
Tequila – A distributed Web authentication and access control tool

Claude Lecommandeur

Ecole Polytechnique Fédérale de Lausanne, Switzerland

claude.lecommandeur@epfl.ch

1. Abstract

EPFL is one of the two federal institutes of technology in
Switzerland, located in Lausanne, with more than 6000
students and 3500 staff members. For many years we have
been using a centralized Web authentication tool called
Gaspar. Two years ago, the need arose for a more
sophisticated tool that can do cross institution authentication
and access control.

Tequila was designed to meet this goal. The main features of
Tequila are:

• Authentication AND access control.
• Automatic multi-institutions cross authentication.
• Protection of dynamic (e.g. scripts) and static (e.g.

files) content.
• Single sign-on.
• Focus on data protection and users privacy.
• Easy customization.
• Easy administration.
• Portability.
• GPL license.

2. Local authentication

To start with an example: a user wants to authenticate to an
application inside his home organization. Tequila does Web
based authentication messaging; there are not that many ways
to do this. When the client application (service provider)
wants to authenticate a user, it asks the service of the local
Tequila server by redirecting the user's browser to this server,
the user then authenticates himself, the server checks the
authentication, checks if the user meets the constraints
imposed by the application and, in case of success redirects
the user to the calling application.

Actually, Tequila has three authentication operation
processing modes. In this paper I'll describe in detail only the
main mode since it is by far the most secure and the one that
is the most simple for client applications.

There are seven major steps in the process:

1. Upon a user request, the client application (after
verifying this user has not already an opened session),
calls an URL on the server with all the characteristics
of the authentication needed :

• What kind of information about the user is needed
(name, status, etc...)

• What kind of constraints must the user verifies.
• What is the service name.
• Where to redirect the user after successful

authentication.
• Etc...

2. The server stores the request, and sends back a unique
key to the calling application.

3. The application then redirects the user to the Tequila
server with the unique key appended in the server’s
URL (and optionally deposits a cookie in the user's
browser containing the unique key for later use).

4. The Tequila server presents the user with a login
screen. Upon successful authentication and constraint
verification, the server creates a short life session with
all the needed information. This session is tagged with
the unique key of the user.

5. The Tequila server redirects the user agent to the
calling application, using the access URL inside the
request, appending the unique key.

6. When the application sees the user coming back with
the key, it opens a new URL to the Tequila server that
asks it if the key is valid, and what are the attributes of
this user. The server responds with the values of all
these attributes.

7. The application creates a new session for this user.

In this simple case, the login screen looks like this:

Illustration 1 : Local only authentication

3. Distributed authentication

In the distributed authentication case, the user wants to
authenticate to an application that is not inside his home
organization, and he may actually be completely unknown to
the identity managing service of the application’s
organization.

But the application’s organization belongs to a set of
organizations that have a level of trust among them, and have
configured their Tequila servers to trust each other as well.
The application does not need to be aware of this. It acts as
usual, accessing its own Tequila Server.

In this case the login screen presented to the user is not the
same. You can see the difference on the right. The user can
choose to authenticate to another organization. Here, there is
only one choice, but there could be many.

What happens when the user authenticates himself by clicking
on his organization?

The application’s Tequila server receives the request, sees it
is not for itself, checks the asked organization to see if it
knows it and trusts it. If yes, it acts as a client and asks for
user authentication to the Tequila server of this organization.

The user is redirected to his home organization Tequila
server, authenticates, and is redirected to the local Tequila
server, that itself redirects the user to the local application.

With this scheme, the user has disclosed his user name and
password only to his home organization server.

4. Attributes

Tequila manages users and attributes. Attributes are just
name/values pairs. Names and values are strings, attributes
can be multivalued. Clients can request the value of attributes
for the authenticating user, or they can impose boolean
criteria that these attributes must meet. This is all the purpose
of server side access control.

5. Access control

Tequila does more than authentication. It can do access
control. The client application can ask for the server to
perform tests on user attributes and immediately reject users
that do not fit these tests.

