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ABSTRACT
Pairwise testing has become an indispensable tool in a soft-
ware tester’s toolbox. The technique has been known for
almost twenty years [22] but it is the last five years that we
have seen a tremendous increase in its popularity.

Information on at least 20 tools that can generate pairwise
test cases, have so far been published [1]. Most tools, how-
ever, lack practical features necessary for them to be used
in industry.

This paper pays special attention to usability of the pairwise
testing technique. In particular, it does not describe any
radically new method of efficient generation of pairwise test
suites, a topic that has already been researched extensively,
neither does it refer to any specific case studies or results
obtained through this method of test case generation. It
does focus on ways in which pure pairwise testing approach
needs to be modified to become practically applicable and
on features tools need to offer to support a tester trying to
use pairwise in practice.

The paper makes frequent references to PICT, an existing
and publicly available tool built on top of a flexible combina-
torial test case generation engine, which implements several
of the concepts described herein.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.5 [Software
Engineering]: Testing and Debugging—testing tools

General Terms
Verification, Design

Keywords
Pairwise testing, combinatorial testing, test case generation,
test case design

1. BACKGROUND
A set of possible inputs for any nontrivial piece of software is
too large to be tested exhaustively. Techniques like equiva-
lence partitioning and boundary-value analysis [17] help con-
vert even a large number of test levels into a much smaller
set with comparable defect-detection power. Still, if soft-
ware under test (SUT) can be influenced by a number of
such factors, exhaustive testing again becomes impractical.

Over the years, a number of combinatorial strategies have
been devised to help testers choose subsets of input combi-
nations that would maximize the probability of detecting de-
fects: random testing [16], each-choice and base-choice [2],
anti-random [15] and finally t-wise testing strategies with
pairwise testing being the most prominent among these (see
Figure 1).

Pairwise testing strategy is defined as follows:

Given a set of N independent test factors: f1, f2, ..., fN , with
each factor fi having Li possible levels: fi = {li,1, ..., li,Li},
a set of tests R is produced. Each test in R contains N test
levels, one for each test factor fi, and collectively all tests
in R cover all possible pairs of test factor levels (belonging
to different parameters) i.e. for each pair of factor levels li,p
and lj,q, where 1 ≤ p ≤ Li, 1 ≤ q ≤ Lj , and i 6= j there
exists at least one test in R that contains both li,p and lj,q.

This concept can easily be extended from covering all pairs
to covering any t-wise combinations where 1 ≤ t ≤ N .
When t = 1, the strategy is equivalent to each-choice; if
t = N , the resulting test suite is exhaustive.

Covering all pairs of tested factor levels has been extensively
studied. Mandl described using orthogonal arrays in testing
of a compiler [16]. Tatsumi, in his paper on Test Case De-
sign Support System used in Fujitsu Ltd [22], talks about
two standards for creating test arrays: (1) with all combina-
tions covered exactly the same number of times (orthogonal
arrays) and (2) with all combinations covered at least once.
When making that crucial distinction, he references an ear-
lier paper by Shimokawa and Satoh [19].

Over the years, pairwise testing was shown to be an efficient
and effective strategy of choosing tests [4, 5, 6, 10, 13, 23].
However, as shown by Smith et al. [20] and later by Bach
and Shroeder [3] pairwise, like any technique, needs to be
used appropriately and with caution.



Figure 1: Increase in number of exhaustive and pairwise tests with number of test levels

Since the problem of finding a minimal array covering all
pairwise combinations of a given set of test factors is NP-
complete [14], understandably a considerable amount of re-
search has gone into efficient creation of such arrays. Several
strategies were proposed in an attempt to minimize number
of tests produced [11].

Authors of these combinatorial test case generation strate-
gies often describe additional considerations that must be
taken into account before their solutions become practical.
In many cases, they propose methods of handling these in
context of their generation strategies. Tatsumi [22] mentions
constraints as a way of specifying unwanted combinations
(or more generally, dependencies among test factors). Sher-
wood [18] explores adapting conventional t-wise strategy to
invalid testing and the problem of preventing input mask-
ing. Cohen et al. [6] describe seeds which allow specifying
combinations that need to appear in the output and covering
combinations with mixed-strength arrays as a way of putting
more emphasis on interactions of certain test factors.

This paper describes PICT, a test case generation tool that
has been in use at Microsoft since 2000, which implements
the t-wise testing strategy and features making the strategy
feasible in practice of software testing.

