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The security, portability and improved time to market benefits arising from the use of 
execution environments (sometimes referred to as managed runtime environments) 
and “virtual machines” has led to their significant popularity across many embedded 
markets. Most notable has been the adoption of Java in applications such as 
wireless handsets, smart cards, set top box and digital TV, and even automotive 
applications. 
 
While the prevalence of the Java language, development tools and large developer 
community has been pivotal in its widespread adoption in embedded, other 
languages and execution environments, such as Microsoft .NET MSIL/Compact 
Framework and Parrot (targeting Perl and Python) are also gaining in popularity. 
 
Java adoption in wireless handsets has largely been driven by the growth in mobile 
gaming applications. As Java and other execution environments are installed on an 
increasing array of embedded devices, a significant proportion of applications 
deployed on these devices could be run on top of the execution environment. 
Increasingly, high performance is a key requirement. 
 
Details of ARM’s first hardware for execution environments, the Java bytecode 
acceleration technology – Jazelle DBX (for Direct Bytecode eXecution), can be read 
in a separate white paper [1]. Jazelle DBX will continue to play an important part in 
ARM’s Jazelle for execution environments roadmap. 
 
This ARM white paper explores the key technical issues involved in enabling 
performance and efficiency in execution environments. A new extension to the 
Jazelle family and the ARM Instruction Set Architecture (ISA) is introduced, and its 
technical features are outlined.  

Execution Environment Efficiency 
A program written in a language that is designed to run on a virtual machine (VM), is 
usually compiled to a pseudo-assembler bytecode language. This bytecode is then 
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downloaded and executed on the target device within a virtual execution 
environment, such as a Java VM. 
 
There are a number of ways in which the bytecode can be executed. The type of 
execution environment chosen will determine the performance that can be achieved 
and the memory footprint requirements. 
 
Direct interpretation of bytecode in software is used widely in embedded Java 
applications today. This approach is effectively a software ‘switch’ statement which 
maps individual Java bytecodes to machine instruction sequences. This is efficient in 
terms of memory footprint requirements, but the interpretation process severely limits 
performance. ARM’s Jazelle DBX technology implements direct execution of Java 
bytecode in hardware, significantly boosting performance, as the bytecode effectively 
becomes the native instruction set. A key benefit of interpretation techniques is that 
execution of the application is immediate – there is no start-up delay. 
 
Run-time compilation, often referred to as Just In Time compilation (JIT) or Dynamic 
Adaptive Compilation (DAC), is an alternative to pure interpretation. A JIT compiler 
first profiles the code to identify the most frequently executed functions. Once 
identified, this code is then compiled to the processor’s native instruction set and this 
code is run. Whilst executing compiled code can, in theory, give extremely high 
performance, compiling the majority of the program to native code can place 
significant demands on available ROM and RAM. The compilation process will 
typically result in execution code that is 2-8 times the original bytecode size. In 
addition, the original bytecode must be retained in case available memory is 
exceeded, requiring previously compiled code to be discarded and if it is required 
again, re-compiled from the original bytecode. 
 
There are other issues with JIT/DAC compilation. Because the compiler runs on the 
execution machine in user time, it is constrained in terms of compile time: if the time 
taken to compile code is too long, then the user will perceive a significant delay in 
the startup of a program or in responsiveness while an application is running.  
 
These user experience and memory consumption issues lead to compromises in the 
potential top-speed performance of a JIT/DAC solution, as advanced optimizations 
are simply not realistic, and the compiler must focus on generating compact code as 
opposed to speed optimized code. 
 
