

THE EVOLUTION OF

OPERATING SYSTEMS∗

PER BRINCH HANSEN

(2000)

The author looks back on the first half century of operating systems and selects

his favorite papers on classic operating systems. These papers span the entire

history of the field from the batch processing systems of the 1950s to the

distributed systems of the 1990s. Each paper describes an operating system

that combines significant ideas in an elegant way. Most of them were written

by the pioneers who had the visions and the drive to make them work. The

author summarizes each paper and concludes that operating systems are based

on a surprisingly small number of ideas of permanent interest.

INTRODUCTION

The year 2000 marks the first half century of computer operating systems.
To learn from the pioneers of the field, I have selected my favorite papers on
classic operating systems. These papers span the entire history of the field
from the batch processing systems of the 1950s to the distributed systems
of the 1990s. I assume that you already know how operating systems work,
but not necessarily how they were invented.

The widespread use of certain operating systems is of no interest to me,
since it often has no obvious relationship to the merits (or flaws) of these
systems. To paraphrase G. H. Hardy (1969), Beauty is the first test: there
is no permanent place in the world for ugly ideas.

Let me explain how I made my choices:

∗P. Brinch Hansen, The evolution of operating systems. In Classic Operating Systems:
From Batch Processing to Distributed Systems, P. Brinch Hansen, Ed. Copyright c© 2000,
Springer-Verlag, New York.

1

2 PER BRINCH HANSEN

• Each paper describes an operating system that combines significant
ideas in an elegant way.

• I picked mostly papers written by the pioneers who had the visions and
the drive to make them work. I also included a few elegant systems
that broke no new ground, but convincingly demonstrated the best
ideas known at the time.

• I would have preferred short papers that were a pleasure to read. How-
ever, as Peter Medawar (1979) truthfully has said, “Most scientists do
not know how to write.” In some cases, I had to settle for papers in
which “clarity has been achieved and the style, if not graceful, is at
least not raw and angular.”

The evolution of operating systems went through seven major phases
(Table 1). Six of them significantly changed the ways in which users ac-
cessed computers through the open shop, batch processing, multiprogram-
ming, timesharing, personal computing, and distributed systems. In the
seventh phase the foundations of concurrent programming were developed
and demonstrated in model operating systems.

Table 1 Classic Operating Systems

Major Phases Operating Systems
I Open Shop 1 IBM 701 open shop (1954)
II Batch Processing 2 BKS system (1961)
III Multiprogramming 3 Atlas supervisor (1961)

4 B5000 system (1964)
5 Exec II system (1966)
6 Egdon system (1966)

IV Timesharing 7 CTSS (1962)
8 Multics file system (1965)
9 Titan file system (1972)
10 Unix (1974)

V Concurrent Programming 11 THE system (1968)
12 RC 4000 system (1969)
13 Venus system (1972)
14 Boss 2 system (1975)
15 Solo system (1976)
16 Solo program text (1976)

VI Personal Computing 17 OS 6 (1972)
18 Alto system (1979)
19 Pilot system (1980)
20 Star user interface (1982)

VII Distributed Systems 21 WFS file server (1979)
22 Unix United RPC (1982)
23 Unix United system (1982)
24 Amoeba system (1990)

THE EVOLUTION OF OPERATING SYSTEMS 3

I chose 24 papers on classic operating systems with reasonable confidence.
With so many contenders for a place in operating systems history, you will
probably disagree with some of my choices. For each phase, I attempted to
include a couple of early pioneering systems followed by a few of the later
systems. Some of the latter could undoubtedly have been replaced by other
equally representative systems. Although I left out a few dinosaurs, I hope
that there are no missing links.

The publication dates reveal that the 1960s and 1970s were the vintage
years of operating systems; by comparison, the 1980s and 1990s seem to have
yielded less. This is to be expected since the early pioneers entered the field
before the best ideas had been invented.

The selected papers show that operating systems are based on a surpris-
ingly small number of ideas of permanent interest (Table 2). The rest strike
me as a fairly obvious consequence of the main themes.

Table 2 Fundamental Ideas

Major Phases Technical Innovations
I Open Shop The idea of operating systems
II Batch Processing Tape batching

First-in, first-out scheduling
III Multiprogramming Processor multiplexing

Indivisible operations
Demand paging
Input/output spooling
Priority scheduling
Remote job entry

IV Timesharing Simultaneous user interaction
On-line file systems

V Concurrent Programming Hierarchical systems
Extensible kernels
Parallel programming concepts
Secure parallel languages

VI Personal Computing Graphic user interfaces
VII Distributed Systems Remote servers

The following is a brief resume of the selected papers with some back-
ground information. Throughout I attempt to balance my own views by
quoting both critical and complimentary comments of other researchers.

4 PER BRINCH HANSEN

PART I OPEN SHOP

1 IBM 701 Open Shop

We begin the story of operating systems in 1954 when computers had no
operating systems but were operated manually by their users:

The IBM 701 computer at the General Motors Research Laboratories.

George F. Ryckman (1983)

George Ryckman remembered the gross inefficiency of the open shop opera-
tion of IBM’s first computer, the famous 701:

Each user was allocated a minimum 15-minute slot, of which time
he usually spent 10 minutes in setting up the equipment to do his
computation . . . By the time he got his calculation going, he may have
had only 5 minutes or less of actual computation completed—wasting
two thirds of his time slot.

The cost of the wasted computer time was $146,000 per month—in 1954
dollars!

John McCarthy (1962) made a similar remark about the TX-0 computer
used in open shop mode at MIT. He added:

If the TX-0 were a much larger computer, and if it were operated in
the same manner as at present, the number of users who could be
accommodated would still be about the same.

PART II BATCH PROCESSING

Surely, the greatest leap of imagination in the history of operating systems
was the idea that computers might be able to schedule their own workload
by means of software.

The early operating systems took drastic measures to reduce idle com-
puter time: the users were simply removed from the computer room! They
were now asked to prepare their programs and data on punched cards and
submit them to a computing center for execution. The open shop had be-
come a closed shop.

Now, card readers and line printers were too slow to keep up with fast
computers. This bottleneck was removed by using fast tape stations and
small satellite computers to perform batch processing.

THE EVOLUTION OF OPERATING SYSTEMS 5

Operators collected decks of punched cards from users and used a satellite
computer to input a batch of jobs from punched cards to a magnetic tape.
This tape was then mounted on a tape station connected to a main computer.
The jobs were now input and run one at a time in their order of appearance
on the tape. The running jobs output data on another tape. Finally, the
output tape was moved to a satellite computer and printed on a line printer.
While the main computer executed a batch of jobs, the satellite computers
simultaneously printed a previous output tape and produced the next input
tape.

Batch processing was severely limited by the sequential nature of mag-
netic tapes and early computers. Although tapes could be rewound, they
were only efficient when accessed sequentially. And the first computers could
only execute one program at a time. It was therefore necessary to run a com-
plete batch of jobs at a time and print the output in first-come, first-served
order.

To reduce the overhead of tape changing, it was essential to batch many
jobs on the same tape. Unfortunately, large batches greatly increased service
times from the users’ point of view. It would typically take hours (or even
a day or two) before you received the output of a single job. If the job
involved a program compilation, the only output for that day might be an
error message caused by a misplaced semicolon!

The SHARE operating system for the IBM 709 was an early batch pro-
cessing system described by Bratman (1959).1 Unfortunately, this short
paper does not explain the basic idea succinctly, concentrating instead on
the finer points of different job types.

2 BKS System

Much to my surprise, it was difficult to find a well-written paper about any
early batch processor. Bob Rosin (2000) explained why such papers were
rare:

First, these systems were “obvious” and could be understood in min-
utes from reading a manual. Second, there were very few different
kinds of computers, and the community of system programmers was
similarly small. At least in the United States, almost everyone who
wanted to know about these systems could and did communicate di-
rectly with their authors.

1The SHARE system is briefly mentioned at the end of Article 1.

