The Physical Environment

                                                       
Contents | Glossary | Atlas |  Index | Blog | Podcasts| Earth Online | Updates

Earth Materials and Structure

The Earth's Interior

The deep interior of the Earth remains somewhat of a mystery as we have only penetrated the very most outer portion with our deep drilling exploration. What knowledge we do have comes from seismic wave data or lava that has extruded onto the surface. What we do know is that the Earth's interior is somewhat like a concentric series of rings, progressing from the dense and intensely hot inner core toward the brittle outer shell of the crust. 

Figure EM.1 Seismograph recording seismic activity. (Courtesy USGS Hawaii Volcano Observatory)

Seismic activity gives us clues as to the internal structure of the Earth. Geoscientists obtain seismic data from naturally occurring earthquakes or human-induced explosions. Seismic energy produces two kinds of waves that are useful in studying the Earth's interior. Compressional (P) waves generate a back-and-forth motion parallel to the direction of travel. Shear (S) waves move up-and-down perpendicular to the direction of wave transmission.   Seismometers detect these motions and record them on a seismograph

When seismic waves pass through rock, their amplitude and direction changes. For instance, wave velocity generally increases as rock density increases.  Shear waves do not penetrate molten masses and when they encounter a boundary between two rock types of differing densities, a portion of the wave travels along the boundary while another part returns to the surface. Such changes in seismic wave velocities led Yugoslavian geophysicist Andrija Mohorovicic (1857-1936) to discover the boundary between the crust and underlying mantle. Wave velocity increases through the "Moho" discontinuity. It is believed that the discontinuity represents a zone where sima-type minerals undergo a phase change that produces a new and denser combination of minerals.   visualization icon "Examine P and S waves moving through Earth's interior." (Courtesy NSF/TERC/McDougall Littell)

Figure EM.2 Interior Structure of the Earth (Click image to enlarge)

The Crust

The outer brittle shell of the Earth is the crust that forms the "skin" of the lithosphere. The crust is broken into several continental and oceanic tectonic (lithospheric) plates. These plates ride atop the more pliable mantle beneath, colliding to create great mountain systems and spreading apart to form rift valleys. 

The crust is divided into a basal zone called the sima layer, and a less dense sial layer. The sima is primarily composed of a heavy, dark group of basaltic rocks. Primarily composed of silica and magnesium, their high density (2800 to 3300 kg/m3) is due to the large amounts of iron and magnesium. The sial, named for the two predominate elements silicon and aluminum, is lighter in weight with densities around 2700 - 2800  kg/m3.  Often geoscientists refer to rocks of the sial as "granitic rock" as granite is a predominant rock type. The lower boundary of the sial grades into the upper portion of sima. The sial actually has quite a diversity of rock types, including large amounts of basaltic rocks. The sima however is almost exclusively basaltic in composition. 

The Mantle

The mantle comprises 80% of the Earth's total volume. It is mainly composed of a dark, dense ultramafic rock called peridotite camera icon that is rich in iron and magnesium. Seismic wave velocity increases steadily through this zone. The upper mantle is divided into three fairly distinct layers. The lithosphere is a rigid cool layer composed of the outer crust and the uppermost mantle. The asthenosphere  is the least rigid portion of the mantle. It is a soft, easily deformed layer that is susceptible to slow convection caused by pockets of increased heat from the decay of radioactive elements. Separating the upper mantle from the oceanic crust is the Moho Discontinuity. Seismic waves passing though this boundary increase their wave velocity from 4 mi (7 km) per second to 5 mi (8 km) per second. The shift of wave velocity is due to the change in rock composition and density. The rock of the oceanic crust is somewhat less dense than the mantle and referred to as mafic rock due to the smaller proportion of iron and magnesium. Below the asthenosphere is the rest of the upper mantle composed of rigid, solid rock called the mesosphere (not to be confused with the atmospheric layer of the same name).

The Core

The core is divided into the inner and outer cores. Though intense heat is generated at such great depths, geoscientists believe that under the enormous overlying pressure the inner core is made of solid iron and nickel. The outer core is thought to be molten iron because shear-wave velocities drop to zero which occurs when they encounter a liquid. The interaction between the inner and outer core is though to produce Earth's magnetic field. 

 

Previous | Continue    


 

Contents |Glossary | Atlas Index  |  Blog | Podcasts Updates | Top of page

WebActive: Active Learning on the Web

About TPE | Who's Using TPE |  Earth Online

Please contact the author for inquiries, permissions, corrections or other feedback.

For Citation: Ritter, Michael E. The Physical Environment: an Introduction to Physical Geography.
2006. Date visited.  http://www.uwsp.edu/geo/faculty/ritter/geog101/textbook/title_page.html

© 2003-2007
Michael Ritter (author@mritter.net)
Last revised 06/21/07