
ANSI / IEEE
Std 1008-1987

An American National Standard

IEEE Standard for
Software Unit Testing

Sponsor

Software Engineering Technical Committee
of the

IEEE Computer Society

Approved December 11, 1986
Reaffirmed December 2, 1993

IEEE Standards Board

Approved July 28, 1986

American National Standards Institute

IEEE Standards documents are developed within the Technical Committees of

the IEEE Societies and the Standards Coordinating Committees of the IEEE
Standards Board. Members of the committees serve voluntarily and without
compensation. They are not necessarily members of the Institute. The standards
developed within IEEE represent a consensus of the broad expertise on the subject
within the Institute as well as those activities outside of IEEE which have
expressed an interest in participating in the development of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE
Standard does not imply that there are no other ways to produce, test, measure,
purchase, market, or provide other goods and services related to the scope of the
IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is
approved and issued is subject to change brought about through developments in
the state of the art and comments received from users of the standard. Every IEEE
Standard is subjected to review at least once every five years for revision or
reaffirmation. When a document is more than five years old, and has not been
reaffirmed, it is reasonable to conclude that its contents, although still of some
value, do not wholly reflect the present state of the art. Users are cautioned to
check to determine that they have the latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any interested
party, regardless of membership affiliation with IEEE. Suggestions for changes in
documents should be in the form of a proposed change of text, together with
appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning of
portions of standards as they relate to specific applications. When the need for
interpretations is brought to the attention of IEEE, the Institute will initiate action
to prepare appropriate responses. Since IEEE Standards represent a consensus of
all concerned interests, it is important to ensure that any interpretation has also
received the concurrence of a balance of interests. For this reason IEEE and the
members of its technical committees are not able to provide an instant response to
interpretation request except in those cases where the matter has previously
received formal consideration.

Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE Standards Board
345 East 47th Street
New York, NY 10017
USA

Foreword

(This Foreword is not a part of ANSI/IEEE Std 1008-1987, IEEE Standard for Software Unit Testing.)

Objectives

This standard's primary objective is to specify a standard approach to software unit testing that can be
used as a basis for sound software engineering practice.

A second objective is to describe the software engineering concepts and testing assumptions on which this
standard approach is based. This information is contained in Appendix B. Note that Appendix B is not a part
of this standard.

A third objective is to provide guidance and resource information to assist with the implementation and
usage of the standard unit testing approach. This information is contained in Appendixes A, C, and D. Note
that these Appendixes are not a part of this standard.

Motivation

A consensus definition of sound unit testing provides a baseline for the evaluation of specific approaches.
It also aids communication by providing a standard decomposition of the unit testing process.

Audience

The primary audience for this standard is unit testers and unit test supervisors. This standard was
developed to assist those who provide input to, perform, supervise, monitor, and evaluate unit testing.

Relationship with Other Software Engineering Standards

ANSI/IEEE Std 829-1983, IEEE Standard for Software Test Documentation, describes the basic
information needs and results of software testing. This unit testing standard requires the use of the test design
specification and test summary report specified in ANSI/IEEE Std 829-1983.

This standard is one of a series aimed at establishing the norms of professional practice in software
engineering. Any of the other software engineering standards in the series may be used in conjunction with
it.

Terminology

Terminology in this standard is consistent with ANSI/IEEE Std 729-1983, IEEE Standard Glossary of
Software Engineering Terminology. To avoid inconsistency when the glossary is revised, its definitions are
not repeated in this standard.
 The test unit referred to in this standard is a specific case of the test item referred to in ANSI/ IEEE 829-
1983. The term test unit is used because of this standard's narrower scope.
 The use of the term specification, description, or document refers to data recorded on either an electronic
or paper medium.
 The word must and imperative verb forms identify mandatory material within the standard. The words
should and may identify optional material.

Overview
 The unit testing process is composed of three phases that are partitioned into a total of eight basic
activities as follows:
(1) Perform the test planning

(a) Plan the general approach, resources, and schedule
(b) Determine features to be tested
(c) Refine the general plan

(2) Acquire the test set
(a) Design the set of tests
(b) Implement the refined plan and design

(3) Measure the test unit
(a) Execute the test procedures
(b) Check for termination
(c) Evaluate the test effort and unit

The major dataflows into and out of the phases are shown in Fig A.

 Within a phase, each basic activity is associated with its own set of inputs and outputs and is composed of
a series of tasks. The inputs, tasks, and outputs for each activity are specified in the body of this standard.
 The set of outputs from all activities must contain sufficient information for the creation of at least two
documents – a test design specification and a test summary report. Both documents must conform to the
specifications in ANSI/IEEE Std 829-1983.

History
 Work on this standard began in February 1983, following announcement of the formation of the task
group in the technical and commercial press in late 1982. The project authorization request was approved by
the IEEE Standards Board on June 23, 1983 following the second meeting. A total of seven meetings held
throughout the United States at three month intervals produced the draft submitted for ballot in March 1985.
A total of over 90 persons contributed to the initial development of this standard. Contributors are those
individuals who either attended a working-group meeting, submitted written comments on a draft, or both.

 This standard was developed by a working group with the following members:

David Gelperin, Chairperson Pat Wilburn, Cochairperson

A. Frank Ackerman Ken Foster John Owens
Craig Adams John Fox William Perry
David Adams Roger Fujii Gerald Peterson
Jack Barnard Ross Gagliano Bob Poston
Wanda Beck Mark Gerhard Patricia Powell
Boris Beizer Ed Gibson Samuel T. Redwine, Jr
K. Mack Bishop Therese Gilbertson Sanford Rosen
Jill E. Boogaard Gary Girard Hans Schaefer
Milt Boyd Keith Gordon Eric Schnellman
Nathan B. Bradley Paul Grizenko Harvey Schock
Martha Branstad Jeff Grove Al Sema, Jr
Fletcher Buckley Ismet Gungor Harlan Seyfer
John W. Cain Mark Heinrich Victor Shtern
Christopher Cooke Rudolph Hodges Rick Simkin
L. L. Doc Craddock R. A. Kessler Wayne Smith
Palmer Craig Tom Kurihara Harry Sneed
Michael Cramer Costas Labovites Hugh B. Spillane
Dave Dahlinghaus Frank LaMonica Ben Sun
Noah Davids F. C. Lim Murray Tabachnick
Henry Davis Philip C. Marriott Barbara Taute
Bruce Dawson Debra L. McCusker Leonard Tripp
Claudia Dencker Charlie McCutcheon William S. Turner III
Michael Deutsch Rudolf van Megen John Vance
Judie Divita Denis Meredith Guy Vogt
Jim Dobbins Edward Miller, Jr Dolores Wallace
David C. Doty William Milligan John Walter
Bill Dupras Marcus Mullins John C. Wang
Jim Edwards W. M. Murray Cheryl Webb
Karen Fairchild Bruce Nichols William Wilson
Peter Farrell-Vinay Dennis Nickle Ed Yasi
Thom Foote-Lennox Larry Nitzsche Natalie C. Yopconka

 The following persons were on the balloting committee that approved this document for submission to the
IEEE Standards Board:

Frank Ackerman Russell Gustin Bill Perry
Leo Beltracchi Virl Haas Poul Grav Peterson
Ron Berlack William Hanrahan Donald Pfeiffer
William Boll, Jr Carolyn Harrison Sharon Cobb-Pierson
F. Buckley G.B. Hawthorne Robert Poston
Douglas Burt Clark Hay Thomas Radi
Homer Carney Leslie Heselton, III Meir Razy
Skip Carpenter, Jr Mark Holthouse Larry Reed
Jung Chung John Horch R. Waldo Roth
Won Lyang Chung Frank Jay Raymond Sandborgh
Francois Coallier Laurel Kaleda Hans Schaefer
Richard Coates Adi Kasad Norm Schneidewind
A.J. Cote, Jr Ron Kenett Eric Schnellman
Patricia Daggett Bob Kessler Wolf Schnoege
Jim Darling Gary Kroc Robert Schueppert
N.S. Davids Robert Lane David Schultz
Henry Davis Greg Larsen Leonard Seagren
Peter Denny F .C. Lim Gary Shea
A. Dniestrowski Bertil Lindberg Craig Shermer
David Dobratz Gary Lindsay Robert Shillato
David Doty Ben Livson David Siefert
Walter DuBlanica M. Malagarois David Simkins
R.E. Dwyer W .A. Mandeville Shirley Gloss-Soler
Mary Eads Stuart Marcotte William Sutcliffe
John Earls Philip C. Marriott K.C. Tai
L.G. Egan Roger Martin Barbara Taute
John Fendrich Paul Mauro Paul Thompson
Glenn Fields Belden Menkus Terrence Tillmanns
Charles Finnell Jerome Mersky R.L. Van Tilburg
Jim Flournoy Gene Morun Dolores Wallace
Violet Foldes Hironobu Nagano M.L. Weisbein
Julian Forster Geraldine Neidhart Joseph Weiss
Rick Fredrick G.A. Niblack N.P. Wilburn
Lee Gagner Dennis Nickle Paul Wolfgang
M. Galinier Larry Nitzsche Charles Wortz
David Gelperin Peter Olsen Edward Yasi
L.M. Gunther Wilma Osborne Zhou Zhi Ying
David Gustafson Natalie Yopconka

 When the IEEE Standards Board approved this standard on December 11, 1986, it had the following
membership:

 John E. May, Chairman Irving Kolodny, Vice Chairman

Sava I. Sherr, Secretary

 James H. Beall Jack Kinn Robert E. Rountree
 Fletcher J. Buckley Joseph L. Koepfinger* Martha Sloan
 Paul G. Cummings Edward Lohse Oley Wanaselja
 Donald C. Fleckenstein Lawrence V. McCall J. Richard Weger
 Jay Forster Donald T. Michael* William B. Wilkens
 Daniel L. Goldberg Marco W. Migliaro Helen M. Wood
 Kenneth D. Hendrix StanleyOwens Charles J. Wylie
 lrvin N. Howell John P. Riganati Donald W. Zipse
 Frank L. Rose

*Member emeritus

Contents

SECTION PAGE
1. Scope and References .. 8

1.1 Inside the Scope... 8
1.2 Outside the Scope. ... 8
1.3 References. .. 8

2. Definitions ... 9
3. Unit Testing Activities... 9

3.1 Plan the General Approach, Resources, and Schedule. ... 10
3.1.1 Plan Inputs .. 10
3.1.2 Plan Tasks... 10
3.1.3 Plan Outputs.. 11

3.2 Determine Features To Be Tested.. 11
3.2.1 Determine Inputs... 11
3.2.2 Determine Tasks ... 11
3.2.3 Determine Outputs.. 11

3.3 Refine the General Plan ... 11
3.3.1 Refine Inputs... 11
3.3.2 Refine Tasks ... 11
3.3.3 Refine Outputs .. 11

3.4 Design the Set of Tests .. 12
3.4.1 Design Inputs .. 12
3.4.2 Design Tasks... 12
3.4.3 Design Outputs ... 12

3.5 Implement the Refined Plan and Design.. 12
3.5.1 Implement Inputs .. 12
3.5.2 Implement Tasks... 12
3.5.3 Implement Outputs ... 13

3.6 Execute the Test Procedures .. 13
3.6.1 Execute Inputs .. 13
3.6.2 Execute Tasks ... 13
3.6.3 Execute Outputs.. 15

3.7 Check for Termination... 15
3.7.1 Check Inputs ... 15
3.7.2 Check Tasks.. 15
3.7.3 Check Outputs .. 15

3.8 Evaluate the Test Effort and Unit .. 15
3.8.1 Evaluate Inputs ... 15
3.8.2 Evaluate Tasks .. 15
3.8.3 Evaluate Outputs... 16

FIGURES
Fig 1. Unit Testing Activities .. 10
Fig 2. Control Flow Within the Execute Activity.. 14
Fig 3. Control Flow Within the Check Activity .. 14

APPENDIXES
Appendix A. Implementation and Usage Guidelines... 17
Appendix B. Concepts and Assumptions .. 19
Appendix C. Sources for Techniques and Tools.. 21
Appendix D. General References .. 23

ANSI/IEEE IEEE STANDARD FOR
Std 1008-1987 SOFTWARE UNIT TESTING

 8

An American National Standard

IEEE Standard for
Software Unit Testing

1. Scope and References

1.1 Inside the Scope. Software unit testing is a
process that includes the performance of test
planning, the acquisition of a test set, and the
measurement of a test unit against its
requirements. Measuring entails the use of sample
data to exercise the unit and the comparison of the
unit's actual behavior with its required behavior as
specified in the unit's requirements
documentation.
 This standard defines an integrated approach to
systematic and documented unit testing. The
approach uses unit design and unit
implementation information, in addition to unit
requirements, to determine the completeness of
the testing.
 This standard describes a testing process
composed of a hierarchy of phases, activities, and
tasks and defines a minimum set of tasks for each
activity. Additional tasks may be added to any
activity.
 This standard requires the performance of each
activity. For each task within an activity, this
standard requires either that the task be
performed, or that previous results be available
and be reverified. This standard also requires the
preparation of two documents specified in
ANSI/IEEE Std 829-1983[2]1. These documents
are the Test Design Specification and the Test
Summary Report.
 General unit test planning should occur during
overall test planning. This general unit test
planning activity is covered by this standard,
although the balance of the overall test planning
process is outside the scope of this standard.
 This standard may be applied to the unit testing
of any digital computer software or firmware.
However, this standard does not specify any class
of software or firmware to which it must be

1 The numbers in brackets correspond to the references listed in 1.3
of this standard

applied, nor does it specify any class of software
or firmware that must be unit tested. This standard
applies to the testing of newly developed and
modified units.
 This standard is applicable whether or not the
unit tester is also the developer.

1.2 Outside the Scope. The results of some
overall test planning tasks apply to all testing
levels (for example, identify security and privacy
constraints). Such tasks are not considered a part
of the unit testing process, although they directly
affect it.
 While the standard identifies a need for failure
analysis information and software fault correction,
it does not specify a software debugging process.
 This standard does not address other
components of a comprehensive unit verification
and validation process, such as reviews (for
example, walkthroughs, inspections), static
analysis (for example, consistency checks, data
flow analysis), or formal analysis (for example,
proof of correctness, symbolic execution).
 This standard does not require the use of
specific test facilities or tools. This standard does
not imply any particular methodology for
documentation control, configuration manage-
ment, quality assurance, or management of the
testing process.

1.3 References. This standard shall be used in
conjunction with the following publications.
[1] ANSI/IEEE Std 729-1983, IEEE Standard
Glossary of Software Engineering Terminology.2
[2] ANSI/IEEE Std 829-1983, IEEE Standard for
Software Test Documentation.

