
 

CR0121 (v2.0) July 15, 2006   1 

 

TSK3000A 32-bit RISC 
Processor 

Summary  
Core Reference  
CR0121 (v2.0) July 15, 2006    

The TSK3000A is a fully functional, 32-bit load/store, 
Wishbone-compliant processor that employs RISC 
architecture with a streamlined set of single word 
instructions. This core reference includes architectural and 
hardware descriptions, instruction sets and on-chip 
debugging functionality for the TSK3000A. 

 

 

The TSK3000A is a 32-bit, Wishbone-compatible, RISC processor. Most instructions are 32-bits wide 
and execute in a single clock cycle. In addition to fast register access, the TSK3000A features a user-
definable amount of zero-wait state block RAM, with true dual-port access. 

The TSK3000A has been specifically designed to simplify the development of 32-bit systems targeted 
for FPGA implementation and to allow the migration of existing 8-bit systems to the 32-bit domain with 
relative ease and low-risk. As a result, complications typically associated with 32-bit system design, 
such as complex memory management, are minimized. 

The TSK3000A, although a “classic RISC” processor and internally based on the Harvard architecture, 
features a greatly simplified memory structure and sophisticated interrupt handling to make coding 
simpler. The processor also simplifies the connection of peripherals with support for the Wishbone 
microprocessor bus. 

The TSK3000A can be used with any FPGA device of suitable capacity supported by Altium Designer, 
giving a completely device and FPGA vendor-independent 32-bit system hardware platform. 

Features 
• 5-stage pipelined RISC processor 

• 32x32- to 64-bit hardware multiplier, signed and unsigned 

• 32x32-bit hardware divider 

• 32-bit single-cycle barrel shifter 

• 32 input interrupts, individually configurable to be level or edge sensitive and used in one of two 
modes: 

− Standard Mode - all interrupts jump to the same, configurable base vector 

− Vectored Mode - providing 32 vectored priority interrupts, each jumping to a separate interrupt 
vector 

• Internal Harvard architecture with simplified external memory access 

• 4GByte address space 

• Wishbone I/O and memory ports for simplified peripheral connection 



TSK3000A 32-bit RISC Processor 

2 CR0121 (v2.0) July 15, 2006  

• Full Viper-based software development tool chain – C compiler/assembler/source-level 
debugger/profiler 

• C-code compatible with other Altium Designer 8-bit and 32-bit Wishbone-compliant processor 
cores, for easy design migration 

• FPGA device-independent implementation 

Available Devices 
The TSK3000A device can be found in the FPGA Processors integrated library (\Program 
Files\Altium Designer 6\Library\Fpga\FPGA Processors.IntLib). 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  3 

RISC Processor Background 
RISC, or Reduced Instruction Set Computer, is a term that is conventionally used to describe a type of 
microprocessor architecture that employs a small but highly-optimized set of instructions, rather than 
the large set of more specialized instructions often found in other types of architectures. This other type 
of processor is traditionally referred to as CISC, or Complex Instruction Set Computer. 

History 
The early RISC processors came from research projects at Stanford and Berkeley universities in the 
late 1970s and early 1980s. These processors were designed with a similar philosophy, which has 
become known as RISC. The basic design architecture of all RISC processors has generally followed 
the characteristics that came from these early research projects and which can be summarized as 
follows: 
• One instruction per clock cycle execution time: RISC processors have a CPI (clock per 

instruction) of one cycle. This is due to the optimization of each instruction on the CPU and a 
technique called pipelining. This technique allows each instruction to be processed in a set number 
of stages. This in turn allows for the simultaneous execution of a number of different instructions, 
each instruction being at a different stage in the pipeline. 

• Load/Store machine with a large number of internal registers: The RISC design philosophy 
typically uses a large number (commonly 32) of registers. Most instructions operate on these 
registers, with access to memory made using a very limited set of Load and Store instructions. This 
limits the need for continuous access to slow memory for loading and storing data. 

• Separate Data Memory and Instruction Memory access paths: Different stages of the pipeline 
perform simultaneous accesses to memory. This Harvard style of architecture can either be used 
with two completely different memory spaces, a single dual-port memory space or, more commonly, 
a single memory space with separate data and instruction caches for the two pipeline stages. 

Over the last 20-25 years, RISC processors have been steadily improved and optimized. In one sense, 
the original simplicity of the RISC architecture has been lost – replaced by super-scalar, multiple-
pipelined hardware, often running in the gigahertz range. 

“Soft” FPGA Processors 
With the advent of low-cost, high-capacity programmable logic devices, there has been something of a 
resurgence in the use of processors with simple RISC architectures. Register-rich FPGAs, with their 
synchronous design requirements, have found the ideal match when paired with these simple pipelined 
processors. 

As a result, most 32-bit FPGA soft processors are adopting this approach. They could even be 
considered as “Retro-processors”. 

Why use “Soft” Processors? 
There are a number of benefits to be gained from using soft processors on reconfigurable hardware. 
The following sections explore some of the more significant of these benefits in more detail. 



TSK3000A 32-bit RISC Processor 

4 CR0121 (v2.0) July 15, 2006  

Field reconfigurable hardware 
For certain specific applications, the ability to change the design once it is in the field can be a 
significant competitive advantage. Applications in general can benefit from this ability also. It allows 
commitment to shipping early in the development cycle. It also allows field testing to be used to help 
drive the latter part of the design cycle without requiring new “board-spins” based on the outcome. This 
is very similar to the way in which alpha, beta, pre-release and release cycles currently drive the 
closure of software products. 

The ability to update embedded software in a device in the field has long been an advantage enjoyed 
by designers of embedded systems. With FPGAs, this has now become a reality for the hardware side 
of the design. For end-users, this translates as “Field Upgradeable Hardware”. 

Faster time to market 
FPGAs offer the fastest time to market due to their programmable nature. Design problems, or feature 
changes, can be made quickly and simply by changing the FPGA design – with no changes in the 
board-level design. 

Improving and extending product life-cycles 
Fast time to market is usually synonymous with a weaker feature set – a traditional trade-off. With 
FPGA-based system designs you can have the best of both worlds. You can get your product to 
market quickly with a limited feature set, then follow-up with more extensive features over time, 
upgrading the product while it is already in the field. 

This not only extends product life-cycles but also lowers the risk of entry, allowing new protocols to be 
added dynamically and hardware bugs to be fixed without product RMA. 

Creating application-specific coprocessors 
Algorithms can easily be moved between hardware and software implementations. This allows the 
design to be initially implemented in software, later off-loading intensive tasks into dedicated hardware, 
in order to meet performance objectives. Again, this can happen even after commitment to the board-
level design. 

Implementing multiple processors within a single device 
Extra processors can be added within a single FPGA device, simply by modifying the design with which 
the device is programmed. Once again, this can be achieved after the board-level design has been 
finalized and a commitment to production made. 

Lowering system cost 
Processors, peripherals, memory and I/O interfaces can be integrated into a single FPGA device, 
greatly reducing system complexity and cost. Once the FPGA-based embedded application moves to 
32-bit, cost becomes an even more powerful driver. 

As large FPGAs become cheaper, both Hybrids and soft cores move into the same general cost area 
as dedicated processors. At the heart of this argument is also the idea that once you have paid for the 
FPGA, any extra IP that you place in the device is free functionality. 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  5 

Avoiding processor obsolescence 
As products mature, processor supply may become an increasing problem, particularly where the 
processor is one of many variants supplied by the semiconductor vendor. Switching to a new processor 
usually requires design software changes or logical hardware changes. 

With FPGA implementations, the design can be easily moved to a different device with little or no 
change to the hardware logic and probably no change to the application software. Peripherals are 
created dynamically in the hardware, so lack of availability of specific processor variants is never a 
problem. 

The TSK3000A 
The TSK3000A is a 32-bit RISC machine that follows the classic RISC architecture previously 
described. It is a load/store machine with 32 general purpose registers. 

Most instructions are 32-bits wide and execute in a single clock cycle. 

In addition to fast register access the TSK3000A, relying on the commonly available fast block RAM in 
FPGA devices, also features a user-definable amount of zero-wait state block RAM, with true dual-port 
access. 

Wishbone Bus Interfaces 
The TSK3000A has been built to use the Wishbone bus standard. This standard is formally described 
as a “System-on-Chip Interconnection Architecture for Portable IP Cores”. The current standard is the 
Revision B.3 Specification, a copy of which is included as part of the software installation and can be 
found by navigating to the Documentation Library » Designing with FPGAs section of the 
Knowledge Center panel. 

The Wishbone standard is not copyrighted and resides in the public domain. It may be freely copied 
and distributed by any means. Furthermore, it may be used for the design and production of integrated 
circuit components without royalties or other financial obligations. It is also implicitly device and vendor 
independent, making it very simple to create highly portable designs. 

Wishbone OpenBUS Processor Wrappers 
To normalize access to hardware and peripherals, each of the 32-bit processors supported in Altium 
Designer has a Wishbone OpenBUS-based FPGA core that 'wraps' around the processor. This 
enables peripherals defined in the FPGA to be used transparently with any type of processor. An 
FPGA OpenBUS wrapper around discrete, hard-wired peripherals also allows them to be moved 
seamlessly between processors. 

The OpenBUS wrappers can be implemented in any FPGA and allow the designer to implement 
FPGA-based portable cores, taking advantage of the device driver system in Altium Designer for both 
FPGA-based soft-core peripherals as well as connections to off-chip discrete peripherals and memory 
devices. 

Processor Abstraction System 
Use of OpenBUS wrappers creates a plug-in processor abstraction system that normalizes the 
interface to interrupt systems and other hardware specific elements. The system provides an identical 



TSK3000A 32-bit RISC Processor 

6 CR0121 (v2.0) July 15, 2006  

interface to the processor's interrupt system, whether soft or hard-vectored. This allows different 
processors to be used transparently with identical source code bases. 

Design Migration 
With each 32-bit processor encased in a Wishbone OpenBUS wrapper, an embedded software design 
can be seamlessly moved between soft-core processors, hybrid hard-core processors and discrete 
processors. 

The Wishbone OpenBUS wrapper around the TSK3000A processor makes it architecturally similar to 
the other 32-bit  processors included with Altium Designer, both in terms of its memory map and its 
pinout. This allows for easy migration from the TSK3000A to any of the following devices: 

• PPC405A – 'hard' PowerPC® 32-bit RISC processor immersed on the Xilinx® Virtex®-II Pro. 

• Nios® II - 32-bit RISC processor targeted to Altera FPGA platforms. 

• MicroBlaze™ – 32-bit RISC processor targeted to Xilinx FPGA platforms. 

• PPC405CR – AMCC® PowerPC 32-bit RISC Microprocessor. 

• ARM®720T_LH79520 – Sharp Bluestreak® LH79520 with built-in ARM720T (32-bit RISC 
microprocessor). 

Altium Designer also features Wishbone-compliant versions of its TSK52x 8-bit processor. These 
Wishbone variants, along with true C-code compatibility between these and the Nios II, allow designs 
to be easily moved between the 8- and 32-bit worlds. 

For further information on the PPC405A, refer to the PPC405A 32-bit RISC Processor core 
reference. 

For further information on the Nios II, refer to the Nios II 32-bit RISC Processor core reference. 

For further information on the MicroBlaze, refer to the MicroBlaze 32-bit RISC Processor core 
reference. 

For further information on the TSK52x, refer to the TSK52x MCU core reference. 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  7 

Architectural Overview 

Symbol 

 

Figure 1. TSK3000A symbol 

Pin Description 
The pinout of the TSK3000A has not been fixed to any specific device I/O - allowing flexibility with user 
application. The TSK3000A contains only unidirectional pins (inputs or outputs). 