Compilation of bytecode can also be done ahead of time (AOT). For example, code 
can be pre-compiled to native machine instructions. This can be done either before 
downloading onto a device over the air (pre-compile an application and store on a 
server for download), or it could be compiled and then installed on the device during 
manufacture (often referred to as “ROMisation”). Alternatively the compilation can be 
performed while downloading an application for the first time. 
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While AOT compilation can boost execution performance, if the majority of the 
application is pre-compiled, the demands on memory – ROM and RAM, can be 
significant. Also, AOT compilation alone can generate less optimal code than 
compilation at run-time; for example resolving methods in Java is often far easier 
and faster at run-time. Basically, the more that is known about the application, the 
better it can be optimized. In most cases, more is known at run-time than ahead of 
time. 

Balancing Performance with Resource Requirement 
For the very best and most efficient performance of execution environments, a 
combination of fast interpretation, run-time compilation and selective ahead of time 
compilation should be used. The level of compilation possible will be dependent on 
the resources available on the device – the CPU speed, available memory 
ROM/RAM and cache. 
 
AOT and JIT compilation techniques can offer extremely high performance with 
execution environments. However, the memory overheads in generating highly 
optimized code are severe. 
 
The memory available on devices such as digital TV and high end smart phones is 
increasing rapidly as memory costs fall. However, the usage of the available memory 
is also increasing rapidly: multiple application support and complex multi-media user 
applications are putting strains on even the highest specification embedded devices. 
 
A typical Java execution environment must compete with imaging, video, audio and 
other applications on a device, with typically only around 10% of total system 
memory available to it. Clearly, efficient use of available memory by any execution 
environment is extremely important. 

A New Architecture Extension 
To enable improved compilation performance while managing the demands on 
memory resource, a new approach is required. ARM’s Thumb-2® ISA provides the 
basis for balancing code density and performance through a blended instruction set 
combining both 16-bit and 32-bit instructions, and is the foundation for the new ARM 
architecture extension for efficient execution environment support. 
 
ARM Thumb-2 core technology, extends the ARM architecture to add enhancements 
to the Thumb ISA that simultaneously benefit code density and performance. The 
resulting ISA consists of the existing 16-bit Thumb instructions augmented by new 
16- and 32-bit instructions to improve program flow and performance.  
 
Thumb-2 can now access all of the instructions it needs to enable both high 
performance and exceptional code density. In addition, using Thumb-2 core 
technology considerably simplifies the development process, especially when the 
trade-off between performance, code density and power is not straightforward. The 
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main reason for this is that code ‘blending’ – changing the mix between ARM and 
Thumb instruction usage, is no longer necessary. 
 
Ideally, an execution environment solution will provide good support for AOT and JIT 
compilation in a memory efficient way and without significantly increasing hardware 
gate count.  
 
ARM’s solution is a new addition to its Jazelle family for execution environments: 
Jazelle RCT (Jazelle Runtime Compilation Target). Jazelle RCT is an extension to 
the ARM architecture featuring a new ISA that extends Thumb-2: Thumb-2EE, and a 
new processor state: Thumb-EE. 
 
Jazelle RCT benefits from the code density and performance features that are 
inherent within Thumb-2 core technology and provides an ideal target for “bytecode” 
languages like Java,.NET MSIL (Microsoft Intermediate Language), Python and Perl 
with a compilation target which is within 10% of the original bytecode size. 
 
A runtime compiler (AOT or JIT) using Jazelle RCT can match (and sometimes 
better) the performance from a Thumb-2 AOT solution with almost no increase in 
compiled code size from the original bytecode. The additional hardware 
requirements to implement the solution are negligible in terms of gate count (less 
than 8K gates) and power consumption.  

Compilation Support 
Today, virtual machine developers focus much effort on generating compact 
compiled code, rather than high performance code. The primary aim with the design 
of Jazelle RCT has been to achieve efficiency in JIT and AOT compilation. Attaining 
reduced target instruction size enables the virtual machine developer to focus more 
on performance, rather than code size. 
 
Jazelle RCT provides an excellent target for run-time compilation approaches 
including JIT and AOT, making these techniques more appealing because they can 
be realistically implemented in embedded systems. The Jazelle RCT implementation 
is a unique approach which leverages more of the architecture’s inherent capability, 
and can be thought of as “Thumb for VMs”. 