2 This publications are available from American National Standards
Institute, Sales Department, 1430 Broadway, New York, NY 10018
and from IEEE Service Center, 445 Hoes Lane, Piscataway, NJ
08854.

ANSI/IEEE IEEE STANDARD FOR
Std 1008-1987 SOFTWARE UNIT TESTING

 9

2. Definitions

This section defines key terms used in this
standard but not included in ANSI/IEEE Std 729-
1983 [1] or ANSI/IEEE Std 829-1983 [2].

characteristic. See: data characteristic or
software characteristic.

data characteristic. An inherent, possibly
accidental, trait, quality, or property of data (for
example, arrival rates, formats, value ranges, or
relationships between field values).

feature. See: software feature.

incident. See: software test incident.

nonprocedural programming language. A
computer programming language used to express
the parameters of a problem rather than the steps
in a solution (for example, report writer or sort
specification languages). Contrast with
procedural programming language.

procedural programming language. A computer
programming language used to express the
sequence of operations to be performed by a
computer (for example, COBOL). Contrast with
nonprocedural programming language.

software characteristic. An inherent, possibly
accidental, trait, quality, or property of software
(for example, functionality, performance,
attributes, design constraints, number of states,
lines of branches).

software feature. A software characteristic
specified or implied by requirements documen-
tation (for example, functionality, performance,
attributes, or design constraints).

software test incident. Any event occurring
during the execution of a software test that
requires investigation.

state data. Data that defines an internal state of
the test unit and is used to establish that state or
compare with existing states.

test objective. An identified set of software
features to be measured under specified conditions
by comparing actual behavior with the required
behavior described in the software documentation.

test set architecture. The nested relationships
between sets of test cases that directly reflect the
hierarchic decomposition of the test objectives.

test unit.3 A set of one or more computer program
modules together with associated control data, (for
example, tables), usage procedures, and operating
procedures that satisfy the following conditions:
 (1) All modules are from a single computer
program
 (2) At least one of the new or changed modules
in the set has not completed the unit test4
 (3) The set of modules together with its
associated data and procedures are the sole object
of a testing process

unit. See: test unit.

unit requirements documentation. Documen-
tation that sets forth the functional, interface,
performance, and design constraint requirements
for the test unit.

3. Unit Testing Activities

 This section specifies the activities involved in
the unit testing process and describes the
associated input, tasks, and output. The activities
described are as follows:
 (1) Perform test planning phase

(a) Plan the general approach, resources,
and schedule
(b) Determine features to be tested
(c) Refine the general plan

 (2) Acquire test set phase
(a) Design the set of tests
(b) Implement the refined plan and design

 (3) Measure test unit phase
(a) Execute the test procedures
(b) Check for termination
(c) Evaluate the test effort and unit

 When more than one unit is to be unit tested
(for example, all those associated with a software
project), the Plan activity should address the total
set of test units and should not be repeated for
each test unit. The other activities must be
performed at least once for each unit.
 Under normal conditions, these activities are
sequentially initiated except for the Execute and

3 A test unit may occur at any level of the design hierarchy from a
single module to a complete program. Therefore, a test unit may be a
module, a few modules, or a complete computer program along with
associated data and procedures.
4 A test unit may contain one or more modules that have already
been unit tested.

ANSI/IEEE IEEE STANDARD FOR
Std 1008-1987 SOFTWARE UNIT TESTING

 10

Check cycle as illustrated in Fig 1. When
performing any of the activities except Plan,
improper performance of a preceding activity or
external events (for example, schedule, require-
ments, or design changes) may result in the need
to redo one or more of the preceding activities and
then return to the one being performed.

 During the testing process, a test design
specification and a test summary report must be
developed. Other test documents may be
developed. All test documents must conform to
the ANSI/IEEE Std 829-1983 [2]. In addition, all
test documents must have identified authors and
be dated.
 The test design specification will derive its
information from the Determine, Refine, and
Design activities. The test summary report will
derive its information from all of the activities.

3.1 Plan the General Approach, Resources, and
Schedule. General unit test planning should occur
during overall test planning and be recorded in the
corresponding planning document.
 3.1.1 Plan Inputs
 (1) Project plans
 (2) Software requirements documentation
 3.1.2 Plan Tasks
 (1) Specify a General Approach to Unit
Testing. Identify risk areas to be addressed by the
testing. Specify constraints on characteristic
determination (for example, features that must be
tested), test design, or test implementation (for

example, test sets that must be used).
 Identify existing sources of input, output, and
state data (for example, test files, production files,
test data generators). Identify general techniques
for data validation. Identify general techniques to
be used for output recording, collection, reduction,
and validation. Describe provisions for application
software that directly interfaces with the units to
be tested.
 (2) Specify Completeness Requirements.
Identify the areas (for example, features,
procedures, states, functions, data characteristics,
instructions) to be covered by the unit test set and
the degree of coverage required for each area.
 When testing a unit during software deve-
lopment, every software feature must be covered
by a test case or an approved exception. The same
should hold during software maintenance for any
unit testing.
 When testing a unit implemented with a
procedural language (for example, COBOL)
during software development, every instruction
that can be reached and executed must be covered
by a test case or an approved exception, except for
instructions contained in modules that have been
separately unit tested. The same should hold
during software maintenance for the testing of a
unit implemented with a procedural language.
 (3) Specify Termination Requirements. Specify
the requirements for normal termination of the
unit testing process. Termination requirements
must include satisfying the completeness
requirements.
 Identify any conditions that could cause
abnormal termination of the unit testing process
(for example, detecting a major design fault,
reaching a schedule deadline) and any notification
procedures that apply.
 (4) Determine Resource Requirements.
Estimate the resources required for test set
acquisition, initial execution, and subsequent
repetition of testing activities. Consider hardware,
access time (for example, dedicated computer
time), communications or system software, test
tools, test files, and forms or other supplies. Also
consider the need for unusually large volumes of
forms and supplies.
 Identify resources needing preparation and the
parties responsible. Make arrangements for these
resources, including requests for resources that
require significant lead time (for example,
customized test tools).
Identify the parties responsible for unit testing and
unit debugging. Identify personnel requirements
including skills, number, and duration.

ANSI/IEEE IEEE STANDARD FOR
Std 1008-1987 SOFTWARE UNIT TESTING

 11

 (5) Specify a General Schedule. Specify a
schedule constrained by resource and test unit
availability for all unit testing activity.
 3.1.3 Plan Outputs
 (1) General unit test planning information
(from 3.1.2(1) through (5) inclusive)
 (2) Unit test general resource requests – if
produced from 3.1.2(4)

3.2 Determine Features To Be Tested
 3.2.1 Determine Inputs
 (1) Unit requirements documentation
 (2) Software architectural design documen-
tation – if needed
 3.2.2 Determine Tasks
 (1) Study the Functional Requirements. Study
each function described in the unit requirements
documentation. Ensure that each function has a
unique identifier. When necessary, request
clarification of the requirements.
 (2) Identify Additional Requirements and
Associated Procedures. Identify requirements
other than functions (for example, performance,
attributes, or design constraints) associated with
software characteristics that can be effectively
tested at the unit level. Identify any usage or
operating procedures associated only with the unit
to be tested. Ensure that each additional
requirement and procedure has a unique identifier.
When necessary, request clarification of the
requirements.
 (3) Identify States of the Unit. If the unit
requirements documentation specifies or implies
multiple states (for example, inactive, ready to
receive, processing) software, identify each state
and each valid state transition. Ensure that each
state and state transition has a unique identifier.
When necessary, request clarification of the
requirements.
 (4) Identify Input and Output Data
Characteristics. Identify the input and output data
structures of the unit to be tested. For each
structure, identify characteristics, such as arrival
rates, formats, value ranges, and relationships
between field values. For each characteristic,
specify its valid ranges. Ensure that each
characteristic has a unique identifier. When
necessary, request clarification of the
requirements.
 (5) Select Elements to be Included in the
Testing. Select the features to be tested. Select the
associated procedures, associated states,
associated state transitions, and associated data
characteristics to be included in the testing.