6 PER BRINCH HANSEN

The paper I chose describes the BKS system which occupied 2,688 words
only out of a 32,768-word memory. In comparison to this system, later
operating system designers have mostly failed in their search for simplicity!

The BKS system for the Philco-2000.

Richard B. Smith (1961)

PART III MULTIPROGRAMMING

In the 1960s large core memories, secondary storage with random access,
data channels, and hardware interrupts changed operating systems radically.
Interrupts enabled a processor to simulate concurrent execution of multiple
programs and control simultaneous input/output operations. This form of
concurrency became known as multiprogramming.

Christopher Strachey (1959) wrote the first seminal paper on multipro-
gramming. Fifteen years later, Strachey (1974) wrote to Donald Knuth:

The paper I wrote called “Time-sharing in Large Fast Computers”
was read at the first (pre IFIP) conference in 1960 [sic]. It was mainly
about multiprogramming (to avoid waiting for peripherals) . . . I did
not envisage the sort of console system which is now so confusingly
called time-sharing.

Multiprogramming and secondary storage made it possible to build oper-
ating systems that handled a continuous stream of input, computation, and
output on a single computer using drums (or disks) to hold large buffers.
This arrangement was called spooling.2

Since spooling required no tapes, there was no longer any overhead of
tape mounting (unless user programs processed their own data tapes). Large
random access buffers made it feasible to use priority scheduling of jobs, such
as shortest-job-next (instead of first-come, first-served).

Incidentally, time-sharing may have made input spooling obsolete, but
many organizations still use output spooling for printers shared by clusters
of personal computers.

The term batch processing is now often used as a synonym for spooling.
This is somewhat misleading since jobs are no longer grouped into batches.
In 2000 this form of “batch processing” was still being used to run jobs
through the Cray machines at the Pittsburgh Supercomputing Center.3

2Spooling is an acronym for “Simultaneous Peripheral Operation On-Line.”
3See the Web site at http://www.psc.edu/machines/cray/j90/access/batch.html.

THE EVOLUTION OF OPERATING SYSTEMS 7

3 Atlas Supervisor

The use of multiprogramming for spooling was pioneered on the Atlas com-
puter at Manchester University in the early 1960s:

The Atlas supervisor.

Tom Kilburn, R. Bruce Payne and David J. Howarth (1961)

Tom Kilburn felt that “No other single paper on the Atlas System would be
a better choice” (Rosen 1967). This amazing paper explains completely new
ideas in readable prose without the use of a single figure!

Atlas also introduced the concept of demand paging between a core mem-
ory of 16 K and a drum of 96 K words:

The core store is divided into 512 word “pages”; this is also the size
of the fixed blocks on drums and magnetic tapes. The core store and
drum store are addressed identically, and drum transfers are performed
automatically.

A program addresses the combined “one-level store” and the supervi-
sor transfers blocks of information between the core and drum store
as required; the physical location of each block of information is not
specified by the program, but is controlled by the supervisor.

Finally, Atlas was the first system to exploit supervisor calls known as
“extracodes”:

Extracode routines form simple extensions of the basic order code, and
also provide specific entry to supervisor routines.

The concepts of spooling, demand paging, and supervisor calls have in-
fluenced operating systems to this day. The Atlas supervisor has been called
“the first recognisable modern operating system” (Lavington 1980). It is, I
believe, the most significant breakthrough in the history of operating sys-
tems.

The virtual machine described in most published papers on Atlas is the
one that runs user programs. The chief designer of the supervisor, David
Howarth (1972a), pointed out that this virtual machine “differs in many
important respects from the ‘virtual machine’ used by the supervisor itself.”
These differences complicated the design and maintenance of the system.

8 PER BRINCH HANSEN

The later RC 4000 multiprogramming system had the same weakness (Brinch
Hansen 1973).

By 1960 high-level programming languages, such as Fortran, Algol 60 and
Cobol, were already being used for user programming. However, operating
systems, such as the Atlas supervisor, were still programmed in machine
language which was both difficult to understand and error-prone.

4 B5000 Master Control Program

The Burroughs B5000 computer had stack instructions for efficient execution
of sequential programs written in Algol 60 (Barton 1961). For this purpose
the B5000 was truly a revolutionary architecture. The Burroughs group
published only a handful of papers about the B5000 system, including

Operating system for the B5000.

Clark Oliphint (1964)

Admittedly, this brief paper does not do justice to the significant accom-
plishments of this pioneering effort. Organick (1973) and McKeag (1976a)
provide an abundance of detailed information.

Burroughs used its own variants of Algol to program the B5000 Master
Control Program, which supported both multiprogramming and multipro-
cessing of user programs.

The system used virtual memory with automatic transfers of data and
program segments between primary and secondary storage (MacKenzie 1965).
A typical system could run on the order of 10 user jobs at a time. About
once a day, thrashing would occur. This was not detected by the system.
The operator was expected to notice any serious degradation of performance
and restart the system (McKeag 1976a).

Unfortunately the programming languages of the early 1960s offered no
support for concurrent programming of operating systems. High-level lan-
guages for concurrent programming were only invented in the 1970s.

At the time the only option open to Burroughs was to adopt an extremely
dangerous short-cut: The B5000 operating system (and its successors) were
written in extended Algol that permitted systems programs to access the
whole memory as an array of (unprotected) machine words.4 This program-
ming trick effectively turned extended Algol into an assembly language with

4It was sometimes referred to as “Burroughs overextended Algol.”

THE EVOLUTION OF OPERATING SYSTEMS 9

an algorithmic notation. The dangers of using such an implementation lan-
guage were very real.

Roche (1972) made the following comment about a B5500 installation in
which the user was permitted to program in extended Algol:

This allows the use of stream procedures, a means of addressing, with-
out checks, an absolute offset from his data area. Mis-use and abuse of
these facilities by ill-informed or over-ambitious users could, and often
did, wreck the system.

Organick (1973) pointed out that the termination of a task in the B6700
operating system might cause its offspring tasks to lose their stack space!
The possibility of a program being able to delete part of its own stack is,
of course, completely at variance with our normal expectations of high-level
languages, such as Fortran, Algol, or Pascal.

According to Rosin (1987), “High-level languages were used exclusively
for both customer programming and systems programming” of the B5000.
Similar claims would be made for later operating systems programmed in
intermediate-level languages, including Multics (Corbató 1965), OS 6 (Stoy
1972), and Unix (Ritchie 1974). However, in each case, system programmers
had extended sequential programming languages with unsafe features for
low-level programming.

There is no doubt about the practical advantages of being able to pro-
gram an operating system in a language that is at least partly high-level.
However, a programming notation that includes machine language features
is, per definition, not a high-level language.

Since nobody could expect Burroughs to use concepts that had not yet
been invented, the above criticism does not in any way diminish the contribu-
tion of a bold experiment: the first tentative step towards writing operating
systems in a high-level language.

5 Exec II System

The operation of early batch processing systems as closed shops set a prece-
dence that continued after the invention of multiprogramming. The only sys-
tem that boldly challenged the prevailing wisdom was the Exec II operating
system for the Univac 1107 computer at Case Western Reserve University:

Description of a high capacity, fast turnaround

university computing center.

William C. Lynch (1966)

10 PER BRINCH HANSEN

Bill Lynch writes that

The [Case Computing] Center employs an open-shop type philosophy
that appears to be unique among large scale installations. This phi-
losophy leads to turnaround times which are better by an order of
magnitude than those commonly being obtained with comparable scale
equipment.

Exec II was designed to run one job at a time using two fast drums for in-
put/output spooling. The system was connected to several card reader/line
printer groups. When a user inserted a deck in any reader, the cards were
immediately input. The user would then remove her cards and proceed to
the line printer where the output of the job would appear shortly.

