Farey Fractions

Definition

The set of Farey fractions of order n, denoted by F_n , is the set of reduced fractions in the closed interval [0, 1] with denominators not exceeding n listed in increasing order.

Examples

F_1	$\frac{0}{1}$																		$\frac{1}{1}$
F_2	$\frac{0}{1}$									$\frac{1}{2}$									$\frac{1}{1}$
F_3	$\frac{0}{1}$						$\frac{1}{3}$			$\frac{1}{2}$			$\frac{2}{3}$						$\frac{1}{1}$
F_4	$\frac{0}{1}$				$\frac{1}{4}$		$\frac{1}{3}$			$\frac{1}{2}$			$\frac{2}{3}$		$\frac{3}{4}$				$\frac{1}{1}$
F_5	$\frac{0}{1}$			$\frac{1}{5}$	$\frac{1}{4}$		$\frac{1}{3}$	$\frac{2}{5}$		$\frac{1}{2}$		$\frac{3}{5}$	$\frac{2}{3}$		$\frac{3}{4}$	$\frac{4}{5}$			$\frac{1}{1}$
F_6	$\frac{0}{1}$		$\frac{1}{6}$	$\frac{1}{5}$	$\frac{1}{4}$		$\frac{1}{3}$	$\frac{2}{5}$		$\frac{1}{2}$		$\frac{3}{5}$	$\frac{2}{3}$		$\frac{3}{4}$	$\frac{4}{5}$	$\frac{5}{6}$		$\frac{1}{1}$
F_7	$\frac{0}{1}$	$\frac{1}{7}$	$\frac{1}{6}$	$\frac{1}{5}$	$\frac{1}{4}$	$\frac{2}{7}$	$\frac{1}{3}$	$\frac{2}{5}$	$\frac{3}{7}$	$\frac{1}{2}$	$\frac{4}{7}$	$\frac{3}{5}$	$\frac{2}{3}$	$\frac{5}{7}$	$\frac{3}{4}$	$\frac{4}{5}$	$\frac{5}{6}$	$\frac{6}{7}$	$\frac{1}{1}$

Remark

These examples illustrate some general properties of Farey fractions. For example, $F_n \subset F_{n+1}$, so we get F_{n+1} by inserting new fractions in F_n . If $\frac{a}{b} < \frac{c}{d}$ are consecutive in F_n and separated in F_{n+1} , then the fraction $\frac{a+c}{b+d}$ does the separating, and no new ones are inserted between $\frac{a}{b}$ and $\frac{c}{d}$.

This new fraction is called the *mediant* of $\frac{a}{b}$ and $\frac{c}{d}$.

Theorem 1

If
$$\frac{a}{b} < \frac{c}{d}$$
, their mediant $\frac{a+c}{b+d}$ lies between them.

PROOF

$$\frac{a+c}{b+d} - \frac{a}{b} = \frac{bc-ad}{b(b+d)} > 0 \text{ and } \frac{c}{d} - \frac{a+c}{b+d} = \frac{bc-ad}{d(b+d)} > 0.$$

Theorem 2

Let
$$0 \leq \frac{a}{b} < \frac{c}{d} \leq 1$$
 with $bc - ad = 1$.

Then $\frac{a}{b}$ and $\frac{c}{d}$ are consecutive terms in F_n for the following values of n:

$$\max\{b, d\} \le n \le b + d - 1$$
.

PROOF

The condition bc - ad = 1 implies that the fractions $\frac{a}{b}$ and $\frac{c}{d}$ are reduced. If max $\{b, d\} \le n$ then $b \le n$ and $d \le n$ so $\frac{a}{b}$ and $\frac{c}{d}$ are certainly in F_n .

Now we prove that they are consecutive if $n \leq b + d - 1$.

If they are not consecutive, then there is another fraction $\frac{h}{k}$ between them, that is $\frac{a}{b} < \frac{h}{k} < \frac{c}{d}$.

Since

$$k = k(bc - ad) = b(ck - dh) + d(bh - ak),$$

and

$$\frac{a}{b} < \frac{h}{k} < \frac{c}{d}$$
 implies that $ck - dh \ge 1$ and $bh - ak \ge 1$,

then

$$k = b(ck - dh) + d(bh - ak) \geq b + d.$$

Therefore, if $n \le b + d - 1$, then $\frac{a}{b}$ and $\frac{c}{d}$ must be consecutive in F_n .

