ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

A Molecular Thermometer Based on Fluorescent Protein Blinking

View Author Information
Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1, and Department of Biochemistry and Biomedical Science, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada, L8N 3Z5
Cite this: J. Am. Chem. Soc. 2007, 129, 34, 10302–10303
Publication Date (Web):August 8, 2007
https://doi.org/10.1021/ja0715905
Copyright © 2007 American Chemical Society

    Article Views

    1943

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    With the present trend toward a miniaturization of chemical systems comes the need for a precise characterization of physicochemical parameters in very small fluid volumes. We describe here an original approach for small-scale temperature measurements based on the detection of fluorescent protein blinking. We observed that the characteristic time associated with the reversible protonation reaction responsible for the blinking of the enhanced green fluorescent protein is strongly temperature dependent at low pH. The blinking characteristic time can easily be detected by fluorescence correlation spectroscopy, and therefore provides the means for noninvasive, spatially resolved, absolute temperature measurements. We applied this approach to the quantification of laser-heating effects in thin liquid samples. As expected, we observed a linear dependence between the temperature increase at the laser focus and both the laser power and the sample extinction coefficient. In addition, we were able to measure the laser induced temperature increase at the glass/liquid interface, a value difficult to predict and hard to access experimentally, demonstrating the usefulness of our approach to study surface effects in microfluidic chips. The use of GFP derivatives as genetically encoded molecular thermometers should have direct applications for both microfluidics and single-cell calorimetry.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Details on data fitting, thermodynamic parameters obtained at different pH, and reproducibility of the calibration curves. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 60 publications.

    1. Zhenlong Huang, Ning Li, Xinfu Zhang, Yi Xiao. Mitochondria-Anchored Molecular Thermometer Quantitatively Monitoring Cellular Inflammations. Analytical Chemistry 2021, 93 (12) , 5081-5088. https://doi.org/10.1021/acs.analchem.0c04547
    2. Sumin Choi, Viatcheslav N. Agafonov, Valery A. Davydov, Taras Plakhotnik. Ultrasensitive All-Optical Thermometry Using Nanodiamonds with a High Concentration of Silicon-Vacancy Centers and Multiparametric Data Analysis. ACS Photonics 2019, 6 (6) , 1387-1392. https://doi.org/10.1021/acsphotonics.9b00468
    3. Jian-Hong Tang, Yue Sun, Zhong-Liang Gong, Zhong-Yu Li, Zhixuan Zhou, Heng Wang, Xiaopeng Li, Manik Lal Saha, Yu-Wu Zhong, Peter J. Stang. Temperature-Responsive Fluorescent Organoplatinum(II) Metallacycles. Journal of the American Chemical Society 2018, 140 (24) , 7723-7729. https://doi.org/10.1021/jacs.8b04452
    4. Atanu Acharya, Alexey M. Bogdanov, Bella L. Grigorenko, Ksenia B. Bravaya, Alexander V. Nemukhin, Konstantin A. Lukyanov, and Anna I. Krylov . Photoinduced Chemistry in Fluorescent Proteins: Curse or Blessing?. Chemical Reviews 2017, 117 (2) , 758-795. https://doi.org/10.1021/acs.chemrev.6b00238
    5. Xianglong Hu, Yang Li, Tao Liu, Guoying Zhang, and Shiyong Liu . Intracellular Cascade FRET for Temperature Imaging of Living Cells with Polymeric Ratiometric Fluorescent Thermometers. ACS Applied Materials & Interfaces 2015, 7 (28) , 15551-15560. https://doi.org/10.1021/acsami.5b04025