Jazelle RCT Technical Overview 
The new Jazelle RCT instruction set architecture is based on the extended Thumb-2 
ISA. It adds 12 new instructions to Thumb-2 and modifies the behaviour of some 
existing Thumb-2 instructions and is accessible through entering a new state 
‘Thumb-EE’. Because Thumb-2EE is based on a modification of the existing Thumb-
2 instruction set, silicon size and complexity is not significantly impacted. 
 
The new processor state, ‘Thumb-EE’, is entered and exited with the new ENTERX 
and LEAVEX instructions. 
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The 16-bit load/store multiple (LDMIA and STMIA) instructions are no longer 
available, which was necessary to create the space for new Jazelle RCT 
instructions, however all other existing Thumb/Thumb-2 instructions continue to be 
available (note, some loads/stores also have modified behavior to improve 
performance on execution environments). It is therefore expected that an execution 
environment will not need to switch between Thumb-2 and Thumb-EE states 
frequently, but stay in Thumb-EE state for most of its execution. 
 
A combination of techniques helps to achieve the code size reduction which results 
in a small compiled code footprint.  Key to this is extensive use of 16-bit instructions. 
Almost every instruction generated by a run-time compiler for Thumb-EE can be a 
16-bit instruction. This efficiency is enabled by extending the use of registers so that 
more 16-bit instructions can be used. 
 
A general purpose 16-bit Thumb or Thumb-2 instruction can only access R0 to R7. 
The Thumb-EE state provides new 16-bit instructions that allow limited access to R8 
and above for specific purposes, such as the Java stack pointer and constant pool. 
Run-time compilation is then free to use R0 to R7 for caching stack items and local 
variables. Only 16-bit instructions are required to do this – thus reducing code size. 
 
Additionally, for frequently used code sequences in a JIT/AOT compilation, single 
16-bit versions of instructions are available. 
 
There are two enhancements included in Jazelle RCT that lead to direct 
performance improvement:  
 

• Implicit Null Pointer tests: Null checking of objects and arrays in Thumb-EE.  
 

• Fast Array Handling. A Thumb-EE instruction is provided to help with array 
index checking. 

 
While Jazelle-RCT offers features that aid performance directly, the primary 
performance improvements will be due to enabling the compiler to focus on 
generating fast code, leaving Jazelle RCT to take care of code density. 

Jazelle RCT Adoption Roadmap 
Jazelle RCT will be introduced across a range of Thumb-2 compliant ARM cores, 
initially supporting Java on higher-performance devices. 
 
Jazelle RCT will be an integral part of the ARM Cortex-A Series, ARM’s applications 
processors for complex OS and user applications. Jazelle RCT will be optional on 
the ARM Cortex-R Series - embedded processors for real-time systems. However, 
since the ARM Cortex-M Series targets deeply embedded processors optimized for 
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cost sensitive applications, it is not appropriate to make Jazelle RCT available on 
this processor series. 
 
In parallel, ARM is working with lead software partners to ensure smooth adoption of 
Jazelle RCT. 

Jazelle DBX or Jazelle RCT 
With both Jazelle DBX and Jazelle RCT available, ARM provides a choice of support 
for execution environments which is appropriate to the needs of the application and 
can be matched to the capabilities of the underlying hardware platform.  
 
Table 1 illustrates the applicability of Jazelle DBX and Jazelle RCT. Choice is 
dependent on the available system resources and the desired performance level.  
 