Theorem 3

Let
$$0 \le \frac{a}{b} < \frac{c}{d} \le 1$$
 with $bc - ad = 1$.
If $\frac{h}{k}$ is the mediant of $\frac{a}{b}$ and $\frac{c}{d}$, then $\frac{a}{b} < \frac{h}{k} < \frac{c}{d}$ and $bh - ak = 1$, $ck - dh = 1$.

PROOF

Since
$$\frac{h}{k}$$
 lies between $\frac{a}{b}$ and $\frac{c}{d}$, then $ck - dh \ge 1$ and $bh - ak \ge 1$. Thus
 $k = b(ck - dh) + d(bh - ak)$

shows that k = b + d if and only if ck - dh = 1, bh - ak = 1.

Theorem 4

The set F_{n+1} includes F_n .

Each fraction in F_{n+1} which is not in F_n is the mediant of a pair of consecutive fractions in F_n .

Moreover, if $\frac{a}{b} < \frac{c}{d}$ are consecutive in any F_n , then they satisfy the <u>unimodular relation</u> bc - ad = 1. PROOF

Use induction on *n*.

When n = 1, the fractions $\frac{0}{1}$ and $\frac{1}{1}$ are consecutive and satisfy the unimodular relation. We pass from F_1 to F_2 by inserting $\frac{1}{2}$.

Now suppose $\frac{a}{b}$ and $\frac{c}{d}$ are consecutive in F_n and satisfy the unimodular relation bc - ad = 1. Then by Theorem 2, they will be consecutive in F_m for all *m* satisfying

$$\max\left\{b\,,\,d\right\} \leq m \leq b + d - 1 \;.$$

Form their mediant $\frac{h}{k}$ where h = a + c, k = b + d.

By Theorem 3, bh - ak = 1, ck - dh = 1, so *h* and *k* are relatively prime.

The fractions $\frac{a}{b}$ and $\frac{c}{d}$ are consecutive in F_m for all m satisfying max $\{b, d\} \le m \le b + d - 1$, but are not consecutive in F_k since k = b + d and $\frac{h}{k}$ lies in F_k between $\frac{a}{b}$ and $\frac{c}{d}$.

But the two new pairs $\frac{a}{b} < \frac{h}{k}$ and $\frac{h}{k} < \frac{c}{d}$ are now consecutive in F_k because

$$k = \max\{b, k\} \text{ and } k = \max\{d, k\}.$$

The two new pairs still satisfy the unimodular relations bh - ak = 1, ck - dh = 1.

This shows that in passing from F_n to F_{n+1} every new fraction inserted must be the mediant of a consecutive pair in F_n and the new consecutive pairs satisfy the unimodular relations. Therefore F_{n+1} has these properties if F_n does.

Theorem 5

If
$$\frac{a}{b}$$
 and $\frac{c}{d}$ are consecutive in F_n , then
 $\left|\frac{a}{b} - \frac{a+c}{b+d}\right| = \frac{1}{b(b+d)} \le \frac{1}{b(n+1)}$
and

$$\left|\frac{c}{d} - \frac{a+c}{b+d}\right| = \frac{1}{d(b+d)} \leq \frac{1}{d(n+1)}.$$

Theorem 6

Given any real number θ and any positive integer N, there exist rational numbers $\frac{a}{b}$ such that

$$\left| \theta - \frac{a}{b} \right| < \frac{1}{b(N+1)}$$
 with $0 < b \leq N$.

Theorem 7

Given any irrational θ , there exist infinitely many rational numbers $\frac{a}{b}$ such that

$$\left|\theta - \frac{a}{b}\right| < \frac{1}{b^2}.$$

Theorem 8

If m and n are positive integers then <u>not both</u> of the inequalities <u>can hold</u> :

$$\frac{1}{mn} \geq \frac{1}{\sqrt{5}} \left(\frac{1}{m^2} + \frac{1}{n^2} \right)$$

and

$$\frac{1}{m(m+n)} \geq \frac{1}{\sqrt{5}} \left(\frac{1}{m^2} + \frac{1}{(m+n)^2} \right)$$

Theorem 9 Hurwitz

Given any irrational θ , there are infinitely many rational numbers $\frac{a}{b}$ such that

$$\left|\theta - \frac{a}{b}\right| < \frac{1}{\sqrt{5} a^2} .$$

Moreover the result is false if $\frac{1}{\sqrt{5}}$ is replaced by any smaller constant.