Invalid and valid input data must be selected.
When complete testing is impractical, information
regarding the expected use of the unit should be
used to determine the selections. Identify the risk
associated with unselected elements.
 Enter the selected features, procedures, states,
state transitions, and data characteristics in the
Features to be Tested section of the unit's Test
Design Specification.
 3.2.3 Determine Outputs
 (1) List of elements to be included in the
testing (from 3.2.2(5))
 (2) Unit requirements clarification requests – if
produced from 3.2.2(1) through (4) inclusive

3.3 Refine the General Plan
 3.3.1 Refine Inputs
 (1) List of elements to be included in the
testing (from 3.2.2(5))
 (2) General unit test planning information
(from 3.1.2(1) through (5) inclusive)
 3.3.2 Refine Tasks
 (1) Refine the Approach. Identify existing test
cases and test procedures to be considered for use.
Identify any special techniques to be used for data
validation. Identify any special techniques to be
used for output recording, collection, reduction,
and validation.
 Record the refined approach in the Approach
Refinements section of the unit's test design
specification.
 (2) Specify Special Resource Requirements.
Identify any special resources needed to test the
unit (for example, software that directly inter-
faces with the unit). Make preparations for the
identified resources.
 Record the special resource requirements in the
Approach Refinements section of the unit's test
design specification.
 (3) Specify a Detailed Schedule. Specify a
schedule for the unit testing based on support
software, special resource, and unit availability
and integration schedules. Record the schedule in
the Approach Refinements section of the unit's test
design specification.
 3.3.3 Refine Outputs
 (1) Specific unit test planning information
(from 3.3.2(1) through (3) inclusive)
 (2) Unit test special resource requests – if
produced from 3.3.2(2).

ANSI/IEEE IEEE STANDARD FOR
Std 1008-1987 SOFTWARE UNIT TESTING

 12

3.4 Design the Set of Tests
 3.4.1 Design Inputs
 (1) Unit requirements documentation
 (2) List of elements to be included in the
testing (from 3.2.2(5))
 (3) Unit test planning information (from
3.1.2(1) and (2) and 3.3.2(1))
 (4) Unit design documentation
 (5) Test specifications from previous testing –
if available
 3.4.2 Design Tasks
 (1) Design the Architecture of the Test Set.
Based on the features to be tested and the
conditions specified or implied by the selected
associated elements (for example, procedures,
state transitions, data characteristics), design a
hierarchically decomposed set of test objectives so
that each lowest-level objective can be directly
tested by a few test cases. Select appropriate
existing test cases. Associate groups of test-case
identifiers with the lowest-level objectives.
Record the hierarchy of objectives and associated
test case identifiers in the Test Identification
section of the unit's test design specification.
 (2) Obtain Explicit Test Procedures as
Required. A combination of the unit requirements
documentation, test planning information, and
test-case specifications may implicitly specify the
unit test procedures and therefore minimize the
need for explicit specification. Select existing test
procedures that can be modified or used without
modification.
 Specify any additional procedures needed
either in a supplementary section in the unit's test
design specification or in a separate procedure
specification document. Either choice must be in
accordance with the information required by
ANSI/IEEE Std 829-1983 [2]. When the corre-
lation between test cases and procedures is not
readily apparent, develop a table relating them and
include it in the unit's test design specification.
 (3) Obtain the Test Case Specifications.
Specify the new test cases. Existing specifications
may be referenced.
 Record the specifications directly or by
reference in either a supplementary section of the
unit's test design specification or in a separate
document. Either choice must be in accordance
with the information required by ANSI/ IEEE Std.
829-1983 [2].
 (4) Augment, as Required, the Set of Test-Case
Specifications Based on Design Information.
Based on information about the unit's design,

update as required the test set architecture in
accordance with 3.4.2(1). Consider the
characteristics of selected algorithms and internal
data structures.
 Identify control flows and changes to internal
data that must be recorded. Anticipate special
recording difficulties that might arise, for
example, from a need to trace control flow in
complex algorithms or from a need to trace
changes in internal data structures (for example,
stacks or trees). When necessary, request
enhancement of the unit design (for example, a
formatted data structure dump capability) to
increase the testability of the unit.
 Based on information in the unit's design,
specify any newly identified test cases and
complete any partial test case specifications in
accordance with 3.4.2(3).
 (5) Complete the Test Design Specification.
Complete the test design specification for the unit
in accordance with ANSI/IEEE Std 829-1983 [2].
 3.4.3 Design Outputs
 (1) Unit test design specification (from
3.4.2(5))
 (2) Separate test procedure specifications – if
produced from 3.4.2(2)
 (3) Separate test-case specifications – if
produced from 3.4.2(3) or (4)
 (4) Unit design enhancement requests – if
produced from 3.4.2(4)

3.5 Implement the Refined Plan and Design
 3.5.1 Implement Inputs
 (1) Unit test planning information (from
3.1.2(1), (4), and (5) and 3.3.2(1) through (3)
inclusive)
 (2) Test-case specifications in the unit test
design specification or separate documents (from
3.4.2(3) and (4))
 (3) Software data structure descriptions
 (4) Test support resources
 (5) Test items
 (6) Test data from previous testing activities –
if available
 (7) Test tools from previous testing activities –
if available
 3.5.2 Implement Tasks
 (1) Obtain and Verify Test Data. Obtain a copy
of existing test data to be modified or used
without modification. Generate any new data
required. Include additional data necessary to
ensure data consistency and integrity. Verify all

ANSI/IEEE IEEE STANDARD FOR
Std 1008-1987 SOFTWARE UNIT TESTING

 13

data (including those to be used as is) against the
software data structure specifications. When the
correlation between test cases and data sets is not
readily apparent, develop a table to record this
correlation and include it in the unit's test design
specification.
 (2) Obtain Special Resources. Obtain the test
support resources specified in 3.3.2(2).
 (3) Obtain Test Items. Collect test items
including available manuals, operating system
procedures, control data (for example, tables), and
computer programs. Obtain software identified
during test planning that directly interfaces with
the test unit.
 When testing a unit implemented with a
procedural language, ensure that execution trace
information will be available to evaluate
satisfaction of the code-based completeness
requirements.
 Record the identifier of each item in the
Summary section of the unit's test summary report.
 3.5.3 Implement Outputs
 (1) Verified test data (from 3.5.2(1))
 (2) Test support resources (from 3.5.2(2))
 (3) Configuration of test items (from 3.5.2(3))
 (4) Initial summary information (from
3.5.2 (3))

3.6 Execute the Test Procedures
 3.6.1 Execute Inputs
 (1) Verified test data (from 3.5.2(1))
 (2) Test support resources (from 3.5.2(2))
 (3) Configuration of test items (from 3.5.2(3))
 (4) Test-case specifications (from 3.4.2(3)
and (4))
 (5) Test procedure specifications (from 3.4.2
(2)) – if produced
 (6) Failure analysis results (from debugging
process) – if produced
 3.6.2 Execute Tasks
 (1) Run Tests. Set up the test environment. Run
the test set. Record all test incidents in the
Summary of Results section of the unit's test
summary report.
 (2) Determine Results. For each test case,
determine if the unit passed or failed based on
required result specifications in the case
descriptions. Record pass or fail results in the
Summary of Results section of the unit's test
summary report. Record resource consumption
data in the Summary of Activities section of the
report. When testing a unit implemented with a
procedural language, collect execution trace
summary information and attach it to the report.

