




Adobe® Integrated Runtime (AIR)
for JavaScript Developers

Pocket Reference





Adobe® Integrated Runtime (AIR) for
JavaScript Developers

Pocket Reference

Mike Chambers, Daniel Dura, and
Kevin Hoyt

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo



Adobe® Integrated Runtime (AIR) for JavaScript Developers Pocket Guide
by Mike Chambers, Daniel Dura, and Kevin Hoyt

Copyright © 2007 Adobe Systems, Inc. All rights reserved.
Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Steve Weiss
Production Editor: Philip Dangler
Copyeditor: Michele Filshie
Indexer: John Bickelhaupt

Cover Designer: Karen Montgomery
Interior Designer: David Futato
llustrators: Robert Romano and

Jessamyn Read

Printing History:
June 2007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly Media, Inc. The Pocket Reference/Pocket
Guide series designations, Adobe Integrated Runtime (AIR) for JavaScript
Developers, the image of a red-footed falcon and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher and authors assume no responsibility for errors or omissions, or
for damages resulting from the use of the information contained herein.

ISBN-10: 0-596-51519-7
ISBN-13: 978-0-596-51519-5
[T]



v

Contents

Preface vii

Chapter 1: Introduction to the Adobe Integrated
Runtime (AIR) 1

A Short History of Web Applications  1
Problems with Delivering Applications via the Browser  4
Introducing the Adobe Integrated Runtime  6
Primary AIR Technologies  7

Chapter 2: Getting Started with AIR Development 20
What Do You Need to Develop AIR Applications?  20
Uninstalling Pre-Beta Versions of Adobe AIR  22
Installing Adobe AIR  22
Uninstalling Adobe AIR Beta  23
Setting Up the AIR SDK and
Command-Line Tools  24
Creating a Simple AIR Application with HTML
and JavaScript  28
Testing the Application  34
Packaging and Deploying the AIR Application  39



vi | Contents

Chapter 3: Working with JavaScript
and HTML Within AIR 43

WebKit Within the Adobe Integrated Runtime  43
JavaScript Within AIR  45
AIR Implementation of Functionality  46
Accessing AIR APIs from JavaScript  54

Chapter 4: AIR Mini-Cookbook 62
Application Chrome  62
Windowing  66
File API  76
File Pickers  94
Service and Server Monitoring  101
Online/Offline  105
Drag and Drop  108
Embedded Database  113
Command-Line Arguments  127
Networking  129
Sound  137

Appendix A: AIR Command-Line Tools 141

Appendix B: AIR JavaScript Aliases 144

Index 149



vii

Chapter 1

Preface

This book provides a quick introduction to developing appli-
cations for the public Beta 1 build of the Adobe Integrated
Runtime (AIR). AIR, which prior to the Beta was referred to
by its code name, Apollo, is a new cross-platform desktop
application runtime being developed by Adobe. While
Adobe AIR allows both Flash- and HTML-based application
development, this book focuses on building AIR applica-
tions using HTML and JavaScript.

The book gives an overview of Adobe AIR, shows how to set
up your development environment, and discusses new AIR
functionality and APIs. Once you have finished reading this
book, you should have a good understanding of what AIR is
as well as how to build HTML and JavaScript applications
for it.

AIR Runtime Naming Conventions
Adobe AIR allows developers to leverage a number of web
technologies to deploy web applications to the desktop.
Indeed, there are so many technologies, that it can be diffi-
cult to keep track of them all. Table P-1 lists the terms used
in the book, and defines each one:



viii | Preface

What This Book Covers
This book gives a general overview of Adobe AIR, shows
how to set up your development environment to start build-
ing applications, provides an overview of the HTML and
JavaScript engines within AIR, and shows how to perform a
number of common programming tasks within AIR.

As a general rule, features and functionality already in the
Beta build are relatively stable and should not change radi-
cally (although they may be tweaked based on developer
feedback). Any details discussed around unimplemented fea-
tures and functionality are much more tentative and may
change in future builds.

Table P-1. AIR runtime naming conventions

Name Meaning

Adobe Integrated
Runtime (AIR)

The cross-platform desktop runtime that enables the running
of AIR applications.

AIR Application An application built with Flash, HTML and/or PDF that runs on
top of Adobe AIR.

Flash Any content contained within a SWF 9 file format that runs in
the Flash Player or AIR.

ActionScript The ECMAScript-based programming language used to
program Flash content. Unless otherwise noted, all references
to ActionScript in this book refer to ActionScript 3.

HTML Standard web-based markup language used to create and
layout web pages.

JavaScript Web-based implementation of ECMAScript used to program
content within HTML applications.

PDF Short for Portable Document Format, a technology that
allows for seamless distribution and display of electronic
documents.

Flex Framework An XML and ActionScript-based Framework designed to make
developing Flash-based rich Internet applications easy.

Flex Builder An Eclipse-based IDE used to build Flash-based rich Internet
applications using Flex and ActionScript.



Preface | ix

It is also important to note that the Beta 1 build of AIR is not
feature complete, and a number of significant AIR features
have not been implemented and/or included in the build.

The following is a partial list of features and functionality
included in the Adobe AIR Beta 1:

• Mac support (OS X 10.4.8 and above; Intel and PPC)

• Windows support (Windows XP and Windows Vista
Home Ultimate Edition)

• File I/O API

• SQLite embedded database

• All functionality within Flash Player 9, including com-
plete network stack

• Windowing APIs

• Command-line tools (ADL and ADT)

• HTML within Flash content

• Top-level HTML applications

• ActionScript/JavaScript script bridging

• Flex Builder and Flex Framework support for authoring
AIR application

• Application command-line arguments

• Drag and drop support

• Rich Clipboard access

• Native Menu API (Mac-only in Beta)

• Service Connectivity API

• File type association

• Application icons

• PDF support



x | Preface

Here is partial list of features planned for Adobe AIR 1.0,
which are not included in Beta 1:

• Right-click and contextual menu control

• System notifications

• Flash content within HTML applications

• Support for additional versions of Microsoft Windows

We will highlight any features that we know may change in
future builds.

What Beta Means
As discussed in the previous section, the Adobe AIR Beta 1
build is not feature complete, and some of the features are
only partially implemented. Thus, the implementation of
specific features or availability of any particular feature is
subject to change between the Beta build and 1.0 release.

This also applies to the information within this book. The
book was written at the same time that the Beta 1 build was
being finalized and thus it is possible that some of the APIs
or features may have changed between the time the book was
completed and the time that the Beta build was finalized.
This is particularly the case with API names. If something
isn’t working as the book suggests it should, make sure to
check the online documentation, which will always have the
latest information on the Beta 1 APIs.

You can find the latest information and documentation on
AIR at:

http://www.adobe.com/go/air

You should also check the book’s errata web site for the lat-
est updates and corrections:

http://www.adobe.com/go/airjavascriptpocketguide

http://www.adobe.com/go/air
http://www.adobe.com/go/airjavascriptpocketguide


Preface | xi

Audience for This Book
We hope this book is for you, but just to be sure, let’s dis-
cuss some of the assumptions that we made, as well as what
type of developers the book targets.

What Does This Book Assume?
The book assumes that the reader has at least a basic famil-
iarity with creating HTML based web applications and con-
tent using HTML and JavaScript.

You should be familiar with web technologies such as
HTML, JavaScript, Ajax, and CSS, as well as general web
development concepts.

Who This Book Is For
This book is for developers interested in leveraging HTML
and JavaScript to build and deploy applications to the desk-
top via the Adobe AIR. If you don’t have any experience with
developing with HTML and JavaScript, then we suggest that
you spend some time getting up to speed on these
technologies.

Who This Book Is Not For
While it is possible to create Flash and Flex-based applica-
tions with Beta 1 of AIR, this book does not go into any
detail on Flash and Flex-focused AIR application develop-
ment. If you are a Flash or Flex developer interested in build-
ing AIR applications, then this book can provide a good
introduction and overview of AIR and its functionality, but
you should view the AIR documentation and articles avail-
able from the AIR web site for a more Flash/Flex-focused dis-
cussion. You may also want to check out the Adobe Apollo
for Flex Developers Pocket Guide, published by O’Reilly,
which gives a Flex-focused overview of AIR.

http://www.adobe.com/go/airjavascriptpocketguide


xii | Preface

How This Book Is Organized
This book contains the following chapters and appendixes:

Chapter 1, Introduction to the Adobe Integrated Runtime
(AIR)

Provides a general overview of what AIR is, and the types
of applications it targets.

Chapter 2, Getting Started with AIR Development
Covers tips on starting your AIR development, and the
steps for creating your first AIR application.

Chapter 3, Working with JavaScript and HTML Within AIR
Gives an overview of the HTML and JavaScript runtime
environments within AIR, and provides an introduction
to using JavaScript to access AIR functionality and APIs.

Chapter 4, AIR Mini-Cookbook
Provides tips and tricks for accomplishing common tasks
within AIR applications, presented in the O’Reilly Cook-
book format.

Appendix A, AIR Command-Line Tools
Lists AIR-specific command-line tools and their usage
options.

Appendix B, AIR JavaScript Aliases
Lists JavaScript Aliases to Adobe AIR APIs

How to Use This Book
You can use this book both as an introduction to and over-
view of Adobe AIR, as well as a step-by-step guide to getting
started with AIR application development. While it may be
tempting to jump ahead to specific sections, it is strongly
suggested that you at least read the first two chapters, which
provide an overview of AIR, and discuss how to set up your
development environment for building AIR applications.



Preface | xiii

This will make it much easier to then jump into the specific
areas of AIR functionality that interest you.

Once you have read through the book and understand the
basics of how to build an AIR application with HTML and
JavaScript, then you can use the book as a reference, refer-
ring to specific sections when you need to know how to
tackle a specific problem. In particular, the Cookbook sec-
tions should prove useful as you develop AIR applications.

Finally, this book is just an introduction to AIR and does not
cover all of the features and functionality included within it.
It is meant to complement, but not replace, the extensive and
in-depth documentation on AIR provided by Adobe. Make
sure to explore the AIR documentation in order to make sure
you’re familiar with all of the APIs and functionality not cov-
ered in this book.

Conventions Used in This Book
The following typographical conventions are used in this
book:

Plain text
Indicates menu titles, menu options, menu buttons, and
keyboard accelerators (such as Alt and Ctrl).

Italic
Indicates new terms, URLs, email addresses, filenames,
file extensions, pathnames, directories, and Unix utili-
ties.

Constant width
Indicates commands, options, switches, variables,
attributes, keys, functions, types, classes, namespaces,
methods, modules, properties, parameters, values,
objects, events, event handlers, XML tags, HTML tags,
macros, the contents of files, or the output from com-
mands.



xiv | Preface

Constant width bold
Shows commands or other text that should be typed lit-
erally by the user.

Constant width italic
Shows text that should be replaced with user-supplied
values.

License and Code Examples
This work, including all text and code samples, is licensed
under the Creative Commons Attribution-Noncommercial-
Share Alike 3.0 License.

To view a copy of this license, visit http://creativecommons.
org/licenses/by-nc-sa/3.0/; or, (b) send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco,
California, 94105, USA.

You can find more information on Creative Commons at
http://www.creativecommons.org.

Support and More Information

Accessing the Book Online
You can always find the latest information about this book,
as well as download a free electronic version of it from the
book’s web site at:

http://www.adobe.com/go/airjavascriptpocketguide

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.creativecommons.org
http://www.adobe.com/go/airjavascriptpocketguide


Preface | xv

Online AIR Resources
Although AIR is a new technology, there are already a num-
ber of resources where you can find more information on
AIR and Rich Internet Application (RIA) development.

Official AIR site

Primary web site for information, downloads, and documen-
tation on AIR:

http://www.adobe.com/go/air

AIR Developer FAQ

Official AIR FAQ, answering common questions about AIR
development:

http://www.adobe.com/go/airfaq

AIR Developer Center

Developer Center with articles, information, and resources
on developing applications for AIR:

http://www.adobe.com/go/airdevcenter

AIR API Reference

AIR JavaScript API Reference:

http://www.adobe.com/go/airapi

AIR Documentation

Complete AIR documentation:

http://www.adobe.com/go/airdocs

AIR Forum

Official Adobe forum for discussing developing applications
for AIR:

http://www.adobe.com/go/airforums

http://www.adobe.com/go/airjavascriptpocketguide
http://www.adobe.com/go/air
http://www.adobe.com/go/airfaq
http://www.adobe.com/go/airdevcenter
http://www.adobe.com/go/airapi
http://www.adobe.com/go/airdocs
http://www.adobe.com/go/airforums


xvi | Preface

AIR coders mailing list

Mailing list for discussing AIR application development:

http://www.adobe.com/go/airlist

Mike Chambers’ weblog

Mike Chambers’ weblog. One of the authors of the book and
a member of the AIR team who posts frequently on AIR:

http://www.adobe.com/go/mikechambers

MXNA AIR Smart Category

AIR Smart Category that lists any discussions about AIR
within the Adobe online development community:

http://www.adobe.com/go/airmxna

Ajaxian.com

Ajax news site with information, tips, tricks and the latest
news on developing with JavaScript and Ajax techniques.

http://www.ajaxian.com

YUI-Ext

JavaScript Library and Framework useful for building
HTML- and JavaScript-based applications.

http://extjs.com

Flex Developer Center

Developer Center with articles, information, and resources
on working with the Flex Framework:

http://www.adobe.com/go/flex2_devcenter

Flex coders mailing list

Popular mailing list for discussing development using the
Flex Framework:

http://tech.groups.yahoo.com/group/flexcoders/

http://www.adobe.com/go/airforums
http://www.adobe.com/go/airlist
http://www.adobe.com/go/mikechambers
http://www.adobe.com/go/airmxna
http://www.ajaxian.com
http://extjs.com
http://www.adobe.com/go/flex2_devcenter
http://tech.groups.yahoo.com/group/flexcoders/


Preface | xvii

Universal Desktop Weblog

Ryan Stewart’s weblog, which focuses on the latest develop-
ments in the world of RIAs:

http://blogs.zdnet.com/Stewart/

How to Contact Us
Please address comments and non-technical questions con-
cerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata,
examples, and any additional information. You can access
this page at:

http://www.oreilly.com/catalog/9780596515195

For more information about our books, conferences,
Resource Centers, and the O’Reilly Network, see our web
site at:

http://www.oreilly.com

About the Authors

Mike Chambers
Mike Chambers has spent the last eight years building appli-
cations that target the Flash runtime. During that time, he
has worked with numerous technologies including Flash,
Generator, .NET, Central, Flex, and Ajax. He is currently the
senior product manager for developer relations for Adobe

http://tech.groups.yahoo.com/group/flexcoders/
http://blogs.zdnet.com/Stewart/
http://www.oreilly.com/catalog/9780596513917
http://www.oreilly.com


xviii | Preface

AIR. He has written and spoken extensively on Flash and
rich Internet application development and is coauthor of
Adobe Apollo for Flex Developers Pocket Guide, Flash
Enabled: Flash Design and Development for Devices, and
Generator and Flash Demystified.

Mike received his Masters in International Economics and
European Studies from the John Hopkins School of
Advanced International Studies (SAIS) in 1998.

When he is not programming, Mike can be found playing
Halo, trying to recover from his World of Warcraft addic-
tion, or hanging out with his two daughters, Isabel and
Aubrey and wife Cathy.

Mike maintains a weblog at http://www.mikechambers.com/
blog/.

Daniel Dura
Currently based in San Francisco, California, Daniel Dura is
a Platform Evangelist at Adobe focusing on Apollo and Flash.
Before joining Macromedia (which merged with Adobe in
2005), Daniel and his brother Josh founded Dura Media
LLC, a rich Internet application development company based
in Dallas, Texas. While at Adobe, he was a member of the
Central and Flex teams, as well as a Product Manager for
Developer Relations.

Daniel has given presentations on Flash, Apollo, and Flex all
over the world at user group meetings, conferences, and
pretty much anywhere someone is willing to listen. Outside
of his day job, he enjoys general aviation and is well on his
way to earning his private pilot license.

Kevin Hoyt
Kevin Hoyt is a Platform Evangelist with Adobe Systems, Inc.
who likes moving, breaking, blurring and jumping over the
lines of conventional technology. He seeks out every

http://www.mikechambers.com/blog/
http://www.mikechambers.com/blog/


Preface | xix

opportunity to congregate with other like-minded develop-
ers, and explore ways to escape any lines that form a box.
Pushing the envelope of what technology can do, and how
people perceive and interact with it, is his passion.

A frequent traveler, Kevin can generally be found deep in
code while speaking with customers, at conferences, in front
of user groups, or anywhere else they will give him time in
front of an audience. The rest of the time he enjoys spending
with his family at home in Parker, CO and indulging his
photography habit.

This current chapter in Kevin’s career started when he
accepted a job with Allaire Corporation, circa 2000, with
focus on ColdFusion and JRun. Allaire was purchased by
Macromedia, Inc. in 2001, where he was able to unleash the
latent designer within and help promote the value of rich
Internet applications. Adobe acquired Macromedia in 2005,
and Kevin now finds himself helping the company and its
customers make sense of the increasingly large stable of
products.

Acknowledgments
The authors would like to thank Mark Nichoson from Adobe
and Steve Weiss, Philip Dangler, and Michele Filshie from
O’Reilly for helping make the book possible in an incredibly
short amount of time. We would also like to thank Adrian
Ludwig, Laurel Reitman, Chris Brichford, Lucas Adamski,
Rob Dixon and Jeff Swartz, all from Adobe, for input and
work on the book.

Thank you to everyone on the AIR team for all of the dedica-
tion and hard work in getting a 1.0 runtime out the door.





1

CHAPTER 1CHAPTER 1

Introduction to the Adobe
Integrated Runtime (AIR)

The Adobe Integrated Runtime (AIR) is a cross-platform
desktop runtime being developed by Adobe that allows web
developers to use web technologies to build and deploy Rich
Internet Applications and web applications to the desktop.

TIP

Prior to the public beta release, the Adobe Integrated
Runtime (AIR) was referred to in public by its code name
of Apollo.

In order to better understand what Adobe AIR enables, and
which problems it tries to address, it is useful to first take a
look at the (relatively short) history of web applications.

A Short History of Web Applications
Over the past couple of years, there has been an accelerating
trend of applications moving from the desktop to the web
browser. This has been driven by a number of factors, which
include:

• Growth of the Internet as a communication medium

• Relative ease of deployment of web applications

• Ability to target multiple operating systems via the
browser

• Maturity of higher-level client technologies, such as the
browser and the Flash Player runtime



2 | Chapter 1: Introduction to the Adobe Integrated Runtime (AIR)

Early web applications were built primarily with HTML and
JavaScript, which, for the most part, relied heavily on client/
server interactions and page refreshes. This page refresh
model was consistent with the document-based metaphor for
which the browser was originally designed, but provided a
relatively poor user experience when displaying applications.

With the maturation of the Flash Player runtime, however,
and more recently Ajax-type functionality in the browser, it
became possible for developers to begin breaking away from
page-based application flows. Developers began to be able to
offer richer application experiences via the browser. In a
whitepaper from March 2002, Macromedia coined the term
rich Internet application (RIA), to describe these new types
of applications in browsers, which “blend content, applica-
tion logic and communications...to make the Internet more
usable and enjoyable.” These applications provided richer,
more desktop-like experiences, while still retaining the core
cross-platform nature of the Web:

Internet applications are all about reach. The promise of
the web is one of content and applications anywhere,
regardless of the platform or device. Rich clients must
embrace and support all popular desktop operating sys-
tems, as well as the broadest range of emerging device
platforms such as smart phones, PDAs, set-top boxes,
game consoles, and Internet appliances.

TIP

You can find the complete whitepaper and more informa-
tion on RIAs at: http://download.macromedia.com/pub/
flash/whitepapers/richclient.pdf

The paper goes on to list some features that define RIAs:

• Provide an efficient, high-performance runtime for exe-
cuting code, content, and communications.

• Integrate content, communications, and application
interfaces into a common environment.

http://download.macromedia.com/pub/flash/whitepapers/richclient.pdf
http://download.macromedia.com/pub/flash/whitepapers/richclient.pdf


A Short History of Web Applications | 3

• Provide powerful and extensible object models for inter-
activity.

• Enable rapid application development through compo-
nents and reuse.

• Enable the use of web and data services provided by
application servers.

• Embrace connected and disconnected clients.

• Enable easy deployment on multiple platforms and
devices.

This movement toward providing richer, more desktop-like
application experiences in the browser (enabled by the Flash
Player runtime, and more recently by Ajax) has led to an
explosion of web applications.

Today the web has firmly established itself as an application
deployment platform that offers benefits to both developers
and end users. Some of these benefits include the ability to:

• Target multiple platforms and operating systems.

• Develop with relatively high-level programming and lay-
out languages.

• Allow end users to access their applications and data
from virtually any Internet-connected computer.

• Easily push application updates to users.

The growth of web applications can be seen in both the Web
2.0 movement, which consists almost entirely of web based
applications and APIs, as well as the adoption of web appli-
cations as a core business model by major companies and
organizations.



4 | Chapter 1: Introduction to the Adobe Integrated Runtime (AIR)

Problems with Delivering Applications
via the Browser
As web applications have become more complex, they have
begun to push the boundaries of both the capabilities of the
browser and the usability of the application. As their popu-
larity grows, these issues become more apparent and impor-
tant and highlight the fact that there are still a number of
significant issues for both developers and end users when
deploying and using applications within the browser.

The web browser was originally designed to deliver and dis-
play HTML-based documents. Indeed, the basic design of
the browser has not significantly shifted from this purpose.
This fundamental conflict between document- and applica-
tion-focused functionality creates a number of problems
when deploying applications via the browser.

Conflicting UI
Applications deployed via the browser have their own user
interface, which often conflicts with the user interface of the
browser. This application within an application model often
results in user interfaces that conflict with and contradict
each other. This can lead to user confusion in the best cases,
and application failure in the worst cases. The classic exam-
ple of this is the browser’s Back button. The Back button
makes sense when browsing documents, but it does not
always make sense in the context of an application. Although
there are a number of solutions that attempt to solve this
problem, they are applied to applications inconsistently and
users may not know whether a specific application supports
the Back button, or whether it will force their application to
unload, causing it to lose its state and data.



Problems with Delivering Applications via the Browser | 5

Distance from the Desktop
Due in part to the web security model (which restricts access
to the user’s machine), applications that run in the browser
often do not support the type of user interactions with the
operating system that people expect from applications. For
example, you cannot drag a file into a browser-based applica-
tion and have the application act on that file. Nor can the
web application interact with other applications on the user’s
computer.

RIAs have tried to improve on this by making richer, more
desktop-like interfaces possible in the browser, but they have
not been able to overcome the fundamental limitations and
separation of the browser from the desktop.

Primarily Online Experience
Because web applications are delivered from a server and do
not reside on the user’s machine, web applications are a pri-
marily online experience. While there are attempts under-
way to make offline web-based applications possible, they do
not provide a consistent development model and they fail to
work across different browsers or require additional exten-
sions to the browser to be installed by the user. In addition,
they often require the user to interact with and manage their
application and browser in complex and unexpected ways.

Lowest Common Denominator
Finally, as applications become richer and more complex and
begin to push the boundaries of JavaScript and DHTML,
developers are increasingly faced with differences in browser
functionality and API implementations. While these issues
can often be overcome with browser-specific code, they lead
to code that’s more difficult to maintain and scale, and takes
time away from function-driven development of feature
functionality.



6 | Chapter 1: Introduction to the Adobe Integrated Runtime (AIR)

While JavaScript frameworks are a popular way to help
address these issues, they can offer only the functionality
provided by the browser, and often resort to the lowest com-
mon denominator of features between browsers to ease the
development model. The end result for JavaScript- or
DHTML-based applications is a lowest common denomina-
tor user experience and interaction model, as well as
increased development, testing, and deployment costs for the
developer.

