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Abstract 
 
Three-dimensional real-time graphics are a prevalent technology nowadays, thanks 
to the steady rise of processing power and specialized graphics hardware. One of the 
goals of computer graphics most sought after and difficult to achieve is to reproduce 
realistic outdoor environments featuring dense forests. However, polygonal tree 
models need to be composed of a great number of polygons to produce a faithful 
representation of real world vegetation, which is prohibitive for rendering great 
amounts of such tree models in real-time. 
With vastly improving texturing capabilities of graphics hardware, image-based 
rendering has become a feasible counterpart to rendering polygonal objects over the 
last years, since it helps reducing the number of polygons of a scene and enables the 
rendering of objects that are hard to display using traditional geometry. 
 
Still, up until now, there is but a slim number of applications that have attempted to 
put the user into a credible virtual environment packed full of trees, with lacking 
density of the generated forests or reduced explorability being the key problems that 
prevent those efforts from being perceived as sufficiently realistic. 
 
In this thesis, we discuss the utility of image-based rendering methods in rendering 
huge and freely explorable forests with good visual quality at interactive rates. 
We utilize a technique originating from the rather young field of research of extreme 
model simplification, called Billboard Clouds. The algorithm described simplifies a 
possibly textured, arbitrarily complex, not necessarily connected polygonal model to 
a minimum set of textured polygons that replace the original geometry. 
We present our own implementation of the Billboard Cloud generation technique, 
elaborating on problems and idiosyncrasies encountered, plus discussing changes 
and extensions made to the original algorithm to optimize it for the simplification of 
tree models, both in terms of visual quality, as well as rendering speed. 
Moreover, we introduce an adaptation of the algorithm that simplifies point cloud 
data obtained by scanning real-world objects to Billboard Clouds. 
 
We present the results of our implementation by generating Billboard Clouds for a 
range of different tree and non-organic models. To prove the practicability of our 
approach, we populate a spacious virtual landscape with dense forests, composed of 
our simplification results and demonstrate the rendering speed and overall visual 
quality. 
 
Finally, an outlook is given as to which optimizations and developments could further 
increase the appearance and rendering speed of image-based virtual forests. 
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Abstrakt 
 
Dreidimensionale Echtzeit-Computergrafik ist mittlerweile allgegenwärtig, dank des 
stetigen Anstiegs an Rechenleistung und der Entwicklung spezialisierter 
Grafikhardware. 
Eines der meistgefragtesten, jedoch schwierig zu erreichenden Ziele der 
Computergrafik ist es, realistische Natur-Szenerien mit dichter Bewaldung zu 
produzieren. Polygonale Baummodelle müssen allerdings eine große Anzahl an 
Polygonen aufweisen, um ein naturgetreues Abbild echter Vegetation zu ergeben, was 
das Darstellen von großen Mengen solcher Bäume in Echtzeit unmöglich macht. 
In den letzten Jahren wurde aufgrund gewaltig verbesserter Texturierungsfähigkeiten 
moderner Grafikhardware Image-based Rendering zu einem äußerst brauchbaren 
Gegenpol zu polygonaler 3D-Grafik, da somit die Anzahl der Polygone pro Szene 
drastisch reduziert werden kann. Ausserdem ermöglicht es das Rendern von 
Objekten, die mit traditioneller Geometrie nur sehr schwer zu erzeugen sind. 
 
Dennoch existiert bis jetzt nur wenig Software, die versucht, den Benutzer in eine 
glaubwürdige virtuelle Welt mit starker Bewaldung zu versetzen. Die Hauptprobleme 
bisheriger Ansätze die den Realismus stark beeinträchtigen, sind mangelnde Dichte 
der generierten Wälder, oder eingeschränkte Bewegungsfreiheit innerhalb selbiger.  
 
Diese Diplomarbeit widmet sich dem Einsatz von Image-based Rendering Techniken 
zur Generierung von großen, frei erkundbaren virtuellen Wäldern mit guter visueller 
Qualität und interaktiver Bildaufbaugeschwindigkeit. 
Hierzu benutzen wir Billboard Clouds, eine Methode aus dem relativ jungen Feld der 
extremen Modellvereinfachung. Der beschriebene Algorithmus vereinfacht ein 
eventuell texturiertes, beliebig komplexes und nicht notwendigerweise geschlossenes 
Polygonmodell zu einer minimalen Menge von texturierten Polygonen, die das 
ursprüngliche Modell ersetzt. 
Wir präsentieren unsere eigene Implementierung dieser Methode, gehen auf 
Probleme und Besonderheiten ein und diskutieren Änderungen und Erweiterungen, 
die den Algorithmus hinsichtlich der Vereinfachung von Baummodellen optimieren. 
Weiters zeigen wir eine Adaption des Algorithmus, die Punktwolken, die durch das 
Abtasten von echten Objekten gewonnen werden, zu Billboard Clouds vereinfacht. 
 
Wir demonstrieren die Resultate unserer Implementierung anhand einer 
breitgefächerten Auswahl verschiedener Baum- und anorganischer Modelle. Um den 
praktischen Nutzen unseres Ansatzes zu beweisen, versehen wir eine weiträumige 
virtuelle Welt mit dichter Billboard Cloud-Bewaldung und präsentieren 
Rechengeschwindigkeit und optische Qualität. 
Abschliessend geben wir einen Ausblick, welche Optimierungen und 
Weiterentwicklungen das Erscheinungsbild und die Geschwindigkeit unserer 
Ergebnisse weiter verbessern könnten. 
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1 Introduction 
 
A brief history of 3D 
Three dimensional real-time computer graphics have come a long way since their 
humble beginnings in the 1970s. In these early days, governments and military were 
the driving forces behind computers, spending resources on the development of 
applications and algorithms and hoping to gain advantages over the enemy with the 
aid of computer simulations and visualizations of battlefields. Back then, 3D graphics 
consisted mostly of a few green lines on black background that moved at a stuttering 
rate, nonetheless requiring sheer unaffordable computation power for that time. 
 
Into the early 1980s, the appearance of three dimensional computer graphics did not 
change much, at least for the average consumer. While leading companies like Silicon 
Graphics had created fairly impressive pieces of professional 3D soft- and hardware 
that put anything an average computer user could expect to see to shame until the 
break of the 1990s, at last gradually computer technology became affordable enough 
to spawn the first series of widely available office and home computers and 
videogames. 3D applications on those machines looked mostly crude and were rather 
the exception than the rule, due to limited processing power of consumer hardware. 
 
The situation changed drastically in the course of the 1990s. With increasing market 
penetration of computer technology, processing power was ever growing and 
becoming cheaper for the customer market. This yielded the first non-professional 
applications capable of producing quite recognizable virtual worlds, so that the gap 
between consumer- and professional hardware slowly began to close. In the 
professional non-real-time sector however, 3D software became a popular 
commodity for creating media content and movies like Terminator 2 and Jurassic 
Park are today considered to be the godfathers of computerized special effects. 
The arrival of 3D hardware acceleration boards contributed greatly to the rapid 
growth of the computer gaming industry. Algorithms that were conceived years 
before finally became practically applicable and were turned into reality. New 
algorithms tailored for the novel graphics hardware were envisioned, thus further 
pushing the envelope of real-time graphics. 
 
By now three dimensional computer graphics have, along with computer technology 
in general, become ubiquitous in everyday media. However, the main field of 
application for 3D real-time graphics has long ceased to be of military nature. 
Nowadays, the bulk of real-time graphics software is simply computer games, 
although applications like architectural walkthroughs, geo-information systems and 
other simulations enjoy the benefits of cutting-edge 3D graphics, too. 
Apparently, the market for computer games though has become so huge that the total 
turnaround of the gaming industry is even bigger than Hollywood's income. It seems 
that as 3D graphics increase in perfection and believability, more people accept 
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games as a worthwhile spare time activity, resulting in the aforementioned market 
growth. Consequently, big sales mean more money for development and research so 
that the evolution of graphics hardware is pushed forward at an impressive rate. 
At the time of writing this thesis, hardware accelerators such as the GeForce 6800 
with over 220 million transistors, or ATI's X800 board with a theoretical fillrate of 6 
gigapiaxels are cutting edge, while peak CPU clock speeds are around 3 GHz. 
 
Motivation 
Generally speaking, we can identify two main goals of three dimensional real-time 
graphics. 
 
The first objective is to keep the action moving at velocities that look appealing to the 
viewer and allow proper interaction without long delays. Frame rate is the factor 
programmers have been ambitiously seeking to increase ever since the first 3D real-
time applications. As commonly known, the human eye perceives more than 25 
images per second as continuous movement, which is the basic principle behind 
television, movies and computer animation. However, this is only true for "real" , i.e. 
not synthetically generated images, where motion blur of moving objects adds to the 
illusion of smooth animation. Computer images usually feature sharp silhouettes and 
edges, so that a higher frame rate is required that an animation is perceived as 
smooth, namely in the region of around 60 frames per second. Picking up the line of 
computer games again, experienced players claim they are able to spot the difference 
between animations running at 100 and 150 frames per second, but frame rates 
higher than the monitor refresh rate are not of much use anyway. 
Another benefit of high frame rates is the increased responsiveness of an application, 
the more often the user input is processed, the easier and the more precise the 
control of the software is. There is hardly anything more frustrating than being 
unable to properly control one's movement through a virtual world that otherwise 
looks convincing. 
 
The second goal of three dimensional real-time computer graphics, at least for most 
applications, has always been to produce virtual environments that look more or less 
like realistic landscapes. The hardware that is used to produce the images sets limits 
to the resulting quality though: In the early days of 3D applications, wire-frame 
rendering was the best that could be achieved, later replaced with filled polygon 
rendering, but the number of polygons had to be low to achieve reasonable frame 
rates. Although imaginative artists and programmers could produce some quite 
astounding results even with inferior technology, creating truly believable virtual 
worlds using early technology was plainly impossible. Most computer games of that 
time avoided real-world settings and located their gamescape in deep space or 
abstract environments. Yet the longing to reproduce realistic virtual environments 
remained. 
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(a) (b) (c) 

Fig. 1-1: Examples of 3D computer game landscapes from different époques.  
(a) Battlezone, 1980 [ATARI80], (b) Virus, 1988 [BRABEN88], (c) Far Cry, 2004 [CRY04] 

 
The evolution of hardware allowed developers to continuously improve the detail and 
realism of their games until it became feasible to attempt mimicking real worlds and 
immersive landscapes. Still, reproducing outdoor and nature scenes remains a rather 
difficult task. Terrain rendering has been tackled by a number of clever algorithms 
[DUCH97], [ROETTGER98], so that state-of-the-art games are theoretically capable of 
producing landscapes of enormous size. Atmospheric effects do not pose a problem 
for today's hardware architecture either, as built-in fog functions and lighting allow 
simulation of beautiful scenarios. So the big problem remaining, a feature without no 
outdoor scene would be complete with, is vegetation. 
 
Be it trees, grass or undergrowth, these are organic structures that are hard to model 
and to render. Meanwhile, the realistic modeling of trees and plants is rather well-
researched and there exist a number of excellent tools like XFrog [XFR] or natFX 
[BIO] to accomplish this task, but these models are typically composed of an 
enormous number of polygons. A realistic-looking tree can consist of 100.000 to 1 
million polygons or more, which is far too much to make up a forest that can be 
rendered in real-time. Subsequently, we have to think of other ways of producing 
realistic images of trees that do not send the frame rate of our application to a crawl. 
Thanks to texturing capabilities of recent graphics hardware, image-based rendering 
has become a feasible alternative to geometry rendering that is capable of greatly 
reducing the number of polygons in a scene. That said, the number of applications 
featuring big and dense forests is still small, with serious attempts surfacing only 
recently. Our goal therefore is to further explore this field of real-time graphics and 
think of new ways to 
 

render huge forests at interactive rates. 
 
We want large environments covered with tree growth that can be fully explored at 
will, with far visibility and good quality of the tree models from any viewing angle and 
distance. 
"Good quality" in our case means that the tree models should look and feel "solid" 
instead of being obviously flat, like in previous approaches. Plus, we strive to attain 
visual excellence, so that the models still look like trees when viewed up close, not 
degenerating to a blurry mess of textures. The capability of casting shadows and self-
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shadowing is desirable to further improve the overall appearance. For certain 
applications like computer games, the possibility to animate the tree models would 
definitely be a big advantage, while for other purposes like flyovers or simulations, 
this feature is not of top priority. 
  
In the following section, we will explain the concept of image-based rendering and 
elaborate on the more common algorithms. We will also cover techniques that are not 
directly relevant for our goal but interesting nonetheless. 
Afterwards, we take a look at existing games and engines that have tried to faithfully 
create virtual forests and decide why they succeed - or do not. 
 
 

1.1 Image-based rendering 
For decades, three dimensional computer graphics have tried to synthesize images 
from complex geometric models.  
As the name suggests though, image-based rendering represents objects in 3D space 
by processing images instead of geometric primitives. Thus, rendering speed is 
generally proportional to the amount of pixels rendered, not the number of polygons 
transformed. The benefit of this method is obvious: Complex geometrical models can 
be replaced with images, which greatly reduces the load on the CPU / transformation 
pipeline because much less vertices need to be computed. Image-based rendering is 
also often used for objects that are difficult or unfeasible to render with conventional 
geometry, such as fire, explosions, clouds or any other non-solid object. 
Actually, image-based rendering is quite an old concept as such, and is used 
extensively by 2D and 2½D applications. Anyone who has ever used a computer has 
also encountered sprites, which are objects that can move around the screen, the 
most famous one being the mouse cursor. In the 2½D case, a sprite can move around 
the "world", but looks the same from any viewing angle. For three-dimensional 
applications, image-based rendering however has only gradually become practical as 
processing power increased over the last decade. 
Since many image-based rendering techniques require a great amount of input image 
data, image-based rendering might annihilate the performance gain obtained by the 
reduction of computation time with increased memory consumption. To sum up, it is 
considered a general rule that memory requirements and CPU time can be reduced at 
the expense of each other.  
 

1.1.1 Billboards 
Billboards are probably the most popular and widely used of all 3D image-based 
techniques. In the literal sense, a billboard is just a quadrilateral with a color & alpha 
texture applied to it, which depicts an image of the more complex object that it 
replaces.  That said, it can become very obvious to the viewer that the surface of a 
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billboard is completely flat without any 3D information. Depending on the 
application, there are two different ways to deal with this deficiency. 
 

• Static Billboards 
The orientation of the billboard is not changed as the viewing position changes. 
As the viewpoint moves around, the flatness of the object quickly becomes 
apparent. Usually multiple static billboards are used to compose an 
approximation of a more complex model. A classic example for this is the 
infamous "cardboard look" that approximates models with orthogonal 
billboards, which is especially popular for the inexpensive and effective 
modeling of trees. When hardware texturing and alpha blending first became 
accessible in the early days of hardware accelerators, the cardboard look was 
ubiquitous. As a result, myriads of gamers have complained about the clumsy 
appearance of cardboard trees, and they are not used as frequently anymore. 

 

(a) (b) 

Fig. 1-2: A static billboard viewed from the side (a), the infamous cardboard-look (b) 

 
• View-aligned Billboards 

Whenever the viewer's position changes, the billboard orientation is updated 
accordingly so that it always directly faces the viewer. Axis-symmetrical objects 
can be represented quite well with this technique and there are a lot of different 
fields of use for view-aligned billboards. Nevertheless, objects that are 
approximately symmetrical around only one axis, such as trees or fire,  will look 
very awkward if the vertical viewing angle becomes too large. Because the 
billboard texture represents the object from only one viewing angle, looking up 
to or down at the billboard makes it look like it is collapsed to the ground. To 
avoid this problem, usually an "up" vector that coincides with the symmetry 
axis is defined that stays fixed. In that case though, the flatness becomes 
obvious again. 
One more issue is the lack of parallax. Since the quad is completely flat, there is 
no parallax effect that would be observable as if real geometry was rendered. 
This becomes too evident particularly when a billboard is viewed up close. 
For smoke, particles, lens flares and akin, view-aligned billboards work 
perfectly fine though, and are extensively used in 3D games. 
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(a) (b) 

Fig. 1-3: View-aligned billboards 
(a) Billboard setup for a given viewing direction [FLIP], (b) Viewing billboards from camera 

position [FLIP]. 

 
Therefore, we could try to create a forest from simple billboards only, just like dozens 
of programmers have done before. In spite of being much faster than rendering 
polygonal models though, the restrictions described above significantly reduce the 
quality of this solution and prevent it from being a worthwhile venture. 
 

1.1.2 Impostors 
An Impostor is basically a view-aligned billboard whose texture is dynamically 
updated to account for changes of the viewing direction. We can distinguish two types 
of impostors: 
 

• Precomputed impostors 
For this impostor technique, a set of images that show the object from different 
viewpoints is stored. When the impostor is rendered, the image whose 
viewpoint is closest to the current viewpoint is selected as texture. Unless there 
is a lot of pre-generated views of the object, the impostor will appear jumpy 
whenever the texture is switched due to viewpoint changes. Although there 
exist algorithms like The Lumigraph [GOR96] that interpolate several views to 
alleviate this problem, those are yet too slow for real-time rendering. 
As graphics memory increases, precomputed impostors are becoming more 
popular. SGI presents a city walkthrough demo [SGI02], where supposedly all 
objects are precomputed impostors to show off their new graphics hardware 
with 1GB of texture memory. The practical usefulness of this may be doubted 
though, as hinted by a SGI programmer stating that "1GB is great, but we could 
have easily used 2 GB of texture memory" [SGI02]. 

 
• Dynamic impostors 

Here, the texture mapped to the impostor quad is not taken from a set of 
precomputed images, but generated on-the-fly by rendering the complex 
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geometrical object to the impostor texture to suit the current viewing angle. 
This would not save any processing time if the texture would have to be 
regenerated each frame, but thankfully, frame-to-frame coherence can be 
exploited because the viewing angle of an object is unlikely to change much 
from one frame to the next. Thus, a texture needs to be regenerated only once 
in a few frames, whenever the viewing angle changes too much.  

 

(a) (b) 

Fig. 1-4: Dynamically generating an impostor [SCHAUF95] 
 (a) original geometry, (b) dynamically generated impostor and texture  

 

Fig. 1-5: The parallax effect explained using billboards and impostors. 
As the billboarded moonrover moves across the view, its flatness becomes apparent because of missing 
parallax. The impostor looks like a real 3D object due to frequent updates whenever the viewing angle 

changes too much. 

 

1.1.3 IBR research 
Quite a number of papers on the topic of impostors have been published, of which the 
more important ones we want to mention in this space.  
 

• S.E.Chen and L.Williams [CHEN93] propose a "View Interpolation for Image 
Synthesis" in their 1993 paper of the same name. Basically, it describes an 
image warping technique that morphs pregenerated images of an object to 
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portray three dimensional scenes. This is but one of a series of publications 
that resort to image warping for image synthesis.  

 
• 1996's "The Lumigraph" by S.Gortler et al [GOR96] aims to infuse perfection to 

the pregenerated impostor approach, specializing on viewing a single object 
from an arbitrary point of view. Images of the object from different points of 
view serve as input and are interpolated to produce the image from a new 
viewpoint, an effect similar to holography. While this algorithm sounds 
interesting for image-based rendering of trees, the interpolation cannot be 
done by graphics hardware, so it has to be performed by the CPU. On the 
whole, this approach is too slow to be utilized by 3D engines, but demonstrates 
what can be done with image-based rendering. 
For example, the often-imitated bullet-time effect first seen in the movie The 
Matrix is produced using a technique like this. On the filming set, an array of 
cameras shoots the scene simultaneously from different angles. The video 
streams are interpolated during video postprocessing, giving the illusion that 
the camera is moving around while the action is standing still. 

 
• Microsoft proposed "Talisman" [KAJI96] in 1996, a hardware architecture for 

pure image-based rendering. However, whether purely image-based rendering 
is feasible is questionable. This, and limited texture memory have so far 
prevented Talisman from being realized. 

 
• "View-based Rendering: Visualizing Real Objects from Scanned Range and 

Color Data" [PULLI97], concentrates on the interpolation problem of 
precomputed impostors. However, their approach requires 3D survey data of 
the real-world object to be rendered, as well as a low-polygon model and is 
therefore unfeasible for many applications. 

 
• The 2002-released "Hardware-Assisted Relief Texture Mapping" [FUJI02] 

exploits the power of recent hardware by using pixel shaders for a three 
dimensional image warping method dubbed relief texture mapping. The 
complexity and resulting moderate speed of the algorithm nevertheless 
prevent it from use in game engines. 

 
• G.Schaufler first introduced "Dynamically generated Impostors" [SCHAUF95] 

in 1995. The paper describes the basic algorithm, how to determinate impostor 
screen size and defines an error metric that is used to decide when an impostor 
texture needs to be regenerated. The methods established by this paper are 
still perfectly valid today and improved graphics hardware has made the task 
of rendering to a texture just easier and quicker. 

 
• "Visualization of Complex Models Using Dynamic Texture-based 

Simplification" [ALIAGA96] dynamically generates impostors for arbitrary parts 
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of a scene and inverts the idea of image warping. Instead of warping the 
impostor texture whenever the viewpoint changes, like other approaches, the 
surrounding geometry is distorted to blend seamlessly with the impostor. It 
can be suspected that this technique may look a bit unusual in motion. 

 
• "Efficient Impostor Manipulation for Real-Time Visualization of Urban 

Scenery" [SILL97] also deals with generating impostors for distant parts of the 
landscape. As an alternative to mapping the impostor texture to a quad, it is 
applied to a polygon mesh roughly resembling the contours of the original 
geometry. Although this solves the parallax problem so that the impostors 
need to be updated less frequently, the algorithm requires image processing 
routines for the contour determination step. Also, the deformation of the 
meshed impostor can appear quite cumbersome. 

 
• "Nailboards: A Rendering Primitive for Image Caching in Dynamic Scenes" 

[SCHAUF97] adds depth information to impostors by storing the z-buffer values 
generated along with the texture generation step. Using pixel shaders, the z-
map can be combined with the z-values of the impostor quad so that hardware 
z-buffering can be fully used for visibility processing. 

 
• "Per-Object Image Warping with Layered 

Impostors" [SCHAUF98] aims at solving the 
problem of missing parallax and thus stretching 
the lifetime of impostor textures. An impostor is 
sliced into multiple layers based on the Z-values of 
the original. When in motion, distant layers move 
slower than closer ones, generating the desired 
parallax effect. However, because instead of one 
texture, the number of layers textures must be 
drawn whenever the impostor is rendered, this 
approach is quite hungry for fillrate. 