An example, suppose an application wants to give access to
its services only to people belonging to a certain group, say
'Mygroup'. This is very simple, the application has just to tell
the server the constraint 'require=group=Mygroup'.

Constraints can be composed to obtain more complex
behavior, such as: 'require=unit=Myunit&group=Mygroup'.
That means you want authenticate only users that belong to
unit Myunit and group MyGroup. You can use any Boolean
parenthesized expression to specify constraints.

The advantage is double, it relieves the client from doing the
check itself, and more importantly, the client doesn't even
need to know who is in the group or the unit.

Right now, the server always delivers the user's username to
the client, but is very easy to change this behavior and have
completely anonymous access control, the server only
discloses the information the connected user verifies some
criteria, without disclosing the identity of the user.

6. Dynamic content protection

The Tequila services can be accessed directly and easily from
scripts. Scripts can of course implement directly the raw URL
redirection necessary to use Tequila server services. But this
is tedious and error prone. The standard Tequila distribution
includes modules for Perl, PHP and Java.

These modules perform all the URLs plumbing and
redirections, manage local sessions. They are written to do the
thing you think they will do in their simplest form, but also
leave space for more advance usage.

The simplest usage can have the form (all examples are in
Perl):
use Tequila::Client;
my $tequila = new Tequila::Client ();
$tequila->authenticate ();
my $user = $tequila->{user};

The first line tells the Perl compiler we are using the Perl
Tequila client module. In the second line, we are creating a
new Tequila::Client object. The third line asks the user for
authentication, doing all the session management, URL
manipulation and redirecting stuff. The first time authenticate
is called, it never returns because the user is redirected to the
server. The second call returns (in case of successful
authentication and authorization) and the Tequila::Client
object is filled with default user attributes.

It couldn’t be simpler.

Another example with attributes and constraints:
use Tequila::Client;
my $tequila = new Tequila::Client ();
$tequila->require ("role=admin&group=aasl");
$tequila->request ("name", "firstname");
$tequila->authenticate ();
my $user = $tequila->{user};
my $name = $tequila->{attrs}->{name};
my $firstname = $tequila->{attrs}->{firstname};

Not that difficult either. The call to require means that to
authenticate correctly, the user must verify the assertion
“role=admin&group=aasl”, you can imagine that with a
suitable setting of your identity management system, this

Illustration 2 : General authentication

means that user has role 'admin' and belongs to group 'aasl'.
The request call means that we want to know the name and
firstname of the user. After the successful return from
authenticate we can be sure that the required criteria is met,
and the name and firstname fields are filled with the correct
values.

7. Static content protection

Protecting scripts is one thing, protecting static documents
(html files, directory) is another thing.

Tequila provides an Apache module cleverly named
mod_tequila. This module encapsulates part of the interaction
with a Tequila server, in an easy to understand access control
tool. Let's first examine an example of a simple .htaccess file:
TequilaAllowIf group=aasl&org=EPFL

It is as simple as that. You just tell the module the criteria
used to give access to the directory and it is done, the whole
directory and all subdirectories are protected, only members
of 'aasl' group and members of EPFL organization will be
given access to the directory where the .htaccess is.

Of course, you can accomplish more complex things. Setting
several constraints, adjust log file, log level, redirect to others
directories, etc. But this is another story told in the
documentation. Just to tease you :
LoadModule tequila_module
/usr/lib/httpd/modules/mod_tequila.so

<IfModule mod_tequila.c>
 TequilaLogLevel 9
 TequilaLog /etc/httpd/logs/tequila.log
 TequilaServer tequila.epfl.ch
 TequilaSessionDir /var/www/Tequila/Sessions
 TequilaSessionMax 3600

 <Location /restricted/>
 TequilaRewrite /var/www/html/
 TequilaAllowIf unit=DIT-DEV
 TequilaAllowIf username=lecom@slpc1.epfl.ch
 TequilaAllows categorie=epfl-guests
 </Location>
</IfModule>

8. Single sign-on

There are many misunderstandings of what single sign-on is,
it is often confused with single login. Single login is when all
applications share a common set of users/passwords base. In
this case every application must authenticate itself its users
and hence be able to verify that passwords are correct. This is
often done by using a LDAP back-end server that has the
charge of checking the correctness of user/password pairs.

The advantage is obvious; people have to memorize only one
username and one password. But drawbacks are numerous,
each application must have a way to check passwords, users
must disclose their passwords to every application they log
into, hence trusting it, and users have to retype username and
password several times a day.

Single sign-on is different, authentication is performed by one
server only, and applications delegate this task to this server.
This alleviates all the drawbacks of the single login usage,
users have only to trust this central server, this server can

cleverly recognize users so that they don't have to re-type
their username/password.

Of course Tequila is of the latter breed. The first time a user
authenticates, the server deposits a specially crafted session
cookie into the user's browser. On subsequent authentications,
this cookie will be used to safely recognize the user and not
ask for password again and again. Single logout is possible by
calling a specific URL on the server itself that destroys the
cookie.

9. Users privacy protection

Tequila servers can manage potentially sensitive data about
users, data that are not supposed to be handed out to any
application that asks for it.

For this purpose, Tequila has the notion of 'sensitive'
attributes. Sensitive attributes are defined in the server
configuration. When a Tequila client asks for the value of
such attribute, the login screen shows more information to the
user. For example, if I define the attribute 'firstname' as being
sensitive, the following things will happen:

10. Connectors

Tequila servers don't hold any information about users all by
themselves. They must rely on external identity data servers.
The communication between Tequila servers and the local
identity management system is done via 'connectors'. There
are two kinds of connectors, authentication connectors and
data connectors.

10.1 Authentication connector
The authentication connector (only one by server) is in charge
of authenticating users (surprising!). It implements only three
methods :

• configure (config_file) : Connector initialization.
• auth (username, password) : Does what you think and

returns true or false.
• validuser (username) : Is this username valid?

Illustration 3 : Sensitive attributes warning.

Some more methods can be implemented in order to take
advantage of the automated configuration tool (Margarita) :

• init ()
• setattributes ()
• adminpage ()
• changeconfig
• writeconfig
• etc...

10.2 Data connectors
There may be any number of data connectors. They are
responsible for providing user attributes values. They must
implement the following methods:

• configure () : Connector initialization.
• supports () : Returns the list of attributes supported by

this connector.
• getattrs (username, @attrslist) : returns a hash with

the values of all attributes in attrslist filled.

Other methods are also necessary if you want the connector to
be configurable with Margarita.

11. Administration

A Web tool called Margarita is provided to easily configure
the Tequila server. Margarita can manage the server itself and
all the connectors that export the configuration interface (see
previous paragraph). Example screens :

12. Implementation

The Tequila server is fully written in Perl, so are the default
connectors. Other connectors must be written in Perl too, but
a thin Perl interface to the actual code can be used. The
Apache modules are written in C.

13. Conclusion

Tequila can play a major role either in single and multiple
organizations trust scheme. It is not a finished tool, there is
plenty of room for improvement. Objects manipulated by
Tequila are conceptually information and assertions about
users, it is very close to what SAML (Security Assertion
Markup Language) is all about, I will probably soon add
SAML support into Tequila, enabling more generic SAML
clients to dialog with Tequila servers.

14. License

Tequila is GPL, you are encouraged to download, use, and
improve it. I will offer support, but Tequila is a work in
progress, and any help is welcome.

15. References

[1] Tequila home page : http://tequila.epfl.ch/

[2] Source forge : http://sourceforge.net/projects/tequila-auth/

[3] Download : http://slpc1.epfl.ch/public/software/tequila/

[4] EPFL : http://www.epfl.ch/

Illustration 4 : Margarita main screen

Illustration 54 : Margarita, configuring LDAP connector