The fact that web applications have flourished despite these
drawbacks is a testament to the attractiveness of having a
platform with a good development model that has the ability
to deliver applications to multiple operating systems. A plat-
form that offered the reach and development model of the
browser, while providing the functionality and richness of a
desktop application, would provide the best of both worlds.
This is what the Adobe Integrated Runtime aims to provide.

Introducing the Adobe Integrated
Runtime
So, what is Adobe AIR, and how can it make web applica-
tion development and deployment better?

The Adobe Integrated Runtime (AIR) is a cross-operating
system runtime being developed by Adobe that allows web
developers to leverage their existing web development skills
(such as Flash, Flex, HTML, JavaScript, and PDF) to build
and deploy rich Internet applications and content to the
desktop.

In essence, Adobe AIR provides a platform in between the
desktop and the browser, which combines the reach and ease
of development of the web model with the functionality and
richness of the desktop model.



Primary AIR Technologies | 7

It is important to step back for a second and point out what
Adobe AIR is not. Adobe AIR is not a general desktop run-
time meant to compete with lower-level application runt-
imes. Adobe AIR is coming from the web to the desktop and
is targeted at web developers. Its primary use case is enabling
web applications and RIAs to be deployed to the desktop.
This is a very important but subtle distinction, as enabling
web applications and RIAs on the desktop is the primary use
case driving the Adobe AIR 1.0 feature set.

At its core, AIR is built on top of web technologies, which
allow web developers to develop for and deploy to the desk-
top using the same technologies and development models
that they use today when deploying applications on the Web.

Primary AIR Technologies
There are three primary technologies included within Adobe
AIR, which fall into two distinct categories: application tech-
nologies and document technologies.

Primary Application Technologies
Application technologies are technologies that can be used as
the basis of an application within Adobe AIR. Adobe AIR
contains two primary application technologies, HTML and
Flash, both of which can be used on their own to build and
deploy AIR applications.

HTML / JavaScript

The first core application technology within Adobe AIR is
HTML and JavaScript. This is a full HTML-rendering
engine, which includes support for:

• HTML

• JavaScript

• CSS



8 | Chapter 1: Introduction to the Adobe Integrated Runtime (AIR)

• XHTML

• Document Object Model (DOM)

Yes, you read that right. You don’t have to use Flash to build
Adobe AIR applications. You can build full-featured applica-
tions using just HTML and JavaScript. This usually surprises
some developers who expect Adobe AIR to focus only on
Flash. However, at its core, Adobe AIR is a runtime targeted
at web developers using web technologies—and what’s more
of a web technology than HTML and JavaScript?

The HTML engine used within Adobe AIR is the open source
WebKit engine. This is the engine behind a number of brows-
ers, including KHTML on KDE and Safari on Mac OS X.

TIP

You can find more information on the WebKit open
source project at http://www.webkit.org.

See Chapter 3, “Working with JavaScript and HTML
within Adobe AIR”, for a more in-depth discussion of
WebKit within Adobe AIR.

Flash

The second core application technology that Adobe AIR is
built on is the Flash Player. Specifically, Adobe AIR is built
on top of Flash Player 9, which includes the ECMAScript-
based ActionScript 3, as well as the open source Tamarin vir-
tual machine (which will be used to interpret JavaScript in
future versions of Firefox).

TIP

You can find more information on the open source Tama-
rin project at on the Mozilla web site at http://www.
mozilla.org/projects/tamarin/.

http://www.webkit.org
http://www.mozilla.org/projects/tamarin/
http://www.mozilla.org/projects/tamarin/


Primary AIR Technologies | 9

Not only are all of the existing Flash Player APIs available
within Adobe AIR, but some of those APIs have also been
expanded and/or enhanced. Some of the functionality that
the Flash Player provides to Adobe AIR includes:

• Just-in-time Interpreted ActionScript engine for speedy
application performance

• Full networking stack, including HTTP and RTMP, as
well as Binary and XML sockets

• Complete vector-based rendering engine and drawing
APIs

• Extensive multimedia support including bitmaps, vec-
tors, audio, and video

TIP

Flash Player and ActionScript APIs are available to
JavaScript within Adobe AIR applications.

Of course, the Flex 2 RIA framework is built on top of
ActionScript 3, which means that you can take advantage of
all of the features and functionality that Flex offers in order
to build Adobe AIR applications.

Primary Document Technologies
Document technologies within Adobe AIR refer to technolo-
gies that can be used for the rendering of and interaction
with electronic documents.

PDF and HTML are the primary document technologies
available within Adobe AIR.

PDF

The Portable Document Format (PDF) is the web standard
for delivering and displaying electronic documents on the
Web.



10 | Chapter 1: Introduction to the Adobe Integrated Runtime (AIR)

PDF functionality requires that Adobe Reader version 8.1. be
installed on the user’s computer. If Adobe Reader 8.1 is
installed, then Adobe AIR applications will be able to take
full advantage of all of the features that reader also exposes
when running within a web browser.

HTML

HTML was originally designed as a document technology,
and today it provides rich and robust control over content
and text layout and styling. HTML can be used as a docu-
ment technology within Adobe AIR—both within an existing
HTML application as well as within a Flash-based applica-
tion.

What Does an Adobe AIR Application Contain?
Now that we know what technologies are available to appli-
cations running on top of the Adobe Integrated Runtime (see
Figure 1-1), let’s look at how those technologies can be com-
bined to build an Adobe AIR application.

Applications can consist of the following combinations of
technologies:

• HTML/JavaScript only

• HTML/JavaScript-based with Flash content

• Flash only (including Flex)

• Flash-based with HTML content

• All combinations can leverage PDF content

TIP

Flash content within HTML is not implemented in the
public beta of Adobe AIR, although it will be available in
the 1.0 release.



Primary AIR Technologies | 11

Technology Integration and Script Bridging

Because WebKit and the Flash Player are both included
within the runtime, they are integrated together on a very
low level. For example, when HTML is included within Flash
content, it’s actually rendered via the Flash display pipeline,
which, among other things, means that anything that you
can do to a bitmap within Flash (blur, rotate, transform, etc.)
you can also do to HTML.

Figure 1-1. Adobe AIR application structure

Socket services Web/HTTP services

Occasionally connected network

HTML

PDF

SWF

SWF

PDF

HTML

Adobe Integrated Runtime (AIR)

Mac Windows Linux
(post 1.0)

Network
Desktop



12 | Chapter 1: Introduction to the Adobe Integrated Runtime (AIR)

This low-level integration also applies to the script engines
within Adobe AIR that run ActionScript and JavaScript.
Adobe AIR provides script bridging between the two
languages and environments, which makes the following
possible:

• JavaScript code can call AIR, Flash Player and Action-
Script APIs

• ActionScript code can call JavaScript APIs

• ActionScript code can directly manipulate the HTML
DOM

• Event registration both ways between JavaScript and
ActionScript

Note that the script bridging is “pass by reference.” So when
passing an object instance from JavaScript to ActionScript
(or vice versa), changes to that instance in one environment
will affect the instance in the other environment. Among
other things, this makes it possible to instantiate and use
Flash Player APIs directly from JavaScript, or to register and
listen for events.

This low-level script bridging between the two environments
makes it very easy for developers to create applications that
are a combination of both HTML and Flash.

TIP

Accessing ActionScript and Adobe AIR APIs from JavaS-
cript is covered in more detail in Chapter 3.

The end result of all of this is that if you are a web developer
using HTML and JavaScript, then you already have all of the
skills necessary to build an Adobe AIR application.

Adobe AIR Functionality
If Adobe AIR did not provide additional functionality and
APIs and simply allowed web applications to run on the



Primary AIR Technologies | 13

desktop, it would not be quite as compelling. Fortunately,
Adobe AIR provides a rich set of programming APIs, as well
as close integration with the desktop that allows developers
to build applications that take advantage of the fact that
they’re running on the user’s desktop.

Adobe AIR Programming APIs

In addition to all of the functionality and APIs already
offered by the Flash Player and WebKit engine, Adobe AIR
provides additional functionality and APIs.

TIP

Adobe AIR APIs are available to both ActionScript and
JavaScript.

Some of the new functionality includes, but is not limited to:

• Complete file I/O API

• Complete native windowing API

• Complete native menuing API (Mac only in beta)

• Online/Offline APIs to detect when service connectivity
has changed

• Complete control over application chrome

• Local storage/settings APIs

• System notification APIs that tie into OS-specific
notification mechanisms (not implemented in Beta)

• Application update APIs

• SQLite embedded database

Note that functionality may be implemented directly within
the Adobe Integrated Runtime or on the framework layer (in
Flex and JavaScript), or by using a combination of both.



14 | Chapter 1: Introduction to the Adobe Integrated Runtime (AIR)

Adobe AIR Desktop Integration

As discussed earlier, applications deployed via the browser
cannot always support the same user interactions as desktop
applications. This leads to applications that can be cumber-
some for the user to interact with, as they do not allow the
type of application interactions with which users are familiar.

Because an Adobe AIR application is a desktop application,
it’s able to provide the type of application interactions and
experience that users expect from an application. This func-
tionality includes, but is not limited to:

• Appropriate install/uninstall rituals

• Desktop install touch-points (such as shortcuts)

• Rich drag-and-drop support:

—Between operating system and Adobe AIR applications

—Between Adobe AIR applications

—Between native applications and Adobe AIR applications

• Rich clipboard support

• System notifications

• Native icons

Once installed, an Adobe AIR application is just another
native application, which means that the operating system
and users can interact with it in the same as any other appli-
cation. For example, things such as OS-level application pre-
fetching and application switching work the same with
Adobe AIR applications as they do with native applications.

The goal is that the end user does not need to know they are
running an Adobe AIR application in order to be able to use
it. They should be able to interact with an Adobe AIR
application in the same way that they interact with any other
application running on the desktop.



Primary AIR Technologies | 15

Security
All of this talk of APIs and desktop functionality brings up an
important question: what about security? Because Adobe
AIR applications have access to local resources, couldn’t they
theoretically do something harmful?

First, it is important to note that Adobe AIR runs on top of
the operating system’s security layer. It does not provide any
way to get around or subvert this security. This is important,
because it means Adobe AIR applications can work only
within the permissions given to it by the operating system—
and all current and any new security capabilities that the OS
implements.

In order to run an Adobe AIR application, a user must down-
load the application to the desktop, go through an install rit-
ual, and then launch the application. This is an experience
very similar to downloading and installing a desktop applica-
tion. The similarity is not an accident. Adobe AIR applica-
tions run in a fundamentally different security content than
applications that run within a browser. It is a security
context closer to that of a native application than a web
application.

To enable safe browsing, the browser security model limits
all I/O capabilities of web applications. This includes
restricting their ability to work with local resources, limiting
what network resources are accessible, and constraining its
user interface. The browser only allows applications to con-
nect with data that is associated with (usually, provided by) a
server located on a single web domain. In addition, the
browser provides a trusted UI for users to understand the ori-
gin of the application and control the state of the applica-
tion. This model is sufficient for applications that are
connected to a single service provider and rely on that ser-
vice for data synchronization and storage.



16 | Chapter 1: Introduction to the Adobe Integrated Runtime (AIR)

Some web developers have also stretched the browser secu-
rity model by integrating data from multiple sources and/or
by experimenting with user interfaces that are inconsistent
with the browser chrome. Some of these applications require
browser plug-ins with capabilities that aren’t currently pro-
vided by the browsers. Others take advantage of browser fea-
tures like user notification or customized security
configurations to allow greater or lesser security to applica-
tions from specific domains. These mechanisms allow web
developers to build more powerful applications, but they also
are straining the browser security model.

Rather than trying to extend the web browser so that it can
act as both a browser and as a flexible application runtime,
Adobe AIR provides a flexible runtime for building applica-
tions using web technologies. Adobe AIR allows web devel-
opers to build applications that incorporate data from
multiple sources, provide users with control over where and
how their data is stored, and produce user experiences that
are not possible within the browser’s user interface. Because
Adobe AIR applications must be installed on the desktop and
require users to specifically trust the Adobe AIR application,
Adobe AIR applications can safely exercise these capabili-
ties. Browser-based applications cannot be granted these
capabilities if the browser is to continue to fulfill its role as
an application for safely browsing any web site on the
Internet.

The Adobe AIR security model has a number of implications
for application developers and users. For application devel-
opers, it means that content within an installed AIR applica-
tion has capabilities that should not be exposed to any
untrusted content, including files from the Web. The run-
time has a number of features that are designed to reinforce
that distinction and to help developers build applications
using security best practices.



Primary AIR Technologies | 17

This also means that users should not install Adobe AIR
applications from sources they do not trust. This is very simi-
lar to current practices for native desktop applications and
for browser plug-ins. Many applications and web content
require that browser plug-ins (such as Flash Player or Apple
Quicktime) be installed in order to work. The Firefox
browser has a very accessible extensibility layer that essen-
tially allows any developer to extend the browser. These
applications, plug-ins, and extensions can do potentially
harmful things and therefore require that the user trust the
source of the content.

Finally, one of the capabilities that will be included in the
Adobe AIR 1.0 release is the ability of the runtime to verify
the identity of an application’s publisher. Users should care-
fully consider whether they want to trust the publisher of an
application, as well as whether they want to install an appli-
cation that hasn’t been signed.

Adobe AIR Development Toolset
One of the reasons web applications have been successful is
that they allow developers to easily deploy applications that
users can run regardless of which OS they are on. Whether
on Mac, Windows, Linux, Solaris, or cell phones, web appli-
cations provide reach.

However, success is based not only on cross-platform
deployment, but also on the cross-platform nature of the
development environment. This ensures that any developer
can develop for—and leverage—the technology. Neither the
runtime nor the development tools are tied to a specific OS.

The same is true of the Adobe Integrated Runtime. Not only
does Adobe AIR provide the cross-platform reach of web
applications, but, just as importantly, Adobe AIR
applications can be developed and packaged on virtually any
operating system.



18 | Chapter 1: Introduction to the Adobe Integrated Runtime (AIR)

Because Adobe AIR applications are built with existing web
technologies such as HTML and Flash, you can use the same
tools that you use to create browser-based content to create
Adobe AIR applications. The Adobe AIR SDK provides a
number of free command-line tools that make it possible to
test, debug, and package Adobe AIR applications with
virtually any web development and design tool.

While Adobe will add support to its own web development
and design tools for authoring Adobe AIR content, Adobe
programs are not required to create applications. Using the
Adobe AIR command-line tools, you can create an AIR appli-
cation with any web development tool. You can use the same
web development and design tools that you are already using
today.

TIP

The Development Workflow will be covered in depth in
Chapter 2.

Is Adobe AIR the End of Web Applications in the
Browser?
So, by this point, you may be saying to yourself, “Gee, Adobe
AIR sure sounds great! Why would anyone ever want to
deploy an application to the browser again? Is Adobe AIR the
end of web applications within the browser?”

No.

Let’s repeat that again. No.

Adobe AIR solves most of the problems with deploying web
applications via the browser. However, there are still

ADL Allows Adobe AIR applications to be run without having to first install them

ADT Packages Adobe AIR applications into distributable installation packages



Primary AIR Technologies | 19

advantages to deploying applications via the browser. The
fact that there are so many web applications despite the dis-
advantages discussed earlier is a testament to the advantages
of running within the browser. When those advantages out-
weigh the disadvantages, developers will still deploy their
applications via the web browser.

But it’s not necessarily an either/or question. Because Adobe
AIR applications are built using web technologies, the appli-
cation that you deploy via the web browser can be quickly
turned into an Adobe AIR application. You can have a web-
based version that provides the browser-based functionality,
and then also have an AIR-based version that takes advan-
tage of running on the desktop. Both versions could leverage
the same technologies, languages, and code base. Indeed,
some of the most popular early Adobe AIR applications,
such as FineTune and eBay Desktop, complement existing
web applications.

TIP

You can find more information on Finetune Desktop at
http://www.finetune.com/desktop/.

You can find more information on eBay’s “San Dimas” Ado-
be AIR application project at http://blogs.ebay.com/
projectsandimas.

Adobe AIR applications complement web applications. They
do not replace them.

http://www.finetune.com/desktop/
http://blogs.ebay.com/projectsandimas
http://blogs.ebay.com/projectsandimas


20

CHAPTER 2CHAPTER 2

Getting Started with AIR
Development

This chapter discusses how to get started developing applica-
tions for the Adobe Integrated Runtime using HTML and
JavaScript. It covers:

• Installing Adobe AIR

• Configuring the Adobe AIR SDK and command-line tools

• Creating your first AIR application

• Testing AIR applications

• Packaging and deploying AIR applications

Once you have completed this chapter, your environment for
developing AIR applications should be correctly configured,
and you should have an solid understanding of how to begin
to build, test, and deploy AIR applications.

What Do You Need to Develop AIR
Applications?
There are a number of required items needed in order to
begin developing AIR applications.

Adobe Integrated Runtime Beta
The AIR Beta is required to test application icons, as well as
deployment of AIR applications. The Beta runtime can be
downloaded for free from:

http://www.adobe.com/go/air

http://www.adobe.com/go/air


What Do You Need to Develop AIR Applications? | 21

Adobe AIR SDK
The Adobe AIR SDK contains command-line tools, sample
files, and other resources to make developing AIR applica-
tions easier. In particular, we will be using the command-line
tools included in the SDK (ADL and ADT), which will allow
us to test and package our AIR applications from virtually
any development environment.

You can download the AIR SDK for free from:

http://www.adobe.com/go/air

HTML/JavaScript IDE or Editor
Building AIR applications with HTML and JavaScript
requires that you have a way to create the HTML and
JavaScript files. You can use any tool that supports creating
and editing text files (such as VIM or Notepad), although it’s
recommended that you use a tool that has richer support for
working with HTML and JavaScript files, such as Adobe
Dreamweaver, Panic’s Coda, or Aptana.

Supported Operating System
While it is possible to develop and package AIR applications
on virtually any operating system (including Linux), you can
test and deploy the application only on operating systems
supported by Adobe AIR.

The supported operating systems for the Beta are:

• Windows XP SP2

• Windows Vista Home Ultimate Edition

• Mac OS 10.4.8 and 10.4.9 (Intel and PowerPC)

Adobe AIR will support additional versions of Mac and Win-
dows for the 1.0 release, and Linux shortly after the 1.0
release.

http://www.adobe.com/go/air
http://www.adobe.com/go/air


22 | Chapter 2: Getting Started with AIR Development

Uninstalling Pre-Beta Versions
of Adobe AIR
If you have previously installed an earlier version of Adobe
AIR (formerly referred to as Apollo), you need to uninstall
those versions before installing the Beta version.

Uninstalling on Windows
1. In the Windows Start menu, select Settings ➝ Control

Panel.

2. Select the Add or Remove Programs control panel.

3. Select Adobe Apollo 1.0 Alpha1 to uninstall the Apollo
runtime.

4. Click the Change/Remove button.

Uninstalling on Mac
1. Delete the /Library/Frameworks/Adobe Apollo.framework

directory.

2. Delete the /Library/Receipts/Adobe Apollo.pkg file.

3. Empty the Trash.

Once you have done this, you are ready to install the Beta
runtime.

Installing Adobe AIR
While it is not necessary to have Adobe AIR installed on your
computer in order to develop and test AIR applications, it is
useful to have in order to try other AIR applications and to
test your final application’s deployment and packaging.



Uninstalling Adobe AIR Beta | 23

Installing the runtime is simple, and requires downloading
and running the Adobe Integrated Runtime Installer.

1. Download AIR Installer from http://www.adobe.com/go/air

2. Launch the installer. On a Mac, you must first mount the
.dmg file, which contains the installer.

3. Follow the installation instructions.

As Adobe AIR is simply a runtime and not an application
that can be launched, the easiest way to confirm that it is
installed correctly is to try installing an AIR application.

You can do this by either downloading an AIR application
and installing it, or following the instructions later in the
chapter to build a simple AIR application.

TIP

You can download sample AIR applications from
Adobe’s web site at: http://www.adobe.com/go/air.

Uninstalling Adobe AIR Beta
The process for uninstalling Adobe AIR is different depend-
ing on the operating system that you are running on.

Uninstalling on an Mac
The Adobe AIR installer places an uninstall application on
the user’s system when it is installed. To uninstall the Adobe
Integrated Runtime, launch the uninstaller named Adobe AIR
Uninstaller which can be found in the /Users/<User>/
Applications directory (where <User> is your system user
account name).

http://www.adobe.com/go/air


24 | Chapter 2: Getting Started with AIR Development

Uninstalling on Windows
On Windows, you can uninstall Adobe AIR the same way
that you uninstall any other application. Just select the
Adobe Integrated Runtime in the add/remove programs sec-
tion of the control panel.

Setting Up the AIR SDK and
Command-Line Tools
The Adobe AIR SDK Beta contains tools, samples, and code
that makes it easier to develop, test and deploy applications.

In particular, it contains two command-line tools that we
will use:

Installing the SDK
In order to ease development, you should place the path to
these files within your system’s path. This will allow you to
execute the tools from anywhere on your system.

The command line tools are located in the bin directory
within the SDK.

1. Download the AIR SDK Beta from http://www.adobe.com/
go/air.

2. Open the SDK

a. On Windows, uncompress the ZIP archive.

b. On Mac, mount the .dmg file.

3. Copy the contents of the SDK to your system (we will
refer to this location as <SDK_Path>.

ADL This is used to launch and test an AIR application without having to first install it.

ADT This is used to package an AIR application for distribution.

http://www.adobe.com/go/air
http://www.adobe.com/go/air


Setting Up the AIR SDK and Command-Line Tools | 25

TIP

In order to run the command-line tools, you need to copy
only the bin and runtime directories from the SDK.

It’s important that the bin and runtime directories within
the SDK maintain their relative paths to each other.

4. At this point, you should have at least the following two
directories: <SDK_Path>/bin and <SDK_Path>/runtime.
The ADL and ADT command-line tools are located in
the bin directory.

Placing the Command-Line Tools Within the
System Path
All that’s left is to place the <SDK_Path>/bin directory into
your system path, so that you can execute the command line
applications from anywhere on your system.

The instructions for this are different depending on whether
you are on a Mac- or Windows-based system.

Windows
1. Open the System Properties dialog box and click the

Advanced tab. You can find this in the System settings in
the Control Panel.

2. Click the Environment Variables button.

3. Select the PATH entry and then click the Edit button.
Add the path to the bin directory to the end of the cur-
rent variable value, separating it from previous values
with a semicolon:

;<SDK_Path>/bin

Figure 2-1 shows the process.

4. Click OK to close the panels.



26 | Chapter 2: Getting Started with AIR Development

In order to test the installation, open a new Windows Con-
sole (Start ➝  Run ➝  Console), and type:

adt

TIP

Make sure you open a new Console window; don’t use a
Console window that was already open.

You should see output similar this:

Too few arguments.
Usage: adt -package air_file app_xml [ file_or_dir |
 -C dir file_or_dir ... ] ...

This means that the tools are configured correctly.

Figure 2-1. Placing command-line tools in the system path on
Windows



Setting Up the AIR SDK and Command-Line Tools | 27

If you get an error that the file cannot be found, then check
the following things:

• Make sure that the bin and runtime directories are
included in the <SDK_Path> directory

• Make sure that you included the path to <SDK_Path>
directory correctly in the PATH environment variable.

• Make sure that you opened a new Console window
before running the command.

Mac
There are a number of ways to add the path to the AIR SDK
to your system path, depending on which shell you are using,
and how you specify user environment variables.

The instructions below show how to modify your path envi-
ronment variable if you are using the bash shell.