2. INTRODUCTION
2.1 Models
PICT was designed with three principles in mind: (1) speed
of test generation, (2) ease of use, and (3) extensibility of the
core engine. Even though the ability to create the smallest
possible covering array was given less emphasis, efficiency of
PICT’s core algorithm is comparable with other known test
generation strategies (see Figure 2).

Input to PICT is a plain-text file (model) in which a tester
specifies test factors (referred to as test parameters later
in this paper) and test factor levels (referred to as values
of a parameter). Figure 3 shows an example of a simple
model used to produce test cases for volume creation and
formatting.

By default, the tool produces a pairwise test array (t = 2).

It is possible, however, to specify a different order of combi-
nations. In fact, any t is allowed if only 1 ≤ t ≤ N .

2.2 Test Case Generation Engine
The test generation process in PICT is comprised of two
main phases: (1) preparation and (2) generation.

In the preparation phase, PICT computes all information
necessary for the generation phase. This includes the set
P of all parameter interactions to be covered. Each com-
bination of values to be covered is reflected in a parameter
interaction structure.

For example, given three parameters A, B (two values each),
and C (three values) and pair-wise generation, three para-
meter interaction structures are set up: AB, AC, and BC.
Each of these has a number of slots corresponding to possible
value combinations participating in a particular parameter
interaction (4 slots for AB, 6 slots for AC and BC ). See
Figure 4.

Each slot can be marked uncovered, covered, or excluded. All
the uncovered slots in all parameter interactions constitute
the set of combinations to be covered. If any constraints
were defined in a model, they are converted into a set of ex-
clusions—value combinations that must not appear in the
final output. Corresponding slots are then marked excluded
in parameter interaction structures and therefore removed
from combinations to be covered. The slot becomes covered
when the algorithm produces a test case satisfying that par-
ticular combination. The algorithm terminates when there
are no uncovered slots.

The core generation algorithm is a greedy heuristic (see Fig-
ure 5). It builds one test case at a time, locally optimizing
the solution. It is similar to the algorithm used in AETG1

[6] with key differences being that PICT algorithm is deter-
ministic2 and it does not produce candidate tests.

1AETG is a trademark of Telecordia Technologies.
2PICT does make pseudo-random choices but unless a user
specifies otherwise, the pseudo-random generator is always
initialized with the same seed value. Therefore two execu-
tions on the same input produce the same output.



Task AETG [14] PairTest [21] TConfig [24] CTS [12] Jenny [1] DDA [8] AllPairs [1] PICT
34 9 9 9 9 11 ? 9 9
313 15 17 15 15 18 18 17 18
415317229 41 34 40 39 38 35 34 37
41339235 28 26 30 29 28 27 26 27
2100 10 15 14 10 16 15 14 15
1020 180 212 231 210 193 201 197 210

Figure 2: Comparison of PICT’s generation efficiency with other known tools

Type: Single, Spanned, Striped, Mirror, RAID-5

Size: 10, 100, 1000, 10000, 40000

Format method: Quick, Slow

File system: FAT, FAT32, NTFS

Cluster size: 512, 1024, 2048, 4096, 8192, 16384

Compression: On, Off

Figure 3: Parameters for volume creation and formatting

A: 0, 1

B: 0, 1

C: 0, 1, 2

translates to

AB AC BC

00 00 00

01 01 01

10 02 02

11 10 10

11 11

12 12

Figure 4: Parameter interaction structures

# Assume test cases r1, ..., ri−1 are already produced

# Slots in P reflecting combinations selected by r1, ..., ri−1 are set to covered

If there are any unused seed combinations not violating any exclusions

Add a seed combination to ri

Mark all slots in P covered by the seed combination as covered

While there are parameters with no values in ri

If ri is empty

Choose a parameter interaction p from P with most uncovered slots

Pick the first uncovered combination from p
Else

# Assume values l1, ..., lk−1 have already been chosen and added to ri

Look at subset Q of P that covers at least one parameter with no

representation in l1, ..., lk−1

Look at slots in Q which values are consistent with already chosen values in l1, ..., lk−1