Fig. 1-6: Layered impostor 
[SCHAUF98] 

 
• "Interactive Rendering of Trees with Shading and Shadows" [MEYER01] 

introduces an algorithm relying on bidirectional texture functions and sets of 
precomputed views of a model to produce the resulting impostor. It handles 
lighting and shadowing even with moving light sources, but uses six-
dimensional textures not supported by current hardware acceleration. 

 
However, there are more possible applications for image-based rendering than just 
replacing complex geometry. To name but a few: 
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• Apple's QuickTime VR [CHEN95] uses cylindrical projections of photographic 
images to present the user with a complete surround view of an environment. 
Such "panoramas" can be viewed with the appropriate software and are 
offered for download on various websites that try to create immersive 
experiences. 

 
• A similar technique widely used in games is skyboxing [BELL98]. It maps 

distorted images of the environment to the six faces of a cube and constructs 
this cube around the user's viewpoint so that it forms the background of the 
scene. 

 
To sum up, the concept of precomputed impostors is not optimal for our purposes, 
because the resulting images either look jumpy due to a small set of input images 
forced by texture memory restrictions, or would be too slow to compute if image 
warping was used. As texture memory increases though, we can expect precomputed 
impostors to become a more practical solution in a few years' time. 
 
Computer games mostly use various incarnations of precomputed or dynamic 
impostor algorithms. Various policies of when a dynamic impostor requires re-
generating exist, for instance, we could choose to update impostors that are close to 
the user's focus more often than those in the periphery. Since the viewer's focus most 
of the time can be assumed to be on the mouse cursor, gun crosshair, etc, this is a 
legitimate option. The motorcycle racing game No Second Prize [THALION91] 
reportedly renders trackside objects only every second frame, while updating the 
track and opponents normally so that the impression of smooth motion prevails. 
Nevertheless, dynamic impostors need to be updated every few frames, which is not 
much of a problem if few impostors are present in a scene or the polygon count of the 
model to be rendered to the impostor texture is moderate. Suffice to say, both 
conditions are not true for a forest of detailed trees. Rendering a tree with 
approximately 100.000 polygons poses quite a perceptible performance hit, which 
would result in choppy framerates if only one impostor tree was present in our 
environment. Since we plan to display thousands of trees we can hardly expect to get 
decent framerates even with the use of dynamic impostors. There exist hybrid 
approaches for tree rendering using dynamic impostors, like [REM02], which replaces 
the back of a tree with an impostor, but purely relying on dynamic impostors for 
speedup will most likely not allow us to render large, dense forests at interactive 
rates.  
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1.2 Levels of Detail 
So how do existing games work around this problem of high polygon count? We will 
observe in section 1.5 that many engines use the concept of levels of detail (LODs), to 
speed up their rendering. 
Put simply, the principle of levels of detail is that we use less complex versions of a 
model depending on how large it will appear on the screen, i.e. the farther it is away 
from the viewer. For example, consider a tree with 100.000 polygons. If the viewer is 
far away from this object so that it covers only a small region, e.g. 50x100 pixels of 
the screen, we can choose to render a lower-detail version of the tree with much less 
polygons. Said technique could of course be combined with image-based rendering, 
so that we generate impostors for distant objects from their respective lower-polygon 
representation. However, the question is just how our engine can get hold of these 
lower-detail models, which is answered in sections 1.3 and 1.6. 
 

1.2.1 Discrete LODs 
A limited number of geometric models that represent 
the same object, each less detailed than the previous, 
form the basis of discrete level of detail algorithms. In 
most cases, as few as three or four discrete levels are 
used, where the least detailed one could be reduced to 
just one billboard. These lower detail version of the 
object can either be hand-modeled which admittedly 
is a fatiguing task, or automatically generated by 
mesh simplification methods which we will discuss in 
section 1.3.  
To determine which of these LODs to display, various 
metrics have been thought of.  
 
Screen-space based approaches project the object's 
bounding box to screen coordinates and calculate the 
approximate number of pixels the object covers when 
rendered. The smaller this value, the lower the level of 
detail required. 
 
Distance-based approaches simply assign the start 
and the end of a distance interval to each level of 
detail. The span between the object and the viewpoint, 
which can be obtained as a byproduct of frustum 
culling anyway,  determines the level of detail to be 
chosen. 
 
 
 

Fig. 1-7: Levels of detail. Hippo 
model [3DCAFE] representations 

composed of 61.000, 6000 and 
700 polygons. 
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LOD switching and blending 
Everytime a different level of detail is selected for an object than in the previous 
frame, we witness an often-encountered problem. Since the silhouette and 
appearance of two levels of detail will hardly be completely equal, the switching 
process from one representation to the other is more or less noticeable, an effect that 
is called popping. To alleviate this flaw we can resort to LOD blending, where two 
adjacent representations of an object are drawn on top of each other with different 
alpha settings whenever a LOD switch is imminent. If the range in which both levels 
are rendered is narrow, the blending process will be happening quickly as the viewer 
moves towards or away from the object and will be more obvious. If the range is 
sufficiently broad, the blending will look smoother and be less apparent to the 
observer. Heed the fact though, that LOD blending is slower to render because all 
objects currently in a state of switching representations will need to be drawn twice. 
Whether it is sensible to employ LOD blending greatly depends on the quality and 
similarity of the representations and the desired speed of the real-time application. 
 

1.2.2 Continuous LODs 
As the name suggests, this method does not need a fixed set of different quality 
representations for an object, it just takes the original geometry and performs various 
mesh operations on it. For instance, if a model features non-discrete primitives such 
as bezier curves or -patches, continuous LOD algorithms can tessellate these more or 
less finely, depending on the amount of detail required. 
Furthermore, polygon meshes can be simplified with the help of a variety of mesh 
simplification methods, of which a few are described in section 1.3. 
 
 

1.3 Mesh simplification 
Mesh simplification is the process of reducing the number of vertices and polygons of 
a model while retaining shape and structure as closely as possible. Some methods to 
achieve this goal are fast enough to be performed in real-time, so they can be 
employed in conjunction with continuous levels of detail. Others require quite costly 
preprocessing steps that are nevertheless practical for generating different versions of 
a model to be used with a discrete level of detail-algorithm. 
 

• Face merging [HAEMER91] searches the polygon mesh for coplanar or nearly 
coplanar faces. If two or more such adjacent faces are found, they are reduced 
to one larger polygon. 

 
• Vertex Clustering groups the model's vertices into clusters and for each such 

cluster settles on one vertex that is representative for the whole group. 
Although this algorithm is rather fast, it frequently produces bad output 
quality. 
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• Edge collapse [HOPPE93] removes an 

edge by collapsing its two vertices to a 
single one. Thus, for a solid model an 
edge collapse operation removes two 
triangles. This is one of the more 
popular mesh simplification methods 
that yields quite satisfying results. 

 

Fig. 1-8: Edge collapse 
The edge connecting the two green faces is 

collapsed 

 
• An interesting variant of edge collapsing is proposed in [LIND00] that boasts an 

image-driven collapse function. Analogous to precomputed impostors, images 
of the original model are created from a set of different viewpoints. In the 
simplification step, all possible edge collapses for a model are tried and for 
each of these a set of images from the original viewpoints is created and 
compared with the precomputed images, so that the edge collapse that 
produces the least visual difference is selected. Although this is a very CPU-
intensive technique and cannot be done in real-time, it significantly improves 
the visual quality of simplified models. 

 
While mesh simplifications techniques work well for numerous cases, they are not 
generally suitable for simplifying tree models, which is the application we are most 
interested in. All of the procedures discussed above work by removing geometric 
information, which is hardly possible for objects such as leaves, which are modeled 
with very few polygons already, albeit there may be many of those separate, simple 
objects. 

 
Consider the example in Fig. 1-9: A polygon branch is 
shown where each leaf and the branch itself are 
made up of only one triangle. Because the meshes are 
not connected to each other (they do not share 
vertices), we need to treat each of these objects 
separately.  Consequently, mesh simplification can 
do nothing to reduce the polygon count because a 
single triangle cannot be reduced to a simpler 
primitive while retaining its overall appearance. 
Performing an edge collapse step on this example 
would simply remove all geometry! If we tried to 
simplify a whole tree model, we could observe the 

foliage becoming more sparse each step, so that the visual quality deteriorates 
quickly. Mesh simplification algorithms work best on large meshes, but are incapable 
of reasonably reducing the polygon count for a model composed of several already 
small meshes. 
 

Fig. 1-9: Unsimplifiable mesh 
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The discarding of vertices that happens in the course of mesh simplification poses yet 
another problem. If the mesh is textured, texture coordinates are applied to the 
vertices. Actually, because vertices are shared by several polygons, each vertex has 
several texture coordinates called texture vertices. During simplification of the 
geometry, vertices and their respective texture vertices are deleted, which can 
seriously impair the overall texturing quality of the model, as illustrated by Fig. 1-10. 
To avoid this, extra textures must be generated that map correctly onto the new 
polygons, thus increasing memory requirements. 
 

(a) (b) 

Fig. 1-10: Mesh simplification disturbing texture mapping 

 
 

1.4 Low-polygon modeling 
A very popular option among game designers is to model the trees for use in their 
applications with as few polygons as possible right from the beginning, but therefore 
sacrificing detail and in most cases visual quality. For many applications, a 
combination of polygonal geometry for the trunk and billboards for the branches is 
the common way to go, where the trunk is modeled with a low polygon count at the 
risk of looking too geometric and a texture depicting a branch with leaves is used for 
the foliage billboards. Fig. 1-14 on page 24 shows examples of such tree models. 
The success of these low-polygon models is largely in the 3D and 2D artists' hands. 
Flat billboards for branches look rather unrealistic, hence many designers resort to 
mapping the branch texture to a better tessellated billboard polygon that is curved. 
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1.5 Case studies 
Now that we have discussed the ingredients most used in game engines and 
applications to date, let us have a look at how they fare in creating virtual worlds, 
especially forests, and the power of which techniques they harness. We will see that 
the rendering of realistic trees has been much neglected in computer games until just 
recently, with some upcoming games striving to produce convincing vegetation for 
their virtual worlds. 
 

1.5.1 Formula 1 Grand Prix 2 
Although Grand Prix 2 [CRAM95] does not particularly aim at reproducing forests, it 
deserves some space here because of its achievement of being one of the first games 
to employ pregenerated impostors that seamlessly integrate with geometric models. 
Following the basic principle of discrete levels of detail, the racecars are drawn as 
geometry when close up and are replaced by impostors at a certain distance. This is 
done so well that it was not discovered by players until the first tweaking utilities 
surfaced and modders realized that from unfortunate, altered camera positions the 
cars did not fit at all into perspective or their newly modeled cars looked just like the 
old ones when viewed from a distance. 
Apart from that, Grand Prix 2 uses view-aligned billboards for tree rendering that are 
acceptable considering the state of the art at the time this game was published. It 
cannot compete with today's expectations for virtual forests though. Amazingly, 
neither does the 2002-released successor Grand Prix 4 that still uses cardboard 
trees! 
 

(a) (b) 

Fig. 1-11: Billboard trees (a) and made-obvious precomputed impostor cars (b) in Grand Prix 2 
[CRAM95]. 
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1.5.2 Colin McRae Rally 
Tree rendering is an important issue for a game where the player spends most of the 
time racing through forests. Colin Mc Rae Rally [CM98], like most other rally games, 
uses view-aligned billboards for single trees and to some extent cardboard-look 
models. 
 

Fig. 1-12: Colin McRae Rally 2's tree walls [CM98] 

 
Dense, impenetrable forest is attained by a polygon "wall" on each side of the road 
mapped with an opaque forest texture. To create some parallax effect, often a second 
such wall whose partly-transparent texture features more sparsely scattered trees, is 
placed before the first one. This produces the impression of a very limited gamescape 
and is certainly not appropriate for modeling forests the user can explore freely. 
Interestingly, the many sequels of this game have made no effort so far to alleviate 
this flaw, with only the texture quality of the tree walls getting better every time and 
very low-polygon trees with billboard branches replacing the purely billboarded 
single trees. 
 

1.5.3 SpeedTree 
SpeedTree [IDV] is a complete proprietary middleware engine that is aimed at 
displaying realistic forests at interactive rates and is supposed to be easily 
integratable in other game engines. The whole package consists of the rendering 
engine and the vegetation modeling tool SpeedTreeCAD which is similar in use to 
XFrog and others, and stores the models in a proprietary 3D format. The whole 
engine reportedly is painstakingly optimized for speed and offloading the CPU, with 
utilizing vertex buffers, GPU capabilities and shaders. Plus, SpeedTree boasts a rough 
physics simulation that makes branches and leaves subject to wind, a topic we have 
not tackled yet at all, but the slow moving, dangling animation has a bit of an 
underwaterly feeling to it. The work presented by Giacomo et al. in [GIAC01] relies on 
more sophisticated physics computations that even allow user interaction with tree 
animation.  
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Fig. 1-13: SpeedTree's "The Valley" demo [IDV] 

 
SpeedTree's models are an interesting blend: The stem is composed of polygon 
meshes with texture and bump maps applied, while the foliage is represented by 
several view-aligned billboards instead of static billboards like it is the case with the 
bulk of low-polygon models. This trick allows for very good looking models with 
polygon counts ranging from approximately as low as 1000 to 100.000+ polygons, 
and therefore acceptably fast rendering. However, the billboards become strikingly 
obvious when looking at trees from above or below and rotating the view, in which 
case the foliage rotates and partly obscures each other. Since the described motion is 
rather common in games, this behavior is a big problem. 
Levels of detail are employed for the trees that blend quite well. On the lowest level of 
detail, a tree is replaced with a billboard. 
As common with low-polygon models, the general impression of SpeedTree objects 
depends on the texture quality - some models look just fantastic, others a bit 
artificial. On the plus side, the bump mapping and the self shadowing performed with 
shadow maps greatly contributes to the overall appearance. These special effects are 
expensive in terms of rendering time though, and SpeedTree demos publicly available 
seem to be unwilling or incapable of displaying really dense forests yet. 
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1.5.4 Far Cry 
At the time of writing, Far Cry [CRY04] is heralded by the press as the best 3D engine 
one has ever seen, boasting large outdoor scenarios with relatively dense vegetation. 
 

Fig. 1-14: Far Cry's low-polygon trees [CRY04] 

 
Keeping features like a myriad of shader effects aside and concentrating on the trees, 
Far Cry basically delivers nothing more than a good example of consequent low-
polygon modeling. That means it also features the typical pitfalls of low-polygon 
trees, so that many of the models look a bit too geometric and polygonal. 
Discrete levels of detail are utilized, with far away trees being replaced by billboards 
and those of even further distance are not displayed at all. Similarly, undergrowth 
like grass and ferns that is composed of few static billboards, is rendered in a very 
close range only and appears to suddenly grow out of nowhere when the player 
advances. Although the overall impression is great and the player could spend some 
considerable time just walking around and admiring the environment, Far Cry clearly 
fails to deliver really dense forests. It is not so much the holy grail of 3d graphics, just 
the first engine that puts a lot of recent developments on the real-time graphics sector 
together in a good-looking game. However, in the final analysis, the visual quality of 
its trees is definitely inferior to SpeedTree. 
 

1.5.5 D-strict 
Another ambitious outdoor engine currently being in development is D-strict 
[DSTR04]. Originally intended for a world-war one flight simulation, it boasts vast 
terrain covered with forests that look appealing even when viewed up close, 
stretching all the way to the horizon. They are by no means really dense, though. 
The tree-rendering technique employed uses traditional geometry for close vegetation 
and a special type of impostors for more distant trees. Impostor trees are either 
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represented as a varying number (depending on the distance to the viewer) of branch 
& foliage billboards, or a single precomputed impostor when farther away from the 
viewer. Rendering trees is done with the aid of vertex shaders, which guarantees 
significant speed boosts. 
 

Fig. 1-15: Vast forests covering the landscape in D-strict [DSTR04] 

 
Judging by the screenshots and accompanying frame rate statistics published at the 
time of writing this thesis, D-strict seems to be a promising contender in the race for 
producing realistic virtual forests. However, since no demo executable or video has 
been released yet, plus the artistic quality of the trees used is rather mediocre, no 
reliable judgement of the true power of D-stricts tree-rendering methods can be made 
yet. 
 
 
We conclude that it always takes a combination of the techniques described in 
sections 1.1 to 1.4, with the exception of mesh simplification, which is useful only for 
preprocessing level of detail representations at best, to be able to render whole forests 
at sensible frame rates. However, no computer game or simulation yet really attempts 
to reproduce dense forests that stretch for miles. For this purpose, some technique 
would be required that yields very simple models that can be viewed from any angle 
though. Therefore, ordinary static and view-aligned billboards are not appropriate. 
The use of dynamic impostors for single trees is debatable too, as generating 
impostors for each tree in the forest would quickly consume more texture memory 
than available. 
 
There are completely different approaches to the rendering of forests, too. Point-
based rendering of trees [DACHS03] is an interesting possibility, but unfeasible if the 
viewpoint gets too close to the foliage. Besides, it involves many vertices to transform, 
which can quickly become a serious bottleneck. 
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A very recent approach by Decaudin et al. [DECAU04] employs volumetric textures and 
aperiodic tiling of such for computationally effective, yet convincingly dense forests 
covering arbitrary landscapes. However, their algorithm is intended for flight 
simulations mostly instead of applications where close examination of the trees is 
desired. Plus, the tiling-placement of trees is not as flexible as the direct positioning 
of objects common among traditional forest-building approaches. 
 
 

1.6 Extreme simplification 
Recently, some interesting work has been published about the extreme simplification 
of three-dimensional polygon models. Contrary to mesh simplification methods, the 
original geometry is completely discarded by these approaches and a very low-
polygon model is produced that resembles the original object. Image-based methods 
such as impostors and billboards play an important part in these algorithms. 
 
Billboard Clouds are an example of extreme model simplification and have first been 
presented by Xavier Decoret et al in [DEC02-1], later refined and optimized in [DEC02-

2] and [DEC03]. An algorithm is presented that uses a set of static billboards to 
approximate the original polygonal model as closely as possible so that it can be 
viewed from any angle. A parameterization of polygons and planes is used in order to 
find a set of supporting planes for the billboards that optimally mimic the original 
geometry. The algorithm is applicable to all classes of models, but computationally 
expensive. 
 
A similar approach by Andujar et al. is called "Computing Maximal Tiles and 
Applications to Impostor-Based Simplification" [ANDU04] and produces a result akin 
to the Billboard Cloud algorithm - a set of billboards representing the input model. 
The simplification process is radically different though, as it uses a voxelization of 
model space for finding the set of optimal planes and involves inside/outside 3D 
object tests. This trait however makes the algorithm unsuitable for the simplification 
of tree models because a very fine resolution of the voxelization would be required to 
capture slim geometry parts such as branches. Leaves are an entirely different 
challenge since they mostly are made up of one-sided polygons anyway and would 
therefore completely fail an inside/outside test. 
 
We thus choose to experiment with the idea of Billboard Clouds as described by 
Decoret [DEC02-1], [DEC02-2], [DEC03]. 
In chapter 2 we explain the concept of Billboard Clouds and their generation in detail, 
while incorporating changes to the original algorithm to optimize the simplification 
of tree models. 
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2 Methodology 
 
The idea of Billboard Clouds has been presented by Decoret et al in [DEC02-1], [DEC02-

2], [DEC03]. Billboard Clouds are a method of extreme model simplification, where 3D 
models are simplified onto a set of planes with texture and alpha maps, which 
basically is a set of static billboards that feature independent size, orientation and 
texture resolution. Because the simplification is constructed in object space, Billboard 
Clouds yield a faithful representation of the original object from any viewing angle. 
Plus, they do not suffer from deficiencies common to image-space methods, such as 
rubber-sheet polygons, incomplete representations or general deformation. 
If normal maps are generated for the billboards along with the texture maps, this 
even allows for dynamically relighting the simplified model in real-time using pixel 
shaders. 
 
The generation of a Billboard Cloud requires a preprocessing step that is rather CPU 
and memory hungry and cannot be performed in real-time, so that Billboard Clouds 
are best suited for the offline generation of LOD representations. The quality of the 
resulting plane set can be controlled by means of a geometric error threshold that 
indirectly influences the number of billboards a simplified model is composed of. 
 

Fig. 2-1: A polygon model and its Billboard Cloud 
The original model with 12.000 polygons (a), the Billboard Cloud with 46 planes (b), and the plane 

outlines and their normals drawn (c) 

 
The planes attempt to be tangent to the faces of the original model, so that the overall 
appearance is preserved. A great advantage of the algorithm is that there is no 
connectivity information of the mesh needed, the process simply operates on a set of 
primitives. In practice, this means that different regions or sub-objects of a model can 
be simplified to one billboard. This is a trait that also has its downsides, though. 
Mesh connectivity is neither needed, nor heeded. This may result in artifacts, namely 
"holes" in the Billboard Cloud model that can disturb the overall impression for many 
geometric objects. However, because of the organic nature and the sparse 
connectivity of trees, this should not pose a detrimental flaw for our purposes. 
The polygonal models to simplify must not consist of semi-transparent primitives. 
Thus we can guarantee that the Billboard Cloud texels are either opaque or 
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transparent, so that no depth sorting is required for the billboards and the models 
can be rendered correctly by simply employing graphics hardware alpha-testing. 
 
We think that Billboard Clouds are an excellent tool for achieving our goal of creating 
huge forests for interactive walk-throughs. The simplified tree models should be 
much faster to render than traditional low-polygon models since they are typically in 
the range of less than 50 billboards / planes, but because of the characteristic features 
of the algorithm, have a much less artificial look than ordinary billboard models. 
 
In this chapter, we confer the methodology of our approach. Firstly, we create our 
own implementation of the Billboard Cloud generator and explain the simplification 
algorithm and its mathematical background in detail in a walk-through manner. After 
experimenting with the results of our efforts, we can address the problems and 
disadvantages of the algorithm and implement strategies to resolve these difficulties, 
as well as incorporate other modifications to further optimize our Billboard Cloud 
generator for the simplification of tree models. 
Finally, we populate a spacious 3D landscape with Billboard Cloud trees to 
demonstrate the fruits of our efforts. 
 