1. Open the Terminal program (/Applications/Utilities/
Terminal)

2. Make sure you’re in your home directory by typing cd
and pressing enter.

3. We need to check to see if one of two files are present.
Run the following command ls –la

4. Look for a file named either .profile or .bashrc.

5. If you have neither the .profile or .bashrc file, then create
the .profile file with the following command:

 touch .profile

6. Open the .profile or .bashrc file with a text editor.

7. Look for a line that looks similar to this:
export PATH=$PATH:/usr/local/bin

8. Add the path to the <SDK_Path>/bin directory to the
end of this line. For example, if <SDK_Path>/bin is at
/airsdk/bin, the export path should look something
like this:

export PATH=$PATH:/usr/local/bin;/airsdk/bin

making sure to separate the entries with a colon.



28 | Chapter 2: Getting Started with AIR Development

9. If the file is empty, add the following line:
export PATH=$PATH:/airsdk/bin

10. Save and close the file.

11. Run the following command to load the new settings
source, .profile (or .bashrc, if that is the file you edited).

12. You can confirm that the new settings have taken effect
by typing echo $PATH and pressing Enter. Make sure that
the <SDK_Path>/bin path is included in the output.

13. In order to test the installation, open a Terminal window
and type adt.

You should see output similar this:
Too few arguments.
Usage: adt -package air_file app_xml [ file_or_dir |
 -C dir file_or_dir ... ] ...

meaning that the tools are configured correctly.

If you get an error that the file cannot be found, then check
the following things:

• Make sure the bin and runtime directories are included in
the <SDK_Path> directory.

• Make sure you included the path to <SDK_Path>/bin
correctly in the PATH environment variable.

• Make sure you either opened a new Terminal window, or
ran source on your configuration file.

Creating a Simple AIR Application with
HTML and JavaScript
Now that you have installed and configured Adobe AIR and
the Adobe AIR SDK Betas, we are ready to build our first AIR
application.

We will build a very simple “hello world” example. Once
you have built and tested the application, your development
environment will be set up and ready to build more complex
and functional AIR applications.



Creating a Simple AIR Application with HTML and JavaScript | 29

Creating the Application Files
Every AIR application contains a minimum of two files. The
first file is the root content file. This is the main HTML or
SWF file for the application, and is the file that will be dis-
played/executed when the application first starts up.

The second file is called the application descriptor file, which
is an XML file that provides metadata to Adobe AIR about
the application.

Let’s create these files for our application:

1. Create a new folder called AIRHelloWorld.

2. Inside of this folder, create two new files called
AIRHelloWorld.html and AIRHelloWorld.xml.

3. Open each of these files using your favorite text or
HTML editor/IDE.

Understanding application descriptor files

The application descriptor file is an XML file required for
each AIR application. It provides general metadata (such as
application name and description) to Adobe AIR, as well as
information on how the application should be run. This
includes specifying the root application file for the applica-
tion and the window mode that the initial application win-
dow should use.

First, let’s look at the entire application descriptor file
(AIRHelloWorld.xml) for our application, and then we will
go into more detail on each item within the file.

TIP

You can find a sample application descriptor file in the
AIR SDK in the templates folder.



30 | Chapter 2: Getting Started with AIR Development

Open AIRHelloWorld.xml and type in the following text:

<?xml version="1.0" encoding="UTF-8"?>
<application xmlns="http://ns.adobe.com/air/application/1.0.M4"
                    appId="com.oreilly.AIRHelloWorld"
                    version="1.0">

     <name>AIRHelloWorld</name>
     <title>AIRHelloWorld Installer</title>
     <description>Simple Hello World Example
       using HTML</description>
      <copyright></copyright>

      <rootContent systemChrome="standard"
                  transparent="false" visible="true">
ApolloHelloWorld.html</rootContent>

</application>

The content should be pretty self-explanatory, but let’s go
through it line by line to understand what is going on.

<application xmlns="http://ns.adobe.com/air/application/1.0.M4"
                    appId="com.oreilly."
                    version="1.0">

There are two items worth pointing our here. First, the
namespace definition:

xmlns="http://ns.adobe.com/air/application/1.0.M4"

This specifies the build of Adobe AIR that the application
targets. In this case, it specifies 1.0.M4, which is the public
Beta.

The appId property is important, and specifies a unique ID
for the AIR application. Adobe AIR uses this ID to deter-
mine one application from another.

As you can see, it uses the reverse domain format, which you
may be familiar with from some programming languages
such as Java, ActionScript, and some JavaScript frameworks.
You can create your own ID using your domain name and
application name.



Creating a Simple AIR Application with HTML and JavaScript | 31

The next section of elements specify general metadata about
the application:

<name>AIRHelloWorld</name>
<title>AIRHelloWorld Installer</title>
<description>Simple Hello World Example using HTML
</description>
<copyright></copyright>

The next element is the rootContent tag, which tells Adobe
AIR which application file is the main root content of the
application:

<rootContent systemChrome="standard"
                  transparent="false" visible="true">
                  ApolloHelloWorld.html</rootContent>

The value of the element should point to the main root file of
the application, which, in this case, is an HTML file.

TIP

The application descriptor file and root content file must
be in the same folder.

The rootContent element has a number of attributes that
specify the initial window parameters and chrome of the
application when it is first launched.

Element Description

name The name of the application. This is the name that will be exposed to
the operating system and user.

title The title that will be used for the application installer.

description A human readable description of the application that will be presented
to the user during the installation process.

copyright Optional. Allows the specification of Copyright information about the
application.



32 | Chapter 2: Getting Started with AIR Development

For our example, we will use the operating system’s window
chrome.

This is all that is required for the application descriptor file
for our application. At this point, we are ready to create the
main HTML file for our application.

Creating the root application file

The root application file is the main file for the application
that will be loaded when the application is launched. This file
can be either a compiled Flash file (SWF) or an HTML file.

For this chapter, we will create a very simple HTML file in
order to ensure that our development environment is config-
ured correctly. We will cover more advanced AIR API usage
in Chapters 3 and 4.

<html>
<head>
    <title>AIRHelloWorld</title>

    <script>
        function init( )
        {
            runtime.trace("init function called");
        }
    </script>

</head>
<body onload="init( )">
    <div align="center">Hello World</div>
</body>
</html>

Element Description

systemChrome The type of systemChrome that the application should use
(“standard” or “none”).

transparent Whether the application background should be transparent. If
systemChrome is set to standard, this property is true.

visible Whether the application is visible when it is first launched. This is
useful if your application needs to perform some complex
initialization before displaying the UI to the user.



Creating a Simple AIR Application with HTML and JavaScript | 33

As you can see, this is a very basic HTML file that displays
“Hello World” and calls a JavaScript function once the file
has loaded and initialized.

There are a couple of lines worth pointing out:

<body onload="init( )">

We just use the standard onload event on the body element
to get an entry point for JavaScript into our application:

    <script>
        function init( )
        {
            ...
        }
    </script>

We then use a standard JavaScript function to capture the
onload event.

Accessing AIR APIs

Looking at the init JavaScript function, you’ll see some code
you may not be familiar with:

runtime.trace("init function called");

This is the only AIR-specific code/markup in the entire appli-
cation. The runtime property is a property placed on the
window object by Adobe AIR which provides an entry point
into the Adobe AIR engine and APIs. The trace function is a
top-level AIR API which takes a string, and prints it out to
the command line (when the application is launched via the
command line).

All access to AIR-specific APIs (including Flash Player APIs)
are accessed from JavaScript via the runtime property. We
will cover this in more detail throughout the rest of the book.



34 | Chapter 2: Getting Started with AIR Development

TIP

Checking for the existence of the runtime property is a
simple way to determine whether your HTML and
JavaScript application is running within Adobe AIR.

if(window.runtime)

{

 //running within AIR

}

Now that we have created both the application descriptor
file, as well as the root HTML application file, we are ready
to run and test our application within the runtime.

Testing the Application
While there are a number of HTML IDEs (such as
Dreamweaver) that are adding support for launching and
testing AIR applications directly from within the IDE, we will
focus on launching and testing AIR applications using the
ADL command-line tool included within the SDK. This will
provide a solid basis for an understanding of what is going
on. It will also provides the most flexibility in integrating the
development process with other IDEs, editors and work-
flows.

Using ADL to Launch the Application
The first step in testing the application is to run it as an AIR
application to make sure that:

• There are no errors in the application descriptor file

• The application launches

• The HTML renders correctly

• The JavaScript code functions as expected



Testing the Application | 35

While we could package up the entire application and then
install it, this would be tedious, and make it difficult to
quickly iterate on and test new versions. Luckily, the Adobe
AIR SDK provides a command-line tool called ADL, which
allows you to launch an AIR application without having to
first install it.

In order to test our application:

1. Open a Terminal window (on Mac) or a Console win-
dow (on Windows).

2. Change to the directory that contains the
AIRHelloWorld.html and AIRHelloWorld.xml files.

3. Run ADL with the following command, passing in the
name of the application descriptor file:

adl AIRHelloWorld.xml

This should launch your application within the standard sys-
tem chrome of your operating system.

If the application does not launch correctly, or if you get an
error, check the following:

Figure 2-2. AIRHelloWorld application running from ADL on Mac
OS X



36 | Chapter 2: Getting Started with AIR Development

• Make sure you have configured the SDK correctly, so
that the ADL tool can be found.

• Make sure that you are running the ADL command from
the same directory that contains the AIRHelloWorld.xml
file.

• Make sure that your application descriptor file contains
well-formed XML.

• Make sure the information in the application descriptor
file is correct. Pay particular attention to the application
attributes and the rootContent value.

• Make sure that the AIRHelloWorld.html and
AIRHelloWorld.xml files are in the same directory.

Once you have fixed any issues, and your application is run-
ning correctly, you can explore how to get information from
the application at runtime.

Capturing Output from the Application at
Runtime
When running applications from the command line via ADL,
there are a number of ways to get runtime information and
debugging information from the application.

Runtime JavaScript errors

Any runtime errors that arise from JavaScript execution
while an AIR application launched via ADL is running will
be output to ADL’s standard out.

Let’s modify our application to cause it to generate a
JavaScript runtime error. Change the contents of
AIRHelloWorld.html to:

<html>
<head>
    <title>AIRHelloWorld</title>

    <script>



Testing the Application | 37

        function init( )
        {
            runtime2.trace("init function called");
        }
    </script>

</head>
<body onload="init( )">
    <div align="center">Hello World</div>
</body>
</html>

All we did was change the init function to try and access a
property named runtime2 that does not exist:

runtime2.trace("init function called");

Save the file, and run the application from ADL:

adl AIRHelloWorld.xml

The application should launch, and you should see the fol-
lowing error output from the command line that you
launched the application from:

ReferenceError: Can't find variable: runtime2
init at app-resource:/AIRHelloWorld.html : 8
init at app-resource:/AIRHelloWorld.html : 8
onload at app-resource:/AIRHelloWorld.html : 13

This output provides the error, which in this case is that the
variable named runtime2 cannot be found, as well as the line
number that the error occurred on, and a stack trace of the
execution call.

This information can be used to track down any errors
within your application.

There are also times where the application may not be func-
tioning correctly, but is not throwing any errors. In cases like
this, it is useful to be able to capture information about the
state of the application at runtime, in order to track down
any issues.



38 | Chapter 2: Getting Started with AIR Development

Adobe AIR provides a function to make it possible to send
information from the application to standard out at runtime.

runtime.trace

As we touched on earlier in the chapter, Adobe AIR provides
a mechanism for sending Strings from JavaScript to the com-
mand line.

The trace function on the runtime property takes a string,
which will then be output to ADL’s standard out. Here is an
example of its usage:

runtime.trace("This will be sent to standard out");

This can be useful for tracking information about the state of
the application without having to interrupt the execution of
the program.

Any non-String objects passed to trace will have their
toString( ) function called. The JavaScript Object object pro-
vides a default toString( ) implementation, although some
classes (such as Array) implement more context-sensitive
toString( ) functions.

Here is an example of tracing an Array that contains various
data types:

var a = ["a", 1, {foo:"bar"}];
runtime.trace(a);

This will result in the following output on the command line
from ADL:

a,1,[object Object]

Of course, you can implement your own toString( ) method
on your custom JavaScript classes, or override toString( )
functions on existing classes in order to provide more class-
specific output.



Packaging and Deploying the AIR Application | 39

Packaging and Deploying the AIR
Application
Now that we understand how to build, test and debug an
AIR application, we are ready to create an AIR file which will
allow us to deploy and distribute our application.

What Is an AIR File?
An AIR file is a zip-based application distribution package
that is used to distribute AIR applications. It contains all of
the files necessary to install and run an AIR application, and
is used by the Adobe Integrated Runtime to create and install
an AIR application onto the user’s system.

The AIR file is created by the ADT command line tool
included in the AIR SDK and is used to distribute the appli-
cation to other users.

TIP

AIR files require that Adobe AIR already be installed on
the user’s system.

ADL will be able to also create OS-specific native install-
ers that will be able to first install Adobe AIR and then in-
stall the AIR application for systems where Adobe AIR is
not already installed.

This functionality is not yet implemented in the public
Beta.

An AIR file requires a minimum of two files, the application
descriptor file, and a root application file. However, you can
also include other files, icons, directories, and assets that will
be bundled with the AIR file, and installed alongside your
application. These files will then be available to the applica-
tion at runtime.



40 | Chapter 2: Getting Started with AIR Development

Creating an AIR File Using ADT
The ADT command-line tool included in the Adobe AIR
SDK is used to create AIR files. Its usage format is:

adl –package AIRFILENAME FILESTOINCLUDE

To create an AIR file for our application:

1. Open a terminal (Mac OS X) or Console (Windows)
window.

2. Change to the directory which contains AIRHelloWorld.
html and AIRHelloWorld.xml.

3. Run the following command:
adt -package AIRHelloWorld.air AIRHelloWorld.xml
AIRHelloWorld.html

This should create a file named AIRHelloWorld.air in the
same directory. If the file is not created, or if you receive any
errors:

• Make sure you have configured the SDK correctly in
order to ensure that the ADT tool can be found.

• Make sure that you are running the ADT command from
the same directory that contains the AIRHelloWorld.xml
file.

• Make sure that your application descriptor file contains
well formed XML.

• Make sure the information in the application descriptor
file is correct. Pay particular attention to the application
attributes, and the rootContent value.

• Make sure that the AIRHelloWorld.html and
AIRHelloWorld.xml files are in the same directory

Testing the AIR File
Now that we have created the AIR file for our application,
the only step left is to test the AIR file and make sure it
installs correctly.



Packaging and Deploying the AIR Application | 41

Testing the AIR file requires trying to install it onto the sys-
tem, and then launching it:

1. Switch to the directory that contains the AIR file in Win-
dows Explorer (Windows) or the Finder (Mac OS X).

2. Double-click the AIR file.

3. Follow the instructions in the install dialog box.

4. On the last screen of the install dialog box, make sure
Run Application is checked.

You application should launch and run.

If it does not launch, or if you receive an error, check the
following:

1. Make sure that you have correctly installed the Beta
version of Adobe AIR.

2. Make sure that there were no errors when you created
the AIR file via ADL.

3. Make sure that you have uninstalled any previous
versions of Adobe AIR.

Once you have confirmed that the application is installed
and runs correctly, you can relaunch it by clicking its icon.
The default shortcut location varies, depending on your
operating system:

Deploying the AIR File
Once you have successfully created and packaged your AIR
application, all that is left is to distribute the application.
This is done by distributing the AIR file, either via the web,
or directly via CD-ROM or other distribution mechanisms.

System Shortcut

Mac OS X /Users/<USERNAME>/Applications

Windows Start Menu ➝  Programs ➝  <APPLICATION NAME>



42 | Chapter 2: Getting Started with AIR Development

Setting the MIME type

One thing to watch out for when distributing AIR files for
download from a web server, is to ensure that the MIME
type is set correctly on the server. If the MIME type is not set
correctly, web browsers may treat an AIR file as a zip file
(and in the process rename it), or may display the raw bytes
of the AIR file in the browser, instead of downloading it to
the user’s system.

The correct MIME type for an AIR file is:

application/vnd.adobe.air-application-installer-package+zip

For example, to set the MIME type for the Apache server,
you would add the following line to your Apache
configuration file:

AddType application/vnd.adobe.air-application-installer-
package+zip .air

Check the documentation for your web server for specific
instruction on how to set the MIME type.

At this point, you have all of the basic knowledge of how to
develop, test and deploy AIR applications, and are ready to
begin to use the AIR APIs to build more full-featured and
advanced applications.



43

CHAPTER 3CHAPTER 3

Working with JavaScript and
HTML Within AIR

This chapter provides an in-depth overview of the HTML
and JavaScript environments within the Adobe Integrated
Runtime. It discusses:

• The use of the open source WebKit HTML-rendering
engine within Adobe AIR

• JavaScript functionality within Adobe AIR

• AIR-specific implementations of functionality

• Working with AIR, Flash Player and ActionScript APIs
from JavaScript

Once you have completed this chapter, you should have a
solid understanding of the HTML and JavaScript environ-
ments within Adobe AIR. You should also understand how
to work with AIR and ActionScript APIs within HTML and
JavaScript-based applications.

WebKit Within the Adobe Integrated
Runtime
Adobe AIR leverages the open source WebKit-rendering
engine to add support for rendering HTML content to the
runtime.

In addition to HTML rendering, WebKit also provides sup-
port for associated web technologies, such as:

• JavaScript

• XMLHttpRequest



44 | Chapter 3: Working with JavaScript and HTML Within AIR

• CSS

• XHTML

• W3C DOM Level 2 support

Essentially, Adobe AIR has a full HTML rendering engine,
and includes support for of the same technologies that can be
used when developing web applications and content target-
ing the web browser. Developers can build full-featured AIR
applications that leverage these technologies.

TIP

You can find more information on the WebKit project at:
http://www.webkit.org.

Why WebKit?
Adobe spent a considerable amount of time researching
which HTML engine to use within Adobe AIR and used a
number of criteria that ultimately led them to settle on
WebKit.

Open project

Adobe knew from the very beginning that it did not want to
create and maintain its own HTML rendering engine. Not
only would this be an immense amount of work, but it
would also make it difficult for developers, who would then
have to become familiar with all of the quirks of yet another
HTML engine.

WebKit provides Adobe AIR with a full-featured HTML
engine that is under continuous development by a robust
development community that includes individual developers
as well as large companies such as Nokia and Apple. This
allows Adobe to focus on bug fixes and features, and also
means that Adobe can actively contribute back to WebKit,
while also taking advantage of the contributions made by
other members of the WebKit project.



JavaScript Within AIR | 45

Proven technology that web developers know

As discussed earlier, one of the biggest problems with com-
plex web application development is ensuring that content
works consistently across browsers. While something may
work perfectly in Firefox on the Mac, it may completely fail
in Internet Explorer on Windows. Because of this, testing
and debugging browser-based content can be a nightmare for
developers.

Adobe wanted to ensure that developers were already famil-
iar with the HTML engine used within Adobe AIR, so they
did not have to learn all of the quirks and bugs of a new
engine. Since Safari (which is built on top of WebKit) is the
default browser for Mac OS X (and is also available on
Windows), developers should be familiar with developing for
WebKit.

Minimum effect on AIR runtime size

The target size for Adobe AIR is between 5 and 9 MB. The
WebKit code base was well-written and organized and has
had a minimal impact on the final AIR runtime.

Proven ability to run on mobile devices

While the first release of Adobe AIR runs only on personal
computers, the long-term vision is to extend Adobe AIR from
the desktop to cell phones and other devices. WebKit has a
proven ability to run on such devices and has been ported to
cell phones by both Nokia and Apple.

JavaScript Within AIR
Adobe AIR has full support for JavaScript within HTML
content. JavaScript 1.5, which corresponds to ECMA-262 is
supported.

The JavaScript engine is implemented via WebKit, and works
the same as it does within WebKit-based browsers. In addition



46 | Chapter 3: Working with JavaScript and HTML Within AIR

to having access to the HTML DOM, JavaScript can also
access AIR and Flash Player APIs directly via the window.
runtime property. This will be discussed in more detail later.

TIP

For an in-depth introduction and discussion of
JavaScript, check out JavaScript: the Definitive Guide: 5th
Edition, published by O’Reilly:

    http://www.oreilly.com/catalog/jscript5/

AIR Implementation of Functionality
HTML and JavaScript functionality is consistent with that
found in other WebKit-based projects and browsers, such as
Apple’s Safari browser. When exploring documentation on
HTML engine / browser functionality, you can use refer-
ences to the Safari browser as an indicator of the functional-
ity available within the HTML environment within AIR.

However, because the HTML engine is running in a run-
time, and not a browser, there are a few differences that are
useful to understand before beginning development with
HTML and JavaScript within Adobe AIR.

Cookies
The Adobe Integrated Runtime has full support for setting
and getting cookies from HTML-based content. Cookie sup-
port is implemented via the operating system’s networking
stack. This means that AIR applications can share cookies set
by any browser or application that also leverage the operat-
ing system stack.

For example. AIR applications can share cookies set through
Internet Explorer on Windows, and Safari on Mac, as they
both also use the operating system’s cookie storage function-
ality. Firefox implements its own cookie storage and thus



AIR Implementation of Functionality | 47

cookies set within Firefox cannot be shared with AIR
applications.

TIP

In addition to cookies, AIR applications have a number of
other APIs that can be used for persistent data, including
the file API, as well as the embedded database API.

Windowing

Windows

You can create new windows via JavaScript just as you can
within the browser.

myWindow = window.open("Window.html", "myWindow",
"height=400,width=400");

However, the runtime property which provides access to AIR
and Flash Player APIs is not automatically available within the
new window. In order to make it available, you must explic-
itly place it within the scope of the new window like so:

window.runtime = window.opener.runtime;

TIP

Full support of native windows is not available within the
Beta. Only APIs available from JavaScript have been
implemented.

Dialogs

HTML dialogs are also supported within AIR applications,
although not all have been implemented within the Beta.

Dialog Supported in Beta

alert yes

confirm yes

prompt no



48 | Chapter 3: Working with JavaScript and HTML Within AIR

In addition, the file-browsing dialog created via:

<input type="file" />

is not currently supported within the Beta.

Any dialogs not currently supported in the Beta, will be sup-
ported in the 1.0 release.

XMLHttpRequest and Ajax
The XMLHttpRequest object, which enables the use of Ajax
techniques for sending and loading data, is completely sup-
ported within AIR applications.

One advantage to developing Ajax applications within
Adobe AIR versus the browser, is that because you have a
consistent runtime to target across operating systems, you do
not have to worry about cross-browser, platform inconsisten-
cies in how the API is implemented.

The primary benefit of this is that you have to write only one
version of the code.

Here’s a simple example of an XMLHttpRequest object call
within an AIR application that works regardless of which
operating system the application is running on:

<script type="text/javascript">
    var xmlhttp;
    function appLoad( )
    {
        //replace with URL to resource being loaded
        var url = "http://www.mikechambers.com/blog/";
        xmlhttp = new XMLHttpRequest( );
        xmlhttp.open("GET", url,true);

        xmlhttp.onreadystatechange=function( ){
            if (xmlhttp.readyState==4)
            {
                runtime.trace(xmlhttp.responseText);
            }
        }



AIR Implementation of Functionality | 49

        xmlhttp.send(null)
    }
</script>

When called, this function uses the XMLHttpRequest object to
load the specified URL and prints its contents out to the com-
mand line. The main thing to note in this example is that
because the runtime is known and it is consistent across oper-
ating systems, you do not have to detect the existence of—or
differences in—the implementation of XMLHttpRequest as you
would when deploying in the browser.

Both synchronous and asynchronous XMLHttpRequest calls
are supported, as is loading data across domains.

URI Schemes
Working with Universal Resource Identifiers (URIs) within
HTML content in AIR applications is largely the same as
working with URIs within the browser. This section gives a
quick overview of working with URIs within HTML content
in AIR applications, and introduces some new URIs made
available by the runtime.

Supported URI schemes

Adobe AIR provides support for the most common URI
schemes available within the browser (Table 3-1).