If there exist uncovered combinations

Pick a slot with values which when added to ri would cover the most uncovered

combinations with l1, ..., lk−1 and the resulting partial test case ri would not

contain an excluded combination

Else

Pick randomly a covered combination which when added to l1, ..., lk−1 would not

contain an excluded combination

Add values of this combination to ri

Mark the chosen combination in P as covered

Figure 5: PICT heuristic algorithm



The generation algorithm does not assume anything about
the combinations to be covered. It operates on a list of com-
binations that is produced in the preparation phase. This
flexibility of the generation algorithm allows for adding in-
teresting new features easily. The algorithm is also quite
effective. It is able to compute test suites comparable in
size to other tools existing in the field and it is fast enough
for all practical purposes.3

3. ADVANCED FEATURES
3.1 Mixed-strength Generation
Most commonly, when t-wise testing is discussed it is as-
sumed that all parameter interactions have a fixed order t.
In other words, if t = 3 is requested, all triplets of parame-
ter values will be covered. It is sometimes useful, however,
to be able to define different orders of combinations for dif-
ferent subsets of parameters. For example (see Figure 6),
interactions of parameters B, C, and D might require better
coverage than interactions of A or E. We should be able to
generate all possible triplets of B, C, and D and cover all
pairs of all other parameter interactions. Importance of this
feature stems from the fact that often certain parameter in-
teractions seem to be more ‘sensitive’ than others. Possibly,
experience had shown that interactions of these parameters
are at the root of proportionally more defects than other in-
teractions. Therefore they should be tested more throughly.
On the other hand, setting a higher t on the entire set of
test parameters could produce too many test cases. Using
mixed-strength generation might be a way to achieve higher
coverage where necessary without incurring the penalty of
having too many test cases.

Cohen et al. describe the concept of subrelations as a way of
getting an output with varying levels of interactions between
parameters [6]. AETG actually uses seeding to achieve this.
In PICT, since the generation phase operates solely on pa-
rameter interaction structures, they can be manipulated to
reflect the need for higher-order interactions of certain pa-
rameters.

3.2 Creating a Parameter Hierarchy
To complement the mixed-strength generation, PICT allows
a user to create a hierarchy of test parameters. This scheme
allows for certain parameters to be t-wise combined first and
that product is then used for creating combinations with pa-
rameters on upper levels of the hierarchy. This is a useful
technique which can be used to (1) model test domains with
a clear hierarchy of test parameters i.e. API functions tak-
ing structures as arguments and UI windows with additional
dialogs or (2) to limit the combinatorial explosion of certain
parameter interactions. (1) is intuitive, (2) requires expla-
nation.

Tatsumi, when describing the process of analyzing test para-
meters [22], distinguishes between ‘input’ parameters which
are direct inputs to the SUT and ‘environmental’ parame-
ters which constitute the environment the SUT operates in.
Typically, input parameters can be controlled and set much

3For instance, for 50 parameters with 20 values each (2050),
PICT generates a pairwise test suite in under 20 seconds on
a Intel Pentium M 1.8GHz machine running Windows XP
SP2.

easier than environmental ones (compare supplying an API
function with different values for its arguments to calling
the same function on different operating systems). Because
of that, it is sometimes desirable to constrain the number of
environments to the absolute minimum.

Consider the example shown in Figure 7 which contains the
same test parameters as Figure 3 but with hardware spec-
ification added. To cover all pairwise combinations of all 9
parameters, PICT generated 31 test cases and they included
17 different combinations of the hardware-related parame-
ters: Platform, CPUs, and RAM.

Instead, hardware parameters can be designated as a ‘sub-
model’ and pairwise-combined first. The result of this gen-
eration is then used to create the final output in which 6
individual input parameters and 1 compound environment
parameter take part. The result is a larger test suite (54
tests) but it contains only 9 unique combinations of the hard-
ware parameters. Users of this feature have to be cautious,
however, and understand that in this scheme not all t-wise
combinations of all 9 parameters will be covered.

If the goal is to achieve low volatility of a certain subset
of parameters, an even better solution can be implemented.
Namely, generate all required t-wise combinations at the
lower level (Platform, CPUs, and RAM ) and use them for
the higher-level combinations (all 9 parameters) with the
requirement that in any test case a combination of Platform,
CPUs, and RAM must come from the result of the lower-
level generation. In this case, we would achieve low volatility
and would not lose t-wise coverage. This feature has not
been implemented in PICT yet.