85% of the jobs required less than a minute of computer time. A student
was often able to run a small job, repunch a few cards, and run the job again
in less than five minutes. The system typically ran 800 jobs a day with a
processor utilization of 90%. Less than 5% of the jobs used magnetic tapes.
Users were also responsible for mounting and identifying their own tapes.

Occasionally, the phenomenal success of Exec II was limited by its policy
of selecting the shortest job and running it to completion (or time limit):

when a long running program is once started, no other main program
is processed until the long running job is finished. Fortunately this
does not happen often but when it does, it ruins the turnaround time.
It appears to be desirable to have . . . an allocation philosophy which
would not allow the entire machine to be clogged with one run, but
would allow short jobs to pass the longer ones. Such a philosophy,
implemented with conventional multiprogramming techniques, should
remove this difficulty.

The scheduling algorithm currently being used leaves something to be
desired. It selects jobs (within classes) strictly on the basis of shortest
time limit. No account is taken of waiting time. As a result, a user
with a longer run can be completely frozen out by a group of users
with shorter runs.

The system also supported remote job entry through modems and tele-
phone lines. Exec II came remarkably close to realizing the main advantages
of time-sharing (which was still in the future): remote access to a shared
computer with fast response at reasonable cost.

THE EVOLUTION OF OPERATING SYSTEMS 11

Did I forget to mention that Exec II did all of that in a memory of 64 K
words?

Exec II demonstrated that the most important ingredient of radically
new ideas is often the rare intellectual ability to look at existing technology
from a new point of view. (That would also be true of the first timesharing
systems.)

6 Egdon System

The Egdon system deserves to be recognized as a classic operating system:

The Egdon system for the KDF9.

David Burns, E. Neville Hawkins, D. Robin Judd and John L. Venn (1966)

It ran on a KDF computer with 32 K words of core memory, eight tape units
and a disk of 4 M words. The disk was mainly used to hold library routines,
system programs and work space for the current user program.

The system combined traditional tape batching with spooling of tape
input/output. The system automatically switched between two input tapes.
Jobs were copied from a card reader onto one of the tapes. When that tape
was full, the system rewound it and executed one job at a time. At the same
time, the system started filling the second input tape. In a slightly more
complicated way, the system switched between a third tape that received
output from the running program and a fourth one that was being printed.

The Egdon system was completed on time in 15 months with a total
effort of 20 person-years. The authors attribute their sense of urgency to
the existence of clear objectives from the start and a stiff penalty clause for
late delivery. This “meant that a clear definition was arrived at quickly and
changes were kept to a minimum.”

PART IV TIMESHARING

John McCarthy proposed the original idea of timesharing at MIT in an
unpublished memorandum dated January 1, 1959:

I want to propose an operating system for [the IBM 709] that will
substantially reduce the time required to get a problem solved on the
machine . . . The only way quick response can be provided at bearable
cost is by time-sharing. That is, the computer must attend to other
customers while one customer is reacting to some output.

12 PER BRINCH HANSEN

I think the proposal points to the way all computers will be operated
in the future, and we have a chance to pioneer a big step forward in
the way computers are used.

In the spring of 1961 he explained his visionary thinking further (Mc-
Carthy 1962):

By a time-sharing computer system I shall mean one that interacts with
many simultaneous users through a number of remote consoles. Such
a system will look to each user like a large private computer. . .When
the user wants service, he simply starts typing in a message requesting
the service. The computer is always ready to pay attention to any key
that he may strike.

Because programs may . . . do only relatively short pieces of work be-
tween human interactions, it is uneconomical to have to shuttle them
back and forth continually to and from secondary storage. Therefore,
there is a requirement for a large primary memory . . . The final re-
quirement is for secondary storage large enough to maintain the users’
files so that users need not have separate card or tape input-output
units.

It would be difficult to summarize the essence of timesharing more concisely.
But to really appreciate McCarthy’s achievement, we need to remind our-
selves that when he outlined his vision nobody had ever seen a timesharing
system. A truly remarkable and revolutionary breakthrough in computing!

7 CTSS

Fernando Corbató at MIT is generally credited with the first demonstration
of timesharing:

An experimental time-sharing system.

Fernando Corbató, Marjorie Merwin-Daggett and Robert C. Daley (1962)

A quarter of a century later, Rosin and Lee (1992) interviewed Corbató
about this system, known as CTSS:

By November 1961 we were able to demonstrate a really crude proto-
type of the system [on the IBM 709]. What we had done was [that]

THE EVOLUTION OF OPERATING SYSTEMS 13

we had wedged out 5K words of the user address space and inserted a
little operating system that was going to manage the four typewriters.
We did not have any disk storage, so we took advantage of the fact that
it was a large machine and we had a lot of tape drives. We assigned
one tape drive per typewriter.

The paper said we were running on the [IBM] 7090, but we in fact had
not got it running yet.

Corbató agreed that

the person who deserves the most credit for having focussed on the
vision of timesharing is John McCarthy . . . [He] wrote a very important
memo where he outlined the idea of trying to develop a timesharing
system.

In September 1962 McCarthy working with Bolt Beranek and Newman
demonstrated a well-engineered small timesharing system on a PDP 1 com-
puter with a swapping drum (McCarthy 1963). However, by then the proto-
type of CTSS running on inadequate hardware had already claimed priority
as the first demonstration of timesharing.

In the summer of 1963 CTSS was still in the final stages of being tested
on a more appropriate IBM 7090 computer equipped with a disk (Wilkes
1985). Eventually this version of CTSS became recognized as the first large-
scale timesharing system to be offered to a wide and varied group of users
(Crisman 1965).

8 Multics File System

In 1964 MIT started the design of a much larger timesharing system named
Multics. According to Corbató (1965):

The overall design goal of the Multics system is to create a comput-
ing system which is capable of comprehensively meeting almost all of
the present and near-future requirements of a large computer service
installation.

By the fall of 1969 Multics was available for general use at MIT. The
same year, Bell Labs withdrew from the project (Ritchie 1984):

14 PER BRINCH HANSEN

To the Labs computing community as a whole, the problem was the
increasing obviousness of the failure of Multics to deliver promptly any
sort of usable system, let alone the panacea envisioned earlier.

Multics was never widely used outside MIT. In hindsight, this huge system
was an overambitious dead end in the history of operating systems. It is
a prime example of the second-system effect—the temptation to follow a
simple, first system with a much more complicated second effort (Brooks
1975).

However, CTSS and Multics made at least one lasting contribution to
operating system technology by introducing the first hierarchical file systems,
which gave all users instant access to both private and shared files:

A general-purpose file system for secondary storage.

Robert C. Daley and Peter G. Neumann (1965)

Note that this paper was a proposal only published several years before the
completion of Multics.

9 Titan File System

The Titan system was developed and used at Cambridge University (Wilson
1976). It supported timesharing from 26 terminals simultaneously and was
noteworthy for its simple and reliable file system:

File integrity in a disc-based multi-access system.

A. G. Fraser (1972)

A 128 M byte disk held about 10,000 files belonging to some 700 users. It
was the first file system to keep passwords in scrambled form to prevent
unauthorized retrieval and misuse of them. Users were able to list the ac-
tions that they wished to authorize for each file (execute, read, update, and
delete.) The system automatically made copies of files on magnetic tape as
an insurance against hardware or software errors.

According to A. G. Fraser (Discussion 1972):

The file system was designed in 1966 and brought into service in March
1967. At that time there were very few file systems designed for on-
line use available, the most influential at the time being the Multics
proposal.

THE EVOLUTION OF OPERATING SYSTEMS 15

J. Warne added that “This is a very thorough paper, so precise in detail
that it is almost a guide to implementation” (Discussion 1972). Fraser’s
paper makes it clear that it is a nontrivial problem to ensure the integrity
of user files in a timesharing system.

File integrity continues to be of vital importance in distributed systems
with shared file servers.