50 | Chapter 3: Working with JavaScript and HTML Within AIR

Unsupported URI schemes

In the Beta build of Adobe AIR, the commonly used mailto://
and feed:// URI schemes are not available.

At the time that the book was written, it had not yet been
determined whether and/or how these URI schemes would
be available for the 1.0 release.

AIR URI Schemes

Adobe AIR provides a number of additional URIs that make
it easy to reference files and content within specific areas of
the users system (Table 3-2).

Here is a simple example of the app-resource AIR URI:

app-resource:/foo/test.html

This references a file name test.html in the foo directory that
was installed with the application.

Table 3-1. Supported URI schemes

URI scheme Description

http:// URI that points to a resource accessed via the standard HTTP protocol.
This is fully supported within Adobe AIR.

https:// URI that points to a resource accessed via a protocol encrypted with
SSL/TLS. This is fully supported within Adobe AIR.

file:// URI that points to a resource on the local or a networked file system.

ftp:// URI that points to a resource accessed with the FTP protocol.
In the Adobe AIR Beta, requests for files will work correctly, while
requests for directories return an empty page with no directory listing.

Table 3-2. Adobe AIR URI schemes

URI Description

app-resource:/ Provides a reference to the root content directory of the
application. This should be used when referencing content
included within the AIR file.

app-storage:/ Provides a reference to an application-specific storage area on
the user’s system. This area is useful for storing user-specific
application settings and content.



AIR Implementation of Functionality | 51

TIP

The AIR-specific URIs take only a single slash, versus two
slashes in the other URIs.

Within HTML content, these URI schemes can be used any-
where within HTML and JavaScript content where regular
HTTP URIs are used.

Relative URLs

You’re not restricted to using just absolute URLs within AIR
applications. You can also use relative URLs, but it is impor-
tant to remember that relative URLs within AIR applications
are relative to the application, and not to a server (as they
would be when doing traditional browser-based client/server
development).

Relative URLs will be relative to the root of the application,
and will resolve to the app-resource:/ URI.

For example:

<img src="foo/image.png" />

will resolve to:

<img src="app-resource:/foo/image.png" />

You should keep this in mind when moving web and
browser-based content and code into an AIR application.

Security
This section discusses a number of differences in the security
model implementations in the Adobe AIR, versus that in the
browser.



52 | Chapter 3: Working with JavaScript and HTML Within AIR

Security Context
Content installed within the application runs under the secu-
rity context of the application. This means that it has access
to all of the Adobe AIR APIs and functionality.

Remote content loaded into the application is run under a
web security content, and as such does not have access to the
Adobe AIR APIs and functionality, or to the expanded privi-
leges to which application content has access.

For example, content loaded into the application via:

app-resource:/foo.html

has full access to the AIR APIs. However, content loaded
using HTTP, like so:

http://www.yourdomain.com/foo.html

runs in a web security context, and does not have access to
AIR APIs.

Content in the application install directory falls under the
application security context. Content in the application stor-
age directory (app-storage:/) falls under the web security
context (Table 3-3).

Table 3-3. Application and web security contexts

URL data loaded from Has access to AIR APIs?

app-resource:/foo.html Yes

app-storage:/foo.html No

http://www.anydomain.com/foo.html No

https://www.anydomain.com/foo.html No

file:/C:/foo.html No

ftp://www.anydomain.com/foo.html No

http://www.yourdomain.com/foo.html


AIR Implementation of Functionality | 53

Because of this, content downloaded from third party
sources and domains should always be placed in the app-
storage:/ directory, and not in the app-resource:/ directory in
order to prevent inadvertent elevation of security context and
privileges.

Cross domain data loading

The Adobe Integrated Runtime does not enforce cross
domain data loading restrictions for application content.
Among other things, this allows the loading of data across
domains using the XMLHttpRequest object.

Cross domain data loading restrictions are enforced for non-
privileged web content.

Using JavaScript Frameworks
Because the HTML environment within the Adobe Inte-
grated Runtime has full support for JavaScript, you can use
virtually any JavaScript framework to build your application.
However, when using frameworks, there are a couple of
things to keep in mind:

• The framework should be included within your applica-
tion’s AIR file, in order to ensure that it is available
offline.

• If the framework expects to load resources from a cen-
tral server, you may have to test to make sure that rela-
tive URLs continue to work.

• While it is possible to load the framework from the net-
work at runtime, this can lead to slower application
startup performance, as well as an inability for the appli-
cation to work when offline.

You can find a number of HTML-based AIR applications and
their source built using the EXT-JS framework from the
Adobe Labs AIR site at:

http://www.adobe.com/go/airwiki

http://www.adobe.com/go/airwiki


54 | Chapter 3: Working with JavaScript and HTML Within AIR

TIP

You can find more information on the EXT-JS frame-
work at http://extjs.com/.

Accessing AIR APIs from JavaScript
In addition to the standard JavaScript and HTML DOM
APIs, JavaScript code running within the application context
in an AIR application can also take advantage of APIs pro-
vided by the runtime, as well as Flash Player APIs and even
ActionScript 3 libraries. This greatly extends the capabilities
of JavaScript over the APIs available in the browser, and
includes functionality such as:

• Playing sounds

• Manipulating images and bitmaps

• Reading and writing files to and from the local file
system

• Creating, controlling and manipulating native windows

• Making direct socket connections (both binary and text
based)

• Accessing the clipboard

• Leveraging an embedded database to store data

TIP

You can find examples of how to leverage these features
in the cookbook section in Chapter 4.

This section discusses how to leverage AIR and Flash Player
APIs from JavaScript, as well as how to load and leverage
compiled ActionScript libraries from within JavaScript.

http://www.adobe.com/go/airwiki


Accessing AIR APIs from JavaScript | 55

Accessing AIR and Flash Player APIs
Most AIR and Flash Player APIs are contained within pack-
ages (similar to how many JavaScript frameworks leverage
namespaces and packages). This helps organize the APIs, and
also reduces the possibility of naming conflicts. When
accessing AIR and Flash Player APIs directly from JavaScript,
you must do so via their complete package path and name.

As discussed earlier, all AIR and Flash Player APIs are made
available via the window.runtime property. The runtime prop-
erty is at the root of the runtime environment, and all APIs
are relative to this root.

For example, to access an API which is not contained within
a package, such as trace( ) you reference it directly from the
runtime property, like so:

window.runtime.trace("foo");

However, if you want to access an API that is contained
within a package, you must prepend the package path to the
API. For example, to access the amount of memory currently
used by the application, you can call the totalMemory Flash
Player property that is in the flash.system.System class. To
call this API from JavaScript:

var mem = window.runtime.flash.system.System.totalMemory;

This also applies when creating new instances of an API class
from within JavaScript:

var file = new window.runtime.flash.filesystem.File( );

This code creates a new File instance that can be used to
work with the file system.

Here is a complete example that shows how to write a file
named output.txt to the user’s desktop:

//call a static property
var desktop = window.runtime.flash.filesystem.File.
desktopDirectory;



56 | Chapter 3: Working with JavaScript and HTML Within AIR

//call a function on an instance of a class
var file = desktop.resolve("output.txt");

//create a new instance of a class using new
var fileStream = new window.runtime.flash.filesystem.
FileStream( );

    //call a function, passing arguments
    fileStream.open(file, window.runtime.flash.filesystem.
                    FileMode.WRITE);

    fileStream.writeUTFBytes("Hello World");
    fileStream.close( );

Don’t worry too much about what the code is doing in this
example, but rather focus on how the AIR APIs are called
from JavaScript.

This allows you to leverage virtually any AIR or Flash Player
API from within JavaScript.

TIP

Download JavaScript specific language references for AIR
from the Adobe web site at: http://www.adobe.com/go/air.

By remembering how to use the package structure to call
APIs, you can leverage all AIR, Flash Player and ActionScript
APIs even if JavaScript-specific documentation is not
provided.

Working with AIR and Flash Player Events
Many of the AIR and Flash Player APIs make extensive use of
events. Event handling in ActionScript-based APIs is based
on the W3C DOM Level 3 event model. This is similar to the
W3C DOM Level 2 event model available within JavaScript,
but is very different from the callback mechanism often
deployed in JavaScript.

In order to be notified when an event from an AIR or Flash
Player API occurs, you must register to listen for it. The best



Accessing AIR APIs from JavaScript | 57

way to understand this is to look at an example. The follow-
ing example registers for a NETWORK_CHANGE event that is
broadcast by the Shell class:

function onNetworkChange(event)
{
    runtime.trace("Network status changed");
}

function onAppLoad( )
{
    window.runtime.flash.system.Shell.shell.addEventListener(

window.runtime.flash.events.Event.NETWORK_CHANGE,
            onNetworkChange);
}

As you can see from the example, you register for events
broadcast by a class instance by calling the addEventListener
function on the class instance. This API requires two argu-
ments.

The first argument is the event name of the event being
broadcast. For all AIR and Flash Player APIs, there will be a
constant for the event name, which you can find in the docu-
mentation.

The second argument is a reference to the function that will
handle the event. In this case, the function is named
onNetworkChange. Looking at the function, you can see that it
is passed an argument with information about the event.
Again, all AIR and Flash Player APIs will pass an object to
the event handler function, which provides information
about the event. You can find the exact type of event object
passed to the handler, and the information it provides, by
referencing the API documentation.

Using AIRAliases.js
As the previous examples show, being able to leverage AIR
and Flash Player APIs from directly within JavaScript can be
very powerful. However, because you must reference the



58 | Chapter 3: Working with JavaScript and HTML Within AIR

APIs via the runtime property and the complete API package
path, it can lead to very verbose code.

In order to make it easier to use some of the more common
AIR and Flash Player APIs from within JavaScript, Adobe has
created a JavaScript include file, named AIRAliases.js. This
file, which can be found in the frameworks directory of the
SDK, provides aliases for commonly used APIs to make them
more convenient to use from within JavaScript.

To use the aliases file, copy it from the SDK to your applica-
tion directory (make sure to also package it in your AIR file).
You then include it within your application using the script
tag in each HTML document that you want to leverage the
aliases in.

For example, let’s look at the earlier example that writes a
file to the desktop, but uses the JavaScript aliases provided in
the AIRAliases.js file instead of typing out the complete pack-
age paths:

<script src="AIRAliases.js"></script>

<script type="text/javascript">
    function writeFile( )
    {
        var desktop = air.File.desktopDirectory;
        var file = desktop.resolve("output.txt");
        var fileStream = new air.FileStream( );
            fileStream.open(file, air.FileMode.WRITE);
            fileStream.writeUTFBytes("Hello World");
            fileStream.close( );
    }
</script>

First, notice that the code is much less verbose. This is because
instead of having to reference APIs via window.runtime and
then their complete package path, we can use the aliases
within the include file.



Accessing AIR APIs from JavaScript | 59

For example, this reduces:

var desktop = window.runtime.flash.filesystem.File.
desktopDirectory;

to:

var desktop = air.File.desktopDirectory;

Second, the AIR and Flash Player APIs are placed in a
namespace called air. If you open the AIRAliases.js file, you
can see how the aliases actually work. For example, here is
the code that sets up the File API aliases:

var air; if (!air) air = {};

// file
air.File = window.runtime.flash.filesystem.File;
air.FileStream = window.runtime.flash.filesystem.
FileStream;
air.FileMode = window.runtime.flash.filesystem.FileMode;

To see a complete list of APIs included, open up the
AIRAliases.js file with a text editor. While not all APIs are
included, you can easily add additional APIs by following the
existing examples in the file.

Leveraging Compiled ActionScript Libraries
Not only can AIR applications leverage Flash Player APIs
directly from JavaScript, they can also access compiled
ActionScript 3 libraries from within JavaScript.

In addition to loading external JavaScript files, the HTML
script tag within an AIR application also has support for
loading compiled ActionScript 3 libraries and providing
access to the ActionScript classes included within the file.
Once the SWF is loaded, the APIs can be referenced in the
same manner as the AIR and Flash Player APIs are referenced
via the API package path and API name.



60 | Chapter 3: Working with JavaScript and HTML Within AIR

TIP

This technique works only with ActionScript 3 libraries.

Let’s look at an example. Included in the Adobe AIR SDK is
a SWF that contains the ActionScript 3 Adobe AIR service
connectivity API. While this example won’t show how to use
that API, it will show how to access those APIs from within
JavaScript.

TIP

An example of how to use the Service Connectivity API is
provided in the cookbook section of Chapter 4.

In order for the example to work, you must copy the
frameworks/servicemonitor.swf file from the AIR SDK to your
application directory.

Any classes and APIs available within the compiled SWF will
be made available via the window.runtime property. The API
we want to reference is in a class named ServiceMonitor in
the air.net package.

Here’s the code:

<script src="servicemonitor.swf"></script>

<script>
    function onAppLoad( )
    {
        var monitor = new runtime.air.net.ServiceMonitor();
    }
</script>

This is a very simple example that shows how to load com-
piled ActionScript libraries, and then access them from Java-
Script. In this case, we include the servicemonitor.swf file via
the HTML script tag. This file contains the compiled Action-
Script 3 APIs for the air.net.ServiceMonitor class.



Accessing AIR APIs from JavaScript | 61

Using this technique allows you to leverage third party
ActionScript APIs from within AIR applications via
JavaScript.

TIP

Most ActionScript 3 libraries are distributed as zip-based
SWC files. In order to use the libraries within JavaScript,
change the extension of the library from SWC to ZIP, un-
zip them using a zip program, and then remove the li-
brary’s SWF file contained within the SWC.

You can then include the SWF within your application in
the same manner as demonstrated earlier.

At this point, you should have a good understanding of the
HTML and JavaScript environments within the Adobe Inte-
grated Runtime, as well as how to leverage AIR, Flash Player
and third-party ActionScript 3 APIs directly from JavaScript.
The rest of the book will use this knowledge to show how to
accomplish specific tasks from HTML and JavaScript appli-
cations running within Adobe AIR.



62

CHAPTER 4CHAPTER 4

AIR Mini-Cookbook

This chapter describes solutions to common tasks when
developing AIR applications. The solutions in this chapter
illustrate many concepts used in AIR application develop-
ment, and provide working HTML and JavaScript code that
can be leveraged within your application.

NOTE

All examples in this chapter assume you are using the
AIRAliases.js file.

Application Chrome

Adding Custom Controls

Problem

You want to create custom window chrome for your applica-
tion and need the ability for the user to close and minimize
the application.

Solution

Use native window APIs within Adobe AIR to hook up, mini-
mize, and close button functionality.



Application Chrome | 63

Discussion

While Adobe AIR allows developers to completely define and
customize the application’s window chrome, it is important
to remember that the application is responsible for every type
of windowing event that might normally occur. This means
connecting the various visual elements with their respective
operating system events.

The NativeWindow instance that represents the main applica-
tion window is not directly accessible from inside the main
HTML DOM. Using AIR APIs, an application can traverse
outside of the HTML control, out to the Stage, and get a ref-
erence to its NativeWindow instance. Once a reference to the
native window has been obtained, the appropriate methods
can be called to trigger the operating-system specific event
(or vice versa). In the case of being able to minimize the win-
dow, the application can use NativeWindow.minimize( ) and
NativeWindow.close( ) in the case of closing:

window.htmlControl.stage.window.minimize( );
window.htmlControl.stage.window.close( );

The NativeWindow.close( ) event does not necessarily
terminate the application. If only one application window is
available, the application will terminate. If there are multiple
windows, they will close until only one window remains.
Closing the last window terminates the application.

application.xml
<?xml version="1.0" encoding="utf-8" ?>
<application
    xmlns="http://ns.adobe.com/air/application/1.0.M4"
    appId="com.adobe.demo.html.CustomChrome"
    version="1.0 Beta">

       <name>Custom Chrome</name>
       <title>Custom Chrome</title>

    <rootContent
        visible="true"
        transparent="true"



64 | Chapter 4: AIR Mini-Cookbook

        systemChrome="none"
        width="206"
        height="206">

        custom.html

    </rootContent>

</application>

index.html
<html>
<head>

<title>Custom Window Controls</title>

<style>
body {
   background-image: url( 'custom-chrome.gif' );
   font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;
   font-size: 12px;
}

#closer {
    position: absolute;
    width: 70px;
    left: 68px;
    top: 105px;
}

#minimize {
    position: absolute;
    width: 70px;
    left: 68px;
    top: 75px;
}

textarea {
    position: absolute;
    left: 8px;
    right: 8px;
    bottom: 8px;
    top: 36px;
    border-color: #B3B3B3;
}



Application Chrome | 65

#title {
    position: absolute;
    font-weight: bold;
    color: #FFFFFF;
}
</style>

<script type="text/javascript" src="AIRAliases.js"></
script>

<script>
function doClose( )
{
    window.htmlControl.stage.window.close( );
}

function doLoad( )
{
    document.getElementById( "minimize" ).
addEventListener( "click", doMinimize );
document.getElementById( "closer" ).addEventListener(
"click", doClose );
}

function doMinimize( )
{
    window.htmlControl.stage.window.minimize( );
}
</script>

</head>
<body onload="doLoad( )">

<input id="minimize" type="button" value="Minimize" />
<input id="closer" type="button" value="Close" />

</body>
</html>



66 | Chapter 4: AIR Mini-Cookbook

Windowing

Creating a New Window

Problem

You need to display an additional widow into which addi-
tional content can be loaded.

Solution

Basic windows can be generated and maintained in a similar
fashion as traditional HTML content using the window.open( )
method.

Discussion

The JavaScript window.open( ) method invokes a new win-
dow similar to the way it would when used in the browser.
Content that gets loaded into the new window can come
from a local file, or URL endpoint. Similar to windows cre-
ated using JavaScript in the browser, there is finite control
over the window itself. The window properties that can be
controlled are width, height, scrollbars, and resizable.

var login = window.open( "login.html", "login", "width =
300, height = 200" );

A native window is a better choice when additional control
over the new window is required. Native windows expose vir-
tually the entire functionality of the operating system such as
minimize/maximize, always in front, full screen and even
removal of system chrome altogether. The drawback to using
native windows is that there is substantially more work
because all events must be monitored and managed explicitly.

TIP

The window.opener property that is commonly used in
JavaScript to refer from a new window to the parent (cre-
ating) window can also be used.



Windowing | 67

<html>
<head>

<title>Basic Window</title>
<script type="text/javascript" src="AIRAliases.js">
</script>

<script>
function doLoad( )
{
    document.getElementById( "btnLogin" ).
addEventListener( "click", doLogin );
}

function doLogin( )
{
    var login = window.open( "Login.html", null,
                              "width = 270, height = 150" );
}
</script>

</head>
<body onload="doLoad( )">

<input id="btnLogin" type="button" value="Login" />

</body>
</html>

Login.html
<html>
<head>

<title>Login</title>

</head>
<body>

<table>
    <tr>
        <td>Email:</td>
        <td><input name="email" /></td>
    </tr>
    <tr>
        <td>Password:</td>



68 | Chapter 4: AIR Mini-Cookbook

        <td><input name="password" /></td>
    </tr>
    <tr>
        <td colspan="2" align="right">
            <input type="button" value="Sign In" />
        </td>
    </tr>
</table>

</body>
</html>

Creating a New Native Window

Problem

You need to display an additional window into which addi-
tional content can be loaded, and you need to be able to fine
tune how the new window appears.

Solution

The NativeWindow class provides the foundation for creating
and managing new windows that require a high degree of
customization and control.

Discussion

Native windows make an excellent choice for creating and
managing new windows that require a high degree of cus-
tomization. You may want the application to hide the mini-
mize/maximize buttons. You may also want to control
window z-ordering, or force a particular window to always
stay on top. The NativeWindow class offers control over these
aspects of a window and more.

The NativeWindow constructor takes two arguments; a Bool-
ean specifying whether or not the window is initially visible,
and a NativeWindowInitOptions object which controls aspects
of the window such as whether or not it is resizable, or even if
it has any system chrome at all. The NativeWindowInitOptions
constructor takes no arguments:



Windowing | 69

var options = new air.NativeWindowInitOptions( );
var login = null;

options.minimizable = false;
options.maximizable = false;
options.resizable = false;

login = new air.NativeWindow( false, options );

Not all the options an application may make use of appear as
initialization options. Additional options that may be
controlled on an instance of NativeWindow itself include the
window title, whether or not it is always in front, and win-
dow sizing and positioning.

TIP

If you intend to manage the initial window size manual-
ly, it is best to start with an invisible window. Creating a
native window and then changing its positioning and lay-
out in the same block of code results in a quick flicker of
the window as it is initially painted and then relocated
and resized.

When using the NativeWindow class, you have absolute control
over its appearance, behavior and content. If the window is to
be resized, the operating system will merely provide for the
handles and resizing operations. The size, position, content,
and layout of the window itself must be controlled by the
application. Depending on how the application needs to han-
dle resizing, the NativeWindowBoundsEvent.RESIZE or
NativeWindowBoundsEvent.RESIZING events may be used:

login.title = "Login";
login.alwaysInFront = false;
login.bounds = new window.runtime.flash.geom.Rectangle(
    ( air.Capabilities.screenResolutionX – 270 ) / 2,
    ( air.Capabilities.screenResolutionY – 150 ) / 2,
    270,
    150 );
login.visible = true;



70 | Chapter 4: AIR Mini-Cookbook

A native window initially has no content outside of the run-
time. Unlike the JavaScript window.open( ) method, an
application cannot simply specify a URL for the content to
be displayed. The window is so raw that an application must
first add an HTMLControl to the window, size it, and tell it
what content to load. The HTMLControl constructor takes no
arguments, exposes properties for width and height, and
exposes an HTMLControl.load( ) method which can be used to
load external content:

var control = new window.runtime.flash.html.HTMLControl( );
var page =
air.File.applicationResourceDirectory.resolve( "login.html" );

control.width = login.stage.stageWidth;
control.height = login.stage.stageHeight;
control.load( new air.URLRequest( page.url ) );

The NativeWindow.stage property represents a Stage object
and is used to determine the viewable area for sizing the
HTMLControl. Using NativeWindow.width or NativeWindow.
height for the HTMLControl sizing would have resulted in an
HTMLControl as large as the window itself (including chrome).
Stage.stageWidth and Stage.stageHeight will size the con-
trol to fit the viewable area.

The Stage is also where controls will get added for display
(called the display list), and is responsible for how the con-
tent inside of it will be positioned and sized. For most applica-
tions this means setting Stage.scaleMode to StageScaleMode.
NO_SCALE and Stage.align to StageAlign.TOP_LEFT. Calling
Stage.addChild( ) will add the HTMLControl to the viewable
area. Using this approach, it is possible to have multiple
HTMLControl controls in one single window:

win.stage.scaleMode = window.runtime.flash.display.
StageScaleMode.NO_SCALE;
win.stage.align = window.runtime.flash.display.StageAlign.
TOP_LEFT;
win.stage.addChild( control );



Windowing | 71

TIP

It is likely that knowledge of the Stage class and the dis-
play list will be abstracted into more useful high-level
classes in a later release.