 For each failure, have the failure analyzed and
record the fault information in the Summary of
Results section of the test summary report. Then
select the applicable case and perform the
associated actions.

Case 1: A Fault in a Test Specification or Test

Data. Correct the fault, record the fault
correction in the Summary of Activities
section of the test summary report, and
rerun the tests that failed.

Case 2: A Fault in Test Procedure Execution.
Rerun the incorrectly executed
procedures.

Case 3: A Fault in the Test Environment (for
example, system software). Either have
the environment corrected, record the
fault correction in the Summary of
Activities section of the test summary
report, and rerun the tests that failed
OR prepare for abnormal termination
by documenting the reason for not
correcting the environment in the
Summary of Activities section of the
test summary report and proceed to
check for termination (that is, proceed
to activity 3.7).

Case 4: A Fault in the Unit Implementation.
Either have the unit corrected, record
the fault correction in the Summary of
Activities section of the test summary
report, and rerun all tests OR prepare
for abnormal termination by docu-
menting the reason for not correcting
the unit in the Summary of Activities
section of the test summary report and
proceed to check for termination (that
is, proceed to activity 3.7).

Case 5: A Fault in the Unit Design. Either have
the design and unit corrected, modify
the test specification and data as
appropriate, record the fault correction
in the Summary of Activities section of
the test summary report, and rerun all
tests OR prepare for abnormal
termination by documenting the reason
for not correcting the design in the
Summary of Activities section of the
test summary report and proceed to
check for termination (that is, proceed
to activity 3.7).

NOTE: The cycle of Execute and Check Tasks must be repeated until
a termination condition defined in 3.1.2(3) is satisfied (See Fig 3).
Control flow within the Execute activity itself is pictured in Fig 2.

ANSI/IEEE IEEE STANDARD FOR
Std 1008-1987 SOFTWARE UNIT TESTING

 14

ANSI/IEEE IEEE STANDARD FOR
Std 1008-1987 SOFTWARE UNIT TESTING

 15

 3.6.3 Execute Outputs
 (1) Execution information logged in the test
summary report including test outcomes, test
incident descriptions, failure analysis results, fault
correction activities, uncorrected fault reasons,
resource consumption data and, for procedural
language implementations, trace summary
information (from 3.6.2(1) and (2))
 (2) Revised test specifications – if produced
from 3.6.2(2)
 (3) Revised test data – if produced from
3.6.2(2)

3.7 Check for Termination
 3.7.1 Check Inputs
 (1) Completeness and termination require-
ments (from 3.1.2(2) and (3))
 (2) Execution information (from 3.6.2(1)
and (2))
 (3) Test specifications (from 3.4.2(1) through
(3) inclusive) – if required
 (4) Software data structure descriptions – if
required
 3.7.2 Check Tasks
 (1) Check for Normal Termination of the
Testing Process. Determine the need for
additional tests based on completeness
requirements or concerns raised by the failure
history. For procedural language implementations,
analyze the execution trace summary information
(for example, variable, flow).
 If additional tests are not needed, then record
normal termination in the Summary of Activities
section of the test summary report and proceed to
evaluate the test effort and unit (that is, proceed to
activity 3.8).
 (2) Check for Abnormal Termination of the
Testing Process. If an abnormal termination
condition is satisfied (for example, uncorrected
major fault, out of time) then ensure that the
specific situation causing termination is
documented in the Summary of Activities section
of the test summary report together with the
unfinished testing and any uncorrected faults.
Then proceed to evaluate the test effort and unit
(that is, proceed to activity 3.8).
 (3) Supplement the Test Set. When additional
tests are needed and the abnormal termination
conditions are not satisfied, supplement the test
set by following steps (a) through (e).
 (a) Update the test set architecture in
accordance with 3.4.2(1) and obtain additional
test-case specifications in accordance with
3.4.2(3).

 (b) Modify the test procedure specifications
in accordance with 3.4.2(2) as required.
 (c) Obtain additional test data in accordance
with 3.5.2(1).
 (d) Record the addition in the Summary of
Activities section of the test summary report.
 (e) Execute the additional tests (that is,
return to activity 3.6).
 3.7.3 Check Outputs
 (1) Check information logged in the test
summary report including the termination
conditions and any test case addition activities
(from 3.7.2(1) through (3) inclusive)
 (2) Additional or revised test specifications – if
produced from 3.7.2(3)
 (3) Additional test data – if produced from
3.7.2(3)

3.8 Evaluate the Test Effort and Unit
 3.8.1 Evaluate Inputs
 (1) Unit Test Design Specification (from
3.4.2(5)
 (2) Execution information (from 3.6.2(1) and
(2))
 (3) Checking information (from 3.7.2(1)
through (3) inclusive)
 (4) Separate test-case specifications (from
3.4.2(3) and (4)) – if produced
 3.8.2 Evaluate Tasks
 (1) Describe Testing Status. Record variances
from test plans and test specifications in the
Variances section of the test summary report.
Specify the reason for each variance.
 For abnormal termination, identify areas
insufficiently covered by the testing and record
reasons in the Comprehensiveness Assessment
section of the test summary report.
 Identify unresolved test incidents and the
reasons for a lack of resolution in the Summary of
Results section of the test summary report.
 (2) Describe Unit's Status. Record differences
revealed by testing between the unit and its
requirements documentation in the Variances
section of the test summary report.
 Evaluate the unit design and implementation
against requirements based on test results and
detected fault information. Record evaluation
information in the Evaluation section of the test
summary report.
 (3) Complete the Test Summary Report.
Complete the test summary report for the unit in
accordance with ANSI/IEEE Std 829-1983 [2].
 (4) Ensure Preservation of Testing Products.
Ensure that the testing products are collected,

ANSI/IEEE IEEE STANDARD FOR
Std 1008-1987 SOFTWARE UNIT TESTING

 16

organized, and stored for reference and reuse.
These products include the test design
specification, separate test-case specifications,
separate test procedure specifications, test data,
test data generation procedures, test drivers and
stubs, and the test summary report.

 3.8.3 Evaluate Outputs
 (1) Complete test summary report (from
3.8.2(3))
 (2) Complete, stored collection of testing
products (from 3.8.2(4))

ANSI/IEEE IEEE STANDARD FOR
Std 1008-1987 SOFTWARE UNIT TESTING

 17

Appendixes

 (These Appendixes are not a part of ANSI /IEEE Std 1008-1987, IEEE Standard for Software Unit Testing, but are included for
information only.)

Appendix A

Implementation and Usage Guidelines

 This section contains information intended to
be of benefit when the standard is being
considered for use. It is therefore recommended
that this section be read in its entirety before any
extensive planning is done.

A1. Use of the Standard

 The standard can be used
 (1) As a basis for comparison to confirm
current practices
 (2) As a source of ideas to modify current
practices
 (3) As a replacement for current practices

A2. Additional Testing Requirements

 Requirements such as the amount of additional
test documentation (for example, test logs), the
level of detail to be included, and the number and
types of approvals and reviews must be specified
for each project. Factors, such as unit criticality,
auditing needs, or contract specifications will
often dictate these requirements. The standard
leaves it to the user to specify these requirements
either by individual project or as organizational
standards. If the requirements are project specific,
they should appear in the project plan, quality
assurance plan, verification and validation plan, or
overall test plan.

