs operations in conjunction with another
processor. (2) A microprocessor on an expansion card
that extends the address range of the processor in the
host system, or adds specialized instructions to handle
a particular category of operations; for example, an I/O
coprocessor, math coprocessor, or a network
coprocessor.

CP/Q. Control Program/Q.

Cryptographic Coprocessor (IBM zSeries PCI
Cryptographic Coprocessor). An expansion card that

provides a comprehensive set of cryptographic functions
to a workstation.

cryptography. (1) The transformation of data to
conceal its meaning. (2) In computer security, the
principles, means, and methods used to transform data.

D
data encrypting key. (1) A key used to encipher,
decipher, or authenticate data. (2) Contrast with
key-encrypting key.

Data Encryption Standard (DES). The National
Institute of Standards and Technology (NIST) Data
Encryption Standard, adopted by the U.S. government
as Federal Information Processing Standard (FIPS)
Publication 46, which allows only hardware
implementation of the data encryption algorithm.

decipher. (1) To convert enciphered data into clear
data. (2) Contrast with encipher.

DES. Data Encryption Standard.

DSS. Digital Signature Standard. A public key
algorithm used only for digital signature.

E
encipher. (1) To scramble data or convert it to a
secret code that masks its meaning. (2) Contrast with
decipher.

enciphered data. (1) Data whose meaning is
concealed from unauthorized users or observers.
(2) See also ciphertext.

EPROM. Erasable programmable read-only memory.

erasable programmable read-only memory
(EPROM). Programmable read-only memory that can
be erased by a special process and reused.

F
feature. A part of an IBM product that can be ordered
separately from the essential components of the
product.

Federal Information Processing Standard (FIPS). A
standard that is published by the US National Institute
of Science and Technology.

FIPS. Federal Information Processing Standard

flash memory. A specialized version of erasable
programmable read-only memory (EPROM) commonly
used to store code in small computers.

X-4 UDX Reference and Guide

 16-NOV-01, 14:51

H
host. As regards to the IBM zSeries PCI
Cryptographic Coprocessor, the zSeries server into
which the coprocessor is installed.

I
interface. (1) A boundary shared by two functional
units, as defined by functional characteristics, signal
characteristics, or other characteristics as appropriate.
The concept includes specification of the connection
between two devices having different functions. (T)
(2) Hardware, software, or both that links systems,
programs, and devices.

K
key. In computer security, a sequence of symbols
used with an algorithm to encipher or decipher data.

L
LIC. Licensed Internal Code

M
MAC. Message authentication code.

master key. In computer security, the top-level key in
a hierarchy of KEKs.

message authentication code (MAC). In computer
security, (1) a number or value derived by processing
data with an authentication algorithm, (2) the
cryptographic result of block cipher operations, on text
or data, using the cipher block chain (CBC) mode of
operation.

N
NT. See Windows NT.

O
Operating System/2 (OS/2). An IBM operating system
for personal computers.

OS/2. Operating System/2.

P
PKA. Public key algorithm.

PKDS. Public Key Data Set (PKA Cryptographic Key
Data Set)

PPD. Program proprietary data.

private key. (1) In computer security, a key that is
known only to the owner and used with a public key
algorithm to decipher data. Data is enciphered using the
related public key. (2) Contrast with public key.
(3) See also public key algorithm.

procedure call. In programming languages, a
language construct for invoking execution of a
procedure. (I) A procedure call usually includes an
entry name and the applicable parameters.

program proprietary data (PPD). Persistent data
stored within the IBM zSeries PCI Cryptographic
Coprocessor flash memory or battery-backed RAM that
is associated with a particular agent.

public key. (1) In computer security, a key that is
widely known and used with a public key algorithm to
encipher data. The enciphered data can be deciphered
only with the related private key. (2) Contrast with
private key. (3) See also public key algorithm.

public key algorithm (PKA). (1) In computer security,
an asymmetric cryptographic process that uses a public
key to encipher data and a related private key to
decipher data. (2) See also RSA algorithm.

R
RACF. Resource Access Control Facility. An
IBM-licensed program that provides for access control
by identifying and verifying the users to the system,
authorizing access to protected resources, logging the
detected unauthorized attempts to enter the system,
and logging the detected accesses to protected
resources.

RAM. Random access memory.

random access memory (RAM). A storage device
into which data is entered and from which data is
retrieved in a non-sequential manner.

random number generator (RNG). A system
designed to output values that cannot be predicted.
Since software-based systems generate predictable,
pseudo-random values, the IBM zSeries PCI
Cryptographic Coprocessor uses a hardware-based
system to generate true random values for
cryptographic use.

