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■ Abstract Because structural equation modeling (SEM) has become a very pop-
ular data-analytic technique, it is important for clinical scientists to have a balanced
perception of its strengths and limitations. We review several strengths of SEM, with
a particular focus on recent innovations (e.g., latent growth modeling, multilevel SEM
models, and approaches for dealing with missing data and with violations of normality
assumptions) that underscore how SEM has become a broad data-analytic framework
with flexible and unique capabilities. We also consider several limitations of SEM and
some misconceptions that it tends to elicit. Major themes emphasized are the problem
of omitted variables, the importance of lower-order model components, potential limi-
tations of models judged to be well fitting, the inaccuracy of some commonly used rules
of thumb, and the importance of study design. Throughout, we offer recommendations
for the conduct of SEM analyses and the reporting of results.
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INTRODUCTION

Writers of Annual Review chapters are confronted with difficult decisions con-
cerning what features to highlight for an audience composed of both specialists
and nonspecialists. Structural equation modeling (SEM) presents a particularly
challenging topic for review because it is mathematically complex and constantly
evolving. We do not provide a highly detailed summary of the many SEM appli-
cations by clinical scientists that have appeared during the recent past. Instead, we
focus on two sets of issues: the strengths and limitations of SEM as an approach
to model testing and important recent developments in modeling and software
capabilities.

We begin by documenting the increasing popularity of SEM among clinical sci-
entists. We then discuss several strengths of SEM as a data-analytic approach that
likely account for this trend. We particularly emphasize several recent innovations
that have extended the range of potential applications and exemplify the flexible
and unique capabilities of SEM. In the final section, we consider the limitations
of SEM and the misconceptions that it tends to elicit. This discussion is important
due to a striking paradox: While the mathematical and computational complexity
of SEM has increased over the past 20 years, it has become increasingly acces-
sible to researchers who lack specialized statistical training (Steiger 2001). An
important factor accounting for the latter trend is the development of new software
programs (e.g., Arbuckle & Wothke 1999, Muthén & Muthén 2004, Neale et al.
2003, Steiger 1995) and updated versions of older programs (e.g., Bentler 1995,
2004; Jöreskog & Sörbom 1996) that combine powerful capabilities with relative
ease of use. Although the increased accessibility of SEM to behavioral scientists is
a positive development, it is associated with a potential downside: misconceptions
about SEM and ignorance about its limitations and constraints.

Throughout the chapter, we focus on those features of SEM that appear par-
ticularly relevant to clinical scientists based on a review that we conducted of
applications published in several relevant journals (e.g., Journal of Abnormal Psy-
chology, Journal of Consulting and Clinical Psychology). At various points, we
also offer recommendations to researchers for the conduct and reporting of SEM
analyses.
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INCREASING POPULARITY OF STRUCTURAL
EQUATION MODELING

In the years since Peter Bentler’s (1980) original review in the Annual Review
of Psychology, SEM has become an increasingly popular data-analytic approach
among psychologists (Hershberger 2003). Indeed, the growing interest in SEM
is not limited to psychology but encompasses other social sciences (e.g., Hayduk
1996) and, increasingly, the biological sciences (e.g., Shipley 2000). In addition
to the software developments already noted, there are a number of indicators of
both the growth and increasing popularity of SEM. These include:

(a) the large number of published articles that have used SEM appearing in
psychological journals (including common publication outlets for clinical
scientists) (Hershberger 2003);

(b) evidence that SEM has become the multivariate technique most commonly
used by psychologists (Hershberger 2003);

(c) evidence that SEM has elicited the greatest number of articles appear-
ing in methodological journals whose primary audience is psychologists
(Hershberger 2003);

(d) the publication of a variety of books that introduce readers to basic issues
(e.g., Kline 1998, Loehlin 2004) or focus on more complex issues (e.g.,
Cudeck et al. 2001, Marcoulides & Schumaker 1996);

(e) the ready availability of workshops and short courses on SEM;

(f) the establishment of a journal (Structural Equation Modeling) devoted specif-
ically to SEM.

Many of these developments are not simply responses to the growth of interest
in SEM but are also contributors to its increasing popularity.

A perusal of journals that are primary publication outlets for clinical scientists
indicates that SEM has been increasingly used to address a variety of questions of
interest. For example, in recent years researchers have used this data-analytic tech-
nique to (a) assess the validity and other psychometric properties of measures of
many constructs relevant to clinical science (e.g., Anthony et al. 1999, Brown et al.
1998); (b) assess the relative contribution of genetic and environmental factors to
disorders and their comorbidity (e.g., Krueger et al. 2002, Slutske et al. 1998);
(c) test etiological models that specify the direct and indirect (i.e., mediational)
effects of hypothesized causes on psychiatric disorders or other outcomes of in-
terest (e.g., Finn et al. 2000, Trull 2001); and (d) examine whether measurement
or causal parameters are invariant across groups (e.g., King et al. 1995, Wills et al.
2002).

Over the past ten years, one of the major methodological developments in
the SEM domain has been the formulation of new approaches to the analysis of
longitudinal or other forms of repeated measures data (e.g., Curran & Hussong
2003, Duncan et al. 1999, Kenny & Zautra 1995, McArdle 2001, Muthén & Curran
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1997, Willett & Sayer 1994). Clinical scientists have taken advantage of these
developments to address a variety of questions. For example, researchers have
specified and tested (a) cross-lagged panel models to test hypotheses concerning
the causal relations among constructs (e.g., Sher et al. 1996); (b) trait-state models
to estimate components of variance due to traits, states, and random error and
to assess the degree to which trait versus state factors contribute to comorbidity
(e.g., Dumenici & Windle 1998, Jackson et al. 2000); and (c) latent growth models
to assess the developmental trajectory of constructs over time (e.g., Curran &
Hussong 2003, Garber et al. 2002).

In addition, although the traditional province of SEM has been research that
relies on self-report or behavioral measures, a broader set of applications has ap-
peared in recent years. For example, SEM has been used in neuroimaging studies
to test hypotheses concerning patterns of functional connectivity among brain re-
gions (e.g., Büchel & Friston 1997, Bullmore et al. 2000, Burgess et al. 2000) and
has been applied in psychophysiological studies to model properties of the auto-
nomic nervous system (e.g., Llabre et al. 2004). Given the diversity of applications,
it is not surprising that special sections on SEM have appeared in two journals,
the Journal of Abnormal Psychology (Tomarken & Baker 2003) and the Journal
of Consulting and Clinical Psychology (Hoyle 1994), whose primary audience
consists of clinical psychologists.

STRENGTHS OF STRUCTURAL EQUATION
MODELING AS A DATA-ANALYTIC APPROACH

One obvious reason why SEM has become such an increasingly popular data-
analytic option is that it has a number of strengths. One well-known feature is the
ability to specify latent variable models that provide separate estimates of relations
among latent constructs and their manifest indicators (the measurement model)
and of the relations among constructs (the structural model). By these means, it is
commonly argued, researchers can assess the psychometric properties of measures
and estimate relations among constructs that are corrected for biases attributable
to random error and construct-irrelevant variance (Bollen 1989). However, we
should caution that the psychometric benefits of latent variable modeling can be
overstated and are conditional upon various methodological factors operative in a
given study (e.g., DeShon 1998, Little et al. 1999).

Another commonly acknowledged strength is the availability of measures of
global fit that can provide a summary evaluation of even complex models that
involve a large number of linear equations. Most alternative procedures that might
be used in place of SEM (e.g., multiple regression) to test such models would
provide only separate “mini-tests” of model components that are conducted on
an equation-by-equation basis. In addition, via nested chi-square tests and other
means, users can comparatively evaluate the fit of alternative models that differ in
complexity. In this regard, SEM supports the model comparison approach to data
analysis (e.g., Judd et al. 1995).
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SEM also allows researchers to directly test the model of interest rather than
a straw-man alternative. In most statistical contexts encountered by behavioral
scientists, the researcher’s theoretical hypothesis is aligned with the alternative
hypothesis rather than the null hypothesis (e.g., Meehl 1978, Steiger & Fouladi
1997). For instance, although the null hypothesis tested by a typical between-
groups t test is that two population means are equal, the researcher is typically
conducting the study because he or she believes that the two means actually dif-
fer. In contrast, in SEM the theoretical hypothesis is often aligned with the null
hypothesis, which specifies that the model fits exactly or at least approximately
(e.g., MacCallum et al. 1996). We should note, however, that some types of SEM
analyses represent exceptions to this conclusion (e.g., between-group comparisons
of factor means).