10 Unix

In 1969 Dennis Ritchie and Ken Thompson at Bell Labs began trying to find
an alternative to Multics. By the end of 1971, their Unix system was able
to support three users on a PDP 11 minicomputer. Few people outside Bell
Labs knew of its existence until 1973 when the Unix kernel was rewritten in
the C language. Nothing was published about Unix until 1974:

The Unix time-sharing system.

Dennis M. Ritchie and Ken Thompson (1974)

Unix appeared at the right time (Slater 1987):

The advent of the smaller computers, the minis—especially the PDP-
11—had spawned a whole new group of computer users who were dis-
appointed with existing operating software. They were ready for Unix.
Most of Unix was not new, but rather what Ritchie calls “a good en-
gineering application of ideas that had been around in some form and
[were now] made convenient to use.”

By the mid-1980s Unix had become the leading standard for timesharing
systems (Aho 1984):

In the commercial world there are 100,000 Unix systems in operation
. . . Virtually every major university throughout the world now uses
the Unix system.

A superior tool like Unix often feels so natural that there is no incentive
for programmers to look for a better one. Still, after three decades, it can be
argued that the widespread acceptance of Unix has become an obstacle to
further progress. Stonebraker (1981), for example, describes the problems
that Unix creates for database systems.

16 PER BRINCH HANSEN

PART V CONCURRENT PROGRAMMING

By the mid-1960s operating systems had already reached a level of com-
plexity that was beyond human comprehension. In looking back Bill Lynch
(1972) observed that:

Several problems remained unsolved within the Exec II operating sys-
tem and had to be avoided by one ad hoc means or another. The prob-
lem of deadlocks was not at all understood in 1962 when the system
was designed. As a result several annoying deadlocks were programmed
into the system.

From the mid-1960s to the mid-1970s computer scientists developed a
conceptual basis that would make operating systems more understandable.
This pioneering effort led to the discovery of fundamental principles of con-
current programming. The power of these ideas was demonstrated in a hand-
ful of influential model operating systems.

11 THE Multiprogramming System

The conceptual innovation began with Edsger Dijkstra’s famous THE sys-
tem:

The structure of the THE multiprogramming system.

Edsger W. Dijkstra (1968a)

This was a spooling system that compiled and executed a stream of Algol
60 programs with paper tape input and printer output. It used software-
implemented demand paging between a 512 K-word drum and a 32 K-word
memory. There were five user processes and 10 input/output processes,
one for each peripheral device. The system used semaphores for process
synchronization and communication.

This short paper concentrates on Dijkstra’s most startling claim:

We have found that it is possible to design a refined multiprogram-
ming system in such a way that its logical soundness can be proved a
priori and its implementation can admit exhaustive testing. The only
errors that showed up during testing were trivial coding errors . . . the
resulting system is guaranteed to be flawless.

In Brinch Hansen (1979) I wrote:

THE EVOLUTION OF OPERATING SYSTEMS 17

Dijkstra’s multiprogramming system also illustrated the conceptual
clarity of hierarchical structure. His system consisted of several pro-
gram layers which gradually transform the physical machine into a
more pleasant abstract machine that simulates several processes which
share a large, homogeneous store and several virtual devices. These
program layers can be designed and studied one at a time.

The system was described in more detail by Habermann (1967), Dijkstra
(1968b, 1971), Bron (1972) and McKeag (1976b).

Software managers continue to believe that software design is based on
a magical discipline, called “software engineering,” which can be mastered
by average programmers. Dijkstra explained that the truth of the matter is
simply that

the intellectual level needed for system design is in general grossly
underestimated. I am convinced more than ever that this type of work
is very difficult, and that every effort to do it with other than the best
people is doomed to either failure or moderate success at enormous
expense.

In my opinion, the continued neglect of this unpopular truth explains the
appalling failure of most software which continues to be inflicted on computer
users to this day.

12 RC 4000 Multiprogramming System

In 1974 Alan Shaw wrote:

There exist many approaches to multiprogramming system design, but
we are aware of only two that are systematic and manageable and at
the same time have been validated by producing real working operating
systems. These are the hierarchical abstract machine approach devel-
oped by Dijkstra (1968a) and the nucleus methods of Brinch Hansen
(1969) . . . The nucleus and basic multiprogramming system for the RC
4000 is one of the most elegant existing systems.

The RC 4000 multiprogramming system was not a complete operating
system, but a small kernel upon which operating systems for different pur-
poses could be built in an orderly manner:

18 PER BRINCH HANSEN

RC 4000 Software: Multiprogramming System.

Per Brinch Hansen (1969)

The kernel provided the basic mechanisms for creating a tree of parallel
processes that communicated by messages. It was designed for the RC 4000
computer manufactured by Regnecentralen in Denmark. Work on the system
began in the fall of 1967, and a well-documented reliable version was running
in the spring of 1969.

Before the RC 4000 multiprogramming system was programmed, I de-
scribed the design philosophy which drastically generalized the concept of
an operating system (Brinch Hansen 1968):

The system has no built-in assumptions about program scheduling and
resource allocation; it allows any program to initiate other programs in
a hierarchal manner.5 Thus, the system provides a general frame[work]
for different scheduling strategies, such as batch processing, multiple
console conversation, real-time scheduling, etc.

In retrospect, this radical idea was probably the most important contribution
of the RC 4000 system to operating system technology. If the kernel concept
seems obvious today, it is only because it has passed into the general stock
of knowledge about system design. It is now commonly referred to as the
principle of separation of mechanism and policy (Wulf 1974).

The RC 4000 system was also noteworthy for its message communication.
Every communication consisted of an exchange of a message and an answer
between two processes. This protocol was inspired by an early decision to
treat peripheral devices as processes, which receive input/output commands
as messages and return acknowledgements as answers. In distributed sys-
tems, this form of communication is now known as remote procedure calls.

The system also supported nondeterministic communication which en-
abled processes to inspect and receive messages in arbitrary (instead of first-
come, first-served) order. This flexibility is necessary to program a process
that implements priority scheduling of a shared resource. In hindsight, such
a process was equivalent to the “secretary” outlined by Dijkstra (1975). In
RC 4000 terminology it was known as a conversational process.

Initially the RC 4000 computer had only an extremely basic operating
system running on top of the kernel. According to Lauesen (1975):

5Here I obviously meant “processes” rather than “programs.”

THE EVOLUTION OF OPERATING SYSTEMS 19

The RC 4000 software was extremely reliable. In a university environ-
ment, the system typically ran under the simple operating system for
three months without crashes . . . The crashes present were possibly
due to transient hardware errors.

When the RC 4000 system was finished I described it in a 5-page journal
paper (Brinch Hansen 1970). I then used this paper as an outline of the
160-page system manual (Brinch Hansen 1969) by expanding each section of
the paper. Article 12 is a reprint of the most important part of the original
manual, which has been out of print for decades.6

13 Venus System

The Venus system was a small timesharing system serving five or six users
at a time:

The design of the Venus operating system.

Barbara H. Liskov (1972)

Although it broke no new ground, the Venus system was another convincing
demonstration of Dijkstra’s concepts of semaphores and layers of abstraction.

14 Boss 2 System

The Boss 2 system was an intellectual and engineering achievement of the
highest order:

A large semaphore based operating system.

Søren Lauesen (1975)

It was an ambitious operating system that ran on top of an extended version
of the RC 4000 kernel. According to its chief designer, Søren Lauesen:

Boss 2 is a general purpose operating system offering the following
types of service simultaneously: batch jobs, remote job entry, time
sharing (conversational jobs), jobs generated internally by other jobs,
process control jobs.

6My operating systems book (Brinch Hansen 1973) included a slightly different version
of the original manual supplemented with abstract Pascal algorithms.

20 PER BRINCH HANSEN

The system used over a hundred parallel activities, one for every periph-
eral device and job process. These activities were implemented as coroutines
within a single system process. The coroutines communicated by means
of semaphores and message queues, which potentially were accessible to all
coroutines. These message queues were called “queue semaphores” to dis-
tinguish them from the message queues in the RC 4000 kernel.

Dijkstra (1968a) and Habermann (1967) were able to prove by induction
that the THE system was deadlock-free. Lauesen used a similar argument
to prove that the coroutines of Boss 2 eventually would process any request
for service.

Boss 2 was implemented and tested by four to six people over a period
of two years:

During the six busiest hours, the cpu-utilization is 40–50 pct used by
jobs, 10–20 pct by the operating system and the monitor.7 The average
operating system overhead per job is 3 sec.

During the first year of operation, the system typically ran for weeks
without crashes. Today it seems to be error free.

15 Solo System

Concurrent Pascal was the first high-level language for concurrent program-
ming (Brinch Hansen 1975). Since synchronization errors can be extremely
difficult to locate by program testing, the language was designed to per-
mit the detection of many of these obscure errors by means of compilation
checks. The language used the scope rules of processes and monitors to
enforce security from race conditions (Brinch Hansen 1973, Hoare 1974).

By January 1975 Concurrent Pascal was running on a PDP 11/45 mini-
computer with a removable disk pack. The portable compiler (written in
Pascal) generated platform-independent concurrent code, which was executed
by a small kernel written in assembly language.

The first operating system written in Concurrent Pascal was the portable
Solo system which was running in May 1975:

The Solo operating system: a Concurrent Pascal program.

Per Brinch Hansen (1976a)

7The RC 4000 kernel was also known as the “monitor.”

THE EVOLUTION OF OPERATING SYSTEMS 21

It was a single-user operating system for the development of Pascal programs.
Every user disk was organized as a single-level file system. The heart of Solo
was a job process that compiled and ran programs stored on the disk. Two
additional processes performed input/output spooling simultaneously.

The Solo system demonstrated that it is possible to write small operat-
ing systems in a secure programming language without machine-dependent
features. The programming tricks of assembly language were impossible in
Concurrent Pascal: there were no typeless memory words, registers, and
addresses in the language. The programmer was not even aware of the exis-
tence of physical processors and interrupts. The language was so secure that
concurrent processes ran without any form of memory protection.8

16 Solo Program Text

Solo was the first major example of a modular concurrent program imple-
mented in terms of abstract data types (classes, monitors and processes)
with compile-time checking of access rights. The most significant contribu-
tion of Solo was undoubtedly that the program text was short enough to be
published in its entirety in a computer journal:

The Solo operating system: processes, monitors and classes.

Per Brinch Hansen (1976b)

Harlan Mills had this to say about the Solo program text (Maddux 1979):

Here, an entire operating system is visible, with every line of program
open to scrutiny. There is no hidden mystery, and after studying such
extensive examples, the reader feels that he could tackle similar jobs
and that he could change the system at will. Never before have we seen
an operating system shown in such detail and in a manner so amenable
to modification.

PART VI PERSONAL COMPUTING

In the 1970s microprocessors and semiconductor memories made it feasible
to build powerful personal computers. Reduced hardware cost eventually
allowed people to own such computers. Xerox PARC was the leader in the

8Twenty years later, the designers of the Java language resurrected the idea of platform-
independent parallel programming (Gosling 1996). Unfortunately they replaced the secure
monitor concept of Concurrent Pascal with inferior insecure ideas (Brinch Hansen 1999).

22 PER BRINCH HANSEN

development of much of the technology which is now taken for granted: bit-
mapped displays, the mouse, laser printers and the Ethernet (Hiltzik 1999).

In Brinch Hansen (1982) I made two predictions about the future of
software for personal computing:

For a brief period, personal computers have offered programmers a
chance to build small software systems of outstanding quality using
the best available programming languages and design methods. . .The
simple operating procedures and small stores of personal computers
make it both possible and essential to limit the complexity of software.

The recent development of the complicated programming language
Ada combined with new microprocessors with large stores will soon
make the development of incomprehensible, unreliable software in-
evitable even for personal computers.

Both predictions turned out to be true (although Ada was not to blame).

17 OS 6

The OS 6 system was a simple single-user system developed at Oxford Uni-
versity for a Modular One computer with 32 K of core memory and a 1 M
word disk:

OS 6—an experimental operating system for a small computer:

input/output and filing system.

Joe E. Stoy and Christopher Strachey (1972)

The system ran one program at a time without multiprogramming. The pa-
per describes the implementation of the file system and input/output streams
in some detail.

The operating system and user programs were written in the typeless
language BCPL, which permitted unrestricted manipulation of bits and
addresses (Richards 1969). BCPL was the precursor of the C language
(Kernighan 1978).

18 Alto System

The Alto was the first personal computer developed by Xerox PARC. Ini-
tially it had 64 K words of memory and a 2.5 M-byte removable disk pack.

THE EVOLUTION OF OPERATING SYSTEMS 23

It also had a bit-mapped display, a mouse and an Ethernet interface. Over
a thousand Altos were eventually built (Smith 1982).

The Alto operating system was developed from 1973 to 1976 (Lampson
1988):

An open operating system for a single-user machine.

Butler W. Lampson and Robert F. Sproul (1979)

This paper describes the use of known techniques in a small, single-user
operating system. The authors acknowledge that “The streams are copied
wholesale from Stoy and Strachey’s OS 6 system, as are many aspects of
the file system.” A notable feature of the Alto system was that applica-
tions could select the system components they needed and omit the rest.
The most revolutionary aspect of the system, its graphic user interface, was
application-dependent and was not part of the operating system (Lampson
2000).

In some ways, the Alto system was even simpler than Solo. It was a
strictly sequential single-user system. Apart from keyboard input, there was
no concurrent input/output. The system executed only one process at a
time.

It did, however, have an extremely robust file system that could be re-
constructed in about one minute from “whatever fragmented state it may
have fallen into.”

A “world-swap” mechanism enabled a running program to replace itself
with any other program (or an already preempted program). Swapped pro-
grams communicated through files with standard names. This slow form of
context switching was used to simulate coroutines, among other things for
a printer server that alternated strictly between input and printing of files
received from the local network.

The Alto system was written almost entirely in BCPL. The use of a
low-level implementation language provided many opportunities for obscure
errors (Swinehart 1985):

In the Alto system, it was possible to free the memory occupied by
unneeded higher-level layers for other uses; inadvertent upward calls
had disastrous results.

19 Pilot System

Pilot was another single-user operating system from Xerox:

24 PER BRINCH HANSEN

Pilot: an operating system for a personal computer.

David D. Redell, Yogen K. Dalal, Thomas R. Horsley,
Hugh C. Lauer, William C. Lynch, Paul R. McJones,
Hal G. Murray and Stephen C. Purcell (1980)

It was written in the high-level language Mesa (Lampson 1980). From Con-
current Pascal and Solo, Mesa and Pilot borrowed the idea of writing a
modular operating system in a concurrent programming language as a col-
lection of processes and monitors with compile-time checking as the only
form of memory protection.

Mesa relaxed the most severe restriction of Concurrent Pascal by sup-
porting a variable number of user processes. However, the number of system
processes remained fixed. Mesa inherited some of BCPL’s problems with
invalid pointers, but was otherwise fairly secure (Swinehart 1985).

Pilot adapted several features of the Alto system, including its graphic
user interface and streams for reliable network communication. Pilot sup-
ported a “flat” file system. As in the Alto system, redundant data stored
in each page permitted recovery of files and directories after system failure.
A file could only be accessed by mapping its pages temporarily to a region
of virtual memory. This unusual mechanism was removed in the subsequent
Cedar system (Swinehart 1985).

Ten years after the completion of the Alto system, operating systems for
personal computing were already quite large. Pilot was a Mesa program of
24,000 lines. It was succeeded by the much larger Cedar system (Swinehart
1985).

Solo, Pilot, Cedar and a handful of other systems demonstrated that
operating systems can be written in secure high-level languages. However,
most operating system designers have abandoned secure languages in favor
of the low-level language C.