3.3 Excluding Unwanted Combinations
The definition of pairwise testing given in section 1 talks
about test factors (parameters) being independent. This is,
however, rarely the case in practice. That is why constraints
are an indispensable feature of a test case generator. They
describe ‘limitations’ of the test domain i.e. combinations
that are impossible to be successfully executed in the context
of given SUT. Going back to the example in Figure 3, FAT
file system cannot actually be applied onto volumes larger
than 4 Gigabytes. Any test case that asks for FAT and
volume larger than 4 GB will fail to execute properly. One
might think that removing such test cases from the resulting
test suite would solve the problem, however, such a test case
might cover other, valid combinations e.g. [FAT, RAID5 ],
not covered elsewhere in the test suite.

Researchers recognized this problem very early. Tatsumi de-
scribes the concept of constraints and proposes special han-
dling of those by marking test cases with excluded combina-
tions as ‘errors’ [22]. Later, several different ways in which
constraints can be handled were proposed. The simplest
methods involve asking a user to manipulate the definition
of test parameters in such a way that unwanted combina-
tions cannot possibly be chosen; either by splitting para-
meter definitions onto disjoint subsets [18] or by creating
hybrid parameters [25]. Other methods could involve post-
processing of resulting test suites and modifying test cases
that violate one or more constraints in a way that the vio-
lation is avoided.



A: 0, 1

B: 0, 1

C: 0, 1

D: 0, 1

E: 0, 1

translates to

AB AC AD AE BC BD BE CD CE DE

00 00 00 00 00 00 00 00 00 00

01 01 01 01 01 01 01 01 01 01

10 10 10 10 10 10 10 10 10 10

11 11 11 11 11 11 11 11 11 11

A: 0, 1

B @ 3: 0, 1

C @ 3: 0, 1

D @ 3: 0, 1

E: 0, 1

translates to

AB AC AD AE BCD BE CE DE

00 00 00 00 000 00 00 00

01 01 01 01 001 01 01 01

10 10 10 10 010 10 10 10

11 11 11 11 011 11 11 11

100

101

110

111

Figure 6: Fixed- and mixed-strength generation

Test domain consisting of ‘input’ and ‘environment’ parameters:

# Input parameters

Type: Single, Spanned, Striped, Mirror, RAID-5

Size: 10, 100, 1000, 10000, 40000

Format method: Quick, Slow

File system: FAT, FAT32, NTFS

Cluster size: 512, 1024, 2048, 4096, 8192, 16384

Compression: On, Off

# Environment parameters

Platform: x86, x64, ia64

CPUs: 1, 2

RAM: 1GB, 4GB, 64GB

# Environment parameters will form a sub-model

{ PLATFORM, CPUS, RAM } @ 2

Hierarchy of test parameters:

- Type

- Size

- Format method

- File system

- Cluster size

- Compression

- <CompoundParameter> (t=2)

- Platform

- CPUs

- RAM

Figure 7: Two-level hierarchy of test parameters



Dalal et al. describe AETGSpec, a test domain modeling
language which includes specifying constraints in the form
of propositional formulas [9]. PICT uses a similar language
of constraint rules. In Figure 8, three IF-THEN statements
describe ‘limitations’ of a particular test domain.

PICT internally translates constraints into a set of combina-
tions called exclusions and uses those to mark appropriate
slots as excluded in parameter interaction structures. This
method poses two practical problems:

1. How to ensure that all combinations that need to be
excluded are in fact, marked excluded.

2. How to handle exclusions that are more granular than
the corresponding parameter interaction structure; i.e.
they refer to a larger number of parameters than there
are in the parameter interaction structure.

The first problem can be resolved by calculating dependent
exclusions. Consider the example depicted in Figure 9. Con-
straints on that model create a circular dependency loop
between values A:0 ⇒ B:0 ⇒ C:0 ⇒ A:1 which results in
a contradiction: if A:0 is chosen only A:1 can be chosen.
In the end, if the generation is to proceed we have to en-
sure that we do not pick A:0 at all. Instead of the initial
three, five combinations need to be excluded, among them
all combinations of A:0.

The second, is a case where directly marking combinations
as excluded in parameter interaction structures is impos-
sible. Consider the example shown in Figure 10 in which
3-element exclusions are created but parameter interaction
structures only refer to two parameters at a time. In other
words, there is not a parameter interaction structure ABC
which can be used to mark the excluded combination; AB,
AC or BC are not granular enough. In such a case, one more
parameter interaction structure ABC is set up. Appropriate
combinations are marked excluded and the rest of them are
marked covered. The generation algorithm will ensure that
all possible combinations of AB, AC, and BC will be covered
without actually picking A:0, B:0, C:1 combination.