SEM is also an exceedingly broad data-analytic framework that is associated
with unique capabilities relative to the statistical procedures traditionally used
by clinical scientists. We focus on these features in the sections below, with an
emphasis on recent innovations that have further increased the scope and capacities
of SEM.

STRUCTURAL EQUATION MODELING AS AN
INCREASINGLY BROAD ANALYTIC FRAMEWORK:
RECENT MODELING AND SOFTWARE INNOVATIONS

SEM is a quite general analytic framework with many types of models as special
cases. For example, multiple regression, path analysis, and confirmatory factor
analysis are special cases of the SEM model that, historically, have been heavily
utilized by behavioral scientists (for reviews, see, e.g., Bentler 1980, MacCallum
& Austin 2000). Causal modeling with latent variables conceptually represents
the union of the latter two techniques by combining the psychometric perspective
characteristic of factor analysis and the emphasis on causal modeling characteristic
of path analysis. In recent years, there has been a growing recognition on the part
of both methodological specialists and applied users that SEM can be applied to
an even wider array of data analytic problems.

Latent Growth Modeling and Other Multilevel
Modeling Capabilities

LATENT GROWTH MODELING In recent years, latent growth modeling (LGM) (e.g.,
Curran & Hussong 2003, Duncan et al. 1999, Muthén & Curran 1997, Willett &
Sayer 1994) and related SEM approaches to the analysis of repeated measures
data (e.g., Rovine & Molenaar 1998) have become viable alternatives to the clas-
sic repeated measures analysis of variance (ANOVA) approach traditionally used
by behavioral scientists. When one compares the LGM and repeated measures
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ANOVA approaches, a variety of advantages associated with the former become
apparent, including:

(a) the capacity to model and comparatively evaluate a broader array of growth
functions (e.g., du Toit & Cudeck 2001, Ghisletta & McArdle 2001);

(b) a more flexible array of possible covariance structures for modeling random
effects and residuals (e.g., Rovine & Molenaar 1998, Willett & Sayer 1994);

(c) the capacity to specify time-varying covariates (e.g., Curran & Hussong
2003, Muthén & Curran 1997);

(d) a greater ability to embed assessments of change in more complex causal
models that assess predictors, mediators, and consequences of change (e.g.,
Curran & Hussong 2003);

(e) the ability to test models that include multiple levels of hierarchically
structured data (Curran & Hussong 2003, Duncan et al. 2002);

(f) a better ability to assess the multivariate patterning of change across mul-
tiple measures (e.g., Willett & Sayer 1996);

(g) the capacity to assess whether higher-order constructs adequately account
for relations among lower-order developmental functions (e.g., Duncan
et al. 1999, McArdle 1988);

(h) access to better methods for the treatment of missing data (e.g., Duncan
et al. 1999, McArdle & Hamagami 1991, see also the discussion of missing
data below);

(i) greater statistical power according to the studies that have appeared to date
(Duncan et al. 1999, Fan 2003, Muthén & Curran 1997).

Several of these benefits are quite relevant to the interests of clinical scientists.
For example, via associative latent growth curve models, researchers can assess
the degree to which two or more symptom dimensions demonstrate concordant
patterns of change over time. While most examinations of comorbidity rely on
correlations among measures assessed at either one point in time or aggregated
across time, such examinations of developmental synchrony offer an additional
window on the phenomenon. Higher-order growth models such as factor-of-curve
and curve-of-factor models (e.g., Hancock et al. 2001) extend these capabilities
and address the critical issue of the optimal level of the diagnostic or dimensional
hierarchy for addressing questions pertaining to etiology, treatment, or prevention.
For example, using a factor-of-curve LGM, Duncan et al. (1999) found that a
general substance use factor strongly accounted for the relations among the growth
trajectories of alcohol use, tobacco use, and marijuana use. As another example,
multiple-group LGMs allow researchers to analyze cohort sequential designs that
are otherwise quite difficult to handle statistically (Duncan et al. 1996, Ghisletta &
McArdle 2001). By this means, segments of a limited amount of temporal data from
different cohorts (e.g., those assessed between ages 9 and 11, between 10 and 12,
etc.) can be linked together and used to approximate a longer-term developmental
function.
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BROADER MULTILEVEL MODELING CAPABILITIES Latent growth models are a spe-
cific type of multilevel model that is appropriate for clustered data structures in
which repeated observations are nested within individuals. One recent develop-
ment within the SEM domain is the capacity to model more general nested data
structures (e.g., students nested in classrooms, individuals nested within fami-
lies) beyond those that fall under the rubric of LGMs (e.g., Bentler & Liang 2002,
Curran 2003, du Toit & du Toit 2004, Hox 2002, Liang & Bentler 2004, McDonald
& Goldstein 1989, Muthén 1994). Such multilevel models have some similarity
to multiple-group SEM models that have been available for a number of years.
Conceptually, the distinction between the two parallels that between fixed-effects
and random-effects designs in the context of the general linear model. Multilevel
SEM models are appropriate for designs involving a large number of groups (e.g.,
100–200), the effects of which are considered random. Multilevel SEM analyses
provide aggregate estimates of within-group and between-group parameters but
not separate estimates of the parameters for each group.

Such models help researchers to model behavioral phenomena when the exper-
imental units are nonindependent. As in other statistical contexts, applications of
SEM that do not account for dependencies among the experimental units are as-
sociated with problems (overestimation of model parameters, underestimation of
standard errors, and inflated chi-square statistics; Julian 2001). In addition, SEM
multilevel models can prevent significant distortions in results that occur when
analyses fail to account for between-group heterogeneity (Muthén 1989). From
a more substantive perspective, SEM multilevel models allow researchers to ad-
dress interesting questions by providing separate estimates of within- and between-
group relations. For example, using the multilevel approach, Duncan et al. (1996)
assessed the relation between latent substance abuse and family conflict variables
on both a between- and within-family basis. By this means, they were able to
address two distinct questions: (a) Are those families characterized by the greatest
overall levels of substance abuse also characterized by the highest levels of family
conflict? (b) Within a family, do those siblings who demonstrate the highest levels
of substance abuse also report the highest levels of family conflict? In light of the
increasing interest in assessing the effects of shared versus nonshared environment
(Plomin et al. 2001), we expect that multilevel covariance structure modeling will
become an increasingly important tool for comparing between- and within-family
influences on behavior.

SEM multilevel models are, however, associated with several limitations at
their current stage of development. Because Muthén’s (1989, 1994) MUML ap-
proach has been the most frequently used method to date, we will focus on its
properties. This approach has several constraints: (a) Model setup and analysis
are more complex than is typically the case with single-level SEM models. (b) It
provides full-information maximum likelihood (FIML) estimates of within-group
and between-group parameters when group sizes are equal, but only approxi-
mate FIML estimates when the design is unbalanced (i.e., group n’s are unequal)
(Muthén 1994). (c) When the design is unbalanced, chi-square tests of overall fit
and of individual parameters are liable to have inflated Type 1 error rates (Hox &
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Maas 2001). (d) It provides for random intercepts but not slopes (e.g., between-
group variability in factor loadings and path coefficients cannot be modeled) (Hox
2002). (e) Even when the total sample size is rather large relative to the typical
SEM study conducted by clinical scientists, various problems concerning the esti-
mation of between-group parameters can arise when the number of groups is small
(e.g., 50). These include inadmissible or biased parameter estimates and inaccurate
standard errors (Hox & Maas 2001).

In recent years, several new approaches to estimation of SEM multilevel mod-
els have been developed that are designed to overcome the steep computational
hurdles involved in generating true FIML estimates that are applicable even in the
unbalanced case (du Toit & du Toit 2004, currently available in LISREL V8.5;
Liang & Bentler 2004, soon to be available in EQS 6.00). Initial findings concern-
ing the performance of these procedures are encouraging (e.g., Liang & Bentler
2004) and we anticipate continued innovations in this area.

COMPARISON TO HIERARCHICAL LINEAR MODEL APPROACHES Using software
such as HLM (Raudenbush et al. 2000) or SAS PROC MIXED, many clinical
scientists use a hierarchical linear model (HLM) approach (sometimes known as
random regression modeling, linear mixed-effects modeling, or multilevel model-
ing) to perform growth curve or other types of multilevel analyses (for reviews, see,
e.g., Raudenbush & Bryk 2002, Snijders & Bosker 1999). In the case of growth
curve models, the parallels between the HLM and SEM approaches are particu-
larly striking. Indeed, under a variety of conditions, the classic two-level HLM and
SEM growth curve approaches yield essentially identical solutions (e.g., Curran
2003, Willett & Sayer 1994). More generally, as Curran (2003) has shown, when
multilevel models are parameterized in a manner consistent with the LGM ap-
proach (i.e., effects of level-1 predictors are specified by fixed-factor loadings), a
variety of SEM multilevel models can be specified that are analytically equivalent
to those provided by HLM software.