Table 1. TSK3000A pin description 

Name Type Polarity/Bus size Description 

Control Signals 
CLK_I I Rise External (system) clock 
RST_I I High External (system) reset 

Interrupt Signals 
INT_I I 32 Interrupt inputs. Each input can be configured to 

operate as level-sensitive or edge-triggered by 
clearing or setting the corresponding bit in the IMode 
register respectively. 
Interrupts can be configured in one of two modes – 
Standard or Vectored – determined by the VIE bit of 
the Status register (Status.9) 



TSK3000A 32-bit RISC Processor 

8 CR0121 (v2.0) July 15, 2006  

Name Type Polarity/Bus size Description 

Wishbone External Memory Interface Signals 
ME_STB_O O High Strobe signal. When asserted, indicates the start of a 

valid Wishbone data transfer cycle 
ME_CYC_O O High Cycle signal. When asserted, indicates the start of a 

valid Wishbone bus cycle. This signal remains 
asserted until the end of the bus cycle, where such a 
cycle can include multiple data transfers 

ME_ACK_I I High Standard Wishbone device acknowledgement signal. 
When this signal goes High, an external Wishbone 
slave memory device has finished execution of the 
requested action and the current bus cycle is 
terminated 

ME_ADR_O O 32 Standard Wishbone address bus, used to select an 
address in a connected Wishbone slave memory 
device for writing to/reading from 

ME_DAT_I I 32 Data received from an external Wishbone slave 
memory device 

ME_DAT_O O 32 Data to be sent to an external Wishbone slave 
memory device 

ME_SEL_O O 4 Select output, used to determine where data is placed 
on the ME_DAT_O line during a Write cycle and from 
where on the ME_DAT_I line data is accessed during 
a Read cycle. Each of the data ports is 32-bits wide 
with 8-bit granularity, meaning data transfers can be 
8-, 16- or 32-bit. The four select bits allow targeting of 
each of the four active bytes of a port, with bit 0 
corresponding to the low byte (7..0) and bit 3 
corresponding to the high byte (31..24) 

ME_WE_O O Level Write enable signal. Used to indicate whether the 
current local bus cycle is a Read or Write cycle. 

0 = Read 
1 = Write 

ME_CLK_O O Rise External (system) clock signal (identical to CLK_I), 
made available for connecting to the CLK_I input of a 
slave memory device. Though not part of the standard 
Wishbone interface, this signal is provided for 
convenience when wiring your design 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  9 

Name Type Polarity/Bus size Description 

ME_RST_O O High Reset signal made available for connection to the 
RST_I input of a slave memory device. This signal 
goes High when an external reset is issued to the 
processor on its RST_I pin. When this signal goes 
Low, the reset cycle has completed and the processor 
is active again. Though not part of the standard 
Wishbone interface, this signal is provided for 
convenience when wiring your design 

Wishbone Peripheral I/O Interface Signals 
IO_STB_O O High Strobe signal. When asserted, indicates the start of a 

valid Wishbone data transfer cycle 
IO_CYC_O O High Cycle signal. When asserted, indicates the start of a 

valid Wishbone bus cycle. This signal remains 
asserted until the end of the bus cycle, where such a 
cycle can include multiple data transfers 

IO_ACK_I I High Standard Wishbone device acknowledgement signal. 
When this signal goes High, an external Wishbone 
slave peripheral device has finished execution of the 
requested action and the current bus cycle is 
terminated 

IO_ADR_O O 24 Standard Wishbone address bus, used to select an 
internal register of a connected Wishbone slave 
peripheral device for writing to/reading from 

IO_DAT_I I 32 Data received from an external Wishbone slave 
peripheral device 

IO_DAT_O O 32 Data to be sent to an external Wishbone slave 
peripheral device 

IO_SEL_O O 4 Select output, used to determine where data is placed 
on the IO_DAT_O line during a Write cycle and from 
where on the IO_DAT_I line data is accessed during a 
Read cycle. Each of the data ports is 32-bits wide with 
8-bit granularity, meaning data transfers can be 8-, 
16- or 32-bit. The four select bits allow targeting of 
each of the four active bytes of a port, with bit 0 
corresponding to the low byte (7..0) and bit 3 
corresponding to the high byte (31..24) 

IO_WE_O O Level Write enable signal. Used to indicate whether the 
current local bus cycle is a Read or Write cycle. 

0 = Read 
1 = Write 



TSK3000A 32-bit RISC Processor 

10 CR0121 (v2.0) July 15, 2006  

Name Type Polarity/Bus size Description 

IO_CLK_O O Rise External (system) clock signal (identical to CLK_I), 
made available for connecting to the CLK_I input of a 
slave peripheral device. Though not part of the 
standard Wishbone interface, this signal is provided 
for convenience when wiring your design 

IO_RST_O O High Reset signal made available for connection to the 
RST_I input of a slave peripheral device. This signal 
goes High when an external reset is issued to the 
processor on its RST_I pin. When this signal goes 
Low, the reset cycle has completed and the processor 
is active again. Though not part of the standard 
Wishbone interface, this signal is provided for 
convenience when wiring your design 

Configuring the Processor from the Schematic Design 
The architecture of the TSK3000A can be configured after placement on the schematic sheet. Simply 
right-click and choose the command to configure the processor from the pop-up menu that appears 
(e.g. Configure U_MCU1 (TSK3000A) for a processor with designator U_MCU1). Alternatively, click 
on the Configure button, available in the Component Properties dialog for the processor. 

The Configure (32-bit Processors) dialog will appear as shown in Figure 2. 

 

Figure 2. Options to configure the architecture of the TSK3000A 

The drop-down field at the top-right of the dialog enables you to choose the type of processor you want 
to work with. As the pinouts between the 32-bit processors are essentially the same, you can easily 
change the processor used in your design without having to extensively rewire the external interfaces. 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  11 

As you select the processor type, the Configure (32-bit Processors) dialog will change accordingly to 
reflect the architectural options available. The symbol on the schematic will also change to reflect the 
type of processor and configuration options chosen. 

The following sections explore each of the regions in the dialog, providing configurable options specific 
to the TSK3000A processor. 

Internal Processor Memory 
This region of the dialog allows you to define the size of the internal memory for the processor. This 
memory, also referred to as ‘Low’ or ‘Boot’ memory is implemented using true dual port FPGA Block 
RAM and will contain the boot part of a software application and the interrupt and exception handlers. 

Speed-critical (or latency-sensitive) parts of an application should also be placed in this memory space. 

The following memory sizes are available to choose from: 
• 1KB (256 x 32-bit Words) 

• 2KB (512 x 32-bit Words) 

• 4KB (1K x 32-bit Words) 

• 8KB (2K x 32-bit Words) 

• 16KB (4K x 32-bit Words) 

• 32KB (8K x 32-bit Words) 

• 64KB (16K x 32-bit Words) 

• 128KB (32K x 32-bit Words) 

• 256KB (64K x 32-bit Words) 

• 512KB (128K x 32-bit Words) 

• 1MB (256K x 32-bit Words). 

Your configuration choice will be reflected in the 
Current Configuration region of the processor's 
schematic symbol (Figure 3). 

Multiply/Divide Unit (MDU) 
This region of the dialog allows you to define whether the processor should incorporate an MDU or not. 
Either choose to include an MDU in the architecture by selecting the Hardware MDU option, or leave 
the MDU out of the architecture by choosing No MDU Hardware. 

With no MDU included in the architecture, the multiply (MULT, MULTU) and divide (DIV, DIVU) 
hardware instructions will not be available and these instructions will be emulated in software by the C 
Compiler. 
Your configuration choice will be reflected in the Current Configuration region of the processor’s 
schematic symbol (Figure 3). 

On-Chip Debug System 
This region of the dialog allows you to add an On-Chip Debug System (OCDS) unit to the processor’s 
architecture, allowing you to: 

 
Figure 3. Current configuration settings for the 
processor. 



TSK3000A 32-bit RISC Processor 

12 CR0121 (v2.0) July 15, 2006  

• control the processor from its associated instrument panel, which can be added to the Instrument 
Rack – Soft Devices panel 

• interrogate and modify memory and register values in real-time 

• perform source level debugging of the embedded software application running on the processor. 
Simply ensure that the option is set to Include JTAG-Based On-Chip Debug System. 

For further information with respect to real-time debugging of the processor, refer to the On-Chip 
Debugging section of this reference. 

By specifying No On-Chip Debug System for the processor, the above capabilities will be removed, 
but the processor will naturally consume less FPGA resources. 
Again, your configuration choice will be reflected in the Current Configuration region of the 
processor’s schematic symbol (Figure 3). 

Breakpoints on Reset 
This region of the dialog allows you to specify whether debugging of the processor from a Hard Reset 
is enabled or not. If you choose the option to Enable Breakpoints on Hard Reset, then the 
processor will stop upon encountering a breakpoint immediately after an external reset is received on 
its RST_I input pin. 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  13 

Memory & I/O Management 
The TSK3000A uses 32-bit address buses providing a 4GByte linear address space. All memory 
access is in 32-bit words, which creates a physical address bus of 30-bits. 

Memory space is broken into three main areas, as illustrated in Figure 4 and described in the section – 
Division of Memory Space. 

Before detailing the nature of each of these 
memory regions, it is worthwhile discussing the 
difficulties with mapping devices into this 
memory, and the solution that Altium Designer 
brings to the problem. 

Defining the Memory Map 
An area that can be difficult to manage in an 
embedded software development project is the 
mapping of memory and peripherals into the 
processor’s address space.  

The memory map, as it is often called, is 
essentially the bridge between the hardware and 
software projects – the hardware team allocating 
each of the various memory and peripheral 
devices their own chunk of the processor’s 
address space, the software team then writing 
their code to access the memory and peripherals 
at the given locations. 

To help manage the process of allocating 
devices into the space there are a number of 
features available to both the hardware designer 
and the embedded software developer in Altium 
Designer.  

This discussion is based around the TSK3000A processor, however the overall approach can be 
applied to any of the 32-bit processors available in Altium Designer. 

Building the Bridge Between the Hardware and Software 
Defining the memory map on the hardware (FPGA project) side is essentially a 3 stage process: 

• Place the peripheral or memory 

• Define its addressing requirements (this is most easily done using a Wishbone Interconnect device) 

• Bring that definition into the processor’s configuration, which can then be accessed by the 
embedded tools 

Figure 5 shows an example of the addressable memory and IO space for the TSK3000A, with a 
number of memory and peripheral devices mapped into it. 

0000_0000h

00FF_FFFFh
0100_0000h

FEFF_FFFFh

FFFF_FFFFh

FF00_0000h
Peripheral I/O 

External Memory 

Internal Memory 

Figure 4. Memory organization in the TSK3000A 



TSK3000A 32-bit RISC Processor 

14 CR0121 (v2.0) July 15, 2006  

 
Figure 5. The TSK3000A’s 232 addressable space (left) and the current set of memory and peripheral devices that 
have been mapped into it (right) 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  15 

The adjacent flow chart shows the process that was followed to build this 
memory map in the FPGA project. This flow chart is only a guide, during 
the course of development it is likely that you will jump back and forth 
through this process as you build up the design. 

Dedicated System Interconnect Components 
This process of being able to quickly build up the design and resolve the 
processor to memory & peripheral interface is possible because of the 
specialized interconnection components, including the Wishbone 
Interconnect, the Wishbone Dual Master and the Wishbone Multi-
Master. 
These three components solve the common system interconnect issues 
that face the designer, these being:  

• Interfacing multiple peripheral and memory blocks to a processor 
(handled by the Wishbone Interconnect component) 

• Allowing two or more system components, that must each be able to 
control the bus, to share access to a common resource (provided by 
the Wishbone Dual Master or Wishbone Multi-Master components). 