    6. Jun Liu, Xudong Guo, Rui Hu, Jian Xu, Shuangqing Wang, Shayu Li, Yi Li, and Guoqiang Yang . Intracellular Fluorescent Temperature Probe Based on Triarylboron Substituted Poly N-Isopropylacrylamide and Energy Transfer. Analytical Chemistry 2015, 87 (7) , 3694-3698. https://doi.org/10.1021/acs.analchem.5b00887
    7. Mahesh S. Deshmukh, Ashok Yadav, Rakesh Pant, and Ramamoorthy Boomishankar . Thermochromic and Mechanochromic Luminescence Umpolung in Isostructural Metal–Organic Frameworks Based on Cu6I6 Clusters. Inorganic Chemistry 2015, 54 (4) , 1337-1345. https://doi.org/10.1021/ic502207f
    8. Zhixing Gan, Xinglong Wu, Jinlei Zhang, Xiaobin Zhu, and Paul K. Chu . In Situ Thermal Imaging and Absolute Temperature Monitoring by Luminescent Diphenylalanine Nanotubes. Biomacromolecules 2013, 14 (6) , 2112-2116. https://doi.org/10.1021/bm400562c
    9. Guoliang Ke, Chunming Wang, Yun Ge, Nanfeng Zheng, Zhi Zhu, and Chaoyong James Yang . l-DNA Molecular Beacon: A Safe, Stable, and Accurate Intracellular Nano-thermometer for Temperature Sensing in Living Cells. Journal of the American Chemical Society 2012, 134 (46) , 18908-18911. https://doi.org/10.1021/ja3082439
    10. Aaron E. Albers, Emory M. Chan, Patrick M. McBride, Caroline M. Ajo-Franklin, Bruce E. Cohen, and Brett A. Helms . Dual-Emitting Quantum Dot/Quantum Rod-Based Nanothermometers with Enhanced Response and Sensitivity in Live Cells. Journal of the American Chemical Society 2012, 134 (23) , 9565-9568. https://doi.org/10.1021/ja302290e
    11. Valentina Quercioli, Chiara Bosisio, Stefano C. Daglio, Francesco Rocca, Laura D’Alfonso, Maddalena Collini, Giancarlo Baldini and Giuseppe Chirico , Stefano Bettati, Samanta Raboni and Barbara Campanini . Photoinduced Millisecond Switching Kinetics in the GFPMut2 E222Q Mutant. The Journal of Physical Chemistry B 2010, 114 (13) , 4664-4677. https://doi.org/10.1021/jp910075b
    12. T. Barilero, T. Le Saux, C. Gosse and L. Jullien . Fluorescent Thermometers for Dual-Emission-Wavelength Measurements: Molecular Engineering and Application to Thermal Imaging in a Microsystem. Analytical Chemistry 2009, 81 (19) , 7988-8000. https://doi.org/10.1021/ac901027f
    13. Tao Wu, Gang Zou, Jinming Hu and Shiyong Liu. Fabrication of Photoswitchable and Thermotunable Multicolor Fluorescent Hybrid Silica Nanoparticles Coated with Dye-Labeled Poly(N-isopropylacrylamide) Brushes. Chemistry of Materials 2009, 21 (16) , 3788-3798. https://doi.org/10.1021/cm901072g
    14. C. Bosisio, V. Quercioli, M. Collini, L. D’Alfonso, G. Baldini, S. Bettati, B. Campanini, S. Raboni and G. Chirico . Protonation and Conformational Dynamics of GFP Mutants by Two-Photon Excitation Fluorescence Correlation Spectroscopy. The Journal of Physical Chemistry B 2008, 112 (29) , 8806-8814. https://doi.org/10.1021/jp801164n
    15. . Fluorescent Molecular Thermometers. 2024, 17-107. https://doi.org/10.1002/9783527836840.ch2
    16. Carlos D. S. Brites, Riccardo Marin, Markus Suta, Albano N. Carneiro Neto, Erving Ximendes, Daniel Jaque, Luís D. Carlos. Spotlight on Luminescence Thermometry: Basics, Challenges, and Cutting‐Edge Applications. Advanced Materials 2023, 35 (36) https://doi.org/10.1002/adma.202302749
    17. Alanna E. Sorenson, Patrick M. Schaeffer. Real-Time Temperature Sensing Using a Ratiometric Dual Fluorescent Protein Biosensor. Biosensors 2023, 13 (3) , 338. https://doi.org/10.3390/bios13030338
    18. Matthew Pittman, Abdulla M. Ali, Yun Chen. How sticky? How tight? How hot? Imaging probes for fluid viscosity, membrane tension and temperature measurements at the cellular level. The International Journal of Biochemistry & Cell Biology 2022, 153 , 106329. https://doi.org/10.1016/j.biocel.2022.106329