These observations raise the question of the relative merits of the two general
approaches (SEM or HLM) to multilevel models. In some respects, the SEM ap-
proach has several advantages, including a broader and more interpretable array
of measures of overall model fit, more flexible modeling of residual structures and
of growth functions (e.g., typically, some slope loadings can be freely estimated
parameters), and a better overall capacity to model latent variables and their mul-
tivariate associations (e.g., Chou et al. 1998, Curran 2003, Willett & Sayer 1994).
Conversely, HLM models are generally easier to specify, are less likely to be asso-
ciated with estimation problems, and are able to perform certain types of analyses
that the SEM approach cannot easily handle. There are additional points of com-
parison (e.g., robustness to assumption violations, relative power) between the two
approaches that require further study by methodologists. Although such differences
exist, the overriding point to emphasize here is that “the boundaries between these
two modeling strategies are becoming increasingly porous” (Curran 2003, p. 565).
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Modeling of Categorical Observed and Latent Variables

Another significant development that has been attributable to the work of Muthén
(2001, 2002; Muthén & Muthén 2004) and other methodologists (e.g., Skrondal
& Rabe-Hesketh 2004) is enhanced facility for modeling categorical observed and
latent variables. These developments are particularly important, given the long-
standing relevance of taxometric issues to clinical science (Waller & Meehl 1998).
For example, using Mplus (Muthén & Muthén 2004), researchers can estimate
structural equation mixture models to test hypotheses concerning the presence
of unobserved latent classes characterized by different distributions on the vari-
ables of interest (for an application to clinical science, see van Lier et al. 2003).
Latent growth mixture modeling is a particularly interesting variant that can be
used to determine if subgroups can be identified that demonstrate distinct devel-
opmental trajectories (e.g., Li et al. 2001, Muthén 2001). Using a latent growth
mixture modeling approach, Colder et al. (2002) delineated five longitudinal drink-
ing patterns among adolescents and found that these different patterns had unique
correlates.

Although these developments are exciting, these newer methods raise several
potentially problematic issues. For example, SEM growth mixture modeling can
lead to the discovery of spurious latent classes when the structural model is mis-
specified, when there are nonlinear relations among observed and latent vari-
ables, and when the distributions of latent variables are nonnormal (Bauer &
Curran 2003, 2004). Even given these and other cautions that could be cited,
we believe that the development of mixture modeling capabilities underscores
that SEM is a broad framework that has grown progressively more inclusive with
time.

From a historical perspective, these newer SEM capabilities represent the log-
ical culmination of a long-term trend toward the development of increasingly
general statistical models. For example, in the 1970s and 1980s, statisticians de-
veloped generalized linear models (GLMs), which represent a liberalization of
the classical ordinary least-squares linear model to allow for nonlinear functional
forms and nonnormal response distributions (e.g., Hardin & Hilbe 2001, Nelder &
Wedderburn 1972). The GLM framework unifies several superficially disparate
statistical techniques (e.g., linear regression, logistic regression, Poisson regres-
sion) under a single estimation framework (for a review, see Hardin & Hilbe
2001). More recent developments have allowed an even broader class of models
to be incorporated into the GLM framework (e.g., repeated measures models and
other models that include clustered data structures) (for reviews, see, e.g., Agresti
2002, Hardin & Hilbe 2003). From this perspective, the development of multilevel
modeling and mixture modeling capabilities within the SEM domain represents
a further extension of the GLM framework to incorporate latent continuous and
categorical variables (Muthén & Muthén 2004, Skrondal & Rabe-Hesketh 2004).
Thus, SEM represents arguably the most general data-analytic framework at the
present point in time.
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SEM with Nonnormal Variables

In recent years, there have also been important developments in understanding the
consequences of the violation of assumptions that underlie SEM analyses and in
developing robust procedures that can be used when violations occur. Research on
the normality assumption that underlies most SEM analyses conducted in practice
is the prime example of this point. Despite the fact that psychological data are
often poorly characterized by the normal distribution (Curran et al. 1996, Micceri
1989), most SEM applications rely on normal theory methods—such as maximum
likelihood (ML) and generalized least squares (GLS)—when estimating model
parameters and testing model goodness of fit. According to Yuan & Bentler (2001),
researchers rarely consider the distributional properties of their data prior to fitting
an SEM even though they have been encouraged to do so for at least 15 years
(Breckler 1990).

Plotting distributions prior to fitting a parametric statistical model is wise sta-
tistical practice (Tukey 1980). Deviations from normality can also be detected
by examining higher-order moments such as Mardia’s multivariate skewness and
kurtosis (Bollen 1989, p. 420; Mardia 1970, 1974). Prior to fitting a model, re-
searchers should also screen for outliers (Bollen 1987, Lee & Xu 2003, Yuan &
Bentler 2001) because “even if a proposed structure is correct for the majority of
the data in a sample, a small proportion of outliers leads to biased estimators and
significant test statistics” (Yuan & Bentler 2001, p. 161). For covariance structures,
there are several methods for detecting outliers and influential data vectors (Lee
& Xu 2003, Reise & Widaman 1999). EQS (Bentler 2004) is particularly strong
in this area.

Normal theory methods, such as ML and GLS, are derived under the assumption
that the data are multivariate normal (MVN), an assumption that is considerably
more restrictive than univariate normality. Statisticians tend to favor normal the-
ory methods, when they are available, because they yield parameter estimates that
are (a) asymptotically unbiased (in large samples they are neither too large nor
too small), (b) asymptotically efficient (in large samples they have the smallest
sampling variability of any unbiased estimator), and (c) consistent (sample es-
timates converge to their population values as sample size increases) when the
data are MVN and the model is correct. Normal theory methods for covariance
structures also yield parameter standard errors and a test statistic (TML, TGLS) that
is distributed as a chi-square variate. Although TML in particular is often reported
in empirical publications, researchers generally rely more on descriptive fit in-
dices that are less sensitive to the effects of sample size (for discussion of other
limitations associated with these test statistics, see Tomarken & Waller 2003).

Importantly, when data are not MVN, the desirable properties of normal theory
estimators may not be realized. For instance, with nonnormal data, the ML test
statistic (TML) tends to reject true models more frequently than the nominal (0.05)
rejection rate (Curran et al. 1996, Fouladi 2000). ML standard errors also become
attenuated when MVN is not satisfied. Standard errors that are biased downward
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result in inflated Type I error rates when z and Wald tests are used to assess
parameter significance. The GLS estimator yields similar findings. Nonnormal data
can also have other undesirable effects. For example, as reviewed above, nonnormal
latent variables can lead to the extraction of spurious latent classes in latent growth
mixture modeling analyses (Bauer & Curran 2003, 2004). We should also note
that nonnormality of the observed scores may or may not be due to nonnormal
latent variables. For instance, nonnormal observed scores may represent coarsely
categorized indicators (e.g., binary or Likert items) of underlying continua with
normal distributions. Alternative estimators and test statistics can be used with
such data (Muthén 1993; Muthén & Kaplan 1985, 1992).

The discussion above of the vitiating effects of nonnormal data in covariance
structures has omitted some theoretically important details. Technically, in SEM,
multivariate normality is a sufficient but not a necessary condition for realizing the
desiderata of normal theory estimators (see Bollen 1989, pp. 126–128). A branch of
statistics known as asymptotic robustness theory (Browne 1987, Browne & Shapiro
1988) has identified several conditions under which many (but not all) of the
properties of ML estimators continue to hold with nonnormal data. Unfortunately,
as noted by Bentler & Dudgeon (1996), “asymptotic robustness theory cannot be
relied upon in practice, because it is practically impossible to evaluate whether its
conditions are met” (p. 572). Consequently, if lack of MVN is a concern—as it
should be in most clinical studies—researchers should consider the methods that
are described in the following paragraphs.

One approach to dealing with nonnormal data is to use an estimator with less
restrictive distributional assumptions. Browne’s (1982, 1984) asymptotic distri-
bution free method (called WLS in LISREL and AGLS in EQS) is perhaps the
best-known method in this class. Unfortunately, the asymptotic distribution free
method performs poorly in realistically sized samples (e.g., Chou et al. 1991,
Curran et al. 1996, Fouladi 2000). This finding has led statisticians back to the ML
estimator with an aim toward improving its performance with nonnormal data.