Use of the Wishbone Interconnection Architecture for all part s of the 
system that connect to the processor contributes to the system’s ‘building 
block’ behavior. The Wishbone standard resolves data exchange between 
system components – supporting popular data transfer bus protocols, while 
defining clocking, handshaking and decoding requirements (amongst 
others). 

With the lower-level physical interface requirements being resolved by the 
Wishbone interface, the other challenge is the structural aspects of the 
system – defining where components sit in the address space, providing 
address decoding, and allocating and interfacing interrupts to the 
processor. 

For more information on the Wishbone Interconnect component, refer 
to the WB_INTERCON Configurable Wishbone Interconnect core 
reference. 

For more information on the Wishbone Dual Master component, refer 
to the WB_DUALMASTER Configurable Wishbone Dual Master core 
reference. 

For more information on the Wishbone Multi-Master component, refer 
to the WB_MULTIMASTER Configurable Wishbone Multi-Master core 
reference. 

Configurable Interconnect Components 
Structuring the system is greatly simplified by the configurable nature of these system interconnect 
components. When you initially place a Wishbone Interconnect it has a single slave interface defined 
by default, as shown in Figure 6.  

Place Processor

Place Wishbone
Interconnect

Configure Processor
to see Peripherals
(import settings from WB

intercon)

Peripheral memory
map ready for

embedded project
(repeat process for

memory)

              (peripheral n)
               (peripheral 2)

Place peripheral
component on

schematic
                (peripheral 1)

    (Add and Setup Pn)

  
(Add and Setup P2)

Configure
Wishbone

Interconnect
      (Add and Setup P1)

 
The flow of connecting and 
mapping the peripherals (or 
memory) to the processor 



TSK3000A 32-bit RISC Processor 

16 CR0121 (v2.0) July 15, 2006  

Configuring the device is done by right-clicking on the 
component symbol and selecting Configure from the 
context menu. In the Interconnect’s Configure (Wishbone 
Intercon) dialog you can add in peripherals or memory, 
and define their addressing, data and interrupt 
requirements. Once this is done the component symbol 
will actually change, to reflect the configuration 
requirements you just defined. 

As you configure the interconnect to cater for further 
peripherals, the symbol will grow to accommodate 
additional Wishbone Slave interfaces for those 
peripherals. 

 

 

For more information, refer to the WB_INTERCON 
Configurable Wishbone Interconnect core reference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Configuring the Processor 
Each configurable component has its own configuration dialog, including the different processors. The 
processor has separate commands and dialogs to configure memory and peripherals, but it does 
support mapping peripherals into memory space (and the memory into peripheral space), if required.  
An important feature to point out is the Import from Schematic button in the processor’s Configure 
dialogs, clicking this will read in the settings from the Interconnects attached to the processor. This lets 

 
Figure 6. An interconnect which has not been 
configured for any memory or peripherals. 

 
Figure 7. An interconnect configured for two 
peripherals. 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  17 

you quickly build the memory map, as shown in the figure earlier. You now have the memory map 
defined in the hardware, this data is stored with the processor component. 

The processor’s Configure dialogs includes options to generate assembler and C hardware description 
files that can be included in your embedded project, simplifying the task of declaring peripheral and 
memory structures in your embedded code. You can also ‘pull’ the memory map configurations directly 
into the embedded project by enabling the Automatically import when compiling FPGA project 
option in the Configure Memory tab of the Options for Embedded Project dialog. 

For more information on mapping physical memory devices and I/O peripherals into the processor's 
address space, refer to the application note Allocating Address Space in a 32-bit Processor. 

Division of Memory Space 
As illustrated previously (Figure 4), the TSK3000A'S 4GB address space is divided into three distinct 
areas (or ranges). These areas are detailed in the following sections. 

Internal Memory 
The internal "Low" or "Boot" RAM is contained within the processor core and is built using true dual-
port FPGA block RAM memory. As such, it can be read or written on both sides, simultaneously, in a 
single cycle. 

This memory still has the standard limitation of load delay slots, because the load from memory 
happens further down the pipeline, after the Execute stage. As a result, any operation that requires 
loaded data in the cycle immediately after the load will cause the processor to insert a load stall, 
holding the first half of the pipeline for one cycle while the data becomes available. 

Other than this single limitation, the RAM block is as fast as the internal processor registers 
themselves. 

The size of the RAM can vary between 1KB and 16MB, dependent on the availability of embedded 
block RAM in the physical FPGA device used. Memory size is configured in the Internal Processor 
Memory region of the Configure (32-bit Processors) dialog (see the Internal Processor Memory 
section). 

Covering the processor's address space between 0000_0000h and 00FF_FFFFh, it will contain the 
reset and interrupt vectors, as well as any speed or latency-sensitive code or data. 

External Memory 
The processor's Wishbone External Memory Interface is used by both the instruction and data sides of 
the processor and provides access to the majority of the address space of the processor. It covers the 
address space between 0100_0000h and FF00_0000h – 1. 

There are no caches on external memory. 

External Memory Interface Time-out 
A simple time-out mechanism for the interface handles the case when attempting to access an address 
that does not exist, or if the addressed target slave device is not operating correctly. This mechanism 
ensures that the processor will not be ‘locked’ indefinitely, waiting for an acknowledgement on its 
ME_ACK_I input. 



TSK3000A 32-bit RISC Processor 

18 CR0121 (v2.0) July 15, 2006  

After the ME_STB_O output is taken High, the processor will wait 4096 cycles of the external clock 
signal (CLK_I) for an acknowledge signal to appear from the addressed slave memory device, before 
forcibly terminating the current data transfer cycle. 

If a time-out occurs, the ACK bit of the Status register (Status.10) will be taken High. This can be 
cleared to zero under software control to allow for detection of further Wishbone time-outs. 

The ACK_O signal from a slave device should not be used as a ‘long delay’ hand-shaking mechanism. 
Where such a mechanism needs to be implemented, either use polling or interrupts. 

Peripheral I/O 
The processor's Wishbone Peripheral I/O Interface is a one-way Wishbone Master, handling I/O in a 
very similar way to external memory. The port can be used to communicate with any Wishbone Slave 
peripheral device and covers the address space between FF00_0000h and FFFF_FFFFh. This 
address space of 16MB allows a physical address bus size of 24 bits. 

Peripheral I/O Interface Time-outs 
A simple time-out mechanism for the interface handles the case when attempting to access an address 
that does not exist, or if the addressed target slave device is not operating correctly. This mechanism 
ensures that the processor will not be ‘locked’ indefinitely, waiting for an acknowledgement on its 
IO_ACK_I input. 

After the IO_STB_O output is taken High, the processor will wait 4096 cycles of the external clock 
signal (CLK_I) for an acknowledge signal to appear from the addressed slave peripheral device, before 
forcibly terminating the current data transfer cycle. 

If a time-out occurs, the ACK bit of the Status register (Status.10) will be taken High. This can be 
cleared to zero under software control to allow for detection of further Wishbone time-outs. 

The ACK_O signal from a slave peripheral should not be used as a ‘long delay’ hand-shaking 
mechanism. Where such a mechanism needs to be implemented, either use polling or interrupts. 

For more information on connection of slave physical memory and peripheral I/O devices to the 
processor's Wishbone interfaces, refer to the application note Connecting Memory and Peripheral 
Devices to a 32-bit Processor. 

Data Organization 
Data organization refers to the ordering of the data during transfers. There are two general types of 
ordering: 
• BIG ENDIAN – the most significant portion of an operand is stored at the lower address 

• LITTLE ENDIAN – the most significant portion of an operand is stored at the higher address. 

Although the Wishbone specification supports both of these methods for ordering data, the TSK3000A 
is always BIG ENDIAN. 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  19 

Words, Half-Words and Bytes 
The TSK3000A operates on the following data sizes: 

• 32-bit words 

• 16-bit half-words 

• 8-bit bytes. 

There are dedicated load and store instructions for these three data types. 

Figure 8 shows how these different sizes of data are organized relative to each other over an 8-byte 
memory range in the TSK3000A. 

Word-0 Word-1 

31        24 23        16 15       8 7         0 31        24 23        16 15       8 7         0 

        

Half-0 Half-1 Half-2 Half-3 

15          8 7            0 15       8 7         0 15          8 7            0 15       8 7         0 

        

Byte-0 Byte-1 Byte-2 Byte-3 Byte-4 Byte-5 Byte-6 Byte-7 

7            0 7            0 7         0 7         0 7            0 7            0 7         0 7         0 

Figure 8. Organization of data types for the TSK3000A 

Physical Interface to Memory and Peripherals 
The TSK3000A's physical interface to the outside world is always 32 bits wide. Since the addressing 
has a byte-level resolution, this means that up to four "packets" of data (bytes) can be loaded or stored 
during a single memory access. To accommodate this requirement all memory accesses (8-bit, 16-bit 
and 32-bit) are handled in a specific way. 

Each 32-bit read and write can be considered as a read or write through four "byte-lanes". These byte-
lanes are marked as valid by the corresponding bits in the SEL_O[3..0] signal of the relevant Wishbone 
interface (External Memory or Peripheral I/O). Each of these bits will be High if the byte data in that 
lane is valid. This allows a single byte to be written to 32-bit wide memory without needing to use a 
slower read-modify-write cycle. 

The instructions of the TSK3000A require that all 32-bit load/store operations be aligned on 4-byte 
boundaries and all 16-bit load/store operations be aligned on 2-byte boundaries. Byte operations (8-bit) 
can be to any address. 

To complete a byte load or store, the TSK3000A will position the byte data in the correct byte-lane and 
set the SEL_O signal for that lane High. The memory hardware must then only enable writing on the 
relevant 8-bits of data from the 32-bit word. 

When reading, the TSK3000A will put the relevant 8- or 16-bit value into the LSB's of the 32-bit word. 
What happens with the remaining bits depends on the operation: 



TSK3000A 32-bit RISC Processor 

20 CR0121 (v2.0) July 15, 2006  

• for an unsigned read, the processor will pad-out the remaining 24 or 16 bits respectively with 
zeroes 

• for a byte load/store, the processor will sign-extend from bit 8 

• for a half-word load/store, the processor will sign-extend from bit 16. 

Peripheral I/O 
For memory I/O the process described happens transparently, because memory devices are always 
seen by the processor as 32 bits wide. Even when connecting to small 8- or 16-bit physical memories, 
the interfacing Memory Controller device will, as far as the processor is concerned, make the memory 
look like it is 32 bits wide. 

For peripheral devices, the process is not so simple. 32-bit wide peripheral devices behave like 
memory devices, although they may or may not support individual byte-lanes. These devices should 
therefore be accessed using the 32-bit LW and SW instructions. For C-code, this means declaring the 
interface to the device as 32 bits wide, for example: 
#define Port32 (*(volatile unsigned int*) Port32_Address) 

This will result in the software using LW and SW instructions to access the device. 

If the 32-bit peripheral does support byte-lanes (i.e. it has a SEL_I[3..0] input), then smaller accesses 
can be performed using the 8-bit LBU and SB or 16-bit LHU and SH instructions. 

For smaller devices, there needs to be translation of the 8- or 16-bit values into the relevant byte-lanes 
in the processor. This is automatically handled by the Wishbone Interconnect device if it is used to 
access slave peripheral I/O devices. There is, however, some hardware penalty for this since it 
requires an extra 4:1 8-bit multiplexer for 8-bit devices or a 2:1 16-bit multiplexer for 16-bit devices. 