 Glossary X-5

 16-NOV-01, 14:51

return code. (1) A code used to influence the
execution of succeeding instructions. (A) (2) A value
returned to a program to indicate the results of an
operation requested by that program.

RNG. Random number generator.

RSA algorithm. A public key encryption algorithm
developed by R. Rivest, A. Shamir, and L. Adleman.

S
SCC. Secure cryptographic coprocessor.

secure cryptographic coprocessor (SCC). An
alternate name for the IBM zSeries PCI Cryptographic
Coprocessor. The abbreviation “SCC” is used within
the product software code.

secure cryptographic coprocessor (SCC)
application. (1) An application that runs within the
IBM zSeries PCI Cryptographic Coprocessor.
(2) Synonym for agent.

security. The protection of data, system operations,
and devices from accidental or intentional ruin, damage,
or exposure.

T
TKE. Trusted Key Entry

U
utility program. A computer program in general
support of computer processes.(T)

V
verb. A function possessing an entry_point_name and
a fixed-length parameter list. The procedure call for a
verb uses the syntax standard to programming
languages.

VSAM. Virtual Storage Access Method. An access
method for indexed or sequential processing of fixed
and variable-length records on direct-access devices.
The records in a VSAM data set or file can be
organized in logical sequence by means of a key field
(key sequence), in the physical sequence in which they
are written on the data set or file (entry-sequence), or
by means of relative-record number.

W
Windows NT. A Microsoft operating system for
personal computers.

Numerics
IBM 4758. IBM 4758 PCI Cryptographic Coprocessor.

X-6 UDX Reference and Guide

 16-NOV-01, 14:51

 Index

Numerics
2-byte values, convert 12-6

A
Access Control Manager 1-6
access control points, defining 2-6
access, ICSF CKDS 4-3
access, ICSF public key data set 4-5
adjust parity 8-4
architecture of the UDX environment 1-1
authority, user 12-2
authorization check 4-24

B
build a CPRB 4-10
building a CCA UDX 2-1
building a CCA user-defined extension 2-1
building a parameter block 4-25
building a UDX 2-1
BuildParmBlock 4-25

C
cache management functions

cache_clear 11-3
cache_delete 11-4
cache_delete_item 11-5
cache_get_item 11-6
cache_get_item_b 11-7
cache_init 11-8
cache_status 11-9
cache_write_item 11-10
overview 11-1

cache_clear 11-3
cache_delete 11-4
cache_delete_item 11-5
cache_get_item 11-6
cache_get_item_b 11-7
cache_init 11-8
cache_status 11-9
cache_write_item 11-10
caching functions, data structures H-7
calculate token validation value 9-30
CalculatenWordLength 9-6
callable functions

BuildParmBlock 4-25
cache_clear 11-3
cache_delete 11-4
cache_delete_item 11-5
cache_get_item 11-6

callable functions (continued)
cache_get_item_b 11-7
cache_init 11-8
cache_status 11-9
cache_write_item 11-10
CalculatenWordLength 9-6
cas_adjust_parity 8-4
cas_build_default_cv 8-5
cas_build_default_token 8-6
cas_current_mkvp 8-8
cas_des_key_token_check 8-10
cas_get_key_type 8-11
cas_key_length 8-12
cas_key_tokentvv_check 8-13
cas_master_key_check 8-14
cas_old_mkvp 8-9
cas_parity_odd 8-16
Cas_proc_retc 4-29
CasBuildCv 8-5
CasBuildToken 8-6
CasCurrentMkvp 8-8
CasMasterKeyCheck 8-14
CasOldMkvp 8-9
check_access_auth_fcn 12-2
close_cca_srdi 10-8
computeHMAC_SHA1 7-2
create_cca_srdi 10-9
create4update_cca_srdi 10-11
CreateInternalKeyToken 9-7
CreateInternalKeyTokenWithMK 9-7
CreateRsaInternalSection 9-8
CreateRsaInternalSectionWithMK 9-8
CSFACCPN 4-7
CSFACKDS 4-3
CSFACPRB 4-10
CSFADSCP 4-13
CSFADSPI 4-20
CSFAPBLK 4-16
CSFAPKDS 4-5
CSFAPKTV 4-18
CSFASEC 4-24
CSFAVLPB 4-14
delete_cca_srdi 10-12
delete_KeyToken 9-9
do_sha_hash_message 7-3
do_sha_hash_msg_to_bfr 7-6
ede3_triple_decrypt_under_master_key 6-10
ede3_triple_encrypt_under_master_key 6-11
find_first_key_block 4-32
find_next_key_block 4-33
FindFirstDataBlock 4-30
FindNextDataBlock 4-31