A3. Additional Test Documentation

 The information contained in the test design
specification and the test summary report is
considered an absolute minimum for process
visibility. In addition, it is assumed that any test
information need can be satisfied by the set of test
documents specified in ANSI/IEEE Std
829 -1983 [2], either by requiring additional

content in a required document or by requiring
additional documents.

A4. Approvals and Reviews

 If more control is desired, the following
additional tasks should be considered:
 (1) Approval of general approach at the end of
Plan
 (2) Approval of identified requirements at the
end of Determine
 (3) Approval of specific plans at the end of
Refine
 (4) Approval of test specifications at the end of
Design
 (5) Review of test readiness at the end of
Implement
 (6) Review of test summary report at the end
of Evaluate

A5. Audit Trails

 It is assumed that auditing needs are taken into
account when specifying control requirements.
Therefore, the set of test documents generated
together with the reports from test reviews should
be sufficient to supply all required audit
information.

A6. Configuration Management

 Configuration management should be the
source of the software requirements, software
architectural design, software data structure, and
unit requirements documentation. These inputs
must be managed to ensure confidence that we
have current information and will be notified of
any changes.
 The final unit testing products should be
provided to configuration management. These

ANSI/IEEE IEEE STANDARD FOR
Std 1008-1987 SOFTWARE UNIT TESTING

 18

outputs must be managed to permit thorough and
economical regression testing. See ANSI/IEEE
Std 828-1983, IEEE Standard for Software
Configuration Management Plans, for details.

A7. Determination of Requirements-
Based Characteristics

 Psychological factors (for example, self-
confidence, a detailed knowledge of the unit
design) can make it very difficult for the unit
developer to determine an effective set of
requirements-based elements (for example,
features, procedures, state transitions, data
characteristics) to be included in the testing.
Often, this determination should be made by
someone else.
 There are several ways to organize this
separation.
 (1) Developers determine these elements for
each other.
 (2) Developers fully test each other's code.
This has the added advantage that at least two
developers will have a detailed knowledge of
every unit.
 (3) A separate test group should be available.
The size of the project or the criticality of the
software may determine whether a separate group
can be justified.
 If developers determine requirements-based
elements for their own software, they should
perform this determination before software design
begins.

A8. User Involvement

If the unit to be tested interacts with users (for
example, menu displays), it can be very effective
to involve those users in determining the
requirements-based elements to be included in the
testing. Asking users about their use of the
software may bring to light valuable information
to be considered during test planning. For
example, questioning may identify the relative
criticality of the unit's functions and thus
determine the testing emphasis.

A9. Stronger Code-Based Coverage
Requirements

Based on the criticality of the unit or a shortage of
unit requirement and design information (for

example, during maintenance of older software),
the code-based coverage requirement specified in
3.1.2(2) could be strengthened. One option is to
strengthen the requirement from instruction
coverage to branch coverage (that is, the
execution of every branch in the unit).

A10. Code Coverage Tools

 An automated means of recording the cover-
age of source code during unit test execution is
highly recommended. Automation is usually
necessary because manual coverage analysis is
unreliable and uneconomical. One automated
approach uses a code instrumentation and
reporting tool. Such a tool places software probes
in the source code and following execution of the
test cases provides a report summarizing data and
control-flow information. The report identifies
unexecuted instructions. Some tools also identify
unexecuted branches. This capability is a feature
in some compilers.

A11. Process Improvement

 To evaluate and improve the effectiveness of
unit testing, it is recommended that failure data be
gathered from those processes that follow unit
testing, such as integration test, system test, and
production use. This data should then be analyzed
to determine the nature of those faults that should
have been detected by unit testing but were not.

A12. Adopting the Standard

 Implementing a new technical process is itself
a process that requires planning, implementation,
and evaluation effort. To successfully implement a
testing process based on this standard, one must
develop an implementation strategy and tailor the
standard. Both activities must reflect the culture
and current abilities of the organization. Long-
term success will require management
commitment, supporting policies, tools, training,
and start-up consulting. Management can
demonstrate commitment by incorporating the
new process into project tracking systems and
performance evaluation criteria.

ANSI/IEEE IEEE STANDARD FOR
Std 1008-1987 SOFTWARE UNIT TESTING

 19

A13. Practicality of the Standard

 This standard represents consensus on the
definition of good software engineering practice.
Some organizations use practices similar to the
process specified here while others organize this
work quite differently. In any case, it will involve
considerable change for many organizations that
choose to adopt it. That change involves new

policies, new standards and procedures, new tools,
and new training programs. If the differences
between the standard and current practice are too
great, then the changes will need to be phased in.
The answer to the question of practicality is
basically one of desire. How badly does an
organization want to gain control of its unit
testing?

Appendix B

Concepts and Assumptions

B1. Software Engineering Concepts

 The standard unit testing process specified in
this standard is based on several fundamental
software engineering concepts which are
described in B1.1 through B1.8 inclusive.

B1.1 Relationship of Testing to Verification
and Validation. Testing is just one of several
complementary verification and validation
activities. Other activities include technical re-
views (for example, code inspections), static
analysis, and proof of correctness. Specification of
a comprehensive verification and validation
process is outside the scope of this standard.

B1.2 Testing As Product Development. Testing
includes a product development process. It results
in a test set composed of data, test support
software, and procedures for its use. This product
is documented by test specifications and reports.
As with any product development process, test set
development requires planning, requirements (test
objectives), design, implementation, and
evaluation.

B1.3 Composition of Debugging. The debugging
process is made up of two major activities. The
objective of the first activity, failure analysis, is to
locate and identify all faults responsible for a
failure. The objective of the second, fault
correction, is to remove all identified faults while
avoiding the introduction of new ones.

 Specification of the process of either failure
analysis or fault correction is outside the scope of
this standard.

B1.4 Relationship of Testing to Debugging.
Testing entails attempts to cause failures in order
to detect faults, while debugging entails both
failure analysis to locate and identify the
associated faults and subsequent fault correction.
Testing may need the results of debugging's
failure analysis to decide on a course of action.
Those actions may include the termination of
testing or a request for requirements changes or
fault correction.

B1.5 Relationship Between Types of Units. A
one-to-one relationship between design units,
implementation units, and test units is not
necessary. Several design units may make up an
implementation unit (for example, a program) and
several implementation units may make up a test
unit.

B1.6 Need for Design and Implementation
Information. Often, requirements information is
not enough for effective testing, even though,
fundamentally, testing measures actual behaviour
against required behaviour. This is because it’s
usually not feasible to test all possible situations
and requirements often do not provide sufficient
guidance in identifying situations that have high
failure potential. Design and implementation
information often are needed, since some of these

ANSI/IEEE IEEE STANDARD FOR
Std 1008-1987 SOFTWARE UNIT TESTING

 20

high-potential situations result from the design
and implementation choices that have been made.