16-bit peripheral devices should be accessed using the 16-bit LHU and SH instructions. For C-code, 
this means declaring the interface to the device as 16 bits wide, for example: 
#define Port16 (*(volatile unsigned short*) Port16_Address) 

This will result in the software using LHU and SH instructions to access the device. 

8-bit peripheral devices should be accessed using the 8-bit LBU and SB instructions. For C-code, this 
means declaring the interface to the device as 8 bits wide, for example: 
#define Port8 (*(volatile unsigned char*) Port8_Address) 

This will result in the software using LBU and SB instructions to access the device. 

There are some trade-offs that may need to be considered when deciding whether to use 8-, 16- or 32-
bit wide devices. It may require significantly less hardware to implement a single 32-bit wide I/O port 
than it would to implement four separate 8-bit ports. If however, the natural format of the data packets 
is 8-bits and hardware size is not a constraint, then it may be better to use 8-bit ports since there will be 
no need to use software to break up a 32-bit value into smaller components. 

If you are only accessing 8-bits at any one time, then software may also execute faster when using 8-
bit wide peripherals, since there is need for extra instructions to extract the 8-bit values from the 32-bit 
values. 

 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  21 

Hardware Description 

Block Diagram 
Figure 9 shows the hardware block diagram for the TSK3000A. 

Figure 9. TSK3000A block diagram 

Status
Interrupt Enables

Interrupts Pending
Timer-Low
Timer-High

Interval Timer Limit
Debug Data (OCDS)

Exception Return
Exception Base
Interrupt Modes

Bypass Memory

EX
Execute Stage

Data Memory
Interface

MA
Memory Access Stage

ID
Instruction Decode Stage

Instruction Decoder

General Purpose
Registers

32 x 32-Bit
Special Function

Registers

Program Counter
Calculator

Mutliply/Divide Unit

Shifter

Adder/Subtractor

Address Calculator

Custom Instruction

IF
Instruction Fetch Stage

Instruction Memory
Interface

Memory Manager

WB
Write-Back Stage

Wishbone Master Port
I/O

Wishbone Master Port
Memory

Instruction
Memory Cache

Data Memory
Cache

Internal Memory Decoder

Dual-Port Internal
FPGA Block Memory

Pipeline ControllerInterrupt Controller

On-Chip Debug System

JTAG Interface

Interrupt Capture
and

Priority Encoder
INT_I[31..0]

Result
MUX

IO
_S

TB
_O

IO
_C

Y
C

_O
IO

_A
C

K
_I

IO
_A

D
R

_O
[2

3.
.0

]
IO

_D
A

T_
I[3

1.
.0

]
IO

_D
A

T_
O

[3
1.

.0
]

IO
_S

E
L_

O
[3

..0
]

IO
_W

E
_O

IO
_C

LK
_O

IO
_R

S
T_

O

M
E

_S
TB

_O
M

E
_C

Y
C

_O
M

E
_A

C
K

_I
M

E
_A

D
R

_O
[3

1.
.0

]
M

E
_D

A
T_

I[3
1.

.0
]

M
E

_D
A

T_
O

[3
1.

.0
]

M
E

_S
E

L_
O

[3
..0

]
M

E
_W

E
_O

M
E

_C
LK

_O
M

E
_R

S
T_

O

JTAG
Signals

CLK_I
RST_I



TSK3000A 32-bit RISC Processor 

22 CR0121 (v2.0) July 15, 2006  

Pipeline 

Pipeline Architecture 
The TSK3000A uses a 5-stage execution pipeline structure. The execution of a single instruction is 
therefore performed in five different stages, as summarized in Figure 10 and detailed in the sections 
that follow. 

Instruction Fetch 

IF 

Instruction Decode 

ID 

Execute 

EX 

Memory Access 

MA 

Write Back 

WB 

Figure 10. Structure of the 5-stage execution pipeline 

Instruction Fetch Stage (IF) 
In this stage, the content of the Program Counter is used to access memory and fetch the next 
instruction to be executed. 

Instruction Decode Stage (ID) 
During this stage, the instruction is decoded and the required operands are retrieved from the general 
purpose registers (GPRs) or special function registers (SFRs). 

Execute Stage (EX) 
Any calculations are performed during this stage. This includes effective address calculation for Load 
or Store instructions. The next Program Counter value is also calculated during this stage of the 
pipeline so that branches, where applicable, can be executed. 

Some initial pre-calculation for memory decoding is also performed in this stage. 

Memory Access Stage (MA) 
If the instruction being executed is of the Load or Store variety, then the data memory is accessed 
during this stage. The previously calculated effective address is applied to the data memory and the 
read or write is performed in accordance with the instruction type. 

Write Back Stage (WB) 
During this stage, the results of the calculation from the Execute stage, or the memory load from the 
Memory Access stage, are updated into the general purpose registers or special function registers. 

Simultaneous Instruction Execution 

The technique of pipelining allows for the simultaneous execution of a number of different instructions, 
each instruction being at a different stage in the pipeline. For the TSK3000A, up to five different 
instructions can be executed simultaneously in the processor’s pipeline, as illustrated in Figure 11. 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  23 

     Current 
Instruction 

    

Cycle 1 IF ID EX MA WB     

Cycle 2  IF ID EX MA WB    

Cycle 3   IF ID EX MA WB   

Cycle 4    IF ID EX MA WB  

Cycle 5     IF ID EX MA WB 

          

Figure 11. Achieving the simultaneous execution of 5 instructions per clock cycle 

Pipeline Hazards 
With a pipelined processor such as the TSK3000A, there are a number of events that can disrupt the 
pipeline, lowering its overall instruction execution rate. 

Data Forwarding Hazards 
If an instruction in the Execute stage requires the result of a previous instruction as one of its operands, 
and that instruction is still in the pipeline, then the instruction cannot complete until the prior instruction 
has completed the pipeline. 

To avoid stalling the pipeline in this case, the TSK3000A “forwards” the data from the prior instruction, 
making it immediately available to the current instruction in the Execute stage. This process happens 
transparently to the application software. 

Long Instruction Hazards 
Some instructions, notably multiply and divides, require more than one cycle to execute. In these cases 
the pipeline will be stalled while the instruction completes. 

Load Hazards 
If the instruction in the Execute stage requires the result of a Load instruction that is in the Memory 
Access stage, then that data will not be available since it has not been loaded from memory yet. In this 
case the processor will stall the first half of the pipeline and let the memory access complete, 
effectively inserting a NOP instruction into the instruction flow. Again, this will be transparent to the 
application software. 

Branch Hazards 
When the processor encounters a branch or jump in the Execute stage and decides to take the branch, 
then the instructions in the IF and ID stages will no longer be valid since execution will continue from a 
different location. 

In this case, on the next rising clock edge (the beginning of the next clock cycle) as the new Program 
Counter value is loaded, the processor will kill the instruction that is being loaded from the instruction 
memory, effectively converting it into a NOP. The instruction that was in the ID stage will move into the 
EX stage and be executed. This instruction is said to be in the ‘branch delay slot’. 



TSK3000A 32-bit RISC Processor 

24 CR0121 (v2.0) July 15, 2006  

Any instruction that follows a Branch or Jump instruction will be executed before the first instruction at 
the new address. This technique allows the processor to only lose one cycle when taking a branch. 
Optimizing compilers will attempt to fill the branch delay slots with useful instructions, increasing the 
overall throughput of the processor. 

General Purpose Registers 
The TSK3000A has a bank of 32 x 32-bit general purpose registers (GPRs). These registers can be 
accessed by the R-Type instructions. 

The register bank can perform two simultaneous reads and one write, from three different addresses 
within the bank. 

The first register in the bank, R0 at index zero, can be used as the destination register in assembly 
instructions but will always return a zero value (even after a write). 

The last register in the bank, R31 at index 31, is used by hardware as the Return Address register. 
This is the register in which the various “Branch and Link” and “Jump and Link” instructions store their 
return address. The return is accomplished using a jr $31 instruction. 

On power-on, the GPR bank of registers are all initialized to 0000_0000h. After a subsequent reset, the 
values in the registers do not change. 

Conventional Usage of General Purpose Registers 
In addition to the registers that are used directly by the hardware (R0 and R31), there are a number of 
registers that are used for special purpose by convention. 

For assembler code, R1 is used by the Assembler to implement macro instructions when it needs to 
create an intermediate result. Assignment to this register using generic assembly instructions will result 
in warnings being generated by the Assembler, only if it uses this register during one or more machine 
instructions required to implement the generic instruction. 

For C-code, there are also a number of registers in the GPR bank that have conventional usage. Table 
2 lists the General Purpose Registers for the processor, identifying and summarizing the conventional 
usage of each. 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  25 

Table 2. Conventional usage of General Purpose Registers 

Register Name Description 

$0  Always returns a zero value 

$1 at Assembler Temporary register – used for intermediate macro 
instruction results 

$2-$3 $v0 - $v1 Used for expression evaluations and to hold the integer and pointer 
type function return values 

$4-$7 $a0 - $a3 Used for passing arguments to functions; values are not preserved 
across function calls. Additional arguments are passed on the stack 

$8-$15 $t0 - $t7 Temporary registers used for expression evaluation; values are not 
preserved across function calls 

$16-$23 $s0 - $s7 Saved registers; values are preserved across function calls 

$24-$25 $t8 - $t9 Temporary registers used for expression evaluation; values are not 
preserved across function calls 

$26-$27 $kt0 - $kt1 
($k0 - $k1) 

Used by the operating system. $kt0 is also used by the Compiler in 
interrupt handling routines 

$28 $gp Global pointer and context pointer 

$29 $sp Stack pointer 

$30 $s8 (or $fp) Saved register (like $s0 - $s7) (or frame pointer) 

$31 $ra Return Address register - used by Branch and Link and Jump and Link 
instructions to store their return address 

Special Function Registers 
Special Function Registers (SFRs) in the TSK3000A are implemented as COP0 registers (Coprocessor 
0). They can be read and written (where possible) in a single instruction cycle using the MFC0 and 
MTC0 instructions, respectively. 

Table 3 summarizes the special function registers for the TSK3000A. 



TSK3000A 32-bit RISC Processor 

26 CR0121 (v2.0) July 15, 2006  

Table 3. TSK3000A special function registers (SFRs) 

Register Name Description Read Write Index 

Control/Status Status Individual Control and Status bits  Yes Yes $0 

Interrupt Enable IEnable Enable/Disable individual interrupts  Yes Yes $1 

Interrupts Pending IPending View of the interrupt values after 
individual enable gating (i.e. 
interrupts that are pending or yet to 
be handled) 

Yes Yes $2 

Time Base Low TBLO Least significant 32-bits of the 64-bit 
time base  

Yes No $3 

Time Base High TBHI Most significant 32-bits of the 64-bit 
time base  

Yes No $4 

Programmable 
Interval Timer Limit 

PIT Interval length (in clock cycles) of 
the interval timer 

Yes Yes $5 

Debug Data Debug Register for OCDS to exchange data 
with the processor  

Yes Yes $6 

Exception Return ER Register in which to store the return 
address for interrupts and 
exceptions 

Yes Yes $7 

Exception Base EB Specifies base address for the 
interrupt vector table 

Yes Yes $8 

Interrupt Mode IMode Configures interrupt input pins to 
operate as either level-sensitive or 
edge-triggered 

Yes Yes $9 

Control/Status register (Status) 
This 32-bit register (COP0-$0) is used to control aspects of the processor’s operation and to determine 
the current state of the processor. Only bits 0..15 are currently used. All other bits are reserved for 
future use. 

After a reset, this register is initialized to 0000_0000h. 