<html>
<head>

<title>Native Window</title>
<script type="text/javascript" src="AIRAliases.js"></
script>

<script>
var Rectangle = window.runtime.flash.geom.Rectangle;

var control = null;
var win = null;

function doLoad( )
{
    document.getElementById( "btnLogin" ).
addEventListener( "click", doLogin );
}

function doLogin( )
{
    var options = new air.NativeWindowInitOptions( );
    var login = air.File.applicationResourceDirectory.
resolve( "login.html" );

    options.minimizable = false;
    options.maximizable = false;
    options.resizable = false;

    win = new air.NativeWindow( false, options );
    win.title = "Login";
    win.alwaysInFront = true;
    win.bounds = new Rectangle(

( air.Capabilities.screenResolutionX - 270 ) / 2,
( air.Capabilities.screenResolutionY - 150 ) / 2,

         270,
         150 );
    win.visible = true;



72 | Chapter 4: AIR Mini-Cookbook

control = new window.runtime.flash.html.HTMLControl();
    control.width = win.stage.stageWidth;
    control.height = win.stage.stageHeight;
    control.load( new air.URLRequest( login.url ) );

    win.stage.scaleMode = window.runtime.flash.display.
StageScaleMode.NO_SCALE;
    win.stage.align = window.runtime.flash.display.
StageAlign.TOP_LEFT;
    win.stage.addChild( control );
}
</script>

</head>
<body onload="doLoad( )">

<input id="btnLogin" type="button" value="Login" />

</body>
</html>

Login.html

<html>
<head>

<title>Login</title>

</head>
<body>

<table>
    <tr>
        <td>Email:</td>
        <td><input name="email" /></td>
    </tr>
    <tr>
        <td>Password:</td>
        <td><input name="password" /></td>
    </tr>



Windowing | 73

    <tr>
        <td colspan="2" align="right">
            <input type="button" value="Sign In" />
        </td>
    </tr>
</table>

</body>
</html>

Creating Full-Screen Windows

Problem

For the purpose of enabling more viewing space or enabling
additional interactions, your application needs to be able to
run using the full screen.

Solution

The NativeWindow class provides the foundation for creating
transparent and full screen.

Discussion

The differences between using NativeWindow for full-screen
display, and using NativeWindow for custom windows, is an
additional initialization option and setting the window to fill
the screen. To remove any OS-specific windowing chrome,
use the NativeWindowInitOptions.systemChrome property. The
NativeWindowInitOptions.systemChrome should be set to one
of the four string constants (Table 4-1) found in the
NativeWindowSystemChrome class.



74 | Chapter 4: AIR Mini-Cookbook

To create a full-screen window without any chrome, the
NativeWindowInitOptions.systemChrome property should be
set to NativeWindowSystemChrome.NONE. The application can
then subsequently call the NativeWindow.maximize( ) method,
or set NativeWindow.bounds directly. The NativeWindow.bounds
property takes a flash.geom.Rectangle object which specifies
horizontal and vertical origination, as well as width and
height. Either approach fills the viewable screen with the
newly created native window.

var options = new air.NativeWindowInitOptions( );
var login = null;

options.minimizable = false;
options.maximizable = false;
options.resizable = false;
options.systemChrome = air.NativeWindowSystemChrome.NONE;

login = new air.NativeWindow( false, options );
login.maximize( );

Table 4-1. String constants in NativeWindowSystemChrome

String constant Description

NativeWindowSystemChrome.STANDARD This is the default for
NativeWindow and reflects
the window chrome used on the
specific operating system.

NativeWindowSystemChrome.UTILITY Utility chrome is best suited for
related windows that will be
present for an extended amount
of time such as tool panels.

NativeWindowSystemChrome.NONE Indicates that no chrome should
be present, and requires that the
application handle all traditional
windowing tasks.

NativeWindowSystemChrome.ALTERNATE Not implemented for the Adobe
AIR Beta.



Windowing | 75

TIP

If you find yourself confronted with an application that
doesn’t shut down, but whose visible windows are all
closed, then you’re probably dealing with one of a few
different challenges. The first is that you never set a size
on a NativeWindow. The second is that you never set a
NativeWindow to visible. The most common is that you
used NativeWindowSystemChrome.NONE, but never added
any content.

<html>
<head>

<title>Full Screen Window</title>
<script type="text/javascript" src="AIRAliases.js">
</script>

<script>
var Rectangle = window.runtime.flash.geom.Rectangle;

function doLoad( )
{
    var control = new window.runtime.flash.html.
HTMLControl( );
    var options = new air.NativeWindowInitOptions( );
    var win = null;

    options.minimizable = false;
    options.maximizable = false;
    options.resizable = false;
    options.systemChrome = air.NativeWindowSystemChrome.NONE;

    win = new air.NativeWindow( false, options );
    win.alwaysInFront = true;
    win.bounds = new Rectangle(
                0,
                0,
                air.Capabilities.screenResolutionX,
                air.Capabilities.screenResolutionY );
    win.visible = true;

    control.width = win.stage.stageWidth;
    control.height = win.stage.stageHeight;

control.load( new air.URLRequest( "http://www.adobe.com" ) );



76 | Chapter 4: AIR Mini-Cookbook

    win.stage.scaleMode = window.runtime.flash.display.
StageScaleMode.NO_SCALE;
    win.stage.align = window.runtime.flash.display.
StageAlign.TOP_LEFT;
    win.stage.addChild( control );
}
</script>

</head>
<body onload="doLoad( )">

</body>
</html>

File API

Writing Text to a File from a String

Problem

A user has made changes to textual content in the applica-
tion, which the user wants to save to disk for offline access.

Solution

Writing text can be accomplished through the File and
FileStream classes that are part of AIR.

Discussion

Before any reading or writing takes place to disk, a reference
to a file or directory must first exist in the application. A file
reference can be established in a number of ways, including
programmatic manipulation and user selection. Both of these
are accomplished by using the File class. The File class also
contains static properties that point to common locations on
the operating system. These locations include the desktop
directory, user directory and documents directory:



File API | 77

var file =
air.File.applicationStorageDirectory.resolve( "myFile.txt" );

The call to File.resolve( ) creates a reference to a file named
myFile.txt located in the application storage directory. Once
a reference has been established, it can be used in file IO
operations. Note that this doesn’t actually create the file at
this point.

Physically reading and writing to disk is available using the
FileStream class. The FileStream class does not take any
arguments in its constructor:

var stream = new air.FileStream( );

With the file reference available, and a FileStream object
instantiated, the process of writing data to disk can take
place. The type of data that can be written may be anything
from binary, to text, to value objects. These can all be
accessed by using the respective FileStream method for that
operation.

The first step in writing a file is to open it using the
FileStream.open( ) method. The FileStream.open( ) method
takes two arguments. The first argument is the file reference
created earlier that will be the destination of the output. The
second argument is the type of access the application will
need to the file. In the case of writing data to a file, the
FileMode.WRITE static property will be most common. A
second possibility is FileMode.APPEND, depending on the
application requirements:

stream.open( file, air.FileMode.WRITE );

When writing text, an application should use FileStream.
writeMultiByte( ) to ensure that data is written with the cor-
rect encoding. The FileStream.writeMultiByte( ) method
takes two arguments. The first argument is the String object
(text) that will be written to disk. The second argument is the
character set to be used. The most common character set is



78 | Chapter 4: AIR Mini-Cookbook

that which the operating system is using, which is available
on the File class as File.systemCharset:

stream.writeMultiByte( document.getElementById
( "txtNote" ).value, air.File.systemCharset );

Once the text has been written to the file, it is important to
close the file to avoid any corruption or blocking of access
from other applications. Closing a file is accomplished using
the FileStream.close( ) method.

TIP

XML data is already in textual format and, as such, can
be written to disk using these same series of steps. If the
application uses the XMLHttpRequest object, then a using
the myXml.responseText property alone may be adequate
for most situations.

<html>
<head>

<title>Write Text</title>
<script type="text/javascript" src="AIRAliases.js"></
script>

<script>
function doLoad( )
{
    document.getElementById( "btnSave" ).addEventListener
    ( "click", doSave );
}

function doSave( )
{
    var file =
air.File.applicationResourceDirectory.resolve( "note.txt" );
    var stream = new air.FileStream( );

    stream.open( file, air.FileMode.WRITE );
    stream.writeMultiByte( document.getElementById
    ( "txtNote" ).value, air.File.systemCharset );
    stream.close( );
}
</script>



File API | 79

</head>
<body onload="doLoad( )">

<textarea id="txtNote"></textarea>
<input id="btnSave" type="button" value="Save" />

</body>
</html>

Synchronously Reading Text from a File

Problem

You want to read the contents of a small text file into your
application.

Solution

Use the various file APIs provided by Adobe AIR to locate,
open, and read text files.

Discussion

Small files that contain text content can be read using the
FileStream.open( ) method. This method opens a file syn-
chronously for reading. Synchronous access requires less
code, but also blocks any additional user input until the data
has been read. When using asynchronous access, additional
user input is not blocked, but event handlers must be regis-
tered, which results in more code overhead.

TIP

While accessing XML files as text is possible, the result of
this approach is a document object that can’t be readily
manipulated. Accessing an XML file for use as a data
source, is often more easily handled using XMLHttpRequest
or wrapper functionality offered by most JavaScript
libraries.



80 | Chapter 4: AIR Mini-Cookbook

The steps for synchronously reading a file are almost always
the same:

1. Get a File reference

2. Create a FileStream object

3. Open the stream for synchronous access

4. Call the appropriate FileStream read methods

5. Close the file

The first step to reading a text file is to get a reference to the
resource on disk. Establishing a reference can be accom-
plished by programmatically designating a path using the
appropriate property on the File object such as File.
applicationStorageDirectory. Calling File.resolve( ) will
also be required when using this approach as the static File
class properties always return a directory:

var file =
air.File.applicationStorageDirectory.resolve( "myFile.txt" );

The FileStream class has an empty constructor and can be
instantiated anywhere in your application. The file reference
just established is used during the physical process of open-
ing the file. The mode for which the file is going to be
opened must also be specified.

The FileMode object serves no other purpose but to provide
constants for the types of file access that can be performed.
These operations are FileMode.READ, FileMode.WRITE,
FileMode.UPDATE and FileMode.APPEND:

var stream = new air.FileStream( );
stream.open( file, air.FileMode.READ );

There are three FileStream methods that can be used to read
character data from a file. The FileStream.readUTF( ) and
FileStream.readUTFBytes( ) methods are specifically tuned
for UTF data.



File API | 81

If this is the target format of the data for the application,
then these methods should be used directly. In the case of
other character sets, the FileStream.readMultiBytes( )
method can be used to specify the target format. Additional
character sets are specified in the form of a string such as
“us-ascii”. There is also a convenience property on the File
object to use the default system character set, File.
systemCharset.

The number of bytes to be read also needs to be specified in
the case of FileStream.readUTFBytes( ) and FileStream.
readMultiBytes( ). This sizing will depend largely on the
requirements of the application. In the cases where reading
the entire file is required, the number of bytes that are avail-
able to be read can be found on the FileStream.
bytesAvailable property:

var data =
stream.readMultiBytes( stream.bytesAvailable,
                       air.File.systemCharset );

Once the contents of a file have been read, it is important to
close the file. This operation will allow other applications to
access the file:

stream.close( );

Although a demonstrable amount of flexibility has been pro-
vided by Adobe AIR, the actual process in its entirety is con-
siderably concise. This brevity is provided when performing
synchronous data access operations. Synchronous file access
should be reserved for smaller files regardless of reading or
writing character or binary data:

<html>
<head>

<title>Synchronous File Access</title>
<script type="text/javascript" src="AIRAliases.js"></
script>

<script>
var file = null;
var stream = null;



82 | Chapter 4: AIR Mini-Cookbook

function doLoad( )
{
    var data = null;

    file = air.File.applicationStorageDirectory.resolve(
"myFile.txt" );

    stream = new air.FileStream( );
    stream.open( file, air.FileMode.READ );
    data = stream.readMultiByte( stream.bytesAvailable,
air.File.systemCharset );
    stream.close( );

    document.getElementById( "editor" ).value = data;
}
</script>

</head>
<body onload="doLoad( )">

<textarea id="editor"></textarea>

</body>
</html>

Asynchronously Reading Text from a File

Problem

You want to read a large amount of text into your application.

Solution

Use asynchronous file APIs to load the text, ensuring applica-
tion execution is not blocked while the file is being loaded.

Discussion

Files containing a large amount of data should be read using
the FileStream.openAsync( ) method. This method opens a
file asynchronously for reading or writing and won’t block
additional user input. Asynchronous file operations achieve
this goal by raising events during processing. The result is



File API | 83

that event listeners must be created and registered on the
FileStream object.

The steps for asynchronously reading a file are almost always
the same:

1. Get a File reference

2. Create a FileStream object

3. Create event handlers for processing data

4. Add event listeners for asynchronous operations

5. Open the stream for asynchronous access

6. Close the file

The first step to reading a text file is to get a reference to the
resource on disk. Establishing a reference can be accom-
plished by programmatically designating a path using the
appropriate property on the File object such as File.
applicationStorageDirectory:

var file =
air.File.applicationStorageDirectory.resolve( “myFile.txt” );

A FileStream instance is necessary in order to read or write to
the file:

stream = new air.FileStream( );

Before registering event handlers on a FileStream object,
those handlers will need to be created. The events that are
triggered by file IO operations using the FileStream class will
always pass an event object as an argument. The properties
on the event object will depend on the type of event being
raised. This object can be helpful in determining the target
FileStream object, how much data is available for reading,
how much data is waiting to be written, and so on:

function doProgress( event )
{
    // Read all the data that is currently available
    var data = stream.readMultiByte( stream.
bytesAvailable, air.File.systemCharset );



84 | Chapter 4: AIR Mini-Cookbook

    // Append the most recent content
    document.getElementById( "editor" ).value += data;

    // Close the file after the entire contents have been
read
    if( event.bytesLoaded == event.bytesTotal )
    {
        stream.close( );
    }
}

Registering for events takes place using the
addEventListener( ) API:

stream.addEventListener( air.ProgressEvent.PROGRESS,
doProgress );

Opening a stream for asynchronous access is accomplished
using the FileStream.openAsync( ). The FileStream.
openAsync( ) method takes two arguments that specify the
file being accessed and the type of access being performed.

The FileMode object serves no other purpose but to provide
constants for the types of file access that can be performed.
These operations are FileMode.READ, FileMode.WRITE,
FileMode.UPDATE, and FileMode.APPEND:

stream.openAsync( file, air.FileMode.READ );

As soon as the file is opened and new data is available in the
stream, the ProgressEvent.PROGRESS event is triggered.
Depending on the size of the file, as well as machine and net-
work characteristics, not all the bytes may be read in a single
pass. In many cases, additional read operations take place,
raising a ProgressEvent.PROGRESS event for each iteration.

Once all of the data has been read from the file, an Event.
COMPLETE event is broadcast.

Once the file has been read, it is important to close the file
stream in order to ensure that other applications can access
it:

stream.close( );



File API | 85

This example provides a baseline for the various types of
asynchronous access an application might choose to per-
form. In this case, the contents of the file are read and placed
into an HTML text area each time more data is available.
Asynchronous processing also provides the means for ran-
dom file access (seek) without interrupting the user. An
application should always use asynchronous access when-
ever the size of a file is in question:

<html>
<head>

<title>Asynchronous File Access</title>
<script type="text/javascript" src="AIRAliases.js"></
script>

<script>
var file = null;
var stream = null;

function doLoad( )
{
    file = air.File.applicationStorageDirectory.resolve(
"myFile.txt" );

    stream = new air.FileStream( );
    stream.addEventListener( air.ProgressEvent.PROGRESS,
                             doProgress );
    stream.openAsync( file, air.FileMode.READ );
}

function doProgress( event )
{
    var data = stream.readMultiByte( stream.
bytesAvailable, air.File.systemCharset );

    document.getElementById( "editor" ).value += data;

    if( event.bytesLoaded == event.bytesTotal )
    {
        stream.close( );
    }
}
</script>



86 | Chapter 4: AIR Mini-Cookbook

</head>
<body onload="doLoad( )">

<textarea id="editor"></textarea>

</body>
</html>

Loading Data from an XML File

Problem

You want to read XML data from a local file using common
JavaScript techniques, and be able to manipulate the DOM
not just the character data.

Solution

Reading a local XML document for the data can occur using
the XMLHttpRequest object, and by using a File object refer-
ence as the URI endpoint as opposed to a web address.

Discussion

Most JavaScript libraries, and virtually every data-oriented
Ajax application uses the XMLHttpRequest object to load data.
This is a common means to accessing data from the client
without refreshing the page, and is core to Ajax develop-
ment techniques. Adobe AIR includes support for the
XMLHttpRequest object, which can be used for data access.

The XMLHttpRequest.open( ) method expects three arguments.
The first argument is the HTTP method to be used for the call,
which is commonly GET or POST. The third argument tells
the object whether or not it should make the request asynchro-
nously. The challenge in an AIR application is the second
argument that tells the object where to get its data:

XMLHttpRequest.open( "GET", "myData.xml", true );

This URI endpoint generally points to a remote server. This
can still happen in an application that is online, but as AIR



File API | 87

applications can also work offline, the endpoint needs to be
pointed to a local resource. Rather than pass an endpoint to
a remote server, a File reference can be provided:

var file = air.File.applicationStorageDirectory.resolve(
"myData.xml" );
var xml = new XMLHttpRequest( );

xml.onreadystatechange = function( )
{
    if( xml.readystate == 4 )
{
    // Work with data
    }
}

xml.open( "GET", file.url, true );
xml.send( null );

The key distinction to make for this example is the use of the
File.url property, which the XMLHttpRequest object under-
stands and uses to access the appropriate data. Using this
approach results in a traditional DOM that can be used to
traverse and manipulate the XML data in the file. Addition-
ally, this approach can be used with common JavaScript
libraries.

Given
<rolodex>
    <contact>
        <first>Kevin</first>
        <last>Hoyt</last>
    </contact>
    ...
</rolodex>

Example
<html>
<head>

<title>XML File Access</title>
<script type="text/javascript" src="AIRAliases.js">
</script>



88 | Chapter 4: AIR Mini-Cookbook

<script>
var file = null;
var xml = null;

function doLoad( )
{
    file = air.File.applicationResourceDirectory;
    file = file.resolve( "rolodex.xml" );

    xml = new XMLHttpRequest( );

    xml.onreadystatechange = function( )
    {
        var elem = null;
        var first = null;
        var last = null;
        var rolodex = null;

        if( xml.readyState == 4 )
        {
            rolodex = xml.responseXML.documentElement.
getElementsByTagName( "contact" );

            for( var c = 0; c < rolodex.length; c++ )
            {
                first = rolodex[c].getElementsByTagName(
"first" )[0].textContent;
                last = rolodex[c].getElementsByTagName(
"last" )[0].textContent;

                elem = document.createElement( "div" );
                elem.innerText = first + " " + last;
                document.body.appendChild( elem );
            }
        }
    }

    xml.open( "GET", file.url, true );
    xml.send( null );
}
</script>

</head>
<body onload="doLoad( )">

</body>
</html>



File API | 89

Creating a Temporary File

Problem

An application needs to store transient information during
file processing, and cannot assume that adequate memory
exists to store the data in memory.

Solution

Creating temporary files with File.createTempFile( ) is an
ideal means to store transient information while relieving the
overhead of additional memory.

Discussion

The File class contains a static File.createTempFile( )
method which can be used to establish a temporary file. The
temporary file is created at a destination determined by the
operating system. Temporary files are also automatically
given a unique name to avoid collision with other files that
may be present:

var temp = air.File.createTempFile( );

Once a temporary file has been created, the other File and
FileStream methods may be used as in processing a known
file at a known location:

var stream = new air.FileStream( );

stream.open( temp, air.FileMode.WRITE );
stream.writeMultiByte( "Hello", air.File.systemCharset );
stream.close( );

The File.moveTo( ) and File.moveToAsync( ) can be used after
the fact, should you decide that it is necessary to keep the
temporary file for later reference. Both move methods take
two arguments. The first argument is a File reference to the
destination location. The second argument is a Boolean value
which controls overwriting any existing file. If the second



90 | Chapter 4: AIR Mini-Cookbook

argument is set to false, and a collision occurs, the applica-
tion throws an error:

var move =
air.File.applicationResourceDirectory.resolve( "temp.txt" );

try
{
    temp.moveTo( move, false );
}
catch( ioe )
{
    alert( "Can't move file:\n" + ioe.message );
}

The JavaScript try/catch block will receive an error object of
type IOError. The IOError class has numerous properties
available that can be used for further evaluation. The excep-
tion in the previous code snippet raises the error message
that is generated by Adobe AIR:

<html>
<head>

<title>Temporary File</title>
<script type="text/javascript" src="AIRAliases.js"></
script>

<script>
function doLoad( )
{
    var stream = new air.FileStream( );
    var temp = air.File.createTempFile( );
    var move = air.File.applicationResourceDirectory.
resolve( "temp.txt" );

    stream.open( temp, air.FileMode.WRITE );
stream.writeMultiByte( "Hello", air.File.systemCharset

);
    stream.close( );

    try
    {
        temp.moveTo( move, false );
    }



File API | 91

    catch( ioe )
    {
        alert( "Could not move temporary file:\n" + ioe.message );
    }
}
</script>

</head>
<body onload="doLoad( )">

</body>
</html>

Iterate the Contents of a Directory

Problem

The application is required to display information about a
directory as part of the user interface.

Solution

Use the File.browseForDirectory API to prompt the user to
select a directory, and then use the File.listDirectory API
to iterate through the contents of the directory.

Discussion

The File class provides numerous properties that can be used
to get specific information about files on disk. There are also
two methods on the File class that pertain to getting a direc-
tory list. The first is the File.browseForDirectory( ), which
can be used to prompt the user to select a directory using the
native dialog. The second is the File.listDirectory( )
method, which will return an array of File objects for the
currently referenced directory.

Before prompting the user to select a directory using the
native dialog, the application needs to establish and register
an event handler for Event.SELECT. The Event.target



92 | Chapter 4: AIR Mini-Cookbook

property will contain a reference to the File object the
invoked the browse operation:

var directory = air.File.documentsDirectory;
directory.addEventListener( air.Event.SELECT, doSelect );
directory.browseForDirectory( "Select a directory of
photos:" );

The File.browseForDirectory( ) method takes one argu-
ment, a string representing additional information that will
be placed in the dialog box. This string is not the title of the
dialog as is the case with File.browseForOpen( ). There is also
no need to specify FileFilter objects as the dialog box pre-
sented is specific to directories, and no files will be displayed.

After the user has selected a directory, the registered event
handler will be called. The file reference, whether using a
class/global reference or Event.target, will now contain the
path to the selected directory. This is where File.
listDirectory( ) comes into play as it returns an Array of
File objects for the selected directory (as represented by the
file reference). The File.listDirectory( ) method takes no
arguments:

var listing = directory.listDirectory( );

The File class can represent both files and directories on the
user’s file system. The File.isDirectory API can be used to
determine whether a specific File instance references a file or
a directory.

TIP

See the API documentation for a complete list of data ex-
posed by the File API.

<html>
<head>

<title>Get a Directory Listing</title>
<script type="text/javascript" src="AIRAliases.js">
</script>



File API | 93

<script>
var directory = null;

function doBrowse( )
{
    directory.browseForDirectory( "Select a directory of files:" )
}

function doLoad( )
{
    directory = air.File.documentsDirectory;
    directory.addEventListener( air.Event.SELECT,
                                doSelect );

    document.getElementById( "btnBrowse" ).
addEventListener( "click", doBrowse );
}

function doSelect( event )
{
    var files = directory.listDirectory( );
    var elem = null;
    var name = null;
    var mod = null;
    var size = null;

    for( var f = 0; f < files.length; f++ )
    {
        name = files[f].name;

        mod = files[f].modificationDate;
        mod = ( mod.month + 1 ) + "/" +
               mod.date + "/" +
               mod.fullYear;

size = Math.ceil( files[f].size / 1000 ) + " KB";

        elem = document.createElement( "div" );
        elem.innerText = name + " is " +
     size + " and was last modified on " +
     mod;

        document.body.appendChild( elem );
    }
}
</script>



94 | Chapter 4: AIR Mini-Cookbook

</head>
<body onload="doLoad( )">

<input id="btnBrowse" type="button" value="Browse" />

</body>
</html>

File Pickers

Browse for a File

Problem

An application needs to prompt the user to select a file to
open from the local system using a native dialog.

Solution

The File class allows an application to prompt the user to
select one or more files of a specific type from the local
system.

Discussion

The File class provides numerous browse methods that
present the native dialog for the specified operation. In the
case of browsing for a single file to open, the appropriate
method is File.browseForOpen( ). This method takes a
required string argument for the title of the dialog box, and
an optional Array of FileFilter objects.