In SEM, two approaches for improving ML performance have shown promise.
One approach applies scaling corrections to the ML test statistic, TML, and uses
robust standard errors to mitigate bias. The Satorra-Bentler test statistic (TSB) and
robust standard errors (Satorra & Bentler 1986, 1988, 1994) are the best-studied
corrections to normal theory estimators in covariance structures and both options
are widely available in SEM packages. These statistics can also be calculated us-
ing the instructions in Bentler & Dudgeon (1996, pp. 587–588). Numerous Monte
Carlo studies support the usefulness of these corrections (Chou et al. 1991, Curran
et al. 1996, Fouladi 2000, Hu et al. 1992) and they are highly recommended when
working with nonnormal data. In smaller samples (N < 400 with severely non-
normal data; see Boomsma & Hoogland 2001 for more details) the TSB functions
poorly; thus, in smaller samples with nonnormal data, the Yuan-Bentler Residual
Based Test Statistic (Bentler & Yuan 1999, Yuan & Bentler 1998b) or the Yuan-
Bentler Residual Based F Statistic may be preferable (Yuan & Bentler 1998a).
These newer tests, as well as a variant of TSB for missing data, are included in the
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latest version of EQS and will undoubtedly undergo further scrutiny in upcoming
years. Before leaving this topic, we should note that the TSB should not be used for
traditional chi-square differences tests because the difference between the TSB of
nested models is not distributed as a chi-square. Satorra & Bentler (2001, p. 511)
describe an appropriate method for testing nested models with the TSB.

Bootstrap methods (Efron 1979) represent a second choice when fitting covari-
ance structures to nonnormal data (Bollen & Stine 1993, Yung & Bentler 1996,
Yuan & Hayashi 2003). Such methods empirically generate sampling distributions
via resampling without replacement from the original data. Using bootstrap sam-
ples, researchers can estimate accurate significance levels for TML and appropriate
standard errors (i.e., with correct coverage probabilities) for various model param-
eters including direct and indirect effects (Bollen & Stine 1990). Simulation studies
(Enders 2002, Nevitt & Hancock 2001) suggest that the bootstrap performs well
in this context and that it outperforms the TSB and robust standard errors in small
samples (Enders 2002, Fouladi 2000, Nevitt & Hancock 2001). Unfortunately,
in very small samples (N < 100), the bootstrap also yields inaccurate results for
covariance structures.

Bootstrap functionality is now included in most SEM packages. Readers should
be forewarned, however, that not all programs compute the correct bootstrap sam-
pling distribution for test statistics such as TML. As described by Bollen & Stine
(1993), bootstrap estimates of likelihood ratio statistics, such as TML, should be
computed on model-consistent data matrices. By design, model-consistent data
fit a model exactly. Bollen & Stine (1993; see also Enders 2002) show how to
transform raw data into model-consistent data.

The Analysis of Missing Data

Just as nonnormal data are the rule rather than the exception in clinical research,
missing data are quite common. This is particularly true of longitudinal studies,
which are routinely subject to attrition and other factors that render data incom-
plete. Unfortunately, the ad hoc approaches to missing data that traditionally have
been used by clinical scientists (e.g., listwise deletion, pairwise deletion, mean im-
putation) have several problems. Depending on the underlying reasons for missing
data and the particular method used, such approaches can produce biased and inef-
ficient parameter estimates, highly inaccurate standard errors, confidence intervals
with poor coverage probabilities, and invalid hypothesis tests (e.g., Allison 2003,
Schafer & Graham 2002, Wothke 2000).

Over the past 20 years, an important focus of statistical research has been the
development of better methods for the principled treatment of missing data (e.g.,
Little & Rubin 1987, Rubin 1987, Schafer 1997). Such methods are applicable to
a variety of contexts and thus are not intrinsically tied to SEM. Nevertheless, it is
arguably the case that SEM has become the statistical framework most frequently
used to demonstrate and compare these alternative approaches to the treatment of
missing data. Correspondingly, an important innovation within the SEM domain
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has been the development of software that allows researchers to use these newer
methods. Four such methods are currently available in at least one SEM software
package: (a) multisample analysis (Allison 1987, Muthén et al. 1987), which
compares distinct groups that differ in missing data patterns; (b) full-information
maximum likelihood (FIML) (sometimes referred to as casewise, direct, or raw
ML) (Finkbeiner 1979), which generates ML estimates of the parameters of a
specified model based on the available data per participant; (c) the expectation-
maximization (EM) algorithm (Dempster et al. 1977), which is typically used to
compute ML estimates of the covariance matrix and mean vector that can then be
used as input to a SEM analysis; and (d) multiple imputation (MI) (Rubin 1987,
Schaefer 1997), which first creates multiple samples in which all missing data
values are estimated (i.e., imputed), then estimates the model of interest separately
for each sample, and finally generates aggregate estimates of parameters, standard
errors, and model fit by taking into account variability both between and within
samples. (For descriptions of these four approaches, comparisons among them,
and comparisons to traditional approaches, see Allison 2002, 2003; Collins et al.
2001; Duncan et al. 1998; Enders 2001a,b; Schaefer & Graham 2002; Schaefer &
Olsen 1998; Sinharay et al. 2001; Wothke 2000; and Yuan & Bentler 2000.)

Several points concerning these newer approaches to missing data are salient.
First, if the unobserved values are missing completely at random (MCAR) or miss-
ing at random (MAR), these approaches will generally yield unbiased estimates
of population parameters, more accurate coverage probabilities for confidence
intervals, and more efficient estimates (i.e., smaller standard errors) than the tradi-
tional methods (Allison 2003; Collins et al. 2001; Enders 2001a, 2002b; Sinharay
et al. 2001; Wothke 2000). Indeed, the differences between the newer and more
traditional methods can be quite striking. The available evidence also indicates
that these newer approaches can often produce better results than the conven-
tional methods when the data are not missing at random (MNAR) (Sinharry et al.
2001). Allison (2002, 2003), Collins et al. (2001), Schaefer & Graham (2002), and
Sinharry et al. (2001) provide accessible definitions and examples of the MCAR,
MAR, and MNAR categories.

On balance, we would recommend the FIML and MI approaches to SEM users
because they can be more flexibly applied than the multisample alternative and
generally produce more accurate estimates of standard errors than EM (but see
Yuan & Bentler 2000 for a modified EM approach). A direct comparison of the
FIML and MI approaches indicates contrasting strengths and weaknesses. For
example, FIML is available, or soon will be available, in several commonly used
software packages and is relatively easy for users to implement. On the other
hand, MI can be used in an even broader array of situations than FIML (e.g.,
when estimation methods other than ML are used) and imputed data sets can
subsequently be used in a variety of different types of analyses. However, this
approach can be more difficult for users to implement than FIML (Allison 2003).
In addition, because at present only one of the commonly used SEM packages
(LISREL) has a built-in option for creating multiply imputed data sets, users
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may have to use external software [Schafer’s (1999) NORM program or SAS
PROC MI] in conjunction with an SEM program. SAS users can combine the
multiple-imputation programs PROC MI (which generates multiply-imputed data
sets) and PROC MIANALYZE (which generates aggregated parameter estimates
and standard errors across replicated data sets) with the SEM program PROC
CALIS (for an example, see Allison 2003).

As is the case with complete-case SEM analyses, the ML-based missing data
approaches (multiple-sample, EM, and FIML) assume multivariate normality and
the most commonly used MI approaches generate imputed values under a mul-
tivariate normal model (Schaefer & Graham 2002). In the case of the ML-based
methods, there is evidence that violations of the multivariate normality assump-
tion can have effects on estimates, standard errors, and measures of model fit
that parallel those reviewed above in the context of complete-case analyses (e.g.,
Enders 2001b, Yuan & Bentler 2000). Fortunately, recent evidence indicates that
the bootstrapping procedures (e.g., Bollen & Stine 1993) and rescaled statistics
(e.g., Chou & Bentler 1995) available for complete-case analyses of nonnormal
data can be profitably extended to the missing data context (e.g., Enders 2001b,
2002; Yuan & Bentler 2000). We particularly recommend Enders’s (2002) article
and the accompanying SAS macro because no SEM programs currently provide
bootstrap resampling when data are missing.