Table 4. The Status register 

MSB                            LSB 

31            16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

- Interrupt Priority ACK VIE ITE ITR 0 UMo IEo UMp IEp UMc IEc 

 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  27 

Table 5. Status register bit functions 

Bit Symbol Function 

Status.31..Status.16 - Reserved for future use 

Status.15..Status.11 Interrupt 
Priority 

Shows the value for the current priority vector based on the current 
interrupt inputs 

Status.10 ACK Acknowledgment flag – used to indicate whether a time-out has 
occurred on one of the processor’s Wishbone interfaces: 

0 = Current Wishbone transfer cycle terminated normally, with an 
acknowledge signal received from the addressed slave device 
(within 4096 cycles of CLK_I after corresponding STB_O output 
taken High) 

1 = Wishbone transfer cycle has been forcibly terminated by the 
processor due to no acknowledgement from addressed slave 
device. 
Note: There is no way to distinguish where the time-out occurred 
(External Memory Interface or Peripheral I/O Interface). Clear this 
bit from software to enable detection of further Wishbone interface 
time-outs 

Status.9 VIE Vectored Interrupt Enable. Use this bit to determine the current 
interrupt mode: 

0 = Standard Interrupt Mode 

1 = Vectored Interrupt Mode 

Status.8 ITE Interval Timer Enable. This bit serves effectively as both an enable 
and a reset. When this bit is zero, the Interval Timer is held at zero. 
When set to one, the Timer is enabled and starts to count up 

Status.7 ITR Interval Timer (interrupt) Reset. When this bit is set High it clears 
the interrupt flag for the Interval Timer. Holding this bit High will 
prevent interrupts by breaking the link between the Interval Timer 
and the interval limit stored in the PIT register. Therefore if the 
Interval Timer is enabled (ITE = 1), the Interval Timer will just keep 
counting up, overflow, wrap-around and so on. 

This bit has no affect on the actual Interval Timer itself. This 
ensures that the interrupt can be cleared at any time (some time 
after the interrupt happened) without upsetting the regularity of the 
Interval Timer. 

Setting this bit back to zero will enable another Interval Timer 
interrupt to occur, and again has no affect on the Interval Timer 

Status.6 0 Reserved – always set to zero 



TSK3000A 32-bit RISC Processor 

28 CR0121 (v2.0) July 15, 2006  

Bit Symbol Function 

Status.5 UMo User Mode – Old. Indicates the user mode from two exceptions 
ago 

Status.4 IEo Interrupt Enable – Old. Indicates the interrupt mode from two 
exceptions ago 

Status.3 UMp User Mode – Previous. Indicates the user mode prior to the last 
exception 

Status.2 IEp Interrupt Enable – Previous. Indicates the interrupt mode prior to 
the last exception 

Status.1 UMc User Mode – Current. Controls whether the Processor is in user 
mode or not. 

0 – Processor not in user mode 

1 – Processor is in user mode 

Status.0 IEc Interrupt Enable – Current. Controls whether interrupts are globally 
enabled or not. This bit is saved and then set by any interrupt or 
trap (SYSCALL) and restored to its previous state by the RFE 
(restore from exception) instruction. 

0 – interrupts are globally disabled 

1 – interrupts are globally enabled 

Interrupt Enable register (IEnable) 
This 32-bit register (COP0-$1) allows individual interrupts to be enabled or disabled. Each bit 
corresponds to a single interrupt. Setting a bit High will enable interrupts on the correspondingly 
numbered interrupt input. 

After a reset, this register is initialized to 0000_0000h, effectively disabling all interrupts. 

Interrupts Pending register (IPending) 
This 32-bit register (COP0-$2) provides a view of the interrupt values after individual interrupt enable 
gating. The corresponding bit for an interrupt in this register will therefore only be High if both an 
interrupt is present at that interrupt input AND the corresponding bit for that interrupt in the IEnable 
register is also High. 

When an interrupt input is configured to operate as edge-triggered, then once an edge has occurred it 
must be cleared, to allow the detection of another edge. This is accomplished by writing a '1' to the 
corresponding bit in the IPending register. 

An activated edge-triggered interrupt will appear as pending in the IPending register until it is cleared 
using this method. 

After a reset, this register is initialized to 0000_0000h. 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  29 

Time Base (TBLO & TBHI) 
The time base is a 64-bit counter that increments once every clock cycle. As the counter cannot be 
written to, it always maintains the cycle count since the last reset. 

The time base is implemented as a pair of 32-bit Read-only registers: 
• TBLO (COP0-$3) – least significant 32 bits of the counter 

• TBHI (COP0-$4) – most significant 32 bits of the counter. 

At 50MHz, the time base will roll over once every 11,699 years, making it suitable for long term time 
management purposes. 

The time base never generates any interrupts. 

After a reset, the time base registers are initialized to 0000_0000h. 

Reading the time base 
As the 64-bit time base can only be read using two separate instructions, special precautions need to 
be taken in order to read it. This is due to the fact that it is possible for the low 32-bits to roll over 
(thereby incrementing the TBHI register) as the value in TBHI is being read. This will happen when the 
TBLO register rolls over from FFFF_FFFFh to 0000_0000h. 

To avoid this problem, read the value in the TBHI register before and after reading the value in the 
TBLO register, and compare the two to check for rollover. If rollover has occurred, simply provide 
looping in the code to re-read the register values. An example of such coding is shown below: 
Loop: 

 mfc0  $2,TBHI   ; Read TBHI 

 mfc0  $3,TBLO  ; Read TBLO 

 mfc0  $4,TBHI   ; Read TBHI again 

 bne $2,$4,Loop ; Check for TBU rollover by comparing old and new 

   ; Read again if a rollover occurred 

Programmable Interval Timer Limit register (PIT) 
This 32-bit register (COP0-$5) is used to control how high the interval timer will count before being 
reset to zero and (optionally) generating an interrupt. 

Programming a value into this register will cause the timer to be reset to zero and to generate an 
interrupt (if enabled) every time the specified count is reached. For example, if the system clock is 
running at 50MHz, programming this register with decimal 50,000 will generate an interrupt once every 
millisecond. 

The value written to this register will remain unchanged until either a system reset (RST_I High) or the 
register is written with a new value by the application software. 

After a system reset, this register is initialized to FFFF_FFFFh. 

Reading the Programmable Interval Limit 
The current value for the Programmable Interval Limit can be read from the PIT register using the 
MFC0 command and storing the value in an appropriate general purpose register, as illustrated by the 
example code below: 



TSK3000A 32-bit RISC Processor 

30 CR0121 (v2.0) July 15, 2006  

mfc0  $2,PIT   ; Read PIT to GPR 2 

Writing the Programmable Interval Limit 
Writing a value for the Programmable Interval Limit to the PIT register is a two-instruction process. 
Firstly, you need to write the required interval value to a general purpose register and then write the 
contents of that register to the PIT register, using the MTC0 instruction, as illustrated by the example 
code below: 
li  $2,50000  ; Load GPR 2 with 50,000 for 1 ms interval at 50 MHz 

mtc0 $2,PIT    ; Write contents of GPR 2 to the PIT register 

Debug Data register (Debug) 
This 32-bit register (COP0-$6) is used by the debug system to exchange data between the debugger 
and the processor. This is the only register that is both a JTAG register and a processor register and is 
therefore visible and writeable to by both. However, there should be no need to access this register. 

After a reset, this register is initialized to 0000_0000h. 

Exception Return register (ER) 
This 32-bit register (COP0-$7) is used by the processor to store the return address for interrupts and 
exceptions. 

After a reset, this register is initialized to 0000_0000h. 

Exception Base register (EB) 
This 16-bit register (COP0-$8) specifies the address, within the first 64K of memory, for the base of the 
interrupt vector table. When using interrupts in standard mode, this specifies the common vector for all 
interrupts and exceptions. 

The default value for this register is 0000_0100h and is initialized to this value after a reset. 

Interrupt Mode register (IMode) 
This 32-bit register (COP0-$9) is used to configure each of the individual interrupt inputs to operate 
either as edge-sensitive or level-sensitive: 

• Set IMode.n High for edge-triggered operation (active on rising edge) 

• Set IMode.n Low for level-sensitive operation (active High) 

Level-sensitive operation is the default (i.e. all bits of the register set to 0). 

After a reset, this register is initialized to 0000_0000h. 

Additional Registers 
The TSK3000A defines the following three special registers that are not part of either the GPR or SFR 
banks of registers. 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  31 

Program Counter (PC) 
As a program instruction is executed, the Program Counter will contain the address program instruction 
to be executed. The PC is incremented by four at the start of the subsequent instruction cycle, unless 
an instruction changes the PC. 

After a reset, this register is initialized to 0000_0000h. 

High Word register (HI) 
When performing multiplication using the MULT or MULTU instructions, this 32-bit register is loaded 
with the high-order word of the 64-bit result. 

When performing division using the DIV or DIVU instructions, this register is loaded with the remainder 
word. The sign of the value stored will depend on whether signed or unsigned division is being 
performed. If signed, the value stored will be the same sign as that of the numerator operand. If 
unsigned, the value will always be positive. 

The HI register can be read and written in a single instruction cycle using the MFHI and MTHI 
instructions, respectively. 

After a reset, this register is initialized to 0000_0000h. 

Low Word register (LO) 
When performing multiplication using the MULT or MULTU instructions, this 32-bit register is loaded 
with the low-order word of the 64-bit result. 

When performing division using the DIV or DIVU instructions, this register is loaded with the quotient 
word. The sign of the value stored will depend on whether signed or unsigned division is being 
performed. If signed, the value stored will be negative if the signs of the operands are different. If 
unsigned, the value will always be positive. 

The LO register can be read and written in a single instruction cycle using the MFLO and MTLO 
instructions, respectively. 

After a reset, this register is initialized to 0000_0000h. 



TSK3000A 32-bit RISC Processor 

32 CR0121 (v2.0) July 15, 2006  

Register Reset Values 
Table 6 provides an at-a-glance summary of the values contained in each of the TSK3000’s internal 
registers after an external system reset has been received on the RST_I input. 

Table 6. Register reset values 

Register Value after reset 

Status 0000_0000h 

IEnable 0000_0000h 

IPending 0000_0000h 

TBLO 0000_0000h 

TBHI 0000_0000h 

PIT FFFF_FFFFh 

Debug 0000_0000h 

ER 0000_0000h 

EB 0000_0100h 

IMode 0000_0000h 

HI 0000_0000h 

LO 0000_0000h 

PC 0000_0000h 

GPR$0-GPR$31 The values in these registers 
are only initialized to zero at 
power-on. An external reset 
does not affect the values. 

Wishbone Communications 
The following sections detail the standard handshaking that takes place when the processor 
communicates to a slave peripheral or memory device connected to the relevant Wishbone interface 
port. Both of the TSK3000A's Wishbone ports can be configured for 8-, 16- or 32-bit data transfer, 
depending on the width of the data bus supported by the connected slave device. Configuration is 
achieved using the relevant IO_SEL_O or ME_SEL_O output, which defines where on the 
corresponding DAT_O and DAT_I lines the data appears when writing and reading respectively.  



