Farey Fractions

Definition

The set of Farey fractions of order n, denoted by F_{n}, is the set of reduced fractions in the closed interval $[0,1]$ with denominators not exceeding n listed in increasing order.

Examples

$F_{1} \quad \frac{0}{1}$
$F_{2} \quad \frac{0}{1}$
$\frac{1}{2}$
$F_{3} \quad \frac{0}{1}$
$\frac{1}{3} \quad \frac{1}{2}$
$\frac{1}{2} \quad \frac{2}{3}$
$\frac{1}{1}$
$F_{4} \quad \frac{0}{1}$
$\frac{1}{4} \quad \frac{1}{3}$
$\frac{1}{2}$
$\frac{2}{3} \quad \frac{3}{4}$ $\frac{1}{1}$
$F_{5} \quad \frac{0}{1}$
$\frac{1}{5} \quad \frac{1}{4}$
$\frac{1}{3} \quad \frac{2}{5}$
$\frac{1}{2}$
$\frac{3}{5} \quad \frac{2}{3}$
$\frac{3}{4} \quad \frac{4}{5}$
$\frac{1}{1}$
$F_{6} \quad \frac{0}{1}$
$\begin{array}{lll}\frac{1}{6} & \frac{1}{5} & \frac{1}{4}\end{array}$
$\frac{1}{3} \quad \frac{2}{5}$
$\frac{1}{2}$
$\frac{3}{5} \quad \frac{2}{3}$
$\begin{array}{llll}\frac{3}{4} & \frac{4}{5} & \frac{5}{6} & \frac{1}{1}\end{array}$
$\begin{array}{llllllllllllllllllllllllllllll} & \mathrm{F}_{7} & \frac{0}{1} & \frac{1}{7} & \frac{1}{6} & \frac{1}{5} & \frac{1}{4} & \frac{2}{7} & \frac{1}{3} & \frac{2}{5} & \frac{3}{7} & \frac{1}{2} & \frac{4}{7} & \frac{3}{5} & \frac{2}{3} & \frac{5}{7} & \frac{3}{4} & \frac{4}{5} & \frac{5}{6} & \frac{6}{7} & \frac{1}{1}\end{array}$

Remark

These examples illustrate some general properties of F arey fractions. For example, $F_{n} \subset F_{n+1}$, so we get F_{n+1} by inserting new fractions in F_{n}. If $\frac{a}{b}<\frac{c}{d}$ are consecutive in F_{n} and separated in F_{n+1}, then the fraction $\frac{a+c}{b+d}$ does the separating, and no new ones are inserted between $\frac{a}{b}$ and $\frac{c}{d}$.

This new fraction is called the mediant of $\frac{a}{b}$ and $\frac{c}{d}$.

Theorem 1

If $\frac{a}{b}<\frac{c}{d}$, their mediant $\frac{a+c}{b+d}$ lies between them.

Proof
$\frac{a+c}{b+d}-\frac{a}{b}=\frac{b c-a d}{b(b+d)}>0$ and $\frac{c}{d}-\frac{a+c}{b+d}=\frac{b c-a d}{d(b+d)}>0$.

Theorem 2

Let $0 \leq \frac{a}{b}<\frac{c}{d} \leq 1$ with $b c-a d=1$.
Then $\frac{a}{b}$ and $\frac{c}{d}$ are consecutive terms in F_{n} for the following values of n :

$$
\max \{b, d\} \leq n \leq b+d-1
$$

Proof
The condition $b c-a d=1$ implies that the fractions $\frac{a}{b}$ and $\frac{c}{d}$ are reduced.
If $\max \{b, d\} \leq n$ then $b \leq n$ and $d \leq n$ so $\frac{a}{b}$ and $\frac{c}{d}$ are certainly in F_{n}.
Now we prove that they are consecutive if $n \leq b+d-1$.
If they are not consecutive, then there is another fraction $\frac{h}{k}$ between them, that is $\frac{a}{b}<\frac{h}{k}<\frac{c}{d}$.
Since

$$
k=k(b c-a d)=b(c k-d h)+d(b h-a k)
$$

and

$$
\frac{\mathrm{a}}{\mathrm{~b}}<\frac{\mathrm{h}}{\mathrm{k}}<\frac{\mathrm{c}}{\mathrm{~d}} \text { implies that } \mathrm{ck}-\mathrm{d} \mathrm{~h} \geq 1 \text { and } \mathrm{b} h-\mathrm{a} \mathrm{k} \geq 1
$$

then

$$
k=b(c k-d h)+d(b h-a k) \geq b+d
$$

Therefore, if $n \leq b+d-1$, then $\frac{a}{b}$ and $\frac{c}{d}$ must be consecutive in F_{n}.

Theorem 3

Let $0 \leq \frac{\mathrm{a}}{\mathrm{b}}<\frac{\mathrm{c}}{\mathrm{d}} \leq 1$ with $\mathrm{bc}-\mathrm{ad}=1$.
If $\frac{h}{k}$ is the mediant of $\frac{a}{b}$ and $\frac{c}{d}$, then $\frac{a}{b}<\frac{h}{k}<\frac{c}{d}$ and $b h-a k=1, c k-d h=1$.
Proof
Since $\frac{h}{k}$ lies between $\frac{a}{b}$ and $\frac{c}{d}$, then $c k-d h \geq 1$ and $b h-a k \geq 1$. Thus

$$
k=b(c k-d h)+d(b h-a k)
$$

shows that $k=b+d$ if and only if $c k-d h=1, b h-a k=1$.

Theorem 4

The set F_{n+1} includes F_{n}.
Each fraction in F_{n+1} which is not in F_{n} is the mediant of a pair of consecutive fractions in F_{n}.
Moreover, if $\frac{a}{b}<\frac{c}{d}$ are consecutive in any F_{n}, then they satisfy the unimodular relation $b c-a d=1$.
Proof

Use induction on n.

When $n=1$, the fractions $\frac{0}{1}$ and $\frac{1}{1}$ are consecutive and satisfy the unimodular relation.
We pass from F_{1} to F_{2} by inserting $\frac{1}{2}$.

Now suppose $\frac{a}{b}$ and $\frac{c}{d}$ are consecutive in F_{n} and satisfy the unimodular relation $b c-a d=1$.
Then by Theorem 2, they will be consecutive in F_{m} for all m satisfying

$$
\max \{b, d\} \leq m \leq b+d-1 .
$$

Form their mediant $\frac{h}{k}$ where $h=a+c, k=b+d$.
By Theorem 3, $b \mathrm{~h}-\mathrm{ak}=1, \mathrm{ck}-\mathrm{dh}=1$, so h and k are relatively prime.

The fractions $\frac{a}{b}$ and $\frac{c}{d}$ are consecutive in F_{m} for all m satisfying $\max \{b, d\} \leq m \leq b+d-1$, but are not consecutive in F_{k} since $k=b+d$ and $\frac{h}{k}$ lies in F_{k} between $\frac{a}{b}$ and $\frac{c}{d}$.

But the two new pairs $\frac{\mathrm{a}}{\mathrm{b}}<\frac{\mathrm{h}}{\mathrm{k}}$ and $\frac{\mathrm{h}}{\mathrm{k}}<\frac{\mathrm{c}}{\mathrm{d}}$ are now consecutive in F_{k} because

$$
k=\max \{b, k\} \text { and } k=\max \{d, k\} .
$$

The two new pairs still satisfy the unimodular relations $b h-a k=1, c k-d h=1$.

This shows that in passing from F_{n} to F_{n+1} every new fraction inserted must be the mediant of a consecutive pair in F_{n} and the new consecutive pairs satisfy the unimodular relations. Therefore F_{n+1} has these properties if F_{n} does.

Theorem 5

If $\frac{a}{b}$ and $\frac{c}{d}$ are consecutive in F_{n}, then

$$
\left|\frac{a}{b}-\frac{a+c}{b+d}\right|=\frac{1}{b(b+d)} \leq \frac{1}{b(n+1)}
$$

and

$$
\left|\frac{c}{d}-\frac{a+c}{b+d}\right|=\frac{1}{d(b+d)} \leq \frac{1}{d(n+1)} .
$$

Theorem 6

Given any real number θ and any positive integer N, there exist rational numbers $\frac{a}{b}$ such that

$$
\left|\theta-\frac{a}{b}\right|<\frac{1}{b(N+1)} \text { with } 0<b \leq N \text {. }
$$

Theorem 7

Given any irrational θ, there exist infinitely many rational numbers $\frac{a}{b}$ such that

$$
\left|\theta-\frac{a}{b}\right|<\frac{1}{b^{2}} .
$$

Theorem 8

If m and n are positive integers then not both of the inequalities can hold :

$$
\frac{1}{m n} \geq \frac{1}{\sqrt{5}}\left(\frac{1}{m^{2}}+\frac{1}{n^{2}}\right)
$$

and

$$
\frac{1}{m(m+n)} \geq \frac{1}{\sqrt{5}}\left(\frac{1}{m^{2}}+\frac{1}{(m+n)^{2}}\right)
$$

Theorem 9 Hurwitz

Given any irrational θ, there are infinitely many rational numbers $\frac{a}{b}$ such that

$$
\left|\theta-\frac{a}{b}\right|<\frac{1}{\sqrt{5} a^{2}} .
$$

Moreover the result is false if $\frac{1}{\sqrt{5}}$ is replaced by any smaller constant.