    19. Soumen Ghosh, Mohd Avais, Subrata Chattopadhyay. Stimuli-responsive fluorescent nanogel: a nonconventional donor for ratiometric temperature and pH sensing. Chemical Communications 2022, 58 (92) , 12807-12810. https://doi.org/10.1039/D2CC04852C
    20. Xinchen Jiang, Zhiyu Dong, Xiaodan Miao, Kuan Wang, Feng Yao, Zhiqiang Gao, Baoxiu Mi, Yuanping Yi, Guoqiang Yang, Yan Qian. Fabrication of Flexible High‐Temperature Film Thermometers and Heat‐Resistant OLEDs Using Novel Hot Exciton Organic Fluorophores. Advanced Functional Materials 2022, 32 (44) https://doi.org/10.1002/adfm.202205697
    21. E.V. Afanaseva, E.I. Vaishlia, E. Lähderanta, I.E. Kolesnikov. Synthesis and study of upconversion Lu2(WO4)3: Yb3+, Tm3+ nanoparticles synthesized by modified Pechini method. Optical Materials 2021, 117 , 111179. https://doi.org/10.1016/j.optmat.2021.111179
    22. Jieon Lee, Woo-Keun Kim. PEGylated graphene oxide-based colorimetric sensor for recording temperature. Journal of Industrial and Engineering Chemistry 2021, 94 , 457-464. https://doi.org/10.1016/j.jiec.2020.11.021
    23. Feng Yao, Mengfei Kong, Bohan Yan, Ying Li, Qingyi Guo, Jiewei Li, Shuangqing Wang, Xudong Guo, Rui Hu, Yan Qian, Quli Fan, Guoqiang Yang. Visualized Real‐Time and Spatial High‐Temperature Sensing in Air‐Stable Organic Films. Advanced Materials Technologies 2020, 5 (10) https://doi.org/10.1002/admt.201901035
    24. Shuxin Wang, Jian Cao, Chenhong Lu. A naphthalimide-based thermometer: heat-induced fluorescence “turn-on” sensing in a wide temperature range in ambient atmosphere. New Journal of Chemistry 2020, 44 (11) , 4547-4553. https://doi.org/10.1039/C9NJ06101K
    25. Shayan Shahsavari, Samaneh Hadian-Ghazvini, Fahimeh Hooriabad Saboor, Iman Menbari Oskouie, Masoud Hasany, Abdolreza Simchi, Andrey L. Rogach. Ligand functionalized copper nanoclusters for versatile applications in catalysis, sensing, bioimaging, and optoelectronics. Materials Chemistry Frontiers 2019, 3 (11) , 2326-2356. https://doi.org/10.1039/C9QM00492K
    26. Hailiang Zhang, Wenxiu Han, Xiaozheng Cao, Tang Gao, Ranran Jia, Meihui Liu, Wenbin Zeng. Gold nanoclusters as a near-infrared fluorometric nanothermometer for living cells. Microchimica Acta 2019, 186 (6) https://doi.org/10.1007/s00604-019-3460-3
    27. Sumit Kumar Panja, Satyen Saha. Temperature sensor probe based on intramolecular charge transfer (ICT) & reversible solute-solvent interaction in solution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019, 212 , 128-131. https://doi.org/10.1016/j.saa.2018.12.057
    28. Andrew Kroetsch, Brandon Chin, Vyncent Nguyen, Jingyuan Gao, Sheldon Park. Functional expression of monomeric streptavidin and fusion proteins in Escherichia coli: applications in flow cytometry and ELISA. Applied Microbiology and Biotechnology 2018, 102 (23) , 10079-10089. https://doi.org/10.1007/s00253-018-9377-7
    29. Qiyun Fang, Ying Li, Yingnan Wang, Feng Yao, Shuangqing Wang, Yan Qian, Guoqiang Yang, Wei Huang. Feasible organic films using noninterfering emitters for sensitive and spatial high-temperature sensing. Journal of Materials Chemistry C 2018, 6 (30) , 8115-8121. https://doi.org/10.1039/C8TC02591F
    30. Yunbo Liu, Younggeun Park, Somin Eunice Lee. Thermo-responsive mechano-optical plasmonic nano-antenna. Applied Physics Letters 2016, 109 (1) https://doi.org/10.1063/1.4954907
    31. Jun Liu, Jun Wen, Zhuoran Zhang, Haijiao Liu, Yu Sun. Voyage inside the cell: Microsystems and nanoengineering for intracellular measurement and manipulation. Microsystems & Nanoengineering 2015, 1 (1) https://doi.org/10.1038/micronano.2015.20