20 Star User Interface

Graphic user interfaces, pioneered by Doug Englebart (1968), Alan Kay
(1977) and others, had been used in various experimental Alto systems
(Lampson 1988). The Xerox Star was the first commercial computer with a
mouse and windows interface. It was based on the Alto, but ran three times
as fast and had 512 K bytes of memory:

The Star user interface: an overview.

David C. Smith, Charles Irby, Ralph Kimball and Eric Harslem (1982)

THE EVOLUTION OF OPERATING SYSTEMS 25

This wonderful paper was written when these ideas were still unfamiliar
to most computer users. Before writing any software, the Star designers
spent two years combining the different Alto interfaces into a single, uniform
interface. Their work was guided by a brilliant vision of an electronic office:

We decided to create electronic counterparts to the objects in an office:
paper, folders, file cabinets, mail boxes, calculators, and so on—an
electronic metaphor for the physical office. We hoped that this would
make the electronic world seem more familiar and require less training.

Star documents are represented, not as file names on a disk, but as
pictures on the display screen. They may be selected by pointing to
them with the mouse and clicking one of the mouse buttons . . . When
opened, documents are always rendered on the display exactly as they
print on paper.

These concepts are now so familiar to every computer user in the world that
it is difficult to appreciate just how revolutionary they were at the time. I
view graphic interfaces as one of the most important innovations in operating
system technology.

The Macintosh system was a direct descendant of the Star system (Poole
1984, Hiltzik 1999). In the 1990s the mouse and screen windows turned the
Internet into a global communication medium.

PART VII DISTRIBUTED SYSTEMS

In the late 1970s Xerox PARC was already using Alto computers on Eth-
ernets as servers providing printing and file services (Lampson 1988). In
the 1980s universities also developed experimental systems for distributed
personal computing. It is difficult to evaluate the significance of this recent
work:

• By 1980 the major concepts of operating systems had already been
discovered.

• Many distributed systems were built on top of the old time-sharing
system Unix, which was designed for central rather than distributed
computing (Pike 1995).

• In most distributed systems, process communication was based on a
complicated, unreliable programming technique, known as remote pro-
cedure calls.

26 PER BRINCH HANSEN

• Only a handful of distributed systems, including Locus (Popek 1981)
and the Apollo Domain (Leach 1983), were developed into commercial
products.

• There seems to be no consensus in the literature about the fundamental
contributions and relative merits of these systems.

Under these circumstances, the best I could do was to select a handful of
readable papers that I hope are representative of early and more recent dis-
tributed systems.

21 WFS File Server

The WFS system was the first file server that ran on an Alto computer:

WFS: a simple shared file system for a distributed environment.

Daniel Swinehart, Gene McDaniel and David R. Boggs (1979)

The WFS system behaved like a remote disk providing random access to
individual pages. To perform a disk operation, a client sent a request packet
to the WFS host, which completed the operation before returning a response
packet to the sender. The Ethernet software did not guarantee reliable
delivery of every packet. However, since the server attempted to reply after
every operation, the absence of a reply implied that a request had failed. It
usually sufficed to retransmit a request after a time-out period.

There was no directory structure within the system. Clients had to
provide their own file naming and directories. Any host had full access to
all WFS files. The lack of file security imposed further responsibility on the
clients.

In spite of its limitations, WFS was an admirable example of utter sim-
plicity. (One of the authors implemented it in BCPL in less than two
months.)

The idea of controlling peripheral devices by means of request and re-
sponse messages goes back to the RC 4000 system. In distributed systems,
it has become the universal method of implementing remote procedure calls.

22 Unix United RPC

Remote procedure calls (RPC) were proposed as a programming style by
James White (1976) and as a programming language concept by me (Brinch

THE EVOLUTION OF OPERATING SYSTEMS 27

Hansen 1978). Since then, system designers have turned it into an unreliable
mechanism of surprising complexity.

In their present form, remote procedure calls are an attempt to use un-
reliable message passing to invoke procedures through local area networks.
Many complications arise because system designers attempt to trade relia-
bility for speed by accepting the premise that users are prepared to accept
unreliable systems provided they are fast. This doubtful assumption has
been used to justify distributed systems in which user programs must cope
with lost and duplicate messages.

Much ingenuity has been spent attempting to limit the possible ways
in which remote procedure calls can fail. To make extraneous complexity
more palatable, the various failure modes are referred to as different forms of
“semantics” (Tay 1990). Thus we have the intriguing concepts of “at-most-
once” and “at-least-once” semantics. My personal favorite is the “maybe”
semantics of a channel that gives no guarantee whatsoever that it will deliver
any message. We are back where we started in the 1950s when unreliable
computers supported “maybe” memory (Ryckman 1983).

Tay (1990) admits that “Currently, there are [sic] no agreed definition on
the semantics of RPC.” Leach (1983) goes one step further and advocates
that “each remote operation implements a protocol tailored to its need.”
Since it can be both system-dependent and application-dependent, a remote
procedure call is no longer an abstract concept.

From the extensive literature on remote procedure calls, I have chosen
a well-written paper that clearly explains the various complications of the
idea:

The design of a reliable remote procedure call mechanism.

Santosh Shrivastava and Fabio Panzieri (1982)

The authors describe the implementation used in the Unix United system.
They correctly point out that:

At a superficial level it would seem that to design a program that pro-
vides a remote procedure call abstraction would be a straightforward
exercise. Surprisingly, this is not so. We have found the problem of
the design of the RPC to be rather intricate.

Lost and duplicate messages may be unavoidable in the presence of hard-
ware failures. But they should be handled below the user level. As an

28 PER BRINCH HANSEN

example, the Pilot system included a “network stream” protocol by which
clients could communicate reliably between any two network addresses (Re-
dell 1980).

23 Unix United System

By adding another software layer on top of the Unix kernel, the University
of Newcastle was able to make five PDP11 computers act like a single Unix
system, called Unix United. This was achieved without modifying standard
Unix or any user programs:

The Newcastle Connection or Unixes of the World unite.

David R. Brownbridge, Lindsay F. Marshall and Brian Randell (1982)

Unix United combined the local file systems into a global file system with
a common root directory. This distributed file system made it possible for
any user to access remote directories and files, regardless of which systems
they were stored on. In this homogeneous system, every computer was both
a user machine and a file server providing access to local files. The most
heavily used services were file transfers, line printing, network mail, and file
dumping on magnetic tape.

The idea of making separate systems act like a single system seems simple
and “obvious”—as elegant design always does. The authors wisely remind
us that

The additional problems and opportunities that face the designer of
homogeneous distributed systems should not be allowed to obscure the
continued relevance of much established practice regarding the design
of multiprogramming systems.

Unix United was a predecessor of the Sun Network File System (Sandberg
1985).

24 Amoeba System

Amoeba is an ambitious distributed system developed by computer scientists
in the Netherlands:

Experiences with the Amoeba distributed operating system.

Andrew S. Tanenbaum, Robbert van Renesse, Hans van Staveren,
Gregory J. Sharp, Sape J. Mullender, Jack Jansen and
Guido van Rossum (1990)

THE EVOLUTION OF OPERATING SYSTEMS 29

An Amoeba system consists of diskless single-user workstations and a pool
of single-board processors connected by a local area network. Servers provide
directory, file, and replication services. Gateways link Amoeba systems to
wide area networks.

A microkernel handles low-level memory allocation and input/output,
process and thread scheduling, as well as remote procedure calls. All other
services are provided by system processes. Like the RC 4000 multiprogram-
ming system, Amoeba creates a dynamic tree of processes. Each process is
a cluster of non-preemptible threads that communicate by means of shared
memory and semaphores.

The system is programmed as a collection of objects, each of which im-
plements a set of operations. Access rights, called capabilities, provide a
uniform mechanism for naming, accessing and protecting objects (Dennis
1966). Each object is managed by a server process that responds to remote
procedure calls from user processes (using “at-most-once” semantics).