FileFilter objects allow an application to filter the viewable
files in the native dialog box. This argument is null by
default, which allows the user to select any file to which they
would normally have access (i.e., not hidden files). An appli-
cation can provide as many filters as necessary, by placing
multiple FileFilter objects in an Array and passing that
Array as the second argument to File.browseForOpen( );.



File Pickers | 95

TIP

If you want to use the FileFilter object, you must use
the Array class from the Flash runtime, not the JavaS-
cript Array class.

None of the browse methods on the File class are static, and
as such, an existing reference to a valid File object must first
be available. The directory represented by that File object
reference will be selected by default when the dialog is dis-
played:

var file = air.File.documentsDirectory;
var filters = new window.runtime.Array( );

filters.push( new FileFilter( "Image Files", "*.jpg" ) );
file.browseForOpen( file, filters );

When a file selection has been made, Adobe AIR will raise an
event in the issuing application. In order to catch that event,
the application must have first registered an event listener.
The event that gets raised is Event.SELECT, and an Event
object will be passed to the handler:

var file = air.File.documentsDirectory;
var filters = new window.runtime.Array( );

filters.push( new air.FileFilter( "Image Files", "*.jpg" )
);

file.addEventListener( air.Event.SELECT, doSelect );
file.browseForOpen( file, filters );

function doSelect( event )
{
    alert( file.nativePath );
}

A useful property of the Event object that is sent to the han-
dler is the “target,” which contains a reference to the origi-
nating File object. There is nothing returned from the dialog
operation to be assigned to a File object, as the originating
object will now hold a reference to the directory selected by



96 | Chapter 4: AIR Mini-Cookbook

the user. For this purpose, it may be beneficial to have a class
or global reference to the File object, and even to reuse it:

<html>
<head>

<title>Browse for a File</title>
<script type="text/javascript" src="AIRAliases.js">
</script>

<script>
var file = null;

function doLoad( )
{
    file = air.File.documentsDirectory;

file.addEventListener( air.Event.SELECT, doSelect );

    document.getElementById( "btnBrowse" ).
    addEventListener( "click", doBrowse );
}

function doBrowse( )
{
    var filters = new window.runtime.Array( );

    filters.push( new air.FileFilter( "Image Files", "*.jpg" )
);
    file.browseForOpen( "Select Photo", filters );
}

function doSelect( event )
{
    var elem = document.createElement( "div" );

    elem.innerText = file.nativePath;
document.body.appendChild( elem );

}
</script>

</head>
<body onload="doLoad( )">

<input id="btnBrowse" type="button" value="Browse" />

</body>
</html>



File Pickers | 97

Browse for Multiple Files

Problem

An application needs to prompt the user to select multiple
files from the local system using the native dialog.

Solution

Use the File.browseForOpenMultiple( ) API to prompt the
user with a dialog box that will allow them to select multiple
files.

Discussion

The use of the File class to open a single file is predomi-
nantly the same as using the File class to open multiple files.
In the case of allowing the user to select multiple files, the
appropriate method to use is File.browseForOpenMultiple( ).
The File.browseForOpenMultiple( ) method takes the same
two arguments that the File.browseForOpen( ) method takes:
a String to be used in the title of the dialog, and an Array of
FileFilter objects.

Once the user has selected the files from the dialog, the
FileListEvent.SELECT_MULTIPLE will be broadcast. The event
object that is sent to the handler will be of type
FileListEvent. The FileListEvent class contains a “files”
property, which will be an Array of File objects representing
the files that the user selected:

var file = air.File.documentsDirectory;

file.addEventListener( air.FileListEvent.SELECT_MULTIPLE,
doSelect );

function doSelect( event )
{
    for( var f = 0; f < event.files.length; f++ )
    {
        ...
    }
}



98 | Chapter 4: AIR Mini-Cookbook

Here is the complete code:

<html>
<head>

<title>Browse for Multiple Files</title>
<script type="text/javascript" src="AIRAliases.js">
</script>

<script>
var file = null;

function doLoad( )
{
    file = air.File.documentsDirectory;
    file.addEventListener( air.FileListEvent.SELECT_MULTIPLE,
                         doSelect );

    document.getElementById( "btnBrowse" ).
addEventListener( "click", doBrowse );
}

function doBrowse( )
{
    var filters = new window.runtime.Array( );

    filters.push( new air.FileFilter( "Image Files", "*.jpg" ) );
    file.browseForOpenMultiple( "Select Photos", filters );
}

function doSelect( event )
{
    var elem = null;
    var name = null;
    var size = null;

    for( var f = 0; f < event.files.length; f++ )
    {
        name = event.files[f].name;
        size = Math.ceil( event.files[f].size / 1000 );

        elem = document.createElement( "div" );
        elem.innerText = name + " (" + size + " KB)";

        document.body.appendChild( elem );
    }



File Pickers | 99

}
</script>

</head>
<body onload="doLoad( )">

<input id="btnBrowse" type="button" value="Browse" />

</body>
</html>

Browse for a Directory

Problem

Application requirements dictate that you allow users to
select a directory in which they will store data.

Solution

Use the File.browseForDirectory( ) API to prompt the user
to select a directory.

Discussion

The File.browseForDirectory( ) API creates a native dialog
box that allows users to select a directory. The method takes
a required String argument, which will be used to provide
additional information to the user about the purpose of the
selected directory.

When a directory selection has been made, Adobe AIR will
raise an event in the issuing application. In order to catch
that event, the application must have first registered an event
listener. The event that gets raised is Event.SELECT, and an
event object will be passed to the handler:

var file = air.File.applicationStorageDirectory;

file.addEventListener( air.Event.SELECT, doSelect );
file.browseForDirectory( "Where do you want to store your
photos?" );

function doSelect( event )



100 | Chapter 4: AIR Mini-Cookbook

{
    alert( file.nativePath );
}

A useful property of the event object that is sent to the han-
dler is the target property that contains a reference to the
originating File object. There is nothing returned from the
dialog operation to be assigned to a File object, as the origi-
nating object will now hold a reference to the directory
selected by the user. For this purpose, it may be beneficial to
have a class or global reference to the File object, and even
to reuse it:

<html>
<head>

<title>Select Directory</title>
<script type="text/javascript" src="AIRAliases.js">
</script>

<script>
var file = null;

function doLoad( )
{
    file = air.File.documentsDirectory;

file.addEventListener( air.Event.SELECT, doSelect );

    document.getElementById( "btnBrowse" ).
addEventListener( "click", doBrowse );
}

function doBrowse( )
{
file.browseForDirectory( "Where do you want to put your photos?" );
}

function doSelect( )
{
    var elem = document.createElement( "div" );

    elem.innerText = file.nativePath;
document.body.appendChild( elem );

}
</script>



Service and Server Monitoring | 101

</head>
<body onload="doLoad( )">

<input id="btnBrowse" type="button" value="Browse" />

</body>
</html>

Service and Server Monitoring

Monitoring Connectivity to an HTTP Server

Problem

Your application needs to monitor and determine whether a
specific HTTP server can be reached.

Solution

Use the URLMonitor class to detect network state changes in
HTTP/S endpoints.

Discussion

Service monitor classes work through event notification and
subsequent polling of the designated endpoint. Service moni-
toring is not part of the Adobe Integrated Runtime (AIR)
directly, and needs to be added before it can be used.

The classes for service monitoring are contained in the
servicemonitor.swf file which can be found in the “frame-
works” directory of the AIR SDK. This file should be copied
into the application project folder, and can be included
through the use of the HTML SCRIPT tag. The
servicemonitor.swf file also needs to be included in the pack-
aged AIR application.

<script src="servicemonitor.swf"></script>

The URLMonitor class takes a single argument in the construc-
tor, an instance of the URLRequest class. The URLRequest



102 | Chapter 4: AIR Mini-Cookbook

constructor takes a String that represents the URL service
endpoint to query. The URLRequest class also contains infor-
mation about how to query the endpoint (i.e. GET, POST),
and any additional data that should be passed to the server:

var request = air.URLRequest( "http://www.adobe.com" ) ;
var monitor = new window.runtime.air.net.URLMonitor( request );

The URLMonitor class will raise a StatusEvent.STATUS event
when the network state changes. Once the event handler has
been registered, the URLMonitor instance can be told to start
watching for network start changes:

monitor.addEventListener( air.StatusEvent.STATUS, doStatus );
monitor.start( );

After a network change has been propagated as an event, the
URLMonitor.available property on the originating URLMonitor
instance can be used to check for the presence of a connec-
tion. The URLMonitor.available property returns a Boolean
value that reflects the state of the network. As it is necessary
to query the originating URLMonitor instance for network
availability, the object should be declared in a scope that is
accessible across the application:

<html>
<head>

<title>HTTP Monitor</title>
<script type="text/javascript" src="AIRAliases.js">
</script>
<script src="servicemonitor.swf"></script>

<script>
var monitor = null;

function doLoad( )
{
    var request = new air.URLRequest( "http://www.adobe.
com" );

    monitor = new window.runtime.air.net.URLMonitor( request );
    monitor.addEventListener( air.StatusEvent.STATUS, doStatus );
    monitor.start( );
}



Service and Server Monitoring | 103

function doStatus( event )
{
    var elem = document.createElement( "div" );

    elem.innerText = monitor.available;

    document.body.appendChild( elem );
}
</script>

</head>
<body onload="doLoad( )">

</body>
</html>

Monitoring Connectivity to a Jabber Server

Problem

A Jabber chat client is required to reflect network presence in
the user interface, but the endpoint is a Jabber server on a
specific port and not HTTP/S.

Solution

Use the SocketMonitor class to detect network state changes
against TCP/IP socket endpoints.

Discussion

The service monitoring API is not built into Adobe AIR
directly, and needs to be added before it can be used. The
servicemonitor.swf file, which is included in the Adobe AIR
SDK, must be included as an application resource and
included via an HTML SCRIPT tag:

<script src="servicemonitor.swf"></script>

The SocketMonitor class takes two arguments in the con-
structor: a String that represents the host endpoint, and a
port on which the server is listening:

var host = "im.mydomain.com";
var port = 5220;



104 | Chapter 4: AIR Mini-Cookbook

var monitor =
  new window.runtime.air.net.SocketMonitor( host, port );

The SocketMonitor class will raise a StatusEvent.STATUS event
when the network state changes. Once the event handler has
been registered, calling the SocketMonitor.start( ) method
will start watching the network for changes:

monitor.addEventListener( air.StatusEvent.STATUS, doStatus );
monitor.start( );

After a network change has been propagated as an event, the
SocketMonitor.available property on the originating
SocketMonitor instance can be used to check for the presence
of a connection. The SocketMonitor.available property
returns a Boolean value that reflects the state of the network.
As a best practice, the SocketMonitor object should be
declared in a scope that is accessible across the application
and referenced directly during event handling:

<html>
<head>

<title>Socket Monitor</title>
<script type="text/javascript" src="AIRAliases.js">
</script>
<script src="servicemonitor.swf"></script>

<script>
var monitor = null;

function doLoad( )
{
    monitor = new window.runtime.air.net.Socket
Monitor( "im.mydomain.com", 5220 );
  monitor.addEventListener( air.StatusEvent.STATUS, doStatus );
    monitor.start( );
}

function doStatus( event )
{
    var elem = document.createElement( "div" );

    elem.innerText = monitor.available;



Online/Offline | 105

    document.body.appendChild( elem );
}
</script>

</head>
<body onload="doLoad( )">

</body>
</html>

Online/Offline

Caching Assets for Offline Use

Problem

You want to load an asset from a URL and store it for use
when the application is offline.

Solution

Use the File I/O API to save the requested asset to the appli-
cation’s store and read that file on subsequent requests.

Discussion

In this example, we will load an XML file that is at a known
URL. Once the data has been loaded, it will be saved to the
local disk and on subsequent requests for the document, it
will be loaded from the local disk instead of from the remote
location.

First, we will use the XMLHttpRequest object to load the XML
data from the remote location. The XMLHTTPRequest.open( )
method takes three arguments. The first argument is the
method of the HTTP request that is being made. The second
argument is the URI of the location of the data being loaded.
The third argument is a Boolean that specifies whether the
operation will be asynchronous.



106 | Chapter 4: AIR Mini-Cookbook

Once we have specified these arguments in the open method,
we will call the send method. The send method takes a single
argument that contains the content that is to be sent with the
request. In our case, we won’t send any data with the
request:

var xml = new XMLHttpRequest( );
xml.open( "GET", "http://www.foo.com/data.xml", true );
xml.send( null );

Because we are loading the data asynchronously, we need to
create a handler for the response which is called once the
data has loaded from the server. This handler will be added
before the send method is called. Within this handler we will
save the data that is located in the responseText property of
the XMLHttpRequest instance to a known location on the local
file system for retrieval in subsequent requests. Reading and
writing text to the local system is covered elsewhere in the
book, and therefore we won’t cover it in detail here:

xml.onreadystatechange = function( )
{
    if( xml.readyState == 4 ) // the request is complete
    {
        // write the data to the local system
       var file =
       air.File.applicationStorageDirectory.resolve("data.xml");
        var fileStream = new air.FileStream( );
        fileStream.open( file, air.FileMode.WRITE );
        fileStream.writeMultiByte( xml.responseText ,
                                   air.File.systemCharset );
        fileStream.close( );
    }
}

Before each request of the data we will need to check if the
data.xml file exists. If it exists, we do not need to load the file
using the XMLHttpRequest object and can use the File API to
load it from the disk. This allows us to load the data even if
the user is not currently online:

var data = null;
var file = air.File.applicationStorageDirectory.
resolve("data.xml");

http://www.foo.com/data.xml


Online/Offline | 107

if( file.exists )
{
    var fileStream = new air.FileStream( );
    fileStream.open( file, air.FileMode.READ );
    data =
    fileStream.readMultiByte( fileStream.bytesAvailable,
                              air.File.systemCharset );
    fileStream.close( );
}
else
{
    // read the data via XMLHttpRequest and write that
    // data to the file system
}

Here is the complete example:

<html>
<head>
    <title>Caching Assets for Offline Use</title>
    <script src="AIRAliases.js"></script>
    <script>

        var file =
        air.File.applicationStorageDirectory.resolve("data.xml");

        function onLoad( )
        {
            if( file.exists )
            {
                var fileStream = new air.FileStream( );
                fileStream.open( file, air.FileMode.READ );
                document.getElementById( "dataText" ).value =
                    fileStream.readMultiByte(
                        fileStream.bytesAvailable,
                        air.File.systemCharset );
                fileStream.close( );
            }
            else
            {
                var xml = new XMLHttpRequest( );
                xml.open( "GET",
                          "http://www.foo.com/data.xml", true );

                xml.onreadystatechange = function( )
                {

http://www.foo.com/data.xml


108 | Chapter 4: AIR Mini-Cookbook

                    if( xml.readyState == 4 ) // the
request is complete
                    {
                        var file = air.File.
applicationStorageDirectory.resolve("data.xml");
                        var fileStream = new air.
FileStream( );
                        fileStream.open( file, air.
FileMode.WRITE );
                        fileStream.writeMultiByte( xml.
responseText , air.File.systemCharset );
                        fileStream.close( );

                        document.getElementById(
"dataText" ).value = xml.responseText;
                    }
                }

                xml.send( null );
            }
        }
    </script>
</head>
<body onload="onLoad( )">
    <textarea id="dataText"></textarea>
</body>
</html>

Drag and Drop

Using Drag and Drop from HTML

Problem

You want to allow users to drag files, images, text, and other
data types into and out HTML-based AIR applications.

Solution

By using Adobe AIR’s Drag and Drop implementation in Jav-
aScript, developers can react to drag and drop operations
that occur on HTML DOM objects.



Drag and Drop | 109

TIP

Adobe AIR’s support for drag and drop is based on the
WebKit implementation. You can find more information
on this at: http://developer.apple.com/documentation/
AppleApplications/Conceptual/SafariJSProgTopics/Tasks/
DragAndDrop.html.

Discussion

One of the benefits of developing for the desktop is provid-
ing users with a more integrated experience when interacting
with multiple applications. One of the most frequently used
user gestures is to drag and drop files, data, and other ele-
ments between applications and the desktop and between
the applications themselves.

This example will demonstrate how you can accept text
being dragged into your application and also support drag-
ging text out. It will also show you how to modify the drag
effect in order to demonstrate for the user what type of drag
operations he can perform with the element he is dragging.

There are two flows that are important to consider when
using drag and drop operations in HTML. First we will
examine the flow for HTML elements that want to allow
themselves to be dragged by users:

1. Element specifies that it is available for drag operations.

2. User selects the item and starts dragging it.

3. Element receives an ondragstart event and sets the data
which will be transferred and also specifies which drag
operations are supported.

4. Element receives ondrag events while the element is being
dragged.

5. User drops the item being dragged and the initiating ele-
ment receives an ondragend event.

http://developer.apple.com/documentation/AppleApplications/Conceptual/SafariJSProgTopics/Tasks/
http://developer.apple.com/documentation/AppleApplications/Conceptual/SafariJSProgTopics/Tasks/
http://developer.apple.com/documentation/AppleApplications/Conceptual/SafariJSProgTopics/Tasks/


110 | Chapter 4: AIR Mini-Cookbook

The typical flow for HTML elements that want to receive
drop operations are as follows:

1. User drags an item over the element listening for drop
events.

2. Element receives an ondragenter event and specifies
which drop operations are available.

3. Element receives ondragover operations continuously as
the item is dragged over the element.

4. The user drops the item and the receiving element
receives an ondrop event.

5. If the user moves the dragged item outside the bound-
aries of the listening element, it will receive an
ondragleave event.

Users can, by default, drag text elements and URLs. To dis-
able this functionality, use the -khtml-user-drag:none style.
To override the default data type that is being specified, use
the -khtml-user-drag:element style and specify listeners for
the drag events as specified previously.

To manipulate the data that is being transferred between
applications, use the dataTransfer object that is attached to
the event dispatched during drag operations. The
dataTransfer object has two methods, getData and setData.
The setData method takes two parameters, the MIME type
and the string of data that conforms to that type. The
setData method can be called multiple times and allows you
to store multiple data types. For example, if you wanted to
specify a “text/plain” type and a “text/uri-list” type, you
would do the following:

function dropStartListener( event )
{
    event.dataTransfer.setData( "text/plain", "Adobe" );
    event.dataTransfer.setData( "text/uri-list",
                                 "http://www.adobe.com" );
}

http://www.adobe.com


Drag and Drop | 111

If setData is called for a MIME type that already exists on the
element being dragged, that data will be overwritten. Retriev-
ing data from an element that is being dragged can occur
only within an ondrop event handler. The getData method
takes a MIME type as its only parameter and returns the
value of the MIME type if it exists on the element being
dragged. For example:

function dropListener( event )
{
    alert( event.dataTransfer.getData( "text/plain" ) );
// Adobe
}

When a user is dragging an item from one application to
another, or from one location in your application to another,
you may want to indicate to the user which operations (copy,
link, or move) are available. By using the effectAllowed and
dropEffect properties of the dataTransfer object you can
specify which operations are allowed. The system then uses
the application to determine what actions a user can per-
form during the drag operation. The list of available values
for these properties can be determined by reading the docu-
ment referenced above.

When starting a drag, the effectAllowed property tells the
system what operations the source element supports. The
dropEffect property specifies the operation that the current
target receiving the drag event supports. The system then
uses the information about what effects both the source and
destination target support and displays that to the user.

TIP

The current AIR Beta on Adobe Labs has a few limita-
tions. First, specifying custom drag images and snap-
shots is not supported. Also, only two MIME types are
available for transfer: text/plain, and text/uri-list. Last,
the types array on the dataTransfer is not accessible on
the dataTransfer object. Support for these features will be
added for AIR Version 1.0.



112 | Chapter 4: AIR Mini-Cookbook

<html>
<head>
    <title>HTML Drag Test</title>
    <script src="AIRAliases.js" />
    <script>

    // DROP EVENTS

    function onDragEnter(event)
    {
        air.trace("onDragEnter");
        event.dataTransfer.dropEffect = "copy";
        event.preventDefault( );
    }

    function onDrop(event)
    {
      air.trace("onDrop");
      air.trace( event.dataTransfer.getData("text/plain") );
      air.trace( event.dataTransfer.getData("text/uri-list") );
    }

    function onDragOver(event)
    {
        event.preventDefault( );
    }

    // DRAG EVENTS

    function onDragStart(event)
    {
        air.trace("onDragStart");
        event.dataTransfer.setData("text/plain",
           "This is the URL I am dragging" );
        // We overwrite the default URL specified in the
        // anchor tag with a different URL. When the data
        // is dropped, this is the URL that will be
        //  transferred.
        event.dataTransfer.setData("text/uri-list",
                                   "http://www.foo.com" );
        event.dataTransfer.effectAllowed = "all";
    }

    function onDragEnd( event )
    {
        air.trace("onDragEnd");
    }

http://www.foo.com


Embedded Database | 113

    </script>
</head>
<body>
    <div style="margin: 0px auto; width: 80%;
    background-color: white; border: solid black;">
        <div style="background-color: lightblue;
        border-bottom: solid black; padding: 3px;
        font-family: sans-serif; font-weight: bold;"
             ondragenter="onDragEnter(event)"
             ondragover="onDragOver(event)"
             ondrop="onDrop(event)">
            Drop Here
        </div>
        <p>
            <span id="content" ondragstart="onDragStart(event)"

ondragend="onDragEnd(event)">
           <a href="http://www.adobe.com">Drag Me
           (text/uri-list)</a>
            </span>
        </p>
    </div>
</body>
</html>

Embedded Database
Adobe AIR includes an embedded SQLite database which
can be leveraged by AIR applications. SQLite is a compact
open source database that supports ACID transactions,
requires zero-configuration, implements most of SQL92, and
supports strings and BLOBs up to 2GB in size. All database
information is stored in a single file on disk, and can be freely
shared between machines, even if they have different byte
orders.

TIP

You can find more information about SQLite on the
project web site at: http://www.sqlite.org.

http://www.adobe.com


114 | Chapter 4: AIR Mini-Cookbook

Currently, when working with a local database from AIR, all
transactions are asynchronous. This configuration allows the
user interface to continue to respond while the database is
processing in the background. To monitor database activity,
an application must create and register for the events in
which it is interested.

Connecting to a Database

Problem

You need to connect to a local database prior to working
with the schema or altering data.

Solution

Creating and connecting to a database can be accomplished
using the single SQLConnection.open() method.

Discussion

SQLite stores all database information in a single file on disk.
This means that before an application can access a database,
it must first have a reference to the file. A single application
might choose to access any number of database files. Data-
bases are managed through the SQLConnection datatype in the
AIR API.

Obtaining a reference to the database file can be done
through the File.resolve() method, which takes a single
argument: the name of the file that will be referenced. Files
that do not yet exist can have a reference, and the File.
exists property returns a Boolean to determine that file’s
presence on disk:

var db = new air.SQLConnection();
var file =
 air.File.applicationStorageDirectory.resolve( "mycrm.db" );

The extension to the database file is not specific and can be
named as necessary for the application.