Bytecode Execution + Advantages 

- Disadvantages 
ARM Solutions 

Direct Interpretation 
 

+ Efficient memory usage 
+ No start-up delays 
- Can be slow (performance) 

Jazelle DBX 
+ Direct hardware execution boosts 
performance 
- Java only support 

Run-time Compilation 
JIT Compilation (or DAC) 
Profile code and compile most 
frequently executed sequences 

+ Good performance 
-  Increased memory 
requirements 
-  Start-up delays 
 

Jazelle DBX 
+ Direct hardware execution boosts 
performance for interpreted code 
+ Fast start-up 
+ Memory efficiency – less compiled 
code 
Jazelle RCT 
+ Efficient compilation addresses 
code bloat for compiled code 
+ Enables improved performance 
+ Supports several VM technologies 

Ahead of Time Compilation 
Pre-compile entire application 
ahead of run-time 

+ Good performance 
-  High memory requirements 
-  Difficult to compile efficiently 
ahead of run-time 
 

Jazelle RCT 
+ Efficient compilation addresses 
code bloat 
+ Enables improved performance 
+ Supports several VM technologies 

 
Table 1. Code Execution Techniques: Advantages and Disadvantages  

 
 
Both Jazelle DBX and Jazelle RCT may be implemented on future mid-range 
frequency ARMv7 processors to provide maximum flexibility in matching 
performance with the available on-chip resources. Thus, systems designers may 
choose  

- Jazelle DBX for interpreter solutions only on a resource-constrained device,  
- Jazelle RCT to support JIT or AOT compilation.  
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- Jazelle RCT and Jazelle DBX for JIT and selective AOT  
- Jazelle RCT and Jazelle DBX , for selective AOT and an interpreter VM 

 
Mid-range processors do not yet offer high ‘GHz’ performance, and so when running 
complex Java applications, both start-up compilation time and smoothness in 
performance are still issues that can be addressed with Jazelle DBX. With very high-
performance, high-end processors, start-up delay (identified above as a problem with 
JIT/DAC compilation) becomes less of an issue, hence there is less need to offer 
Jazelle DBX with this class of processor. 

Code Density and Performance Benchmarks 
The main performance improvement from Jazelle RCT arises from the potential to 
focus on compilation for best performance, while the memory footprint of the 
compiled code stays within 10% of the original bytecode. 
 
Jazelle RCT supports the capability to compile all installed classes and applications 
ahead of time, so no run-time compilation or profiling is strictly necessary. Profiling 
code inevitably consumes some cycles even if performed at a basic level by counting 
the Java methods which are regularly executed.  
 
A common technique used to achieve better performance is inlining of methods. The 
additional code bloat from compiling to ARM or Thumb-2 is likely to make excessive 
inlining an expensive option on any platform. However, because of Thumb-EE’s 
small code size, selective or even extensive inlining may be possible in order to 
achieve very high performance. 
 
In summary, Jazelle RCT enables the developer to choose between compiling for 
code density or performance. Compiling for code density gives extremely small 
memory footprint, while keeping performance levels as good as JIT compilation for 
Thumb-2 instructions. Compiling for performance will yield code size which is 
equivalent to T-2 compiled code, but performance can be far higher. 
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Figure 1. Preliminary Benchmark Results for Code Density 

 
Figure 1 (Code Density) illustrates the results of a compilation of Java bytecode 
using an ARM AOT compiler. The compiler output includes ARM code, Thumb-2 
code and Thumb-2EE (Jazelle RCT) code, and the results are shown normalised 
against the original Java bytecode. Note this compiler is highly optimized for code 
density rather than performance, so code bloat for all ISAs is at the low end of the 
possible range. 
 
Compared with the original bytecode, the compiled Jazelle RCT code size varies 
from 1.07x (best case) to 1.44x (worst case). By comparison, the Thumb-2 code size 
varies from 1.89x to 3.08x for the same code examples. 
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Figure 2. Preliminary Benchmark Results for Performance 

 
Figure 2 (Performance) benchmark data is based on an ARM Jazelle RCT core 
simulation model run with a number of micro-benchmarks. Simulation results confirm 
that Thumb-2 requires 5-10% more cycles than the Jazelle RCT performance. 
 