The file system is reported to be twice as fast as the Sun Network File
System (Sandberg 1985). Since files can be created, but not changed, it is
practical to store them contiguously on disks. The system uses fault-tolerant
broadcasting to replicate directories and files on multiple disks.

Nothing is said about the size of the system. Amoeba has been used
for parallel scientific computing. It was also used in a project involving
connecting sites in several European countries.

This ends our journey through half a century of operating systems develop-
ment. The first 50 years of operating systems led to the discovery of fun-
damental concepts of hierarchical software design, concurrent programming,
graphic user interfaces, file systems, personal computing, and distributed
systems.

The history of operating systems illustrates an eternal truth about human
nature: we just can’t resist the temptation to do the impossible. This is as
true today as it was 30 years ago, when David Howarth (1972b) wrote:

Our problem is that we never do the same thing again. We get a lot
of experience on our first simple system, and then when it comes to
doing the same thing again with a better designed hardware, with all
the tools we know we need, we try and produce something which is
ten times more complicated and fall into exactly the same trap. We do

30 PER BRINCH HANSEN

not stabilise on something nice and simple and say “let’s do it again,
but do it very well this time.”

Acknowledgements

I thank Jonathan Greenfield, Butler Lampson, Mike McKeag, Peter O’Hearn
and Bob Rosin for their helpful comments on this essay.

References

1. A. V. Aho 1984. Foreword. Bell Laboratories Technical Journal 63, 8, Part 2
(October), 1573–1576.

2. R. S. Barton 1961. A new approach to the functional design of a digital computer.
Joint Computer Conference 19, 393–396.

3. H. Bratman and I. V. Boldt, Jr. 1959. The SHARE 709 system: supervisory
control. Journal of the ACM 6, 2 (April), 152–155.

4. P. Brinch Hansen 1968. The Structure of the RC 4000 Monitor. Regnecentralen,
Copenhagen, Denmark (February).

5. P. Brinch Hansen 1969. RC 4000 Software: Multiprogramming System. Regnecen-
tralen, Copenhagen, Denmark, (April). Article 12.

6. P. Brinch Hansen 1970. The nucleus of a multiprogramming system. Communica-
tions of the ACM 13, 4 (April), 238–241, 250.

7. P. Brinch Hansen 1973. Operating System Principles. Prentice-Hall, Englewood
Cliffs, NJ.

8. P. Brinch Hansen 1975. The programming language Concurrent Pascal. IEEE
Transactions on Software Engineering 1, 2 (June), 199–207.

9. P. Brinch Hansen, 1976a. The Solo operating system: a Concurrent Pascal program.
Software—Practice and Experience 6, 2 (April–June), 141–149. Article 15.

10. P. Brinch Hansen, 1976b. The Solo operating system: processes, monitors and
classes. Software—Practice and Experience 6, 2 (April–June), 165–200. Article 16.

11. P. Brinch Hansen 1978. Distributed Processes: a concurrent programming concept.
Communications of the ACM 21, 11 (November), 934–941.

12. P. Brinch Hansen 1979. A keynote address on concurrent programming. Computer
12 , 5 (May), 50–56.

13. P. Brinch Hansen 1982. Programming a Personal Computer. Prentice-Hall, Engle-
wood Cliffs, NJ.

14. P. Brinch Hansen 1993. Monitors and Concurrent Pascal: a personal history. SIG-
PLAN Notices 28, 3 (March), 1–35.

15. P. Brinch Hansen 1999. Java’s insecure parallelism. SIGPLAN Notices 34, 4 (April),
38–45.

THE EVOLUTION OF OPERATING SYSTEMS 31

16. C. Bron 1972. Allocation of virtual store in the THE multiprogramming system. In
Operating Systems Techniques, C. A. R. Hoare and R. H. Perrott Eds., Academic
Press, New York, 168–184.

17. F. P. Brooks, Jr. 1975. The Mythical Man-Month: Essays on Software Engineering.
Addison-Wesley, Reading, MA.

18. D. R. Brownbridge, L. F. Marshall and B. Randell 1982. The Newcastle Con-
nection or Unixes of the World Unite! Software—Practice and Experience 12, 12
(December), 1147–1162. Article 23.

19. D. Burns, E. N. Hawkins, D. R. Judd and J. L. Venn 1966. The Egdon system for
the KDF9. The Computer Journal 8, 4 (January), 297–302. Article 6.

20. F. J. Corbató, M. Merwin-Daggett and R. C. Daley 1962. An experimental time-
sharing system. Spring Joint Computer Conference 21, 335–344.

21. F. J. Corbató and V. A. Vyssotsky 1965. Introduction and overview of the Multics
system. Fall Joint Computer Conference 27, 185–196.

22. P. A. Crisman Ed. 1965. The Compatible Time-Sharing System: A Programmer’s
Guide. Second Edition, The MIT Press, Cambridge, MA.

23. R. C. Daley and P. G. Neumann 1965. A general-purpose file system for secondary
storage. Fall Joint Computer Conference 27, 213–229. Article 8.

24. J. B. Dennis and E. C. van Horn 1966. Programming semantics for multipro-
grammed computations. Communications of the ACM 9, 3 (March), 143–155.

25. E. W. Dijkstra 1968a. The structure of the THE multiprogramming system. Com-
munications of the ACM 11, 5 (May), 341–346. Article 11.

26. E. W. Dijkstra 1968b. Cooperating sequential processes. In Programming Lan-
guages, F. Genuys Ed., Academic Press, New York, 43–112.

27. E. W. Dijkstra 1971. Hierarchical ordering of sequential processes. Acta Informatica
1, 2, 115–138.

28. D. C. Englebart and W. K. English 1968. A research center for augmenting human
intellect. Fall Joint Computer Conference 33, 395–410.

29. A. G. Fraser 1972. File integrity in a disc-based multi-access system. In Operating
Systems Techniques, C. A. R. Hoare and R. H. Perrott Eds., Academic Press, New
York, 227–248. Article 9.

30. J. Gosling, B. Joy and G. Steele 1996. The Java Language Specification. Addison-
Wesley, Reading, MA.

31. A. N. Habermann 1967. On the harmonious cooperation of abstract machines.
Ph.D. thesis. Technological University, Eindhoven, The Netherlands.

32. G. H. Hardy 1969. A Mathematician’s Apology. Foreword by C. P. Snow. Cam-
bridge University Press, New York.

33. M. Hiltzik 1999. Dealers of Lightning: Xerox PARC and the Dawn of the Computer
Age. Harper Business, New York.

34. C. A. R. Hoare 1974. Monitors: an operating system structuring concept. Com-
munications of the ACM 17, 10 (October), 549–557.

32 PER BRINCH HANSEN

35. D. J. Howarth 1972a. A re-appraisal of certain design features of the Atlas I super-
visory system. In Operating Systems Techniques, C. A. R. Hoare and R. H. Perrott
Eds., Academic Press, New York, 371–377.

36. D. J. Howarth 1972b. Quoted in Studies in Operating Systems, R. M. McKeag and
R. Wilson Eds., Academic Press, New York, 390.

37. A. C. Kay and A. Goldberg 1977. Personal dynamic media. IEEE Computer 10, 3
(March), 31–41.

38. B. W. Kernighan and D. M. Richie 1978. The C Programming Language. Prentice-
Hall, Englewood Cliffs, NJ.

39. T. Kilburn, R. B. Payne and D. J. Howarth 1961. The Atlas supervisor. National
Computer Conference 20, 279–294. Article 3.

40. B. W. Lampson and R. F. Sproull 1979. An open operating system for a single-user
machine. Operating Systems Review 13, 5 (November), 98–105. Article 18.

41. B. W. Lampson and D. D. Redell 1980. Experience with processes and monitors in
Mesa. Communications of the ACM 23, 2 (February), 105–117.

42. B. W. Lampson 1988. Personal distributed computing: The Alto and Ethernet
software. In A History of Personal Workstations, A. Goldberg Ed., Addison-Wesley,
Reading, MA, 291–344.