B1.7 Incremental Specification of Elements To
Be Considered in Testing. Progressively more
detailed information about the nature of a test unit
is found in the unit requirements documentation,
the unit design documentation, and finally in the
unit's implementation. As a result, the elements to
be considered in testing may be built up
incrementally during different periods of test
activity.
 For procedural language (for example,
COBOL) implementations, element specification
occurs in three increments. The first group is
specified during the Determine activity and is
based on the unit requirements documentation.
The second group is specified during the Design
activity and is based on the unit design (that is,
algorithms and data structures) as stated in a soft-
ware design description. The third group is
specified during the Check activity and is based
on the unit's code.
 For nonprocedural language (for example, re-
port writer or sort specification languages)
implementations, specification occurs in two
increments. The first is during the Determine
activity and is based on requirements and the
second is during Design and is based on the non-
procedural specification.
 An incremental approach permits unit testing
to begin as soon as unit requirements are available
and minimizes the bias introduced by detailed
knowledge of the unit design and code.

B1.8 Incremental Creation of a Test Design
Specification. Information recorded in the test
design specification is generated during the
Determine, Refine, and Design activities. As each
of these test activities progress, information is
recorded in appropriate sections of the
specification. The whole document must be
complete at the end of the final iteration of the
Design activity.

B1.9 Incremental Creation of the Test
Summary Report. Information recorded in the
test summary report is generated during all unit
testing activities expect Plan. The report is
initiated during Implement, updated during
Execute and Check, and completed during
Evaluate.

B2. Testing Assumptions

 The approach to unit testing specified in this
standard is based on a variety of economic,
psychological, and technical assumptions. The
significant assumptions are given in B2.1 through
B2.7 inclusive.

B2.1 The objective of unit testing is to attempt to
determine the correctness and completeness of an
implementation with respect to unit requirements
and design documentation by attempting to
uncover faults in:
 (1) The unit's required features in combination
with their associated states (for example, inactive,
active awaiting a message, active processing a
message)
 (2) The unit's handling of invalid input
 (3) Any usage or operating procedures
associated only with the unit
 (4) The unit's algorithms or internal data
structures, or both
 (5) The decision boundaries of the unit's
control logic

B2.2 Testing entails the measurement of behavior
against requirements. Although one speaks
informally of interface testing, state testing, or
even requirement testing, what is meant is
measuring actual behavior associated with an
interface, state, or requirement, against the
corresponding required behavior. Any verifiable
unit testing process must have documented
requirements for the test unit. This standard
assumes that the documentation of unit
requirements exists before testing begins.

B2.3 Unit requirements documentation must be
thoroughly reviewed for completeness, testability,
and traceability. This standard assumes the
requirements have been reviewed either as a
normal part of the documentation review process
or in a special unit requirements review.

B2.4 There are significant economic benefits in
the early detection of faults. This implies that test
set development should start as soon as practical
following availability of the unit requirements
documentation because of the resulting
requirements verification and validation. It also
implies that as much as practical should be tested
at the unit level.

ANSI/IEEE IEEE STANDARD FOR
Std 1008-1987 SOFTWARE UNIT TESTING

 21

B2.5 The levels of project testing (for example,
acceptance, system, integration, unit) are specified
in project plans, verification and validation plans,
or overall test plans. Also included is the unit test
planning information that is applicable to all units
being tested (for example, completeness
requirements, termination requirements, general
resource requirements). Subsequently, based on an
analysis of the software design, the test units will
be identified and an integration sequence will be
selected.

B2.6 The availability of inputs and resources to do
a task is the major constraint on the sequencing of
activities and on the sequencing of tasks within an

activity. If the necessary resources are available,
some of the activities and some of the tasks within
an activity may be performed concurrently.

B2.7 This standard assumes that it is usually most
cost-effective to delay the design of test cases
based on source-code characteristics until the set
of test cases based on requirements and design
characteristics has been executed. This approach
minimizes the code-based design task. If code-
based design is started before test execution data
is available, it should not start until the test cases
based on unit requirements and design characte-
ristics have been specified.

Appendix C

Sources for Techniques and Tools

C1. General

 Software tools are computer programs and
software techniques are detailed methods that aid
in the specification, construction, testing, analysis,
management, documentation, and maintenance of
other computer programs. Software techniques
and tools can be used and reused in a variety of
development environments. Their effective use
increases engineering productivity and software
quality.
 The references given in C2 of this Appendix
contain information on most of the testing
techniques and tools in use today. The set of
references is not exhaustive, but provides a
comprehensive collection of source material. To
keep up to date, the reader is encouraged to obtain
information on recent IEEE tutorials and recent
documents in the Special Publications series of
the National Bureau of Standards.5 Current
information on test tools can be obtained from the
Federal Software Testing Center6 and software

5 The NBS publications and software tools survey may be obtained
from Superintendent of Documents, US Government Printing Office,
Washington, DC 20402.
6 Information regarding test tools may be obtained by contacting
Federal Software Testing Center, Office of Software Development,
General Services Administration, 5203 Leesburg Pike, Suite 1100,
Falls Church, VA 22041.

tool data bases are accessible through the Data &
Analysis Center for Software.7

A set of general references on software testing
is listed in Appendix D.

C2. References

BEIZER, BORIS. Software Testing Techniques.
New York: Van Nostrand Reinhold, 1983. This
book presents a collection of experience-based
test techniques. It describes several test design
techniques together with their mathematical
foundations. The book describes various
techniques (decision tables and formal grammars)
that provide a precise specification of the input
and software. It also discusses a data-base-driven
testing technique. Many techniques are based on
the author's first-hand experience as director of
testing and quality assurance for a
telecommunications software producer. The
inclusion of experiences and anecdotes makes this
book enjoyable and informative.

HOUGHTON, Jr, RAYMOND C. Software

7 Information regarding the tools data base may be obtained from
Data & Analysis Center for Software (DACS), RADC/ISISI, Griffiss
AFB NY 13441.

ANSI/IEEE IEEE STANDARD FOR
Std 1008-1987 SOFTWARE UNIT TESTING

 22

Development Tools: A Profile. IEEE Computer
vol. 16, no 5, May 1983.8 The Institute of
Computer Science and Technology of the
National Bureau of Standards studied the software
tools available in the early 1980's. This article
reports the results of that study and analyzes the
information obtained. Various categorizations of
the tools are presented, with tools listed by their
characteristics. The lists incorporate percentage
summaries based on the total number of tools for
which information was available.

OSD / DDT & E Software Test and Evaluation
Project, Phases land II, Final Report, vol. 2,
Software Test and Evaluation: State-of-the-Art
Overview. School of Information and Computer
Science, Georgia Institute of Technology, June
1983, 350 pp.9 This report contains a concise
overview of most current testing techniques and
tools. A set of references is provided for each one.
A set of test tool data sheets containing
implementation details and information contacts is
also provided.

POWELL, PATRICIA B. (ed). Software
Validation, Verification, and Testing Technique
and Tool Reference Guide. National Bureau of
Standards Special Publication 500-93, 1982.
Order from GPO SN-003-003-02422-8.5 Thirty
techniques and tools for validation, verification,
and testing are described. Each description
includes the basic features of the technique or
tool, its input, its output, and an example. Each
description also contains an assessment of
effectiveness and usability, applicability, an
estimate of the learning time and training, an
estimate of needed resources, and associated
references.

PRESSON, EDWARD. Software Test Handbook:
Software Test Guidebook. Rome Air Development
Center RADC-TR-84-53, vol. 2 (of two) March
1984. Order from NTIS A147-289. This
guidebook contains guidelines and methodology
for software testing including summary
descriptions of testing techniques, typical
paragraphs specifying testing techniques for a
Statement of Work, a cross-reference to
government and commercial catalogs listing

8 Information regarding IEEE Computer Society publications may be
obtained from IEEE Computer Society Order Department, PO Box
80452, Worldway Postal Center, Los Angeles, CA 90080.
9 The Georgia Technology report may be obtained from Documents
Librarian, Software Test and Evaluation Project, School of
Information and Computer Science, Georgia Institute of Technology,
Atlanta, Georgia 30332.

automated test tools, and an extensive
bibliography.