So, benchmark results confirm a code bloat figure which is within 10%, on average, 
of the original bytecode, yet performance is as good if not better than compiling for 
Thumb-2. 

Thumb-2EE Instruction Set Features  
The new features and instructions that comprise the Thumb-2EE instruction set 
extension are outlined in the following sections.  

Null pointer checks 
All loads and stores in Thumb-EE state check that the base register used for the 
address calculation is non-zero. If it is, the memory access does not happen, and 
execution continues from a null pointer exception handler, at address HandlerBase-
4. HandlerBase is a coprocessor register configured by each individual VM, and is 
context switched by the OS. 
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Array bounds check: CHKA Rn,Rm 
CHKA is a new 16-bit instruction, taking two registers in the range R0-R15. If Rm >= 
Rn (unsigned comparison), then execution will continue from an array index 
exception handler, at HandlerBase-8. If Rn holds an array size, known to be positive, 
and Rm an array index, the exception is taken if Rm < 0 or Rm >= Rn. 

Handlers: HB{L} #handler 
A new 16-bit instruction, which performs a branch, with optional link, to one of 256 
‘handler routines’, specified by the value of #handler. Execution continues from an 
address given by 
 
  HandlerBase + 32*handler 
 
with a return address optionally stored in R14 
 
HB{L} is branch predicted. 
 
A handler routine will contain a commonly used sequence, often corresponding to a 
complex bytecode; for example, Java bytecodes such as idiv, fadd, lmul, athrow, and 
many more. Other uses include implementing a call to a profiling routine, or calling a 
thread switch routine for a VM that implements co-operative threading. 

Handlers: HB{L}P #param,#handler 
This instruction is a variant on HB{L}, and allows a small integer parameter be 
passed to a handler. There are some restrictions in usage – you can only call the 
first 32 handlers with HB{L}P. HBLP allows a parameter in the range 0 to 31, while 
HBP allows a parameter in the range 0 to 7. 
 
The parameter is copied into R8 for the handler routine to use, and so does not 
corrupt the general-purpose low registers R0 to R7 available to a JIT/DAC. 
 
This branch instruction variant can call routines that require a parameter that is 
known at compile time – e.g. the bytecode newarray <type>.  The instruction can 
also be used for bytecodes that require an index into the constant pool e.g. new, all 
invoke bytecodes. 

LDR Rd,[R9,#offset]  

STR Rd,[R9,#offset] 
These instructions load or store any low register to an address calculated by adding 
an offset to R9, where the offset is a word aligned value from 0 to 252. Typically, R9 
would point to an area of memory in the stack frame used to store the current 
method’s local variables and stack spill. 
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LDR Rd,[R10,#offset] 
This load instruction can load any low register from an address calculated by adding 
an offset to R10. The offset is a word aligned value from 0 to 124. Typically, R10 
would point to the constant pool of the class of the current method 

LDR Rd,[Rn,Rm,LSL#2]  

STR Rd,[Rn,Rm,LSL#2] 
These instructions replace the 16-bit 
 
 LDR Rd,[Rn,Rm] and STR Rd,[Rn,Rm] 
 
This allows for Rm to be used as an offset into an array of 32-bit elements without 
having to use a 32-bit instruction or having to explicitly multiply it by 4 to get the 
correct memory offset. 

LDR{S}H Rd,[Rn,Rm,LSL#1]  

STR{S}H Rd,[Rn,Rm,LSL#1] 
These instructions replace the 16-bit 
 
 LDR{S}H Rd,[Rn,Rm] and 
 STR{S}H Rd,[Rn,Rm] instructions. 
This enables Rm to be used as an offset into an array of 16-bit elements without 
having to use a 32-bit instruction or having to explicitly multiply it by 2 to get the 
correct memory offset. 

Sample Code 
The code fragments below compare source code with Java bytecode and its 
compiled output in both Thumb-2 (Figure 3) and Jazelle RCT (Figure 4) code. The 
use of new Jazelle RCT instructions can be seen, as well as the comparative storage 
requirements for each instruction. 
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 Code Size 
Java Source Java bytecode Compiled Thumb-2 Java T2 

X = new int[50]; bipush 50 MOV    R0, #50 2 2 
 newarray int MOV.W  R8,#T_INT 2 4 
  BL.W   DoNewArray  4 
 astore 5 STR.W  R0,[R9,#20] 2 4 
X[index] = data aload 5  2  
 iload 4 LDR.W  R1,[R9,#16] 2 4 
 iload 6 LDR.W  R2,[R9,#24] 2 4 
 Iastore CMP    R0,#0 1 2 
  BEQ.W  NullPtrHandler  4 
  CMP    R1,#50  2 
  BHS.W  ArrayIndexHandler  4 
  STR.W  R2,[R0,R1,LSL#2]  4 

Total 13 38 
 

Figure 3. Sample Thumb-2 Code (.w suffix indicates a 4-byte Thumb-2 instruction) 
 
 

 Code Size 
Java Source Java bytecode Compiled Thumb-2EE Java T2 

X = new int[50]; bipush 50 MOV    R0, #50 2 2 
 newarray int HBLP.X #T_INT, #NewArray 2 2 
     
 astore 5 STR.X  R0,[R9,#20] 2 2 
X[index] = data aload 5  2  
 iload 4 LDR.X  R1,[R9,#16] 2 2 
 iload 6 LDR.X  R2,[R9,#24] 2 2 
 iastore  1  
     
  MOV    R7,#50  2 
  CHKA.X R7,R1  2 
  STR.X  R2,[R0,R1,LSL#2]  2 

Total 13 16 

Figure 4. Sample Thumb-2EE Code (.X suffix indicates a new Thumb-2EE 
instruction) 

Summary 
The popularity of managed execution environments and virtual machines across 
many embedded markets has been driven by the security, portability and time-to-
market benefits that are associated with their deployment. Java has been particularly 
successful in penetrating the wireless handset market, but other applications 
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including set-top box, digital TV and automotive are increasingly benefiting from 
deployment of an execution environment. 
 
The ability to deliver a sufficient level of performance to enable execution 
environments to satisfy user’s needs, while maintaining efficiency in code density, is 
key to unlocking the market potential for many high growth applications.  
 
Jazelle DBX provides direct hardware execution for Java on ARM cores to boost 
performance for direct interpretation. This approach offers very efficient memory 
utilization within an environment where latency effects such as start-up delays and 
smoothness in performance are not a major factor e.g. because of high GHz 
processor speeds. 
 
To complement Jazelle DBX, ARM has introduced Jazelle RCT to support the latest 
compilation technologies for Java and other execution environments. By ensuring 
that techniques such as AOT and JIT can be implemented efficiently without 
excessive code bloat, Jazelle RCT provides a platform for highly-efficient execution 
performance with Java and other VM technologies. 
 
Together with ARM’s Jazelle DBX technology, Jazelle RCT offers a roadmap to 
efficient implementation of execution environments in hardware on ARM platforms. 
Benchmark results have confirmed the effectiveness of the Jazelle RCT approach in 
enabling improved performance, while limiting code bloat to within 10% (on average) 
above the size of the original bytecode. 
 
ARM’s Jazelle family provides the ability to combine Jazelle DBX and Jazelle RCT 
on processor cores with mid-range performance. This will give developers the 
flexibility to use the optimum combination of interpretation and compilation to ensure 
the best performance from the execution environment within the constraints of the 
available hardware resource. 
 
ARM offers class-leading solutions through its own hardware and software 
technology, as well as the ARM Connected Community. Together, ARM and the 
Connected Community partners offer high-quality execution environment solutions 
for the ARM Architecture that deliver the optimum combination of high performance, 
low power and low cost. 
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