 

2.1 The Billboard Cloud algorithm 
The only input parameters required for the algorithm are a polygonal input model 
(although the principle works for any type of polygon, we shall restrict ourselves to 
triangles for this discussion), the desired error threshold ε and maximum texture 
resolution. As mentioned above, ε is indirectly influencing the amount of billboards 
the simplification yields, but there is no way to directly set the number of planes 
returned. 
 
The generation process can be described as an optimization problem, where we seek a 
minimum set of planes, so that 
 

• each face is simplified by a plane 
• the maximum error threshold is respected 

 
On the whole, the algorithm can be divided in three sequential tasks: 

1. Set up and populate data structures in a way the optimization algorithm can 
operate on. The result of this step is a large set of possible billboard planes that 
is potentially infinite. 

2. Run a greedy select optimization function on the data, picking planes that best 
represent the original model. Update the data structures after each picking 
step. This is the most CPU-expensive part of the algorithm. 

3. Render the original geometry onto the resulting set of planes to generate the 
billboard textures. 
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We begin our proceedings with task 1. 
To better understand the Billboard Cloud generation, we illustrate the intent of the 
algorithm with Fig. 2-2. The faces of the original model are approximated by a set of 
planes that attempt to be tangent to the original geometry.  In the texture generation 
step, the faces are then projected onto the respective plane simplifying them and 
rendered to the texture that is later applied to the plane, thus forming a billboard. 
 

Fig. 2-2: Simplification of a polygon model  

 

2.1.1 Error threshold 
As can be seen in Fig. 2-2, the planes do not necessarily pass through the model's 
vertices and in an overwhelming majority of cases, they will not. When being 
projected to a plane, each vertex is thus moved away from its original position to its 
projected one. 
This displacement is the error that is introduced into the Billboard Cloud 
representation and is controlled by the error threshold ε, which no displacement may 
exceed. We measure this threshold in percent of the original object's bounding sphere 
radius, plus in model-coordinates internally. 
Evidently, the higher the value of ε, the more tolerant the algorithm is regarding to 
the displacement of vertices, and the less closely the planes do have to represent the 
topology of the original geometry, so that the simplification results in less billboards. 
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Fig. 2-3: Holes in the Billboard Cloud because of projecting vertices to different planes  

 
Fig. 2-3 shows the bottom left corner of the model in Fig. 2-2, demonstrating the 
projection of a vertex that is shared by two faces simplified to two different planes, 
revealing the problem of holes in a Billboard Cloud model. Since planes are not 
required to pass through vertices or to intersect each other, there is a gap between the 
two planes that leaves a hole in the result model. This is a glitch that can be observed 
often in Billboard Cloud models. There is no complete remedy for this flaw, as planes 
should not be actually forced to pass through vertices, because even slight changes in 
orientation could mean that they would then miss others. Methods to partially 
control this issue are presented in sections 2.3.2 and 2.3.3. 
 

2.1.2 Validity 
Summing up, a vertex is allowed to be displaced by a maximum error of ε when it is 
projected, so that a spherical region around it with radius ε is spanned, within it is 
valid. This region is called a vertex' validity domain. 
A vertex is valid for a plane and vice versa if the plane intersects the vertex' validity 
domain, in other words, if the projection of the vertex onto the plane is within less 
than the error threshold ε. 
Consequently, a face f of the polygon model can only be projected onto a plane p if the 
plane intersects the validity domains of all its vertices. In that case, we call the face f 
valid for plane p. Fig. 2-4 shows the validity domains of our example model and 
proves the legitimacy of the planes. 
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Fig. 2-4: Vertex validity domains 

 

2.1.3 Dual space 
The big question is how the algorithm can determine the planes to be used for the 
Billboard Clouds at all. Generally, it is of no use to select the supporting planes of the 
polygon model's faces as potential Billboard Cloud planes and judge which ones are 
best suited. As made obvious by Fig. 2-4, most optimal planes are not coplanar with 
the polygons of the original model and for many cases, the orientations of the optimal 
planes are not even closely similar to the faces' supporting planes' orientations. Fig. 
2-5 points this out, where the optimal plane is rotated by 45° to the faces. 
A brute force approach is pointless here too because we 
have an infinite number of theoretically useful planes to 
test. Therefore, we have to conceive a different solution. 
 
What is required is a representation that somehow 
allows to parameterize the faces' supporting planes, so 
that those can be accumulated in a suitable data 
structure. The regions in this data structure with the 
highest accumulation value should be the ones that 
describe planes that simplify the most faces, so that our 
algorithm can determine which billboards to generate. 
  
The Hough Transform 
The three-dimensional Hough-Transform enables us to do just that. The two-
dimensional case of the Hough-Transform [DUD72] is chiefly used in the field of 
pattern recognition and image processing. The basic principle is that lines are 
represented in their parametric notion of the form: 
 

θθρ sincos yx +=  

 

Fig. 2-5: Optimal plane not 
coplanar to geometry 
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Where ρ  is the length of a normal from the coordinate origin to this line and θ is the 
angle of the normal with respect to the X-axis. The two values θ and ρ  form a 
coordinate pair in a new Cartesian coordinate system called dual space. Hence the 
Hough-Transform, also called the dual, of a 2D line becomes a point in dual space. 
 
The same principle applies for three-dimensional space. A plane in its parametric 
notion is given by: 

Eq. 2-1 

 
where the plane's normal vector Tzyx ),,(  can also be written as: 
 

Eq. 2-2 

 

so that ),( ϕθ  are the angles that describe the plane's normal vector orientation, 
illustrated by Fig. 2-6. Varying ),( ϕθ  describes a spherical perimeter: the sampling 
sphere. 
 

Fig. 2-6: Parameterization of a plane p with point P and normal ),( ϕθ with a length of ρ  

 
Parameterization 
The values of ϕθ ,  and ρ  form a triple that works as the plane's coordinates in dual 
space.  So, dual space is composed of a 2D base grid representing the coordinates 

),( ϕθ  in the range of [-180°, 180°] and [-90°, 90°] respectively, and the distance of 
the plane ρ  being the unlimited "up" coordinate axis, as is shown in Fig. 2-7. 
 

0=−++ ρczbyax
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Fig. 2-7: The dual grid 

 
The dual of a plane therefore is a point that can be calculated using equations Eq. 2-1 
and Eq. 2-2 and solving for ϕθ ,  and ρ . In fact, each and every point in dual space is 
a plane in primal space, therefore dual space can also be referred to as plane space. 
 
Moving along the 2D grid amounts to changing the orientation of the plane, while 
altering the value of ρ  changes its distance to the origin. Negative values for ρ  are 
not allowed, since those planes are already represented by grid entries whose ),( ϕθ  
values are inverted. For example, the plane (90°, 30°, -10) is equal to (-90°, -30°, 10). 
 
On the contrary, if a plane in primal space becomes a point in dual space, to which 
dual incarnation is a point in primal space transformed to? 
A point P in primal space can also be thought of as the intersection of all planes that 
pass through P, which of course is an infinite number of planes ∞}{p . We already 
know that the dual of a plane is a point, hence the dual of a point is a sheet composed 
of the duals of the infinite set of planes ∞}{p . This can be thought of as a heightfield, 
or a function that is given as: 
 

Eq. 2-3 

 
Fig. 2-8(a) shows such a sheet for a vertex/point. The sheets of three vertices that 
span a plane intersect in the single point that is the dual of this plane (Fig. 2-8(b)). 
 

ϕϕθϕθϕθρ sincossincoscos),(),,( zyxzyxp ++=
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Fig. 2-8: Dual of a vertex (a), dual of 3 vertices and their plane (b) 

 
Now that we know how to transpose our polygon model's faces into dual space, we 
need to account for the error threshold ε. Recall that a vertex is valid for a plane and 
vice versa if the margin between the plane and the vertex is less than ε, that is, if the 
plane intersects the validity domain. Because distance is measured perpendicularly to 
a plane, each dual plane that satisfies εϕθρρεϕθρ +≤≤− ),,(),,( vv plane  with fixed 

ϕθ ,  and ),,( ϕθρ v  being the result of Eq. 2-3 for vertex v and ϕθ , , is in the validity 
domain of the vertex with respect to ε. This means that to get the entire validity 
domain for a vertex, we just have to translate its dual sheet up and down by ε, with 
the space in between this "sandwich" being the desired validity domain (Fig. 2-9). 
 

Fig. 2-9: Validity domain for a vertex in dual space 

 
The intersection of the validity domains of a face's vertices yields the validity domain 
for the corresponding face. 
Any plane inside that domain can simplify the face, i.e. it is valid for the face. 
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Thus the parameterization satisfies our needs. As hinted before, we can now 
accumulate the faces' validity domains in discretized dual space to search for optimal 
planes, as we discuss in section 2.1.5. 
However, since the parameterization we accomplished is continuous, we first have to 
conceive a discrete version in order to be able to work with validity domains. 
 

2.1.4 Discretization & Simple validity 
Before we attempt to discretize dual space, we should make sure to meet another 
prerequisite that makes working with the dual grid easier. The transformation of the 
normal vectors' orientations ),( ϕθ  from primal space to dual space is basically a 
mapping of spherical coordinates to a regular grid and is therefore not uniform, with 
singularities at the poles, i.e. °±= 90ϕ . Although this just implies that some areas of 
the grid are simply oversampled, a distribution of planes as uniformly as possible is 
preferred. For example, a model positioned far from the origin would populate only a 
small area of the grid and spell numeric problems, as can be seen in chapter 2.2.3. To 
avoid this, we calculate the original model's center of gravity first and translate the 
model so that it coincides with the origin. 
 
Because the input model is limited in size, the ρ direction of the discretized dual grid 
is also restricted, so that we end up with a finite voluminal grid of cells which we use 
to discretize the faces' validity domains. The amount of cells in our grid depends on 
the selected resolution of the ),( ϕθ  range and of ρ. As we will see, the algorithm is 
robust to changes of the resolution of ),( ϕθ  while the choice of the ρ resolution 
requires some more thought, which is addressed in chapter 2.2.1. 
 
As described in chapter 2.1.3, a face's validity domain is defined by the intersection of 
the validity domains of its three vertices, which are volumes defined by equation Eq. 
2-3. In our discrete grid, this continuous intersection volume becomes a set of cells. 
There are two possible ways to discretize a volume into a set of cells. We can either 
consider 

• cells that are entirely inside the validity domain (strict validity) 
• cells that intersect the validity domain (simple validity) 

as belonging to the validity domain. 
 
Cells belonging to the validity domain of a face contain a plane that can simplify that 
face, i.e. they are valid for the face. Remember that any arbitrary point in dual space 
is a plane in primal space, so that a cell contains an infinite number of planes. 
 



 36

Fig. 2-10: Strict validity versus simple validity 
In figure (a), ε is large enough to allow a strictly valid cell, but a lot of cells are only simply valid. Figure 

(b) shows the impossibility of strictly valid cells when ε is small. 

 
Strict validity 
The first option is not a good idea, because unless the grid resolution is very fine, a lot 
of cells will be missed, although there would be planes inside the cell for which the 
face was valid, resulting in many false negatives. This is especially problematic if the 
choice of ε is very small and cell height thus is larger than the width of the validity 
domain (Fig. 2-10(b)). Although increasing the grid resolution would help, it causes 
memory and computational requirements to rise, and dictates a certain grid 
resolution. Overall, strict validity is definitely not a viable option. 
 
Simple validity 
By accepting cells as valid if they simply intersect a face's validity domain, it is 
guaranteed that even the most minuscule validity domains are discretized to at least 
one cell (Fig. 2-10(b)), which leaves the choice of grid resolution completely arbitrary. 
This convention results in many false positives though. When using strict validity, 
every plane in a cell is valid for the corresponding face, while simple validity only 
states that there is at least one such plane. 
This has an important consequence when more than one face is valid for 
a cell, in which case there are planes in the cell that are valid for one face 
or the other, but not necessarily for both. 
Obviously, we are interested in retrieving planes that are valid for many faces. More 
on this topic can be read in chapter 2.1.5. 
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Calculating simple validity 
Instead of trying to discretize the validity domain of a face, the algorithm opts to 
discretize the validity domain of each of its vertices and intersect those to get the 
desired results. 
For each face of the model, we iterate on the 2D dual grid and for each of these 2D 
cells with corner coordinates ],[],[ 1010 ϕϕθθ × , do the following: 

1. Calculate the face's vertex' top and bottom value of ρ for each cell corner using 
equation Eq. 2-3 and subtracting/adding ε to account for the shifting of the 
heightfield. 

2. Store minimum and maximum value of ρ. Repeat steps 1 and 2 for all vertices 
of the face. 

3. The bottom of the validity range for this 2D cell is the largest of the 
vertices' minρ , the top is the minimum of its maxρ  values, i.e. we intersect the 
validity domains of the vertices discretized for this cell. That way, we obtain a 
range max]min,[ ρρ  that spans one or more 3D cells, (or none, if there is no 
intersection of the faces' validity domains) that are valid. Fig. 2-11 clarifies this. 
We store minρ , maxρ  for each face and direction ),( ϕθ . 

 

Fig. 2-11: Discretization of validity domains 
(a) Vertex 1's validity domain for cell 10,θθ  is discretized, (b) The same happening for vertex 2, (c) The 

discretized vertex validity domains are merged, resulting in a set of cells for which the face is valid 

 
This method is computationally effective, but has a slight drawback: In the section 
about simple validity, we explained that if two faces are valid for one cell, there is not 
necessarily a plane in the cell valid for both faces. For the discretization algorithm, if 
two or more vertices are valid for a cell there does not have to exist a plane in the cell 
that is valid for all vertices, thus we might get cells that are marked valid although 
they do not contain a valid plane! The higher the grid resolution, the less likely this is 
to happen, though. 
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Fig. 2-12: Discretized validity domain of a face 

 

2.1.5 Density 
By now, the algorithm has provided us with a discretization of dual space, which 
essentially is a set of 3D grid cells for each face for which it is valid. To advance 
further, there is a need for a metric that accumulates the valid cells of all faces and 
imparts them with some value that represents the importance of a cell in respect to 
how many faces it can simplify. 
Therefore, we store a value called Density for each cell that gives an estimate how 
well a plane from the according cell would contribute to the result model. Note that 
there is an infinite number of planes in each cell, so that when speaking about a cell's 
plane, usually the plane at its exact center is referred to. 
Density is composed of two scalars, namely Contribution and Penalty. The Density of 
a cell is calculated for the plane at its center and is given by: 
 

Eq. 2-4 

 
Algorithmically, we populate the Density values of the grid by the following steps: 
For each face of the model, 

1. Get its set of valid cells. Due to memory restrictions, the set of cells cannot be 
directly stored for a face, but we can store the 2D grid positions for which there 
are valid cells, along with minρ and maxρ we calculated while discretizing the 
faces. 

2. Calculate Density for the plane at the center of each cell and add it to the 
Density of the cell. That way, Density values for all faces are accumulated. 

 
Now, let's have a look at the two ingredients of Density. 
 

)()()( ppenaltyponcontributipdensity −=
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2.1.6 Contribution 
Contribution is the part of the Density equation that gives "weight" to a cell so that its 
central plane might be chosen to simplify a part of the polygonal object. A naïve 
approach of Contribution would be to simply count the number of faces that can be 
simplified by the cell's plane we calculate Contribution for. However, this would 
endorse planes that simplify a lot of small faces over planes that simplify less, but 
larger faces, which would not amount to an optimal selection of planes. 
As a result, we are better off denoting the Contribution of a face to a plane as its 
geometric area. However, that alone is not a perfect solution yet, either. 
 

Fig. 2-13: Tangency of planes to original geometry 

 
In the outline of the algorithm, we mentioned that the planes shall be as tangent to 
the original model as possible. While a rough tangency is implicitly enforced by the 
error threshold ε and face validity (Fig. 2-13(a)), another mechanism is needed to 
favor planes that are really tangent to the polygons of the input model. This can be 
easily achieved by defining Contribution of face to a plane as the area of the face 
being projected to the plane, so that Contribution is largest when the plane is parallel 
to a face, thus maximizing its area (Fig. 2-13(b)). The Contribution for the whole 
plane is thus: 
 

Eq. 2-5 

 
Using this technique, a face has different Contribution values over a set of cells 
varying in ),( ϕθ  direction, but peaks in the cell whose plane mostly coincides with the 
face's supporting plane. 
 

2.1.7 Penalty 
In theory, the notion of Contribution is sufficient as a guide to the greedy select 
algorithm as to which planes have to be selected in order to represent the model best. 
However, a classic pitfall of greedy algorithms is that the choice of one local solution 
might have a bad impact on other parts of the solution. For an example of this, 
consider the sphere model in Fig. 2-14(a) that is infinitely tessellated. The greedy 
select step will correctly decide that the plane just below the cap of the sphere has the 
highest Contribution and therefore selects that one. 

∑=
n
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This leaves the cap of the sphere untangled, so that it has to be simplified by another 
plane that will be parallel to the previous. That way, the sphere is "sliced" through 
with planes, which is contrary to the idea that planes should be tangent to the original 
geometry, and it makes the simplification result look like potato chips. 
 

Fig. 2-14: Penalty 
(a) Badly selected plane "slicing" the sphere model and missing the cap faces. (b) Penalty is introduced 

so that faces penalize planes that barely "miss" them 

 
Decoret [DEC02-1] has a solution at hand called Penalty. It prevents the selection of 
planes that just barely miss faces that are in 
front of them (Fig. 2-14(b)) in a computationally 
inexpensive way. The Contribution of a face that 
is "missed" by a plane is subtracted from that 
plane's Density, weighted with an emphasizing 
penalty factor. 
Algorithmically, this amounts to subtracting the 
Contribution times the weighting penalty factor 
from all 3D grid cells "slightly lower" than the 
valid Contribution range max]min,[ ρρ . In 
practice, we define the "slightly lower" cells as 
cells in the range of ]minmin,[ ερρ − ,  and the 
penalty factor as 10. 
The Penalty thus also favors planes more distant 
from the origin, so that a good representation of 
the "outside" of the model is enforced. 
 
Note that for Density calculations, our minρ , 

maxρ  values for a given direction ),( ϕθ  and face 
do not coincide with cell top and bottom values 
(although this impression might be given in Fig. 2-12(c), but there we just declare 
valid cells). Consequently, Contribution and Penalty are added/subtracted to cells, 

Fig. 2-15: Calculating Density for a 
direction over a set of cells. Numbers in 

cells denote their coverage. 
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weighted by the percentage they cover the respective cell with their ρ range. Fig. 2-15 
illustrates this, along with demonstrating the simplicity of Penalty calculation.  
Also note that due to the nature of our dual grid, the projected area of a face, i.e. the 
basic ingredient of Contribution and Penalty, needs to be calculated only once for 
each ),( ϕθ  direction. 
 
The Density calculations are thus completed. But wouldn't penalizing planes "lower" 
in ρ direction, i.e. closer to the origin, eliminate their Density so that they can never 
be selected for simplification? No, because during the greedy select phase, after a 
plane is selected, the grid Density is updated so that previously penalized planes in 
the same ),( ϕθ  direction are then liberated from penalty and can be selected, if their 
faces have not already been simplified by the previously selected plane. 
 

Fig. 2-16: Density for a teapot model 
(a) the original model, (b) Contribution only, (c) Density composed of Contribution and Penalty 

 
This concludes step 1 of the Billboard Cloud generation algorithm. We now have a 
dual grid of Density values the greedy select optimization can operate on. 
 

2.1.8 Greedy Select & Recursion 
The Density values stored in the grid provide the algorithm with information which 
plane should best be picked so that an optimal set of faces can be simplified. The 
greedy select step therefore iterates on the grid and selects the cell with the highest 
Density. 
 
Unfortunately, we are unable to directly select a plane from this cell, because as 
explained in the previous chapters, the Density only hints that in a cell there might be 
a plane that's a very good solution - it does not specify the exact plane or how many 
faces can be simplified by it. If, for example, the greedy algorithm finds a cell of high 
Density this just means that either many faces, large faces or both have contributed to 
this cell, but there is not necessarily a plane in the cell that simplifies all those faces. 
In fact, the lower the grid resolution, the less likely this is. 
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A recursive refinement approach is therefore required for this task. We test the plane 
at the center of a cell for the ability to simplify the faces that are simply valid for that 
cell. This can be tested easily, by just measuring the distance of each of a face's 
vertices to the plane. Therefore, if all vertex distances are within ε, the face is judged 
simplifiable by the plane. 
If all faces simply valid for a cell or subcell are simplifiable by its center plane, we 
have found the densest plane and can continue with the grid updating step. 
Otherwise, the cell is subdivided octree-style into eight subcells and the recursion 
starts.  Fig. 2-17 illustrates an example of the process. In each recursion step, only the 
subset of faces of the original model that is simply valid for the subcell is considered. 
As the recursion progresses, this subset will most likely become smaller and the faces 
simplifiable by the center plane of a subcell will increase. 
 

Fig. 2-17: Recursive greedy select 
In figure (a), the highest Density cell's plane cannot simplify both faces it is simply valid for. (b) The 

cell is subdivided, densities are calculated and the highest Density subcell is selected, whose plane can 
simplify both faces it's simply valid for. 

 
Actually, the recursion is not continued down in all of the eight subcells. To prevent 
unnecessary recursions, we compute the Density for each subcell and only continue 
the recursion in the highest-Density subcell. 
Computing Density for subcells is computationally expensive, which makes the 
greedy select step the slowest part of the algorithm. 
 
Because the densest plane may be not inside the cell but slightly outside (Fig. 2-18), 
we also take the highest Density cell's direct neighbors into account and subdivide 
them, though we only operate on the faces simply valid for the highest Density cell. 
This gives us 27x8 subcells to analyze and calculate Density for, per subdivision step. 
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Fig. 2-18: Densest plane outside highest Density cell 
In Figure (a), no plane in the highest Density cell can simplify more than one of the faces it's simply 

valid for. However, the highest Density subcell of the right neighbor cell does (b). 

 
When the plane of highest Density is found, we store its orientation and distance 

),,( ρϕθ , store the plane number for each simplified face and remove the 
Contribution and Penalty of the faces simplified from the grid. This is done by simply 
reversing the Density calculation, so that Contribution is subtracted and Penalty is 
added. 
When all faces have been simplified, the Density will therefore be zero for each grid 
cell. 
Step 2 of the Billboard Cloud generation is thus completed. 
 