 Index X-7

 16-NOV-01, 14:51

callable functions (continued)
generate_dSig 9-12
GenerateCcaRsaToken 9-10
GenerateRsaInternalToken 9-11
get_cca_srdi_length 10-13
get_mk_verification_pattern 6-8
GeteLength 9-14
GetKeyLength 12-4
getKeyToken 9-15
GetModulus 9-16
GetnBitLength 9-17
GetnByteLength 9-18
GetPublicExponent 9-19
GetRsaPrivateKeySection 9-20
GetRsaPublicKeySection 9-21
getSymmetricMaxModulusLength 5-2
GetTokenLength 9-22
hw_sha_hash_message 7-7
InitCprbParmPointers 4-34
intel_long_reverse 12-5
intel_word_reverse 12-6
isFunctionEnabled 5-3
IsPrivateExponentEven 9-23
IsPrivateKeyEncrypted 9-24
IsPublicExponentEven 9-25
IsRsaToken 9-26
IsTokenInternal 9-27
key register status 6-6
keyword_in_rule_array 4-35
mkmGetMasterKeyStatus 6-6
open_cca_srdi 10-14
parm_block_valid 4-36
pka96_tvvgen 9-30
PkaHashQueryWithMK 9-28
PkaMkvpQuery 9-29
PkaMkvpQueryWithMK 9-29
RecoverDesDataKey 8-17
RecoverDesDataKeyWithMK 8-17
RecoverDesKekImporter 8-19
RecoverDesKekImporterWithMK 8-19
RecoverPkaClearKeyTokenUnderMk 9-31
RecoverPkaClearKeyTokenUnderMkWithMK 9-31
RecoverPkaClearKeyTokenUnderXport 9-33
ReEncipherPkaKeyToken 9-34
ReEncipherPkaKeyTokenWithMK 9-34
RequestRSACrypto 9-35
resize_cca_srdi 10-15
rule_check 4-37
save_cca_srdi 10-16
sha_hash_message 7-9
sha_hash_msg_to_bfr 7-12
store_KeyToken 9-36
TDESDecryptUnderMasterKey 6-12
TDESEncryptUnderMasterKey 6-13
TokenMkvpMatchMasterKey 9-37
triple_decrypt_under_master_key 6-14

callable functions (continued)
triple_decrypt_under_master_key_with_CV 6-15
triple_encrypt_under_master_key 6-16
triple_encrypt_under_master_key_with_CV 6-17
update_cca_srdi 10-17
ValidatePkaToken 9-38
verify_dSig 9-40
VerifyKeyTokenConsistency 9-39

callable service 1-3
callable service, stub 1-3
cas_adjust_parity 8-4
cas_build_default_cv 8-5
cas_build_default_token 8-6
cas_current_mkvp 8-8
cas_des_key_token_check 8-10
cas_get_key_type 8-11
cas_key_length 8-12
cas_key_tokentvv_check 8-13
cas_master_key_check 8-14
cas_old_mkvp 8-9
cas_parity_odd 8-16
Cas_proc_retc 4-29
CasBuildCv 8-5
CasBuildToken 8-6
CasCurrentMkvp 8-8
CasMasterKeyCheck 8-14
CasOldMkvp 8-9
CCA communication structures 1-7
CCF 1-4
chaining, SHA-1 hash 7-9
check authorization 4-24
CHECK_ACCESS_AUTH

See check_access_auth_fcn
check_access_auth_fcn 12-2
CKDS 1-4
clear cache 11-3
close_cca_srdi 10-8
command processor 1-1

CCA 1-6
UDX 1-7

command processor API, defining 2-5
command processor, identifier 1-3
command processors to array, adding 2-7
communication functions

BuildParmBlock 4-25
Cas_proc_retc 4-29
CSFACCPN 4-7
CSFACKDS 4-3
CSFACPRB 4-10
CSFADSCP 4-13
CSFADSPI 4-20
CSFAPBLK 4-16
CSFAPKDS 4-5
CSFAPKTV 4-18
CSFASEC 4-24
CSFAVLPB 4-14

X-8 UDX Reference and Guide

 16-NOV-01, 14:51

communication functions (continued)
find_first_key_block 4-32
find_next_key_block 4-33
FindFirstDataBlock 4-30
FindNextDataBlock 4-31
InitCprbParmPointers 4-34
keyword_in_rule_array 4-35
parm_block_valid 4-36
rule_check 4-37

communication service 4-20
communication structures, CCA 1-7
communications, structures used between host and

coprocessor H-1
computeHMAC_SHA1 7-2
control points 1-6
cooperative processing request/reply block