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  33 

Writing to a Slave Wishbone Peripheral Device 
Data is written from the host microcontroller (Wishbone Master) to a Wishbone-compliant peripheral 
device (Wishbone Slave) in accordance with the standard Wishbone data transfer handshaking 
protocol. This data transfer cycle can be summarized as follows: 

• The host presents an address on its IO_ADR_O output for the register it wants to write to and valid 
data on its IO_DAT_O output. It then asserts its IO_WE_O output to specify a Write cycle 

• The host defines where the data will be sent on the IO_DAT_O line using its IO_SEL_O signal 

• The slave device receives the address at its ADR_I input and prepares to receive the data 

• The host asserts its IO_STB_O and IO_CYC_O outputs, indicating that the transfer is to begin. The 
slave device, monitoring its STB_I and CYC_I inputs, reacts to this assertion by latching the data 
appearing at its DAT_I input into the requested register and asserting its ACK_O signal – to indicate 
to the host that the data has been received 

• The host, monitoring its IO_ACK_I input, responds by negating the IO_STB_O and IO_CYC_O 
signals. At the same time, the slave device negates the ACK_O signal and the data transfer cycle is 
naturally terminated. 

Reading from a Slave Wishbone Peripheral Device 
Data is read by the host microcontroller (Wishbone Master) from a Wishbone-compliant peripheral 
device (Wishbone Slave) in accordance with the standard Wishbone data transfer handshaking 
protocol. This data transfer cycle can be summarized as follows: 

• The host presents an address on its IO_ADR_O output for the register it wishes to read. It then 
negates its IO_WE_O output to specify a Read cycle 

• The host defines where it expects the data to appear on its IO_DAT_I line using its IO_SEL_O 
signal 

• The slave device receives the address at its ADR_I input and prepares to transmit the data from the 
selected register 

• The host asserts its IO_STB_O and IO_CYC_O outputs, indicating that the transfer is to begin. The 
slave device, monitoring its STB_I and CYC_I inputs, reacts to this assertion by presenting the valid 
data from the requested register at its DAT_O output and asserting its ACK_O signal – to indicate 
to the host that valid data is present 

• The host, monitoring its IO_ACK_I input, responds by latching the data appearing at its IO_DAT_I 
input and negating the IO_STB_O and IO_CYC_O signals. At the same time, the slave device 
negates the ACK_O signal and the data transfer cycle is naturally terminated. 



TSK3000A 32-bit RISC Processor 

34 CR0121 (v2.0) July 15, 2006  

Writing to a Slave Wishbone Memory Device 
Data is written from the host microcontroller (Wishbone Master) to a Wishbone-compliant memory 
device or memory controller (Wishbone Slave) in accordance with the standard Wishbone data transfer 
handshaking protocol. This data transfer cycle can be summarized as follows: 

• The host presents an address on its ME_ADR_O output for the address in memory that it wants to 
write to and valid data on its ME_DAT_O output. It then asserts its ME_WE_O output to specify a 
Write cycle 

• The host defines where the data will be sent on the ME_DAT_O line using its ME_SEL_O signal 

• The slave device receives the address at its ADR_I input and prepares to receive the data 

• The host asserts its ME_STB_O and ME_CYC_O outputs, indicating that the transfer is to begin. 
The slave device, monitoring its STB_I and CYC_I inputs, reacts to this assertion by storing the 
data appearing at its DAT_I input at the requested address and asserting its ACK_O signal – to 
indicate to the host that the data has been received 

• The host, monitoring its ME_ACK_I input, responds by negating the ME_STB_O and ME_CYC_O 
signals. At the same time, the slave device negates the ACK_O signal and the data transfer cycle is 
naturally terminated. 

Reading from a Slave Wishbone Memory Device 
Data is read by the host microcontroller (Wishbone Master) from a Wishbone-compliant memory device 
or memory controller (Wishbone Slave) in accordance with the standard Wishbone data transfer 
handshaking protocol. This data transfer cycle can be summarized as follows: 

• The host presents an address on its ME_ADR_O output for the address in memory that it wishes to 
read. It then negates its ME_WE_O output to specify a Read cycle 

• The host defines where it expects the data to appear on its ME_DAT_I line using its ME_SEL_O 
signal 

• The slave device receives the address at its ADR_I input and prepares to transmit the data from the 
selected memory location 

• The host asserts its ME_STB_O and ME_CYC_O outputs, indicating that the transfer is to begin. 
The slave device, monitoring its STB_I and CYC_I inputs, reacts to this assertion by presenting the 
valid data from the requested memory location at its DAT_O output and asserting its ACK_O signal 
– to indicate to the host that valid data is present 

• The host, monitoring its ME_ACK_I input, responds by latching the data appearing at its ME_DAT_I 
input and negating the ME_STB_O and ME_CYC_O signals. At the same time, the slave device 
negates the ACK_O signal and the data transfer cycle is naturally terminated. 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  35 

Wishbone Timing 
Figure 12 shows the signal timing for a standard single Wishbone Write Cycle (left) and Read Cycle 
(right), respectively. The timing diagrams are presented assuming point-to-point connection of the 
Master and Slave interfaces, with only signals on the Master side of the interface shown. Note that 
cycle speed can be throttled by the Slave device inserting wait states (represented as WSS on the 
diagrams) before asserting its acknowledgement line (ACK_I input at the Master side). 

 
Figure 12. Timing diagrams for single Wishbone Write (left) and Read (right) cycles 



TSK3000A 32-bit RISC Processor 

36 CR0121 (v2.0) July 15, 2006  

Interrupts & Exceptions 
The TSK3000A can generate both hardware exceptions (interrupts) and software exceptions. 

Hardware Generated Exceptions (Interrupts) 
The processor has 32 interrupt inputs. Interrupts are wired to the processor’s INT_I input pin. 

Each interrupt can be individually configured to operate either as edge-triggered or level-sensitive by 
setting its corresponding bit in the IMode register – 0 for level-sensitive (active High) or 1 for edge-
triggered (active on rising edge). By default, all interrupt inputs are configured for level-sensitive 
operation. 

When an interrupt input is configured to operate as edge-triggered, then once an edge has occurred it 
must be cleared, to allow the detection of another edge. This is accomplished by writing a '1' to the 
corresponding bit in the IPending register. The following example C-code shows how this can be 
written: 
void tsk3000_clear_interrupt_edge_flags(unsigned int value) 

{ 

    __mtc0(value,TSK3000_COP_InterruptPending); 

} 

An activated edge-triggered interrupt will appear as pending in the IPending register until it is cleared 
using this method. 

Interrupt Modes 
There are two modes of operation with respect to interrupts – Standard and Vectored. The mode itself 
is controlled by the VIE bit in the Status register (Status.9). 

Standard Mode 

This mode for interrupts is selected by writing a ‘0’ into bit 9 of the Status register. 

When an interrupt line goes active, the processor will: 

• save a return address into the Exception Return register 

• save the current state of the Global Interrupt Enable bit, IEc, (Status.0) and then clear this bit to 
disable all other interrupts 

• jump to the interrupt vector address stored in the EB register. Note that in this mode, all interrupts 
will jump to this vector. 

The interrupt handler can then either look at: 

• the IPending register to see the raw interrupt inputs in order to do its own priority encoding in 
software 

• the Status register bits 15..11, which contain the current priority vector based on the current 
interrupt inputs. The software exception handler can use this value to help resolve interrupt 
priorities if required. 

Vectored Mode 

This mode for interrupts is selected by writing a ‘1’ into bit 9 of the Status register. In this mode the 32 
interrupt inputs – INT_I(31..0) – will each jump to a separate interrupt vector. 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  37 

Each vector slot requires 8 Bytes, allowing enough room for a jump and its associated branch delay 
slot. The target vector addresses are determined using the value stored in the EB register and range 
from (EB + 0000h) to (EB + 00F8h). These are listed in detail in Table 7 of the following section. 

The priority of interrupts in this mode is from lowest to highest. Therefore, interrupt 0 (INT_I(0)) has a 
higher priority than interrupt 1 (INT_I(1)), which has a higher priority than interrupt 2 (INT_I(2)), and so 
on. 

Interrupt Vector Addresses 

Table 7 lists the target vector addresses that are used for each of the 32 interrupt inputs, configured in 
Standard and Vectored Modes. In each case, the generic target addresses and default target 
addresses (based on the default value for EB being 0100h) are listed. 

Table 7. Interrupt vector addresses in Standard and Vectored modes 

Standard Mode Vectored Mode Interrupt 
Input Target Address Default Address Target Address Default Address 

0 EB 0100h EB + 0000h 0100h 

1 EB 0100h EB + 0008h 0108h 

2 EB 0100h EB + 0010h 0110h 

3 EB 0100h EB + 0018h 0118h 

4 EB 0100h EB + 0020h 0120h 

5 EB 0100h EB + 0028h 0128h 

6 EB 0100h EB + 0030h 0130h 

7 EB 0100h EB + 0038h 0138h 

8 EB 0100h EB + 0040h 0140h 

9 EB 0100h EB + 0048h 0148h 

10 EB 0100h EB + 0050h 0150h 

11 EB 0100h EB + 0058h 0158h 

12 EB 0100h EB + 0060h 0160h 

13 EB 0100h EB + 0068h 0168h 

14 EB 0100h EB + 0070h 0170h 

15 EB 0100h EB + 0078h 0178h 

16 EB 0100h EB + 0080h 0180h 

17 EB 0100h EB + 0088h 0188h 

18 EB 0100h EB + 0090h 0190h 



TSK3000A 32-bit RISC Processor 

38 CR0121 (v2.0) July 15, 2006  

19 EB 0100h EB + 0098h 0198h 

20 EB 0100h EB + 00A0h 01A0h 

21 EB 0100h EB + 00A8h 01A8h 

22 EB 0100h EB + 00B0h 01B0h 

23 EB 0100h EB + 00B8h 01B8h 

24 EB 0100h EB + 00C0h 01C0h 

25 EB 0100h EB + 00C8h 01C8h 

26 EB 0100h EB + 00D0h 01D0h 

27 EB 0100h EB + 00D8h 01D8h 

28 EB 0100h EB + 00E0h 01E0h 

29 EB 0100h EB + 00E8h 01E8h 

30 EB 0100h EB + 00F0h 01F0h 

31 EB 0100h EB + 00F8h 01F8h 

Generating an Interrupt 
A hardware interrupt is generated if the following conditions are met: 

• The IEc bit of the Status register (Status.0) is 1 

• An interrupt input – INT_I(n) – is active (High or Rising edge) 

• The corresponding bit n of the Interrupt Enable register (IEnable.n) is High 

Figure 13 shows the interrupt structure for the TSK3000A, which includes the dedicated interrupt inputs 
and also the interrupt generated by the Programmable Interval Timer, which is discussed in the 
following section. 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  39 

IEnable
Register

IPending
Register

INT_I(0)

INT_I(2)

INT_I(31)

From PIT Rollover
IEnable.0

IEnable.1

IEnable.31

Global IE Bit (Status.0)

Generate Interrupt

 
Figure 13. TSK3000A hardware interrupt structure 

Unless vectored interrupts are enabled, the exception handler code at the interrupt vector address 
must determine the cause of the exception and provide an appropriate response. 

When interrupt inputs are active, they are ignored until the pipeline is not stalled. They are then 
handled as injected software exceptions. 

The special case of an interrupt occurring when the processor is executing a branch delay slot 
instruction, is handled transparently. In this case, the processor finishes the branch delay slot 
instruction and then processes the interrupt. 

Programmable Interval Timer 
The TSK3000A includes a programmable interval timer. This is simply a 32-bit counter that is 
incremented once every clock cycle until it hits the limit value stored in the PIT register. It then resets to 
zero and starts to count up again. 

The value in this counter can not be read and the only evidence of its existence is the interrupt 
generated (if enabled) when it counts past the value in the PIT register. 

The counter runs when the ITE bit of the Status register (Status.8) is High and is reset (held at zero) 
when ITE is Low. When it equals the limit set in the PIT register, it will return to zero at the next rising 
clock edge. 