Over the past several years, an increasing number of SEM papers published
by clinical scientists have made use of these newer missing data capabilities.
Although this development is a positive one, we should caution against the blind
application of such methods under the assumption that they will automatically
provide unbiased and optimally efficient estimates. For example, when data are
not missing by design but due to factors that are beyond the control of the researcher,
it is likely that they are MNAR, rather than MCAR or MAR (Collins et al. 2001).
These procedures produce unbiased estimates under only the latter two conditions.
Unfortunately, our review of empirical applications indicated that users typically
failed to address the issue of missing data mechanisms and thus interpreted their
results without any qualifications. We also found that no empirical studies took
explicit steps to improve the quality of estimation by including auxiliary variables
in a model that are predictors of either missingness or the variables that have
missing values. Such auxiliary variables can be important in minimizing biases
because they render the situation more “MAR-like” even if the data are formally
MNAR (e.g., Collins et al. 2001, Graham 2003).

LIMITATIONS IN APPLICATIONS

Although we have emphasized that SEM is a broad-analytic framework, it has
been rarely used in some important design and analysis contexts. Below, we note
two of the most important omissions and address the degree to which they reflect
genuine limitations of the SEM approach versus other factors.
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Interaction and Other Nonlinear Models

If there is one paradigmatic framework that has influenced thinking about the
etiology of psychopathology for a number of years, it is the vulnerability-stress
model (sometimes called the “diathesis-stress” model) (e.g., Alloy et al. 1999,
Monroe & Simons 1991, Zubin & Spring 1977). According to this perspective, it is
the specific combination of a predisposing vulnerability to disorder and subsequent
exposure to stress that triggers the onset and/or maintenance of psychopathology.
Although both additive and interactive models can be accommodated under the
vulnerability-stress framework (e.g., Alloy et al. 1999, Monroe & Simons 1991), it
most commonly predicts a statistical interaction between vulnerability factors and
stressors. As such, a vulnerability-stress model is one type of moderator effect.
Moderator effects are of broad interest to behavioral scientists in a variety of
contexts (e.g., Baron & Kenny 1986) and are most commonly tested by interaction
terms in general linear models.

Although interactions constitute a major class of hypotheses formulated by re-
searchers, our review of empirical applications indicates that users have only rarely
used SEM to test interaction hypotheses. This omission is certainly not due to the
absence of statistical tests of interaction hypotheses from empirical publications.
Such tests routinely appear in the literature but typically are performed by other
analytic approaches.

When tests of interactions appear in SEM publications, they are almost always
interactions between a categorical and continuous variable tested via a multiple-
sample modeling approach. For example, to assess whether gender moderated
the effects of coping styles on substance abuse, Wills et al. (2001) conducted a
multiple-group analysis comparing coping effects in males and females. Although
the multiple-group approach is a valuable one, it has its limitations when both pre-
dictors of interest are continuously distributed variables (e.g., Maxwell & Delaney
1993). In principle, the preferred alternative would be procedures that allow ex-
plicit specification of interactions between continuously distributed latent variables
in a manner analogous to that traditionally used in multiple regression analyses.
Indeed, SEM would appear to have some clear advantages as an approach to testing
interactions. For example, interaction terms often have low reliability, which can
bias estimates and compromise power (Moosbrugger et al. 1997). In theory, the
ability to model interactions using latent variables should correct such effects.

In fact, a number of SEM procedures have been suggested for modeling interac-
tions (e.g., Algina & Moulder 2001; Bollen & Paxton 1998; Jaccard & Wan 1995;
Jöreskog 2000; Jöreskog & Yang 1996; Kenny & Judd 1984; Klein & Moosbrugger
2000; Lee et al. 2004; Ping 1996; Wall & Amemiya 2000, 2001). Unfortunately,
the specification and estimation of SEM models with latent variable interactions
are associated with potential problems and complexities that likely account for
why researchers have tended to avoid their use (for reviews, see Moosbrugger
et al. 1997, Schumaker & Marcoulides 1998). Some of the issues that have arisen
are described in the list below.
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(a) Most of the procedures that have been suggested involve nonstandard and
complex model specifications that are challenging for the average user
and thus susceptible to error. Indeed, errors have even been noted in the
specifications developed by SEM specialists [see, e.g., Jöreskog & Yang’s
(1996) comments on the Kenny & Judd (1984) model].

(b) Convergence problems have been observed with some procedures (e.g.,
Algina & Moulder 2001, Lee et al. 2004).

(c) Because products of normally distributed observed and latent variables
are themselves not normally distributed, standard errors and estimates of
fit might not be accurate (for a review, see Moosbrugger et al. 1997).
This problem will be more severe to the extent that the latent exogenous
variables used to form the product term are highly correlated. Coping with
this problem might ultimately require the computation of an estimated
asymptotic covariance matrix from sample data (Jöreskog & Yang 1996)
or restrictions on the number of observed product variables. Given the
sample sizes commonly used in practice, however, the former approach
might yield biased and inefficient estimates (Moosbrugger et al. 1997)
and the latter approach can produce inconsistent results across the specific
indicators chosen (Lee et al. 2004).

(d) If the latent variables that denote main effects are not normally distributed,
the parameter estimates yielded by several procedures are not consistent
(Wall & Amemiya 2001).

(e) Most of the methods proposed in the literature are applicable to a restricted
class of measurement models (Wall & Amemiya 2000).

(f) Although a number of alternative procedures and options have been pro-
posed, the selection of an optimal approach is made difficult by the absence
of any one study or set of studies that compares all the viable alternatives
that have been proposed to date under a variety of conditions.

(g) Some of the more promising approaches are not easily available in con-
ventional SEM software.

Owing to these factors, users are likely to be legitimately confused about how
best to proceed. On the positive side, we should add that latent variable interaction
modeling is a very active area of research that has yielded several promising new
developments in recent years (e.g., Jöreskog 2000; Klein & Moosbrugger 2000;
Lee & Zhu 2002; Lee et al. 2004; Wall & Amemiya 2000, 2001). We look forward
to a more comprehensive comparative evaluation of these new approaches and an
increase in their accessibility to users via software developments and other means
(e.g., tutorial papers).

We should note that the limitations in modeling interaction terms reflect more
general difficulties in nonlinear modeling using SEM. Users can rather easily
specify some types of nonlinear models that will yield valid estimates (e.g., LGM
models that specify quadratic effects). For many other types of nonlinear models,
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however, the same procedures that have been developed for interactions have to
be used, and the same problems can occur. In addition, when nonlinear models are
tested using SEM software, they have to be parameterized to meet the constraint
that all measurement and structural equations must be linear in their parame-
ters (compare Burchinal & Appelbaum 1991 and McDonald 1982). As a result,
the most common nonlinear models other than interactions have been quadratic
polynomials. In recent years, methodological specialists have developed several
creative ways to specify intrinsically nonlinear (e.g., exponential) SEM models
via nonlinear equality constraints, transformations of model parameters, and other
means (e.g., Boker & Graham 1998, du Toit & Cudeck 2001, Muthén & Muthén
2004). We consider these promising developments particularly important because
such models often yield more meaningful and interpretable patterns than their
polynomial approximations (e.g., Cudeck & du Toit 2002). In addition, nonlinear
dynamic models are increasingly applied to psychological phenomena that linear
models do not handle well (e.g., Heath 2000). Indeed, the great majority of mathe-
matical models that have proven influential in physics, engineering, medicine, and
other domains are nonlinear. We expect that SEM will be perceived as a useful
data-analytic technique by researchers outside the behavioral sciences to the extent
that it can accommodate such models.

Is SEM Underutilized in Experimental Studies?

Our review of published papers revealed a second notable omission. SEM has been
only rarely used in the context of true experiments; that is, studies in which partic-
ipants are randomly assigned to treatments and independent variables are directly
manipulated. For example, despite evidence that SEM can provide quite novel
models for assessing treatment process and outcome (e.g., Khoo 2001, Muthén &
Curran 1997), it has been rarely used in randomized treatment studies.

We speculate that there are several reasons why clinical scientists have tended
not to use SEM in experimental studies. First, historically, it has been viewed as a
technique for testing causal hypotheses in the context of nonexperimental studies
that lack random assignment. Second, researchers are concerned that the inclusion
of categorical variables denoting group status might violate the assumption of
multivariate normality. Finally, researchers are concerned that their sample sizes
are not sufficient for SEM, which is based on asymptotic theory.

Several of these issues can be rather easily addressed. First, SEM certainly is not
limited to nonrandomized contexts. For example, both the LGM approaches dis-
cussed above and SEM alternatives to the MANOVA (Cole et al. 1993, Hancock
et al. 2000, Kano 2001) can be used to compare groups in randomized experi-
ments. These SEM approaches have several advantages relative to the procedures
traditionally used by clinical scientists (e.g., increased power, relative freedom
from certain assumptions) and do not necessarily violate the multivariate normal-
ity assumption, which is more circumscribed than many researchers commonly
believe.
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The issue of sample size is a more serious concern and may well be the most
critical impediment to the use of SEM in experimental studies. Over the years,
a number of simulation studies have assessed the effects of variations in sample
size on SEM analyses (for reviews, see Boomsma & Hoogland 2001, Hoogland &
Boomsma 1998). Unfortunately, one conclusion emanating from such studies is
that there is no one recommended minimal sample size that is broadly applicable
in all contexts. The prime reasons are that variations in sample size influence a
number of factors (e.g., bias of parameter estimates, power, likelihood of inadmis-
sible estimates) and interact with several other factors (e.g., degree of assumption
violation, overall model complexity). If we were forced to quote a specific numeric
range, based on the simulation studies reviewed by Boomsma & Hoogland (2001),
we would recommend that sample sizes be at least in the 200 range even when rel-
atively simple models (e.g., a confirmatory factor-analytic model with two factors
and three to four indicators per factor) are tested. For more complex models and/or
models for which the assumption of multivariate normality is likely violated, we
would recommend larger N’s—in some cases, much larger.

Clearly, these recommended sample sizes are larger than those used in most
laboratory experiments and in many randomized treatment or prevention studies.
One important direction for future inquiry is to assess how the SEM alternatives
to the ANOVA and MANOVA perform under sample size conditions that are
more like those used in practice. In such contexts, bootstrapping approaches to
SEM (e.g., Bollen & Stine 1993, Nevitt & Hancock 2001) may prove to be a
valuable option. Even given these qualifications and uncertainties, we believe that
SEM should be more frequently used in treatment and prevention studies, many
of which have sample sizes that could be considered within an acceptable range.
Muthén & Curran (1997) have provided an excellent overview of some of the
possible applications of SEM in such contexts.

MORE GENERAL LIMITATIONS, CONSTRAINTS,
AND MISCONCEPTIONS

SEM has more general limitations in addition to the fact that it may not be optimally
applied in specific data-analytic contexts. Although users are typically aware of the
strengths of SEM that we have detailed at various points, they are often unaware of
such limitations and they are subject to several additional misconceptions. As a re-
sult, they tend to overstate both the strength and certainty of the conclusions yielded
by SEM analyses. Although a number of potential issues could be addressed, we
focus on those factors that we deem most relevant to clinical scientists.

Omitted Variables

As several methodologists have emphasized over the years, structural models—like
all statistical models—are typically only approximations of reality (e.g., Browne

A
nn

u.
 R

ev
. C

lin
. P

sy
ch

ol
. 2

00
5.

1:
31

-6
5.

 D
ow

nl
oa

de
d 

fr
om

 a
rj

ou
rn

al
s.

an
nu

al
re

vi
ew

s.
or

g
by

 U
ni

v.
 o

f 
So

. Q
ue

en
sl

an
d 

on
 0

4/
03

/0
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



17 Feb 2005 16:54 AR AR240-CP01-02.tex XMLPublishSM(2004/02/24) P1: JRX

STRUCTURAL EQUATION MODELING 49

& Cudeck 1993, Cudeck & Henley 1991, MacCallum 2003, MacCallum & Austin
2000, Meehl & Waller 2002). One way that SEM models are approximations is
by omitting variables that are implicated in the causal processes or other features
of a model. Such omissions present a misleading picture of the measurement
and/or causal structure and, in addition, commonly result in biased parameter
estimates and inaccurate estimates of standard errors (e.g., Kaplan 1989, Mauro
1990, Reichardt 2002). Although the problem of omitted variables is certainly
not unique to SEM, it is a major feature of well-known criticisms of SEM as an
approach to model testing (e.g., Cliff 1983, Freedman 1987).

It is likely that the great majority of the SEM models specified and tested by
clinical scientists omit important variables. This conclusion is particularly true of
causal models, which are commonly specified by clinical scientists. Surprisingly,
however, our review of published applications indicated that omitted variables
are rarely acknowledged by clinical scientists. One reason may be an assumption
that, if a model fits well, it must include all the necessary and important variables
implicated in the hypothesized structure. As Tomarken & Waller (2003) have
pointed out, however, while the conventionally used fit indices are sensitive to
omitted variables in many contexts, in other cases they may be insensitive. Thus,
good fit by no means guarantees the inclusion of all relevant variables in a model.

A second reason why users might downplay omitted variables is that structural
models routinely include residual terms that denote the composite effects of the
unmeasured influences on a given variable. The variances of such residual terms
are typically freely estimated parameters in structural models. Covariances among
residuals can also be specified that denote omitted common causes that contribute to
the covariance between two constructs. Because researchers can use such residual
terms to account for omitted variables, they may believe that the latter are not a
problem.

Unfortunately, the provision of residual variance and covariance terms does
not necessarily solve the problem of biased parameter estimates and inaccurate
standard errors introduced by omitted variables. As reviewed by Tomarken &
Waller (2003), there are commonly constraints on both the number and types of
covariances involving residual terms that can be specified. As a result, biased
estimates can still be obtained—and most likely are, in the majority of cases.

There is also a more general point to consider. In our experience, users often
underestimate the importance of residual variance and covariance terms for gener-
ating a model with acceptable fit. Were such terms excluded, a high proportion of
the models tested by researchers would fit poorly or demonstrate other problems
(e.g., inadmissible estimates). Note, however, the paradox here: Terms denoting
unknown and unmeasured variables that have been omitted from the researcher’s
theoretical model can contribute significantly to the fit of that model. In essence,
the residual parameterizations afforded by SEM software can mask the limitations
of a rather incomplete model.

For all the reasons that we have noted, it is important for authors of SEM articles
to acknowledge the high likelihood of omitted variables and their deleterious effects

A
nn

u.
 R

ev
. C

lin
. P

sy
ch

ol
. 2

00
5.

1:
31

-6
5.

 D
ow

nl
oa

de
d 

fr
om

 a
rj

ou
rn

al
s.

an
nu

al
re

vi
ew

s.
or

g
by

 U
ni

v.
 o

f 
So

. Q
ue

en
sl

an
d 

on
 0

4/
03

/0
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



17 Feb 2005 16:54 AR AR240-CP01-02.tex XMLPublishSM(2004/02/24) P1: JRX

50 TOMARKEN � WALLER

on parameter estimates, standard errors, and broader inferences about structure
(Tomarken & Waller 2003). Authors might also consider using various types of
sensitivity analyses to assess the possible biases induced by omitted variables on
coefficients (e.g., Mauro 1990, Scheines et al. 1994).

Does SEM Encourage Neglect of Lower-Order
Model Components?

Although measures of global fit test the validity of model-imposed restrictions on
the covariance matrix, they do not directly test what might be considered lower-
order components of a model (Tomarken & Waller 2003). Such components in-
clude specific model parameters (e.g., path coefficients) and relevant quantities
that can be derived from such parameters, such as the proportion of variance in an
endogenous variable that is accounted for by the specified predictors in the model
(excluding, of course, residual terms). In our experience, users are sometimes
unaware that a model can fit perfectly yet be associated with problematic lower-
order components (e.g., parameter estimates that are biased, small in magnitude,
or opposite to theoretical expectations) (e.g., Bollen 1989).

For example, it is possible for a model to fit perfectly, yet account for well
below 1% of the variance of the primary endogenous variables (Tomarken & Waller
2003). This situation can arise due to a factor that we have already highlighted
in the discussion of omitted variables: the ability to specify residual terms. In
this case, the critical factor is residual variance parameters. Even if the explicitly
specified causes of an endogenous variable account for only a small proportion
of its variance, the implied and observed variances can be equal if the residual
variance is sufficiently large. Because residual variances are usually just-identified
parameters with few restrictions, they can often rather easily fill in the difference
and contribute to an implied variance that equals the observed variance (Tomarken
& Waller 2003).

A second factor that enables the combination of good fit and small magnitudes
of association is the nature of the structural equation models specified and tested
by researchers. Such models are less precise than the detailed graphic depictions
appearing in journal articles might imply. They generally include many more free
parameters than fixed parameters, and the former often are the researcher’s primary
interest. By the very nature of the term, free parameters can conceivably take on a
range of possible values, with the optimal (e.g., maximum likelihood) estimate in
any given context being determined by numerical algorithms designed to maximize
fit to the observed data. Thus, the SEM analyst may predict that construct X causes
construct Y, but rarely predicts a precise point value for the causal coefficient or a
range of plausible or acceptable values.

This characteristic of most SEM models tested by researchers is by no means
unique to SEM. It reflects the more general absence of point or range predictions in
clinical psychology and related disciplines (e.g., Meehl 1978, Roberts & Pashler
2000). In addition, we should acknowledge that many SEM models do incorporate

A
nn

u.
 R

ev
. C

lin
. P

sy
ch

ol
. 2

00
5.

1:
31

-6
5.

 D
ow

nl
oa

de
d 

fr
om

 a
rj

ou
rn

al
s.

an
nu

al
re

vi
ew

s.
or

g
by

 U
ni

v.
 o

f 
So

. Q
ue

en
sl

an
d 

on
 0

4/
03

/0
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



17 Feb 2005 16:54 AR AR240-CP01-02.tex XMLPublishSM(2004/02/24) P1: JRX

STRUCTURAL EQUATION MODELING 51

theoretically meaningful fixed or constrained coefficients beyond those needed
simply to identify a model (e.g., behavioral genetics models constitute a prime
example of this point). Even given these considerations, most of the critical speci-
fications of most SEM models tested in practice are highly flexible—perhaps overly
flexible—and accommodate a broad range of possible outcomes (e.g., Roberts &
Pashler 2000). For this reason, coefficients that are small in magnitude or even
opposite in sign to theoretical expectations could conceivably occur in the context
of a well-fitting model.

As these points suggest, researchers should focus more on measures of effect
size and of association, confidence intervals, and other lower-order components
(e.g., Bollen 1989, Tomarken & Waller 2003) when evaluating a model. Unfor-
tunately, our review of SEM papers indicated that clinical scientists often failed
to report confidence intervals and measures of association (e.g., proportion of
variance accounted for) or effect size.

There is an additional respect in which SEM analyses conducted by behav-
ioral researchers have tended to ignore lower-order components of the data. SEM
analyses generally focus on summary statistics; that is, covariances and, in some
cases, means. For example, raw data values are not needed as input for the great
majority of analyses and the core component of most fit indices is the discrep-
ancy between the sample covariance matrix and covariance matrix implied by the
model. Unfortunately, the reliance on summary statistics and measures of global
fit may lead researchers to ignore the issue of how well models fit at the level of the
individual participant. One likely reason for this omission is that SEM analyses
rarely have been used for the selection or prediction of individuals in real-world
contexts (Reise & Widaman 1999).

We believe that an assessment of person-fit can potentially be quite valuable
in the SEM context. It might ultimately sharpen models and predictions by iden-
tifying subgroups of experimental participants who do not fit the model currently
under consideration but who fit modified models or demonstrate aberrant response
patterns. Recently, methodologists have developed measures of person-fit that can
be used in the SEM context (Neale 2000, Reise & Widaman 1999). For example
Reise & Widaman (1999) have proposed a measure (INDCHI) that is computed as
–2 times the difference between the likelihood of an individual’s response to the
estimated model of interest and the likelihood of his or her response to a saturated
model (that fits perfectly). Mathematically, this measure indicates the contribution
of each individual to the chi-square test of exact fit that is computed across the
entire sample. Reise & Widaman’s (1999) preliminary assessment of the properties
of this measure was encouraging, although they did find that it was only weakly
correlated with a measure of fit derived from item-response theory. To date, few
studies in the SEM area have been conducted using this or other possible measures
of person-fit. The recently developed SEM mixture modeling capabilities will also
likely prove important in the future in this regard (Neale 2000).

In sum, we are concerned that SEM analyses encourage researchers to focus
on global fit at the expense of an assessment of various lower-order features of
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the data that also have an important bearing on the evaluation of a model. In this
respect, SEM may actually compare unfavorably to more conventional statistical
procedures used by clinical scientists. For example, when conducting an ordinary
least squares regression analysis, researchers routinely report R2 values (indicating
magnitude of association) and focus on the values of individual regression coeffi-
cients. In addition, multiple regression is associated with a rich array of procedures
for the analysis of residuals and other individual-level features of data (e.g., Draper
& Smith 1998). In these respects, a typical multiple regression analysis might ac-
tually allow for a more comprehensive and rigorous evaluation of a model and its
assumptions than would an SEM analysis (Friedman 1987).

Problems with Estimates and Tests of Parameters

Consistent with the need to attend to lower-order model components, researchers
need to be aware of several problematic issues concerning the estimation and
testing of individual parameters that are commonly ignored in SEM applications.
First, given the observation that SEM models are approximations, it is relevant
to note that the parameter estimates and associated standard errors yielded by
analyses are unbiased only under the assumption that the specified model is correct.
Magnifying the problem here is the phenomenon of propagation of specification
errors. The estimators most commonly used in empirical applications of SEM
(e.g., maximum likelihood) use all available information in the covariance matrix
of the observed variables to generate parameter estimates. While this feature is
associated with several advantages (e.g., smaller standard errors when models are
correct), it also allows the effects of a misspecified parameter to be propagated
beyond the specific equation in which it occurs (e.g., Kaplan 1988, 1989). Thus,
for example, an omitted path from a given latent variable to another latent variable
could potentially bias estimates of other structural or measurement parameters
that would appear to be far downstream from the misspecified parameter. In other
words, the costs of misspecification are not nearly as localized as many users might
hope.

Several other issues are associated with estimation and testing of parameters
and the formation of confidence intervals that have been highlighted in recent
years by methodologists. For example, even when alternative ways to identify a
model produce identical fit, the Wald z tests for free parameters that are commonly
reported in SEM software are often not invariant (Gonzalez & Griffin 2001, Neale
& Miller 1997). Thus, different ways of identifying a model may produce different
ratios of a given parameter to its standard error. In addition, although the Wald
statistic assumes that the sampling distribution of a parameter is normal, it is
likely that such distributions often are not symmetrical given the sample sizes
used in practice. The assumption of symmetry is particularly inappropriate when a
parameter is close to its lower or upper bound (e.g., close to 0 in the case of variance
parameter). When computed correctly (e.g., Self & Liang 1987), likelihood-ratio
tests and confidence intervals for individual parameters are typically superior to
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Wald-based tests and intervals (Gonzalez & Griffin 2001, Neale & Miller 1997).
Unfortunately, with the exception of MX (Neale et al. 2003) and LISREL (Jöreskog
& Sörbom 1996), LR tests and intervals for a large number of individual parameters
can be cumbersome to compute using SEM software. In addition, even LR tests are
subject to problems under certain conditions (e.g., when sample sizes are small).

Users should also be aware that the statistical theory underlying SEM pertains
to covariance, rather than correlation, matrices (Cudeck 1989). Unfortunately, our
review of SEM papers indicated that correlation matrices were analyzed in some
studies whereas in others it was unclear precisely whether covariance or correla-
tion matrices were used. When correlation matrices are analyzed as if they were
covariance matrices, standard errors of parameter estimates are usually inaccu-
rate. Under specific conditions (e.g., when equality constraints on parameters are
tested), biased parameter estimates and inaccurate estimates of fit can also occur
(Cudeck 1989, MacCallum & Austin 2000). Researchers who want to analyze
correlation matrices or obtain valid tests of models in which both exogenous and
endogenous latent variables are measured in a standardized metric should use
constrained estimation methods (Steiger 2002). Two software packages currently
available, RAMONA (Browne & Mels 1999) and SEPATH (Steiger 1995), include
constrained estimation routines that allow users to easily impose the appropriate
restrictions necessary to analyze standardized data. As an alternative, it is possi-
ble for users to specify explicitly the complex nonlinear constraints required for
correct standardization by using some other software packages. If these differ-
ent options are not available or practical, we echo MacCallum & Austin (2000)
by recommending that psychopathologists fit models to covariance matrices and
sacrifice some ease of interpretation.

In sum, users need to be aware of the variety of problematic issues that exists
concerning the estimation and testing of parameters. Caution is also necessary
when interpreting parameter estimates and associated statistics that appear in many
published applications of SEM.

Other Models Will Also Fit Well

It is impossible to prove that a model is correct using statistical analyses or other
means. Alternative models may be available that could fit the data equally well
or better. Unfortunately, this conclusion is too often ignored by researchers, who
tend to overstate the certainty and strength of the conclusions yielded by a SEM
analysis. As discussed by Tomarken & Waller (2003), the two primary problems in
the SEM context are: (a) equivalent models that impose the same restrictions on the
implied covariance matrix as the target model and thus will always yield identical
measures of fit (e.g., Breckler 1990, Hershberger 1994, Lee & Hershberger 1990,
MacCallum et al. 1993, Stelzl 1986); and (b) alternative nonequivalent models that
might fit the data as well as or better than the target model under consideration
(e.g., MacCallum & Austin 2000, Meehl & Waller 2002, Waller & Meehl 2002).
Concerning the latter, although researchers commonly conduct nested tests to
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comparatively evaluate at least some of the alternatives, such tests comprise only a
small subset of the possible comparisons. Because these issues have been reviewed
extensively in the literature, we direct readers to the sources cited above, as well
as the discussion by Tomarken & Waller (2003).

Rules of Thumb Can Be Inaccurate

In many statistical contexts, researchers use rules of thumb to guide decision
making and justify the decisions made. Unfortunately, in many cases, such rules
of thumb are oversimplified or simply erroneous (e.g., MacCallum et al. 2001,
Marsh et al. 2004). SEM is no exception. For example, in our experience, users
commonly believe that alternative ways to identify a model (e.g., fixing a factor
loading at one versus fixing a factor variance at one) always produce identical
results. This principle is not universally true. As noted above, tests of individual
parameters may not be invariant across alternative identification schemes even
when estimates of overall fit are invariant (e.g., Gonzalez & Griffin 2001). Further,
as Steiger (2002) has pointed out, in certain contexts that are important in practice
(e.g., when equality constraints are imposed on parameters), different ways of
identifying latent variables might subtly introduce corresponding differences in
the specific restrictions implied by a model. As a result, chi-square tests and other
measures of fit will also differ.

The assessment of fit is arguably the area in which researchers have most
consistently used rules of thumb. For a number of years, the most common criteria
for fit indices that have been used by behavioral researchers are rules of thumb
that lack a detailed mathematical or empirical justification. For example, one rule
of thumb that has been frequently used over the years is that values of incremental
fit indices [e.g., the Tucker-Lewis Index (Tucker & Lewis 1973), the Comparative
Fit Index (Bentler 1990)] greater than 0.90 indicate acceptable fit. Unfortunately,
several simulation studies have indicated that (a) such rules of thumb are often
inaccurate (typically they are too lenient); (b) the optimal cutoff criteria for most fit
indices are conditional upon a variety of factors including the estimation method
used, sample size, model complexity, and the degree to which the assumption of
multivariate normality is violated; and (c) some commonly used fit indices (e.g.,
the Goodness of Fit Index; Jöreskog & Sörbom 1996) are insufficiently sensitive
to misspecifications whereas the rarely reported standardized root mean squared
residual (Bentler 1995) is often appropriately sensitive (e.g., Browne et al. 2002;
Fan et al. 1999; Hu. & Bentler 1998, 1999; Marsh et al. 1996, 2004). In short,
these results indicate that the conventional rules of thumb and guidelines used by
researchers for the selection and interpretation of fit indices are often erroneous or
oversimplified. Given the complexity of the issues here, we agree with Marsh et al.
(2004) that even under the best of circumstances a healthy dose of subjectivity is
involved in determining whether a model fits well.

Researchers need to be cautious even when applying guidelines that appear
more firmly grounded than rules of thumb. Monte Carlo simulation studies are a
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major source of knowledge about various aspects of structural equation modeling.
In the majority of cases, such studies have assessed performance when the model
being tested is correctly specified in all respects. As such, they do not accurately
reflect the reality noted above that the SEM models posited by researchers do not
hold exactly in the population but are approximations. Clearly, then, it is important
to study various SEM features when the model in question is not correct in the
population (MacCallum 2003).

Consistent with this reasoning, those simulation studies that have been con-
ducted assessing performance under conditions of model misspecification have
contributed important new insights—for example, the evidence reviewed above
that conventional rules of thumb for fit indices are often inaccurate (e.g., Hu &
Bentler 1998, 1999). Although simulation studies that incorporate model error as
well as sampling error can be more complex to conduct, methods have been devel-
oped to generate population covariance matrices that are approximated to precisely
specified degrees by factor-analytic models (for a review, see MacCallum 2003)
and broader structural equation models (Cudeck & Browne 1992). Studies using
these methods have shown that the results and conclusions yielded by simulations
performed when a model is misspecified may be quite different from those yielded
by assessments of performance when the specified model fits perfectly (Cudeck
& Brown 1992). In our view, it is important that future simulation studies attempt
to mirror the reality of models as approximations.

Structural Equation Modeling Cannot Compensate
for Limitations in Design and Method

As statistical consultants are well aware, sophisticated statistical procedures can-
not rescue a poorly designed study. In the SEM context, even a completely correct
theoretical model (e.g., one that includes all necessary variables and paths) can fit
poorly and yield highly biased estimates if the study is poorly designed. Unfortu-
nately, authors of empirical SEM papers often fail to discuss the specific rationale
for decisions about design and method, and the potential impact of the choices
made on results and conclusions.

Mediational models are very popular among clinical scientists and serve to
illustrate the importance of design features. Some mediational studies use cross-
sectional designs while others use longitudinal designs. As Cole & Maxwell (2003,
see also Gollob & Reichardt 1987) have shown, cross-sectional mediational de-
signs will yield unbiased estimates of direct and indirect causal effects only under
highly restricted conditions unlikely to be met in practice and, even when lon-
gitudinal designs are used, the specific estimates obtained are highly dependent
on the relation between the temporal lag of the actual causal effects and the time
lags between measurement occasions. Thus, conceivably, one could have a model
that specifies the correct constructs and relations between constructs, yet does not
yield good estimates of direct and indirect effects because the measurement occa-
sions are not appropriately lagged. Cole & Maxwell (2003) have also highlighted
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several other design features that have a large impact on the results and conclu-
sions reached in mediational studies. We consider their paper required reading for
clinical researchers who test mediational hypotheses.

Design factors are also important because of their impact on statistical power
and the sensitivity of measures of fit to misspecifications. As Tomarken & Waller
(2003) noted, when power is discussed in applications of SEM, researchers tend
to focus solely on the effects of sample size on the chi-square test of exact fit. By
emphasizing sample size to the exclusion of other factors, SEM users demonstrate a
bias that is evident in a variety of statistical contexts (McClelland 1997). However,
there is ample evidence that design factors such as the reliability and number of
observed indicators and the number of time points assessed in repeated measures
studies are significant influences on power and sensitivity in the SEM context (e.g.,
Mandys et al. 1994, Matsueda & Bielby 1986, Raykov 2000, Tomarken & Waller
2003).

It is important for researchers to ensure that the experimental design and over-
all analytic approach confer sufficient sensitivity to detect misspecifications that
would be deemed nontrivial (Tomarken & Waller 2003). Ideally, this question
should be addressed while an SEM study is being planned. During this phase,
two very helpful skills to exercise are the ability to conduct power analyses and
computer simulations. Fortunately, such analyses can be conducted relatively con-
veniently using most conventional software packages. For interested readers, we
recommend several excellent pedagogical papers that have appeared in recent
years on these topics (MacCallum et al. 1996, Muthén & Curran 1997, Muthén &
Muthén 2002, Paxton et al. 2001).

SUMMARY AND CONCLUSION

As a data-analytic approach, SEM has a number of appealing features. For ex-
ample, it is arguably the most broadly applicable statistical procedure currently
available and it has a number of unique and flexible capabilities. SEM has become
a particularly attractive data-analytic option in recent years because of the develop-
ment of several new types of models and software capabilities that are particularly
well suited to the research interests of clinical scientists.

SEM is not, however, a statistical magic bullet. It cannot be used to prove that a
model is correct and it cannot compensate for a poorly designed study. In addition,
even a well-fitting SEM model can have problematic lower-order components and
omit important variables. Ironically, several of the limitations and misconceptions
that we have identified have been well known to methodologists for many years
(e.g., Breckler 1990, Cliff 1983, Freedman 1987, MacCallum et al. 1993) and
arise in other statistical contexts (e.g., Judd et al. 1995). In a sense, then, one could
describe SEM as a cutting-edge statistical technique that is subject to some very
old and familiar problems, constraints, and misconceptions. It is important for
users to become aware of both the strengths and limitations of SEM. Indeed, we
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consider such a balanced perspective a necessary condition for the appropriate use
of this powerful statistical technique.

The Annual Review of Clinical Psychology is online at
http://clinpsy.annualreviews.org
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