(CPRB) 1-3
coprocessor piece of a UDX 2-5

adding command processors to the array 2-7
building 2-5
building the executable 2-8
defining access control points 2-6
defining the command processor API 2-5
designing and coding the logic 2-8
installing 2-9

CPRB 1-3
CPRB parameter pointers, initialize 4-34
CPRB, building 4-10
CPRB, destroy 4-13
CPRB, parse 4-16
CPRB, validate 4-14
create_cca_srdi 10-9
create4update_cca_srdi 10-11
CreateInternalKeyToken 9-7
CreateInternalKeyTokenWithMK 9-7
CreateRsaInternalSection 9-8
CreateRsaInternalSectionWithMK 9-8
cryptographic coprocessor feature 1-4
cryptographic coprocessor interfaces 1-4
cryptographic key data set 1-4
CSFACCPN 4-7
CSFACKDS 4-3
CSFACPRB 4-10
CSFADSCP 4-13
CSFADSPI 4-20
CSFAPBLK 4-16
CSFAPKDS 4-5
CSFAPKTV 4-18
CSFASEC 4-24
CSFAVLPB 4-14
current master key verification pattern 8-8

D
data structures H-1

caching functions H-7

data structures (continued)
communications between host and computer H-1
other useful H-8

data, clear from cache 11-3
decrypted private keys, cache 11-1
default control vector, build 8-5
default token, build 8-6
delete_cca_srdi 10-12
delete_KeyToken 9-9
DES data key, recover 8-17
DES importer KEK, recover 8-19
DES key token, verify 8-10
DES utility functions

cas_adjust_parity 8-4
cas_build_default_cv 8-5
cas_build_default_token 8-6
cas_current_mkvp 8-8
cas_des_key_token_check 8-10
cas_get_key_type 8-11
cas_key_length 8-12
cas_key_tokentvv_check 8-13
cas_master_key_check 8-14
cas_old_mkvp 8-9
cas_parity_odd 8-16
CasBuildCv 8-5
CasBuildToken 8-6
CasCurrentMkvp 8-8
CasMasterKeyCheck 8-14
CasOldMkvp 8-9
RecoverDesDataKey 8-17
RecoverDesDataKeyWithMK 8-17
RecoverDesKekImporter 8-19
RecoverDesKekImporterWithMK 8-19

destroy a CPRB 4-13
development overview 2-1
dispatcher, CCA 1-5
do_sha_hash_message 7-3
do_sha_hash_msg_to_bfr 7-6

E
EDE3 triple decrypt master key 6-10
EDE3 triple encrypt master key 6-11
ede3_triple_decrypt_under_master_key 6-10
ede3_triple_encrypt_under_master_key 6-11
enabled function, check 5-3
examine parameter block 4-36
executable, building 2-8

F
files
find address of next key data block 4-33
find_first_key_block 4-32
find_next_key_block 4-33

 Index X-9

 16-NOV-01, 14:51

FindFirstDataBlock 4-30
FindNextDataBlock 4-31
first data block, search for address 4-30
first key data block, search 4-32
format, key token 9-27
function control vector management functions

getSymmetricMaxModulusLength 5-2
isFunctionEnabled 5-3

functions
See callable functions

G
generate_dSig 9-12
GenerateCcaRsaToken 9-10
GenerateRsaInternalToken 9-11
get_cca_srdi_length 10-13
get_master_key_status 6-6
get_mk_verification_pattern 6-8
GeteLength 9-14
GetKeyLength 12-4
getKeyToken 9-15
GetModulus 9-16
GetnBitLength 9-17
GetnByteLength 9-18
GetPublicExponent 9-19
GetRsaPrivateKeySection 9-20
getSymmetricMaxModulusLength 5-2
GetTokenLength 9-22

H
hardware, calculate SHA-1 hash 7-3
hash in hardware, compute SHA-1 7-7
hash of requested data, SHA-1 7-7
hash, calculate SHA-1 7-3
hash, SHA-1 wrapper 7-6
hashing functions, SHA-1 7-1
header files

Caching functions 11-1
Communications functions 4-1
DES utility functions 8-1
Function Control Vector functions 5-1
Master Key Manager functions 6-1
Miscellaneous functions 12-1
RSA functions 9-1
SHA-1 functions 7-1
SRDI Manager functions 10-1