    32. Rajat Saksena, Kenneth T. Christensen, Arne J. Pearlstein. Surrogate immiscible liquid pairs with refractive indexes matchable over a wide range of density and viscosity ratios. Physics of Fluids 2015, 27 (8) https://doi.org/10.1063/1.4928030
    33. Kanagavel Deepankumar, Saravanan Prabhu Nadarajan, Dong-Ho Bae, Kwang-Hyun Baek, Kwon-Young Choi, Hyungdon Yun. Temperature sensing using red fluorescent protein. Biotechnology and Bioprocess Engineering 2015, 20 (1) , 67-72. https://doi.org/10.1007/s12257-014-0456-z
    34. Jie Li, Yang Zhang, Ju Mei, Jacky W. Y. Lam, Jianhua Hao, Ben Zhong Tang. Aggregation‐Induced Emission Rotors: Rational Design and Tunable Stimuli Response. Chemistry – A European Journal 2015, 21 (2) , 907-914. https://doi.org/10.1002/chem.201405118
    35. Clement Riedel, Ronen Gabizon, Christian A. M. Wilson, Kambiz Hamadani, Konstantinos Tsekouras, Susan Marqusee, Steve Pressé, Carlos Bustamante. The heat released during catalytic turnover enhances the diffusion of an enzyme. Nature 2015, 517 (7533) , 227-230. https://doi.org/10.1038/nature14043
    36. Seigi Yamamoto, Soyoung Park, Hiroshi Sugiyama. Development of a visible nanothermometer with a highly emissive 2′-O-methylated guanosine analogue. RSC Advances 2015, 5 (126) , 104601-104605. https://doi.org/10.1039/C5RA24756J
    37. Virgile Adam. Phototransformable fluorescent proteins: which one for which application?. Histochemistry and Cell Biology 2014, 142 (1) , 19-41. https://doi.org/10.1007/s00418-014-1190-5
    38. Sergiy Avilov, Romain Berardozzi, Mudalige S. Gunewardene, Virgile Adam, Samuel T. Hess, Dominique Bourgeois, . In cellulo Evaluation of Phototransformation Quantum Yields in Fluorescent Proteins Used As Markers for Single-Molecule Localization Microscopy. PLoS ONE 2014, 9 (6) , e98362. https://doi.org/10.1371/journal.pone.0098362
    39. Ward G. Walkup, Mary B. Kennedy. PDZ affinity chromatography: A general method for affinity purification of proteins based on PDZ domains and their ligands. Protein Expression and Purification 2014, 98 , 46-62. https://doi.org/10.1016/j.pep.2014.02.015
    40. Jiao Feng, Lei Xiong, Shuangqing Wang, Shayu Li, Yi Li, Guoqiang Yang. Fluorescent Temperature Sensing Using Triarylboron Compounds and Microcapsules for Detection of a Wide Temperature Range on the Micro‐ and Macroscale. Advanced Functional Materials 2013, 23 (3) , 340-345. https://doi.org/10.1002/adfm.201201712
    41. David M. Jameson, Nicholas G. James, Joseph P. Albanesi. Fluorescence Fluctuation Spectroscopy Approaches to the Study of Receptors in Live Cells. 2013, 87-113. https://doi.org/10.1016/B978-0-12-405539-1.00003-8
    42. Di Sun, Liangliang Zhang, Haifeng Lu, Shengyu Feng, Daofeng Sun. Bright-yellow to orange-red thermochromic luminescence of an AgI6–ZnII2 heterometallic aggregate. Dalton Transactions 2013, 42 (10) , 3528. https://doi.org/10.1039/c2dt32375c
    43. Di Sun, Shuai Yuan, Hua Wang, Hai-Feng Lu, Sheng-Yu Feng, Dao-Feng Sun. Luminescence thermochromism of two entangled copper-iodide networks with a large temperature-dependent emission shift. Chemical Communications 2013, 49 (55) , 6152. https://doi.org/10.1039/c3cc42741b
    44. Xu-dong Wang, Otto S. Wolfbeis, Robert J. Meier. Luminescent probes and sensors for temperature. Chemical Society Reviews 2013, 42 (19) , 7834. https://doi.org/10.1039/c3cs60102a
    45. Tianyu Han, Xiao Feng, Jianbing Shi, Bin Tong, Yifan Dong, Jacky W. Y. Lam, Yuping Dong, Ben Zhong Tang. DMF-induced emission of an aryl-substituted pyrrole derivative: a solid thermo-responsive material to detect temperature in a specific range. Journal of Materials Chemistry C 2013, 1 (45) , 7534. https://doi.org/10.1039/c3tc31573h