43. B. W. Lampson 2000. Personal communication, March 20.

44. S. Lauesen 1975. A large semaphore based operating system. Communications of
the ACM 18, 7 (July), 377–389. Article 14.

45. S. Lavington 1980. Early British Computers. Digital Press, Bedford, MA.

46. P. J. Leach, P. H. Levine, B. P. Douros, J. A. Hamilton, D. L. Nelson and B. L.
Stumpf 1983. The architecture of an integrated local network. IEEE Journal on
Selected Areas in Communications 1, 5, 842–856.

47. J. A. N. Lee 1992. Claims to the term “time-sharing.” IEEE Annals of the History
of Computing 14, 1, 16–17.

48. B. H. Liskov 1972. The design of the Venus operating system. Communications of
the ACM 15, 3 (March), 144–149.

49. W. C. Lynch 1966. Description of a high capacity fast turnaround university com-
puting center. Communications of the ACM 9, 2 (February), 117–123. Article
5.

50. W. C. Lynch 1972. An operating system designed for the computer utility environ-
ment. In Operating Systems Techniques, C. A. R. Hoare and R. H. Perrott Eds.,
Academic Press, New York, 341–350.

51. R. A. Maddux and H. D. Mills 1979. Review of “The Architecture of Concurrent
Programs.” IEEE Computer 12, (May), 102–103.

52. J. McCarthy 1959. A time-sharing operator program for our projected IBM 709.
Unpublished memorandum to Professor P. M. Morse, MIT, January 1. Reprinted
in IEEE Annals of the History of Computing 14, 1, 1992, 20–23.

53. J. McCarthy 1962. Time-sharing computer systems. In Computers and the World
of the Future, M. Greenberger Ed., The MIT Press, Cambridge, MA, 221–248.

THE EVOLUTION OF OPERATING SYSTEMS 33

54. J. McCarthy, S. Boilen, E. Fredkin and J. C. R. Licklider 1963. A time-sharing
debugging system for a small computer. Spring Joint Computer Conference 23,
51–57.

55. R. M. McKeag 1976a. Burroughs B5500 Master Control Program. In Studies in
Operating Systems, R. M. McKeag and R. Wilson Eds., Academic Press, New York,
1–66.

56. R. M. McKeag 1976b. THE multiprogramming system. In Studies in Operating
Systems, R. M. McKeag and R. Wilson Eds., Academic Press, New York, 145–184.

57. F. B. MacKenzie 1965. Automated secondary storage management. Datamation
11, 11 (November), 24–28.

58. P. B. Medawar 1979. Advice to a Young Scientist. Harper & Row, New York.

59. C. Oliphint 1964. Operating system for the B 5000. Datamation 10, 5 (May),
42–54. Article 4.

60. E. I. Organick 1973. Computer System Organization: The B5700/B6700 Series.
Academic Press, New York.

61. R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thompson, H. Trickey and P.
Winterbottom 1995. Plan 9 from Bell Labs. Lucent Technologies.

62. L. Poole 1984. A tour of the Mac desktop. Macworld 1, (May–June), 19–26.

63. G. Popek, B. Walter, J. Chow, D. Edwards, C. Kline, G. Rudison and G. Thiel
1981. Locus: a network transparent, high reliability distributed system. ACM
Symposium on Operating Systems Principles, Pacific Grove, CA, 169–177.

64. D. D. Redell, Y. K. Dalal, T. R. Horsley, H. C. Lauer, W. C. Lynch, P. R. McJones,
H. G. Murray and S. C. Purcell 1980. Pilot: an operating system for a personal
computer. Communications of the ACM 23, 2 (February), 81–92. Article 19.

65. M. Richards 1969. BCPL: a tool for compiler writing and system programming.
Spring Joint Computer Conference 34, 557–566..

66. D. M. Ritchie and K. Thompson 1974. The Unix time-sharing system. Communi-
cations of the ACM 17, 7 (July), 365–375. Article 10.

67. D. M. Ritchie 1984. The evolution of the Unix time-sharing system. Bell Labora-
tories Technical Journal 63, 8, Part 2 (October), 1577–1593.

68. D. J. Roche 1972. Burroughs B5500 MCP and time-sharing MCP. In Operating
Systems Techniques, C. A. R. Hoare and R. H. Perrott Eds., Academic Press, New
York, 307–320.

69. S. Rosen Ed. 1967. Programming Systems and Languages. McGraw-Hill, New
York.

70. R. F. Rosin Ed. 1987. Prologue: the Burroughs B 5000. Annals of the History of
Computing 9, 1, 6–7.

71. R. F. Rosin and J. A. N. Lee Eds. 1992. The CTSS interviews. Annals of the
History of Computing 14, 1, 33–51.

72. R. F. Rosin 2000. Personal communication, March 20.

34 PER BRINCH HANSEN

73. G. F. Ryckman 1983. The IBM 701 computer at the General Motors Research
Laboratories. IEEE Annals of the History of Computing 5, 2 (April), 210–212.
Article 1.

74. R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh and B. Lyon 1985. Design and
implementation of the Sun Network Filesystem. Usenix Conference, (June), 119–
130.

75. A. C. Shaw 1974. The Logical Design of Operating Systems. Prentice-Hall, Engle-
wood Cliffs, NJ.

76. S. K. Shrivastava and F. Panzieri 1982. The design of a reliable remote procedure
call mechanism. IEEE Transactions on Computers 31, 7 (July), 692–697. Article
22.

77. R. Slater 1987. Portraits in Silicon. The MIT Press, Cambridge, MA, 273–283.

78. D. C. Smith, C. Irby, R. Kimball and Eric Harslem 1982. The Star user interface:
an overview. National Computer Conference, 515–528. Article 20.

79. R. B. Smith 1961. The BKS system for the Philco-2000. Communications of the
ACM 4, 2 (February), 104 and 109. Article 2.

80. M. Stonebraker 1981. Operating system support for database management. Com-
munications of the ACM 24, 7 (July), 412–418.

81. J. E. Stoy and C. Strachey 1972. OS6—an experimental operating system for a
small computer. The Computer Journal 15, 2 & 3, 117–124 & 195–203. Article 17.

82. C. Strachey 1959. Time sharing in large fast computers. Information Processing,
(June), UNESCO, 336–341.

83. C. Strachey 1974. Letter to Donald Knuth, May 1. Quoted in Lee (1992).

84. D. Swinehart, G. McDaniel and D. R. Boggs 1979. WFS: a simple shared file system
for a distributed environment. ACM Symposium on Operating Systems Principles,
Pacific Grove, CA, (December), 9–17. Article 21.

85. D. C. Swinehart, P. T. Zellweger and R. B. Hagmann 1985. The structure of Cedar.
SIGPLAN Notices 20, 7 (July), 230–244.

86. A. S. Tanenbaum, R. van Renesse, H. van Staveren, G. J. Sharp, S. J. Mullender,
J. Jansen and G. van Rossum 1990. Experiences with the Amoeba distributed
operating system, Communications of the ACM 33, 12 (December), 46–63.

87. B. H. Tay and A. L. Ananda 1990. A survey of remote procedure calls. Operating
Systems Review 24, 3 (July), 68–79.

88. J. E. White 1976. A high-level framework for network-based resource sharing.
National Computer Conference, (June), 561–570.

89. M. V. Wilkes 1985. Memoirs of a Computer Pioneer. The MIT Press, Cambridge,
MA.

90. R. Wilson 1976. The Titan supervisor. In Studies in Operating Systems, R. M.
McKeag and R. Wilson Eds., Academic Press, New York, 185–263.

91. W. A. Wulf, E. S. Cohen, W. M. Corwin, A. K. Jones, R. Levin, C. Pierson and F.
J. Pollack 1974. Hydra: the kernel of a multiprocessor operating system. Commu-
nications of the ACM 17, 6 (June), 337–345.