Both steps, expanding the set of exclusions to cover all de-
pendent exclusions and adding auxiliary parameter inter-
action structures, happen in the preparation phase. After
that, produced test cases are guaranteed not to violate any
exclusions. Since there is no need for any validity verifica-
tion or post-processing of produced results, the generation
phase can be very fast.

3.4 Seeding
Cohen et al. use the term ‘seeds’ to describe test cases that
must appear in the generated test suite [6]. Seeding has two
practical applications:

1. It allows explicit specification of ‘important’ combina-
tions.

2. It can be used to minimize change in the output when
the test domain description is modified and resulting
test suite regenerated.

The first application is intuitive. If a tester is aware of com-
binations that are likely to be used in the field, the result-
ing test suite should contain them. All t-wise combinations
covered by these seeds will be considered covered and only
incremental test cases will be generated and added.

The need for the second application stems from the fact
that even small modification of the test domain description,
like adding parameters or parameter values, might cause
big changes in the resulting test suite. Containing those
changes can be an important cost-saving option especially
when hardware parameters are part the test domain.

It happens often that the initial test domain specification is
incomplete, however, the test suite it produces is a basis for
the first set of configurations to run tests on. For example,
when a test case specifies a machine with two AMD64 CPUs,
a SCSI hard drive, exactly 1 GB of RAM, Windows XP with
Service Pack 2, and a certain version of Internet Explorer,
such a machine must be assembled and all necessary software
installed. Later, when a modification to the model of SUT
is required, it might perturb the resulting test cases enough
to invalidate some if not all already prepared configurations.
Seeding allows for re-use of old test cases in newly generated
test suites.4

In PICT, these seeding combinations can be full combina-
tions (with values for all test parameters specified) or partial
combinations. Figure 11 shows two seeding combinations,
one full and one partial. The former will become the first
test case in the resulting suite. The latter will initialize the
the second test case with values for Type, File system, and
Format type. The actual values of Size, Cluster size, and
Compression will be left for the tool to determine.

3.5 Testing with Negative Values
In addition to testing all valid combinations, it is often de-
sirable to test using values outside the allowable range to
make sure the SUT handles error conditions properly. This
‘negative testing’ should be conducted such that only one
invalid value is present in any test case [7, 17, 18]. This
is due to the way in which typical applications are written,
namely, to take some failure action upon the first error de-
tected. For this reason a problem known as input masking,
in which one invalid input prevents another invalid input
from being tested, can occur.

For instance, the routine in Figure 12 can be called with
any a or b that is a valid float. However, it only makes
sense to do the calculation when a ≥ 0 and b ≥ 0. For that
reason, the routine verifies a and b before any calculation is
carried out. Assume a test [ a = −1; b = −1 ] was used to
test for values outside of the valid range. Here, a actually
masks b and the verification of b being a non-negative float
value would never get executed and if it is absent from the
implementation this fact would go unnoticed.5

4Certain precautions must be taken in cases involving re-
moval of parameter values, removal of entire parameters, or
addition of new constraints.
5It might be desirable to test more than one invalid value in
a test case but it should be done in addition to covering each
invalid value separately. Both cases can easily be handled
by PICT.



Type: Single, Spanned, Striped, Mirror, RAID-5

Size: 10, 100, 1000, 10000, 40000

Format method: Quick, Slow

File system: FAT, FAT32, NTFS

Cluster size: 512, 1024, 2048, 4096, 8192, 16384

Compression: On, Off

# There are limitations on volume size

IF [File system] = "FAT" THEN [Size] <= 4096;

IF [File system] = "FAT32" THEN [Size] <= 32000;

# And not all file systems support compression

IF [File system] <> "NTFS" or

([File system] = "NTFS" and [Cluster size] > 4096)

THEN [Compression] = "Off";

Figure 8: Parameters for volume creation and formatting augmented with constraints

Input:

A: 0, 1

B: 0, 1

C: 0, 1

IF [A] = 0 THEN [B] = 0;

IF [B] = 0 THEN [C] = 0;

IF [C] = 0 THEN [A] = 1;

Before and after calculating dependent exclusions:

A:0, B:1

B:0, C:1

A:0, C:0

⇒ A:0

B:0, C:1

Before and after excluding dependent combinations:

AB AC BC

00 00 00

01 01 01

10 10 10

11 11 11

⇒

AB AC BC

00 00 00

01 01 01

10 10 10

11 11 11

Figure 9: Calculating dependent exclusions



Input:

A: 0, 1

B: 0, 1

C: 0, 1

D: 0, 1

IF [A] = 0 AND [B] = 0 THEN [C] = 0;

Exclusions:

A:0, B:0, C:1

Before and after adding new parameter interaction ABC :

AB AC AD BC BD CD

00 00 00 00 00 00

01 01 01 01 01 01

10 10 10 10 10 10

11 11 11 11 11 11

⇒

AB AC AD BC BD CD ABC

00 00 00 00 00 00 000X
01 01 01 01 01 01 001

10 10 10 10 10 10 010X
11 11 11 11 11 11 011X

100X
101X
110X
111X

Figure 10: Handling exclusions that are more granular than parameter interaction structures

Test parameters:

Type: Single, Spanned, Striped, Mirror, RAID-5

Size: 10, 100, 1000, 10000, 40000

Format method: Quick, Slow

File system: FAT, FAT32, NTFS

Cluster size: 512, 1024, 2048, 4096, 8192, 16384

Compression: On, Off

Seeding file:

Type Size Format method File system Cluster size Compression

Single 100 Quick NTFS 4096 Off

Mirror Slow FAT32

Figure 11: Seeding



Routine to be tested:

float SumSquareRoots( float a, float b )

{
if ( a < 0 ) throw error;

if ( b < 0 ) throw error;

return ( sqrt( a ) + sqrt( b ));

};

Sample model with invalid values marked with ‘*’:

A: *LessThanZero, Zero, GreaterThanZero

B: *LessThanZero, Zero, GreaterThanZero

Resulting test cases:

A B

Zero GreaterThanZero (positive)
Zero Zero (positive)
GreaterThanZero Zero (positive)
GreaterThanZero GreaterThanZero (positive)
*LessThanZero GreaterThanZero (negative)
*LessThanZero Zero (negative)
GreaterThanZero *LessThanZero (negative)
Zero *LessThanZero (negative)

Figure 12: Avoiding input masking

PICT allows marking values as invalid (Figure 12). The
output of such model has the following properties:

1. All valid values are t-wise combined with all other valid
values in positive test cases.

2. If a test case contains an invalid value, there is only
one such value.

3. All invalid values are t-wise combined with all valid
values in negative test cases.

The actual implementation of negative testing in PICT uses
two generation runs: first, on test parameters with invalid
values removed (positive test cases) and second, on all val-
ues augmented with extra exclusions to disallow two invalid
values to coexist in one test case (negative test cases). Even
without this feature implemented, a user could achieve the
same results by modifying models and running the gener-
ator twice. In fact, this feature is not a part of the core
generation engine and is implemented in a higher layer of
PICT and is there for users’ convenience only.

In practice, this concept can be extended from disallowing
two values to disallowing any two or more combinations to
coexist in one test case. Since this situation also can be
handled with appropriately crafted constraints and occurs
less frequently than the need for handling individual invalid
values, the author never felt compelled to implement it.

3.6 Specifying Expected Results
Having a simple way of defining expected results for test
cases is another useful feature.

If there are only two possibilities: test cases with valid val-
ues must always succeed and test cases with invalid values
should always fail, the task of specifying expected results is
straightforward and does not require any support from the
engine. Frequently, however, rules of deciding the outcome
of a test are more complex than checking for existence of an
invalid value in the input data.

Traditionally, for the kind of output PICT produces, either
manual evaluation and assignment of expected test results
or automated post-processing of test cases is used. Both are
labor-intensive. The former is very hard to maintain when
input model changes, the latter is typically implemented as a
set of single-purpose scripts which have to be rewritten each
time a new test domain is modeled. To simplify this task,
PICT re-uses its existing artifacts, namely parameters and
constraints, and allows for defining expected results within
the test model itself.

Defining expected results requires (1) specifying possible re-
sult outcomes in form of result parameters and (2) defining
rules of assigning result values to test inputs (see Figure 13).

Defining result parameters is as straightforward as defining
input parameters. Result rules are syntactically the same
as constraints which makes them easy to use. Semantically,
however, rules must be both complete and consistent in the



Sample model for int Sum(int[] Array, int Start, int Count) with expected results specified:

# Input parameters:

Array: *Null, Empty, Valid

Start: *TooLow, InRange, *TooHigh

Count: *TooFew, Some, All, *TooMany

# Result parameters:

$Result: Pass, OutOfBounds, InvalidPointer

# Result rules:

IF [Array] IN {"Empty", "Valid"} AND

[Start] IN {"InRange"} AND

[Count] IN {"Some", "All"}
THEN [$Result] = "Pass";

IF [Array] = "Null"

THEN [$Result] = "InvalidPointer";

IF [Start] IN {"TooLow", "TooHigh"} OR

[Count] IN {"TooFew", "TooMany"}
THEN [$Result] = "OutOfBounds";

Test cases contain input data and expected results:

Array Start Count $Result

Empty InRange All Pass

Valid InRange Some Pass

Valid InRange All Pass

Empty InRange Some Pass

Empty InRange *TooMany OutOfBounds

Empty *TooHigh All OutOfBounds

Valid InRange *TooMany OutOfBounds

Empty InRange *TooFew OutOfBounds

*Null InRange All InvalidPointer

Empty *TooLow Some OutOfBounds

Valid InRange *TooFew OutOfBounds

*Null InRange Some InvalidPointer

Valid *TooHigh Some OutOfBounds

Valid *TooLow All OutOfBounds

Figure 13: Specifying expected results



context of values of a result parameter, which was not a
requirement for constraints. Completeness and consistency
of result rules are required to ensure that one and only one
result value can be assigned to each possible combination of
input parameters.

To deal with result parameters, PICT uses the same proce-
dure that handles constraints. It employs its mixed-strength
generation capability to combine the result parameters, which
always have order of generation t set to 1, with the input
parameters. It also adds pre- and post-processing steps to
ensure consistency of expected results. At this time, there
is no verification of completeness of result rules. Users must
be careful to define result rules which assign at least one re-
sult value to each possible combination of input values. To
allow the tool to distinguish between input and result pa-
rameters and apply additional processing steps to the latter
group, names of result parameters in PICT are, by conven-
tion, prefixed with a ‘$’.

3.7 Assigning Weights to Values
In practical applications of automated test generation, it fre-
quently happens that certain parameter values are presumed
more ‘important’ than others. For instance, a certain value
among others could be a default choice in the SUT there-
fore the likelihood of it being chosen by a user is greater
than her picking other values. Weighting feature in PICT
allows putting more emphasis on certain parameter values.
Figure 14 shows how to set weights on values.

An ideal weighting mechanism would allow the user to spec-
ify proportions of values and actually deliver a test suite
that follows them exactly. However, this cannot be guar-
anteed for strategies whose primary purpose is to minimize
the number of test cases covering all t-wise combinations.
PICT uses value weights only if two value choices are iden-
tical with regards to covering still unsatisfied combinations.
In fact, in the ideal test generation run when at each step
there always exists a value that wins over others in terms of
combination coverage, weights will not be honored at all.

In practice users may not want to define precise likelihoods
of choosing values and frequently are satisfied with a mecha-
nism that only allows them to pick certain values more often
than others. PICT satisfies that requirement very well.

4. FUTURE WORK
Although PICT already has a reasonably rich set of features,
further improvements are needed. Especially in the area of
sub-modeling which at this time only allows for defining one
level of sub-models. It is actually a limitation of the user
interface; the underlying engine is able to handle any number
of model levels and it should be considerably straightforward
to enable it in the user interface as well. An entirely new and
better sub-modeling schema, described in section 3.2, aimed
at achieving low volatility of certain parameters could also
be added.

Another refinement is required in the area of handling of
result rules. Namely, automatic verification of result rules
completeness is needed. It would remove the burden of man-
ual work from users and fully ensure correctness of the result
definitions.

5. SUMMARY
PICT has been in use at Microsoft since 2000. It was de-
signed with usability, flexibility and speed in mind. It em-
ploys a simple yet effective core generation algorithm which
has separate preparation and generation phases. This flexi-
bility allowed for implementation of several features of prac-
tical importance. PICT gives testers a lot of control over
the way in which tests are generated, it raises the level of
modeling abstraction, and makes the pairwise generation
convenient and usable.
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