    46. Petru Ghenuche, Hervé Rigneault, Jérôme Wenger. Hollow-core photonic crystal fiber probe for remote fluorescence sensing with single molecule sensitivity. Optics Express 2012, 20 (27) , 28379. https://doi.org/10.1364/OE.20.028379
    47. Carlos D. S. Brites, Patricia P. Lima, Nuno J. O. Silva, Angel Millán, Vitor S. Amaral, Fernando Palacio, Luís D. Carlos. Thermometry at the nanoscale. Nanoscale 2012, 4 (16) , 4799. https://doi.org/10.1039/c2nr30663h
    48. Chang Liu, Yueyang Qu, Yong Luo, Ning Fang. Recent advances in single‐molecule detection on micro‐ and nano‐fluidic devices. ELECTROPHORESIS 2011, 32 (23) , 3308-3318. https://doi.org/10.1002/elps.201100159
    49. G. A. Maroniche, V. C. Mongelli, V. Alfonso, G. Llauger, O. Taboga, M. del Vas. Development of a novel set of Gateway‐compatible vectors for live imaging in insect cells. Insect Molecular Biology 2011, 20 (5) , 675-685. https://doi.org/10.1111/j.1365-2583.2011.01100.x
    50. Jiao Feng, Kaijun Tian, Dehui Hu, Shuangqing Wang, Shayu Li, Yi Zeng, Yi Li, Guoqiang Yang. A Triarylboron‐Based Fluorescent Thermometer: Sensitive Over a Wide Temperature Range. Angewandte Chemie 2011, 123 (35) , 8222-8226. https://doi.org/10.1002/ange.201102390
    51. Jiao Feng, Kaijun Tian, Dehui Hu, Shuangqing Wang, Shayu Li, Yi Zeng, Yi Li, Guoqiang Yang. A Triarylboron‐Based Fluorescent Thermometer: Sensitive Over a Wide Temperature Range. Angewandte Chemie International Edition 2011, 50 (35) , 8072-8076. https://doi.org/10.1002/anie.201102390
    52. Amir Mazouchi, Baoxu Liu, Abdullah Bahram, Claudiu C. Gradinaru. On the performance of bioanalytical fluorescence correlation spectroscopy measurements in a multiparameter photon-counting microscope. Analytica Chimica Acta 2011, 688 (1) , 61-69. https://doi.org/10.1016/j.aca.2011.01.002
    53. Giuseppe Chirico, Maddalena Collini, Laura D’Alfonso, Michele Caccia, Stefano Carlo Daglio, Barbara Campanini. Green Fluorescent Protein Photodynamics as a Tool for Fluorescence Correlative Studies and Applications. 2011, 35-55. https://doi.org/10.1007/4243_2011_25
    54. Felix H. C. Wong, Cécile Fradin. Simultaneous pH and Temperature Measurements Using Pyranine as a Molecular Probe. Journal of Fluorescence 2011, 21 (1) , 299-312. https://doi.org/10.1007/s10895-010-0717-y
    55. Heykel Aouani, Frédérique Deiss, Jérôme Wenger, Patrick Ferrand, Neso Sojic, Hervé Rigneault. Optical-fiber-microsphere for remote fluorescence correlation spectroscopy. Optics Express 2009, 17 (21) , 19085. https://doi.org/10.1364/OE.17.019085
    56. Swagata Dasgupta. Chemistry is evergreen. Resonance 2009, 14 (3) , 248-258. https://doi.org/10.1007/s12045-009-0025-5
    57. Thomas Weidemann, Petra Schwille. Fluorescence Correlation Spectroscopy in Living Cells. 2009, 217-241. https://doi.org/10.1007/978-0-387-76497-9_8
    58. Charlie Gosse, Christian Bergaud, Peter Löw. Molecular Probes for Thermometry in Microfluidic Devices. 2009, 301-341. https://doi.org/10.1007/978-3-642-04258-4_10
    59. Yuka Horikawa, Takashi Tokushima, Yoshihisa Harada, Osamu Takahashi, Ashish Chainani, Yasunori Senba, Haruhiko Ohashi, Atsunari Hiraya, Shik Shin. Identification of valence electronic states of aqueous acetic acid in acid–base equilibrium using site-selective X-ray emission spectroscopy. Physical Chemistry Chemical Physics 2009, 11 (39) , 8676. https://doi.org/10.1039/b910039c
    60. . News in brief. Nature Methods 2007, 773-773. https://doi.org/10.1038/nmeth1007-773

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect