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A major task of science is to develop theoretical constructs
that bring together many observed phenomena. Historical
examples of doing this include both ability and personality
research. In the former, the moderate to high correlations
observed among ability measures have led to the theoretical
construct of general intelligence. In the latter, the moderate to
high correlations among personality variables such as emo-
tionality and frustration have led to the theoretical construct
of anxiety (also called neuroticism). The construct validity
of these theoretical constructs has been examined by factor
analyses. Factor analysis is a statistical technique that repro-
duces the data by as few factors (potential theoretical
constructs or latent variables) as possible.

A popular current use for factor analysis is scale develop-
ment. When selecting a subset of the items for a scale, one
needs to know how many constructs might be measured from
the item pool and which items could measure each construct.
This information is provided by a factor analysis. The items
are factor analyzed to find the fewest number of factors that
can represent the areas covered by the items. The relationship
of each item to the factors indicates how it might be used in
measuring one of the factors.

Whereas a factor analysis might result in a scale to mea-
sure a theoretical construct in a future study, confirmatory
factor analysis and extension analysis in exploratory factor
analysis allow another option. Factor analysis can be used in
a new study to confirm or disconfirm the relationships be-
tween factors themselves or with other variables not in the
factor analysis. No sales or factor scores are needed.
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Although no factor analysis is ever completely ex-
ploratory—there is always an underlying theoretical model
by which the data are collected—some factor analyses are
primarily exploratory with no hypotheses, and others are pri-
marily confirmatory, specifically testing hypotheses. Both
types of factor analysis are examined in this chapter.

The purpose of this chapter is to provide a basic but com-
prehensive treatment of factor analysis. The intention is to
give the reader the background to read, appreciate, and cri-
tique research from a factor analytic perspective, whether it
be an article using factor analysis, an article using factor
analysis inappropriately, or an article that could be strength-
ened if factor analysis were used. While no particular statisti-
cal package is assumed, this chapter also provides material
needed to select the options for a factor analysis that are most
appropriate to the purpose of the study.

The chapter starts with the basic equations and definitions
of factor analysis. This section introduces the terms needed
to understand factor analytic models and variations in the
models. The second section of the chapter presents factor
models, including component analysis (CA) and common
factor ana1§‘iiz (CFA). CFA includes both exploratory
(ECFA) and cenfirmatory (CCFA) factor analysis. In addi-
tion, all of these variants can be used with correlated or un-
correlated factor models. Presented with each model is the
essential theoretical information to understand the model and
the essential practical information to use the model.

Rather than reviewing all the possible procedures that
could apply to each model, each section includes the
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procedures that now have sufficient empirical and theoretical
support to be the generally desired procedures for that model.
In some cases, however, there are still minor variations in
what procedure is used, and these are discussed with the
model to which the variations apply.

Although the last decades have led to clear choices of
some procedures over others for one or more models, several
areas in factor analysis still present major unsolved problems.
Three such problems are addressed after the models have
been presented. The first is the continuing debate between ad-
vocates of two types of exploratory analysis: components and
common factor. Second is the issue of how many factors to
extract from a particular data set. Third is the question of how
the factors in one data set can be related to other variables
that were in the data set but were not included in the factor
analysis, and how factors may be related across studies.

The concluding section points to elements of all good re-
search designs that need to be remembered in designing a
factor analytic study. Included in this section are discussions
of the need for high-quality variables and how many cases
are needed.

Three examples are used to illustrate factor analysis. The
first example is of six psychological tests for which the struc-
ture is easily seen in the correlation matrix (Gorsuch, 1983).
- Three of the variables are related to verbal ability and three to
anxiety. The second example is a case in which we know
what the factors should be: boxes (Gorsuch, 1983). Graduate
students took 10 measures from ordinary boxes they found in
their homes. Because these are all measures within three-
dimensional space, we expect the factors to be those three
dimensions: length, height, and width.

The third example uses the Canadian normative sample
for the Wechsler Adult Intelligence Scale-III (WAIS-III;
Gorsuch, 2000). The published correlation matrix among the
scaled scores form the basis of analysis. The factor structure
of the WAIS, and its children’s version, the WISC (Wechsler
Intelligence Scale for Children), have been extensively ana-
lyzed. (Detailed discussions of factor analytic topics are in
Gorsuch, 1983; when no other references are provided,
please consult that reference.)

BASICS OF FACTOR ANALYSIS

The purpose of factor analysis is to parsimoniously summa-
rize the relationships among that which is being factored, re-
ferred to here as variables, with a set of fewer constructs, the
factors. The analysis serves as an aid to theory development
and scale construction. The term variables is used because
most factor analyses are of scales and measures to which that
term is immediately applicable; however, other types of data,

such as people, can be used (see Gorsuch, 1983; Thompson,
2000).

Understanding is aided when several variables are found
to correlate sufficiently so that they are measuring the same
construct (i.e., factor). In the area of intelligence, for exam-
ple, scales with labels of vocabulary and similarities corre-
late highly together and can be considered manifestations of
verbal ability. Because vocabulary and similarities have been
found to relate to the same factor, theoretical development
may account for vocabulary and similarities simultaneously
by accounting for the factor.

Scale construction is aided when the correlations among
items show the items to fall into a certain number of clusters
or groups. In psychology of religion, motivation items, for
example, fall into groups of items representing an intrinsic
motivation (e.g., the main reason I go to church is to worship
God) and extrinsic motivations (e.g., the only reason to go to
church is to meet friends). The items fall into several groups
so that within a group the items correlate with one factor and
not with the other factors. Items can then be picked by their
correlations with the factors to form scales.

Note that there is little generalization across factors (be-
cause the variables of one. factor do not correlate with the
variables of another factor) and so factor analysis identifies

E QUalitatively different dimensions. Within a factor there is

generalization identified with quantitative differences (i.e.,
how each variable correlates with the factor).

In addition to the classical factor analysis of scales, there
are other uses of factor analysis. It can be used to reduce sev-
eral problems encountered in data analysis.

One problem in data analysis is the multiple collinearity
problem. This occurs when several scales that are designed to
measure the same construct are used in the same study. Such
scales correlate so well that it affects the statistics, such as
multiple correlation. First, with multiple collinearity, multi-
ple regression beta weights are unstable, and therefore are
difficult to replicate. Second, another degree of freedom is
used for each additional scale that measures what one of the
other scales also measures. Yet having the additional mea-
sures is desirable because they increase the overall accuracy
of the study. Multiple collinearity can be among either the in-
dependent or dependent variables.

A solution to the multiple collinearity problem is to factor

* the variables; then the factors are used instead of the variables.

The same domains are covered with the factor analysis as the
ones covered by the variables, and the factor analysis also
shows the overlap among the scales. The multiple collinearity
among the factors will be low.

Another problem with statistics such as multiple correla-
tion is that the regression weights have all the covariation



among the variables eliminated. It does this by partialing out
the other variables from the weights. The common—that is,
predictive variance that two or more variables have in com-
mon—may not be seen at all in the beta weights. Hence, a
muitiple regression can be significant even though none of
the weights are significant; it is the variance that the vari-
ables have in common that predicts the dependent variable.
The solution is to extract as many factors as there are vari-
ables and restrict the solution so that the factors are uncorre-
lated. These are then orthogonalized versions of the original
variables. When these are used as the predictors in a multiple
regression, all of the covariation is distributed among the
variables and appears in the weights.

Development of factor analysis as a statistical procedure
proceeds from the generalized least squares (GLS) model
used in regression and other least squares analyses. Assuming
all variables to be in Z score form for convenience, the model
is based on this set of equations:

X1 = wiaA; + wigB; + wicCi + wipD; + - - +uyy
Xiz = wa A; + wapB; + wocCi + wap Dy + -+ -+ upny
Xi3 = w34 A; + wap B + wicCi +wapD; + - -+ us3

Xiy = wyaA; +wypB; + wycCi + wypDi + -+ + uyy
6.1)

where, for the first line, X is the score for person i on variable
1, w is the weight for variable 1 for factor A, and A is the score
for person i on factor A. The equation shows factors A through
D and indicates that there may be more. Additional variables
are indicated, for a total of v variables in the analysis.

The last element of each equation, w, is that which is
unique to that particular variable, often called error or resid-
ual. Each u is in a separate column to indicate that each is dis-
tinct from any other u. There are as many distinct us as there
are variables. It is important to note that each variable’s
uniqueness (us) includes two sources of variance. First is ran-
dom error due to unreliability and second is that variance in
the variable that is not estimable from the factors.

When the preceding equation is solved for each dependent
variable, the multiple correlation of the factors with that vari-
able can be computed. In factor analysis, the square of that
multiple correlation is called the communality (h*) because it
is an index of how much that variable has in common with
the factors.

How high can the communality be? The absolute maxi-
mum is 1.0, because then all the variation of the variable
would be reproduced by the factor. But the psychometric
maximum is the variable’s reliability coefficient, which by de-
finition is the maximum proportion of the variable that can be
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reproduced from a perfect parallel form, although occasional
capitalization on chance may produce a sample communality
slightly above the reliability. (Note: The reliability referred to
in this chapter is always the reliability in the sample for the
factor analytic study.) Of course, the reliability gives the com-
munality only if all the nonerror variance is reproduced by the
factors. The more likely result is that the factors reproduce
only part of the reliable variance, and so the communalities
are expected to be less than the reliabilities. '

While Equation 6.1 gives the mathematical definition of
factor analysis in terms of the data matrix (X), the analysis
itself can, as in regression analyses, proceed mathematically
from the Pearson correlations among the variables. Factor
analysis can be presented as an analysis of correlations with-
out reference to actual scores, but that can be misleading.
Some techniques that proceed from the correlation matrix
(e.g., cluster analysis) have no direct mathematical relation-
ship to the observed variables. Factor analysis does; it is an
analysis of the observed data using correlations only as a con-
venient intermediate step. (Note that phi, Spearman rank, and
point-biserial correlations are all special cases of the Pearson
correlation coefficient and so are appropriate for factor analy-
sis. Although other coefficients, such as biserial correlations,
have been tried, they do not proceed directly from Equa-
tion 6.1 and can produce matrices that cannot be factored.)

Factor analysis could proceed from covariances instead of
correlations. If covariances are used, then the variable with
the largest variance is given more weight in the solution. For
example, if income were measured in dollars per year and
education measured in number of years spent in schooling,
the former’s variance would, being in the tens of thousands,
influence the results much more than would the latter, whose
variance would be less than 10. With social science data in
which the variances are arbitrary, weighting the solution to-
wards variables with higher variances is seldom useful. How-
ever, do note that correlations are affected by restriction of
range. When the range is less than is normally found with a
variable, the correlations are lower. When such restriction
does occur, the factor loadings will be lower than when the
range is larger. In such a situation, it is appropriate to either
correct the correlations for the restriction of range or use
covariances. Factoring covariances produces factor weights
that are the same despite restrictions of range. Howeyver, they
may, in addition to the inconvenient weighting, be more dif-
ficult to interpret because they are not in the range of —1to 1
as are correlations. The discussion here assumes that correla-
tions are being factored unless stated otherwise.

Table 6.1 gives a simple example of six variables (Gorsuch,
1983). The left part of the table gives the observed correlation
matrix, and the second part gives the factors’ correlations with
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TABLE 6.1 Factor Analysis of 6 Variables

r with Variables

r with Factors

Variable 1. 2. 3. 4. 5. 6. I 1L H
1. Information — .76 -.09 .59
2. Verbal ability .67 — .81 -.07 .66
3. Verbal analogies 43 49 — .58 -.07 34
4. Ego strength A1 A2 .03 — .06 -.67 .45
5. Guilt proneness -.07 -.05 -.14 —.41 — -.05 .59 35
6. Tension -.17 -.14 -.10 ~.48 40 — ~.12 .66 45
Note. Correlation between factors = —.14.

the variables. They show that the first three variables form one
factor and the second three form another. The reason the
communalities are small is because these are all brief forms
with low to moderate reliabilities in this sample.

The results of a factor analysis includes the degree to
which each factor relates to each variable. When a factor re-
lates to a variable, the common usage is to say that the factor
loads the variable. Loading refers to the relationship of a fac-
tor to a variable in general but not to one particular numeric
values. It is appropriate to use the term loading when one
wishes to refer to whether the factor contributes to a variable.
However, whenever a number is referred to, the type of factor
loading must be reported. Thus it is appropriate to ask Does
factor A load variable 3? and appropriate to respond Yes, it
correlates .58 with the variable. There are three types of fac-
tor loadings. First are the weights for each factor’s z scores to
estimate the variable z scores. Second are the correlations of
each factor with each variable. The last, and least used, is the
partial correlation of each factor with each variable with the
other factors partialled out. (These are discussed more in this
chapter’s section on correlated factor solutions.)

There is an assumption in least squares analyses of Equa-
tion 6.1, including factor analysis. Use of the model assumes
that each equation applies equally to each person. It is difficult
for these analyses to work well if the X is a function of Factors
A and B for half the sample but a function of Factors C and D
for the other half. Such may occur, for example, when there
are multiple ways in which the variable can be changed. Con-
sider a hypothetical situation in which children in poor com-
munities only receive high exam scores if they are innately
bright (because poor communities, we shall assume, cannot
contribute much to their scores). Then those in rich communi-
ties would receive high exam scores less related to innate
brightness because of the resources that led to a strong learn-
ing environment. Because different influences are at work in
different parts of the sample, the factor analysis will be an
averaged one and not represent either community well.

In factor analysis, the desire is to find a limited number of
factors that will best reproduce the observed scores. These
factors, when weighted, will then reproduce the observed
scores in the original sample and, in new samples, will

estimate what the observed scores would be if measured. Of
course, the reverse may also be of interest: using the observed
scores to measure the factor. But in the latter case, the factor
is measured not to estimate the observed scores, but rather to
generalize to other variables that also are correlated with the
factor. These two approaches are seen in the examples. The
boxes are analyzed to identify the factors: length, height, and
width. Knowing the factors, we can in the future just measure
length, height, and width directly and compute other vari-
ables such as a diagonal. The reverse is of interest in intelli-
gence testing; scales such as Similarities and Vocabulary
are used to measure verbal capability. Psychologists then
examine, for example, a person’s college grades in courses
demanding high verbal capability to see whether they are as
expected, given the person’s verbal ability.

Note that in factor analysis, only the observed scores, the
Xs in Equation 6.1, are known; the factor scores (A, B, etc.),
the weights (the ws), and the uniquenesses (us) are unknown.
With one known and three unknowns, it is mathematically
impossible to solve for them without further restrictions. The
restrictions adopted to allow solving for both factors and
weights are a function of the factor model.

FACTOR ANALYTIC MODELS AND
THEIR ANALYSES

To solve Equation 6.1 for both the factors and the weights,
restrictions must be made. The restrictions can be minimal or
extensive. The former—minimal restrictions—includes the
class of models known as exploratory factor analysis (EFA).
Mathematical principles are selected for the restrictions but
there are no restrictions that take into account any theory that
the investigator might have. The results are based solely on the
observed data. The latter—extensive restrictions—includes
the models known as confirmatory factor analysis (CFA).
Based on theory or past research, a set of weights is proposed
and tested as to whether the weights adequately reproduce the
observed variables. Note that restrictions are not necessarily a
dichotomy between minimal and extensive. Some forms of
EFA are more restricted than others and some forms of CFA



are less restricted than others. These variations arise out of
what the investigator is willing to or needs to specify.

Component Analysis

Component analysis (CA) restricts Equation 6.1 by dropping
the uniqueness term, u. Thus the interest is in factors (also
called components when using CA) that reproduce all of each
and every variable, and so have expected communalities of
1.0. Of course, CA users would never argue their variables
have reliabilities of 1.0 and so the actual maximum commu-
nality is generally much lower than 1.0. And CA users know
the variables will not have multiple correlations of almost 1.0
with the other variables (needed for the factors to have a mul-
tiple correlation of 1.0 with each variable). Therefore no vari-
able can, except by capitalization on chance, actually have a
communality of 1.0. But proponents feel CA gives, with solid
variables that correlate well, a reasonable approximation,
with negligible distortion from the ignored unreliability and
ignored multiple correlations less than 1.0.

Derivations easily show that the first step in all exploratory
factor analyses is to compute the correlations among the ob-
served variables. It is important to note that technically it is a
covariance matrix among Z scores that is being factored. The
main diagonal contains the variances—which are 1.0 by the
definition of Z scores. The off-diagonal elements are techni-
cally the covariances among the Z scores which, because
Z scores have variances of 1.0, are also the correlations among
the variables. Procedures mentioned below are then applied to
the correlation matrix to extract the components.

To extract factors from the data matrix, more restrictions
need to be made than just assuming the us are zero. The restric-
tions are mathematical and use one of two procedures. The
first, principal components, has the restriction that the first fac-
tor is the largest possible one, the second is the largest one after
the first has been extracted, and so forth for all the factors. The
second, maximum likelihood, adds the restriction that each
should have the maximum likelihood of that found in the pop-
ulation. The latter is more difficult to compute, but both are
quite similar—and both become more similar as the N in-
creases. It would be surprising if there were any interpretable
difference between these two procedures with a reasonable N.

The factors as extracted are seldom directly interpretable.
Hence the factors are rotated (a term which comes from a
geometric development of factor analysis; see Gorsuch,
1983, particularly chapter 4)—that is, are transformed to
meet some criterion while keeping the same communalities.
The usual criterion for rotation is simple structure, which can
be briefly defined as the maximum number of variables load-
ing only one factor with a side condition that these loadings
be spread among as many factors as possible. Table 6.1
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shows excellent simple structure. Each variable is loaded by
only one factor and each factor loads a distinct set of vari-
ables. Because rotation applies to all EFA methods but has
correlated and uncorrelated models in terms of how the fac-
tors are restricted, it is discussed further in the section of this
chapter entitled “Restricting to Uncorrelated Factors” after
the other EFA methods are noted.

CA is more parsimonious than are other models based on
Equation 6.1 in that the equations are simpler when the unique
term is dropped from Equation 6.1. One of the effects is that
factor scores can be directly calculated (which, as noted
below, is not true for the other major exploratory model, com-
mon factor analysis). These factors are linear combinations of
the observed variables that can serve as summaries of the func-
tion represented by the factor. Such factors appeal to those
who wish to stay close to the data and who philosophically
hold that all constructs are just convenient summaries of data.
(This is a discussion to which we return later.)

CA has been considered to be only an EFA procedure, with
no CFA version. That is true within the narrower definition of
factor analysis generally employed. But in terms of the model
of Bquation 6.1 and the logic of CA, a confirmatory compo-
nents analysis is technically possible. The problem is that no
significance tests are possible because the CA model has no
place for errors.

Common Factor Analysis

Common factor (CFA) models use Equation 6.1, including
the uniqueness term. Each uniqueness is the sum of several
types of variance not in the factor analysis. These include
random error (from unreliability and sampling error) and
residual error in the sense that part of the variable is unrelated
to the factors. The term unigueness is used for all error be-
cause the random error, sampling error, and that which can-
not be estimated from the factors can be considered unique to
each variable, In CFA models, the focus is on the commonly
shared variance of the variables and factors, hence the name
common factor analysis.

Having the uniquenesses in the equations requires as-
sumptions to restrict the analysis sufficiently for there to be a
solution. These assumptions parallel those of residual-error-
uniqueness in regression analysis. The uniquenesses are
assumed to be both

¢ Uncorrelated with each other.
s Uncorrelated with the common factors.

Because nontrivial uniqueness may exist for each vari-
able, the variance associated with the factors is reduced
for each variable. The variables’ Z scores have an original
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variance of 1.0, but the part of each variable’s Z scores that
can be accounted for by the common factors is 1.0 minus %2,
and so will be less than 1.0. The importance of this for CFA
is that the correlation matrix of the observed scores needs to
be altered to take this into account. This is done by estimating
the expected communality of each variable (because that is
the squared multiple correlation of the factors with that vari-
able and so is the variance of the reproduced variable) and re-
placing the 1.0 in the main diagonal of the correlation matrix
with the communality. This is appropriate because the matrix
is technically a covariance matrix, with the main diagonal
elements being the variances of the variables.

Common factor analysis generally attracts those who wish
to acknowledge the fact that all psychological variables have
error and who prefer a model that is consistent with other
methods of analysis, such as regression analysis and struc-
tural equations modeling. Factor scores, they originally felt,
were not an issue because the factor score estimates correlate
so high with the factors that the problem of factor scores’
being only close approximations is minor; now proponents of
common factor analysis suggest that factor scores are seldom
needed because extension analysis can be used instead, and
so the factor score issue is a moot question. (We return to the
issue of CA vs. CFA later in this chapter.)

Common factor analysis has both an exploratory and a
confirmatory model. An exploratory common factor analysis
(ECFA) is one in which the restrictions are minimal both in
number and in tegard to the investigator’s theories. It is an
inductive analysis, with the results coming from the data as

_undisturbed by the investigator’s thinking as possible. The
advantage of not specifying an expectation is that the analy-
sis is a multitailed test of any theory or expectation the inves-

~ | tigator might have. If the investigator’s expectations are

; found by ECFA, then they would certainly be found by a con-

._firmatory analysis. However, due to the lack of restrictions

and the complexities of the analyses, significance tests are
not available for ECFA, so large Ns are to be used to reduce
the need for significance tests.

Communalities could be calculated exactly if the factors
were known and vice versa: The factors could be calculated
exactly if the communalities were known. To cut this Gordian
knot, the communality can be estimated and then the factors
extracted. The observed communalities should differ only
slightly from the estimated communalities.

Communality estimation is readily done by several meth-
ods. The following are four:

¢« SMC: Use the squared multiple correlation (SMC) of all
other variables with that variable. This generally works
well and is independent of the number of factors.

* Pseudoiteration: Use anything as the initial estimate,
solve for the number of factors (see the following discus-
sion for how to estimate the number of factors), and cal-
culate the communalities from these factors. Then use the
observed communalities as new estimates of the commu-
nalities, extract factors again, and calculate the commu-
nalities from these factors. Continue the process until little
change is noted from one pass to the next or a maximum
number of passes has made. Note that this is not true iter-
ation. True iteration occurs when it has been proven both
that the iterated values necessarily converge and that they
necessarily converge to the right values. But neither nec-
essarily happens with pseudoiteration. Gorsuch (1974,
1983) has noted a case in which the process would not
converge, so the requirement for true iteration that the val-
ues converge is not met. The condition that they converge
to the right values is not met because they sometimes con-
verge to an impossibly large value. For example, in prac-
tice, communalities computed by this process often ex-
ceed 1.0. (Values greater than 1.0 are referred to as
Heywood cases after the author of the first published dis-
cussion of the situation. Actually, those using the criterion
of 1.0 to conclude the estimates are incorrect are opti-
mists; the actual upper limit for communalities are the re-
liabilities of the variables, which are almost always less
than 1.0. Thus, more violations of the upper limit occur
than just the Heywood cases.) The fact that the process
need not converge to values that are possible means this
process is not an iterative process in the mathematical
sense. In mathematics a procedure is iterative if and only
if it is found to converge on the population value. There-
fore the so-called iteration for communalities is only
pseudoiteration. Why is pseudoiteration widely used? I
suspect that there are two reasons. First, mathematical it-
eration is an excellent procedure, so iteration was cer-
tainly worth a try even though there is no mathematical
proof it meets mathematical criteria for iteration. Second,
when starting from 1.0 as the initial communality esti-
mate, we see that the first few pseudoiterations obviously
lower the communality estimates from the too-high value
of 1.0 to a more reasonable estimate.

* SMCs with two to three iterations: This procedure starts

with the SMC noted previously. Then the solution is iter-
ated two or three times and stopped. Although it is still a
pseudoiteration, it has never in my usage produced an
estimate over 1.0. Snook and Gorsuch (1989) found the
resulting communalities to not differ significantly from
the communalities designed into the study. This is a good
procedure.



« Minres analysis: This procedure minimizes the off-
diagonal elements while using no communality estimates.
Communalities result from the analysis. It is an excellent
procedure if exact communalities are desired.

Some of the concern with communality estimates has been
found to be an overconcern. Any reasonable estimate (plus
several other similar ones, including special adaptations of b.
in CFA) produces a final solution that is indistinguishable
from the others. This is probably the reason that Minres is
seldom used. ;

Note that the number of elements of the main diagonal of
the correlation matrix—which are replaced with the commu-
nality estimates—increases linearly with the number of vari-
ables, while the number of nondiagonal elements increases
much faster. For example, with six variables the communal-
ity estimates form 29% of the values being analyzed. With
30 variables, the communalities form only 7%. With 60 vari-
ables, the percentage is down to 4%. The impact of the com-
munality estimates becomes increasingly unimportant as the
number of variables increases.

In addition to the number of variables, a second parameter
that is important in evaluating the importance of the commu-
nality estimates is how high the communalities are. The
higher they are, the narrower the range of estimates for the
communalities. With higher communalities, it is less likely
that using a different communality estimation procedure
would result in an interpretable difference.

Table 6.2 contains communalities for the box, WAIS, and
psychological variable examples. They were computed from
three initial estimates, 1.0, SMC, and SMC plus two itera-
tions. The resulting communalities from the factors based on
each estimation procedure are given. (The 1.0 column con-
tains the actual communities from component analysis even
though they were assumed to be 1.0.)

For the psychological variables—where the communality
estimates are low to moderate and form 29% of the coeffi-
cients being analyzed—using 1.0 as the initial communality
estimate makes a difference, but there is little difference be-
tween the other two, initial estimates. In both the box and the
WAIS examples, the communalities are high, so the estimates
give quite similar results. Table 6.2 contains the factor load-
ings for the SMR plus the two-iterations solution for the six
psychological variables data set.

Any of the parameters of Equation 6.1 can be zero. Now
note what happens if the variables have high multiple corre-
lations with the other variables. As the multiple correlations
increase, the uniquenesses, us, approach zero. If they were
zero, then the us would drop out and it would be a CA.
Hence, CA is a special case of ECFA. An unrestricted ECFA
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TABLE 6.2 EFA Communalities Using Different Initial Values

Estimation: 1.0 SMR SMR + 2 Iterations
Psychological Variables (2 Factors)
1. 73 .55 .59
2. 1 .61 .66
3. .56 34 34
4. .65 41 45
5. 57 33 35
6. .64 41 45
Boxes (3 Factors)
1. 95 93 91
2. .96 93 .93
3. 93 97 .98
4. .96 .98 .98
5. 97 99 99
6. 98 98 .99
7. 91 90 .88
8. .87 .84 .82
9. .98 97 .97
10. .90 73 .68
WAIS-III (4 Factors)
1. .65 .59 .60
2. .70 51 .54
3. .76 42 46
4. 81 44 49
5. 19 .65 .66
6. .65 .52 .55
7. .69 40 43
8. .63 34 35
9. a7 .68 .69
10. .76 51 .56
1. .84 .74 717

will give CA if the variables have high multiple correlations
with each other. (It is for this reason that CA and ECFA are
part of the same statistical model even though it they may be
used for different purposes.)

As is the case with CA, ECFA proceeds by extracting
factors by principal or maximal likelihood methods. The re-
strictions are then changed in the rotation of the factors
(mentioned in the discussion of CA and discussed further
later in this chapter). For example, the rotation reduces the
number of factors loading each variable so that the relation-
ships will be simpler than if most factors loaded most
variables.

Confirmatory Common Factor Analysis

Confirmatory common factor analysis (CCFA) has been
developed and used within the common factor model. It
proceeds directly from equation 6.1 and includes the unique-
nesses. But unlike ECFA, which uses mathematical restric-
tions to gain a solution, confirmatory methods use theory to
develop appropriate restrictions.
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The restrictions can be placed on any or all of the follow-
ing of Equation 6.1:

+ The number of factors.
» The weights of a factor to reproduce a variable.
* The uniqueness for each variable.

* The means and standard deviations of the factor scores.
These are generally set to either Z scores (mean = O,
SD = 1) or the mean and SD of a particular variable.

It is possible also to place restrictions in addition to the ele-
ments of equation 6.1. The prime such restrictions are on the
following:

* The correlations (or covariances, if covariances are being
analyzed) among the factors.

* The correlations (or covariances) among the unique-
nesses. These are generally restricted to 0, but they can be
placed at other values. If non-zero, they can represent cor-
related method or errors.

The restrictions vary in the values that can be used. The more
useful variations are to restrict a parameter to 1 or 0. When
the means and standard deviations of the factors are set to 0
and 1, respectively, the factors are then Z scores. The correla-
tions among the factors are set to 0 to restrict the factors to
being uncorrelated.

The weights can be restricted in multiple ways. Here are
the usual weight restrictions:

* The most widely used weight restriction is to set some
weights to 0. This means that the variable is defined with-
out regard to that factor.

* A predefined weight may be used; this is useful in evalu-
ating whether the weights from another study are cross-
validated in the current study.

* Several weights can be restricted to being the same value,
with the value not predefined; for example, this is used if
one has two parallel forms of the same measure.

If the weight is unrestricted, then the factor extracted is
expected to have a nonzero weight on that variable, and the
investigator wishes to know if that is so. The number of re-
strictions must be sufficient to identify a unique solution.
Identification can be a problem in that no one has yet devel-
oped a formula to say when a unique solution is identified. It
has been impossible to give a specific answer because the
value depends on not just the number of restrictions but also
their location. However, a correlation-based CCFA is gener-
ally sufficiently restricted if each variable is only allowed to
be loaded by one factor and each factor has at least three

TABLE 6.3 Confirmatory Common Factor Analysis of
6 Psychological Variable Problem

Hypothesized ECFA Principal Factor CCFA Weights
Weights Weights (maximum likelihood)
I ? 0 77 0 T7* 0
2. ? 0 .87 0 .86* 0
3. ? 0 57 0 57* 0
4. 0 ? 0 -.70 0 ~.70%
5. 0 ? 0 .58 0 58*
6. 0 ? 0 69 0 70*
r=2 r=-12 r= —21%

Note. *p < .05. ? means the value is left free to vary.

such variables. Usually the computer program reports any
problems occurring that could be caused by insufficient
restricting, referred to as underidentification.

For a CFA example, consider the six psychological vari-
able example. From general psychological knowledge, we
would expect that any factor of the verbal ability measures
would not load the psychological distress variables, and vice
versa. Hence, the hypothesized pattern would have six values
set to zero. The other three values for each factor would be al-
lowed to vary (i.e., would be set by the program). The corre-
lation between the factors is unrestricted (see Table 6.3).

Consider just the first factor in Table 6.3. What the restric-
tions in the hypothesized weights say is that the last three
variables are not to be considered in the solution of that
factor. But it does not say how the weights for the first three
variables are to be found. What is needed is the factor that
best reproduces the scores of these three variables. Note that
this is the same question asked in ECFA, and the same
restriction is used so that a solution can be found: principal
Jactoring (maximizing the variance that is reproduced) or
maximum likelihood factoring (maximizing the variance with
the further restriction of maximizing the generalization to the
population). To illustrate this connection with ECFA, one
principal factor was extracted from the first three variables;
then, separately, one factor was extracted from the last three
using an ECFA program (communalities were started at reli-
abilities and then iterated nine times). That is the second part
of Table 6.3. It gives the weights for each of the factors to
reproduce each of the variables. Using extension analysis
(discussed later in this chapter), the correlation between these
two so-called exploratory factors was found to be —.12.

And what if a real CCFA is computed from these data?
Using the original maximum likelihood program for CCFA
gives the final two columns of Table 6.3. The very slight
differences may be a function of the differences between
principal and maximum likelihood factors or the number of
iterations for communalities. (It does illustrate how few



differences there can be between principal and maximum
likelihood factors.)

There is a warning in the use of CCFA: Changing the
parameters of the model after looking at the data may well
lead to a nonreplicable solution. The model needs to be set
before the analysis begins. If more than one model needs to
be tested, then all models need to be completely specified in
advance.

If a hypothesized CCFA model gives a less-than-desired
fit to the data, investigators occasionally make some adjust-
ments to produce a better fitting model. This is a dangerous
practice because it capitalizes on chance. The literature sug-
gests such changes often lead the model away from the pop-
ulation model, not towards it. None of the significance tests
nor the goodness-of-fit measures take this capitalization into
account. If any changes are made to improve the fit, the report
needs to explicitly state the original model, give the basis for
all changes, and warn that some capitalization on chance will
have occurred. It is recommended that a cross-validation
sample be used to test any model containing data-based
changes.

What is the advantage of a real CCFA over just extracting
factors from subsets of the variables? The answer is signifi-
cance tests. In Table 6.3, the CCFA found all the loadings to
be statistically significant. These significance tests are possi-
ble because the solution is sufficiently restricted to be mathe-
matically tractable.

Restricting to Uncorrelated Model Factors

The previous discussion of component and common factor
models fits the general case in which there are no restrictions
on the correlations among the factors. This is appropriate in
most cases because either the variables are all drawn from the
same domain, or how the domains relate is of interest. But
allowing for correlations among the factors adds some
complexity.

The simplicity introduced by uncorrelated factors is the
same as with uncorrelated predictors in multiple regression.
Multiple regression analysis simplifies if the predictors are
uncorrelated with each other. With uncorrelated predictors,

* The correlation of the independent variable with the de-
pendent variable is also its Z score weight, and its correla-
tion when all the other predictors are partialed out (the
partial correlation).

* There is no overlapping variance among the independent
variables, so the correlation is unchanged if one of the
other independent variables is partialed out or is not in the
equation.
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+ The multiple correlation is the square root of the sum of
the squared correlations of the independent variables with
the dependent variable.

In factor analysis, the factors are the predictors or independent
variables, the observed variables are the dependent variables,
and the communalities are the squared muitiple correlations
of the factors with the observed variables. Thus, with uncorre-
lated factors,

* The correlation of the factor with an observed variable is
also its Z score weight, and its correlation when all the
other factors are partialled out (the partial correlation).

* There is no overlapping variance among the factors, so the
correlation is unchanged if one of the other factors is par-
tialled out or is not in the equation. However, because the
uncorrelated restriction is applied to this specific set of
factors, dropping a factor from the solution can change the
weights.

* The communality is the square root of the sum of the
squared correlations of the factors with the variable. |

Because the correlation is equal to the weight and is equal to
the partial correlation, there is only one interpretation for the
term loading when the factors are uncorrelated. With corre-
lated predictors or factors, the three conditions previously
noted do not hold. Instead the beta weight (in regression
analysis; factor weight in factor analysis) differs from the cor-
relation, and those differ from the partial correlation (when
the other predictors/factors are held constant). The multiple -
correlation/communality is computed by a more complex for-
mula that takes the correlations among the variables/factors
into account.

In factor analysis with correlated factors, each type of
loading is put into a separate matrix. These have been named

* The factor pattern that contains the beta weights given to
the factor Z scores to reproduce the variable Z scores.

* The factor structure that contains the correlations of the
factors with the variables.

* The reference vector structure that contains the correla-
tions of each factor with the variables with all other factors
partialled out.

The factor pattern is generally considered to be the one to
interpret, but the other matrices can be of interest also. Often
the reference vector structure is clearer than that of the others
because the correlations of factors with variables solely due
to how the factors intercorrelate have been removed.



152 Factor Analysis

| Because uncorrelated factors are easier to work with, why
| not restrict all factor solutions to being uncorrelated? The
. answer is that it may lead to a misleading representation of
. the data. For example, ability scales are all generally corre-
lated together. This is true of the WAIS-III data; the lowest
correlation is .22 (Digit Span with Digit Symbol) but correla-
tions in the .50s and .60s are common. This is true not only
among the scales, but also among the IQ and Index scores.
Restricting to uncorrelated factors fails to inform us that the
abilities are highly related.

Solutions restricted to uncorrelated factors are also re-
ferred to as orthogonal, a term from the geometric represen-
tation of factors. In the same manner, unrestricted solutions
are also referred to as oblique. However, that term can be
misleading. It implies that the solution is restricted to having
correlated factors, which is not the case. Unrestricted rotation
is just that: unrestricted. Factors can and often are uncorre-
lated when unrestricted factor rotation is used,

Many procedures exist for rotating factors, but the deci-
sion usually is just whether the factors will, on an a priori
basis, be restricted to being orthogonal or will be unre-
stricted. If restricted, the program of everyone’s choice is
Varimax. For unrestricted rotation, there are several options,
with most giving reasonable solutions. Some such as Obli-
max have a parameter to set that influences the degree to
which the solution is forced towards orthogonality. The most
elegant unrestricted rotation is to start with Varimax, and then
use Promax to provide an unrestricted version of the Varimax
solution.! Like other unrestricted solutions, there is a parame-
ter to be set, referred to as k. Part of Promax’s advantage is
that the value of k is no longer a choice to be made because it
makes little difference . It can always set to 4. With this set-
ting, uncorrelated factors will result if appropriate, because
orthogonal rotation is a special case of unrestricted rotation.
~ Note that Promax may produce factors with correlations so
trivial that they can be treated as uncorrelated factors, as in
Table 6.1 in which the correlation was a trivial —.14. Milliron
(1996) found in a simulation study that Promax was good not
only for correlated factors, but also replicated the known factor
pattern better than Varimax did for factors uncorrelated in the
population. In the samples, Varimax had to slightly distort the
loadings to keep the factors correlating exactly zero, whereas
Promax allowed for chance correlations among the factors.