2.1.9 Texture generation 
In the final step, the algorithm generates the textures to be mapped to the planes we 
conceived. In our implementation, the whole rendering process is done with OpenGL 
[OGL], although any other graphics API could be used just as well. 
 
For each plane, we first gather the set of faces that it simplifies. Because we stored an 
identification number of the simplifying plane in each face, we simply iterate on the 
original model's faces to get the set of faces we pursue. 
Now remember that we do not yet have a billboard, just a plane that the billboard will 
reside on. To get the boundaries of our rectangular billboard, we project the faces' 
vertices onto the plane and rotate the plane so that it is parallel to the YZ plane (with 
Y being OpenGL's up vector). Omitting the X coordinate, we obtain a set of 2D points 
for which we can easily calculate the minimum bounding rectangle and its rotation 
angle using the Jarvis' March a.k.a. Gift-wrapping algorithm [JARVIS72]. 
Reprojecting the minimum bounding rectangle to 3D, we get the vertices of our 
billboard. 
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Fig. 2-19: Texture generation 
The model is rotated so that the billboard plane (a) coincides with the viewport's YZ plane (b). Front 

and rear clipping planes restrict rendering to polygons that are valid for that billboard plane only. 

 
To set up the model for rendering, we rotate the geometry by the inverted plane 
angles ),( ϕθ −− , then translate, rotate and scale so that the bounding rectangle just 
fits into the viewport. 
 

Fig. 2-20: The advantage of rendering all valid faces to a texture 
In figure (a), all faces that are valid for a plane as well as faces only intersecting the plane's validity 

domain were rendered to the textures. In figure (b), faces were only rendered to textures whose planes 
they were simplified by, producing unacceptable incisions in the Billboard Cloud. 

 
Rendering is then done into an off-screen buffer of the maximum texture size, under 
orthogonal projection and with two clipping planes that are shifted by plus/minus ε 
in front/behind of the billboard plane. Using this method, we make sure that only the 
faces that are valid for that plane are rendered (Fig. 2-19). Note that this also renders 
faces that actually belong to other planes, and parts of clipped faces that are closer 
than ε to the plane, but, especially for tree models, this is desired behaviour since it 
helps improving visual appearance of the Billboard Cloud. Moreover, it is permitted 
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by the definition of the error threshold. Fig. 2-20 demonstrates the visual advantage. 
For other classes of models, this method looks less appealing, as witnessed by Fig. 
2-28(b) on page 52 and explained in section 2.2.5. 
 
During the rendering process, stencil writes are enabled. After drawing the geometry, 
color buffer values are read back along with stencil values and combined, with non-
zero stencil values representing opaque pixels. RGB and stencil pixels are then 
combined to form an RGBA image which is resized to the desired maximum texture 
resolution and registered as texture for the billboard. 
We generate a separate texture for the backside of the billboard by simply rotating the 
geometry by 180° and rendering it like the front side. Front and back image are then 
packed together to one texture to save memory and reduce texture switching 
overhead when displaying the Billboard Cloud. 
 
Moreover, there is one final tweak to the textures. We measure the absolute size of 
each billboard and permit only the largest ones to be of maximum texture resolution.  
Billboard textures of less size are scaled down to the next smaller power of two. This 
is to save texture memory by preventing smaller planes from having a much better 
resolution ratio than larger ones. 
For example, if the largest billboard is 20x10 units and the maximum texture 
resolution is 256, its texture will be sized 256x128 pixels. A billboard sized 14x7 units 
will have a resolution of 128x64 pixels, whereas a small 4x2 units billboard will only 
measure 64x32 pixels. 
 
We have now implemented a basic version of the algorithm that theoretically allows 
us to create Billboard Clouds from complex polygonal input models. There are a 
number of issues of algorithmic and numeric nature that need to be resolved to 
enable the generator to work reasonably, which we describe in section 2.2. 
 

2.1.10 Generating a Billboard Cloud step by step 
To better illustrate the process of generating a Billboard Cloud, we will now take a 
quick tour of the algorithm and look at various steps of creating a result model. We 
want to simplify the house-like polygonal model in Fig. 2-21(a), with an error 
threshold of 5% of its bounding radius and a grid resolution of 9°, so that we get 20 
cells in the θ direction and 10 in φ direction for the grid. The orange spheres in Fig. 
2-21(a) are the vertex validity domains in primal space. 
In Fig. 2-21(b), the grid is shown after discretizing the faces and calculating Density. 
Note the labeled local maxima and that the maxima for the roof and one of the walls 
(the front wall) warp in θ direction. The maximum for the bottom faces is 
degenerated, i.e. valid for the whole θ range, which is due to the oversampling at the 
poles we explained in section 2.1.4, so that for a φ value of -90° or 90° and fixed ρ, 
the Density is the same for any θ. 
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Fig. 2-21: Density for simple demo model 

 
The greedy select algorithm then continues by picking the highest Density cells and 
delivering the densest plane after a few recursion steps. Fig. 2-22 shows the picking 
and grid updating: As can be observed in Fig. 2-21(b), the cell representing the roof 
plane is densest so it is picked first. Fig. 2-22(a) shows the faces being simplified and 
the grid after removing their Density. The next densest cell represents the back wall, 
as it is the largest of the four walls. Again, Fig. 2-22(b) displays the faces simplified 
and the grid after the update. 
 

Fig. 2-22: Dual grid during greedy select phase 

 
The algorithm continues in this manner until all faces have been simplified by a 
plane, in which case all grid Density values should be zero. 
Finally, the bounding rectangles for each plane's faces are calculated, the textures 
generated and mapped to the billboards. Fig. 2-23 shows the resulting planeset and 
the textured Billboard Cloud. 
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Fig. 2-23: A Billboard Cloud and its planeset 
Note that planes have varying colors. An explanation of the color's meanings is given in "Appendix A: 

BBCgen manual", section "Command Reference". 

 
 

2.2 Problems of the algorithm 
Implementing the algorithm as described above is quite a task, but the result is 
unlikely to make anyone extremely euphoric about it because of questionable results 
and its inability to simplify models under certain circumstances. There are some 
tweaks and add-ons to be implemented which are not mentioned in the original paper 
[DEC03], before we really can expect results like the ones depicted before. 
In this section, we describe some issues of the algorithm that can cause trouble for 
the simplification process and give hints how adequate remedies can be found. The 
full list and detailed description of improvements is discussed in section 2.3. 
 

2.2.1 The choice of grid resolution 
In section 2.1.4, we talked about the dual grid resolution and stated that the 
algorithm is robust to the resolution of the ),( ϕθ  direction. However, the same is not 
entirely true for the choice of resolution of the ρ direction ρres . 
 
The concern we have to be aware of is that unlike the range of ),( ϕθ , which always 
spans 360° and 180° respectively, the maximum occurring value of ρ varies from 
model to model because it is the input model's bounding radius. We could therefore 
set ρres  directly proportional so that we always end up with, for example, fifty cells in 
ρ direction. 
 
This is a bad idea however, since the error threshold ε, which can be changed 
arbitrarily by the user, has repercussions with respect to the ρ direction. 
Remembering Density calculations from chapter 2.1.7, we note that Penalty is 
Contribution weighted by a penalty factor of 10. Therefore, if cells are too large in ρ 
direction so that one spans a range of several times ε in model coordinates, this leads 
to obliteration of Density because the larger Penalty cancels Contribution. Thus, we 
may end up with a grid filled with zeroes which is obviously of no use at all. 
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A better choice therefore is to relate ρres  with ε in model coordinates. From 
experience with the algorithm, we can state that a resolution of 
 

Eq. 2-6 

 
works properly. On the other hand, because the algorithm can be touchy towards 
numerical issues, for some models resolutions of ερ =res  or even 2÷= ερres  work 
better, and one could surely spend a lot of time experimenting with different factors 
and models. 
 

2.2.2 Numerical issues 
This leads us directly to the problem one faces with numerical issues which obviously 
do arise in an implementation dealing with lots of angular and geometric calculations 
as well as discretization of continuous intervals to be done. 
 
The phenomena frequently observed are related to the greedy select step and the 
recursive plane picking. In the previous section, we discussed determining the most 
suitable value for ρres  and how it can affect Density. However, even when we keep 

ρres  in a "safe" range, the results of the simplification may vary noticeably. This is 
due to the nature of the discretization of faces. 
 

Fig. 2-24: Dual grid and Billboard Cloud for varying resolutions of ρ 
Our standard resolution of ε*2 simplifies the oil tank-plus-chimney model to 22 planes (a), a 

resolution of ε/4 yields 28 billboards (b). The result quality is roughly the same though. 

 
Varying choices of ρ resolution 
In two grids that represent the same model, but with different ρres , the distribution 
of cells is obviously different too, so that a recursion process started from a highest 
Density cell may lead the refinement into slightly diverse directions with the 
algorithm coming up with different planes simplifying different faces for both grids. 
Fig. 2-24 demonstrates two grids with altered ρres  for the same model and the 
simplification results. 

2∗= ερres
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It is impossible to predict which choice of ρres  yields better results for a certain 
model though, the only chance to find out is by experimenting. 
 
Leading the recursive refinement astray 
When working with very small ε, we 
encounter the problem that cells become 
very squashed because our standard ρres  is 
in the range of Eq. 2-6. There is then a 
likely chance for the recursive greedy select 
that it cannot find a valid plane. In fact, the 
coarser the ),( ϕθ  resolution, the more likely 
this phenomenon is. This can be explained 
by the way the discretization of faces works. 
Since we do not actually discretize a face's 
validity domain but the domains of its 
vertices and intersect those, we may come 
up with false positives, as portrayed in 
section 2.1.4. Now, if ε is very small, the faces' continuous validity domains become 
minuscule compared to their discretized versions (Fig. 2-25). In fact, this can be so 
detrimental that the Density for all subcells of a subdivision step may be eradicated. 
Remember that subdividing halves ),( ϕθ  coordinates of a cell, so that the 
discretization of a face's vertices' validity domain will become more precise. Thus, it 
may suddenly turn out that a set of subcells obtained by subdivision is not actually in 
the Contributing minρ , maxρ range of its simply valid faces but in their Penalizing 
one, so that Density is zero for all and the greedy select cannot continue. 
 
Leading the recursive refinement astray without penalty 
So let's try omitting Penalty calculation and relying on Contribution only for 
subdivision. For certain models, this even yields better results with Billboard Clouds 
composed of less planes. 
Still, there is a possibility that the greedy select could be unable to find planes: 
Working again with very small ε and encountering the problem of squashed cells, the 
small ratio of continuous and discrete validity domains is to blame that valid planes 
are easily missed by plane testing after the first subdivision step. 
Because of this and the fact that the space explorable by the recursion is very limited 
due to small ε and gets halved with each recursion step, it is possible that the 
algorithm is misled into a cell that features no valid plane, i.e. outside the continuous 
validity domain, and is unable to get back there. Subsequently, Density will drop to 
zero for all subcells after a few recursion steps and we are in the dilemma of not 
having found a valid plane. 
 
Fortunately, the two latter scenarios are encountered mostly when ε is too small to 
produce results with a reasonably small amount of planes anyway. However, 
whenever a simple model like the house from Fig. 2-21 has to be simplified very 

Fig. 2-25: Small continuous/discretized validity 
domain ratio 
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faithfully, a minuscule ε can be chosen while expecting a small number of planes, so 
that leading the recursive refinement astray becomes an issue. We present a "fail-
safe" solution to this in chapter 2.3.4. 
 

2.2.3 Missed faces 
In section 2.1.4, we explain that it is important to acquire a good distribution of faces 
on the dual grid, which is achieved by translating the origin to the original model’s 
center of gravity. A problem that persists though, is the existence of far-out faces that 
are difficult to detect by the recursive greedy select algorithm. 
Consider the example in Fig. 2-26. Face f is relatively far away from the origin, not in 
terms of plane distance but actual vertex distance, i.e. it is situated far “right” on its 
supporting plane. As illustrated, the range of angles plane p that attempts to simplify 
face f is rather narrow, so that its validity domain becomes very small too. This is a 
typical problem of the parameterization of faces and plane space used. We have 
shown in section 2.2.2 that a narrow validity domain, either due to small ε or to this 
parameterization problem, can easily get missed by the recursive greedy select 
algorithm, so that we might actually fail to simplify such planes. 
 

Fig. 2-26: Small changes in ),( ϕθ  result in drastic changes of validity for faraway faces 

 
The parachute solution referred to in section 2.2.2 and explained in detail in section 
2.3.4 applies here too, but it is just a workaround that tries to alleviate this flaw in the 
parameterization concept. An entirely different way to parameterize planes and faces 
would be a more worthy solution that might also do away with the numerical issues 
mentioned earlier. 
 

2.2.4 Unheeded connectivity 
An important advantage of the Billboard Cloud algorithm over traditional mesh 
simplification methods is that it does not require any connectivity between the input 
primitives, all it handles is a set of polygons. 
While for many simplification cases this is definitely an advantage because entirely 
different parts of an object can be simplified to the same plane, there are also 
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situations where this is not desirable because it results in bad visual quality. This is 
especially an issue for our purposes of simplifying tree models. 
 

Fig. 2-27: Unheeded connectivity results in "slicing" planes 
(a) shows the polygonal model, (b) the Billboard Cloud suffers from planes slicing through the stems 

 
Fig. 2-27 shows a typical example of unheeded connectivity. Although it is definitely 
agreeable if separate leaves or branches are projected to one plane, there are also 
planes that “slice” the original geometry at points where it is especially visible, like 
the trunk. The problem is that by definition of the error threshold and validity, this is 
a perfectly legal solution, it is just that the connectivity of the stem’s faces goes 
unheeded and is disrupted very noticeably. Even though the stem could be easily 
simplified to one single plane, other planes that achieve a higher coverage by 
representing several leaves, parts of branches and parts of the stem are chosen before 
so that what’s left of the stem after a few simplification steps is fragmented. 
There is not really a consistent way to automatically prevent this from happening. A 
simple and highly effective manual solution for tree models is to separate the stem 
and the foliage plus branches and simplify these two models on their own, then 
recombine the results to receive a very good-looking representation. 
For other classes of models, this is not a sensible solution though, and it can 
frequently be observed that faces are simplified to a plane that should not be grouped 
together because their original orientation is altered so much that it affects visual 
quality. 
 
Decoret [DEC03] proposes a method originally intended for saving texture space that 
can help reducing problems of unheeded connectivity by means of partitioning the set 
of faces simplifiable by a plane into clusters, which we discuss in section 2.3.10. This 
only heeds local neighborhood though, not connectivity, so that the issue of “slicing” 
cannot be resolved altogether. 
 
 



 52

2.2.5 Sub-optimal planes 
Looking at result models generated by an untweaked, unoptimized version of the 
Billboard Cloud generation algorithm, one can be somewhat disappointed. Although 
the Billboard Clouds usually consist of few billboards, which is one quality criterion, 
there are a number of habits of the algorithm that spoil the overall visual appearance. 
 

Fig. 2-28: Three cases of sub-optimal planes 
In figure (a), ε is large so that the earliest valid planes found are very much out of orientation (original 
geometry shown in wireframe). Figure (b) shows artifacts on planes that intersect large portions of the 
model.  In (c), the logical solution would be that each surface is simplified to one plane, but because of 
the fine tessellation and sufficient error threshold, the blue surface's plane also simplifies a portion of 

the green surface (vertex validity domains also shown). 

 
Early greedy select termination 
An important trait of the recursive greedy select algorithm is that as soon as a plane is 
found that is able to simplify all faces the corresponding subcell is simply valid for, 
the recursion stops and the plane is accepted. However, this doesn’t necessarily mean 
that said plane is visually optimal, often a more appealing plane could be found if the 
recursion continued. In fact, many result models suffer from badly placed planes that 
are obviously different in orientation to their simplified faces, like in Fig. 2-28(a). 
Since forcing the recursion to continue is not a viable option because we do not have a 
second termination criterion and would waste processing time, we try to refine the 
returned plane otherwise. 
A simple solution that works for planes that simplify coplanar planes only is 
presented in section 2.3.2. However, if the faces are slightly differently oriented or 
only one of the faces has a different supporting plane than the others, this plan is 
foiled. Therefore, we present a more suitable remedy in section 2.3.3. 
 
Fragments in planes 
In Fig. 2-20, the necessity to render all valid faces to a plane’s texture instead of 
rendering only the ones it simplifies is shown. However, not all models spawn planes 
that intersect each other in a way that this is mandatory in order to achieve good 
results. 
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Consider the house in Fig. 2-28(b). Because of the nature of the input model and the 
resulting planes, rendering all valid faces to each billboard is not required, and if it is 
performed, planes that intersect others result in disturbing artifacts, highlighted red 
in the figure. 
Once again, an extension to cluster faces can alleviate this problem, because it helps 
prevent planes that intersect large portions of a model, as discussed in section 2.3.10. 
 
Insufficient strength of the Coverage metric 
If an input model is composed mainly of large polygons, chances are that the 
simplification result will resemble the original quite faithfully. Trouble might arise if 
the model’s surfaces are finely tessellated so that it becomes possible that a surface is 
not approximated by one plane, but by several planes that all “slice” the original 
geometry so that they also simplify faces in other regions of the model, because they 
achieve better Coverage values that way, as can be observed in Fig. 2-28(c). 
 
Again, face clustering (section 2.3.10) is able to prevent this phenomenon, but just 
not entirely. 
Another possible solution could be to equip the coverage metric with stronger weight. 
Geometric coverage actually is not a very strong value, because the area of a polygon 
projected to planes with only slightly different orientations hardly changes the area of 
the polygon. If small changes in orientation of a plane had a stronger impact on 
Density calculation, the algorithm could be forced to pick planes tangent to original 
geometry more strongly. This would not relieve the flaw in Fig. 2-28(c), though. 
 

2.2.6 Resource hunger 
The whole process of generating Billboard Clouds is both expensive in terms of CPU 
time as well as memory requirements. For speedup of the calculations, our 
implementation of the algorithm stores a list of ),( ϕθ  directions for each face for 
which it is valid and the corresponding minρ , maxρ . We call such an entry a valid 
cell entry. Its usage however results in massive memory demands for large models. 
Moreover, a finer grid resolution can result in a slightly more precise simplification, 
but is extremely memory hungry because a lot more valid cell entries have to be 
stored. For models with high polygon count, we therefore have to choose a coarser 
grid resolution. 
So, for example, for a 200.000 polygons tree model our implementation requires 
between 300 megabytes and one gigabyte of working memory. 
 
Likewise, especially the recursive greedy selection step is computationally very 
expensive, so that the total simplification of said tree model takes approximately 
twenty minutes on a 1.4 GHz machine. 
 
These are principal traits of the algorithm however. A general rule of computer 
science says that memory requirements and CPU time can be reduced at the expense 
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of each other, so an increased/decreased use of lookup tables could speed up or slow 
down results generation, but to really make a difference, the basics of the algorithm 
would have to be altered, which is beyond the scope of this thesis. 
 
 

2.3 Extensions to the algorithm 
From the above issues, we conclude that just a basic implementation of the algorithm 
is not nearly sufficient to produce visually appealing Billboard Clouds, moreover, in 
many cases it is not even possible to generate a result if numerical problems rear their 
heads. 
Therefore, we describe a number of changes and extensions to the algorithm. Some of 
the techniques are hinted in the original paper [DEC03], in which case we mention the 
reference. 
 
Nevertheless, not all additional bells and whistles work equally well for every kind of 
input model. Although the extensions are designed to improve the Billboard Cloud 
generation, in certain cases they worsen the results and it is difficult to foretell which 
tweaks succeed and which ones do not. The only way to find out is to try, which might 
be a rather time-consuming activity considering the lengthy computation times. 
Fortunately, a few steps affect only the final setup of planes and texture generation, a 
process which usually takes just a few seconds, so that some experimenting with 
those techniques is easily manageable. 
 

2.3.1 Normal maps 
One of the primary features of Billboard Clouds that Decoret [DEC03] mentions is 
their ability to be re-lit in realtime so their resemblance to the original geometry is 
improved. This requires the use of normal maps that are generated along with the 
billboard textures.  
 
To begin with, normal maps are similar to the concept of bump maps, that both allow 
adding the impression of a highly tessellated surface to one single polygon by 
perturbing the surface's normal at each texel and rendering the scene with per-pixel 
lighting. A bump map usually is an 8-bit heightfield, where differences in neighboring 
texel's color are interpreted as a slope that perturbs the normal of the polygon it is 
applied to. This only allows for a limited relief-effect though (Fig. 2-29(a)). 
Normal maps allow true shading because they store the perturbed normals directly, 
with the RGB components representing the normals' XYZ orientations (Fig. 2-29(b) 
and Fig. 2-30). 
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Fig. 2-29: Bump mapping versus Normal mapping [PINWIRE] 
(a) Bump mapping uses a bitmap heightfield (left) and only allows for a limited relief effect (right). 
(b) A normal map stores normal vector directions as RGB color values (left) and produces realistic-

looking per-pixel lighting (right). 

 

Fig. 2-30: Normal mapping XYZ to RGB conversion 
The billboard plane coincides with the view plane. A normal pointing directly towards the viewer has 
an XYZ vector of (0, 0, 1), thus its RGB equivalent is (0.5, 0.5, 1.0). A vector facing directly down the 

negative x-axis is converted from XYZ(-1, 0, 0) to RGB(0.0, 0.5, 0.5) 

 
Relighting surfaces with normal maps is ubiquitous in today's real-time 3D software, 
especially computer games, because normal mapping is easily implementable using 
modern graphics hardware's pixel shaders and tremendously fast at that, too. Most 
games utilize normal maps to simulate geometrical detail that is actually omitted by 
the rendered geometry. For example, a stone wall consisting of only one polygon still 
appears to have a rough, finely tessellated surface because a normal map and texture 
map simulate bumps and dents that do not look flat, unless the viewer takes a close 
look. The same principle applies for low-polygon characters whose surfaces are 
embellished with normal mapped armour, skin features, etc. 
 
Our use of normal mapping has the some motives: we want to improve the overall 
impression of our Billboard Clouds by making the flatness of its components less 
obvious. If we used OpenGL's standard lighting functions for shading a Billboard 
Cloud model, the flatness of the billboards becomes more or less obvious (Fig. 2-31). 
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With normal maps applied though, the difference between a Billboard Cloud and a 
shaded polygonal object is hard to spot. 
 

Fig. 2-31: Normal mapping on a Billboard Cloud 
In (a), the Billboard Cloud's planes are flat shaded. Planes nearly perpendicular to the viewing plane, 

marked in red, clearly stick out. (b) shows the normal maps instead of the textures, while (c) 
demonstrates the full relighting using normal mapping. 

 
Generation of normal maps can be done in two ways. 
The first method is easier and requires no special hardware. For generating a 
billboard's texture, we have to rotate the original model so that the billboard plane 
coincides with the viewing plane, as described in section 2.1.9. To obtain a normal 
map for this billboard, we multiply the model's normal vectors with the same rotation 
transformations, so that they are relative to the view/billboard plane. All that's left to 
do is to set the transformed normal vector at each vertex as the vertex color and 
render the model, letting OpenGL's goraud shading do the work of interpolating the 
vertex colors/normal vectors across the face. Reading back the frame buffer, we have 
successfully created a normal map. 
The second method would be to use a pixel shader program that outputs the normal 
orientation of each pixel as RGB value. This is essentially the same process, but is 
done entirely by the graphics hardware and therefore a little faster (but since the 
rendering task is by far the least time-consuming task, the few milliseconds saved do 
not mean much). 
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2.3.2 Coplanar optimization 
As discussed in section 2.2.5 we can try to further optimize a picked plane to avoid 
planes that are technically permitted, but visually ugly (Fig. 2-28(a)). [DEC03] 
proposes a simple optimization scheme that checks whether the plane only simplifies 
faces that are coplanar. 
To test this, we simply compare all the normals and points of the faces' supporting 
planes. Note that comparing the planes in their ),,( ρϕθ  parameterization would not 
work, because due the singularities of the parameterization, a plane at the poles of the 
sampling sphere can be characterized by any θ angle. 
If all faces are coplanar, we replace the plane found by the greedy select step with the 
plane shared by the set of simplified faces. 
Thus, we can significantly improve the Billboard Cloud of Fig. 2-28(a), producing the 
result in Fig. 2-32(a) where the walls are aligned like in the original model. A 
surprisingly large number of sub-optimal planes can be corrected by the coplanar 
optimization, but it is of little interest for tree models that hardly feature any 
coplanar polygons. 
 

Fig. 2-32: Coplanar optimization 
In (a), coplanar optimization works for the walls of the building, but not the roof because the almost 

insignificant roof side faces are not coplanar to the surface (b). 

 
This optimization is inexpensive, since the process breaks as soon as a non-coplanar 
face is found. 
However, it completely fails if only one of the faces, which possibly makes only a 
diminutive contribution to the plane, has a different orientation, such as illustrated in 
Fig. 2-32(b). Therefore, the solution presented in section 2.3.3 is more suitable for 
post-optimizations of planes. 
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2.3.3 Post-plane tweaking 
To improve the orientation of a plane that features diversely oriented faces, we 
introduce another optimization step that replaces the coplanar optimization. 
Basically, we try to find a plane that is more faithful to the orientation and position of 
the original faces, and does so unheeding the relative orientation of the simplified 
faces to each other. 
 
The algorithm is rather straightforward: We take the normal vectors of all faces 
simplified by the plane and sum them up, each one weighted by the area of their 
respective faces, then after normalizing the accumulated normal, we receive the 
normal vector for our refined plane. To obtain its point, we simply sum up the 
centerpoints of the faces, again each one weighted by their area, then divide by the 
total face area. Therefore, 
 

Eq. 2-7 

 
and 
 

Eq. 2-8 

 
The weighting with the faces' areas is done to give more relevance to the orientation 
of large, dominant faces because preserving their original orientation contributes 
more to the overall appearance of the Billboard Cloud than small faces. 
We now test if all faces are valid for this refined plane and if the projected faces cover 
an equal or greater area than on the previous plane. If both conditions hold true, we 
use the refined plane instead of the one returned by the greedy select step. 
 
However, there are some details to be taken care of. The algorithm must recognize 
faces that are oriented "back-to-back" to each other, because otherwise two such faces 
would eradicate the summed up normal altogether, thus foiling the effort to find a 
refined plane. We therefore need to introduce a reference point we can test the faces' 
supporting planes against. As a convention, we invert the face normal if the reference 
point is in front of the plane and do not change anything if it lies behind the plane. 
The question is, which reference point to use, though. In fact, there is no single 
optimal point, instead we calculate two separate versions of the refined plane, one 
that uses the coordinate origin, the other utilizing the faces' center of gravity as the 
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reference point for normal flipping. Consider Fig. 2-33 for a demonstration why two 
versions are necessary.  
 

Fig. 2-33: Reference points for post-plane tweaking 
In (a), the center of gravity is sufficient as the reference point, so that the normal at the bottom is 

flipped and an optimal refined plane is found. In (b), the CG reference point lies behind both planes, so 
that no normal is flipped and they eliminate each other. The origin, which happens to be not in 

between the two faces, is a better reference point. 

 
It is, of course, not impossible to construct situations where the optimization as 
described above fails to find a solution, but especially for more regular objects like 
buildings, a surprisingly high number of planes can be refined that way. The house 
model in Fig. 2-28(b), for example, features 47 planes of which a massive 38 are 
refined with our optimization, producing a more attractive result. 
Computation time is negligible too, since we perform only fast arithmetical 
operations on a subset of the model's faces and terminate the face-plane-validity 
testing as soon as an invalid face is encountered. 
 

2.3.4 Greedy select fail-safe 
In case a numerical problem like the ones describe in section 2.2.2 arises, the 
simplification may fail to find a plane and the algorithm terminates without 
producing a valid result. In such an event, we have found a highest Density grid cell 
with an associated set of simply valid faces, but no plane. A brute-force approach as 
follows is guaranteed to find a plane that simplifies at least one face. 
 
For each of the simply valid faces, we determine its supporting plane and test all the 
other faces for validity against it. The supporting plane that can simplify most faces is 
selected and returned as if it were picked by the recursive greedy select step. 
Additionally, we can derive the weighted average plane of all the faces we consider, as 
described in section 2.3.3, and test if it is valid for all faces. It is however not unlikely 
that this plane is an invalid one. 
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The greedy select fail-safe is a last-resort measure really, since it is neither too elegant 
nor very performant, but it enables the algorithm to always find a solution, even 
under the most adverse conditions. 
 

2.3.5 Primitive skipping 
Actually, this feature is a very simple extension that often helps reducing the number 
of planes without impairing the visual appearance of the Billboard Cloud. Upon 
texture generation, we simply omit planes that contribute less to the simplified model 
than a certain threshold. 
For polygonal models, primitive skipping works with the area covered by a billboard 
plane's faces projected to that plane. The skipping threshold is given as percentage of 
the billboard plane with the largest geometric coverage, so that any plane with a 
coverage less than the threshold is omitted. 
 
Trees consist, mainly due to foliage, of many small faces and it frequently happens 
that a few of them remain unsimplified once the more important planes have been 
picked, so that additional planes simplifying just a few small faces have to be created. 
In most cases, such planes are insignificant to the overall result and can be safely left 
out. 
 

2.3.6 Supergreedy select 
Minor imprecisions occurring throughout the implementation, as well as major 
numerical issues (see section 2.2.2) can possibly cause faces to be left unsimplified by 
a plane although they were valid for it. Especially when using a coarse grid resolution, 
a potential billboard plane has ample room for altering its orientation in the course of 
the refinement (also due to the exploration of neighbor cells, as explained in Fig. 
2-18), so that suddenly, new faces would be introduced to the set of simply valid 
faces. However, the implementation does not allow the set of faces to grow to avoid 
luring the recursion away from its intended destination. 
 
For many cases though it pays to check for any additionally simplifiable faces once 
the densest plane is found. This is performed by a brute-force approach: We simply 
test all faces that have not already been simplified against the densest plane. 
Note that although this usually reduces the number of billboards yielded, in some 
cases it can also worsen the visual appearance of the Billboard Cloud, if faces are 
greedily simplified that would contribute better to other planes. It is impossible to 
foresee this though, and can only be found out by trial and error. At any rate, as it is 
computationally inexpensive too, we advise to generally make use of the supergreedy 
select mode. That is, unless face clustering is employed, as explained in section 
2.3.10. 
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2.3.7 Cardboard mode 
While the infamous "cardboard-look" (section 1.1.1) ceases to be commonly used for 
models, the principle has its advantages that we can exploit. Looking at Fig. 2-35, we 
notice that the Billboard Cloud tree's stem looks revealingly flat from certain angles. 
Although it's nice that the entire stem was simplified to one single billboard, we 
would like a slightly more three-dimensional feeling to it. A cardboard-stem would be 
sufficient. We therefore present an extension to the algorithm that seeks to find 
cardboard planes improving the overall impression, being especially useful for long, 
thin objects like stems. It requires the user to set an input parameter called 
cardboard coverage threshold, which is measured in percent. We now elaborate on 
the details of the algorithm. 
 
Whenever the densest plane is found and all plane-tweaking operations (sections 
2.3.2, 2.3.3) have been performed, we analyze whether adding a cardboard plane is 
practical or not. Basically, a cardboard plane is a plane perpendicular to the densest 
plane we just found, which shall forth be called motherplane. We examine two 
cardboard planes per motherplane, each oriented parallel to one of the billboard's 
sides (Fig. 2-34). Consequently, this means we have to calculate the billboard's 
bounding rectangle and corner vertices before, as explained in section 2.1.9. The 
cardboard planes do not pass through the center of the motherplane, but the center of 
gravity of its projected faces. 
We then project those of the motherplane's faces that are also valid for the cardboard 
planes to the latter and calculate the area of the projected faces. The ratio of the total 
area covered on a cardboard plane compared to the area covered on the motherplane 
is called cardboard coverage and is measured in percent of motherplane coverage. 
Obviously, we only keep the cardboard plane with the larger cardboard coverage, and 
only if that is greater than the desired cardboard coverage threshold. 
 

Fig. 2-34: Setting up cardboard planes 
Two cardboard planes, constructed perpendicularly to the motherplane and intersecting the 

motherplane's center of gravity, are tested for maximum cardboard coverage. 
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Fig. 2-35: Cardboard planes for more three-dimensional models 
The palm tree in (a) has its trunk simplified by one single billboard, which looks obviously flat (b) from 

the side. In (c), a cardboard plane for the plane simplifying the trunk has been found, improving 
appearance from any angle. 

 
Fig. 2-35(c) shows an example of visually enriching cardboard planes. If the 
cardboard coverage threshold is set low enough, cardboard planes for many other 
portions of models than stems or cylinders are generated. Note that their general use 
is limited though, since only the motherplane's faces are projected onto a cardboard 
plane, thus limiting a cardboard plane's width to 2 ε. Also, they do not simplify any 
additional faces, they just project their motherplane's ones to a perpendicular 
billboard. 
 
Actually, the convention that cardboard planes can only be parallel to the 
motherplane's bounding rectangle is rather restrictive, because faces of a cylindrical 
object that is not parallel to the bounding rectangle's sides are not detected. 
A better solution would be to orient the cardboard plane such that its coverage 
becomes largest. However, this would boil down to an optimization problem similar 
to the Billboard Cloud algorithm itself - we would need a parameterization of the 2D 
space the possible orientations of the cardboard plane reside in, which could be done 
by a two-dimensional Hough-transform (section 2.1.3), then discretize the 
projections of the motherplane's faces to calculate cardboard Density and run a 
greedy select to find the best cardboard plane. 
Since these computations are very costly, we rely on our simple method though. 
 

2.3.8 View-dependent penalty 
This extension is not to be confused with the notion of Penalty used in calculating the 
grid Density from Contribution and Penalty! 
When simplifying tree models to Billboard Clouds, one notices that the range of ε to 
achieve satisfying results is rather broad, from less than 5% to 15% and beyond. 
However, a disturbing visual problem surfaces for large values of ε. Often, the 



 63

algorithm will decide that the best simplification can be achieved by collapsing 
multiple layers of foliage to one almost horizontal plane, which, although 
mathematically and technically correct, looks plainly terrible (Fig. 2-36(a)). Since in 
most simulations and computer games the vertical viewing angle is small, i.e. the 
viewer is at roughly the same height as the trees, we want to avoid purely horizontal 
planes as far as possible. Completely vertical planes are not advisable either because 
then the trees would look awkward when viewed directly from above, plus, horizontal 
elements of foliage cannot be simplified well with vertical planes. 
Therefore, we seek a solution that discourages horizontal planes, but does not entirely 
prevent them. We cannot achieve this by tweaking the densest plane after it has been 
picked, so we have to make sure we meet some precautions at an earlier step. We call 
our modification view-dependent penalty. 
 

Fig. 2-36: Billboard Clouds with large ε and the influence of view-dependent penalty 
Both models have ε set to 20%. In (a), the generation algorithm chose horizontal planes mainly and 
resulted in 8 billboards, while the penalty of 80% @ 40° cutoff angle in (b) yields 9 billboards, but a 

much better plane setup. 

 
Our goal can be achieved by manipulating the Density values of the dual grid. 
Recalling that the regions far "front" and "back" on the grid represent angles of 

°±= 90ϕ , we conclude that the Density in those areas needs to be reduced artificially. 
Accomplishing this is easy, by just defining a slope function that is imposed on the 
grid whenever a Density or subcell Density read access is being made (Fig. 2-37(a)). 
The input parameters for this slope function are: 
 

• The penalty value. Denotes the maximum penalty imposed on Density, 
measured in percent. That means, a penalty of 50% for a grid region means the 
Density there is reduced by half. The maximum value is reached only at the 
poles of the sampling sphere, that is, for °±= 90ϕ . 

• The penalty cutoff angle. Penalty is linearly interpolated from the maximum 
penalty value to zero between °±= 90ϕ  and the cutoff angle. 
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Fig. 2-37: View-dependent penalty for grid regions 
Figure (a) shows a schematic view of the penalty imposed on grid values. Note that penalty is not 

associated with values of ρ. (b) depicts the grid for a model with a penalty value of 90% and 40° cutoff 
angle, while (c) represents the untouched grid. 

 
That way, the closer to being horizontal a plane is, the less likely it is to be picked 
because its Density is artificially kept low. Of course, at some point there may be faces 
left that can be simplified by horizontal planes only, but this will only be a small 
subset, and most faces originally more likely to be simplified by a horizontal plane 
will have been consumed by more vertical planes by then. 
To sum up, this extension works extremely well for most tree models and comes with 
no additional computational cost. The choice of penalty value and cutoff angle are 
subject to experimentation though, and in order to view the result, the whole 
simplification process has to be repeated everytime the parameters are changed. 
  

2.3.9 Anti-aliasing textures 
The process of rendering the geometry to textures and choosing the correct texture 
size for a billboard is covered in section 2.1.9. The off-screen buffer the textures are 
rendered into is the size of the maximum texture resolution. The textures yielded by 
this process are perfectly satisfactory for most models, but trouble arises when the 
model features very small faces, such as a tree's leaves. As we can observe in Fig. 
2-38(b) showing a Billboard Cloud with maximum texture resolution of 256, the 
leaves have almost disappeared and if we choose the texture size smaller, this 
problem becomes even worse. 
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Fig. 2-38: Sampling problems for small faces and textures 
(a) shows the original polygonal tree model. The Billboard Cloud in (b) suffers heavily from sampling 

problems that wiped out much of the foliage. Supersampling corrects this flaw (c). 

 
The phenomenon demonstrated here is a well-known issue in the field of computer 
graphics, and is called rasterization- or sampling problems. Fig. 2-39(a) depicts the 
rasterization, i.e. the process of creating a pixel image from vector graphics, for 
different polygons. We observe that small polygons might thus be omitted from being 
drawn, which is just what happens in our case, especially as maximum texture size 
decreases. 
 

Fig. 2-39: Rasterization and supersampling 
(a) A pixel is "hit" by a polygon only if its center is covered. Thus, the orange triangle that does not 
cover any pixel center is not rasterized. (b) The block containing the orange pixel is downsampled 

using our "growing" approach, while the block with the cyan pixel is downsampled using a 
conventional median filter, thus resulting in a non-opaque pixel. 

 
The solution to this problem is, of course, anti-aliasing. We could use OpenGL 
extensions to engage hardware anti-aliasing but since we do not want to become too 
dependent on graphics hardware specialties, we do the anti-aliasing process 
ourselves. 
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Thus, we perform supersampling by rendering our geometry to an off-screen buffer 
of such size that each polygon is guaranteed to be rasterized, i.e. covers at least one 
pixel, as dictated by the sampling theorem. The required size of said off-screen buffer 
can be calculated using the texel size in world space. 
However, our textures cannot be arbitrarily big because we have to pay respect to the 
user-defined maximum texture size. Thus, the rendered images are downsampled 
using the following approach: 
The median of an nn ×  block of pixels that is to be downsampled to one single pixel is 
calculated. However, a pixel of the block is only considered valid if it is non-
transparent. This "grows" the borders of a texture slightly, as illustrated in Fig. 
2-39(b), in order to avoid semi-transparent pixels, which make the Billboard Cloud 
difficult to draw because rendering transparency typically demands some depth-
sorting. Also, a little overdraw cannot hurt because it helps reducing holes in the 
result model. Fig. 2-38(c) portrays a Billboard Cloud with supersampled textures. 
 
Usually, the final textures have to be power of 2-sized. However, in order to reduce 
the amount of texture switches, and thus relieving graphics hardware, we employ the 
AVEsplitter tool [VRVIS] that packs all textures together to one larger texture that is 
always power of 2-sized (see section 3.3 for more details on this). Therefore, the 
downsampled textures do not necessarily have to be power of 2-sized if AVEsplitter is 
used. 
 

2.3.10 Face clustering 
Originally intended by Decoret [DEC03] to save texture space by dividing planes that 
consist of large empty regions, this technique is also capable of reducing the 
occurrence of a broad range of "ugly planes" described in section 2.2.5. 
The problem of sparsely covered planes is depicted in Fig. 2-40. Simplifying small 
and distant portions of the model to one texture does not only waste precious texture 
memory, it also means that these sets of faces may end up simplified to a plane that is 
rather unlike to their original one's, which although allowed by the definition of 
validity, impedes visual quality. 
 

Fig. 2-40: Simplifying distant faces to one plane. 
The faces in (a), each with different rotation angles,  are simplified to the plane in (b), leaving large 

portions of the texture blank, and deviating from the face's original orientation. 
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The solution, of course, is to cluster neighboring faces of a plane and generate a 
billboard for each cluster. Although this yields a higher billboard count, this 
modification generally pays because of the texture space and fillrate saved. 
Performing the face clustering step after the densest plane has been found would 
suffice for texture space saving purposes, but it does not prevent the problem of badly 
oriented faces, since the plane orientation is fixed before face clustering is applied. 
Therefore, clustering must be done before the greedy select algorithm is started. 
 
Simple clustering 
It seems suitable to do this right after the highest Density grid cell has been found. 
We then project all the faces simply valid for that cell onto its center plane, unheeding 
the fact that not all of them are actually valid for the plane, and run a clustering 
algorithm on the faces. Afterwards, we select the cluster whose faces cover the largest 
geometric area and feed the greedy recursion with that subset of faces only.  
Obviously, the remaining clusters' faces are still unsimplified after that greedy step. 
Therefore, the same grid cell might be picked a number of times until all its face 
clusters have been selected and simplified. 
 
Pre-clustering 
The above approach is both fast and satisfies our expectations in terms of texture 
space saving and orientation preservation, but there is still room for improvement: It 
is possible that the grid cell represents an optimal plane for the whole set of faces it is 
simply valid for only - but the subset of faces for the separate clusters might be better 
simplified by an entirely different plane not contained in the selected grid cell. 
Thus, we attempt to cluster the faces of the grid cells before the greedy select 
algorithm is started. For each such clustered cell, we store the percentage of the 
largest cluster's contribution to the total geometric coverage of the cell's simply valid 
faces, and use it to weight the cell's Density on any read access by the greedy select 
algorithm: 

Eq. 2-9 

 
To save processing time, we restrict the set of cells that are pre-clustered to the most 
relevant ones, which we simply assume to be the twenty highest Density cells. 
After a densest plane has been found, we need to account for the changes made to the 
clusters due to removal of the simplified faces, remembering that each grid cell for 
which a face is simply valid must have its Density altered. However, recalculating the 
clusters for each grid cell that is altered after a simplification step is tremendously 
expensive, so we resort to simply resetting all clusters and afterwards calculating 
clusters for the top twenty Density grid cells again. 
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While preclustering usually yields better results, it also comes with a performance 
penalty that can range from moderate to serious, depending on the number of 
polygons the input model consists of. For many cases, the utilization of preclustering 
is advised, though. 
 
The clustering algorithm 
Since we might be dealing with a great number of polygons, we are looking for an 
efficient clustering algorithm. Cazals et al. [CAZ95] introduce a hierarchy of uniform 
grids for faster raytracing of three-dimensional scenes, which, although not generally 
of interest to us, employs a suitable face clustering technique, called Isolation step in 
Cazals’ paper, that we adapt to our implementation of the Billboard Cloud algorithm. 
 

Fig. 2-41: Clustering along two directions 
The original cluster in (a) is first subdivided along the X axis (b), resulting in two clusters. Subdividing 

along the Y axis (c) splits the green cluster in two. Further subdivision attempts yield no additional 
clusters, thus the set is stable. Note that the faces inside a cluster are always sorted ascendingly. 

 
Basically, the clustering algorithm a priori assumes that all faces belong to one 
cluster, which is then successively subdivided along a set of directions (generically, 
the X/Y coordinate axes) until no further subdivision can be performed. The steps of 
the algorithm are as follows: 
 

1. Manufacture a basic cluster that contains all faces. A cluster does not 
contain any coordinates, only the lowest and highest index of the faces 
inside (assuming that the set of faces we operate on is ordered 
ascendingly), which greatly contributes to the algorithm’s memory 
efficiency. 

2. For all clusters:  
Sort contained faces ascendingly by their lower coordinate projected to the 
subdivision direction. Iterate on faces. If two successive faces do not 
overlap, the cluster is separated. 
This operation yields a new list of clusters that contains either the same 
clusters as before or more, and replaces the previous list of clusters. 

3. Repeat step 2 for all subdivision directions. 
4. If the list of clusters is stable for a round of subdivisions along the set of 

directions, i.e. the number of clusters stays the same, we have found the 
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finished cluster partitioning. We now sum the covered area of each cluster's 
faces and pick the one with the highest value. Its faces form the subset of 
faces the greedy select step will operate on. 