HMAC-SHA1, computing 7-2
host piece of the UDX 2-1

building 2-1
installing 2-3

hw_sha_hash_message 7-7

I
ICSF public key data set, accessing 4-5
InitCprbParmPointers 4-34
initialize an RSA or DSS key Token 4-18
initialize CPRB parameter pointers 4-34
installing a CCA UDX 2-1
intel_long_reverse 12-5
intel_word_reverse 12-6
internal key token, create 9-7
isFunctionEnabled 5-3
IsPrivateExponentEven 9-23
IsPrivateKeyEncrypted 9-24
IsPublicExponentEven 9-25
IsRsaToken 9-26
IsTokenInternal 9-27

K
key blocks 1-3, 1-12
key blocks, request and reply parameter blocks 1-12
key length, return 8-12
key token

consistency, verify 9-39
format 9-27
length 9-22, 12-4
signature 9-40

key type, return 8-11
keyword_in_rule_array 4-35

L
logged on users, Access Control Manager
logic, designing and coding 2-2, 2-8
long values, convert 12-5

M
Master Key Manager (CCA) functions

common processing 6-3
ede3_triple_decrypt_under_master_key 6-10
ede3_triple_encrypt_under_master_key 6-11
get_master_key_status 6-6
get_mk_verification_pattern 6-8
initialization of the SRDI 6-2
key register status 6-2, 6-6
location 6-2
master key registers 6-1
mkmGetMasterKeyStatus 6-6
overview 6-1
required variables 6-3
TDESDecryptUnderMasterKey 6-12
TDESEncryptUnderMasterKey 6-13
test encryption 9-37
triple_decrypt_under_master_key 6-14
triple_decrypt_under_master_key_with_CV 6-15
triple_encrypt_under_master_key 6-16

X-10 UDX Reference and Guide

 16-NOV-01, 14:51

Master Key Manager (CCA) functions (continued)
triple_encrypt_under_master_key_with_CV 6-17
variables, required 6-3
verification pattern 6-2
version 9-29
version check 8-14

master key status 6-6
master key, return version 9-28
miscellaneous functions

Cas_proc_retc 4-29
check_access_auth_fcn 12-2
GetKeyLength 12-4
intel_long_reverse 12-5
intel_word_reverse 12-6
TOKEN_IS_A_LABEL 12-7
TOKEN_LABEL_CHECK 12-8

mkmGetMasterKeyStatus 6-6
model 1 card to model 2 card, transferring code F-1
moving UDX from model 1 card to model 2 card F-1

makefile changes F-2
Master Key Manager changes F-1

N
next data block, search for address 4-31
next key data block, find address 4-33

O
old master key verification pattern 8-9
open_cca_srdi 10-14
overview of cache functions 11-1
overview, development 2-1

P
parameter block

building 4-25
examine 4-36
verify 4-36

parity, adjust 8-4
parity, verify 8-16
parm_block_valid 4-36
parse a CPRB 4-16
passing large data blocks 1-8
PKA clear key

clear under DES export key, recover 9-33
re-encipher 9-34
recover under master key 9-31

pka96_tvvgen 9-30
PkaHashQueryWithMK 9-28
PkaMkvpQuery 9-29
PkaMkvpQueryWithMK 9-29
PKDS 1-4
private key encryption, verify 9-24

private key, return 9-20
public exponent, extract and copy 9-19
public key data set 1-4
public key, return 9-21
publications, related xiii

R
recover DES data key 8-17
recover DES importer KEK 8-19
RecoverDesDataKey 8-17
RecoverDesDataKeyWithMK 8-17
RecoverDesKekImporter 8-19
RecoverDesKekImporterWithMK 8-19
RecoverPkaClearKeyTokenUnderMk 9-31
RecoverPkaClearKeyTokenUnderMkWithMK 9-31
RecoverPkaClearKeyTokenUnderXport 9-33
ReEncipherPkaKeyToken 9-34
ReEncipherPkaKeyTokenWithMK 9-34
related publications xiii
reply parameter block 1-3
request and reply blocks, format 1-7
request parameter block 1-3
requested data SHA-1 hash 7-7
RequestRSACrypto 9-35
reserved values G-1
resize_cca_srdi 10-15
return code, prioritize 4-29
return key length 8-12
return key type 8-11
return master key version 9-28
RSA functions

CalculatenWordLength 9-6
CreateInternalKeyToken 9-7
CreateInternalKeyTokenWithMK 9-7
CreateRsaInternalSection 9-8
CreateRsaInternalSectionWithMK 9-8
delete_KeyToken 9-9
generate_dSig 9-12
GenerateCcaRsaToken 9-10
GenerateRsaInternalToken 9-11
GeteLength 9-14
getKeyToken 9-15
GetModulus 9-16
GetnBitLength 9-17
GetnByteLength 9-18
GetPublicExponent 9-19
GetRsaPrivateKeySection 9-20
GetRsaPublicKeySection 9-21
GetTokenLength 9-22
IsPrivateExponentEven 9-23
IsPrivateKeyEncrypted 9-24
IsPublicExponentEven 9-25
IsRsaToken 9-26
IsTokenInternal 9-27
overview 9-4

 Index X-11

 16-NOV-01, 14:51

RSA functions (continued)
pka96_tvvgen 9-30
PkaHashQueryWithMK 9-28
PkaMkvpQuery 9-29
PkaMkvpQueryWithMK 9-29
RecoverPkaClearKeyTokenUnderMk 9-31
RecoverPkaClearKeyTokenUnderMkWithMK 9-31
RecoverPkaClearKeyTokenUnderXport 9-33
ReEncipherPkaKeyToken 9-34
ReEncipherPkaKeyTokenWithMK 9-34
RequestRSACrypto 9-35
store_KeyToken 9-36
TokenMkvpMatchMasterKey 9-37
ValidatePkaToken 9-38
verify_dSig 9-40
VerifyKeyTokenConsistency 9-39

RSA internal section, create 9-8
RSA key

format 9-27
generate 9-11
generate CCA RSA key token 9-10
length 5-2, 9-22, 12-4
validate 9-38
verify 9-26, 9-39
verify signature 9-40

RSA modulus
bit length 9-17
byte length 9-18
extract and copy 9-16

RSA operation, perform 9-35
RSA private exponent, verify 9-23
RSA public exponent

byte length 9-14
generate_dSig 9-12
get PKA token 9-15
verify 9-25

rule array
CSNBPKI 4-38

rule map example 4-39
CSUAACI 4-39

rule map example 4-39
verify 4-37

rule array keyword, search 4-35
rule_check 4-37

S
save_cca_srdi 10-16
SCC API functions

coprocessor-side API functions 3-1
search for first key data block 4-32
security relevant data items 1-1
send a request to the coprocessor 4-7
sending a request to the coprocessor 4-3
service stub 1-3

services, CCA 1-5
services, CP/++ 1-5
SHA-1 functions

computeHMAC_SHA1 7-2
do_sha_hash_message 7-3
do_sha_hash_msg_to_bfr 7-6
hw_sha_hash_message 7-7
sha_hash_message 7-9
sha_hash_msg_to_bfr 7-12

SHA-1 hash 7-3, 7-6, 7-7, 7-9, 7-12
SHA-1, compute an HMAC 7-2
sha_hash_message 7-9
sha_hash_msg_to_bfr 7-12
software, calculate SHA-1 hash 7-3
SRDI 1-1

close 10-8
create 10-9, 10-11
delete 10-12
length 10-13
open 10-14
resize 10-15
save 10-16
update 10-17

SRDI Manager (CCA) functions
close_cca_srdi 10-8
concurrent access protection 10-6
create_cca_srdi 10-9
create4update_cca_srdi 10-11
delete_cca_srdi 10-12
example code 10-18
get_cca_srdi_length 10-13
open_cca_srdi 10-14
opening an SRDI, example 10-4
operation 10-3
overview 10-1
resize_cca_srdi 10-15
save_cca_srdi 10-16
semaphore to control concurrent access 10-6
update_cca_srdi 10-17

status, master key 6-6
store_KeyToken 9-36
structures, data H-1
stub 1-3
sub-function code 1-3

T
TDESDecryptUnderMasterKey 6-12
TDESEncryptUnderMasterKey 6-13
test encryption of master key 9-37
token validation value, calculate 9-30
token validation value, verify 8-13
TOKEN_IS_A_LABEL 12-7
TOKEN_LABEL_CHECK 12-8
TokenMkvpMatchMasterKey 9-37

X-12 UDX Reference and Guide

 16-NOV-01, 14:51

transferring code from model 1 to model 2 F-1
triple decrypt

master key 6-14
master key with CV 6-15

triple DES decrypt data using a master key 6-12
triple DES encrypt data under master key 6-13
triple encrypt

master key 6-16
master key with CV 6-17

triple_decrypt_under_master_key 6-14
triple_decrypt_under_master_key_with_CV 6-15
triple_encrypt_under_master_key 6-16
triple_encrypt_under_master_key_with_CV 6-17