Occasionally there are unexpected results with Varimax.
Not only is an obvious general factor completely missed, but
also the zero correlations among the factors can disappear at
the next calculation. Several studies have used Varimax
and then estimated factor scores. The factor scores were
obviously correlated, indicating that the restriction could not
be applied through all the calculations because the restricted
rotation fit the data so poorly. Other studies have used the

orthogonal factors of a prior study in a new sample, only to
find the factors correlating .6 to .8. Highly correlated data
will not be denied. It is best to be forewarned about this situ-
ation by leaving the rotation unrestricted.

If the factors are correlated, then those correlations can be
factored (just as the original variable correlations were fac-
tored). The factors from the variables themselves are called
the primary factors, whereas those extracted from the primary
factors are called secondary factors; third-order factors would
be factors from the second-order factors, and so forth. All fac-
tors after the primary factors are referred to as higher-order
Jactors. Conceptually, the primary factors are more specific
than are the secondary factors and so should predict more spe-
cific variables better than do the secondary factors. With more
general variables, the secondary factors should predict better.
Using the results of a higher-order factor analysis and the de-
sired dependent variables, it is possible to show (Gorsuch,
1984) and even test (Mershon & Gorsuch, 1988) when the
primary or second-order factors are more useful.

An example of higher order factoring is the WAIS-IIL. The
primary factors are in Table 6.4. The four primary factors
were correlated, and a general second-order factor was ex-
tracted. This factor, the last column of Table 6.4, represents
the classical g, or general ability factor (IQ). The correlations
of the individual scales with g were computed by extension
analysis (discussed later in this chapter). It is g that has a long
history of relating to many areas of achievement.

TABLE 6.4 Higher-Order Analysis of the WAIS-III (Canadian)
First-Order Factors and Correlations of the Primary Factors

1. Verbal

2. Processing 3. Working 4. Perceptual g

Variables Comprehension Speed Memory  Organization
Arithmetic 25 .02 .38 26 .69
Block design -.08 A1 .03 70 .63
Digit span -.01 -.02 .70 -.01 47
Digit symbol .05 .69 .00 -.03 46
Information 75 -.05 .09 .04 63
Matrix reasoning 07 —.03 .05 .68 .64
Letter number —.03 .07 .61 .03 A48
cancellation
Picture .10 .01 01 .51 41
completion
Similarities .69 .05 -.08 22 46
Symbol search -.01 .68 .04 09 54
Vocabulary .85 .06 .03 ~.03 .66
Correlations of the primary factors
1. 1.00 44 .51 .67 73
2. 44 1.00 .50 .56 .65
3. 51 .50 1.00 .60 1
4. .67 .56 . .60 1.00 .85

Note. The first-order and second-order factors used SMRs plus 2 iterations
as communality estimates for the ECFA using principal factors extraction
and Promax rotation. The correlations of g (i.e., the general factor) with the
scales was by extension analysis (Gorsuch, 1997),



If one suspects that there is a general factor and CA or
ECFA is used, that general factor will usually be found if and
only if a higher-order analysis is computed from unrestricted
rotation.

Item analysis is probably the most common situation in
which a rotation restricted to orthogonality is misleading.
The author of a scale includes items that each measure the
underlying characteristic; then a total score is computed by
adding the items together. So the author is assuming that
there is a general factor—that is, one that loads all of the
items. What happens when the scale is factored? Because
factor analysis is a sensitive tool, it will take into account
the almost universal fact that some items will correlate more
highly with each other than with the rest of the items. There
are generally several subsets of items that correlate slightly
higher among themselves than with the other items because
they have the same distributions or use similar words. Then
several factors will be found. These factors may, for example,
be one for the easy items, one for the medium-difficulty
items, and one for the hard items. None of these factors will
be a general factor because, as in Table 6.4, the general factor
is found in the correlations among the factors. Varimax,
however, never allows such correlations to occur. The deci-
sion to restrict item analysis rotation to orthogonality is a
decision with major implications. It is far better to use
Promax, an unrestricted rotation, and see whether a general
factor happens to occur among the factors.

An instructive example can be drawn from the factor
analyses of the Beck Depression Inventory (BDI). Chan
(Gorsuch & Chan, 1991) ran analyses in Chinese and U.S.
samples, and computed the relationships of previous U.S. and
Canadian factor analyses to her factors. The table clearly
showed that (a) primary factors did not replicate, whether
within or across countries; (b) all primary factors correlated
highly; and (c) the second-order depression factor replicated
both within and across countries. That general factor is the
same as the total score. The prior studies missed this fact
because they only provided first-order analyses, and the erro-
neous conclusion from those would have been that there were
no replicable factors. Chan showed the correct conclusion to
be that there is one factor in the BDI, just as the author
designed it.

MAJOR UNRESOLVED ISSUES

In the previous discussion, suggestions have been made for
computing a factor analysis using reasonable and generally
accepted solutions. These include using Promax unrestricted
rotation. Also widely acceptable are squared multiple corre-
lations with two iterations for communality estimation
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(although pseudoiteration is most widely used, and is alright
until it gives communalities higher than the observed
reliabilities). But some major issues are currently being
debated with little common agreement on their resolution,
although there is evidence to evaluate the usefulness of dif-
ferent methods.

Two methods are used to evaluate the usefulness of a
factor analytic technique. These are simulation studies and
plasmodes (Cattell, 1978). Simulation studies start with a
population factor pattern and factor correlations as givens
(they are selected by the investigator to be sensitive to the pa-
rameter being investigated). The pattern and correlations may
be systematically varied. Then hundreds to thousands of
samples are derived using the population parameters, but al-
lowing chance variations due to sampling. These multiple
samples are analyzed, and the conditions under which the
selected parameters are best recovered are noted.

Plasmodes are data sets in which it can be reasonably
assumed that we know what the results should be. The
examples used in this chapter fit that category. The history
of psychology suggests that verbal ability and emotional dis-
tress are separate factors (the six psychological variables),
and who would question the need for factors of length,
height, and width to underlie boxes? The WAIS family of
ability measures, of which the WAIS-III Canadian data set is
one example, has a long history of factor analysis; the four-
factor solution presented previously was replicated with
multiple samples across both the WISC and WAIS. Which of
several competing factor analytic techniques most ably find
the expected results?

Although it is easy to vary parameters in simulation stud-
ies, there is always the question of generalization to the type
of data commonly analyzed. And although plasmodes are data
like those commonly analyzed, it is difficult to systematically
vary parameters. Hence, our discussion of the problem areas
relies heavily on both simulation studies and the plasmodes
already presented as examples in this chapter.

What is the final arbitrator of factor analytic methodology?
The ultimate arbitrator in science is well established: replica-
tion. Any procedure that produces replicable results is worthy
of consideration. If several procedures lead to replicable
results, then the choice is based on fit to the investigator’s
theory and situation. If there is still a choice, then parsimony
and elegance are the deciding factors.

Component Versus Common Factor Models for
Exploratory Factor Analysis

Both CA and CFA are used for EFA. Although the existence
of two models is not surprising, the level of debate has been
extensive. For detailed discussions of the pros and cons of
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these two models, see the special issue of Multivariate Behav-
ioral Research, 1990, Volume 25, Issue 1 (also see 1996, Vol-
ume 31, Issue 4 for discussion of indeterminacy per se).

In understanding this debate, it is important to note that all
procedures for CA and ECFA are the same except for one:
CA starts with 1.0 in the main diagonal of the correlation ma-
trix and CFA starts with a communality estimate (thus taking
into account the existence of variance unique to the single
variable). This is the only mathematical difference between
the two. Everything else is the same (which is why they are
both special cases of the general factor analytic model).

The Case for Common Factor Analysis

The rationale for CFA comes from Equation 6.1 and assump-
tions about data. Including the uniqueness term in the
equation makes it a CFA. The uniqueness term includes all of
the variable’s variance not associated with the factors, part of
which is random error. So, the CFA rationale goes, CFA
should be used whenever at least some reliabilities are less
than 1.0-—that is, whenever some variables contain any ran-
dom error. Of course, this argument runs, who can show, or
assume, that all their variables are without random error?
Where is the evidence for such variables in the social sci-
ences? And if we know the variables have error, is it not ra-
tional to build that into our mathematical models?

Dropping the uniqueness term also means that the factors
and only the factors underlie the scores for each variable.
Hence in the population, the communality is to be 1.0. This is
the justification for using 1.0 in the main diagonal of the cor-
relation matrix. This means that the multiple correlation of
the factors with each of the variables is also 1.0. Unfortu-
nately, the derivative is that the variables, being sets of linear
combinations of a fewer number of factors, will form a non-
Gramian correlation matrix. Such a matrix has an infinite
number of solutions and so cannot be factored at all. There-
fore, CA is a self-contradictory model. (The only reason that
CA works is that the model is wrong for the data—no two of
the variables being analyzed have a multiple correlation of
1.0 with the same factors, so none truly fit the model.)

Although component advocates raise the problem of esti-
mating communalities and factor scores, such estimates are
consistent and easily made. The variations on factor scores
are variations among scores that generally correlate .9 or
better in simulation and plasmode studies. This is much bet-
ter than in other areas. For example, major ability tests often
correlate .7 to .8, yet are seen as interchangeable. Also the
sorrelation between CA factor scores from one study to the
aext is much less than 1.0 and is probably no greater then that
Tom one CFA to another, so where is the added precision

TABLE 6.5 Component Analysis of 10 Variables: Promax
Factor Pattern

Factors
Variable 1 2 3
1. Length squared .34 -.72 .09
2. Height squared 57 —.26 -.14
3. Width squared 13 51 16
4. Length + width 49 -.12 26
5. Length + height .07 .61 —.06
6. Width + height 40 .18 .14
Inner diagonals
7.. Longest —~.24 —-.12 44
8. Shortest .59 .08 —.07
9. Space 10 —.04 —~.48
10. Edge thickness .26 -.02 .80
Note. N = 100.

from CA? And with extension analysis (discussed later in this
chapter), there is no need to compute factor scores because
the correlations of variables not in the factor analysis with the
factors can be mathematically computed.

The ECFA versus CA is a real question because the results
vary dramatically in a few special situations. Table 6.5 pre-
sents the results of a CA. Factor 1 has two to four good mark-
ers, Factor 2 has two excellent and one good loading, and
Factor 3 has one excellent and two moderate loadings. The
loadings are clear and both the author and the reader would
interpret them.

Unfortunately the matrix from which Table 6.5 was com-
puted has not a single significant correlation. Each and every
multiple correlation of one variable with the rest is, when
shrunken for capitalization on chance, zero. The high load-
ings come from the assumption that all the variance of each
variable is to be reproduced by the factors. Although this may
be an unusual case, ECFA is better at protecting the discipline
from such data than is CA.

There is also the principle of parsimony and elegance.
That mathematical model is more elegant when it accounts
for a wider range of situations. Equation 6.1 with the unique-
ness term is using the same model as regression analysis,
CCFA, structural equations modeling, and all other least
squares techniques. To introduce a new model is to reduce
parsimony and elegance among our statistical models.

The Case for Component Analysis

CA is more parsimonious because its equation is simpler.
That makes it easier to teach and easier to program.

But the major arguments for CA go beyond having a
simpler equation. One such rationale is a philosophical one.
Factors are abstractions from data that we make for our con-
venience, not to be reified into realities. Factors are just



TABLE 6.6 Component Analysis of WAIS-III Canadian Data

Components

Variables 1 2 3 4

Arithmetic 39 .04 .36 21
Block design —-.09 13 .02 .81
Digit span .00 —.06 91 -.04
Digit symbol .06 93 —-.04 -.08
Information 91 -.05 .04 -.03
Matrix reasoning .14 -.03 .04 71
Letter-number -.06 .06 .83 .01

cancellation

Picture completion —.01 -.09 —.07 .86
Similarities .80 .04 -.10 .16
Symbol search —.04 .82 03 12
Vocabulary 93 .04 -.01 -.04

that—convenient constructs that help our generation relate
to the data consistencies we find in our discipline. And be-
cause they are our constructs, we choose to define them by
the CA model.

Another rationale for CA is a set of pragmatics. One such
pragmatic is that using CA instead of CFA seldom makes
much difference. Many factor analyses are of 25 or more
variables with, if the study is designed well, reasonably high
communalities. In such cases, the results of CA and CFA lead
to the same conclusions. Compare the CA in Table 6.6 against
the CFA of Table 6.4. Is there really an interpretable differ-
ence? And in fact do not the high loadings stand out better
from the low ones in the CA?

Other rationales for CA arise as much from classical limi-
tations of CFA as from the CA model. A major limitation
arises from the communality problem. Because we never
know the communalities but only estimate them, there are a
set of solutions that fit the data equally well. And iterating for
communalities can produce Heywood cases.

As the communalities can only be estimated, the further
mathematical conclusion is that there are an infinite number
of factor scores that could be computed that would fulfill the
ECFA model equally well for any given data set (a result of
what is called the indeterminacy problem). With CA, the fac-
tor scores are a linear combination of the variables of which
there is only one set.

The Ongoing Debate

While the existence and use of two models is not surprising,
the level of debate is surprising. The results from both are,
except in special cases, quite similar. Table 6.7 gives the cor-
relations between the factors of CA and ECFA for the three
examples. Particularly instructive is the psychological vari-
ables example. It has the fewest variables and the lowest
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TABLE 6.7 Correlations Between Compenent Analysis and
Exploratory Common Factor Analysis Solutions

CA Solution

Psychological
Variables Boxes WAIS-HII

1. 2. . 2. 3 L 2 3 4

ECFA Solution

Psychological

Variables

1. 88 .20
2. ~.18 82

1. 99 67 65
2. 60 95 .62
3. 70 .74 96

WAIS-HI

1. 93 45 54 .68
2. 38 81 44 49
3. 42 43 81 52
4. 59 51 55 85

Note. ECFA was with SMRs plus 2 iterations for communities. Correlations
computed by extension analysis (Gorsuch, 1997).

communalities, which are the conditions under which the’CA
and CFA might be expected to differ. It seems that the repli-
cation of factors between CA and ECFA are good for the six
psychological variables and excellent for the other two data
sets. These are so high that we would be delighted to get them
if testing for replication from one sample to another within
either CA or CFA.

Personally, I had the good fortune both to study with a major
exponent of CFA (Cattell, 1978) and to work with a major ex-
ponent of CA (Nunnally, 1967), both scholars I respect highly.
The former was my mentor in graduate school; I was employed
by the latter to calculate all the examples for his book and gave
paragraph-by-paragraph feedback on it. (Nunnally returned
the favor by providing paragraph-by-paragraph feedback on
the first edition of my Factor Analysis; Gorsuch, 1974.) So 1
heard both arguments multiple times. And in following the di-
alogue for the past 30 years, the only major change seems to be
that the heat of the debate has increased.

Professional debates are good, but the search is (should
be?) for procedures that address the critiques of both sides. I
proposed such in the Multivariate Behavioral Research spe-
cial issue (Vol. 25(1); Gorsuch, 1990): image analysis. Image
analysis is a special case of common factor analysis, which
factors the part of the variable that correlates with the other
variables. Thus, it is oriented toward the common factors
(ie., factors that load at least two variables). The part that
does not relate to another variable is dropped from the model.
Thus, image analysis includes all that the supporters of ECFA
want. This should satisfy the proponents of ECFA. For the
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proponents of CA, image analysis answers their critiques of
ECFA because there is no communality problem and factor
scores can be calculated, not estimated. Thus image analysis
should satisfy both the common factor and component advo-
cates. Except for Velicer and Jackson (1990), this suggestion
was ignored.

Personally, I opt for CFA for two reasons. First, including
the uniqueness term means that the same equation is used for
factor analysis as is used for regression and SEM (structural
equations modeling). Second, a procedure should be as fail-
safe as possible, which means that loadings based on random
correlations (Table 6.5) should look low to reduce the chance
of believing there are significant loadings when there are no
significant correlations. The issues of estimating communali-
ties and estimating factor scores are, with contemporary pro-
cedures, trivial issues; the results correlate so highly that these
are not problems. I do find it interesting that CFA was the orig-
inal mode of factor analysis. Little if any consideration of CA
is found before 1960. Instead common factor analysis was as-
sumed and that was the only model presented. Insomuch as
component analysis appeared at this point, it was just a special
case of common factor analysis.

In 1960 computers entered psychology, but they were sim-
ple and slow. In illustration, the 1960 computer was slower
and had less memory than the first Apple personal computer.
Hence all programs had to be kept simple—very simple. It
was then Henry Kaiser at the University of Illinois introduced
the simplest complete computer package, called “Little
Jiffy.” It was doable in those computers because it was
CA and had no communality estimation procedure (pseudo-
iterated communalities would have literally taken too long
for students to run). In his later discussions of this, he indi-
cated that it was an oversimplified model. In 1970 (Kaiser,
1970) he introduced “A Second Generation Little Jiffy” but
then it was too late. The computer packages had already
picked up the runable “Little Jiffy” and that is still often the
default in major statistical packages. My personal opinion is
that the rationales for CA developed as a post hoc explanation
because so many used a computer package which had “Little
Jiffy” as the default. BUT NOTE: the origin of any construct
in science is not judged by its history but only by its merits.

An important point to me is that CA versus CFA is a minor
point with a reasonable number of variables and reasonable
communalities. They give the same conclusions regardless of
the philosophical or theoretical model the investigator wishes
to assume. Only with a limited number of variables is there a
difference, and then the best solution seems to be CFA be-
cause CA can make insignificant correlations into loadings
that appear major. Much more important are issues such as
variable selection, sample of cases, the number of factors to

extract, whether there is warrant to restrict the solution to un-
correlated factors, and whether to run confirmatory or ex-
ploratory analyses. Particularly important is underestimating
the number of factors (see the next section) and any decision
to restrict the rotation to uncorrelated factors.

Number of Factors Issue

In the proceeding discussions, the number of factors has been
assumed. That was to enable the major points of the models
to be presented. Unfortunately, there is no adequate way of
determining the number of factors in either exploratory or
confirmatory factor analysis. It is not for want of trying, for
numerous proposals have been made and numerous simula-
tions studies have been run (Velicer, Eaton, & Fava, 2000,
summarizes the results of the simulation studies for CA and
EFA). Generally, it is recommended that the user examine
several of the following procedures in setting the number of
factors.

The following tests are only a sample of the total available
and include the most widespread and those with the best sim-
ulation results.

Eigenvalue/Characteristic Root Criteria. From a cor-
relation matrix eigenvalues can be extracted (formerly the
common name for eigenvalues was characteristic roots,
which is why the criteria in this section use the term roots so
often). These have many characteristics, with the important
one (for the present purposes) being that they are the sum of
squared correlations of the variables with a principal or max-
imum likelihood factor. Each of these factors accounts for the
maximum amount of the variance of the correlation matrix.
They are extracted in order of size. Hence, the set of roots for
a problem gives the sizes of the extracted factors from the
largest to the smallest. (Note: Rotated factors have no roots;
the term and theory apply only to factors extracted from the
correlation matrix with 1.0 in the main diagonal because the
estimated communalities depend on the number of factors.
All were originally developed for the CF model.)

The roots for each of our examples are in Table 6.8. They
are ranked in order of size, and show the pattern typical of
roots of correlation matrices.

To put the roots into perspective, consider what the roots
would be if there were no factors at all. In that case, the cor-
relation matrix would have the variable correlations (off-
diagonal elements) all equal to zero while the diagonal
elements would be 1.0. A legitimate solution would be with
the first extracted factor loading the first variable 1.0, with all
other loadings being zero. This root, the sum of the squared
loadings, would be 1.0. The second factor would be the



TABLE 6.8 Roots for Example Problems

Extracted Psychological

Factor Variables Boxes WAIS-III
1 2.30 8.22 5.36
2 1.63 .78 1.06
3 il 39 .86
4 53 31 .80
5 .51 18 .64
6 32 .05 .60
7 — .03 43
8 —_ .02 40
9 — .02 35

10 — 01 .26

11 — — 23

second variable, with a loading of 1.0 and a root of 1.0. The
rest of the factors would follow the same pattern, and all roots
would be 1.0.

Roots Greater Than 1.0

Because all roots would be 1.0 in a matrix with no factors,
one suggestion is that any root greater than 1.0 will reflect a
value greater than zero in the off-diagonal elements and so
will be variance that can be attributed to a common factor. In
actuality, smaller roots may also reflect correlations, so tech-
nically roots greater than 1 is the minimum number of factors
to extract, but common usage treats it as the number of fac-
tors to extract. This has been the most widely programmed,
and so the most widely used, of all the criteria. Unfortunately,
the simulation studies have found it to be the prime candidate
for the worst criterion ever tried (Gorsuch, 1983; Velicer
et al., 2000). In our examples, it is only correct with the psy-
chological variables.

Parallel Analysis

The rationale of roots greater than 1 is for the population
matrix, not for a sample matrix. All sample matrices will have
random correlations that will produce roots greater than 1.
Parallel analysis consists of doing parallel analyses of ran-
dom data. They are parallel in that the same number of cases
and variables are used as in the factor analytic study, but they
consist of random data only. Fifty to 100 of these are run, and
the roots are averaged to show what the roots would be if the
data were only random. The roots always start over 1.0 and
then drop fairly sharply. The larger the N, the flatter the slope
of the roots. ‘

Tables (Lauhenschlagen, Lance, & Flaherty, 1989) have
been provided so that each person does not need to compute
multiple analyses of random data. Equations can also be used
(Velicer et al., 2000). In each of these cases, the parallelism is
established by having the same number of variables and
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cases. It may be more appropriate to base the parallel analy-
ses on matrices that also match the observed data in skew and
kurtosis as well.

All roots from the factors of the study that are larger than
the same numbered averaged random root are considered
valid roots. For example, for the psychological problem with
six variables and N = 147, the closest tabled values give the
first parallel roots as 1.2, 1.1, and 1.0. The first observed root
of Table 6.8 is larger than 1.2 and the second is larger than
1.1, but the third is less than 1.0. Therefore, parallel analysis
indicates that two factors should be extracted because there
are only two roots that exceed their randomly based equiva-
lent. For the box problem, it gives one factor instead of three.
The number of WAIS factors is also underestimated, giving
two instead of four. It has serious problems with small but
replicable factors. ‘

Simulation studies have found parallel analysis to be a :
prime candidate for the best procedure for estimating the
number of exploratory factors.

Scree Test

The scree test has a somewhat different logic for use of the
roots. It is assumed that the variables cover a domain of inter-
est and have at least moderately strong correlations. That
means the factors of interest should be noticeably stronger than
the factors of little interest, including random correlations. So
when the roots are plotted in order of size, the factors of inter-
est will appear first and be obviously larger than the trivial and
error roots. The number of factors is that point at which the line
formed by plotting the roots from largest to smallest stops
dropping and levels out.

The name is from an analogy. Scree refers to the rubble at
the bottom of a cliff. The cliff itself is identified because it
drops sharply. The last part of the cliff that can be seen is where
it disappears into the scree, which has a much more gradual
slope. Note that the cliff is still seen at the top of the rubble; in
the same way the number of factors includes the last factor
associated with the drop.

Following the suggested use of the scree test gives three
factors for the psychological variables and four for the boxes.
That is one more than are assumed to exist in these two data
sets. For the WAIS, the scree gives three factors, a number
that does not lead to replicable factors (Gorsuch, 2000).
~ The suggestion to define the number of factors as the first
factor among the trivial roots is what gives three factors for
the psychological variables instead of two. This has been
controversial in what some would see as extracting one too
many factors. That leads to the question of whether extracting
too many or too few factors would be more harmful. The
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simulation studies have found that extraction of one too many
factors seldom does any harm, but extracting one too few
distorts the factors that are extracted.

The extraction of an extra factor in the psychological vari-
ables leaves the first two with only minor changes and the
third factor has two small loadings in the .20s. The box prob-
lem is more interesting. The fourth factor brings in a variable
not loaded highly by the previous length, height, and width
factors: thickness of the edge of the box. The fourth factor
loads thickness highly, and also width to some degree. (There
is still a factor with width as its major variable.) It seems
that boxes in our culture are likely to be stronger if they are
wider, a finding that extends the understanding of this exam-
ple. Even so, the so-called extra factor does not seem to be
a handicap in that the first three factors are essentially
unchanged.

Simulation studies have generally found the scree test to
be one of the better tests. We assume that the scree plots were
by someone with training who knew nothing about how
many factors were designed into the study, but this informa-
tion is missing from most articles. (If the scree rater or raters
were not blind as to the number of factors, that would invali-
date the ratings.) Do note that it is often a choice between
several possible screes, and several investigators may come
to a different conclusion from the same roots. This suggests
that training may be usefully investigated in future simulation
studies.

Evaluation Via Plasmodes of Roots-Based Criteria

The three examples being used are plasmodes in the sense
that the actual number and nature of the factors are estab-
lished. The correct number of factors is two, three, and four
for the three examples.

Given the correct number of factors and the roots in
Table 6.8, it is apparent that both the criteria of roots greater
than 1 and the parallel analysis criteria are incorrect two out
of three times. The former always treat all roots less than 1 as
nonfactors and the latter usually suggests even fewer factors,
and yet two of the examples have clear and replicable factors
with roots less than 1. And the scree test suggests three fac-
tors for the first example, three or four for the second, and
three for the third, meaning it is correct for the first two
examples but misses the third.

With the different results for the simulation studies com-
pared to the three plasmodes here, what is to be concluded?
The most likely conclusion is that the simulations used fac-
tors stronger than those found in the last two examples. This
suggests that an assumption for the use of parallel analysis is
that the factors of interest are assumed to have loadings of .8

or so by at least two or three variables. That may be doable
in areas with well-established factors, but that is seldom
the case in exploratory factor analyses of little-researched
areas.

Two conclusions can be reached. The first is that simula-
tion studies should contain more small factors. The second is
that root-based criteria may be a dead end for procedures for
establishing the number of factors in EFA. (These conclu-
sions apply to both CA and CFA.)

Residual Based Criteria

The purpose of all models of factor analysis is to reproduce the
variables. The better that is done, the better the correlations
among the variables and the better the variable scores are re-
produced. When the reproduced correlation matrix is sub-
tracted from the observed correlation matrix, the result is
referred to as the residual matrix. In the perfect data set with
the perfect analysis, all of the residual correlations would be
zero. To the degree that the residuals are nonzero, then either
another factor is needed or these are the chance variations in
the correlations due to sampling error. A number of proposals
have been made for basing an index for the number of factors
on functions of the residuals.

Although the root tests have been for EFA number of fac-
tors, residual-based indices of the adequacy of the factors ex-
tracted have also been developed for CCFA. In the case of
CCFA, an index is evaluating not only the number of factors
(as in EFA), but also the adequacy of the specified factors.
Two different hypothesized patterns may produce sufficiently
different residuals so that one of the hypothesized patterns is
obviously better than the other. Hence, for CCFA the criteria
evaluate the total solution.

Statistical Significance

The residual matrix can be tested for significance. If the test
is significant, there is more nonrandom variance that can be
extracted. If it is nonsignificant, then the extracted factors as
a set account for all the correlations among the variables. As
with all significance tests, a larger N allows detection of
smaller differences.

The psychological variables whose CCFA is presented in
Table 6.3 also had a chi-square of 5.53 with df of 8. That has
a p > .10, so the residual matrix after the hypothesized two
factors had been extracted has no covariance that could be
considered nonchance. Hence, the conclusion is that these
two factors account for all the correlations among these six
variables. Note an unusual characteristic of testing the resid-
uals for significant: A nonsignificant result is desirable.



So the problems of predicting a null hypothesis occur, pri-
marily that there are many ways of getting nonsignificant re-
sults. These include having variables of low reliability and
too small an N.

The significance test of the residuals tests whether the ex-
tracted factors do account for everything. There is no other
commonly used test of significance that operates in this man-
ner; all others test whether the hypothesis accounts for some
of the variance, not all of it.

The significance test used gives a chi-square. Chi-squares
are additive, and two approaches to analyzing the goodness
of fit are based on this additivity. First, a suggestion has been
to divide the chi-square by the degrees of freedom, giving the
average chi-square (which is also F because df = 1). The ad-
vantage of the average chi-square is that it allows a compari-
son across models that have used a different number of para-
meters. The averaged chi-square for the six-variable example
is .69, because any chi-square/F this small shows no chance
of anything significant. It further reinforces the conclusion
that these two factors are sufficient to account for all the cor-
relations among the six variables.

The second use of chi-square, using the knowledge that
chi-squares are additive, notes that the chi-square can be
broken down to give a direct comparison between two mod-
els when one of the two models is a subset of the other. This
is useful because it changes the test from one that tests
whether we know everything to one that tests whether
adding the hypothesized factor helps. For example, the
WAIS began with two factors, Verbal and Performance. And
three factors is a solution suggested by the Scree test. Does
adding a third and fourth factor account for significantly
more of the correlations? That can be tested by running two
CCFAs, one for the two factors and one for the four factors
(which includes the same parameters for the first two factors
as the two-factor model). Each will give a chi-square; the
four-factor chi-square is subtracted from the two-factor chi-
square to give the chi-square of the two additional factors
(the df of the difference is computed by subtracting the
larger df from the smaller). The chi-squares and difference
for the WAIS are in Table 6.9. Using the difference chi-
square and the difference degrees of freedom allows a sig-

TABLE 6.9 Tests for the Adequacy of Fit in CCFA: WAIS-III

Chi-square RMS
Model df Value Chi/df Residual Square
Two factors 43 3244 7.52 051 .088
Four factors 38 232.1 6.11 .041 075
Chi-square 5 92.3

difference
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nificance test of adding the further specification. It does not
have the problems of the significance test of residuals,
wherein the test is of a null hypothesis. The difference in
Table 6.9 is highly significant, showing the four-factor solu-
tion to be better significantly than the two-factor solution.
But also note that, with the N of 1,105, even the four-factor
model does not account for all the significant variance. No
one has proposed more than four factors because they would
be so small that they could not be interpreted. Although a
chi-square test has been proposed for EFA, it has seldom
been found to be useful.

Size of the Residuals

Because both EFA and CFA are to reduce the residuals to
zero, measuring the size of the residuals is another method of
evaluating the adequacy of the factor solution. There are two
major approaches, one based on the residuals themselves and
another based on the results when they are converted to par-
tial correlations. The former is used with CCFA and the later
with EFA.

Two residual-based tests are given in Table 6.9 for.the
WAIS-III analyses. RMS can be interpreted as root mean
square because it is, roughly, the square root of the mean of
the squared residuals. Two varieties of this criterion are in the
table (Steiger & Lind, 1980); as can be seen, they generally
proceed in the same direction because both are related to the
same residuals. By these, it can be seen that the two addi-
tional factors do reduce the residuals. (Bentler & Bonett,
1980 give another set of useful indices for CCFA; for
overviews of the many indices available for CCFA, see
Bentler, 1989.)

An index of the residuals in EFA is Velicer’s MAP (mini-
mum averaged partial). Instead of using the residuals, MAP
standardizes the residuals by converting them to partial cor-
relations by dividing by the variances of the two variables
involved (the residuals are the variances and covariances
with the factors partialled out). These are then, in the origi-
nal MAP, squared and averaged. The logic is that each factor
that accounts for covariation among the variables will reduce
the residual covariances. As long as the main diagonal ele-
ments remain relatively stable, then each factor extracted
will lower the averaged partial. But when a factor is ex-
tracted that is based less on the covariances, then it will be
more specific to one variable and lower the variance (in the
main diagonal) of that variable. Because this is divided into
the residual covariance, dropping the variance without drop-
ping the covariance increases the partial correlations for that
variable. So the minimum averaged partial is used for the
number of factors. Minor shifts in MAP suggest that two
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solutions are about the same. The principle noted previously
that one too many factors is better than one too few suggests
that the minimum with the greater number of factors be cho-
sen. MAP is still evolving in that a version that raises the par-
tial to the fourth power (instead of the original second power)
is being tried. Evaluative studies suggest it is often helpful
(Velicer, Eaton, & Fava, 2000).

The MAPs for the three examples were computed (using
the fourth power). For the six psychological variable data, the
first three MAPs were .03, .03, and .11, thus giving two fac-
tors. For the box data, the five MAPs were .07, .08, .11, .07,
and .11, thus suggesting four factors. For the WAIS-III, they
were .002, .002, .008, .027, and .061, suggesting two or three
factors.

Simulation studies are supportive of MAP in its fourth-
power form, but it misses the WALIS factors by suggesting one
too few.

How to Select the Number of Factors

The procedures noted previously are typical of the possibili-
ties for establishing the number of factors. Dozens of others
have been suggested. As yet, they provide no clear solution to
deciding the number of factors. For example, parallel analy-
sis has been one of the best in the simulation studies and yet
was clearly inadequate in the plasmode examples used in this
chapter. What, then, shall be done?

There are two principles that can guide in establishing the
number of factors. First, the prime criterion is the replication
of the factors. The fact that the WAIS-III four-factor solution
has been often replicated in children and adults and in the
United States and in Canada is the convincing rationale for
the number of factors. What the criteria for the number of
factors suggest is much less important than whether the fac-
tors can be replicated. The replication of EFA results can

TABLE 6.10 Alternate Solutions for the Box Data

occur through a CCFA in a new sample as long as it is ac-
cepted that the CCFA will not help in the development of the
model, only in its confirmation. More impressive is the con-
firmation of the EFA factors in new EFA analyses. EFA pre-
sents the best possible solution regardless of past results,
whereas CCFA analyzes whether the hypothesized solution is
one appropriate solution (there could be others, some even
better). Both types of confirmation are useful.

The second principle for establishing the number of fac-
tors is the interest of the investigator. In the WAIS data, one
factor gives g, general intelligence, which has been histori-
cally of considerable usefulness. Two factors gives the classi-
cal Verbal and Performance IQs. And four factors adds two
smaller factors that may be of special interest to some inves-
tigators, but without rejecting the other two factors.

Consider the three solutions for the box data in Table 6.10.
The one-factor solution is technically good. The factor, Vol-
ume, accounts for a surprising amount of the variance. It
seems that the prime difference among boxes graduate stu-
dents had available to measure was overall size. The three-
factor solution is as expected: length, weight, and height.
"That also is a good solution. With the four-factor solution, the
factors are length, thickness of edge, height, and width. This
also could be a useful solution. It depends on the context of
the study and the investigator’s intent as to which solution is
preferable.

In the two examples that can have different numbers of
factors extracted, nothing is lost by going to the solution with
the greater number of factors. The four-factor box solution
still contains length, height, and width factors, and the vol-
ume factor occurs at the second-order level. The four-factor
WAIS solution still contains verbal and performance types of
factors, with g occurring at the second-order level.

It appears that taking out more factors and doing a higher-
order analysis is the best answer to the number of factors.

Factor Solutions

Variable 1 Factor 3 Factor 4 Factor
1. Length squared .84 1.02 -.08 -.02 1.07 .01 -.03 -.07
2. Height squared .85 .05 17 81 .05 15 .83 .03
3. Width squared .85 .02 .98 .01 -.03 .67 .03 51
4. Length + width .96 73 46 —.13 .64 27 -.12 .38
5. Length + height 96 .69 —.04 A3 .66 -.01 45 .00
6. Width + height .96 18 58 41 11 77 12 ~.01
Inner diagonals
7. Longest 92 74 18 A1 .68 A1 12 17
8. Shortest 91 49 27 .26 .36 .05 29 41
9. Space 97 76 15 .16 .66 .03 .18 26
10. Edge thickness 74 .03 1 14 A1 17 12 —-.01

Note. The values greater than 1.0 are because the loadings are weights, not correlations, and the factors have high

intercorrelations.



Rotate several different numbers of factors with only causal
use of the criteria suggested for the number of factors. Repli-
cation will ultimately decide which factors are useful.

My current conclusion is that the appropriate number of
factors is, and will be for the immediate future, a semisubjec-
tive decision—partially because our attempts to create a
universal rule for the number of factors has failed so far.
Investigators may well rotate several different numbers of
factors and pick the one that they feel is most interpretable,
just so long as it has a greater, rather than lesser, number of
factors. Indeed, it may be desirable to report the several solu-
tions that replicate. However, this position means that one
can never say that one number of factors is the only number
that can be, just that it is one of the possible replicable solu-
tions. In the WAIS-III data, one factor gives g, two factors
give the classical verbal and performance, three factors are
not replicable, and four factors give verbal, perceptual orga-
nization, working memory, and processing speed. Which
solution is best depends on the work at hand, but only the so-
lution with the greater number of factors and a higher-order
analysis gives the total story.

Relating Factors
Relating Factors to Other Available Variables

Not all variables that may be available from the sample
should be included in a factor analysis. Nonfactored variables
may be from another domain or have correlated error with
variables being factored (as when scoring the same responses
two different ways). How do the factors relate to other data
available from the sample but that have not been included in
the factor analysis?

There are several major reasons for relating factors to
variables not in the factor analysis: Some variables cannot be
included in a factor analysis. First, variables that are a linear
combination of other variables cannot be included (principal
factor and maximum likelihood extraction methods give an
infinite number of solutions if a linear combination is in-
cluded). An example is the total score from a set of items. The
total score is a linear combination of the items and so must be
excluded. Second, any variable that has correlated error with
another variable would adversely affect a factor analysis.
One example is scoring the same items for several scales. An-
other example is including the power of a variable to test for
curvilinear relationships, which has correlated error with the
original variable. The correlated error can be modeled in a
CCFA but not in an exploratory factor analysis. The relation-
ship of factors to total scores, scores that have one or more
items in common, and powers of variables can only be ana-
lyzed using extension analysis.
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Nominal variables cannot be included in a factor analysis,
but how the factors relate to such variables may be of inter-
est. Whether the nominal variable be gender, ethnicity, exper-
imental versus control groups, or some other variable, the

relationship of nominal variables can be statistically analyzed
by extension analysis.

What is the relationship of the factors to ordinal or better
variables excluded from the factor analysis? Is a factor re-
lated to age or education? Assuming that one is not interested
in an age or education factor, it is more appropriate to use ex-
tension analysis than to include such variables in the factor
analysis.

The need to relate to other variables also occurs when a
factor analysis is computed to reduce multiple colinearity or
to orthogonalize a set of variables. If the factors are of the in-
dependent variables, then those factors need to be entered
into the appropriate statistical analysis to relate them to the
dependent variables, which were not in the factor analysis. If
the dependent variables were factored, then these factors
need to be related to the independent variables. If both
independent and dependent variables were factored, then the
independent variable factors would be tested to see how they
correlate with the dependent variable factors.

Another need for extension analysis is in evaluating
proposed scales from factor analysis. The factor analysis
identifies the dimensions or constructs that can be measured.
It also provides the correlations of each item with each factor.
Items are then selected for a proposed scale for Factor A
from those items that correlate highly with Factor A but not
with the other factors. The item set for the scale would con-
tain those that show the highest correlation with the factor—
that is, have the highest factor validity. In practice, the first
several items for a proposed scale are obvious due to their
high correlations. But does adding a moderately correlated
item increase or decrease the factor validity of the proposed
scale? That question is answered by scoring the items to mea-
sure the factor both without and with the moderate item to de-
termine which version of the proposed scale gives the highest
factor validity. The set of items with the best factor validity
with Factor A is then recommended to be the scale to measure
Factor A. (Note that this cut-and-fit item selection method
requires a large N to avoid capitalizing on chance, and the
observed factor validities will shrink when computed in a
new sample. A cross-validation sample is recommended for
reporting factor validity correlations.) Relating factors to
variables not in the factor analysis is called extension analy-
sis because it extends the factors to new variables. The older
procedure for extension analysis has been based on comput-
ing factor scores (formulas can be used so the actual scores
need not be computed), and then analyzing these factor
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scores with the extension variables. There are several meth-
ods for computing factor scores, but the choice is usually be-
tween only two variations. The first is multiple regression
analysi‘s. The variables loaded by a factor are the predictors
and the factor is the dependent variable. The regression
analysis provides the beta weights, which are then used to
calculate the factor scores. However, regression weights have
the bouncing beta problem: Unless the sample is over 400,
they bounce around when a new sample is collected or when
the variable mix is changed slightly.

The instability of beta weights has led to the other recom-
mended procedure for computing factor scores: unit weight-
ing. Unit weighing is defined as adding together the scores
of the variables that have high weights in the multiple regres-
sion from the variables to the factors, after the variables have
been converted to the same metric, e.g., Z scores. Each of
the variables clearly related to the factor is weighted +1 if the
weight is positive or —1 if the weight is negative. With sam-
ples less than 400, unit weights have higher factor validities
when cross-validated than do multiple regression weights
(due to the latter’s capitalization on chance).

Factor scores have problems. In addition to indeterminacy
of CFA scores, each variable weighted in the scoring equation
has its unique part added to the score as well as the part
loaded by the factor. This is the same problem that occurs
when the items are correlated with the total score from the
items. The item-total correlations are inflated because that
part of the item not measuring the construct is included both
in the total score and in the item. To avoid correlations in-
flated by correlated error, item-remainder correlations have
been suggested. Correlating the item with a total score from
the remaining items eliminates the inflated correlation. How-
ever, it also ignores the valid part of the item that should be
part of the total score, and so gives an underestimate of the
correlation, The same is true with factor scores: Items or vari-
ables contributing to that factor score will have higher corre-
lations due to the shared error.

In the past, extension analysis has been by factor scoring,
even when called extension analysis. For that reason it has
the problems previously noted for variable-factor score (or
item-total and item-remainder) correlations.

However, a new extension analysis procedure has been
developed without these problems (Gorsuch, 1997). The
new extension analysis can find the effect size and signifi-
cance levels between factors and any variable collected from
the same sample but not in the factor analysis. These may be
variables such as gender or age and age squared to check for
curvilinear relationships with age. For item development, it
gives the factor validity of any proposed scale (without infla-
tion from correlated error).

e

Extension analysis allows factor analysis to be used as a
scoring procedure. The dependent variables (or the indepen-
dent variables, or both) can be factored and then the other
variables of interest related directly to the factors.

Extension analysis is only available at this time in one
statistical package (Gorsuch, 1994). However, a detailed
example in the original article (Gorsuch, 1997) shows how it
can, with patience, be computed even with a hand calculator.

Relating Factors to Prior Studies

Do the factors of Study B replicate those of Study A? This
question is addressed by CCFA, which applies when the vari-
ables are the same in the two studies. The test is of the over-
all solution.

But not all situations can be solved by CCFA. What if only
part of the factors are included in the new study? Or what if

* the population sampled is so different that new factors could
. occur and that would be important information? In these
' types of situations, some prefer another EFA as a multitailed

test that allows unexpected factors to occur. Then it is appro-
priate to use a factor score procedure. The factor score
weights from the first sample are used in the new sample to
produce first study factor scores. They are correlated with the
new study factors through the Gorsuch extension analysis
(not by new study factor scores because they would have
correlated error with the first study factor scores and so
have inflated correlations). This extension analysis extends
the factor analysis of the second study to the factor scores
created with the weights from the first study.

The only appropriate measure of how factors relate is how
they correlate. (Coefficients of congruence remain a poor
choice and cannot be recommended except in rare cases
when no estimate of the factor correlations is possible.)

RELEVANT RESEARCH DESIGN PRINCIPLES

The preceding discussion has dealt with the general models
and proceedings for factor analysis, whether it be by compo-
nents or maximum likelihood, exploratory or confirmatory
methods. There are, however, some aspects of crucial impor-
tance that have not been directly germane to the specifics of
the discussion to this point. These are mostly the same issues
as in any research study and can be summarized briefly.

The variable and case sampling are crucial to a quality so-
lution. Here is a remainder of aspects to be noted for a factor
analysis that hold true of all good research studies:

+ Each variable should be interpretable so that a factor’s
loading or not loading is meaningful.



« The higher the reliability of the variables, the higher the
correlations and the communality.

« The higher the validity of the variables, the more mean-
ingful the results.

« For significance testing, uniqueness scores should be nor-
mally distributed.

Variables should have similar distributions in the sample for
maximum correlations. They need not be normally distrib-
uted, but a variable with a skew incompatible with the major-
ity of the other variables should be avoided.

All variables need to have some cases that score high and
some that score low. Normal distribution is fine, but it is not
desired if it obscures true highs and true lows. This avoids re-
striction of range, which lowers observed correlations and so
weakens the factor structure. The sample size needs to be
large enough for stable correlations. Before the plasmode and
simulation studies, the best guess was that the N needed
would be a function of the number of variables being ana-
lyzed. Unlike multiple regression analysis and many previ-
ous discussions (e.g., Nunnally, 1967; Gorsuch, 1974, 1983),
factor analytic accuracy appears to be relatively independent
of the number of variables (with the exception that, for math-
ematical reasons, the total N must always be larger than the
total number of variables). However, both plasmode and sim-
ulation studies suggest that the N and the purpose of the study
are crucial. The N gives the stability of a correlation, and sta-
bility increases as the square root of the N decreases. A zero
correlation with an N of 100 has a standard error of .10, 150
is .08, 200 is .07, 300 is .06, and 400 is .05. This is a reason-
able guide to sample size. Because the purpose of a study is
generally to distinguish between observed correlations of .30
and .40, for example, the safe sample size is 400. If one just
wishes to determine which correlations are different from
zero and is only interested in correlations .30 and higher, an
N of 150 is reasonable. A larger sample is needed for item
factor analysis because one needs to differentiate between
correlations differing by only .10 (N = 400) and to reduce
capitalization on chance in item selection.

The number of variables that each factor is expected to
load should be in the range of three to six. Fewer than three
variables makes a factor difficult to define, so using four to
six is better. Simulation studies have suggested more vari-
ables be used, but these are only when there are available new
variables that are truly different from the original ones, ex-
cept for being loaded by the same factors. Experience sug-
gests that such a situation seldom occurs, and the variables
added after the first six lead to minor factors.

More than six variables can lead to problems due to the
sensitivity of factor analysis. In EFA, a factor with more than

~
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six variables often gives two subfactors. Unless the factors
are restricted to being uncorrelated (in which case there is no
recovery), the factor of interest tends to be recovered as a
higher-order factor. That higher-order factor may relate well
to another analysis which, using fewer variables, finds the
factor among the primary factors. In CCFA, more than six
variables per factor often leads to statistically significant
residuals—even when they are not relevant—due to minor
factors found within the six variables.
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The purpose of this chapter is to provide a review of the cur-
rent state of knowledge in the field of clustering and classifi-
cation as applied in the behavioral sciences. Because of the
extensive literature base and the wide range of application
areas, no attempt or assurance can be made that all domains
of study in this area have been covered. Rather, the main re-
search themes and well-known algorithms are reviewed. In
addition, the chapter includes a survey of the issues critical to
the analysis of empirical data with recommendations for the
applied user.

Clustering and classification methods as discussed here are
within a context of exploratory data analysis, as opposed to
theory development or confirmation. Some methods or strate-
gies useful for theory confirmation are included as appropriate.

One difficulty in this area is that no unifying theory for
clustering is widely accepted. An interesting result in the field
of clustering is that the standard statistical assumption of
multivariate normality as a basis for the derivation of such
algorithms has not automatically led to a superior cluster-
ing procedure. Because of derivational difficulties and empir-
ical experience with various approaches, we have today a
plethora of methods. Some of these methods work well in
certain circumstances, and some of these appear seldom if
ever to work as intended. Often, applied users of the method-
ology are unaware of various issues concerning the perfor-
mance of clustering and classification methods.
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A second problem faced by researchers new to the field is
that the literature base is indeed vast and spans virtually all
fields of human endeavor. The Classification Society of
North America is now in its third decade of publishing an
annual bibliographic review called the Classification Lit-
erature Automated Search Service (Murtagh, 2000). Each
issue includes references of upwards of 1,000 scientific
articles.

The wide range of application areas creates an additional
problem for the applied researcher. Reading scientific articles
and textbooks outside of one’s own area of expertise can be
difficult yet essential to get a good mastery of the topic. Some
of the best work in this area has been published in engineering
and the biological sciences in addition to outlets normally
used by the social sciences community. The reader will see
the diversity of disciplines represented in the references sec-
tion for this chapter. It is useful to note that much of the
development of this methodology has appeared in applied
journals and less so in the mainstream statistical and mathe-
matical journals.

This chapter continues with a section on data preparation,
data models, and representation, including a discussion of dis-
tance and similarity measures. Three illustrative applications
of classification methods are presented in turn. A section on
clustering algorithms covers a wide range of classification
methods. In addition, this section includes a discussion of the
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recovery performance of clustering methods. The fourth
section covers a variety of issues important for applied
analyses such as data and variable selection, variable stan-
dardization, choosing the number of clusters, and postclassi-
fication analysis of the results. The chapter concludes with a
section that covers a variety of extensions and issues in
classification.

DATA PREPARATION AND REPRESENTATION

The basic data for input to a cluster analysis can consist of
either a square or rectangular matrix, with or without replica-
tions. For a typical cluster analysis scenario, assume there is
a matrix of n objects measured on m features. Depending on
the context, the objects have been denoted in the literature as
items, subjects, individuals, cases, operational taxonomic
units (OTUs), patterns, or profiles, whereas the features have
been denoted variables, descriptors, attributes, characters,
items, or profiles (Legendre & Legendre, 1998). Thus, the
reader of multiple articles must be careful in interpretation, as
the same terminology has been used in the literature to refer
to both the n rows or the m columns in the data matrix, de-
pending on the specific context of the classification problem.

While is it possible for a cluster-analytic approach to ana-
lyze the data in the rows and columns of the rectangular matrix
directly, it is more typical first to transform the n x m rectan-
gular matrix into an n X n symmetric proximity matrix. Each
entry x;in the transformed matrix represents either similarity
of item i to j, in which case we call it a similarity matrix, or the
dissimilarity of item i to j, in which case we call it dissimilarity
or distance matrix. Alternatively, one could convertthe n x m
rectangular matrix to an m X m symmetric matrix to measure
the similarity between features. Sneath and Sokal (1973)
denoted the analysis of an n x n matrix R analysis, whereas
the analysis of an m x m matrix was denoted Q analysis.

It is also possible to collect similarity or dissimilarity mea-
sures directly. For example, Shepard (1963) uses a confusion
matrix (Rothkopf, 1957) for the identification of Morse code as
an indication of the perceptual similarity of each pair of codes.
A matrix entry x,, would indicate how many times the trans-
mitted code for letter a is perceived as letter b. Note that such a
matrix would most likely be nonsymmetric. Thus, the re-
searcher would first want to construct a symmetric matrix
through the average or weighted average of the two cells x,, and
x,,» unless the clustering method explicitly represents asymme-
tries in the solution (Furnas, 1980; Hirtle, 1987; Okada, 1996).

Carroll and Arabie (1980, 1998) denote the n x n matrix
as two-way, one-mode data, whereas the n X m matrix is re-
ferred to as two-way, two-mode data. That is, the number of

ways reflects the number of dimensions in the data set, while
the number of modes reflects the number of conceptual cate-
gories represented in the data set. Examples of two-way, one-
mode data include confusions, correlations, and similarity
ratings (in psychology); frequency of communication be-
tween individuals (in sociology); or the subjective distance
between locations (in behavioral geography). Examples of
two-way, two-mode data include individual responses to
questionnaire items (in psychology), n specimens measured
on m characteristics (in biology), or ratings of products by
consumers (in marketing). This terminology can be extended
to include three-way, two-mode data, for which two-way,
one-mode data is replicated for individual subjects or groups
of subjects. Examples of three-way, two-mode data include
individual ratings of similarity (in psychology), or the buying
patterns of consumer groups (in marketing).

Ultrametric and Additive Inequalities

The results of classification analyses are often represented
by tree diagrams, which reflect the inherent relationships in
the underlying model. The most common representation is a
rooted, valued tree, also called a dendrogram, as shown in
panel A of Figure 7.1. Here, each node in the tree is joined ata
specific height, as indicated by the scale on the right side of the
figure. In this case, the set of heights can be shown to satisfy
the ultrametric inequality (Johnson, 1967). Speciﬁcally:if hy;
is the smallest value for which items i and j cluster, then

hy; < max(hy, hy) for all i, j, k.
That is, the three heights between each pair of a triple of
points can be thought of as an isosceles triangle, with the
equal sides being at least as long as the third side.

An alternative tree model is the path-length, or additive,
tree shown in panel B of Figure 7.1. Here, the dissimilarity
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Figure 7.1 Example of two rooted trees. Panel A shows an example of an
ultrametric tree, whereas panel B shows an example of a path-length or
additive tree.



between items is reflected in length of the paths between the
terminal nodes (Buneman, 1971; Corter, 1996; Dobson,
1974). An additive tree is governed by the additive inequality,
which states that if 4, is the path length between x and y, then

dj+dy < max(dy + dy, d; + dy) for all i, j, k, L.

The ultrametric tree is therefore a special case of the additive
tree, where the leaf nodes are all equally distant from the root
node. In an additive tree, this restriction does not hold. For
example, in the tree shown in panel B of Figure 7.1, d,, = 15,
d,. = 20, and the d,, = 25, whereas in panel A the d, =d,,.

In all cases just discussed, only the leaves are explicitly
labeled. The researcher may often label the internal nodes on
an ad hoc basis to assist in the readability and interpretation
of the clusters. The reader, however, should be warned that
in such cases the internal labels are arbitrary and not defined
by the clustering algorithm.

Classification Data as Tree Models

Corter (1996) argued for the acknowledgment of clustering
and trees as models of proximity relationships, rather than as
the result of an algorithm for fitting data. The distinction here
is subtle but important. Cluster analysis can begin with the
notion of some existing underlying clusters. The clusters
might be subject to noise and error and vary in dispersion and
overlap. The clusters are sampled with measurements taken
on a variety of attributes, which are then subjected to a clus-
ter analysis to recover the true clusters. This approach is
described in many of the general references in cluster analy-
sis, such as Aldenderfer and Blashfield (1984), Hartigan
(1973), or Jain and Dubes (1988).

An alternative framework proposed by Corter (1996) con-
siders the problem of representing a similarity matrix by a
structure, such as an additive or ultrametric tree. That is, the
information within a matrix has a structure that can alterna-
tively be captured in a representation with fewer parameters
than are found in the original data matrix. Pruzansky,
Tversky, and Carroll (1982), using this approach, examined
the properties of data matrices that would lead to the best fit
of spatial or tree representations. Their approach was based
on two distinct analyses. First, artificial data were generated
by choosing points either randomly from a two-dimensional
space or from a randomly generated tree. Noise, at various
levels, was then added to some of the data matrices. Not
surprisingly, they found that multidimensional scaling
algorithms, such as KYST (Kruskal & Wish, 1978), which
generated a two-dimensional solution, resulted in a better fit
for the spatially generated data, whereas a clustering method,
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such as ADDTREE (Sattath & Tversky, 1977), resulted in a
better fit for the tree-generated data.

The next step was more interesting. Are there patterns in
the data matrix that would lead one to adopt one method or the
other? As diagnostic measures, they calculated the skewness
of the distances and the number of elongated triples. A triple of
distances was said to be elongated if the medium distance was
closer to the longer distance than to the shorter distance. The
analysis by Pruzansky et al. (1982) showed that spatially gen-
erated data tended be less skewed and had fewer elongated
triples, while the tree-generated data were more negatively
skewed and had a larger percentage of elongated triples. As a
final step, these diagnostic measures were confirmed using
various empirical data sets, which were thought to be best
modeled by a tree or by a spatial representation. Thus, for de-
ciding between spatial and tree-based representations, the
analyses of Pruzansky et al. (1982) suggest that appropriate
diagnostic techniques might suggest which class of models is
more appropriate for a given a data set.