 
Fig. 2-41 shows the clustering for a set of faces along the X/Y coordinate axes. 
 
Our implementation uses the QuickSort algorithm [OPWEB] for rapid sorting of the 
faces. 
In practice, we add a little tolerance to the subdivision criterion, so that faces need 
not completely overlap, but are allowed to have a small gap between them. We set 
this permitted gap as 2% of the model’s bounding radius. 
 
Fig. 2-41 illustrates the algorithm by using the X and Y coordinate axis as subdivision 
directions. Projecting the faces to the subdivision directions in this case is trivial, we 
just omit the Y or X coordinate, respectively. 
Subdividing along the X/Y coordinate axes theoretically suffices for texture space 
saving because it yields rectangular clusters and our billboards are rectangular too. 
On the other hand, the simplification could be even better if cases like the one in Fig. 
2-42 could be better resolved. That can be achieved by subdividing along the 
coordinate axis diagonals too (Fig. 2-42(b)). 
 

Fig. 2-42: Clustering along four directions 
Subdividing along X and Y axes cannot separate the cluster in (a) any further. If we also subdivide 

along the 45° diagonals, diagonal y=x in (b) is able to subdivide the cluster. 

 
On the whole, the clustering algorithm performs extremely well both in terms of 
computation speed and memory efficiency. 
 
It is important to note that using the supergreedy mode (section 2.3.6) and face 
clustering concurrently may be contradictory to our strivings to save texture space, 
because the supergreedy mode tends to re-include faces to a plane that were ruled out 
by the clustering step before. 
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2.3.11 Voxel shadowing 
Voxel shadowing is an extension that concerns the polygonal input models before 
they are simplified to Billboard Clouds.  
Generally, tree models with uniform brightness of the leaves look terribly unrealistic 
(Fig. 2-43(a)), so some self-shadowing is desirable. 
However, when working with tree models generated by tree modeling tools like 
XFrog [XFR], we notice that no self shadowing of leaves and branches is generated, 
since the models are supposed to be used with rendering packages anyway. 
Professional tools like 3D Studio Max [3DSMAX] can be used to perform light tracing 
or global illumination, but it's hard to export these effects to the 3DS model format 
our implementation of the Billboard Cloud algorithm uses. Thus, until a better 
solution is found, we use our own little shadowing algorithm we hereby call voxel 
shadowing. 
 
Our algorithm simulates soft shadows for a directional light source pointing 
straightly downwards. 
First of all we simply voxelize the model, i.e. we allocate a 3D grid of user-controllable 
resolution in model space and count how many vertices of the model each of the grid 
cells, i.e. voxels, contains. Since we suppose the foliage is made up of a lot of small 
polygons, we assume that the more vertices a voxel contains, the higher its shadow 
intensity is. This is by no means physically correct, but works for tree models, which 
typically feature a rather uniform distribution of vertices (i.e. no large polygons). The 
shadow intensity of each voxel is then propagated and accumulated downwards to 
lower voxels, gradually falling off to zero over 40% of the model's bounding radius to 
account for ambient and scattered light. 
Finally, the shadow intensity for each vertex is looked up in the corresponding voxels, 
and inversely multiplied with the vertex color, thus creating a crude, but sufficient 
self-shadowing. Fig. 2-43 shows a tree model with and without voxel shadowing. 
 

Fig. 2-43: Tree self-shadowing using voxel shadowing 
(a) The unshadowed Tupelo looks highly unrealistic compared to the 3D Studio MAX rendition (b) 
using shadow maps. (c) depicts the Tupelo with voxel shadowing, shadow voxels are shown in (d). 
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2.4 Point clouds to Billboard Clouds 
So far, we have assumed in our proceedings that the input models to be simplified are 
composed of triangles, whereas the algorithm basically can handle all kinds of 
polygons. 
As a byproduct of our implementation, we hereby present a specialized version of the 
Billboard Cloud generation algorithm that simplifies point cloud models. Note that 
this expansion of the algorithm is off-topic to our purpose of producing simplified 
tree models, as obtaining point clouds from real-world trees is a bad idea due to 
incomplete sampling. Instead, it is more thought of as an experiment. 
 
Point cloud models are typically obtained by 3D scanning of real-world objects and 
can consist of a great amount of point data. The obvious problem with point clouds is 
that they do not have a closed surface, so that whenever the viewpoint is close enough 
to the model that the distance between points becomes larger than one pixel of the 
screen, the nature of the model becomes obvious in an unpretty way. Therefore, a 
conversion of the point cloud to a polygon mesh often is made. Most approaches just 
concentrate on the optimal way to connect the points so that a set of triangles is 
returned [BERN99], [FAB03],  [KOBB00]. 
Billboard Clouds however significantly reduce the number of polygons in a model, so 
it seems interesting to try converting a point cloud to a Billboard Cloud. 
 
In this chapter we describe the changes made to the algorithm to support point 
clouds and explain principal issues that can impede visual quality. 
 

2.4.1 Conceptual issues 
The most significant difference between polygonal models and point clouds that has 
to be considered is that polygons as an input primitive comprise an area - points do 
not, they are just a singularity. The bad news is that the Billboard Cloud algorithm 
heavily relies on the area a polygon spans to determine tangency and importance of 
planes, it seeks to find planes that closely resemble the surface of the input model. 
There is no simple way a point cloud implementation can make up for this. Of course 
we could run any algorithm on the point cloud that converts it to a polygon mesh 
first, but that's just what we want to avoid in our approach. 
With a point cloud, we do not have any strict surface information, a face could exist 
between any three or more points, which makes the process of finding planes that 
resemble original faces a pretty absurd venture at first thought (Fig. 2-44(a)). 
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Fig. 2-44: Point cloud surfaces 
(a) Point clouds lack surface information, so that it's difficult to determine which planes resemble the 
topology of the real-world object. Both orange and cyan planes simplify all points, but which ones best 
represent the original object? (b) Obtaining point cloud data from a real-world object using a scanner. 

Surfaces with an angular difference to the scanning ray of 90° and more cannot be sampled. 

 
However, we can rely on the heuristic that 3D range data, i.e. points, acquired by a 3D 
scanner have some continuity to them, as shown in Fig. 2-44(b). A photometric 
device scanning the object in question does so by sampling its surface in very small 
intervals. There can be no points that are not on the surface because the scanner 
cannot "pierce" the model. Thus, we can assume points close to each other as 
belonging to the same surface. A dense accumulation of points is a class of input data 
the Billboard algorithm should be able to reasonably work on in order to find planes 
that represent the original model well. 
An issue to be aware of, though, is undersampling of parts of the original model. A 
surface almost perpendicular to the scanning direction is represented by only a very 
small set of points, so that the simplification algorithm has little motivation to spawn 
a plane for them. This problem can be avoided by scanning the real-world object from 
multiple viewpoints and combining the data, but it gives a taste of problems to come. 
 
Know your enemy! Accepting the above preconditions and limitations, we can now 
apply extensions to our implementation to allow simplification of point cloud models. 
 

2.4.2 Altered Simple validity 
The concepts of error threshold and validity remain unchanged. A point may be 
displaced by a maximum value of ε when projected to a plane, and the spherical 
region around the point with radius ε, also to be thought of as the collection of points 
with a distance to the original point of less than ε, is its validity domain. 
Thus, the process of calculating a point's validity domain for a given error threshold ε 
remains unchanged. Furthermore, because our input primitives are points instead of 



 73

triangles, we discretize each point's validity domain instead of intersecting the 
discretized domains of a face's three vertices. 
A welcome advantage of this is that the discretization of validity domains is thus 
actually accurate, without yielding false positives. 
  

2.4.3 Altered Density 
Density calculations are a different matter though. Without any surface information, 
we cannot compute Contribution and Penalty as for the triangle version of the 
algorithm, in fact, without having a notion of geometric coverage it is difficult to get 
the algorithm to pick planes that are tangent to the original model. The only metric 
we can use is a greedy, yet intuitive one: Try to find planes that simplify as many 
points as possible.  
 

Fig. 2-45: Improper measuring of Coverage 
In (a), grid resolution is large enough to allow cell coverage as a guideline. After two simplification 
steps (b), the grid resolution is so fine that most cells have 100% coverage although they are almost 

missed by the plane. 

 
At a first glance, we can therefore rewrite Contribution as the percentage of a cell's 
height that is covered by a point's validity domain (Fig. 2-45(a)). However, this gives 
a rather bad guideline once the algorithm advances to subcell Density calculations 
since then most cells will be covered entirely by validity domains (Fig. 2-45(b)), 
eliminating any difference between subcell Density and thus leading the recursive 
greedy select somewhat astray. 
 
A better solution is to define the Contribution as the actual distance of a point to the 
cell's center plane. That way, the closer a point is to the plane, the more Contribution 
it yields and the more faithful the plane will become to the original model. 
However, if a cell is taller in ρ direction than ε, chances are that a point's validity 
domain will simply be missed with this approach. That's why we switch between 
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these two methods of calculating Contribution. The total grid Density is determined 
by 
 

Eq. 2-10 

 
while all Coverage where the half cell height is less than ε is computed as 
 

Eq. 2-11 

 
i.e. with our setup of ερ 2=res , for all subcells. 
 
Also, we have to adapt our notion of Penalty to these altered Density calculations. For 
the first method of computing Density, Penalty is estimated analogous to the version 
described in section 2.1.7, i.e. a point penalizes cells in the range of minρ , ερ −min  
(Fig. 2-15). 
For the second method, we introduce the following means of determining Penalty: If 
a point's validity domain is in front of a cell's plane (it has a greater value of ρ), so 
that εε 2),( ≤≤ ptpplanedist  (i.e. it misses the plane by a maximum distance of ε), it 
contributes to the cell's Density as 
 

Eq. 2-12 

 
that is, the more closely the plane misses the point, the more Penalty it receives. 
 

2.4.4 Further alterations 
There are a few other modifications to the algorithm to be made, which we discuss as 
follows: 
 

• Coplanar optimization (section 2.3.2) plainly cannot be done because of the 
non-existent surface information of point clouds. 

• Post-plane tweaking (section 2.3.3) is omitted due to the same reason. 
• Normal maps (section 2.3.1) cannot be generated in the usual way either. A 

possible approach would be to interpret the non-projected points that are 
simplified by a plane as a non-uniform heightfield and find slopes between 
neighboring points that could then be interpreted as normal vectors and 
directly stored in a normal map. However, this step would equal to employing 
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a point cloud-to-mesh conversion algorithm, which is something we want to 
avoid. Therefore, we omit the process of normal map generation for point 
clouds entirely. 

• For primitive skipping (section 2.3.5), we scrap the notion of geometric 
coverage. Because points are a singularity and have no area as such, the 
skipping threshold for point clouds is understood as simply the minimum 
number of points on a plane. If a billboard plane simplifies less points than the 
threshold value, it is omitted. Because point clouds typically consist of large 
numbers of points, the primitive-skip factor can sometimes be surprisingly 
large, as in most cases it doesn’t make sense to generate an additional plane 
for simplifying only a few dozen, or even a few hundred, points. 

 

2.4.5 Unsolved problems 
We have now described the necessary modifications of the algorithm to allow the 
simplification of point cloud models. However, we have to be aware of the many 
possibilities a plane representing the model badly may be picked. In Fig. 2-46(a), a 
small portion of the model that represents a sidewall of the real-world object is 
simplified to a plane actually perpendicular to the real-world surface which obviously 
is the worst representation we can get.  
A similar problem is shown in Fig. 2-46(b), where the algorithm rightly decides that 
the best way to obtain planes that simplify as many points as possible is to "slice" 
right through the point cloud. 
 

Fig. 2-46: Point cloud simplification problems 
(a) A plane simplifying the depicted points  is permitted to have any orientation, since due to missing 
surface information, the algorithm has no tangency to obey. (b) Some planes "slice" the asteroid point 

cloud (from [NWEDU]) because that way the planes simplify the greatest number of points. 

 
As a general rule, we observe that the Billboard Cloud adaptation for point clouds is 
most suitable for very geometric objects like buildings.  
 
Results of the point cloud simplification process are presented in chapter 3.1.3. 
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3 Results 
 
This chapter sums up our experiences with Billboard Cloud generation and 
rendering. We present simplification results of trees, vegetation and other, non-
organic models in section 3.1, plus demonstrate the generation of large Billboard 
Cloud-forests and their real-time rendering in section 3.3. 
 

3.1 Billboard Cloud Simplification results 
In this section, we depict the Billboard Cloud equivalents of a number of polygonal 
input models. Unless otherwise stated, the maximum texture resolution is 256 and 
post-plane tweaking (section 2.3.3) enabled. Simplifications are performed on an 
AMD Athlon XP1600 1.4 GHz CPU with 256MB RAM, which actually is a rather 
dated configuration already. 
 

3.1.1 Vegetation 
As a representative for other tree models, we first present the Tupelo model, 
consisting of 102,610 polygons, simplified with various parameter settings. Polyskip 
factor is around 0% to 2%. We simplify foliage and stem (1200 polys) separately to 
avoid unpretty artifacts. By engaging cardboard mode, we simplify the stem to a mere 
two billboards. Selected simplifications of the Tupelo are shown in Fig. 3-1. The 
following table shows different simplifications of the Tupelo foliage only.  
 

ε #Bill-
boards 

#Texels Computation Time (s) 
(step1/2/3) 

Sub-
penalty 

View-dep. 
penalty 

Clustering 

6.0 20 3,539k 627 (35/561/31) 0 0 0 

6.0 20 3,080k 680 (34/617/29) 5 0 0 

6.0 20 3,440k 733 (45/656/32) 0 0 2 

6.0 19 2,883k 840 (48/760/31) 5 0 2 

10.0 16 2,506k 531 (37/468/26) 0 0 0 

10.0 15 2,654k 584 (46/516/22) 5 0 0 

10.0 11 2,097k 695 (49/625/20) 0 0 2 

10.0 10 2,027k 839 (48/760/31) 5 0 2 

15.0 7 1,310k 560 (36/511/13) 0 70%/55° 0 

15.0 6 1,442k 604 (36/555/12) 5 70%/55° 0 

15.0 6 1,180k 638 (51/565/22) 0 70%/55° 2 

15.0 7 1,125k 716 (52/648/16) 5 70%/55° 2 

 
We observe that all Billboard Clouds yield a very hefty simplification, with billboard 
counts between 20 and an incredible 6! 
Note that face pre-clustering raises computation time, although by a bearable 
amount. 
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Fig. 3-1: Billboard Clouds for tree model "Tupelo", rendered with normal maps. 
(a) original model 102,610 polys (b) ε=6, subpenalty=0, clustering=0, 22 bbs (c) ε=10, subpenalty=5, 

clustering=0, 17 bbs, ugly "slicing" (d) ε=15, subpenalty=0, clustering=2, 8 bbs. 
Polygonal model from [VRVIS]. 

 
Examining the generated Billboard Cloud models, we can draw the following 
conclusions about the simplification process: 
 

• Low values of ε yield results that resemble the original tree model very well, 
while nevertheless consisting of reasonably few billboards. 

• Simplifying with subpenalty tends to "slice" the model. In some cases, this is 
acceptable if normal mapping is used, but generally, a more "chaotic" layout of 
planes is preferred as it hides the billboard-ish nature of the result. From our 
experience, we conclude that subpenalty is mostly not a good idea for tree 
models. 

• Face clustering does not have too great an impact on tree models because the 
largest, most significant billboards are seldom clustered. Note that clustering 
results in a great number of remainders though, i.e. small and insignificant 
planes, because the few faces left after the larger planes have been found are 
not simplified to few sparsely covered planes, but, as a result of clustering, to 
many minuscule ones. In fact, clustering generates around 80 planes for the 
Tupelo model with ε=10.0, but an overwhelming number is insignificant and 
consequently discarded by the polyskip factor. Generally, success of clustering 
for tree models is unpredictable, so some experimentation is encouraged. 

• When dealing with the range of 0.10≥ε , view-dependent penalty is vital to 
achieve reasonable results that yet consist of very few planes (see section 2.3.8 
for an example). 

• Lighting conditions for trees models are a science of their own. For a true 
representation of real-world lighting, we would need to take translucency, 
scattered light, sub-surface scattering etc. into account. A simple shading 
model consisting of Lambert's law only is just not accurate enough, because 
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leaves viewed from the side would then become unrealistically dark, which can 
be especially noticeable when utilizing normal maps for rendering the Bilboard 
Cloud trees. In many cases, the better option therefore is to generate the 
billboard textures with prelighting and voxel shadowing enabled, then render 
the Billboard Clouds with OpenGL's lighting functions disabled. 

 
Heeding those lessons learned, we now simplify some more vegetational models, as 
shown in Fig. 3-2 and Fig. 3-3. Models marked with an asterisk (*) means that table 
data is given for simplifying their foliage only, the trunks are usually in the range of 
1000 - 5,000 polygons and simplified separately to 1 - 4 billboards, specified in the 
table as added numbers.  
 

Model ε #Polys #Bill-
boards 

Comp. 
Time (s) 

Sub-
penalty 

View-dep. 
penalty 

Clustering 

Aspen* 10.0 108,782 10+2 675 0 70%/55° 2 

Chestnut* 12.0 159,160 14+2 764 0 0 0 

Oak* 6.5 169,781 18+3 968 0 0 0 

Palm 6.5 7,292 8 42 0 0 0 

Spruce* 12.5 20,547 12+1 142 0 40%/60° 2 

8 Spruces 8.0 168,768 24 944 0 90%/25° 0 

Fern 7.0 4,793 12 42 0 0 0 

Flower 20.0 25,092 5 155 0 0 0 

 

Fig. 3-2: Polygonal vegetation (left) and their Billboard Clouds (right) 
Simplifications generated with settings given in table above. (a) 8 Spruces 24 bbs, (b) Fern 12 bbs, (c) 

Flower 5 bbs. Polygon models from [XFRPUB], [3DCAFE], [3DCAFE]. 



 79

 

Fig. 3-3: Polygonal trees (left) and their Billboard Clouds (right) 
Simplifications generated with settings given in table above. (a) Aspen 12 bbs, (b) Chestnut 16 bbs, (c) 
Spruce 13 bbs, (d) Palm 8 bbs, (e) Oak 21 bbs. Polygon models from [VRVIS], [XFRPUB], [XFRPUB], 

[3DCAFE], [VRVIS]. 

 
An especially interesting option is to put a couple of trees together to one model file 
and simplify the tree group as one. Thus, a number of trees can be simplified to one 
Billboard Cloud which further reduces rendering time. Heed the fact though that for 
real-time rendering, such tree groups should be used in flat regions of terrain only. 
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3.1.2 Non-organic models 
So far, the Billboard Cloud algorithm truly delivers for our tree models, but how does 
it handle other classes of input models? In this section, we present a selection of non-
organic models and their simplifications using varying parameter settings to see 
which ones work well and which do not. Polyskip factors are in the range of 0 to 2, 
chosen so as not to skip visually significant planes. All Billboard Clouds are shown 
with precomputed lighting. 
 

Model ε #Polys #Bill-
boards 

Comp. Time 
(s) 

Sub-
penalty 

Super-
greedy 

Clustering 

Cobra 1.5 3,364 25 47 5 0 2 

Cobra 3.0 3,364 9 23 5 1 0 

Estate 1.5 4,611 48 65 5 0 2 

Pajero 2.0 12,264 85 248 5 0 2 

Pajero 3.1 12,264 42 186 5 0 2 

Hippo 3.0 61,374 43 536 0 0 2 

Hippo 3.0 61,374 42 608 6 0 2 

 
It can be observed in Fig. 3-4 that the more regular objects like the Cobra helicopter 
and the Estate model are simplified excellently, but other shapes are tricky, as seen 
with the Pajero's tires and the entire Hippo model. 
 
So which cases are particularly hard to simplify in a satisfactory way? 
 

• Generally, simplification is always difficult for rounded, convex objects like 
spheres, because only a fine tessellation can keep up the illusion of a smooth 
surface. The Billboard Cloud algorithm does not handle such objects well, 
there is always some slicing and overlapping of the planes, which makes the 
results rather ugly even if viewed from a great distance. 

• The "stacking" syndrome is a significant issue that troubles a lot of objects. 
Surfaces that are vertical, but consist of parts that are largely of horizontal 
orientation can be simplified by being "flattened", because that way the plane 
coverage becomes largest, as illustrated by Fig. 3-5. A possible remedy to this 
could be to not count polygons that "overdraw" others when projected to 
Coverage and Density calculations, but this is not investigated further here. 
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Fig. 3-4: Billboard Clouds 
(a) Cobra original/25 bbs/9 bbs, (b) Estate original/24 bbs, (c) Pajero original/85 bbs/42 bbs, (d) 

Hippo original/43 bbs (no subpenalty)/42 bbs (with subpenalty). All polygon models from [3DCAFE]. 
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Fig. 3-5: The stacking syndrome 
(a) shows a blinds-like polygonal model, the visually optimal planeset and the planes the simplification 
algorithm generates. This problem produces the gaps at the front of the Lamborghini [3DCAFE] in (b). 

 
Looking at our results, it moreover proves that while subpenalty is not suitable for 
tree models, it can greatly help simplifying other classes of models because it tries to 
keep planes as tangent, i.e. very much to the outer hull of the model as possible. 
However, this also tends to "slice" certain models (Fig. 3-4(d-3)), especially rounded 
ones like the Hippo, which is a highly undesirable phenomenon. The subpenalty 
parameter should therefore be used with some suspicion, and on a trial-and-error 
basis. 
That said, even the inventor of the Billboard Cloud algorithm is not entirely happy 
with the notion of Penalty (as personally told by Decoret) and suggests deriving an 
alternative way to keep planes to the outside of the model would be desirable. 
 
Effects of clustering 
Face clustering, explained in section 2.3.10, is able to save quite some amount of 
texture space, as well as improve the quality of planes found. The following table 
shows a comparison of two models, simplified with and without clustering. 
 