Embedded Database | 115

Database transactions happen asynchronously, which
means an application must first create and register a han-
dler for the events in which it is interested. In the case of
establishing a connection to a database, the SQLEvent.OPEN
event will be monitored. Among various other properties,
the SQLEvent.type property can be used to determine the
status of the database.

db.addEventListener( air.SQLEvent.OPEN, doDbOpen );

function doDbOpen( event )
{
    alert( "Connected" );
}

Calling the SQLConnection.open() method can take a number
of different arguments. The most common arguments are the
file reference to the database, and a Boolean value indicating
whether the database should be created if it does not already
exist. This simultaneously creates the database if it does not
exist, and then establishes a connection to the database:

db.open( file, true );

While the database will close automatically when the applica-
tion exists, developers should consider calling SQLConnection.
close() during the onunload event. The SQLConnection.
close() method takes no arguments. Taking the time to
manually close the database at the termination of the applica-
tion helps ensure that data is not accidentally corrupted, and
helps to maintain best practices:

<html>
<head>

<title>Connecting to a Database</title>
<script type="text/javascript" src="AIRAliases.js">
</script>

<script>
var db = new air.SQLConnection();

function doDbOpen( event )



116 | Chapter 4: AIR Mini-Cookbook

{
    alert( "You are now connected to the database." );
}

function doLoad()
{

var file =
    air.File.applicationResourceDirectory.resolve( "crm.db" );

    db.addEventListener( air.SQLEvent.OPEN, doDbOpen );
    db.open( file, true );
}

function doUnload()
{
    db.close();
}
</script>

</head>
<body onload="doLoad();" onunload="doUnload()">

</body>
</html>

Creating Database Tables

Problem

An application has a specific schema it needs to provide for
data storage.

Solution

Database schema can be created using the SQLStatement class
using SQL92.

Discussion

Once a database file has been created and a connection to
the database has been established, the next likely step will be
to create any required schema. This can be accomplished
using SQL92 in conjunction with the SQLStatement class. The



Embedded Database | 117

SQLStatement class executes commands against a specified
database.

As database transactions all happen asynchronously, the best
place to check for any required schema—or to create it—is
in the handler for the SQLEvent.OPEN event. At this point, the
application can be assured a connection against which state-
ments can be executed. Along the same lines, event handlers
must also be registered on the SQLStatement instance:

var stmt = new air.SQLStatement();

stmt.addEventListener( air.SQLErrorEvent.ERROR,
  doStmtError );
stmt.addEventListener( air.SQLEvent.RESULT, doStmtResult );

When applied to a SQLStatement object, the SQLErrorEvent.
ERROR event is called when there has been an error while exe-
cuting a SQLStatement.next() or SQLStatement.execute()
method. Conversely, the SQLEvent.RESULT event is called
when results are returned from the database. This usually
indicates a successful execution:

function doStmtError( event )
{
    alert( "There has been a problem executing the statement" );
}

function doStmtResult( event )
{
    alert( "The database table has been created." );
}

In order to execute a SQL statement, a SQLConnection
instance against which to execute must be established. A
SQLConnection instance can be assigned to the SQLStatement.
sqlConnection property. The SQLStatement.text property is
then assigned any SQL that needs to be executed. Finally, the
SQLStatement.execute() method is called:

stmt.sqlConnection = db;
stmt.text = "CREATE TABLE IF NOT EXISTS contact ( " +
    "id INTEGER PRIMARY KEY AUTOINCREMENT, " +
    "first TEXT, " +



118 | Chapter 4: AIR Mini-Cookbook

    "last TEXT )";
stmt.execute();

In this case, a CREATE TABLE statement has been applied to
the database. Additional types of SQL statements, such as
SELECT, INSERT, UPDATE, and DELETE are executed in the same
manner. The SQLStatement.execute( ) method can take two
optional arguments: the number of rows to prefetch, and a
responder object to handle events.

The prefetch option defaults to –1, which indicates that all
rows should be returned. The responder object can be a cus-
tom object designed to handle any status or result events that
take place during execution. The default responder is null in
this case, as event handlers have been registered with the
SQLStatement object directly:

<html>
<head>

<title>Creating Database Tables</title>
<script type="text/javascript" src="AIRAliases.js">
</script>

<script>
var db = null;
var stmt = null

function doDbOpen( event )
{
    stmt = new air.SQLStatement();
    stmt.addEventListener( air.SQLErrorEvent.ERROR,
doStmtError );
    stmt.addEventListener( air.SQLEvent.RESULT,
doStmtResult );

    stmt.sqlConnection = db;
    stmt.text = "CREATE TABLE IF NOT EXISTS contact ( " +

"id INTEGER PRIMARY KEY AUTOINCREMENT, " +
                "first TEXT, " +
                "last TEXT )";

    stmt.execute();
}



Embedded Database | 119

function doLoad()
{

var file =
    air.File.applicationResourceDirectory.resolve( "crm.db" );

    db = new air.SQLConnection();
    db.addEventListener( air.SQLEvent.OPEN, doDbOpen );
    db.open( file, true );
}

function doStmtResult( event )
{
    alert( "The database table has been created." );
}

function doStmtError( event )
{
    alert( "There has been a problem executing a
    statement:\n" + event.error.message );
}

function doUnload()
{
    db.close();
}
</script>

</head>
<body onload="doLoad()" onunload="doUnload()">

</body>
</html>

Storing Data in a Database

Problem

An application needs to store user-provided data in a rela-
tional database on disk.

Solution

SQL92 INSERT statements can be created and executed
using the SQLStatement class.



120 | Chapter 4: AIR Mini-Cookbook

Discussion

Given a valid database file with the appropriate schema cre-
ated, SQL92 statements can be executed using the
SQLStatement object. The same SQLStatement object can be
reused to execute multiple statements. When reusing the
same SQLStatement, it’s important to differentiate what type
of statement has just been executed. There are various means
to accomplish listening for the different actions.

function doSave( )
{
    var first = document.getElementById( "txtFirst" ).
value;
    var last = document.getElementById( "txtLast" ).value;

    stmt.text = "INSERT INTO contact VALUES ( " +
        "NULL, " +
        "'" + first + "', " +
        "'" + last + "' )";
    stmt.execute( );
}

One approach is to assign different event handlers for the dif-
ferent statements that will be executed. (Don’t forget to
remove the old handlers.) Another approach is to specify dif-
ferent responder objects that have been created with the spe-
cific statement in mind. The approach used in this example is
a basic state machine that tracks what type of statement has
just been executed:

var NONE = - 1;
var CREATE_SCHEMA = 0;
var INSERT_DATA = 1;

var state = NONE;

var stmt = new air.SQLStatement( );

// Other database creation and configuration

function doSave( )
{
    var first = document.getElementById( "txtFirst" ).value;
    var last = document.getElementById( "txtLast" ).value;



Embedded Database | 121

    stmt.text = "INSERT INTO contact VALUES ( " +
        "NULL, " +
    "’" + first + "’, " +
        "’" + last + "’ )";

    // Track state
    state = INSERT_DATA;
    stmt.execute();

}

After successfully executing a database statement, the
SQLResultEvent.RESULT event will be triggered. If an error
occurs, the SQLStatusEvent.STATUS event will be raised. By
tracking the state, the method designed to handle the result
can determine the appropriate action(s) to take. In the case
of inserting new data, this may be user notification and
updating of the user interface:

<html>
<head>

<title>Storing Database Data</title>
<script type="text/javascript" src="AIRAliases.js">
</script>

<script>
var db = null;
var stmt = null

var NONE = -1;
var CREATE_SCHEMA = 0;
var INSERT_DATA = 1;

var state = NONE;

function doDbOpen( event )
{
    stmt = new air.SQLStatement();
    stmt.addEventListener( air.SQLErrorEvent.ERROR,
                           doStmtError );
    stmt.addEventListener( air.SQLEvent.RESULT,
                           doStmtResult );

    stmt.sqlConnection = db;
    stmt.text = "CREATE TABLE IF NOT EXISTS contact ( " +



122 | Chapter 4: AIR Mini-Cookbook

"id INTEGER PRIMARY KEY AUTOINCREMENT, " +
                "first TEXT, " +
                "last TEXT )";

    state = CREATE_SCHEMA;
    stmt.execute();
}

function doLoad()
{

var file =
    air.File.applicationResourceDirectory.resolve( "crm.db" );

    db = new air.SQLConnection();
    db.addEventListener( air.SQLEvent.OPEN, doDbOpen );
    db.open( file, true );

    document.getElementById( "btnSave" ).
     addEventListener( "click", doSave );
}

function doSave()
{

var first = document.getElementById( "txtFirst" ).value;
var last = document.getElementById( "txtLast" ).value;

    stmt.text = "INSERT INTO contact VALUES ( " +
                "NULL, " +
                "’" + first + "’, " +
                "’" + last + "’ )";

    state = INSERT_DATA;
    stmt.execute();
}

function doStmtResult( event )
{

switch( state )
    {

case CREATE_SCHEMA:
            alert( "The database table has been created." );
           state = NONE;

break;



Embedded Database | 123

case INSERT_DATA:
            document.getElementById( "txtFirst" ).value = "";
            document.getElementById( "txtLast" ).value = "";

           alert( "A new record has been stored." );
    }
}

function doStmtError( event )
{
    alert( "There has been a problem executing a
statement:\n" + event.error.message );
}

function doUnload()
{
    db.close();
}
</script>

</head>
<body onload="doLoad()" onunload="doUnload()">

<div>
    First name: <input id="txtFirst" type="text" />
</div>
<div>
    Last name: <input id="txtLast" type="text" />
</div>
<div>
    <input id="btnSave" type="button" value="Save" />
</div>

</body>
</html>

Accessing Database Data

Problem

You need to generate a tabular display of data from the
embedded database.



124 | Chapter 4: AIR Mini-Cookbook

Solution

Database data can be queried using SQL92 and the
SQLStatement class.

Discussion

Traditional SELECT statements can be run using a
SQLStatement object that has been referenced against an exist-
ing database. A successful execution of the SELECT statement
invokes the registered SQLResultEvent.RESULT event handler.
That event handler will get a SQLResultEvent object which
contains the result data:

function doStmtResult( event )
{
    var elem = null;
    var results = stmt.getResult();

    if( results.data != null )
    {
        for( var c = 0; c < results.data.length; c++ )
{
    elem = document.createElement( "div" );
    elem.innerText = results.data[c].first + " "  +
results.data[c].last;

    document.body.appendChild( elem );
}
    }
}

TIP

This snippet forgoes much of the state management,
event registration and database connectivity covered in
other sections. Please review that content, or the exam-
ple at the end of this section, for complete coverage of the
topic.

To get any result data, the SQLStatement.getResult() is
called, which returns a SQLResult object. The SQLResult.data
property is an Array of the results, if any. The SQLResult.data



Embedded Database | 125

Array will contain Object instances whose properties match
the names of the columns used in the query. This Array can
be used to iterate over the results of a query.

If the database table that is being queried has no data, or the
statement did not return any data, the SQLResult.data prop-
erty will be null:

<html>
<head>

<title>Accessing Database Data</title>
<script type="text/javascript" src="AIRAliases.js">
</script>

<script>
var db = null;
var stmt = null

var NONE = -1;
var CREATE_SCHEMA = 0;
var SELECT_DATA = 1;

var state = NONE;

function doDbOpen( event )
{

stmt = new air.SQLStatement();
    stmt.addEventListener( air.SQLErrorEvent.ERROR,
                           doStmtError );
    stmt.addEventListener( air.SQLEvent.RESULT,
                           doStmtResult );

    stmt.sqlConnection = db;
    stmt.text = "CREATE TABLE IF NOT EXISTS contact ( " +

"id INTEGER PRIMARY KEY AUTOINCREMENT, " +
                "first TEXT, " +
                "last TEXT )";

    state = CREATE_SCHEMA;
    stmt.execute();
}

function doLoad()
{



126 | Chapter 4: AIR Mini-Cookbook

var file =
    air.File.applicationResourceDirectory.resolve( "crm.db" );

    db = new air.SQLConnection();
    db.addEventListener( air.SQLEvent.OPEN, doDbOpen );
    db.open( file, true );
}

function doStmtResult( event )
{

var elem = null;
var result = null;

switch( state )

case CREATE_SCHEMA:
            stmt.text = "SELECT * FROM contact";

            state = SELECT_DATA;
            stmt.execute();

            break;

case SELECT_DATA:
            result = stmt.getResult();

 if( result.data != null )
            {

for( var c = 0; c < result.data.length; c++ )
               {
                   elem = document.createElement( "div" );
                   elem.innerText = result.data[c].first +
                   " " + result.data[c].last;

                   document.body.appendChild( elem );
               }
            }

            state = NONE;
break;

default:
            state = NONE;

break;
    }
}



Command-Line Arguments | 127

function doStmtError( event )
{
    alert( "There has been a problem executing a
 statement:\n" + event.error.message );
}

function doUnload()
{
    db.close();
}
</script>

</head>
<body onload="doLoad()" onunload="doUnload()">

</body>
</html>

Command-Line Arguments

Capturing Command-Line Arguments

Problem

You need to capture command-line arguments sent to your
application—either at application startup, or while the appli-
cation is running.

Solution

Register for the InvokeEvent, and capture command line
arguments passed into your application.

Discussion

Whenever an application is started, or an application is
called from the command line while it is running, an
InvokeEvent will be broadcast. The event handler for this is
passed information about the event, including any argu-
ments passed to the application on the command line.



128 | Chapter 4: AIR Mini-Cookbook

You should register for the InvokeEvent during your applica-
tion’s initialization phase, in order to ensure that the event is
captured when the application is initially launched.

You can register for the event from the shell singleton like so:

function init( )
{
air.Shell.shell.addEventListener(air.InvokeEvent.INVOKE,

                                   onInvoke);
}

This registers the onInvoke function as a handler for the
InvokeEvent. The handler is passed an instance of the
InvokeEvent object, which contains a property named
arguments which is an Array of Strings of any arguments
passed to the application:

function onInvoke(event)
{
    air.trace("onInvoke : " + event.arguments);
}

When testing your application via ADL, you can pass in
command line arguments by using the -- argument. For
example:

adl InvokeExample.xml -- foo "bim bam"

This would pass in two arguments to the application “foo”
and “bim bam.”

The complete example follows; it listens for the InvokeEvent,
and prints out to the included textarea html control, as well
as the command line via air.trace( ):

<html>
<head>

    <script src="AIRAliases.js" />
    <script type="text/javascript">

      function onInvoke(event)
      {
        air.trace("onInvoke : " + event.arguments);



Networking | 129

         var field = document.getElementById("outputField");
         field.value += "Invoke : " + event.arguments + "\n";
        }

        function init( )
        {
            air.Shell.shell.addEventListener(air.
InvokeEvent.INVOKE,onInvoke);
        }

    </script>

</head>

<body onload="init( )">

    <textarea rows="8" cols="40" id="outputField">
    </textarea>

</body>
</html>

Networking

Communicating on a Socket

Problem

You would like to communicate with a server using a proto-
col that is not directly supported by Adobe AIR (for exam-
ple, communicate with an FTP server).

Solution

Use the Socket class in the AIR API to send binary or text
data to the server and register for events that will alert you to
incoming data from the server.

Discussion

When communicating using protocols other than those
directly supported by Adobe AIR, you may need to use the
Socket API. The Socket API is an asynchronous API that lets



130 | Chapter 4: AIR Mini-Cookbook

you send data to a persistent socket endpoint and receive data
from it in real time. You do not need to create a new Socket
instance for each set of data sent to the same endpoint. The
connection can be kept alive for the entire conversation
between your client and the service to which you’re connect-
ing. This is the typical flow when using the Socket API:

1. Create a connection to the endpoint

2. Listen for notification of connection success or failure

3. Queue data that will be sent to the endpoint

4. Send the data to the endpoint

5. Listen for data incoming from the endpoint

6. Repeat steps 3 through 5

7. Close the connection

The first step is to create a connection to the socket end-
point that consists of a host and a port number. For example,
to connect to an endpoint the host might be ‘foo.com’ and
the port number might be 5555. Create the instance of the
Socket class and connect to the endpoint using that informa-
tion. At this time, we will also set up our listeners to listen
for the different events that the Socket can dispatch:

var socket = new air.Socket( );
socket.addEventListener( air.Event.CONNECT, onSocketOpen );
socket.addEventListener( air.ProgressEvent.SOCKET_DATA,
onSocketData );
socket.connect( 'foo.com', 5555 );

We will also need to create the functions to handle the events
we subscribed for. The first event is the air.Event.CONNECT
event. This event will tell us when the socket has been initi-
ated and communication with the service behind the end-
point is possible. In this example, we are sending the bytes of
a UTF-8 encoded string to the service:

function onSocketOpen( event )
{
    // This queues up the binary representation of the
    // string 'Bob' in UTF-8 format to be sent to the



Networking | 131

    // endpoint.
    socket.writeUTFBytes( "Bob" );

    // Send the actual bytes to the server and clear
    // the stream. We then wait for data to be sent
    // back to us.
    socket.flush( );
}

The air.ProgressEvent.SOCKET_DATA event is dispatched
whenever data is received. The service we are connecting to
uses a simple protocol: we send a UTF-8 encoded string and
it returns a UTF-8 encoded string. This makes accessing the
data sent back to us very simple. To access this data, we
measure the total bytes of data available on the Socket and
read that many bytes as a UTF-8 encoded string using the
read readUTFBytes( ) method of the Socket class.

function onSocketData( event )
{
    var data =
      socket.readUTFBytes( socket.bytesAvailable );
    air.trace( data ); // Hello Bob
}

In our example, the protocol of communication was just a
single string. In some cases, depending on the service with
which you’re communicating, you may need to send and
receive other data types. The Socket class provides methods
for reading and writing many data types, such as ints, Bool-
eans, floats, etc. For example, if we were talking with a fic-
tional service that required us to send a Boolean followed by
an int, our onSocketOpen function in the above example could
look like this:

function onSocketOpen( event )
{
    // First send the boolean
    socket.writeBoolean( true );
    // Now send an int
    socket.writeInt( 10 );



132 | Chapter 4: AIR Mini-Cookbook

    // Now we send the bytes to the service and
    // clear the buffer.
    socket.flush( );
}

This example provides a baseline of functionality that can be
expanded upon to speak to many different protocols. The
only current limitation is that there is not currently an SSL
Socket implementation in AIR. For secure communication
you will be limited to HTTPS:

<html>
<head>

<title>Communicating on a Socket</title>
<script type="text/javascript" src="AIRAliases.js">
</script>

<script>
var socket = null;

function init( )
{
   socket = new air.Socket( );

   // Create our listeners which tell us when the Socket
   // is open and when we receive data from our service.
    socket.addEventListener( air.Event.CONNECT, onSocketOpen );
    socket.addEventListener( air.ProgressEvent.SOCKET_DATA,
                           onSocketData );

    // Connect to our service, which is located at host foo.com
    // using port 5555.
    socket.connect( 'foo.com', 5555 );
}

function onSocketOpen( event )
{
    // This queues up the binary representation of the
    // string 'Bob' in UTF-8 format to be sent to the
    // endpoint.
    socket.writeUTFBytes( "Bob" );

    // Send the actual bytes to the server and clear
    // the stream. We then wait for data to be sent



Networking | 133

    // back to us.
    socket.flush( );
}

function onSocketData( event )
{
    var data = socket.readUTFBytes( socket.bytesAvailable );
    air.trace( data ); // Hello Bob
}
</script>

</head>
<body onload="init( )">
</body>
</html>

Uploading a File in the Background

Problem

The application user has created numerous files offline, and
you now want to send those to the server without blocking
the user from doing any additional work.

Solution

The File class in Adobe AIR provides an upload( ) method
that is designed specifically for this purpose, without having
to create and manage HTML forms.

Discussion

The File.upload( ) method can upload files via HTTP/S to a
server for additional processing. The upload takes places just
like a traditional multipart file upload from an HTML form,
but without the need to manipulate forms on the client. The
upload process also takes place asynchronously in the back-
ground, allowing the application to continue processing
without interruption.



134 | Chapter 4: AIR Mini-Cookbook

TIP

The implementation of the receiving server is beyond the
scope of this example. There are numerous technologies,
and tutorials for these technologies, that elegantly handle
file upload. You’re encouraged to investigate your
options.

The primary events that are useful are ProgressEvent.
PROGRESS and Event.COMPLETE. These events handle notifying
the application of upload progress, and when an individual
upload is complete, respectively:

var file =
new air.File.documentsDirectory.resolve( "myImage.jpg" );

file.addEventListener( air.ProgressEvent.PROGRESS,
                       doProgress );
file.addEventListener( air.Event.COMPLETE, doComplete );

The ProgressEvent contains various properties that can help
in reflecting upload progress in the user interface. The most
notable of these properties are ProgressEvent.byteLoaded and
ProgressEvent.bytesTotal, which show how much of the file
has been uploaded and the total size of the file. The Event.
COMPLETE is broadcast once the upload is complete.

To start the upload, you first need a valid File object that
points to a resource on disk.

Once a valid file reference is established, developers will
want to call the File.upload( ) method. The File.upload( )
method can take three arguments, the first of which is a
URLRequest object that contains information about where the
file should be sent. The URLRequest object can also contain
additional data to be passed to the receiving server. This
additional data manifests itself as HTML form fields might
during a traditional multipart file upload:

var request = new air.URLRequest( "http://www.mydomain.
com/upload" );
file.upload( request, "image", false );



Networking | 135

The second argument provided to the File.upload( ) method
call is the name of the form field that contains the file data.

The third argument is a Boolean value that tells the upload
process if it should try a test before sending the actual file.
The test upload will POST approximately 10KB of data to
the endpoint to see if the endpoint responds. If the service
monitoring capabilities of the Adobe Integrated Runtime are
not being used, this is a good way to check for potential
failure of the process.

TIP

More than one great web application has been caught by
this subtlety before. If the server is expecting the file data
outright, then a test upload will almost assuredly cause
an error. If you intend to use the test facility, be sure that
your server code is prepared to handle the scenario.

function doProgress( event )
{
    var pct = Math.ceil( ( event.bytesLoaded / event.
bytesTotal ) * 100 );
    document.getElementById( "progress" ).innerText =
    pct + "%";
}

The Event.COMPLETE event is relatively straightforward in that
it signals the completion of the upload process. This is a
good place to perform any file system maintenance that
might otherwise need to be accomplished by the application.
An example would be removing the just-uploaded file from
the local disk to free up space. Another task that might be
accomplished in the Event.COMPLETE handler is to start the
upload of subsequent files:

<html>
<head>

<title>Background Upload</title>
<script type="text/javascript" src="AIRAliases.js">
</script>



136 | Chapter 4: AIR Mini-Cookbook

<script>
var file = null;

function doComplete( )
{
    document.getElementById( "txtProgress" ).style.
      visibility = "hidden";
    document.getElementById( "txtProgress" ).innerText =
                             "Uploading... 0%";

    document.getElementById( "btnUpload" ).disabled =
     null;
}

function doLoad( )
{
    file = air.File.documentsDirectory;
    file.addEventListener( air.Event.SELECT, doSelect );
    file.addEventListener( air.ProgressEvent.PROGRESS,
doProgress );
    file.addEventListener( air.Event.COMPLETE, doComplete
);

    document.getElementById( "btnUpload" ).
addEventListener( "click", doUpload );
}

function doProgress( event )
{
    var loaded = event.bytesLoaded;
    var total = event.bytesTotal;
    var pct = Math.ceil( ( loaded / total ) * 100 );

    document.getElementById( "txtProgress" ).innerText =
"Uploading... " + pct.toString( ) + "%";
}

function doSelect( )
{
    var request =
    new air.URLRequest( "http://www.ketnerlake.com/work/
                         watcher/upload.cfm" );

    document.getElementById( "btnUpload" ).disabled =
                                           "disabled";
    document.getElementById( "txtProgress" ).style.
      visibility = "visible";



Sound | 137

    file.upload( request, "image", false );
}

function doUpload( )
{
    file.browseForOpen( "Select File" );
}
</script>

</head>
<body onload="doLoad( )">

<input id="btnUpload" type="button" value="Upload" />

<div id="txtProgress" style="visibility: hidden">
Uploading... 0%</div>

</body>
</html>

Sound

Playing a Sound

Problem

You need to play a sound in your application.

Solution

Use the Sound API within AIR to play an MP3 file.

Discussion

AIR includes complete support for accessing Flash Player
APIs from JavaScript. This includes the Sound class that can
be used to play local or remote MP3 files.