U
UDX environment 1-1
UDX sample code, coprocessor piece D-1
UDX sample code, workstation host - test code E-1
update_cca_srdi 10-17
user authority, verify 12-2
user profile, Access Control Manager

V
validate a CPRB 4-14
validate an RSA or DSS key Token 4-18
ValidatePkaToken 9-38
values, reserved G-1
verb unique data 1-3
verification pattern

current master key 8-8
old master key 8-9
specified master key 6-8

verify parameter block 4-36
verify rule array 4-37
verify_dSig 9-40
VerifyKeyTokenConsistency 9-39
version check, master key 8-14
version, master key 9-28, 9-29
VUD 1-3

W
word length of modulus, return 9-6
wrapper, SHA-1 hash 7-6, 7-12

 Index X-13

IBM

16-NOV-01, 14:51

Printed in U.S.A.

	About This Book
	Prerequisite Knowledge
	Typographic Conventions
	Related Publications
	Summary of Changes

	Chapter 1. Understanding the UDX Environment
	Chapter 2. Building and Installing a CCA User-Defined Extension
	Host Piece of a UDX
	Coprocessor Piece of a UDX

	Chapter 3. SCC Functions
	Coprocessor-Side SCC API Functions

	Chapter 4. Communications Functions
	Header Files for Communications Functions
	Summary of Functions
	CSFACKDS - Access ICSF Cryptographic Keys Data Set
	CSFAPKDS - Access ICSF Public Key Data Set
	CSFACCPN - Send a Request to the Coprocessor
	CSFACPRB - Build a CPRB
	CSFADSCP - Destroy a CPRB
	CSFAVLPB - Validate a CPRB
	CSFAPBLK - Parse a CPRB
	CSFAPKTV - Validate/Initialize an RSA or DSS Key Token
	CSFADSPI - Communication Between Services and Coprocessor
	CSFASEC - Check Authorization
	BuildParmBlock - Build a Parameter Block
	Cas_proc_retc - Prioritize Return Code
	FindFirstDataBlock - Search for Address of First Data Block
	FindNextDataBlock - Search for Address of Next Data Block
	find_first_key_block - Search for First Key Data Block
	find_next_key_block - Find Address of Next Key Data Block
	InitCprbParmPointers - Initialize CPRB Parameter Pointers
	keyword_in_rule_array - Search for Rule Array Keyword
	parm_block_valid - Examine and Verify a Parameter Block
	rule_check - Verify Rule Array

	Chapter 5. Function Control Vector Management Functions
	Header Files for Function Control Vector Management Functions
	Summary of Functions
	getSymmetricMaxModulusLength - Get RSA Key Length
	isFunctionEnabled - Check Whether a Function is Enabled

	Chapter 6. CCA Master Key Manager Functions
	Header Files for Master Key Manager Functions
	Overview of the Coprocessor CCA Master Keys
	CCA Master Key Manager Interface Functions
	Functions to Check Master Key Values and Status
	Summary of Functions
	mkmGetMasterKeyStatus - Get Master Key Status
	get_mk_verification_pattern

	Functions to Encrypt and Decrypt Using the Master Key
	Summary of Functions
	ede3_triple_decrypt_under_master_key
	ede3_triple_encrypt_under_master_key
	TDESDecryptUnderMasterKey
	TDESEncryptUnderMasterKey
	triple_decrypt_under_master_key
	triple_decrypt_under_master_key_with_CV
	triple_encrypt_under_master_key
	triple_encrypt_under_master_key_with_CV

	Chapter 7. SHA-1 Functions
	Header Files for SHA-1 Functions
	Summary of Functions
	computeHMAC_SHA1 - Compute HMAC using SHA-1 Algorithm
	do_sha_hash_message - Calculate SHA-1 Hash Hardware/Software
	do_sha_hash_msg_to_bfr - SHA-1 Hash
	hw_sha_hash_message - Compute SHA-1 Hash in Hardware
	sha_hash_message - SHA-1 Hash with Chaining
	sha_hash_msg_to_bfr - SHA-1 Hash

	Chapter 8. DES Utility Functions
	Header Files for DES Utility Functions
	Summary of Functions
	cas_adjust_parity - Adjust Parity
	CasBuildCv - Build a Default Control Vector
	CasBuildToken - Build a Default Token
	CasCurrentMkvp - Current Master Key Verification Pattern
	CasOldMkvp - Old Master Key Verification Pattern
	cas_des_key_token_check - Verify the DES Key Token
	cas_get_key_type - Return Key Type
	cas_key_length - Return Key Length
	cas_key_tokentvv_check - Verify the Token Validation Value
	CasMasterKeyCheck - Master Key Version Check
	cas_parity_odd - Verify Parity
	RecoverDesDataKeyWithMK - Recover DES Data Key
	RecoverDesKekImporterWithMK - Recover DES Importer KEK