Model ε #Polys #Billboards #Texels Comp. 
Time (s) 

Super-
greedy 

Clustering 

Cobra 3.0 3,364 9 137k 20 1 0 

Cobra 3.0 3,364 12 102k 22 0 2 

Estate 1.5 4,611 38 381k 46 1 0 

Estate 1.5 4,611 48 272k 75 0 2 

 
Obviously, clustering produces more billboards, but the texture space and thus 
fillrate saved in many cases compensates for the slight increase of polygons to 
transform. 
Whenever extreme simplification is desired by setting large epsilon though, it may 
pay to omit face clustering and employ the supergreedy mode. Since such Billboard 
Clouds with very few planes will probably be used for very distant LODs anyway, 
texture size should be chosen small too and texture space saving therefore not really 
be an issue. 
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3.1.3 Point cloud models 
Simplification for point clouds is different to the method used for polygonal models. 
Instead of striving for planes with the most geometric coverage, we are looking for 
planes that simplify the most points, which leaves ample room for unfortunately 
selected planes. The following table shows simplifications of a 3D scan of a 
monastery's interior court [VRVIS] and the asteroid 433 Eros [NWEDU]. Note that 
changing the value of subpenalty does very little variation to the simplification result, 
unlike for polygonal models. The Court model was simplified on a Pentium4 2GHz 
CPU, with 1GB of RAM. 
 

Model ε #Points #Billboards #Texels Comp. Time (s) Cluster-
ing 

Sub-
penalty

Court 2.2 1,759,743 18 1,640k 1672 0 0 

Eros 1.7 65,341 48 2,461k 112 0 0 

Eros 4.0 65,341 18 909k 77 0 5 

 
The two point clouds shown in Fig. 3-7 are ideal counterparts because of their 
different nature. We observe that the Court model largely consists of plain patches of 
points, which obliges our approach to seek planes with as many points as possible a 
lot. 
 

Fig. 3-6: Undersampled regions of Point clouds 
Both 433 Eros and the Court model are not uniformly sampled, but the effect is less detrimental for the 

Court because the represented regions are flat. 
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Fig. 3-7: Point cloud simplifications 

 
433 Eros does not get away so well though, with its surface largely sliced by the 
simplifying planes. As discussed in section 2.4.1, the lack of explicit surface 
information renders the simplification of point clouds difficult, which is especially 
true for point cloud representations of rounded models where there are no large 
patches that can be simplified by one plane. Planes slicing the model in such cases 
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often achieve the highest point count, although their orientation is completely 
different to the implicit point cloud surface. 
The 433 Eros model suffers from another problem though, namely a non-uniform 
point distribution with very sparse regions at the poles of the asteroid, so that no 
planes directly covering the poles are governed (Fig. 3-6). 
Furthermore, sparse regions pose a problem because the clustering algorithm might 
decide to put each point into its own cluster if the distances between points are 
sufficiently large, which produces a huge number of billboards with just a single or 
very few points on it. 
 
On the whole, the success of simplifying point cloud models to Billboard Clouds is 
greatly dependent of the nature and sampling quality of the point cloud. Sufficiently 
uniform range data of geometric objects such as buildings can yield rather good 
results, while more organic or rounded shapes with varying density of the point cloud 
are may not be properly simplifiable using our approach. 
 
 

3.2 The Perfect Motion engine 
To thoroughly test the practical advantages of our simplified tree models, we need to 
put a lot of them in a three-dimensional landscape and see if the rendering time 
saved allows for the displaying of thousands of Billboard Cloud trees at once while 
retaining interactive frame rates. In short, we require a framework or engine we can 
utilize to build some more or less densely tree-covered landscapes we can freely 
explore. 
Therefore, we employ the Perfect Motion engine written by the author of this thesis, 
which emerged from the game engine of Possible Worlds [UML01], and add some 
extensions to fit it to our requirements. The engine manages straightforward terrain 
generation and rendering, user input, fonts, as well as texture and object handling. In 
the course of this chapter, we describe a few traits of the engine. 
Of course, a full game engine would require a whole lot of additional features to 
rightly be considered an "engine", but for our demonstration needs of quickly 
building and exploring a virtual forest, Perfect Motion is sufficient. For true 
performance benchmark tests, it is rather not, since the rendering functions are 
unoptimized and do not take advantage of modern hardware's special capabilities, 
like programmable shaders or vertex buffers. 
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3.2.1 Terrain Rendering 
Not only vegetation sets the mood for outdoor environments, but also extensive 
terrain has a major impact on the overall impression of a virtual landscape. There 
exist a broad variety of different techniques to render terrain, with various emphasis 
set. 
 
From the rendering point of view, the simplest method is to use static terrain, created 
with a 3D modeling tool or procedurally, that is fully rendered each frame. However, 
since large landscapes would require a great number of polygons to render, the 
terrain is usually subdivided into patches using BSP trees or other space subdivision 
schemes and only the visible patches are drawn. The greatest advantages of hand-
modeled terrain is that it does not have to be grid-based, i.e. have uniformly sized 
triangles, therefore it can use large polygons for flat areas and more highly tessellated 
surfaces for bumpy areas. Besides, it can be fully 3D, complete with overhangings, 
caves, etc. 
 
Grid-based terrain is not fully three-dimensional because each vertex resides on a 
grid position with only the height of the vertex subject to variation. This prohibits 
overhangings, hence grid-based terrain is often referred to as 2.5-dimensional. The 
huge benefit of grid-based terrain is that it can be rapidly created by using a simple 
heightfield, which is a grayscale image where each pixel is interpreted as a vertex and 
the pixel intensity is the vertex height. 
 

Fig. 3-8: Continuous LODs for terrain 
(a) shows the underlying adapted mesh for the landscape in (b), while (c) represents the full-detail 

terrain rendered without LODs. A difference can hardly be noticed. 

 
Due to its regularity, grid-based terrain is ideal for continuous LOD approaches, 
where the terrain mesh is optimally adapted depending on the distance to the 
viewpoint and the bumpiness of the terrain. The most popular approaches in 
continuous terrain LODs are ROAM [DUCH97] and Stefan Röttger et al.'s heightfield 
algorithm [ROETTGER98], with our Perfect Motion engine utilizing an implementation 
of the latter. Fig. 3-8 shows continuous levels of detail for landscape rendering in 
action. 
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Using heightmaps, it is possible to rapidly create hilly terrain with any paint package, 
but bear in mind that an 8-bit grayscale image only allows for 256 different vertex 
heights. If the "up" scale of our virtual landscape is large enough, heightmaps result 
in a very artificial "terrace" look (Fig. 3-9). Therefore, our engine first reads the 
heightmap and creates vertices from the data, then runs a median box filter with 
user-controllable size over the vertex heights. 
In addition to the heightmap, we define an equally-sized color map used as a texture, 
so that each colormap pixel determines the vertex color at that grid position, even if 
the corresponding vertex is not rendered at all due to the LOD algorithm. 
Terrain shading is an issue we have to pay attention to. Distant scenery is represented 
by few polygons, so that even smooth goraud shading will give away this fact 
deliberately. Besides, we would have to calculate the vertex normals anew for each 
frame, which computationally is too expensive. The solution is to precalculate the 
lighting and impose it on the color map, so that terrain shading is simulated by the 
texel colors and no normals have to be calculated on the fly. 
 

Fig. 3-9: Heightmap terrain without (a) and with filtering (b) 

 
One could argue that the additional overhead of using a continuous terrain LOD 
algorithm would slow down the framerate considerably, but we will show in section 
3.3 that pure CPU load is not the bottleneck of image-based rendering. After all, IBR 
is supposed to be just not that. 
 
Last but not least, we need a nice backdrop so that the user perceives the scenery as 
more real and immersive. We use an approach employed in the overwhelming 
majority of today's engines that is related to [CHEN95] and is called skyboxing 
[BELL98], as mentioned in section 1.1.3. 
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3.2.2 Texture handling 
In three-dimensional real-time applications, it frequently happens that various 
models share textures, so when using a few 3D objects, the same texture would be 
loaded and stored in precious memory multiple times. To avoid this, our engine 
features a list data structure that handles loading and storing of texture images. For 
each texture, the respective filename is stored so that upon each texture load, the list 
is checked for a previous occurrence of the same file. If a texture is attempted to be 
loaded multiple times, a reference count for the according filename is incremented 
and the ID of the file already residing in memory returned. Whenever a request is 
issued to delete a texture from memory, the accompanying reference count is 
decremented and the image is only removed from memory when the last reference 
has gone. 
 

3.2.3 3D Object handling 
In general, the same 3D models in a computer game are used over and over. A virtual 
forest rarely consists of more than a dozen different tree models, and we do not aim 
to make a difference here. Therefore, a mechanism analogous to the one described in 
section 3.2.2 is employed for the handling of 3D objects. 
Whenever a model is loaded that does not yet occur in the object list, its complete 
geometry data is stored in an objectlist-entry data structure. Otherwise, we increment 
the reference count of the particular model and return its internal ID. 
That way, the geometry for a whole forest can be stored with a minimum of memory 
requirements. 
Our engine allows the map designer to use two different approaches of storing and 
drawing 3D objects, either pure geometry rendering so that standard OpenGL calls 
are used for displaying, or creating OpenGL display lists for each model and drawing 
those. Although display lists are originally supposed to render much faster, the actual 
performance depends on the graphics hardware and drivers and a performance gain 
through utilizing display lists is by no means guaranteed. 
 
We also implement a discrete levels of detail-algorithm that selects the appropriate 
representation based on the object's distance to the viewer and a range of valid 
distances for each LOD defined by the map creator. To achieve a smooth transition in 
the case of LOD switching, we employ a blending mechanism described by 
[WIMMER02], where one representation is blended in completely before the other is 
faded out, thus minimizing popping artifacts, but putting a bigger strain on CPU and 
graphics hardware. 
However, we allow the fading speed and number of levels of detail to be adjusted by 
the map designer. See "Appendix B: Perfect Motion manual" for information how this 
is done. 
 
Discarding objects that are outside the field of view is performed by means of simple 
frustum culling [GAMETUT]. 
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3.2.4 Vegetation placement 
All that's left do to is populate our landscape with a large number of trees so that we 
can initiate our performance tests. 
Manual placement of vegetation objects in a virtual terrain is acceptable for smaller, 
less densely covered maps, but for our goal of forcing the hardware to draw as many 
Billboard Cloud trees as possible, it is unfeasible. 
A frequently applied technique therefore is the use of vegetation maps, which can be 
described as images where a pixel defines by its color which and how many objects 
should be placed in the vicinity of the according map vertex. A crude version of this 
method suffices our needs, so that we simply define a range of colors on the colormap 
where the placing of vegetational objects is permitted. 
The actual positioning of the objects is then done randomly in those permitted areas. 
 
Shadows contribute a great deal to a convincing virtual landscape. There exists a wide 
range of shadowing techniques, such as shadow mapping, volumetric shadows 
[WOO90], [HEID91], [SEGAL92], [KILGARD02], to name but a few, but most are either 
computationally expensive or unsuitable for alpha-texture mapped polygons. 
Fortunately, we have static self-shadowing covered by our voxel shadowing technique 
(section 2.3.11), but how do we cast shadows on the ground? 
The simplest way to perform dynamic shadowing for Billboard Clouds would be to 
rely on projective shadow mapping, by just projecting the billboards to the ground 
and rendering them in black. Still, this method requires each model to be effectively 
drawn twice and is therefore not a viable option when it comes to displaying as many 
trees at once as possible. Plus, we only require static lighting since our tree self-
shadowing is static anyway. 
That's why we resort to simply imposing a black circle, whose intensity falls off to 
zero towards its perimeter, at every tree position onto the colormap that is applied to 
the terrain, thus receiving an effect that looks like a very soft, static shadow. Although 
this is not a very precise technique, keep in mind that it is computationally free at 
runtime because it involves only a quick preprocessing step. Heed the fact that any 
shadow is better than none, since shadows "anchor" objects to the ground. Plus, the 
human eye is known to be extremely forgiving about incorrect shadow shapes. 
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3.3 Real-time Rendering results 
Finally, we populate a large 3D terrain with a great number of Billboard Cloud trees 
to find out if our original goal, to render huge forests at interactive rates, can be 
achieved with the aid of Billboard Clouds. 
 
For quickly building, as well as exploring the maps, we use the Perfect Motion engine 
(section 3.2 and Appendix B: Perfect Motion manual).  
 
We hereby present four different maps, with specifications given as: 
 
 Map size Tree Population Tree models used 

Mixed Forest 
(a) 

1024x1024 38,000 Aspen: 12bbs, tex256 
Chestnut (LOD1: 16bbs, tex256; LOD2: 10bbs, 

tex64) 
Tupelo (LOD1: 22bbs, tex256; LOD2: 8bbs, tex64; 

LOD3: 6bbs, tex64) 

Tropic Islands  
(b) 

1024x1024 25,000 Palm (LOD1: 8bbs, tex512; LOD2: 8bbs, tex128; 
LOD3: 5bbs, tex32) 

Finland 
(c) 

1024x1024 20,000 groups 
(=160,000 single) 

8 spruces (LOD1: 25bbs, tex256; LOD2: 11bbs, 
tex128; LOD3: 11bbs, tex32) 

Huge Forest 
(d) 

1024x1024 150,000 Tupelo (LOD1: 22bbs, tex256; LOD2: 8bbs, tex64; 
LOD3: 6bbs, tex64) 

 
As discussed in section 3.1.1, we use pre-lighted Billboard Clouds that were generated 
with voxel shadowing enabled. Most outdoor game engines rely on static lighting for 
non-moving objects too, to avoid potentially expensive lighting computations. It must 
be stressed again that the Perfect Motion engine is not optimized, so these 
screenshots are to be considered more as an outlook of how Billboard Cloud forests 
can look like, rather than high-performance rendering speed benchmarks. 
 
Before using our generated Billboard Clouds, we have to recap that the textures are 
generated in a fashion that is not optimal for speedy real-time rendering. Since we 
only pack the front and back texture of a billboard to one image file, the graphics 
hardware has to perform an awful lot of texture switches when rendering one 
Billboard Cloud, leave alone a whole forest. These texture switches typically are very 
expensive in terms of computation time and should be reduced at all costs. 
Therefore, we use AVEsplitter, a tool developed by [VRVIS] that packs all of a 3D 
model's textures to one large image file (Fig. 3-10) and updates the texture 
coordinates accordingly. Thus, a Billboard Cloud can be rendered by binding a 
texture only once, in fact, several instances of the same object can be rendered 
arbitrarily often without ever switching textures, which is optimal for our forests. 
This allows for a significant increase in rendering speed, compared to the Billboard 
Cloud models originally produced by our simplification algorithm. 
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Fig. 3-10: Tupelo Billboard Cloud (8bbs) and its textures compacted to one image 

 
Fig. 3-11 - Fig. 3-15 show screenshots of the Perfect Motion engine running our maps. 
Frame rates for respective viewpoints are given in the table below, running on an 
AMD Athlon 1.4 GHz CPU and GeForce3 Ti200 64MB graphics board at a resolution 
of 1024x768 pixels @ 32 bit color depth.  
 
 Mixed Forest (a) Tropic Islands (b) Finland (c) Huge Forest (d) 

View 1 10.20 FPS 30.41 FPS 15.13 FPS 2.10 FPS 

View 2 10.31 FPS 25.70 FPS 12.05 FPS 6.71 FPS 

View 3 8.62 FPS 30.40 FPS   
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Fig. 3-11: Screenshots of Billboard Cloud forests 
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Fig. 3-12: Screenshots of Billboard Cloud forests 



 94

Fig. 3-13: Screenshots of Billboard Cloud forests 
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Fig. 3-14: Screenshots of Billboard Cloud forests  



 96

Fig. 3-15: Screenshots of Billboard Cloud forests  
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As can be seen, the results are of a high visual quality that creates a very immersive 
experience of vast terrain covered with forest of varying thickness. Although it is easy 
to exceed the limits of our simulation by simply packing so many trees into a map 
that the framerate degenerates, as encountered with the ridiculously crowded map 
(d), the results are highly satisfactory. 
LOD switching between Billboard Clouds is not particularly noticeable even without 
cross-fading (section 3.2.3), especially if only a change in texture resolution separates 
two levels of detail (which basically equals to mipmap switching).  
 
The Finland map demonstrates that the most effective way to produce really huge 
forests is to utilize tree group Billboard Clouds. However, tree groups should only be 
placed in completely flat terrain, otherwise the tree elevation will look wrong. 
Furthermore, if the viewpoint is close to a tree group, it should be replaced by the 
according number of separate tree models placed at the correct positions, since tree 
group Billboard Clouds do not look very convincing up close, unless they consist of a 
large number of planes. 
 
As encountered with other methods excessively using image-based rendering, the 
graphics hardware's fillrate, i.e. the number of pixels that can be drawn per second, is 
a decisive bottleneck of our approach. 
Therefore, the utilization of mipmaps is essential for maintaining a fluid framerate 
because it accelerates texture lookups. For certain billboard textures, the mipmaps 
automatically generated by OpenGL's auxiliary functions are of poor visual quality 
though because they produce semi-transparent pixels, and those would require 
expensive depth-sorting at rendering time. That can be avoided by either specifying 
mipmap textures manually or using LODs with descending texture resolution. 
Terrain rendering does not have any impact on the frame rate at all, since our terrain 
algorithm [ROETTGER98] puts load on the CPU mostly, but requires little fillrate. 
 
The question remaining is what to do with trees if the viewer gets up close. For a 
perfect impression, we should use the original geometry for the highest LOD level, 
but there are two problems that are prohibitive to this approach. 
Firstly, even rendering only a few dozen or so of our 100.000+ polygon trees at 
satisfying framerates is not possible on today's hardware. Secondly, the small leaves 
could suffer from rasterization problems (section 2.3.9) unless viewed from close up, 
but LOD switching shouldn't take place so close to the viewpoint that rasterization 
issues can be avoided altogether because it makes switching revealingly obvious. 
Therefore, the choices are to use either: 
 

• Low-polygon trees for Billboard Cloud generation and realtime-rendering, 
since they usually do not model each leaf separately, but use one texture 
mapped to few polygons to create foliage, as describe in section 1.4, thus 
avoiding rasterization problems. 

• Purely Billboard Cloud-based forests. 
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Which of the above choices is optimal depends on the purpose of the application - for 
an architectural walkthrough or some sort of simulation involving outdoor 
landscapes, the latter option yields sufficient quality. The closest level of detail would 
then require high texture resolution to enhance the experience, but with today's 
hardware's massive texture memory, this is less of a concern. Besides, texture 
compression schemes might be used as well. 
 
On the other hand, for a cutting-edge computer game where the player is actually 
walking around in a forest, using low-polygon trees would probably be advisable 
because the player expects objects like trees to be totally solid when viewed up close - 
Billboard Cloud trees admittedly create a less solid impression than polygonal models 
when inspected closely. 
 
A third option is to join both approaches by using a low-polygon trunk combined with 
Billboard Cloud foliage for the highest level of detail. Since low-polygon models 
basically use billboards for foliage too, said appearance would not be far different 
from utilizing true low-polygon trees, but render faster. 
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4 Conclusion 
 
Image-based rendering is one of the oldest approaches in generating computerized 
images, but had its rise in three-dimensional computer graphics only over the last 
decade, as increasing hardware power made texture mapping inexpensive. 
We have shown that image-based rendering can be used to generate huge forests that 
can be explored freely at interactive frame rates while maintaining good visual 
quality. 
 
The Billboard Cloud algorithm used for generating our simplified tree models is an 
exciting approach in theory, but in reality turns out to be a game of two halves. 
The simplification works well for models without much connectivity, or geometry 
featuring large, flat polygons. On the other hand, we have demonstrated that there 
are classes of models that yield rather poor simplification results, plus there are 
special cases that cannot be simplified in a satisfactory way at all. 
We have introduced some new elements to the algorithm that help improving the 
quality of the Billboard Clouds, but to overcome the principal flaws of the algorithm, 
a completely new approach to the task would have to be found, which is beyond the 
scope of this thesis. 
For instance, model animation is practically impossible to do with Billboard Clouds, 
although some arcane tessellation of billboards that sticks close to the joint/bone 
setup of the original model might satisfy certain cases. Lacking animation is 
especially a pity for forest rendering, because trees bending and swaying in the breeze 
are a great improvement over static objects, although those typically come with quite 
some speed penalty attached [IDV], [GIAC01]. 
Dynamic self-shadowing of Billboard Cloud trees is a tricky thing to do as well, since 
traditional shadow mapping would look wrong on the billboards or reveal their 
flatness, plus shadow volumes are not an option for partly transparent polygons 
either. 
However, self-shadowing for static lighting situations can be precomputed on the 
original polygonal model in a rendering package using light tracing, global 
illumination, or much easier, our voxel shadowing approach, so that the resulting 
Billboard Cloud boasts self-shadowing too. 
 
That said, the potential of Billboard Clouds is nevertheless impressive, with the 
possibility of simplifying models consisting of hundreds of thousands of polygons 
down to a mere dozen being nothing short of amazing. 
 
From a rendering performance point of view, our approach to use Billboard Clouds 
for forests truly demonstrates the power of image-based rendering methods. When it 
comes to obtaining high speed despite the sheer masses of tree models, any approach 
requiring many polygons or expensive calculations is doomed to perform badly. 
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The utilization of polygonal models only could hardly compare to the rendering 
speeds achieved with image-based rendering, even if the latest GPU capabilities are 
employed. On the contrary, a forest entirely composed of view-aligned billboard (or 
any other traditional image-based rendering technique) trees cannot keep up with the 
visual quality and immersion attained by our work. Therefore, our approach presents 
a good compromise that is completely satisfactory for a wide range of applications, 
unless animation or dynamic shadowing is desired. 
 
Although the framerates of our demonstration virtual forests are quite satisfying, it 
must be noted that there is ample room for speeding up the forest rendering 
examples we presented, since we use a rather unoptimized rendering engine that 
does not yet take advantage of programmable graphics pipelines, vertex buffers, etc. 
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5 Future work 
 
To overcome certain weaknesses of Billboard Clouds and to further accelerate 
rendering speed, a number of improvements can be suggested. 
 
We expect that over the next few years, a lot of research will go into extreme model 
simplification and the automatic computation of impostor-based simplification of 
polygonal models, with the Billboard Cloud generation algorithm [DEC03] and the 
method by Andujar et al. [ANDU04] being just the first ones to tackle this field of 
optimization. 
Although the simplified tree models yielded by our solution are overwhelmingly of 
good quality, it would be very interesting to compare with results of other 
implementations or entirely different simplification algorithms. 
 