Playing a sound is simple, and requires two main steps:

1. Create a URLRequest instance that references the local or
remote sound.

2. Pass the URLRequest to the Sound instance, and play it.



138 | Chapter 4: AIR Mini-Cookbook

Here is the relevant code snippet:

var soundPath =
  new air.URLRequest("app-resource:/sound.mp3");
var s = new air.Sound( );
    s.load(soundPath);
    s.play( );

First, we create a URLRequest that points to the location of the
MP3 file we will play. In this case, we use an app-resource
URI that references the sound.mp3 file contained in the appli-
cation install directory. You can also use any valid URI,
including both file and http URIs:

var soundPath =
  new air.URLRequest("app-resource:/sound.mp3");

We then create an instance of the Sound class, pass the refer-
ence to the MP3 path, and then call play:

var s = new air.Sound( );
    s.load(soundPath);
    s.play( );

Here is the complete example with a play button:

<html>
<head>

    <script src="AIRAliases.js" />
    <script type="text/javascript">

        function playSound( )
        {
            var soundPath =
             new air.URLRequest("app-resource:/sound.mp3");
            var s = new air.Sound( );
                s.load(soundPath);
                s.play( );
        }
    </script>

</head>

<body>
    <input type="button" value="Play" onClick="playSound()">
</body>
</html>



Sound | 139

At this point, you should have a solid understanding of
Adobe AIR, how to build AIR applications, and work with
AIR APIs. Make sure to check the resources listed in the
Preface to learn more advanced Adobe AIR development
techniques.





141

APPENDIX AAPPENDIX A

AIR Command-Line Tools

The AIR SDK provides the following command-line tools:

ADL
Use this tool to launch and test an AIR application with-
out having to install it.

ADT
Use this tool to package an AIR application into a redis-
tributable AIR file.

This Appendix lists the options for each of the command-line
tools.

For an example of using these tools, see Chapter 2.

ADL
ADL is a command-line tool that launches an AIR applica-
tion, based on its application descriptor file, without requir-
ing that the application be installed. This is useful for testing
and debugging the application.

Typically, you want to call the ADL tool passing one parame-
ter: the path to the application descriptor file (the applica-
tion .xml file):

adl application.xml

The full syntax of the ADL command is:

adl ( -runtime <path-to-runtime-dir> )? <path-to-app-xml>
<path-to-root-dir>? ( -- ... )?



142 | Appendix A: AIR Command-Line Tools

Table A-1 provides a description of the command-line argu-
ments for ADL.

ADT
ADT is a command-line tool that packages AIR applications
into redistributable AIR files. AIR can then install the AIR
application from that AIR file.

Typically, you want to call the ADT tool in the following
way:

adt -package HelloWorld.air application.xml HelloWorld.swf

In this example, the ADT tool creates an AIR file named
HelloWorld.air based on the application.xml application
descriptor file.

The syntax of the ADT command is:

adt -package <air-file> <app-xml> <fileOrDir>* ( -C <dir>
<fileOrDir>+ )*

Table A-1. ADL command-line arguments

Option Description

-runtime Optional argument that specifies the directory that contains
the AIR runtime that should be used.

path-app-xml The application descriptor file for the application that should
be launched.

path-to-root-dir Optional argument that specifies the directory that contains
the application descriptor file

-- Any arguments specified after this argument will be passed
to the application as startup/command-line arguments, and
can be accessed from the application via the InvokeEvent



ADT | 143

Table A-2  shows the command-line options for ADT.

Table A-2. Command-line options for ADT

Option Description

-package The first argument must be -package.

air-file The relative or absolute path to the AIR to be created by ADT.

app-xml The relative or absolute path to the application descriptor file for the
application.

fileOrDir One or more file or directory names identifying other files to be
included in the package. Each successive file or directory name
should be separated by a space.
If a directory name is specified, then all of the files in that directory
and its subdirectories will be included. However, files that are
marked hidden in the file system will be ignored.
If any of the files listed is the same as the file specified in the <app-
xml> parameter, then it will be ignored; it will not be added to the
package file a second time.
These files and directories will be copied into the application install
directory when the application is installed.

-C <dir> This changes the root directory path for subsequent files or
directories listed in the command line.



144

APPENDIX BAPPENDIX B

AIR JavaScript Aliases

Tables B-1 through B-12 show the JavaScript aliases created
in AIRAliases.js and the AIR and Flash Player APIs to which
they correspond.

TIP

All nonaliased ActionScript APIs are accessed through the
window.runtime property in JavaScript.

Table B-1. Top-level aliases

Alias ActionScript API

air.trace trace

air.navigateToURL flash.net.navigateToURL

air.sendToURL flash.net.sendToURL

Table B-2. File aliases

Alias ActionScript API

air.File flash.filesystem.File

air.FileStream flash.filesystem.FileStream

air.FileMode flash.filesystem.FileMode

Table B-3. Event aliases

Alias ActionScript API

air.Event flash.events.Event

air.FileListEvent flash.events.FileListEvent



AIR JavaScript Aliases | 145

air.IOErrorEvent flash.events.IOErrorEvent

air.InvokeEvent flash.events.InvokeEvent

air.HTTPStatusEvent flash.events.HTTPStatusEvent

air.SecurityErrorEvent flash.events.
SecurityErrorEvent

air.AsyncErrorEvent flash.events.AsyncErrorEvent

air.NetStatusEvent flash.events.NetStatusEvent

air.OutputProgressEvent flash.events.
OutputProgressEvent

air.ProgressEvent flash.events.ProgressEvent

air.StatusEvent flash.events.StatusEvent

air.EventDispatcher flash.events.EventDispatcher

air.DataEvent flash.events.DataEvent

air.TimerEvent flash.events.TimerEvent

Table B-4. Native window aliases

Alias ActionScript API

air.NativeWindow air.NativeWindow = flash.
display.NativeWindow

air.NativeWindowDisplayState flash.display.
NativeWindowDisplayState

air.NativeWindowInitOptions flash.display.
NativeWindowInitOptions

air.NativeWindowSystemChrome flash.display.
NativeWindowSystemChrome

air.NativeWindowResize flash.display.
NativeWindowResize

air.NativeWindowType flash.display.
NativeWindowType

air.NativeWindowErrorEvent flash.events.
NativeWindowErrorEvent

air.NativeWindowBoundsEvent flash.events.
NativeWindowBoundsEvent

air.
NativeWindowDisplayStateEvent

flash.events.
NativeWindowDisplayStateEvent

Table B-3. Event aliases (continued)

Alias ActionScript API



146 | Appendix B: AIR JavaScript Aliases

Table B-5. Geometry aliases

Alias ActionScript API

air.Point flash.geom.Point

air.Rectangle flash.geom.Rectangle

Table B-6. Network aliases

Alias ActionScript API

air.FileFilter flash.net.FileFilter

air.LocalConnection flash.net.LocalConnection

air.NetConnection flash.net.NetConnection

air.URLLoader flash.net.URLLoader

air.URLLoaderDataFormat flash.net.URLLoaderDataFormat

air.URLRequest flash.net.URLRequest

air.URLRequestDefaults flash.net.URLRequestDefaults

air.URLRequestHeader flash.net.URLRequestHeader

air.URLRequestMethod flash.net.URLRequestMethod

air.URLStream flash.net.URLStream

air.URLVariables flash.net.URLVariables

air.Socket air.Socket = flash.net.Socket

air.XMLSocket flash.net.XMLSocket

air.Responder flash.net.Responder

air.ObjectEncoding flash.net.ObjectEncoding

Table B-7. System aliases

Alias ActionScript API

air.Shell flash.system.Shell

air.System flash.system.System

air.Security flash.system.Security

air.Updater flash.system.Updater



AIR JavaScript Aliases | 147

Table B-8. Capabilities aliases

Alias ActionScript API

air.Capabilities flash.system.Capabilities

air.NativeWindowCapabilities flash.system.
NativeWindowCapabilities

Table B-9. Desktop aliases

Alias ActionScript API

air.ClipboardManager flash.desktop.
ClipboardManager

air.TransferableData flash.desktop.
TransferableData

air.TransferableFormats flash.desktop.
TransferableFormats

air.TransferableTransferMode flash.desktop.
TransferableTransferMode

Table B-10. Utility aliases

Alias ActionScript API

air.ByteArray flash.utils.ByteArray

air.Dictionary flash.utils.Dictionary

air.Endian flash.utils.Endian

air.Timer flash.utils.Timer

Table B-11. Media aliases

Alias ActionScript API

air.ID3Info flash.media.ID3Info

air.Sound flash.media.Sound

air.SoundChannel flash.media.SoundChannel

air.SoundLoaderContext flash.media.
SoundLoaderContext

air.SoundMixer flash.media.SoundMixer

air.SoundTransform flash.media.SoundTransform



148 | Appendix B: AIR JavaScript Aliases

Table B-12. SQL/Database aliases

Alias ActionScript API

air.SQLConnection flash.data.SQLConnection

air.SQLStatement flash.data.SQLStatement

air.SQLResult flash.data.SQLResult

air.SQLError flash.errors.SQLError

air.SQLErrorEvent flash.events.SQLErrorEvent

air.SQLErrorCode flash.errors.SQLErrorCode

air.SQLEvent flash.events.SQLEvent

air.SQLUpdateEvent flash.events.SQLUpdateEvent

air.SQLTransactionLockType flash.data.
SQLTransactionLockType

air.SQLColumnNameStyle flash.data.SQLColumnNameStyle

air.SQLErrorOperation flash.errors.SQLErrorOperation



149

We’d like to hear your suggestions for improving our indexes. Send email to
index@oreilly.com.

Index

A
ActionScript, viii

ActionScript 3 libraries, 59
distribution, 61

API aliases, 144–148
APIs, access through

JavaScript, 144
addEventListener function, 57
ADL command-line tool, 18, 24,

141
application launch using, 34
command-line

arguments, 142
Adobe AIR Uninstaller, 23
Adobe Integrated Runtime (see

AIR)
ADT command-line tool, 18, 24,

142
command syntax, 142
command-line options, 143
creating AIR files using, 40

AIR (Adobe Integrated
Runtime), vii, 1, 6

AIR APIs (see APIs)
AIR applications (see

applications)
Ajax support, 48
Beta 1, x

features and
functionality, ix

Beta runtime, 20
Beta version, uninstalling, 23
cookie support, 46
desktop integration, 14
developer FAQ, xv
development toolset, 17
HTML dialogs support, 47
installing, 22
naming conventions, vii
official web site, xv
online documentation, x
primary technologies, 7–18
SDK (see SDK)
security model, 15–17
supported operating

systems, 21
uninstalling pre-Beta

versions, 22
URI schemes support, 49–51
XMLHttpRequest support, 48

AIR APIs (see APIs)
AIR events, 56
AIR files, 39–42

ADT, creating with, 40
deploying, 41

mime type, setting, 42
testing, 40

AIR SDK (see SDK)
air.Event.CONNECT event, 130



150 | Index

air.ProgressEvent.SOCKET_
DATA event, 131

air.trace( ) method, 128
AIRAliases.js, 57, 144
AIRHelloWorld, 29–38
Ajax, AIR support of, 48
APIs, 13

accessing, 33, 55
Actionscript API

aliases, 144–148
file API (see file API)
File I/O API, 105

Apollo, vii
Apple Macintosh OS

AIR Beta version,
uninstalling, 23

AIR pre-Beta versions,
uninstalling, 22

AIR support, 21
AIR, installing, 23
SDK, installing, 24

SDK command line tools
path configuration, 27

application descriptor files, 29,
29–32

ADL, calling with, 141
application technologies, 7

Flash Player, 8
HTML/JavaScript, 7
trusted versus untrusted

applications, 17
application.xml, 63
applications, viii

adding custom
controls, 62–65

application development,
requirements for, 20

caching assets for offline
use, 105–108

command-line arguments,
capturing, 127–129

drag and drop from
HTML, 108–113

AIR limitations relating
to, 111

embedded databases (see
embedded databases)

file pickers (see file pickers)
HTML and JavaScript,

creation with, 28–34
launching via ADL, 34
networking, 129–137

background file
uploading, 133–137

sockets, communicating
on, 129

new windows,
creating, 66–76

output, capturing at
runtime, 36–38

packaging and deploying (see
AIR files)

root application files, 32–33
root content files, 29
service and server

montoring, 101–105
HTTP servers, monitoring

connectivity to, 101
Jabber servers, monitoring

connectivity to, 103
sound files, playing, 137
structure, 10
testing, 34

B
Back button, 4
.bashrc file, 27
browsers (see web browsers)

C
caching assets for offline

use, 105–108
capabilities aliases, 146



Index | 151

command line tools, 24
system path, placing in, 25

command-line arguments,
capturing, 127–129

conflicting user interfaces, 4
cookies, 46
Creative Commons Attribution-

Noncommercial-Share
Alike 3.0 License, xiv

cross domain data loading, 53

D
databases (see embedded

databases)
dataTransfer object, 110
desktop aliases, 147
desktop integration, 14
document technologies, 9
drag and drop,

enabling, 108–113
AIR limitations relating

to, 111

E
embedded databases, 113–127

connecting to, 114–115
data, accessing, 123–127
data, storing in, 119–121
tables, creating, 116–119

errors, 36
event aliases, 144
Event.COMPLETE event, 134,

135
events, 56

F
file aliases, 144
file API, 76–94

asynchronously reading text
from a file, 82–86

directory contents,
iterating, 91

synchronous reading of text
from a file, 79–82

temporary files, creating, 89
writing text from a

string, 76–79
XML files, loading data

from, 86–88
File class, 76, 94
File I/O API, 105
file pickers, 94–101

directories, browsing
for, 99–101

multiple files, browsing
for, 97–99

one file, browsing for, 94–96
file references, 76
File.browseForDirectory( )

method, 99
File.browseForOpen( )

method, 94
File.browseForOpenMultiple( )

method, 97
File.resolve( ) method, 77
FileStream class, 77
FileStream.open( ) method, 77
FileStream.writeMultiByte( )

method, 77
Flash, viii
Flash Player, 8

APIs, accessing from
JavaScript, 55

events, 56
Flex Builder, viii
Flex Framework, viii

G
Geometry Aliases, 146



152 | Index

H
HTML, viii, 10

enabling drag and drop from
within
applications, 108–113

AIR limitations relating
to, 111

HTML dialogs, 47
HTML/JavaScript, 7

applications, creating
with, 28–34

IDEs and text editors, 21
(see also JavaScript)

HTMLControl, 70

I
IDEs (integrated development

environments), 21
index.html, 64
InvokeEvent event, 127

J
JavaScript, viii, 45

AIR APIs, accessing
from, 54–61

JavaScript aliases, 144
JavaScript frameworks,

using, 53
runtime errors, 36
window.open( ) method, 66
windows, creating with, 47
(see also HTML)

K
-khtml-user-drag:element

styles, 110
-khtml-user-drag:none, 110

L
Linux AIR support, 21
listener registration, 57
Login.html, 72

M
media aliases, 147
Microsoft Windows OS

AIR Beta version,
uninstalling, 24

AIR pre-Beta installations,
uninstalling, 22

AIR support, 21
AIR, installing, 23
SDK, installing, 24

SDK command line tools
path configuration, 25

mime-type setting for AIR
files, 42

N
native window aliases, 145
native windows, 66
NativeWindow class, 68

full-screen displays, 73
resizing events, 69

NativeWindow constructor, 68
NativeWindow instance, 63
NativeWindow.close( )

event, 63
NativeWindow.stage

property, 70
NativeWindowSystemChrome

class, 73
network aliases, 146
networking, 129–137

background file
uploading, 133–137

sockes, communicating
on, 129



Index | 153

O
onInvoke function, 128
onSocketOpen function, 131
output.txt example, 55

P
path setup, 25

Macintosh, 27
Windows, 25

PDF (Portable Document
Format), viii, 9

.profile file, 27
programming APIs, 13
ProgressEvent.PROGRESS

event, 134

R
readUTFBytes( ) method, 131
RIA (Rich Internet Applications)

AIR and, 6
RIAs (Rich Internet

Applications), 2
root application files, 32–33
root content files, 29

(see also root application files)
runtime JavaScript errors, 36
runtime property, 33, 55, 60
runtime.trace, 38

S
script bridging, 12
SDK, 18, 21

command line tools, 24
system path, placing in, 25

command-line tools, 141–143
installing, 24
setting up, 24

security, 15–17, 51
trusted versus untrusted

applications, 17

service and server
monitoring, 101–105

HTTP servers, monitoring
connectivity to, 101

Jabber servers, monitoring
connectivity to, 103

servicemonitor.swf file, 60, 101,
103

Socket class, 129
socket connections,

implementing
unsupported protocols
using, 129

SocketMonitor class, 103
Sound API, 137
sound files, playing, 137
source .profile or source .bashrc

commands, 28
SQL / database aliases, 148
SQLite database, 113

(see also embedded databases)
SQLStatement class, 116

accessing data with, 124
storing data with, 119

SQLStatement.execute( )
method, 118

Stage, 70
system aliases, 146

T
technology integration, 11
text editors, 21
top level aliases, 144
trace function, 33, 38
trusted versus untrusted

applications, 17

U
Universal Resource Identifiers

(URIs), 49
upload( ) method, 133



154 | Index

URI schemes, support in
AIR, 49–51

URIs (Universal Resource
Identifiers), 49

URLMonitor class, 101
URLRequest class, 101
URLRequest instance, 137
utility aliases, 147

W
web applications, 1

browser delivery of, 4
web browsers, 4

web application delivery
through, advantages, 18

web application delivery
through,
disadvantages, 4–6

Back button, 4
conflicting user

interfaces, 4
distance from desktop, 5
online experience, 5

web security contexts and
AIR, 52

WebKit, 8, 43–45
advantages, 44

drag and drop
implementation, 109

supported web
technologies, 43

window.runtime property, 55,
60, 144

windows, 47
custom window chrome,

adding, 62–65
Microsoft Windows (see

Microsoft Windows)
native windows, 66

new native windows,
creating, 68–73

new windows creating, 66–76
window.open method, 66
window.opener property, 66

X
XML files, loading data

from, 86–88
XMLHttpRequest, 105

AIR, support by, 48
XMLHttpRequest, support by

AIR, 48
XMLHTTPRequest.open( )

method and
argjuments, 105


	Contents
	Preface
	AIR Runtime Naming Conventions
	What This Book Covers
	What Beta Means
	Audience for This Book
	What Does This Book Assume?
	Who This Book Is For
	Who This Book Is Not For

	How This Book Is Organized
	How to Use This Book
	Conventions Used in This Book
	License and Code Examples
	Support and More Information
	Accessing the Book Online
	Online AIR Resources
	Official AIR site
	AIR Developer FAQ
	AIR Developer Center
	AIR API Reference
	AIR Documentation
	AIR Forum
	AIR coders mailing list
	Mike Chambers’ weblog
	MXNA AIR Smart Category
	Ajaxian.com
	YUI-Ext
	Flex Developer Center
	Flex coders mailing list
	Universal Desktop Weblog


	How to Contact Us
	About the Authors
	Mike Chambers
	Daniel Dura
	Kevin Hoyt

	Acknowledgments

	Introduction to the Adobe Integrated Runtime (AIR)
	A Short History of Web Applications
	Problems with Delivering Applications via the Browser
	Conflicting UI
	Distance from the Desktop
	Primarily Online Experience
	Lowest Common Denominator

	Introducing the Adobe Integrated Runtime
	Primary AIR Technologies
	Primary Application Technologies
	HTML / JavaScript
	Flash

	Primary Document Technologies
	PDF
	HTML

	What Does an Adobe AIR Application Contain?
	Technology Integration and Script Bridging

	Adobe AIR Functionality
	Adobe AIR Programming APIs
	Adobe AIR Desktop Integration

	Security
	Adobe AIR Development Toolset
	Is Adobe AIR the End of Web Applications in the Browser?


	Getting Started with AIR Development
	What Do You Need to Develop AIR Applications?
	Adobe Integrated Runtime Beta
	Adobe AIR SDK
	HTML/JavaScript IDE or Editor
	Supported Operating System

	Uninstalling Pre-Beta Versions of�Adobe�AIR
	Uninstalling on Windows
	Uninstalling on Mac

	Installing Adobe AIR
	Uninstalling Adobe AIR Beta
	Uninstalling on an Mac
	Uninstalling on Windows

	Setting Up the AIR SDK and Command-Line�Tools
	Installing the SDK
	Placing the Command-Line Tools Within the System Path
	Windows
	Mac

	Creating a Simple AIR Application with HTML and JavaScript
	Creating the Application Files
	Understanding application descriptor files
	Creating the root application file
	Accessing AIR APIs


	Testing the Application
	Using ADL to Launch the Application
	Capturing Output from the Application at Runtime
	Runtime JavaScript errors
	runtime.trace


	Packaging and Deploying the AIR Application
	What Is an AIR File?
	Creating an AIR File Using ADT
	Testing the AIR File
	Deploying the AIR File
	Setting the MIME type



	Working with JavaScript and HTML Within AIR
	WebKit Within the Adobe Integrated Runtime
	Why WebKit?
	Open project
	Proven technology that web developers know
	Minimum effect on AIR runtime size
	Proven ability to run on mobile devices


	JavaScript Within AIR
	AIR Implementation of Functionality
	Cookies
	Windowing
	Windows
	Dialogs

	XMLHttpRequest and Ajax
	URI Schemes
	Supported URI schemes
	Unsupported URI schemes
	AIR URI Schemes
	Relative URLs

	Security
	Security Context
	Cross domain data loading

	Using JavaScript Frameworks

	Accessing AIR APIs from JavaScript
	Accessing AIR and Flash Player APIs
	Working with AIR and Flash Player Events
	Using AIRAliases.js
	Leveraging Compiled ActionScript Libraries


	AIR Mini-Cookbook
	Application Chrome
	Adding Custom Controls
	Problem
	Solution
	Discussion
	application.xml
	index.html


	Windowing
	Creating a New Window
	Problem
	Solution
	Discussion

	Creating a New Native Window
	Problem
	Solution
	Discussion
	Login.html

	Creating Full-Screen Windows
	Problem
	Solution
	Discussion


	File API
	Writing Text to a File from a String
	Problem
	Solution
	Discussion

	Synchronously Reading Text from a File
	Problem
	Solution
	Discussion

	Asynchronously Reading Text from a File
	Problem
	Solution
	Discussion

	Loading Data from an XML File
	Problem
	Solution
	Discussion
	Given
	Example

	Creating a Temporary File
	Problem
	Solution
	Discussion

	Iterate the Contents of a Directory
	Problem
	Solution
	Discussion


	File Pickers
	Browse for a File
	Problem
	Solution
	Discussion

	Browse for Multiple Files
	Problem
	Solution
	Discussion

	Browse for a Directory
	Problem
	Solution
	Discussion


	Service and Server Monitoring
	Monitoring Connectivity to an HTTP Server
	Problem
	Solution
	Discussion

	Monitoring Connectivity to a Jabber Server
	Problem
	Solution
	Discussion


	Online/Offline
	Caching Assets for Offline Use
	Problem
	Solution
	Discussion


	Drag and Drop
	Using Drag and Drop from HTML
	Problem
	Solution
	Discussion


	Embedded Database
	Connecting to a Database
	Problem
	Solution
	Discussion

	Creating Database Tables
	Problem
	Solution
	Discussion

	Storing Data in a Database
	Problem
	Solution
	Discussion

	Accessing Database Data
	Problem
	Solution
	Discussion


	Command-Line Arguments
	Capturing Command-Line Arguments
	Problem
	Solution
	Discussion


	Networking
	Communicating on a Socket
	Problem
	Solution
	Discussion

	Uploading a File in the Background
	Problem
	Solution
	Discussion


	Sound
	Playing a Sound
	Problem
	Solution
	Discussion



	AIR Command-Line Tools
	ADL
	ADT

	AIR JavaScript Aliases
	Index