The interrupt (if enabled) will appear (flagged) as a pending interrupt on interrupt input 0 (i.e. it is 
logically ORed with the processor’s INT_I(0) input). When the timer is used it is given the highest 
priority. INT_I(0) should ideally be tied to GND in this case, unless the software application is prepared 
to handle two types of interrupts on interrupt zero. 

When the interrupt occurs, the Interval Timer itself resets (wraps-around to zero) and continues to 
count. The interrupt flag for the interval timer must be manually cleared however, by writing '1' into the 
ITR bit of the Status register (Status.7). 



TSK3000A 32-bit RISC Processor 

40 CR0121 (v2.0) July 15, 2006  

Setting up the Interval Timer to Generate Interrupts 
The following steps outline the procedure for preparing the Interval Timer for interrupt generation: 

• Tie external interrupt 0 to GND (unless the application software can handle two types of interrupt on 
this interrupt line) 

• Disable the Interval Timer by setting ITE bit in the Status register to '0', therefore holding the Timer 
at zero 

• Clear pending interrupts from the Interval Timer, by setting ITR bit in the Status register to '1' and 
then '0' 

• Load the PIT register with the desired time (in clock cycles) 

• Enable interrupt 0 by setting bit 0 in the IEnable register to '1' 

• Enable the Interval Timer by setting ITE bit in the Status register to '1'. The Timer will start counting 
up. 

After the number of clock cycles programmed into the PIT register, an interrupt will be pending on 
interrupt 0. If interrupts are enabled (IEc bit in Status register is '1') then the interrupt handler will be 
called. 

Handling an Interrupt Generated by the Interval Timer 
When the limit value in the PIT register is reached, the Interval Timer interrupt flag will be set and the 
Timer itslef will be reset to zero. The interrupt flag will not be reset until you toggle the ITR bit in the 
Status register to '1' then '0'. The Timer will continue to count up – independent of the state of the ITR 
bit – resetting whenever it reaches the specified limit, until diabled by clearing the ITE bit in the Status 
register. 

Changing the Rate of Interrupt Generation 
To change the rate at which the Interval Timer generates interrupts, simply change the value loaded 
into the PIT register. The safest way to do this is to carry out the process of preparing the Timer for 
interrupt generation, as detailed previously, loading the PIT register with the new value. 

If you don't disable the Interval Timer first (using the ITE bit to reset and hold it at zero), then if you 
program a lower value into the PIT register than was previously programmed, the counter may already 
be past that value and hence will continue all the way up to FFFF_FFFFh until wrapping around. 

Software Generated Exception 
When a program issues the SYSCALL instruction, it generates a software exception. The exception 
handler for the operating system determines the reason for the SYSCALL and responds appropriately. 

The SYSCALL instruction always results in a jump to the vector address stored in the Exception Base 
register (EB). To identify that the interrupt is indeed generated by the software rather than the 
hardware, bit 0 of the IPending register is interrogated. If it is '0' – i.e. there is no pending interrupt – 
then the interrupt is software-generated. 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  41 

Returning from an Interrupt 
Before returning from a hardware-generated exception (an interrupt), the application code must clear 
the cause of the interrupt. 

To return from an interrupt there are two actions that must be completed: 

• Jump to the address in the Exception Return register (ER). This is a special function register in the 
coprocessor (COP0-$7). The processor will have placed the correct return address in this register 
when the interrupt occurred. For hardware interrupts this would have been the address of the 
currently executing instruction. For software exceptions (SYSCALL instructions) this would be the 
address after that instruction. 

• The RFE (Restore From Exception) instruction must be executed. 

Any registers modified during exception processing must be restored by the exception handling 
software before returning. When executing the RFE instruction, the processor will restore the status 
bits in the Status register as follows: 

IEc ← IEp 

IEp ← IEo 

UMc ← UMp 

UMp ← UMo 

The values of IEo and UMo will remain unchanged. 

In Assembly source code, the normal practice is to place the RFE instruction in the branch delay slot of 
the Jump instruction that returns from the interrupt. For example: 
ReturnFromInterrupt: 

mfc0 t1, COP_ExceptionReturn 

jr t1 

 rfe 

In C source code, this is all handled automatically by the Compiler. 



TSK3000A 32-bit RISC Processor 

42 CR0121 (v2.0) July 15, 2006  

On-Chip Debugging 
To facilitate real-time debugging of the processor, the TSK3000A can be configured to include JTAG-
based On-Chip Debug System (OCDS) hardware. To add this functionality, simply choose the 
Include JTAG-Based On-Chip Debug System option, in the On-Chip Debug System region of 
the associated Configure (32-bit Processors) dialog (Figure 14). 

 

Figure 14. Enabling the TSK3000A's On-Chip Debug hardware. 

With this option enabled, the following set of additional functional features are provided: 

• Reset, Go, Halt processor control 

• Single or multi-step debugging 

• Read-write access for internal processor registers 

• Read-write access for memory and I/O space 

• Unlimited software breakpoints. 

Adding Debug Functionality to the Standard Core 
As mentioned in the previous section, debug functionality is provided through the use of an On-Chip 
Debug System unit (OCDS). The simplified block diagram of Figure 15 shows the connection between 
this unit and the standard TSK3000A core. 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  43 

TCK 

TMS 

TDI 

TDO 

Standard 
JTAG 

interface 

MCU 
symbol 

pins 

TSK3000A OCD Processor 

Processor 
Core 

(TSK3000A) 

OCDS Interface 

OCDS Control 
and 

Debug Port 

 
Figure 15. Simplified block diagram for the TSK3000A with OCDS hardware installed 

The host computer is connected to the target core using the IEEE 1149.1 (JTAG) standard interface. 
This is the physical interface, providing connection to physical pins of the FPGA device in which the 
core has been embedded.  

The Nexus 5001 standard is used as the protocol for communications between the host and all devices 
that are debug-enabled with respect to this protocol. This includes all debug-enabled processors, as 
well as other Nexus-compliant devices such as frequency generators, logic analyzers, counters, etc. 

All such devices are connected in a chain – the Soft Devices chain – which is determined when the 
design has been implemented within the target FPGA device and presents in the Devices view (Figure 
16). It is not a physical chain, in the sense that you can see no external wiring – the connections 
required between the Nexus-enabled devices are made internal to the FPGA itself. 

 

Figure 16. Nexus-enabled processor (TSK3000A) appearing in the Soft Devices chain 

For processors such as the debug-enabled TSK3000A, the Nexus protocol enables you to debug the 
core through communication with the processor's debug hardware (OCDS unit). 



TSK3000A 32-bit RISC Processor 

44 CR0121 (v2.0) July 15, 2006  

Accessing the Debug Environment 
Debugging of the embedded code within a TSK3000A processor is carried out by starting a debug 
session. Prior to starting the session, you must ensure that the design, including one or more debug-
enabled processors and their respective embedded code, has been downloaded to the target physical 
FPGA device. 

To start a debug session for the embedded code of a specific processor in the design, simply right-click 
on the icon for that processor, in the Soft Devices region of the view, and choose the Debug command 
from the pop-up menu that appears. Alternatively, click on the icon for the processor (to focus it) and 
choose Processors » Pn » Debug from the main menus, where n corresponds to the number for the 
processor in the Soft Devices chain. 

The embedded project for the software running in the processor will initially be recompiled and the 
debug session will commence. The relevant source code document (either Assembly or C) will be 
opened and the current execution point will be set to the first line of executable code (see Figure 17). 
Note: You can have multiple debug sessions running simultaneously – one per embedded software 
project associated with a processor in the Soft Devices chain. 

 

Figure 17. Starting an embedded code debug session. 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  45 

The debug environment offers the full suite of tools you would expect to see in order to efficiently 
debug the embedded code. These features include: 

• Setting Breakpoints 

• Adding Watches 
• Stepping into and over at both the source (*.C) and instruction (*.asm) level 

• Reset, Run and Halt code execution 

• Run to cursor 
All of these and other feature commands can be accessed from the Debug menu or the associated 
Debug toolbar. 

Various workspace panels are accessible in the debug environment, allowing you to view/control code-
specific features, such as Breakpoints, Watches and Local variables, as well as information specific to 
the processor in which the code is running, such as memory spaces and registers. 
These panels can be accessed from the View » Workspace Panels » Embedded sub menu, or by 
clicking on the Embedded button at the bottom of the application window and choosing the required 
panel from the subsequent pop-up menu. 

 

Figure 18. Workspace panels offering code-specific information and controls 



TSK3000A 32-bit RISC Processor 

46 CR0121 (v2.0) July 15, 2006  

 

Figure 19. Workspace panels offering information specific to the parent processor. 

Full-feature debugging is of course enjoyed at the source code level – from within the source code file 
itself. To a lesser extent, debugging can also be carried out from a dedicated debug panel for the 
processor. To access1 this panel, first double-click on the icon representing the processor to be 
debugged, in the Soft Devices region of the view. The Instrument Rack – Soft Devices panel will 
appear, with the chosen processor instrument added to the rack (Figure 20). 

 

Figure 20. Accessing debug features from the processor's instrument panel 

                                                           
1 The debug panels for each of the debug-enabled microcontrollers/processors are standard panels and, as such, 
can be readily accessed from the View » Workspace Panels » Instruments sub menu, or by clicking on the 
Instruments button at the bottom of the application window and choosing the required panel – for the processor 
you wish to debug – from the subsequent pop-up menu. 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  47 

Note: Each core processor that you have included in the design will appear, when double-clicked, as 
an Instrument in the rack (along with any other Nexus-enabled devices). 
The Nexus Debugger button provides access to the associated debug panel (Figure 21), which in turn 
allows you to interrogate and to a lighter extent control, debugging of the processor and its embedded 
code, notably with respect to the registers and memory. 

One key feature of the debug panel is that it enables you to specify (and therefore change) the 
embedded code (HEX file) that is downloaded to the processor, quickly and efficiently. 

 

Figure 21. Processor debugging using the associated processor debug panel 

For more information on the content and use of processor debug panels, press F1 when the cursor 
is over one of these panels. 

For further information regarding the use of the embedded tools for the TSK3000A, see the Using 
the TSK3000 Embedded Tools guide. 

For comprehensive information with respect to the embedded tools available for the TSK3000A, 
see the TSK3000 Embedded Tools Reference. 

 



TSK3000A 32-bit RISC Processor 

48 CR0121 (v2.0) July 15, 2006  

Instruction Set 
All TSK3000A instructions are binary code compatible. Each instruction comprises a 32-bit word 
divided into an Opcode, which specifies the instruction type, and one or more operands, which further 
specify the operation of the instruction. 

Instruction Format 
Each of the TSK3000A’s instructions is aligned on a word boundary and is 32 bits (single word) in 
length. There are three general instruction formats: 

I-Type - this type of instruction includes an immediate value in the instruction word. I-type 
instructions include arithmetic operations such as ADDI, logical operations such as XORI, 
branch operations, and load and store operations 

J-Type - this type of instruction is used where a 26-bit immediate field is required. J-type 
instructions are only used for absolute jump instructions (J and JAL) 

R-Type - this type of instruction specifies all arguments and results as registers. It includes a 5-bit 
immediate field used to specify the amount of shift for instructions such as SLL, SRA and 
SRL. A secondary opcode field is used to distinguish the instruction’s operation when 
part of an instruction class. R-type instructions include arithmetic operations such as 
SUB, logical operations such as XOR as well as any other instructions that only use 
register operands 

Any other instructions (those more complex or less frequently used) are constructed by using a 
combination of these three. 

Figure 22 illustrates the three general formats that instructions can have. 