	Chapter 9. RSA Functions
	Header Files for RSA Functions
	Summary of Functions
	CalculatenWordLength - Return Word Length of Modulus
	CreateInternalKeyTokenWithMK - Create Internal Key Token
	CreateRsaInternalSectionWithMK - Create RSA Internal Section
	delete_KeyToken - Delete a Key From On-Board Storage
	GenerateCcaRsaToken - Generate CCA RSA Key Token
	GenerateRsaInternalToken - Generate RSA Key Token
	generate_dSig - Receives RSA Key Token
	GeteLength - Return RSA Public Exponent Byte Length
	getKeyToken - Get a PKA Token From On-Board Storage
	GetModulus - Extract and Copy RSA Modulus
	GetnBitLength - Return RSA Modulus Bit Length
	GetnByteLength - Return RSA Modulus Byte Length
	GetPublicExponent - Extract and Copy Public Exponent
	GetRsaPrivateKeySection - Return Private Key
	GetRsaPublicKeySection - Return Public Key
	GetTokenLength - Return Key Token Length
	IsPrivateExponentEven - Verify RSA Private Exponent
	IsPrivateKeyEncrypted - Verify Private Key Encryption
	IsPublicExponentEven - Verify RSA Public Exponent
	IsRsaToken - Verify RSA Key
	IsTokenInternal - Key Token Format
	PkaHashQueryWithMK - Return Master Key Version
	PkaMkvpQueryWithMK - Return Master Key Version
	pka96_tvvgen - Calculate Token Validation Value
	RecoverPkaClearKeyTokenUnderMkWithMK
	RecoverPkaClearKeyTokenUnderXport
	ReEncipherPkaKeyTokenWithMK - Re-Encipher PKA Key Token
	RequestRSACrypto - Perform an RSA Operation
	store_KeyToken - Store Registered or Retained Key
	TokenMkvpMatchMasterKey - Test Encryption of RSA Key
	ValidatePkaToken - Validate RSA Key Token
	VerifyKeyTokenConsistency - Verify Key Token Consistency
	verify_dSig - Verify RSA Key Token Signature

	Chapter 10. CCA SRDI Manager Functions
	Header Files for SRDI Manager Functions
	Summary of Functions
	close_cca_srdi - Close CCA SRDI
	create_cca_srdi - Create CCA SRDI
	create4update_cca_srdi - Create CCA SRDI for Update Only
	delete_cca_srdi - Delete CCA SRDI
	get_cca_srdi_length - Get CCA SRDI Length
	open_cca_srdi - Open CCA SRDI
	resize_cca_srdi - Resize CCA SRDI
	save_cca_srdi - Save CCA SRDI
	update_cca_srdi - Update an SRDI Item
	Example Code

	Chapter 11. Cache Management Functions
	Header Files for Caching Functions
	Summary of Functions
	cache_clear
	cache_delete
	cache_delete_item
	cache_get_item
	cache_get_item_b
	cache_init
	cache_status
	cache_write_item

	Chapter 12. Miscellaneous Functions
	Header Files for Miscellaneous Functions
	Summary of Functions
	check_access_auth_fcn - Verify User Authority
	GetKeyLength - Get Length of Key Token
	intel_long_reverse - Convert Long Values
	intel_word_reverse - Convert 2-Byte Values
	TOKEN_IS_A_LABEL - Identifies the Token as a Label
	TOKEN_LABEL_CHECK - Determine if Key Identifier is a Label

	Appendix A. UDX Sample Code - Host Piece - Service
	Appendix B. UDX Sample Code - Host Piece - Service Stub
	Appendix C. UDX Sample Code - Host Piece - CSFPCI Post-Processing Exit
	Appendix D. UDX Sample Code - Coprocessor Piece
	Appendix E. UDX Sample Code - Workstation Host - Test Code
	Appendix F. Moving a UDX from the Model 1 Card to the Model 2 Card
	Master Key Manager Changes
	Makefile Changes

	Appendix G. Reserved Values
	Appendix H. Data Structures
	Structures Used in Communications Between NT Host and Coprocessor
	Data Structures for Caching Functions
	Other Useful Data Structures

	Appendix I. Notices
	Copying and Distributing Softcopy Files
	Trademarks