EXAMPLES

At this point, it is useful to consider three examples of cluster
analysis from the literature. The first example is based on kin-
ship data from Rosenberg and Kim (1975), which has been an-
alyzed in detail by Carroll and Arabie (1983), De Soete and
Carroll (1996), and others. The task that the subjects per-
formed in the initial study was to sort kinship terms into any
number of piles so that each pile consisted of related terms and
there were at least two piles. By taking the total number of
times that a subject put two terms in the same pile, one can con-
struct a similarity matrix between terms. Rosenberg and Kim
(1975) asked some subjects to sort the terms once, while others
were asked to sort the terms multiple times. Using the data
matrix from female subjects, De Soete and Carroll (1996) con-
structed a dendrogram, as shown in Figure 7.2, using a least-
squares ultrametric tree-fitting procedure called LSULT
(De Soete, 1984). The resulting ultrametric tree representation,
which accounts for 96.0% of the variance in the original data
matrix, encapsulates the standard anthropological model of
kinship terms (Carroll & Arabie, 1983). The tree divides direct
kin, such as grandparents, from collaterals, such as cousins. It
further divides the direct kin into the immediate family versus
42 generations. Within these clusters, further groupings occur
on the basis of generation (e.g., mother and father are clus-
tered). In this case, there is great benefit in considering the
entire representation. That is, if one were to truncate the tree
and declare that kin terms are best represented as three clusters
or seven clusters, much information would be lost.
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Figure 7.2 Dendrogram for kinship data as produced by a least-squares
ultrametric tree-fitting procedure by De Soete and Carroll (1996).

Another example where the entire tree is important is
shown in Figure 7.3, which comes from De Soete and Carroll
(1996). Figure 7.3 displays an additive tree representation of
data collected by Arabie and Rips (1973), based on an earlier
study by Henley (1969). In the study, 53 American students
were asked to judge the similarity among 30 animals. The
representation was generated by LSADT (De Soete, 1984),
which is a least-squares additive tree-fitting procedure, and
accounts for 87.3% of the variance in the data. As in the pre-
vious example, the entire tree representation is interesting,
and truncating the tree would be misleading. In addition,
some relationships represented by the additive tree would not
be represented in an ultrametric tree. For example, dog and
cat are closer to each other in the representation than tiger
and wolf, even though dog and wolf are in one cluster of ca-
nine animals and cat and tiger are in another cluster of feline
animals. An ultrametric representation would force dog and
cat to be the same distance apart as tiger and wolf, assuming
they remained in the canine and feline clusters.

It is also worth emphasizing in both of these examples
that only the terminal nodes are labeled. However, implicit la-
bels could be generated for the internal nodes, such as grand-
parents or felines. Carroll and Chang (1973) developed one of
the few clustering methods for generating a tree representa-
tion with labeled internal nodes from a single data set. How-
ever, the method has not been widely used, in part because of

the limited number of stimulus sets that contain both terminal
and nonterminal item names.

One final example is based on a cluster analysis by
Lapointe and Legendre (1994). In their study, they produced
a classification of 109 single-malt whiskies of Scotland. In
particular, the authors of the study were interested in deter-
mining the major types of single malts that can be identified
on the basis of qualitative characteristics as described in a
well known connoisseur’s guide (Jackson, 1989). The pri-
mary data consisted of 68 binary variables, which repre-
sented the presence or absence of a particular descriptive
term, such as a smoky palate, a salty nose, bronze in color.
The 109 x 68 matrix was transformed into a 109 x 109
lower triangular matrix of proximities using the Jaccard
(1901) coefficient of similarity, which is based on the number
of attributes that a pair of items has in common. The proxim-
ity matrix was used to construct the dendrogram using
Ward’s method, which is described in the next section. The
resulting dendrogram in shown in Figure 7.4. In contrast with
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Figure 7.3  Additive tree representation for the animal similarity data as
produced by De Soete and Carroll ( 1996).
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Figure 7.4 The Lapointe and Legendre (1994) classification of single malt scotch whiskies.
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A

the previous examples, the authors are less interested in the
structure of the entire tree. Instead, the goal of the study was
to identify an unknown number of distinct groups. As a result
of the analysis, the dendrogram was truncated to generate 12
identifiable classes of whiskeys, each labeled with a letter of
the alphabet in Figure 7.4.

ALGORITHMS

There are several fundamental issues relating to the selection
of a suitable clustering algorithm, First, the method must be
appropriate for the type of cluster structure that is expected to
be present in the data. Different clustering criteria and cluster
formation methods yield different types of clusters. Second,
the clustering method needs to be effective at recovering the
types of cluster structures that it was intended to find. Nearly
all clustering methods are heuristics, and there is no guaran-
tee that any heuristic is effective. Finally, software support
needs to be available for applied analyses. It is our experience
that the latter issue tends to drive method selection with only
limited regard for the first two concerns.

For those readers who wish to make a more in-depth study
of clustering algorithms, several textbooks and survey arti-
cles have been written. These include the texts by Anderberg
(1973), Everitt (1993), Gordon (1999), Hartigan (1975), Jain
and Dubes (1988), Legendre and Legendre (1998), Lorr
(1983), and Spith (1980). Survey articles include Gordon
(1987), Milligan and Cooper (1987), and Milligan (1996,
1998). Although some of these sources are more dated than
others, they include a wealth of information about the topic.

The next three sections offer a review of the major types of
clustering methods that have been proposed in the literature.
Included in each section is a discussion concerning the issue
of selecting a clustering method appropriate to the type of
cluster structure expected to be present in the data. The fourth
section reviews the performance of a range of clustering
methods in finding the correct clustering in the data.

Agglomerative Algorithms

Agglomerative algorithms are the most common among the
standard clustering algorithms found in most statistical pack-
ages. Here, each of the n objects is considered to be cluster
consisting of a single item. The algorithm then iterates
through n — 1 steps by combining the most similar pair of ex-
isting clusters into a new cluster and associating a height with
this newly formed cluster (Gordon, 1996). Different algo-
rithms uvse different methods for defining the most similar
pair, associating a height, and defining a proximity measure

TABLE 7.1 Coefficients to Generate Clustering Techniques Based on
the Formalization of Lance & Williams (1966)

Clustering

Method o 8 Yy

Single link 172 0 -172

Complete link 1/2 0 172

Group-average link i 0 0
n; +n;

Weighted-average link 1/2 0 0

Centroid il —Y 3 0
n; + n; (n; +nj)

Median 172 ~1/4 0

1~
B-Flexible _EE ~1<p=<l 0

between the new cluster and the previously established
clusters. In particular, if the new cluster is given by the ag-
glomeration of C; and Cj, then one can define the new dissim-
ilarities measures by the general formula given by Lance and
Williams (1966, 1967) as follows:

dissim (C; U C;, Cy)
= o;d(C;, Cp) + o;d(Cj, C) + Bd(Ci, C;)
+ v1d(Ci, C) — d(Cj, Cp)

Different choices of the parameters {o;, a;, B, v} define dif-
ferent clustering algorithms as shown in Table 7.1. For exam-
ple, o; = 1/2,y = —1/2, defines the single-link algorithm
where the new dissimilarity coefficient is given by the small-
est distance between clusters. This algorithm tends to gener-
ate unstable clusters, where small changes in the data matrix
result in large changes in the dendrogram (Gordon, 1996).
However, it is one of the few clustering algorithms that
would be able to detect clusters that are the result of a long
chain of points, rather than a densely packed cluster of points.

Complete link clustering corresponds to o; = 1/2,
v = 1/2. Single and complete link clustering are based solely
on the rank order of the entries in the data matrix and thus can
be used with ordinal scale data. Most other algorithms
require interval scale data. Of the interval scale techniques,
group-average link [o; =n;/(n; +n;)] and weighted-
average link (o; = 1/2) demonstrate greater success at
cluster recovery, as shown later in this chapter, than do either
of the ordinal scale techniques. Group-average link is also
commonly denoted as UPGMA (for unweighted pair group
mean average), whereas the weighted average link method is
commonly denoted as WPGMA (weighted pair group mean
average; Sneath & Sokal, 1973). Additional information on
combinatorial clustering methods can be found in Podani
(1989).



Divisive Algorithms

For divisive algorithms, the reverse approach from agglom-
erative algorithms is used. Here, all n objects belong to a
single cluster. At each step of the algorithm, one of the exist-
ing clusters is divided into two smaller clusters. Given the
combinatorial explosion of the number of possible divisions,
divisive algorithms must adopt heuristics to reduce the num-
per of alternative splittings that are considered. Such algo-
rithms often stop well before there are only single items in
each cluster to minimize the number of computations needed.
Still, the problem of finding an optimal division of clusters
for several criteria has been shown to be NP-hard (which im-
plies that the computational time will most likely grow expo-
pentially with the size of the problem) for several clustering
criteria (Brucker, 1978; Welch, 1982).

Optimization Algorithms

An alternative approach to iterative algorithms is to recon-
sider the problem by transforming a dissimilarity matrix (d;;)
into a matrix (h;;) whose elements satisty either the ultramet-
ric or the additive inequality. Optimization algorithms have
been developed using a least-squares approach (Carroll &
Pruzansky, 1980), a branch-and-bound algorithm (Chandon,
Lemaire, & Pouget, 1980), and other approximation ap-
proaches (Hartigan, 1967). One promising technique was an
approach developed by De Soete (1984). The technique,
which is discussed later in this chapter, has been successful at
addressing the problem of determining optimal weights for
the input variables.

Selecting a Clustering Method

This section focuses on the issue of evaluating algorithm per-
formance. One approach commonly used in the literature is
the analysis of real-life data sets. It is not unusual for various
articles to attempt to establish algorithm performance by
using only one or two empirical data sets. Thus, validating a
heuristic method is always questionable. In many cases the
results are considered valid because they correspond to some
general or intuitive perspective. Several criticisms of this ap-
proach exist. First, one must recognize that a very small sam-
ple size has been used to establish validity. Second, one can
always question the author’s a priori grouping of the data.
Third, how are we to know that clusters actually exist in
the empirical data? Few authors consider a null clustering
condition. Finally, assuming that clusters are present, how
Can we determine that the correct cluster structure was
found? These criticisms can seldom if ever be addressed
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properly through the use of empirical data sets for validation
purposes.

Most classification researchers have turned to the use of
computer-generated data sets for establishing clustering va-
lidity. Simulation or Monte Carlo experiments allow the re-
searcher to know the exact cluster structure underlying the
data. This strategy has the advantage that the true clustering
is known. The extent to which any given clustering algorithm
has recovered this structure can be determined. Because of
the use of artificially generated data sets, simulation results
can be based on hundreds or thousands of data sets. Thus,
sample size is not an issue.

There is a serious weakness in the use of simulation meth-
ods. In every case, such results are limited on the basis of gen-
eralizability. That is, the Monte Carlo results may be valid
only for the types of cluster structures and distributions that
were present in the generated data sets. Thus, the effectiveness
of the algorithms may not extend to other data structures that
are possible in applied analyses. Thus, it is important to estab-
lish replicability of simulation results from differing studies. It
is especially valuable when different researchers achieve sim-
ilar results using different strategies for data generation and
evaluation. Such replications offer investigators more confi-
dence in the selection of methods for applied analyses.

In terms of results on the recovery of underlying cluster
structure, agglomerative hierarchical algorithms have been
the most extensively studied. Three reviews of Monte Carlo
clustering studies covering various time frames were pub-
lished by Milligan (1981a), Milligan and Cooper (1987), and
Milligan (1996). The validation studies have examined a
number of factors that might affect recovery of the underly-
ing clusters. Many studies have included an error-free data
condition. The clustering present in the error-free data typi-
cally was so distinct that almost any method should have
been able to perform well with this sort of simple and obvi-
ous data structure. Clustering methods that fail with error-
free data would not be suitable for most applied research
settings.

A second factor examined has been the introduction of
some sort of error, either on the underlying variables or directly
to the similarity measures. This condition has the capability of
being tuned to a gradient of increasing noise. An effective clus-
tering method should be capable of finding clusters that have
been hidden by moderate amounts of error in the data.

A different sort of error involves the introduction of outly-
ing data points to a core set of elements that defines a suitable
cluster structure. Unusual observations are not unusual in
behavioral research. A clustering method used for applied
analyses should have some insensitivity to the presence of
such data points.
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The population distribution used to conceptualize and
generate the clusters themselves need not be multivariate
normal. Nonnormality may be present in many empirical
data sets, and a clustering method should be able to recover
well-defined clusters in such circumstances. Furthermore,
alternative population distributions serve to generalize the
Monte Carlo results. Few simulation studies have included
more than one type of distribution. The generalization exists
across different studies using differing underlying population
probability models.

The number of clusters in the underlying data can be var-
ied easily and, thus, can serve to ensure that a given cluster-
ing method is not sensitive to this factor. The clustering
method adopted should not have differential effectiveness on
this factor.

The relative sample size of clusters can be systematically
varied as well. Some clustering methods do not respond
properly to the presence of unequal cluster sizes. This is not a

desirable result, and it has implications for applied analyses,
The characteristic can be demonstrated most easily by gener-
ating data sets with varying cluster sizes.

Some authors have varied the number of variables that are
used to construct the artificial data. Since the data are first
transformed to a similarity measure, most clustering methods
do not directly analyze the original data. However, the num-
ber of variables may influence the information captured by
the similarity measure and, hence, influence the method’s
ability to recover the underlying clusters. Other factors have
been included in one or more studies. These include the use
of more than one similarity measure for the data and the num-
ber of underlying dimensions from a principal component
representation of the variable space, among others.

Simulation results for a set of hierarchical methods are
presented first. Validation results for five such methods are
reported in Table 7.2, adapted from Milligan and Cooper
(1987). It is important not to overinterpret the results in the

TABLE 7.2 Monte Carlo Validation Results for Hierarchical Methods

Method
Single Complete Group Ward’s Beta
Study Link Link Average Method Flexible
Baker (1974)
Low error 605 .968
Medium error 298 766
High error 079 347
Kuiper & Fisher (1975)
Medium size 579 742 710 167
Five clusters 444 .690 630 707
Unequal sizes .663 .705 702 .689
Blashfield (1976) .06 42 17 77
Mojena (1977) .369 .637 .596 .840
Mezzich (1978)
Correlation 625 973
Euclidean 648 943
Edelbrock (1979)
Correlation .90 .80 .96
Euclidean .62 .63 70 .88
Milligan & Isaac (1980) 30 .64 70 57
Bayne, Beauchanp, Begovich,
& Kane (1980)
Configuration 1 .53 .68 .66 .70
Configuration 2 .55 .76 75 .76
Edelbrock & McLaughlin (1980)
Correlation 858 813 880
Euclidean 690 780 858 .873
Milligan (1980) . P
Zero error 974 995 /998 987 997
Low error 902 .970 ( ,997 989 994
High error 777 .880 —948 .940 .945
Scheibler & Schneider (1985)
Correlation 43 49 81 78 73
Euclidean .04 38 .16 19 i

Note. For details on the nature of the recovery values, see Milligan and Cooper (1987).



table because the recovery index is not the same across all
studies. Direct numerical comparisons should be made
within a given study, and not across different experiments.
The measures do have the common characteristic that recov-
ery performance improves as the index approaches 1.00,
which indicates perfect cluster recovery.

The simulation results in Table 7.2 contain some impor-
tant lessons for the applied user. In most cases, there appears
to be an advantage in favor of Ward’s (1963) method and the
B-flexible approach. Performing somewhat more erratically,
the group-average method can be competitive as gauged
by cluster recovery, but not always. The effectiveness of the
B-ﬁexible approach from these studies led to some improve-
ments on this method by Milligan (1989a) and Belbin, Faith,
and Milligan (1992).

A particularly important result seen in Table 7.2 is that the
single-link method has consistently performed poorly, even
in the case of error-free data where distinct clustering exists.
Furthermore, single link is especially sensitive to most any
form of error added to the data. Cheng and Milligan (1995a,
1996a) also demonstrated that the single-link method was re-
markably sensitive to outliers present in the data. That is, the
method can be adversely affected by the presence of only one
outlier. An outlier in a clustering context refers to an entity
that does not fall within the general region of any cluster. Al-
though some authors have argued that the method possesses
optimal theoretical properties (e.g., Fisher & Van Ness 1971;
Jardine & Sibson; 1971), simulation and empirical evidence
suggest that this is an unsuitable method for most applied
research.

Simulation-based research on nonhierarchical partitioning
methods has not been as extensive as for the hierarchical rou-
tines. K-means (MacQueen, 1967) algorithms have been the
most frequently examined methods to date. Simulation results
for such methods are presented in Table 7.3. Generally, these
studies were based on error-free data sets. The simulation-
based literature indicates that the recovery performance of
some partitioning methods can be competitive with those
found for the best hierarchical procedures. As before, the reader
is warned not to overinterpret the numerical recovery values
between studies as they are based on different indices.

Most of the generated data sets used to establish the
results in Table 7.3 were multivariate normal and should
have been the ideal application context for the normal theory-
based clustering methods such as the Friedman and Rubin
(1967) and Wolfe’s (1970) NORMIX procedures. Unfor-
tunately, such methods performed inconsistently in these
studies. Less sophisticated methods, such as k-means algo-

rithms, can produce equivalent or superior recovery of cluster
Structure.,
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TABLE 7.3 Monte Carlo Validation Results for Nonhierarchical
Clustering Methods

Average Recovery With

Clustering Method Recovery Rational Seeds
Blashfield (1977)

Forgy k-means .585

Convergent k-means .638

CLUSTAN k-means 706 .643

Friedman-Rubin trace W .545

Friedman-Rubin |W| 705

MIKCA trace W .560

MIKCA |W| .699
Mezzich (1978)

Convergent k-means: correlation .955

Convergent k-means: Euclidean .989

distances

Bail-Hall ISODATA 971

Friedman-Rubin |W| 966

Wolfe NORMIX 443
Bayne et al. (1980)

Convergent k-means 83

Friedman-Rubin trace W .82

Friedman-Rubin |W| .82

Wolfe NORMIX .70
Milligan (1980): Low error condition

MacQueen’s k-means 884 934

Forgy’s k-means .909 996

Jancey’s k-means 926 993 =

Convergent k-means 901 .996
Scheibler & Schneider (1985)

CLUSTAN k-means .67 78

Spiith’s k-means .55 77

Note. Average recovery for k-means methods corresponds to random
starting seeds. “Rational Seeds” were centroids obtained from Ward’s or
group-average methods.

One characteristic discovered from the set of studies re-
ported in Table 7.2 concerns the nature of the cluster seeds
used to start the k-means algorithms. The k-means algorithms
appear to have differential recovery performance depending
on the quality of the initial configuration. This effect was sys-
tematically studied by Milligan (1980). The results reported
by Milligan indicated that starting seeds based on randomly
selected sample points were less effective than was the use-
of rational starting configurations. Rational starting seeds
markedly improved the recovery performance of all k-means
methods. In light of these results, Milligan and Sokol (1980)
proposed a two-stage clustering algorithm that was designed
to improve the recovery of the underlying clusters. Subse-
quently, other researchers have endorsed this approach or de-
veloped useful refinements (see Punj & Stewart, 1983; Wong,
1982; Wong & Lane, 1983).

Overall, more research on the comparative evaluation
of clustering methods is needed. We have good informa-
tion on certain types of methods. However, for other methods
or approaches the current knowledge base on algorithm
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performance is weak or badly lacking. For example, there
have been a number of recent developments. An interesting
approach to clustering, called MCLUST, has been proposed
by Raftery, Fraley, and associates (see Fraley & Raftery,
1998). To date, an independent evaluation of this approach
has not been published.

STEPS IN A CLUSTER ANALYSIS

A fundamental principle in classification is that as the level of
error increases in the data, or in the specification of one or
more factors relating to the clustering, the ability to recover
the underlying cluster structure is reduced. Thus, a number of
issues must be addressed while conducting an applied analy-
sis in addition to the choice of clustering method.

Sometimes these decisions are not apparent to the re-
searcher. For example, a researcher may select a clustering
software package that makes one or more of these decisions
without user intervention. The researcher should be alert to
the fact that these decisions were made and that they directly
affect the quality of the clustering results.

When applied research is published using clustering
methodology, we recommend that the specific actions taken
during the classification process be clearly articulated. This
practice is essential to allow subsequent researchers the abil-
ity to evaluate, compare, and extend the results. Examples
abound in the literature where authors have failed to provide
such information (see Milligan, 1996). Critical information
includes the choice of similarity measure, the clustering algo-
rithm used to form the groups, the determination of the num-
ber of clusters, and information on the sample and variables
used in the analysis.

Several key elements or decision points in the clustering
process are reviewed in this section. Best practical sugges-
tions, based on the current state of knowledge, are offered.
These suggestions relate to the selection of the elements to be
clustered, the selection of the variables to cluster, issues con-
cerning variable standardization, the selection of the number
of clusters, and the validation of empirical analyses.

Selecting the Data Set

The issue of selecting the data elements in a cluster analysis
has seen limited research. This issue is critical because it is
the sample of data elements selected for study that define the
resulting cluster structure. Several fairly simple principles
can guide the researcher. Unlike traditional inference-based
statistical procedures, random samples are not required for an
effective cluster analysis. Certainly, the selected sample

should accurately represent the underlying clusters, but not
necessarily in proportion to their size in the larger population,
In the absence of this consideration, it is likely that small
population segments may not be detected in a cluster analy-
sis. Oversampling these small populations would likely serve
to enhance their recovery in the cluster analysis. Further-
more, some clustering methods have some bias to find clus-
ters of relatively equal size, and this tendency can be used to
good advantage.

Of course, random sampling would be desirable if it is es-
sential for the researcher to be able to generalize the results of
the study to a target population. However, doing so would
imply a more theoretically driven analysis as opposed to
a more exploratory study. Random or stratified sampling
would be useful in replication studies or in more advanced
studies attempting to validate a contextual theory.

The selection of the sample elements should consider the
overall size of the database. A second sample or a split-half
sample would be helpful for validation purposes, as dis-
cussed later in this chapter. As suggested by Milligan (1996),
one possible approach is to place artificially generated ideal-
type individuals or subjects in the data set. The researcher
specifies the values for each variable of an ideal-type individ-
ual. The ideal type would represent a subject or other experi-
mental object that would represent the norm for each group
or cluster suspected to be present in the data. One or possibly
more ideal types would be specified for each hypothesized
cluster. The presence of the correct ideal type or types in a
cluster would support the researcher’s conceptualization for
the hypothesized clustering. On the other hand, if markedly
different ideal types appear in the same cluster, then the re-
searcher’s theory or the cluster analysis is suspect. The pres-
ence of clusters without ideal types may represent groups not
yet defined by the researcher’s theory, or possibly subgroups
of a larger cluster. The user should be warned that the use of
ideal types is a temporary process. The presence of ideal
types in the final clustering may change the assignment of
other elements in the data set. The relative influence of in-
dividual data elements has been explored by Cheng and
Milligan (1995a, 1995b, 1996a, 1996b).

Related to the issue of influential data points is the issue of
outliers. Outliers in a clustering context deserve special con-
sideration. As stated previously, an outlier in a clustering
context refers to an entity that does not fall within the general
region of any cluster. Note that outliers may or may not have
influence on the clustering solution obtained, and some data
points near or in a cluster may have an influential effect on
the clustering process.

An early simulation study on the effect of outliers in
clustering was conducted by Milligan (1980). This research



confirmed that as the percentage of outliers increased, the
ability of hierarchical clustering methods to recover the
underlying structure decreased. Some methods were less
affected than others. More recent results concerning the
effect of outliers on hierarchical methods can be found in
Milligan (1989a) and Belbin et al. (1992). This more recent
research suggests that Ward’s (1963) method may not be as
seriously affected by the presence of outliers as first sus-
pected. Similarly, Belbin et al. (1992) demonstrated desirable
characteristics with respect to outliers for two versions of the
B-flexible method. Overall, the impact of outliers appears to
be less severe for k-means methods.

The applied user of clustering methodology can adopt sev-
eral different strategies for dealing with outliers. One can
eliminate those elements that appear to be outliers to the
overall set of data. Alternatively, the relationship between the
obtained clusters and the suspected outliers can be investi-
gated after an initial clustering is completed. A third alterna-
tive is to use a clustering method resistant to the presence of
outliers. Selected parameterizations of the B-flexible hierar-
chical clustering procedure and Ward’s (1963) minimum
variance method may be good selections, as well as some of
the k-means algorithms.

Variable Selection and Weighting

Clustering methods differ profoundly from traditional statis-
tical inference models. Standard statistical requirements such
as the assumption of normally distributed data generally do
not apply within the clustering framework. That is, the meth-
ods are heuristics, and they were often developed without
consideration of an underlying probability model for the data.

Another common misconception is that the presence of
correlated variables in the data set is somehow bad or unde-
sirable. Researchers often fail to realize that the correlations
among variables may be a result of the natural cluster struc-
ture in the data. Attempts to eliminate these correlations
would likely serve to distort or hide the structure in the data.
Numerous applied analyses have attempted to eliminate in-
tervariable correlation by means of principal components or
other multivariate methods. Unfortunately, the routine appli-
cation of principal components or other factoring techniques
prior to clustering is appropriate only in those cases where
the clusters are hypothesized to exist in the factor space and
not in the original data. Sneath (1980) has shown that clusters
embedded in a high-dimensional variable space may not
be correctly identified in a reduced number of orthogonal
components.

A different issue relates to the selection of variables to
include in the cluster analysis. Care must be exercised in
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selection of the variables. Most reference works in the clus-
tering area fail to offer strong advice on this issue. Only those
variables that are believed to help discriminate among the
clusters in the data should be included in the analysis. Far too
many analyses have been conducted by including every
available variable. Some users have gone to great efforts to
collect just one more variable without considering its ability
to help find the underlying clustering. Instead, the bias should
be not to include the variable without additional information.

The difficulty in using all available data can result from
the added irrelevant variables’ serving to mask whatever ac-
tual clustering is present in a reduced number of variables.
In fact, the addition of only one or two irrelevant variables
can dramatically interfere with cluster recovery. Milligan
(1980) was the first to demonstrate this effect. In this study
only one or two random noise variables were added to data
sets where a strong and distinct clustering was present in a
reduced set of variables. Fowlkes and Mallows (1983) intro-
duced the term masking variables, which is a good descrip-
tion of the effect. Results from the Milligan (1980) study are
presented in Table 7.4.

As can be seen in Table 7.4, cluster recovery quickly:de-
graded with even one random noise dimension added to the
core data containing distinct clustering. A second dimension
continued to diminish the ability to find the true structure in
the data. The core dimensions defined a strong clustering
in the data. Clearly, there are important implications for applied
analyses. The inclusion of just one irrelevant variable may
serve to mask or hide the real clustering in the data. It would

TABLE 7.4 Results From Milligan (1980): Mean Recovery Values
With Masking Variables

Clustering Error-Free 1-Dimensional 2-Dimensional
Method Data Noise Noise
Hierarchical
Single link 974 .899 .843
Complete link .995 .859 .827
Group average (UPGMA) 998 930 903
Weighted average 994 917 .885
(WPGMA)
Centroid (UPGMC) 983 .808 616
Median (WPGMC) 976 .808 661
Ward’s method 987 .881 .855
B-flexible 997 904 .863
Average link in cluster 985 .870 .834
Minimum total S§ 935 .837 780
Minimum average SS .993 900 .865
Partitioning
MacQueen'’s k-means .884 793 769
Forgy's k-means 932 .844 794
Jancey’s k-means 927 .867 .823
Convergent k-means .903 .849 787

Note. Average within-cell standard deviation is .108 and was based on 108
data sets.
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be wise to provide a justification for each variable included in
the clustering process. The bias should be toward exclusion
in the case where doubt exists as to whether the variable may
contain information regarding the clustering in the data.

Fortunately, a significant contribution on the problem of
masking variables has been made. If Euclidean distances are
used with a hierarchical clustering method, then the optimal
variable weighting method of De Soete (1986, 1988) may
offer helpful protection against masking variables. De
Soete’s method computes optimal weights for the distance
equation:

5

dyj = [Z wi(xig ~ xjk)ZJ
k=1

The derivation and computation of the weights are com-
plex, and the reader is referred to the work of De Soete (1986,
1988) and Makarenkov and Legendre (2000) for further de-
tails. Originally, De Soete’s procedure was not intended to
detect masking variables. Rather, the purpose was to opti-
mize the fit of the computed distances to an ultrametric struc-
ture. The application to masking variables was suggested by
one of the example analyses conducted by De Soete (1986).
Milligan (1989b) pursued this application and found evi-
dence that the method was effective at dealing with the mask-
ing problem. Makarenkov and Legendre (2000) recently
have replicated the results concerning the effectiveness of the
weights against masking variables. In addition, their work
provides an important extension to k-means methods.

The results in Table 7.5 are from Milligan’s (1989b) study
of De Soete’s algorithm. The study compared the recovery
performance using equal variable weights to that obtained
using optimal weights. As can be seen in the table, recovery
performance was greatly enhanced, even when three mask-
ing variables were added to the core cluster dimensions.
Further research revealed that De Soete’s algorithm was as-
signing effectively zero weights to the masking variables,

thus eliminating their noise contribution to the distance
computation.

There have been other attempts to deal with the problem
of optimal variable weighting. For example, DeSarbo,
Carroll, and Green (1984) proposed a procedure called
SYNCLUS. The algorithm uses a nonhierarchical k-means
method in the clustering process. To date, there has not been
a systematic validation study conducted on the SYNCLUS
algorithm. Green, Carmone, and Kim (1990) reported that the
starting configuration used for the k-means method appears
to be a critical factor for the success of the effectiveness of
the variable weighting method. Other approaches to the
masking problem do not attempt to provide differential
weighting of variables. Rather, the method of Fowlkes,
Gnanadesikan, and Kettenring (1988) attempts to include or
exclude variables in a manner analogous to that used in step-
wise regression.

Variable Standardization

With respect to variable standardization, we again find that
applied researchers bring potentially ill-advised biases to the
clustering process. First, many researchers assume that vari-
able standardization is required in order to prepare the data
for clustering. They assert that variable standardization is
necessary when the variances among variables differ to any
significant degree. Similarly, some authors will argue that
standardization is essential when substantial differences exist
in the numerical magnitude of the mean of the variables.
Otherwise, it is believed that those variables with the larger
scales or variances will have an undue influence on the clus-
ter analysis.

Many researchers fail to consider that if the cluster struc-
ture actually exists in the original variable space, then stan-
dardization can distort or hide the clustering present in the
data. Again, as with principal components, standardization
would be appropriate if the clusters were believed to exist in

TABLE 7.5 Results From Milligan (1989b): Mean Recovery for Masking Variables Using De Soete’s (1988) Variable

Weighting Algorithm
1 Dimension 2 Dimensions 3 Dimensions
Clustering Method Equal Weights Weighted Equal Weights Weighted Equal Weights Weighted
“ B-flexible = —.5 750 966 673 952 601 948
B-flexible = —.25 .788 979 716 962 657 961
~- Single link 812 .883 647 .840 473 .820
1.5 Complete link 668 977 .595 955 .555 930
-Group average 859 .980 .809 .965 732 957
Ward’s method 764 968 675 955 627 947
Column standard deviation 263 128 295 163 307 180

Note. Each mean was based on 108 data sets.



the transformed variable space. This result was first demon-
strated in a simple example by Fleiss and Zubin (1969). Other
discussions on this topic appeared in Sneath and Sokal (1973)
and in Anderberg (1973).

A different bias brought to the analysis by applied re-
searchers is an assumption as to the form of variable stan-
dardization to be used. Researchers with a social science or
statistics background often assume that variable standardiza-
tion would be based on the traditional z score:

X —X

1 =
N

It turns out that there are number of other ways in which to
standardize data so that the influence of variance and relative
numerical values can be controlled. Milligan and Cooper
(1988) documented several other approaches to variable
standardization:

X
3 = —~,
s
R
= Max(x)’
B P x
oy {f}v = U= Max(x) — Min(x)’
. x= Min(x)
5= Max(x) — Min(x)’
S s
6 = —z—:‘;,

and z7 = Rank(x).

Milligan and Cooper (1988) evaluated the performance
of the various forms of standardization in a large-scale simu-
lation study. Included were the traditional z score (zy), z,
through z,, as well as the unstandardized data represented by
Z, in their study.

Selected simulation results from the Milligan and Cooper
(1988) article are presented in Tables 7.6 and 7.7. Each entry in
the tables represents the average obtained from 864 data sets.
Note that the rows in the tables correspond to the various forms
of standardization. The columns in Table 7.6 represent differ-
ent types of artificially generated data structures. The entries
are averages across four clustering methods. Table 7.7 presents
similar information broken down by clustering method.

The asterisk notation is unique to these tables and requires
explanation. An asterisk indicates that the corresponding
standardization method was in the statistically equivalent su-
perior group for a given column. This was, in effect, a test of
simple main effects in a factorial ANOVA design. Thus, the
asterisk indicates the best performing methods for each
condition. Across the conditions explored in Milligan and
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TABLE 7.6 Results From Milligan & Cooper (1988): Effect of
Standardization Procedure and Alternative Data Structures

Separation Maximum Variance Global

Standard- . .

L. Level Ratio Variance

ization

Formula Near Distant 16 100 Experiment

Z, 662 .821 745 739 621(L)

7, &2, 672 .837 755 154 936

7 .689* .854* 7% 172% .984*
Ky, & z5 .693*% .864* 778%* .780* .968*

2 674% 836 157 .753 981*

Z ©L639%(L) 768(L) .693(L) 713(L) .839

Overall 674 .835 754 756 .888

Note. The asterisk indicates membership in the statistically equivalent
superior group. (L) indicates that the procedure performed significantly
worse than the other methods.

Cooper (1988), the only standardization procedures that were
in the superior group in every case were those methods that
standardized by range, namely z, and zs. The consistency of
the results was unexpected. Since the publication of the 1988
study, anecdotal evidence reported by numerous researchers
has supported the Milligan and Cooper results. Recently,
Mirkin (2000) has been developing a mathematical theory
as to why standardization by range has been consistently
effective. Mirkin and other researchers are likely to continue
with this line of inquiry.

Selecting the Number of Clusters

The next significant problem faced in the analysis is the de-
termination of the number of clusters to be used in the final
solution. Some clustering methods, such as k-means, require
the user to specify the number of groups ahead of time. Other
methods require the researcher to sort through and select

TABLE 7.7 Results From Milligan & Cooper (1988): Effect of
Standardization Procedure and Clustering Method

Clustering Method

Standardization Single Complete Group Ward’s

Formula Link © Link Average Method

Z, .608* 750 811 798(L)

&z 577 778 .800 .864*

Z 622% 793% .835* 836
Ez, &z .609* 815* .839* .851*

% .616% 761 813 .828

Z; 494(L) .730(L) .810 T81(L)

Overall .589 a1 819 .834

Note. The asterisk indicates membership in the statistically equivalent
superior group. (L) indicates that the procedure performed significantly
worse than the other methods.
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from a sequence of different clustering solutions. This is the
case when hierarchical algorithms are selected and the pur-
pose is to find a coherent grouping of the data elements as
opposed to a tree representation.

Numerous methods have been proposed for selecting the
number of clusters, especially in a hierarchical context. As
with many aspects of the clustering process, theoretical de-
velopments on this problem have been limited to date.
Rather, we have a set of ad hoc methods. The formulas are
sometimes called stopping rules for hierarchical clustering
methods. The most comprehensive study on the selection of a
suitable stopping rule in a hierarchical context is the article
by Milligan and Cooper (1985). These authors conducted a
comparative evaluation of 30 stopping rules within a simula-
tion framework. The authors considered only those rules that
were independent of the clustering method. The generated
data sets used by Milligan and Cooper (1985) consisted of
error-free structure with distinct clustering. Despite the pro-
nounced clustering present in the data, the results of their
study revealed that there was a wide range in the effective-
ness of the stopping rules. Selected results from the Milligan
and Cooper (1985) study are presented in Table 7.8. The
reader is referred to the 1985 article for more detailed perfor-
mance information and for references for each stopping rule.

The results in Table 7.8 indicate the number of times that
a given stopping rule selected the correct number of clusters
in the data. The maximum performance rate that could be ob-
tained for any specific number of clusters was 108, and 432
overall. The results in the table include a number of well
known approaches such as Mojena’s (1977) method, Beale’s
(1969) pseudo F test, and the rule developed by Calinski and
Harabasz (1974). As one reaches the least effective methods
at the bottom of the table, the chance selection rate for each
cluster level is around 9.