REIFER, DONALD J. Software Quality
Assurance Tools and Techniques. John D. Cooper
and Matthew J. Fisher (eds). Software Quality
Management, New York: Petrocelli Books, 1979,
pp. 209-234. This paper explains how modern
tools and techniques support an assurance
technology for computer programs. The author
first develops categories for quality assurance
tools and techniques (aids) and discusses example
aids. Material on toolsmithing is presented next.
Finally, an assessment is made of the state of the
technology and recommendations for improving
current practice are offered.

SOFTFAIR 83. A Conference on Software
Development Tools, Techniques, and Alternatives.
IEEE Computer Society Press, 1983. This is the
proceedings of the first of what is likely to be a
series of conferences aimed at showing the most
promising approaches within the field of soft-
ware tools and environments. It is a collection of
42 papers covering abroad range of software
engineering tools from research prototypes to
commercial products.

Software Aids and Tools Survey. Federal Soft-
ware Management Support Center, Office of
Software Development, Report OIT /FSMC-86/
002, 1985.6 The purpose of this document is to
support management in various government
agencies in the identification and selection of
software tools. The document identifies and
categorizes tools available in the marketplace in
mid 1985. Approximately 300 tools are presented
with various data concerning each one's function,
producer, source language, possible uses, cost,
and product description. The survey is expected to
be updated periodically.

ANSI/IEEE IEEE STANDARD FOR
Std 1008-1987 SOFTWARE UNIT TESTING

 23

Appendix D

General References

 This section identifies a basic set of reference
works on software testing. While the set is not
exhaustive, it provides a comprehensive collection
of source material. Additional references focusing
specifically on testing techniques and tools are
contained in Appendix C.

CHANDRASEKARAN, B. and RADICCHI, S.,
(ed) Computer Program Testing, North-Holland,
1981. The following description is from the
editors Preface:

"The articles in this volume, taken as a whole,
provide a comprehensive, tutorial discussion of the
current state of the art as well as research directions
in the area of testing computer programs. They cover
the spectrum from basic theoretical notions through
practical issues in testing programs and large
software systems to integrated environments and
tools for performing a variety of tests. They are all
written by active researchers and practitioners in the
field."

DEUTSCH, MICHAEL S. Software Verification
and Validation. ENGLEWOOD CLIFFS:
Prentice-Hall, 1982. The following description is
taken from the Preface.

"The main thrust of this book is to describe
verification and validation approaches that have been
used successfully on contemporary large-scale
software projects. Methodologies are explored that
can be pragmatically applied to modern complex
software developments and that take account of cost,
schedule, and management realities in the actual
production environment. This book is intended to be
tutorial in nature with a 'This is how it's done in the
real world' orientation. Contributing to this theme
will be observations and recounts from actual
software development project experiences in
industry."

Guideline for Lifecycle Validation, Verification,
and Testing of Computer Software. Federal In-
formation Processing Standards (FIPS)
Publication 101.10 Order from NTIS FIPSPUB101
1983 (See Appendix C). This guideline presents
an integrated approach to validation, verification,
and testing that should be used throughout the
software lifecycle. Also included is a glossary of
technical terms and a list of supporting ICST

10 The FIPS VV & T Guideline may be obtained from National
Technical Information Service, 5285 Port Royal Road, Springfield,
VA 22161.

publications. An Appendix provides an outline for
formulating a VV & T plan.

 HETZEL, WILLIAM, The Complete Guide to
Software Testing. QED Information Sciences,
1984. This book covers many aspects of software
verification and validation with a primary
emphasis on testing. It contains an overview of
test methods and tools including sample reports
from several commercially available tools. The
book is especially useful when used for viewing
testing from a management perspective and
discussing many of the associated management
issues. An extensive bibliography is included.

McCABE, THOMAS J. (ed). Structured Testing.
IEEE Computer Society Press, Cat no EHO 200-
6, 1983.8 This IEEE Tutorial is a collection of
papers focusing on the relationship between
testing and program complexity. The first two
papers define cyclomatic complexity and describe
an associated technique for developing program
test cases. The third paper describes a systematic
approach to the development of system test cases.
The fourth paper provides general guidelines for
program verification and testing. The balance of
the papers deal with complexity and reliability.

MILLER, EDWARD and HOWDEN, WILLIAM
E. (ed). Tutorial: Software Testing & Validation
Techniques (2nd ed) IEEE Computer Society
Press, Cat no EHO 180-0, 1981.8 This IEEE
Tutorial is a collection of some significant papers
dealing with various aspects of software testing.
These aspects include theoretical foundations,
static analysis, dynamic analysis, effectiveness
assessment, and software management. An
extensive bibliography is included.

MYERS, GLENFORD J. The Art of Software
Testing. New York: Wiley-Interscience, 1979.
This book contains practical, How To Do It
technical information on software testing. The
main emphasis is on methodologies for the design
of effective test cases. It also covers psychological
and economic issues, managerial aspects of
testing, test tools, debugging, and code
inspections. Comprehensive examples and
checklists support the presentation.

ANSI/IEEE IEEE STANDARD FOR
Std 1008-1987 SOFTWARE UNIT TESTING

 24

POWELL, PATRICIA B. (ed). Plan for Software
Validation, Verification, and Testing. National
Bureau of Standards Special Publication 500-98,
1982.5 Order from GPO SN-003-003-02449-0
(See Appendix C). This document is for those

who direct and those who implement computer
projects. It explains the selection and use of
validation, verification, and testing (VV & T)
tools and techniques. It explains how to develop a
plan to meet specific software VV & T goals.

Acknowledgment

 Appreciation is expressed to the following
companies and organizations for contributing the
time of their employees to make possible the
development of this text:

Algoma Steel
Applied Information Development
AT & T Bell Labs
AT & T Information Systems
Automated Language Processing Systems
Bank of America
Bechtel Power
Bell Canada
Boeing Computer Services
Boston University
Burroughs, Scotland
CAP GEMINI DASD
Central Institute for Industrial Research, Norway
Communications Sciences
Conoco
Digital Equipment Corp
US Department of the Interior
US Department of Transportation
Data Systems Analysts
E-Systems
K.A. Foster, Inc
General Dynamics
Georgia Tech
General Services Administration
Honeywell
Hughes Aircraft
IBM
IBM Federal Systems Division
International Bureau of Software Test
Johns Hopkins University Applied Physics Laboratory
Lear Siegler
Logicon

Management and Computer Services
Martin Marietta Aerospace
McDonald-Douglas
Medtronic
Micom
Mitre
M. T. Scientific Consulting
NASA
National Bureau of Standards
NCR
Product Assurances Consulting
Professional Systems & Technology
Programming Environments
Quality Assurance Institute
RCA
Reynolds & Reynolds
Rolm Telecommunications
Rome Air Development Center
Sallie Mae
Seattle - First National Bank
SHAPE, BELGIUM
Software Engineering Service, Germany
Software Quality Engineering
Software Research Associates
Solo Systems
Sperry
SQS GmbH, Germany
Tandem Computers
Tektronix
Televideo
Tenn Valley Authority
Texas Instruments
Time
University of DC
University of Texas, Arlington
US Army Computer Systems Command
Warner Robins ALC
Westinghouse Hanford