However, we are aware that the simplified tree models we generated are unlikely to 
be the end of the line yet - for instance, the lack of model animation probably poses 
the biggest disadvantage of Billboard Clouds. Moreover, due to the described 
idiosyncrasies of the technique, some simplifications can have a slightly dodgy look, 
especially if the processing parameters are set sub-optimally. Lengthy computation 
times of the algorithm emphasize this problem, because simplifying the same model 
over and over with different settings on a trial-and-error basis is not exactly a smart 
way of rapidly generating appealing results. 
 
From a rendering point of view, using the DDS file format for the textures instead of 
PNG would give a significant performance boost, as would hardware texture 
compression. 
An important issue, too, is to reduce the number of trees that have to be displayed 
each frame without sacrificing density of the vegetation. 
Landscape impostors [SILL97] are a suitable possibility for outdoor simulations, but 
less so for computer games where chances are that there are objects moving around 
in the scope of the impostor so that it would either have to be updated frequently or 
look incorrect. 
Advanced visibility culling, such as occlusion horizons [SCHMAL99] or hardware 
occlusion culling [SCOTT98], could be employed to discard trees that cannot be seen 
because they are obscured by terrain or other trees. Especially when the viewpoint is 
placed right in the middle of a thick forest, this could result in an invaluable speed 
boost. 
Additionally, even a simple space partitioning scheme like the grouping of 3D objects 
into an octree for faster frustum culling [GAMETUT] would certainly take some load off 
the CPU. 
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To sum up, with the ever-improving capabilities of modern graphics hardware, 
image-based rendering is clearly on the advance, so that in the future a lot more 
applications and techniques heavily relying on IBR will be witnessed. Programmable 
graphics pipelines, i.e. pixel shaders, have greatly broadened the range of possibilities 
to utilize image-based rendering for, and they will continue to do so as the next 
generations of 3D accelerators hit the market. 
However, all the sophisticated shader effects are rather expensive in terms of fillrate. 
In the brief history of 3D hardware, the limited vertex throughput used to be the 
bottleneck for  generations of accelerators, but with the processing power of today's 
boards and the increased utilization of texturing due to image-based rendering and 
shader effects, gradually fillrate has become the bottleneck. 
This is likely to reach an equilibrium in future hardware generations though, with 
increasingly powerful texture units, GPUs and rising memory bandwidth. 
Even today though, an engine that could really harness the amazing theoretical 
fillrates of several gigapixels per second that are available on the latest graphics 
hardware would deliver truly amazing results in terms of rendering image-based 
forests. 
 
With prospects like this and the results we presented, we can look forward to a 
generation of 3D applications that put the user into immersive, convincing virtual 
worlds filled with vast forests. One more long sought-after objective of real-time 
computer graphics on the verge of being accomplished. 
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Appendix A: BBCgen manual 
 
BBCgen is our implementation of the Billboard Cloud generation algorithm as 
described in this thesis. The application generates Billboard Clouds from polygonal 
input models. It is written entirely in C/C++, with the aid of the libraries 

• OpenGL graphics API [OGL] 
• glut OpenGL utility toolkit [GLUT] 
• libSDL cross-platform multimedia library [SDL] 
• DevIL image handling library [DEVIL] 

 
The program is command-line based and features a number of parameter switches 
that are explained later. 
 

File formats 
Input format for polygonal models is the 3DS format (extension .3ds). Each object 
must have exactly one material assigned to it. Texture maps in 24 and 32 bit are 
supported in most common image formats such as JPG, BMP, PNG, TGA, in sizes of 

mn 22 × . 
Only polygons are allowed as primitives; lines, points or curves will not load properly. 
 
Point cloud models have to be in VRML97-like format (extension .wrl) with all points 
stored in one node like this: 
 

geometry PointSet {  
coord Coordinate{  

point [ 
 x y z 
 x y z 
 .. 
 x y z 
] 

} 
color Color { 

color [ 
 r g b 
 r g b 
 .. 
 r g b 
] 

 } 
} 

 
Billboard Clouds are exported in VRML-like format with Open Inventor extensions 
used for normal maps. Billboard textures are stored in 32 bit PNG format.  
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Generating a Billboard Cloud 
First of all, a polygonal or point cloud model must be loaded using "load". After 
setting all the desired parameters that influence the simplification algorithm, the 
Billboard Cloud generation can be started with the command "bbc1", which 
discretizes the primitives and calculates grid Density. Validity domains and Density 
can be examined by typing "show bbc" and switching display modes as described in 
section "Command Reference". 
Command "bbc2" performs the greedy select, usually the lengthiest part of the 
simplification. "bbc3" finally renders the textures and produces the final Billboard 
Cloud model. All parameters that affect texture generation only (see section 
"Command Reference") can be altered and "bbc3" run again to generate different 
versions of the Billboard Cloud (i.e. with different texture resolutions, cardboard 
planes, etc). All three steps of the algorithm can be performed at once by using the 
"bbc" command. "save" exports the result as VRML file plus textures in PNG format. 
Memory requirements typically explode in step 1 and stay constant in the remaining 
steps, so coarsen the grid resolution if you're out of RAM. 
 
BBCgen can be started from shell with an optional parameter that is the filename of a 
batchfile to process. 
 
 

Command Reference 
 
bbc 
Perform commands bbc1, bbc2, bbc3 at once. 
 
bbc1 
Perform discretization of input model and grid Density calculation. Will only work if 
a model has been loaded successfully. 
 
bbc2 
Perform recursive greedy select step. Only works if bbc1 has been done before. 
 
bbc3 
Setup planes and render billboard textures. Only works if bbc1 and bbc2 have been 
called before. 
 
bbcload <filename> 
Loads a previously saved Billboard Cloud model. This can be used for effective head-
to-head comparisons of several simplification results versus the original model. Just 
load the original model with "nocg" flag set (see command "load"), then load a 
previously saved Billboard Cloud and switch views. Do not re-save a loaded Billboard 
Cloud model! 
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cls 
Clear screen. 
 
exec <filename> 
Executes a batchfile. Batchfiles are ASCII textfiles where each line is a command 
understandable by bbcgen. Comment lines are allowed and start with the symbol '#'. 
 
help 
Displays help text. 
 
load <filename> [flags] 
Loads an input model, either with .3ds or .wrl extension, for polygonal or point cloud 
models. Loading a new model clears memory, so that any previously generated, 
unsaved Billboard Clouds are lost. 
The flags parameter is optional. Valid flags are "nocg" and "nomip" and are 
separated by a whitespace.  
"nocg"  avoids the relocation of the model to its center of gravity. This is necessary for 
model comparison as described in command "bbcload" section, as loaded Billboard 
Clouds are not relocated to their center of gravity. 
"nomip" suppresses generation of mipmaps for model textures. 
 
q | quit 
Quit BBCgen. 
 
save [directory] 
Saves a generated Billboard Cloud to disk. Output format is VRML2.0/Open 
Inventor, but by changing the format parameter (see section "Parameter 
Reference"), pure VRML97 can be written as well. The save parameter "directory" 
is optional and specifies a subdirectory to save the model to. Models are always saved 
in the folder /vrml97models. The directory structure is as follows: 
 
./vrml97models/<usrdir>/<inputmodel>/<inputmodel+params>/<inputmodel>.wrl 

 
For example, the Billboard Cloud of the model "tree.3ds", with the user-specified 
directory "forest", texture resolution 256, error threshold 5% and normal maps would 
be saved to 
 

./vrml97models/forest/tree/tree_e5.00_tex256_nm/tree.wrl 

 
The following parameter settings affect the directory name and are appended in the 
order of appearance: 
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Parameter Directory appendix 

epsilon eX.XX 

texture resolution texX 

normal mapping on nm 

prelighting on pl 

point size (point cloud models only) szX.X 

point skip factor (point cloud models only) skipX 

point smoothing on (point cloud models only) smooth 

 
set <param> <value> 
Sets the value of a BBCgen parameter. See section "Parameter Reference". 
 
setup 
Outputs the current parameter settings. 
 
shade <numvoxels> <ambient> 
Calculates voxel shadowing (section 2.3.11) for the currently loaded model. If 
numvoxels is 0, shading is cleared, any other positive value denotes the number of 
voxels per dimension. Ideal for most situations are values between 40 and 150. Small 
settings are more successful for sparse trees, large values yield more accurate 
shadows. 
The ambient light factor ranges from 0.0 to 1.0. If set to 0.0 or omitted, a factor of 
0.4 is assumed. Voxel shadowing is chiefly designed for trees and probably not useful 
for other types of models. 
 
show <model|bbc> 
Switch to rendering mode, displaying either the input and Billboard Cloud model, or 
BBCgen internal data. 
 
In model rendering mode, there are four different views: 

• Input model 
• Input model with billboard plane bounding rectangles overlaid 
• Billboard Cloud with bounding rectangles overlaid 
• Billboard Cloud 

 
In bbc rendering mode, there are five views: 

• Currently selected primitive's discretized validity domain on grid 
• Currently selected primitive's continuous validity domain on grid 
• Currently selected primitive's discretized and continuous validity domain on 

grid 
• Grid Density 
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• Remaining primitives of wireframe input model. During greedy select phase, 
primitives valid for the current plane are rendered solid blue. Currently 
selected primitive is rendered solid yellow. 

 
The bounding rectangles in model view mode are color-coded. Light blue denotes a 
standard plane, orange a coplanar one, green signifies a cardboard plane, pink a 
posttweaked one and cyan a parachute (section 2.3.4) plane. 
In bbc rendering mode, a small wireframe version of the input model is displayed in 
the top left corner, with the currently selected primitive rendered in solid yellow. 
 
While in rendering mode, use the following controls: 
 
Rotate/Pan/Zoom Hold down left/middle/right mouse 

button and move mouse 

Reset view Tab key 

Wireframe mode on/off F1 

Invert background color F12 

Cycle views Cursor keys up/down 

Quit rendering mode Esc 

 
Specifically for model rendering mode: 
 
Render vertex validity domains on/off F2 

Show normal maps on/off F3 

Switch lighting on/off F5 

Render shadow voxels on/off F10 

 
Specifically for bbc rendering mode: 
 
Cycle currently active face Cursor keys left/right, or hold 

down left & right mouse buttons 
and move mouse 

Render wireframe mini-model in top left corner 
on/off 

F3 

Cycle rendering of face's first/second/third/all 
vertices' validity domain 

F6 

Switch rendering of vertex validity domains or 
sheets only 

F7 

Move left/right clipping plane (grid view only) Hold down left Shift key & 
left/right mouse button and move 
mouse 
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Parameter Reference 
We distinguish three classes of parameters: Those that affect algorithmic 
performance & general settings, plane quality, and appearance of the final billboards. 
Parameters marked with * are heeded in BBC step 3 only, so that repeated alterations 
of the parameter value and execution of BBC step 3 allow quick prototyping of the 
Billboard Cloud. Parameters marked with + can be changed before BBC step 2 
without having to perform step 1 again. 
All the other parameters require complete regeneration of the result to have an effect. 
 
Performance parameters: 
 

Parameter Description Value Default

break+ Terminate recursive greedy select after n steps. Can save a 
lot of time while not necessarily deteriorating plane quality. 

≥5 100 

breaknum+ Terminate recursive greedy select only if more than n 
primitives simply valid for subcell 

≥10 2000 

debug+ Graphical debug level. Level 0 is silent, level 1 activates bbc 
rendering mode after a plane is picked, level 2 activates bbc 
rendering mode after each greedy recursion step. Level 3 
displays the face clustering, if enabled, when a densest cell is 
picked. 

0 to 3 0 

res Grid thetha/phi resolution in degrees per cell. Larger values 
result in coarser grid. Must satisfy 180 mod res=0. Increase if 
you're low on memory. 

1 to 
180 

9 

vn Calculate vertex normals of polygonal input model upon 
loading. 

0|1 1 

 
Plane parameters: 
 
cardboard+ Cardboard finding mode (section 2.3.7) on/off. If on, a 

cardboard plane for each plane is temporarily added 
regardless of their coverage. 

0|1 0 

cbcoverage* Minimum coverage percentage threshold (section 2.3.7) of 
a cardboard plane. All cardboard planes are temporarily 
accepted, but finally ignored in BBC step 3 if they don't 
meet the coverage threshold. 

0.0 to 
99.9 

50.0 

clustering Face clustering off/simple/pre-clustering. (section 2.3.10) 
Pre-clustering is slowest, but mostly produces better 
results than simple mode. 

0 to 2 2 

epsilon Simplification error threshold, measured in percent of input 
model's bounding sphere radius 

0.001 
to 99 

5.0 

posttweak+ Post-plane tweaking (section 2.3.3) on/off 0|1 1 

punishval+ Maximum view-dependent penalty value (section 2.3.8) 0.0 to 
0.95 

0.0 

punishcutoff+ View-dependent penalty cutoff angle (section 2.3.8) 0.0 to 
90.0 

30.0 

subpenalty+ Penalty factor for subcell Density calculations. ≥0 5.0 
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supergreedy+ Supergreedy select on/off (section 2.3.6) 0|1 0 

 
Billboard parameters: 
 
backface* Backface culling on/off. If off, triangles facing away from 

the camera are automatically flipped. Thus, Billboard 
Clouds usually look better when generated without culling. 

0|1 0 

nm* Normal map generation (section 2.3.1) on/off 0|1 0 

pointsize* Generic pointsize for rendering of point cloud model. Is 
internally adapted to texture size. 

≥0 3.5 

pointsmooth* Employ OpenGL point smoothing on/off. 0|1 1 

pointskip* Skip planes that contain less than n points. (sections 2.3.5 
& 2.4.4) 

≥0 0 

polyskip* Skip planes whose face's geometric coverage is less than 
n percent of the plane with the most such coverage 
(section 2.3.5). 

0.0 to 
99.0 

0.0 

prelight* Use OpenGL's lighting while generating textures on/off 0|1 1 

pure* Render only primitives to a plane's texture that are 
simplified by the corresponding plane (section 2.2.5) on/off 

0|1 0 

quality* Texture quality (section 2.3.9). 0 is fast, but low quality, 1 is 
deprecated, 2 uses supersampling and texture squashing 
(recommended), 3 supersampling only (best quality, but 
demands more texture memory)  

0 to 3 0 

texres* Maximum texture resolution 2^n, 
n≥2 

256 

 
Additionally, there is a parameter for the export file format: 
 
format Determines output format. Default is a mixture of VRML2.0 

and Open Inventor ASCII format, but it's also possible to 
save the Billboard Cloud as pure VRML97. 

0|1 0 
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Appendix B: Perfect Motion manual 
 
The Perfect Motion engine is the demo application used to create large tree-filled 
landscapes and render those at interactive frame rates (chapter 3.2). 
The application can be started from a shell with one parameter denoting the map file 
to load. Once a map has been loaded, the viewer is positioned in the top left corner of 
the environment and is free to explore. 
Errors and runtime-details are output to the file log.txt in the same directory as the 
executable. 
 

Controls 
Use the following controls to explore the landscape: 
 

Action Control 

Adjust viewing direction Move mouse 

Accelerate / Decelerate s/x keys 

Increase left/right strafe speed a/d keys 

Increase up/down strafe speed y/c keys 

Stop Space 

Zoom out / in q/e keys 

Zoom reset w key 

Store current position F3 key 

Load next stored position F2 key 

Quit Esc 

 
Forward and backward motion is always performed in current viewing direction, so 
camera movement is likewise to an airplane's. Sideway strafing moves the viewpoint 
perpendicular to the viewing direction, but restricted to the XZ plane. Vertical 
strafing moves the viewpoint along the Y-axis. 
Zooming in and out is especially useful to closely examine an object's level of detail-
switching that should be as unnoticeable as possible with a zoom factor of 1.0. 
Viewing positions can be saved and loaded. Save positions for each map file are 
stored to an ASCII textfile in the "save" subfolder, with the name of the mapfile.  
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Rendering switches are: 
 
Toggle wireframe mode F1 

Switch terrain rendering on/off F4 

Switch 3D object rendering on/off F5 

Decrease / Increase terrain level of detail 1/2 keys 

Lock / Unlock frustum 3 key 

Switch statistics on/off F10 key 

 
Altering the terrain level of detail factor results in coarser/finer representation of the 
landscape. Technically, this factor modifies the distance of a patch of the heightmap 
to the viewer that the algorithm [ROETTGER98] uses to decide on a suitably detailed 
representation. Changes to this factor are written to the log file. 
The viewing frustum can be locked and unlocked to prevent the terrain algorithm 
from adjusting to a new viewing position, which is usually done each frame. 
 

File formats 
A map is defined by a conglomerate of ASCII text description files, images and 3D 
models. Image files may be in any popular 2D format, like BMP, JPG, PNG, PCX or 
TGA, with 24 or 32 bit color depth. Heightmaps may also be 8-bit image files. 
3D models may be in 3ds format with the same restrictions applying as explained in 
Appendix A, or BBCgen-generated VRML2.0 files, i.e. Billboard Clouds. 
Comment lines in description files are allowed and begin with an ' (high comma 
character).  
 
The master file is a map description file, containing commands that create the 
environment, plus a list of 3D objects that are placed in the map. Commands that 
switch an attribute on or off do so by setting values 1 or 0. 
3D objects can be either placed by directly referring to their filenames or a model 
description file, with the latter method recommended. Models can be randomly 
placed according to vegetation map limits, which generally means that the colormap 
pixel at a potential vegetation position must have a green component of greater than 
70 (maximum 255) and a red component of less than two thirds of the green 
component (i.e. the ground must have a certain "green" value). 
By default, models don't cast a shadow onto the colormap, but setting the appropriate 
commands in a model description file allows the creation of simple static shadows 
that improve the appearance of a forest considerably. 
A model description file is an ASCII text file describing the 3D model(s) to use, levels 
of detail and other attributes of a model. Note that for placing a model in the map, 
sufficient space must be reserved by the appropriate attribute. Because our Billboard 
Cloud trees frequently consist of two components (stem and foliage), some 3D objects 
can be composed of two different models. More details follow. 
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Commands in a map file: 
 

Command Description 

hmap <file> 
Heightmap image file, must be sized 1212 +×+ nn . 

hmapfilter <radius> <passes> Filter radius of the heightmap filter and filtering passes. 

colmap <file> Colormap image file, must be sized same as heightmap 

minus 1, i.e. nn 22 × . Last column and row of texture are 
doubled when applied to terrain. 

heightscale <x.x> Vertical scaling of the heightmap. For example, the tallest 
possible peak of a heightmap is 255 OpenGL units, with a 
heightscale of 10.0, it is 2550. 

stretch <x.x> Horizontal stretching of the heightmap. For example, a 
heightmap sized 256x256 pixels is 512x512 OpenGL units 
with a stretch factor of 2.0. 

light <x y z> Directional light vector used for prelighting the terrain. 
Needs not be normalized. 

farclip <x> Far clipping plane in map vertices. (Heightmap pixels) 

roetger <x.x> Terrain level of detail factor for a map. Can be adjusted 
on-the-fly as described in section "Controls". 

skymap <file> Denotes the batch of skybox textures to use. There must 

exist 6 nn 22 ×  sized textures file_FR.tga, file_BK.tga, 
file_LF.tga, file_RT.tga, file_UP.tga, file_DN.tga. 

waterheight <x.x> If omitted, the map has no water. Otherwise denotes water 
level in OpenGL units. 

fog <x.x> <y.y> Set start and end of fog in OpenGL units. 

numobjs <x> Reserve space for a number of 3D objects in map. Two-
component models count as one single object. 

object2d <file> <scale> 
<mipmap> <x y> <xr yr zr> 
<alt> 

Place a 3D model gravity-aligned to the terrain, with 
filename file referring to a model description file or 3D 
model, scaling scale, mipmap or not, map position x,y in 
OpenGL units, (xr, yr, zr) rotation angles in degrees, and 
additional altitude alt. 

rndtree <file> <scale> <num> 
<mipmap> <random> <xr yr zr> 
<alt> 

Place a number of 3D models randomly on the map 
according to vegetation map limits, with file referring to a 
model description file or 3D model, scaling scale, number 
num of such objects that should be added, mipmap or not, 
random orientation or not, default rotation (xr, yr, zr) in 
degrees and additional altitude alt. 

rndtree2 <file1> <file2> 
<scale> <num> <mipmap> 
<random> <xr yr zr> <alt> 

Same as rndtree, but places 2-component model with 
filenames file1, file2. Useful for trees, where stem and 
foliage are separate models. Better use rndtree and 
model description files, though. 

 
A model description file contains one or more levels of detail for a model that may 
consist of one or two 3D files. An LOD block must be enclosed by "LOD (" and ")". 
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Commands in model description file: 
 
fade <x.x> Fade speed of levels of detail for this model, measured in 

OpenGL units required for half a LOD transition. The 
smaller the value, the quicker the transition from one LOD 
to another. Because LOD blending is utilized, keeping this 
value small is advised. 

shadowrad <x.x> Shadow radius. An object shadow is just a circle with the 
radius, given in OpenGL units, that is modulated to the 
colormap. If omitted, no shadows are generated for this 
object. 

shadowcutoff <x.x> Cutoff radius of the shadow. If set, the shadow has 
maximum darkness from its center to the cutoff radius 
value, then falls off to zero towards the shadow radius. 

LOD ( file1 <f1> [options] 
[file2 <f2> [options]] min 
<mindist> max <maxdist> ) 

LOD block. The model(s) to be rendered for this LOD are 
defined by filenames f1 and f2, where the latter is optional. 
Filenames can be trailed by "displaylist", "mipmap" and 
"lighting" to activate the according features for that 3D 
model. Mindist and maxdist span the range in which the 
LOD is rendered. LODs should not overlap. 

 
Example of model description file: 
 

fade 250 
 
' we want a shadow with radius 5.2 units, and cutoff at 2.0 units 
shadowrad 5.2 
shadowcutoff 2.0 
 
' first LOD: render 3ds tree, with creating displaylists and lighting on 
LOD 
( 
    file1 tree.3ds displaylist lighting 
    min 0 
    max 1000 
) 
' second LOD: draw Billboard Clouds with displaylists 
LOD 
( 
    file1 treefoliage.wrl displaylist 
    file2 treetrunk.wrl displaylist 
    min 1000 
    max 5000 
) 
' third LOD is simplest Billboard Cloud 
LOD 
( 
    file1 tree.wrl displaylist mipmap 
    min 5000 
    max 15000 
) 
' an object further away is not rendered at all 

 
 