Certainly, more research in the area of stopping rules is
needed. The Milligan and Cooper results are from one simu-
lation study, and the potential limitation of generalizability is
an important consideration. Independent validation of the
performance of the rules with other types of simulated data
needs to be undertaken. The reader is warned not to take the
performance ranking of the stopping rules as an absolute find-
ing. The rankings produced by Milligan and Cooper (1985)
may have been a result of the specific characteristics of the
simulated data sets. On the other hand, one might argue that
those stopping rules found in the upper third of those tested
by Milligan and Cooper might be replicated to some degree in
an independent study. Similarly, it would seem unlikely that
the least effective rules in their report would perform with a
degree of distinction in a different experiment. Support for
this conjecture was found by Cooper and Milligan (1988) in a

TABLE 7.8 Results From Milligan & Cooper (1985): Stopping
Rule Performance

Number of True Clusters
Stopping Rule 2 3 4 5 Overall
1. Calinski & Harabasz 96 95 97 102 390
2. Duda & Hart 77 101 103 107 388
3. C-index ! 89 91 96 347
4. Gamma 74 86 83 96 339
5. Beale 57 87 95 92 331
6. Cubic clustering criterion 67 88 82 84 321
7. Point-biserial 94 83 66 65 308
8. G(+) 52 70 79 96 297
9. Mojena 20 84 93 92 289
10. Davies & Bouldin 54 72 72 89 287
11. Stepsize 96 56 53 68 273
12. Likelihood ratio 64 72 64 68 268
13. |log(p)| 78 71 45 43 237
14. Sneath 34 51 66 83 234
15. Frey & Van Groenewoud 0 76 79 77 232
16. log(SSB/SSW) 0 104 42 66 212
17. Tau 85 71 30 10 202
18. ¢/vk 88 80 25 7 200
19. nlog(|WI/IT)) 0 104 32 13 149
20. & |W| 0 104 15 27 146
21. Bock 74 15 31 22 142
22. Ball & Hall 0 104 23 1 128
23. Trace Cov(W) 0 104 17 0 121
24. Trace W 0 104 16 0 120
25. Lingoes & Cooper 37 30 17 16 100
26. Trace W™'B 0 52 23 9 84
27. Generalized distance 5 22 11 9 47
28. McClain & Rao 9 5 5 6 25
29. Mountford 1 6 1 2 10
30. (W|/|T| 0 0 0 0 0

related experiment. In this experiment, the data were sub-
jected to various levels of error perturbation. Although the
performance of the rules declined as expected, the relative
ranking of the stopping was sustained in the experiment.

For applied analyses, it is recommended that one use two
or three of the better performing rules from the Milligan and
Cooper (1985) study. The Statistical Analysis System (SAS)
(Gilmore, 1999) has implemented several of these rules as
clustering software options. When consistent results are ob-
tained from the rules, evidence exists for the selection of the
specified number of clusters. If partial agreement is found,
the user might opt for the larger number of clusters. In this
case, one may have an incomplete clustering of the data
where two or more groups still need to be merged. Their char-
acteristics will appear to be fairly similar when the researcher
is attempting to interpret each cluster. Finally, if no consis-
tency can be found among the rules, the researcher is facing
one of several possibilities. Of course, the stopping rules
might have failed on the empirical data set at hand. A differ-
ent outcome is that there is no cluster structure inherent in the




data set. Since most clustering routines will produce a parti-
tion (or set of partitions) for any data set, a researcher might
assume that there is a significant clustering present in the
data. This belief induces a bias against a null hypothesis of no
significant clustering in the data in empirical research.

validation of the Clustering Results

Once the clustering results are obtained, the process of vali-
dating the resulting grouping begins. Several strategies or
techniques can assist in the validation process. This section
covers the topics of interpretation, graphical methods, hy-
pothesis testing, and replication analysis.

Interpretation

An empirical classification will contribute to the knowledge
of a scientific domain only if it can be interpreted substan-
tively. To begin the evaluation process, descriptive statistics
should be computed for each cluster. The descriptive values
can be computed both on those variables used to form the clus-
ters as well as on exogenous variables not involved in com-
puting the clusters. The descriptive information can reveal
important differences and similarities between clusters, and it
can indicate the degree of cohesiveness within clusters.
Skinner (1978) refers to such characteristics as level (cluster
mean or centroid), scatter (variability), and shape (covari-
ances and distribution of data within clusters). Similarly, if
ideal type markers were used in the analysis, their cluster as-
signments can be examined for interpretive information.

A different approach is to use a block diagonal matrix dis-
play (Anderberg, 1973; Duffy & Quiroz, 1991). Although
this technique results in a matrix of numbers, the display ap-
proaches that of a graphical presentation. The process is
based on rearranging the similarity matrix according to the
groups obtained by the cluster analysis. The rows and
columns are reordered to place elements in the same cluster
in consecutive order. The result is ideally a block diagonal
matrix where within-block values represent within-cluster
distances or similarities. Entries outside of the blocks corre-
spond to between-cluster distances. If distinct clusters have
been recovered by the clustering method, the within-block
values should be distinctly different in magnitude when com-
pared to those between blocks. The permuted matrix can be
converted to a graphical display if the cells or blocks are
shaded according to some rule based on the values of the sim-
ilarity measures.

A variety of graphical displays have been proposed in the
classification literature. For example, Andrews (1972) pro-
posed a bivariate plot where data from a high-dimensional
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variable space are transformed by means of selected tran-
scendental functions. Andrews argued that similar elements
should produce similar transformed profiles in the plot.
Bailey and Dubes (1982) developed a different type of dis-
play called a cluster validity profile. The profiles were in-
tended to allow for the evaluation of the relative isolation and
compactness of each individual cluster. Kleiner and Hartigan
(1981) presented a set of graphical methods based on natural-
appearing “trees” and “castles.” These displays are best
suited to hierarchical clustering results. An excellent discus-
sion on the use of graphical methods in a clustering context is
found in Jain and Dubes (1988).

Hypothesis Testing

Hypothesis testing is possible in a cluster-analytic situation,
but it can be tricky and full of pitfalls for the unsuspecting
user. Most testing procedures have been developed to deter-
mine whether a significant cluster structure has been found.
Because clustering algorithms yield partitions, applied re-
searchers who see such results tend to assume that there must
be clusters in their data. However, clustering methods swill
yield partitions even for random noise data lacking structure.
There are some significant limitations in the use of tradi-
tional hypothesis-testing methods. Perhaps the most tempting
strategy, given the context of the analysis, is to use an
ANOVA, MANOVA, or discriminant analysis directly on the
variables that were used to determine the clustering. The par-
titions obtained from the cluster analysis are used to define
the groups for the ANOVA or discriminant analysis. An
attempt is made to determine whether there are significant
differences between the clusters. Unfortunately, such an
analysis is invalid. Since the groups were defined by parti-
tions on each variable, an ANOVA or discriminant analysis
will almost always return significant results regardless of the
structure in the data, even for random noise. The fundamen-
tal problem is that one does not have random assignment to
the groups independent of the values on the variables in the
analysis. This result was noted by Dubes and Jain (1979) and
by Milligan and Mahajan (1980). It is unfortunate that many
textbooks on clustering do not emphasize this limitation.
There is a way to conduct a valid inference process in a
clustering context. Valid testing procedures take on one of
several different approaches. The first approach is called an
external analysis, and the test is based on variables not used
in the cluster analysis. The second approach is called an in-
ternal analysis and is based on information used in the clus-
tering process. These two approaches are considered in turn.
External criterion analysis can be performed using standard
parametric procedures. One can test directly for significant
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differences between clusters on variables that were not used in
the cluster analysis. It is critical for the validity of the test that
the variable not be used in forming the clusters.

A different type of external analysis is based on a data par-
tition generated independently of the data set at hand. The
partition can be specified from a theoretical model or obtained
from a clustering of a separate data set. Hubert and Baker
(1977) developed a method to test for the significance of sim-
ilarity between the two sets of partitions. The test is based on
an assumption of independent assignments to groups in the
two partition sets. It is important to note that the Hubert and
Baker method cannot be applied to two clusterings of the
same data set. Doing so would not result in two independent
groupings of the objects in the study.

An internal criterion analysis is based on information ob-
tained from within the clustering process. These analyses are
based on measures that attempt to represent in some form the
goodness of fit between the input data and the resulting clus-
ter partitions. There are numerous ways in which to measure
the goodness of fit. Milligan (1981b) conducted a study of 30
internal criterion indices for cluster analysis. For an extended
discussion of such indices, see Milligan (1981b). Milligan’s
research indicated that indices such as the gamma, C-index,
and tau measures should make an effective measure of inter-
nal consistency.

The advantage to identifying an effective internal criterion
index is that it can serve as a test statistic in a hypothesis-
testing context. The test can be used to determine whether a
significant clustering exists in the data. The main problem
with this approach is the specification of a suitable sampling
distribution for the test statistic under the null hypothesis of
no cluster structure. One can use randomization methods, or
bootstrapping, to generate an approximate sampling distribu-
tion. Milligan and Sokol (1980), Begovich and Kane (1982),
and Good (1982) have all proposed tests based on this strat-
egy. Unfortunately, software support for this form of testing
is not widely available.

Replication Analysis

Replication analysis within a clustering context appears to
have been developed by Mclntyre and Blashfield (1980) and
by Morey, Blashfield, and Skinner (1983). Replication analy-
sis is analogous to a cross-validation procedure in multiple
regression. The logic behind replication analysis is that if an
underlying clustering exists in the data set, then one should
be able to replicate these results in a second sample from the
same source and set of variables. There are six steps in a
replication analysis. First, one obtains two samples. This can
be done by taking a random split-half reliability of a larger

data set. Data must be obtained on the same set of variableg
in both samples. Second, the first sample is subjected to the
planned cluster process. Once the clusters have been identi-
fied, the cluster centroids are computed from the first sample.
These centroids are used in the next step. Third, the distances
between the data points in the second sample to the centroids
obtained from the first sample are computed. Fourth, each el-
ement in the second sample is assigned to the nearest centroid
determined from the first sample. This produces a clustering
of the second sample based on the cluster characteristics of
the first sample. Fifth, the second sample is subjected to the
same cluster process as used for the first sample. Note that we
now have two clusterings of the second sample. One was ob-
tained from the nearest centroid assignment process, the sec-
ond from a direct clustering of the data. The final step is to
compute a measure of partition agreement between the two
clusterings of the second sample. The kappa statistic or the
Hubert and Arabie (1985) corrected Rand index can serve as
the measure of agreement. The resulting statistic indicates the
level of agreement between the two partitions and reflects on
the stability of the clustering in the data from two samples.

Breckenridge (1989, 1993) extended this approach to
replication analysis and provided performance information
on the effectiveness of the approach. The results reported in
Table 7.9 are from his 1993 simulation study. The column la-
beled “Recovery” indicates the degree of agreement between
the true cluster assignments and the partitions obtained from
the clustering procedure. The column for “Replication” indi-
cates the degree of agreement between the direct clustering of
the second sample and the nearest centroid grouping for the
same sample. Recall that this grouping was based on the
classification from the first sample. The results indicate that
the replication means were close in value to average recovery
for each method. This finding suggests that replication analy-
sis can be used as a validation tool for applied cluster
analysis.

Breckenridge (1993) also reported that replication analysis
can be used to help determine the number of clusters in the

TABLE 7.9 Results From Breckenridge (1993): Mean Recovery and
Replication Values for Error-Free Data

Clustering Method Recovery Replication
B-flexible = —.5 773 750
B-flexible = —.25 761 738
Single link 440 350
Complete link 695 654
Group average 751 .740
Ward’s method 787 766
Hartigan & Wong k-means: 785 a97

(Ward’s method seed points)

Note. Averages based on 960 data sets.



TABLE 7.10  Results From Breckenridge (1993): Number of Clusters
Selected by the Scree Test
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TABLE 7.11 Number of Source Articles in Psychology Journals on
Clustering and Classification by Subdiscipline for 1999

True Number Chosen

Number

of Clusters 2 3 5 6 7 8 9
2 s 1 o0 o0 0 0 0 0
3 0 4 1 0 0 0 0 0
4 1 12 45 2 1 0 0 0
5 1 2 11 35 9 1 10
6 1 2 5 11 32 5 3 1
7 1 o 6 8 12 2 1 4
8 0o 1 0 6 13 8 12 20
9 1 5 s 7 5 5 3 29

Subdiscipline N %

Social/personality 28 21.5%
Cognitive/experimental 22 16.9%
Applied/organizational 16 12.3%
General 16 12.3%
Methodological 12 9.2%
Counseling 9 6.9%
Developmental 8 6.2%
Clinical 7 5.4%
Educational 6 4.6%
Neuroscience 5 3.8%

data. Results for 480 data sets are presented in Table 7.10. The
columns of the table indicate the number of clusters selected
by a scree test, and the rows represent the correct number of
clusters in the data. Thus, the diagonal of the table corre-
sponds to the correct specification of the number of clusters
identified by the scree test. A scree test is a graphical method
used for visually identifying the change in level of a statisti-
cal measure. In this application the replication values are plot-
ted across the number of groups in the clustering solution. A
notable change in level of the statistic may indicate that the
correct number of clusters has been found. The replication
scree test was able to specify the correct number of clusters in
58% of the cases. When including those cases that were

accurate to within =1 cluster, 82% of the data sets were re-

solved correctly. Thus, further development of the replication
methodology seems warranted.

DISCUSSION AND EXTENSIONS

The recommendations presented in this chapter are simply
guidelines and not hard and fast rules in clustering. The au-
thors would not be surprised if an empirical data set can be
found for each case that would provide a counterexample
to the suggested guidelines. Since the classification area is
quite active and new research continues to appear, applied
researchers are encouraged to review more recent results as
time progresses. The journals listed as references for this
chapter can serve as a basis for following the current litera-
ture. There is no doubt that further advances will reshape our
knowledge with respect to this methodology.

Use of Clustering in Psychology and Related Fields

Clustering continues to be used heavily in psychology and
related fields. The 1994-1999 editions of the SERVICE
bibliographic database list 830 entries in the psychological

/

journals alone. Primary areas of application include personal-
ity inventories (e.g., Lorr & Strack, 1994), educational
styles (e.g., Swanson, 1995), organizational structures (e.g.,
Viswesvaran, Schmidt, & Deshpande, 1994), and semantic
networks (e.g., Storms, Van Mechelen, & De Boeck, 1994).
Table 7.11 lists the 130 articles in psychology journals by
subdiscipline for the publication year of 1999, as listed in the
SERVICE bibliography. One can note that the subdiscipline
list in Table 7.11 spans most of psychology with a remarkably
even distribution. In addition, although a number of articles
about clustering appear in methodological journals, this cate-
gory represents only 9% of the publications about clustering
and classification. Thus, clustering and classification research
remains very healthy in psychology with both methodologi-
cal developments and substantive applications appearing
within the literature on a regular basis.

In addition to research within the mainstream psychology
journals, there is a large body of psychological research using
classification techniques in several closely related areas. Some
of the notable areas include environmental geography, where
cluster analysis is used to identify neighborhood structures
(Hirtle, 1995); information retrieval, where clustering is used
to identify groups of related documents (Rasmussen, 1992);
marketing, where there remains a close relationship between
data analysis techniques and theoretical developments
(Arabie & Daws, 1988); social network theory (Wasserman &
Faust, 1994); and evolutionary trees (Sokal, 1985). Arabie and
Hubert (1996) emphasize the last three areas as particularly
notable for their active use of clustering and for their method-
ological advances. Psychologists with an interest in the devel-
opment or novel adaptation of clustering technique are urged
to look toward these fields for significant advances.

Relationship to Data Mining

With a recent explosion of interest in data mining, there has
also been a resurgence of interest in clustering and classifica-
tion. Data mining applies a variety of automated and statistical
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tools to the problem of extracting knowledge from large data-
bases. The classification methods used in data mining are
more typically applied to problems of supervised learning. In
such cases, a training set of preclassified exemplars is used to
build a classification model. For example, one might have data
on high- and low-risk credit applicants. Such problems are
well suited for decision trees or neural network models
(Salzberg, 1997). In contrast, unsupervised classification is
closer to the topic of this chapter in that a large number of
cases are divided into a small set of groups, segments, or par-
titions, based on the similarity across some n-dimensional
attribute space. Data-mining problems can be extremely
large, with as many as a half million cases in the case of
astronomical data (e.g., Fayyad, Piatetsky-Shapiro, Smyth, &
Uthurusamy, 1996) or pharmacological data (e.g., Weinstein
et al., 1997). Thus, the use of efficient algorithms based on
heuristic approaches may replace more accurate, but ineffi-
cient, algorithms discussed previously in this chapter.

Han and Kamber (2000) reviewed extensions and variants
of basic clustering methods for data mining, including parti-
tioning, hierarchical, and model-based clustering methods.
Recent extensions of k-means partitioning algorithms for
large data sets include three related methods, PAM (Kaufman
& Rousseeuw, 1987), CLARA (Kaufman & Rousseeuw,
1990), and CLARANS (Ng & Han, 1994), which are based on
building clusters around medoids, which are representative
objects for the clusters. Extensions to hierarchical methods
for large databases include BIRCH (Zhang, Ramakrishnan, &
Linvy, 1996) and CHAMELEON (Karypis, Han, & Kumar,
1999), both of which use a multiphase approach to finding
clusters. For example, in CHAMELEON, objects are divided
into a relatively large number of small subclusters, which are
then combined using an agglomerative algorithm. Other data-
mining clustering techniques, such as CLIQUE (Agrawal,
Gehrke, Gunopulos, & Raghavan, 1998), are based on projec-
tions into lower dimensional spaces that can improve the abil-
ity to detect clusters. CLIQUE partitions the space into
nonoverlapping rectangular units and then examines those
units for dense collections of objects. Han and Kambar (2000)
argued that the strengths of this method are that it scales
linearly with the size of the input data and at the same time is
insensitive to the order of the input. However, the accuracy of
the method may suffer as a result of the simplicity of the
algorithm, which is an inherent problem of data-mining
techniques.

Software Considerations

Applied researchers may face significant problems of access to
user-friendly software for classification, especially for recent

advances and cutting-edge techniques. Commercially avajl.
able statistical packages can seldom keep up with advanceg
in a developing discipline. This observation is especially true
when the methodology is not part of the mainstream statistica]
tradition. It is unfortunate that research-oriented faculty are
not able to provide a greater degree of applied software sup-
port. Fortunately, the Internet can facilitate access to the
research software that is available. For example, the Classifi-
cation Society of North America maintains a Web site that pro-
vides access to an extensive set of software programs that have
been made freely available to the research community. The site
canbe located at http://www.pitt.edu/~csna/. The Web site also
provides useful links to commercial software packages, some
of which are not widely known. More generally, a wealth of
information on the classification community can.be found at
the Web site.

We still believe that the best advice is for graduate students
to develop some skill in writing code in at least one higher
level language to support their research activities. In some
situations you may just have to write it yourself in order to get
the analysis done. One option, among several, is to gain skill
at writing macros for the S-Plus (1999) software package.
This software package provides a fairly flexible system for
handling, manipulating, and processing statistical data.
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