 

rA IMM16

31 

5 

       2625   2120   1615 

16 

0

I-type instruction 

OpCode rB 

6 5 

IMM26

31        2625 

26 

0
OpCode

6 

J-type instruction 

rA

31 

5 

       2625   2120   1615   1110    6 5 

6 

0

R-type instruction 

OpCode rB 

6 5 

rC IMM5 OpCode-2

5 5 
 

Figure 22. TSK3000A - general instruction formats 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  49 

Table 8 summarizes and describes the fields used in the encoding of instructions. 

Table 8. Instruction field descriptions 

Field Description 

Opcode 6-bit primary opcode 

rA 5-bit index generally representing a 32-bit Source register 

rB 5-bit index generally representing a 32-bit Source register 

rC 5-bit index generally representing a 32-bit Destination register 

IMM5 5-bit instruction-specific immediate value – specifies amount of shift with 
respect to shift instructions 

IMM16 16-bit sign- or zero-extended immediate value used for: 

logical operands 

address byte offsets (load/store instructions) 

arithmetic signed operands 

PC relative displacement (branch instructions) 

IMM26 26-bit immediate value. Use as an index, it is subsequently shifted left by 2 
bits to provide the low-order 28 bits of the target address for a jump 
instruction 

OpCode-2 6-bit secondary opcode used to specify the function of the instruction when 
part of an instruction class determined by the primary opcode field (for R-
type instructions only) 

Instruction Set – Functional Groupings 

Data Transfer Instructions 
Data transfer between memory and general purpose registers (GPRs) is handled using Load and Store 
instructions. All of these instructions are I-type instructions. 

The only directly supported addressing mode is base register plus 16-bit signed immediate offset. The 
instruction position immediately following a load instruction is referred to as the ‘load delay slot’. The 
size of data to be loaded or stored is determined by the opcode for the instruction. 
Note: In the following table (Table 9) the IMM16 operand can be an absolute offset or a symbolic 
address label. 

Table 9. Data Transfer Instructions 

Mnemonic Instruction Description 

LB rB, IMM16(rA) Load Byte Generates a 32-bit effective address by sign-extending 
the 16-bit immediate value, IMM16, and adding it to the 
contents of GPR rA. It then sign-extends the byte at the 



TSK3000A 32-bit RISC Processor 

50 CR0121 (v2.0) July 15, 2006  

memory location pointed to by the effective address and 
loads the result into GPR rB 

LBU rB, IMM16(rA) Load Byte 
Unsigned 

Generates a 32-bit effective address by sign-extending 
the 16-bit immediate value, IMM16, and adding it to the 
contents of GPR rA.  It then zero-extends the byte at the 
memory location pointed to by the effective address and 
loads the result into GPR rB 

LH rB, IMM16(rA) Load Halfword Generates a 32-bit effective address by sign-extending 
the 16-bit immediate value, IMM16, and adding it to the 
contents of GPR rA. It then sign-extends the halfword at 
the memory location pointed to by the effective address 
and loads the result into GPR rB 

LHU rB, IMM16(rA) Load Halfword 
Unsigned 

Generates a 32-bit effective address by sign-extending 
the 16-bit immediate value, IMM16, and adding it to the 
contents of GPR rA. It then zero-extends the halfword at 
the memory location pointed to by the effective address 
and loads the result into GPR rB 

LW rB, IMM16(rA) Load Word Generates a 32-bit effective address by sign-extending 
the 16-bit immediate value, IMM16, and adding it to the 
contents of GPR rA. It then loads the word at the memory 
location pointed to by the effective address into GPR rB 

SW rB, IMM16(rA) Store Word Generates a 32-bit effective address by sign-extending 
the 16-bit immediate value, IMM16, and adding it to the 
contents of GPR rA. It then stores the contents of GPR rB 
at the resulting effective address 

SB rB, IMM16(rA) Store Byte Generates a 32-bit effective address by sign-extending 
the 16-bit immediate value, IMM16, and adding it to the 
contents of GPR rA. It then stores the least significant 
byte of register rB at the resulting effective address 

SH rB, IMM16(rA) Store Halfword Generates an unsigned 32-bit effective address by sign-
extending the 16-bit immediate value, IMM16, and adding 
it to the contents of GPR rA. It then stores the least 
significant halfword of register rB at the resulting effective 
address 

Arithmetic Instructions 
Arithmetic instructions perform arithmetic operations and store the resulting values in registers. The 
instruction format can be R-type or I-type. With R-type instructions, the two operands and the result are 
register values. With I-type instructions, one of the operands is a 16-bit immediate value, sign or zero 
extended to 32 bits. 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  51 

Table 10. Arithmetic Instructions 

Mnemonic Instruction Description 

ADD rC, rA, rB Add Word Adds the contents of GPRs rA and rB and puts the 
result in GPR rC 

ADDI rB, rA, IMM16 Add Immediate 
Word 

Sign-extends the 16-bit immediate value, IMM16, adds 
it to the contents of GPR rA and puts the result in GPR 
rB 

DIV rA, rB Divide Word Divides the contents of GPR rA by the contents of GPR 
rB, treating both operands as 32-bit two's complement 
integers. The quotient word is loaded into special 
register LO, the sign of which will be negative if the 
operands are of opposite signs. The remainder word is 
loaded into special register HI, the sign of which will be 
the same as the numerator 

DIVU rA, rB Divide Unsigned 
Word 

Divides the contents of GPR rA by the contents of GPR 
rB, treating both operands as 32-bit unsigned positive 
values. The quotient word is loaded into special register 
LO and the remainder word into special register HI. 
Both quotient and remainder values will always be 
positive 

LUI rB, IMM16 Load Upper 
Immediate 

Left-shifts 16-bit immediate value, IMM16, by 16 bits, 
zero-fills the low-order 16 bits of the word, and puts the 
result in GPR rB 

MULT rA, rB Multiply Word Multiplies the contents of GPR rA by the contents of 
GPR rB, treating both operands as 32-bit two's 
complement values. The low-order word of the 
multiplication result is put in special register LO, and the 
high-order word of the result is put in special register HI. 
This instruction cannot raise an integer overflow 
exception 

MULTU rA, rB Multiply 
Unsigned Word 

Multiplies the contents of GPR rA by the contents of 
GPR rB, treating both operands as 32-bit unsigned 
positive values. The low-order word of the multiplication 
result is put in special register LO and the high-order 
word of the result is put in special register HI. This 
instruction cannot raise an integer overflow exception 

SUB rC, rA, rB Subtract Word Subtracts the contents of GPR rB from GPR rA and 
puts the result in GPR rC 



TSK3000A 32-bit RISC Processor 

52 CR0121 (v2.0) July 15, 2006  

Bitwise Logical Instructions 
Logical instructions perform bitwise operations and store the resulting values in registers. The 
instruction format can be R-type or I-type. With R-type instructions, the two operands and the result are 
register values. With I-type instructions, one of the operands is a 16-bit immediate value, zero 
extended to 32 bits. 

Table 11. Bitwise Logical Instructions 

Mnemonic Instruction Description 

AND rC, rA, rB Bitwise Logical 
AND 

Bitwise logically ANDs the contents of GPRs rA and rB 
and puts the result in GPR rC 

ANDI rB, rA, IMM16 Bitwise Logical 
AND Immediate 

Zero-extends the 16-bit immediate value, IMM16, 
bitwise logically ANDs it with the contents of GPR rA 
and puts the result in GPR rB 

NOR rC, rA, rB Bitwise Logical 
NOR 

Bitwise logically NORs the contents of GPR rA with the 
contents of GPR rB, and loads the result in GPR rC 

OR rC, rA, rB Bitwise Logical 
OR 

Bitwise logically ORs the contents of GPR rA with the 
contents of GPR rB, and loads the result in GPR rC 

ORI rB, rA, IMM16 Bitwise Logical 
OR Immediate 

Zero-extends the 16-bit immediate value, IMM16, 
bitwise logically ORs the result with the contents of 
GPR rA, and loads the result in GPR rB 

XOR rC, rA, rB Bitwise Logical 
Exclusive OR 

Bitwise logically exclusive-ORs the contents of GPR rA 
with the contents of GPR rB and loads the result in 
GPR rC 

XORI rB, rA, IMM16 Bitwise Logical 
Exclusive OR 
Immediate 

Zero-extends the 16-bit immediate value, IMM16, 
bitwise logically exclusive-ORs it with the contents of 
GPR rA, then loads the result in GPR rB 

Move Instructions 
These instructions move data between the various special function registers (SFRs) - including the HI-
LO registers used for multiplication and division - and the general purpose registers (GPRs). 

Table 12. Move Instructions 

Mnemonic Instruction Description 

MFC0 rB, rC Move From Special 
Function Register 

Loads the contents of special function register rC into 
GPR rB 

MFHI rC Move From HI Loads the contents of SFR HI into GPR rC 

MFLO rC Move From LO Loads the contents of SFR LO into GPR rC 

MTC0 rB, rC Move To Special Loads the contents of GPR rB into special Function 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  53 

Function Register register rC 

MTHI rA Move To HI Loads the contents of GPR rA into SFR HI 

MTLO rA Move To LO Loads the contents of GPR rA into SFR LO 

Comparison Instructions 
These instructions compare two registers and, based on the result, set a third register to either true or 
false (1 or 0). 

Table 13. Comparison Instructions 

Mnemonic Instruction Description 

SLT rC, rA, rB Set On Less 
Than 

Compares the contents of GPRs rB and rA as 32-bit 
signed integers. If rA is less than rB, a ‘1’ is placed into 
GPR rC, otherwise GPR rC is loaded with ‘0’ 

SLTI rB, rA, IMM16 Set On Less 
Than Immediate 

Sign-extends the 16-bit immediate value, IMM16 and 
compares the result with the contents of GPR rA, 
treating both values as 32-bit signed integers. If rA is 
less than the sign extended IMM16 value, a ‘1’ is placed 
into GPR rB, otherwise GPR rB is loaded with ‘0’ 

SLTIU rB, rA, IMM16 Set On Less 
Than Immediate 
Unsigned 

Sign-extends the 16-bit immediate value, IMM16 and 
compares the result with the contents of GPR rA, 
treating both values as 32-bit unsigned integers. If rA is 
less than the sign extended IMM16 value, a ‘1’ is placed 
into GPR rB, otherwise GPR rB is loaded with ‘0’ 

SLTU rC, rA, rB Set On Less 
Than Unsigned 

Compares the contents of GPRs rB and rA as 32-bit 
unsigned integers. If rA is less than rB, a ‘1’ is placed 
into GPR rC, otherwise GPR rC is loaded with ‘0’ 

Shift Instructions 
Shift instructions perform shift operations and store the resulting values in registers. All of these 
instructions are R-type instructions, with the immediate shift amount stored in the IMM5 field for the 
immediate shift instructions. 

Table 14. Shift Instructions 

Mnemonic Instruction Description 

SLL rC, rB, IMM5 Shift Left Logical Left-shifts the contents of GPR rB by the number of bits 
specified by the immediate value, IMM5. Then zero-fills 
the low-order bits and puts the result in GPR rC 

SLLV rC, rB, rA Shift Left Logical 
Variable 

Left-shifts the contents of GPR rB (by the number of 
bits designated by the low-order five bits of GPR rA), 
zero-fills the low-order bits and puts the 32-bit result in 



TSK3000A 32-bit RISC Processor 

54 CR0121 (v2.0) July 15, 2006  

GPR rC 

SRA rC, rB, IMM5 Shift Right 
Arithmetic 

Right-shifts the contents of GPR rB by the number of 
bits specified by the immediate value, IMM5. The high-
order (IMM5) bits become sign-extended and the 
resulting word is put in GPR rC 

SRAV rC, rB, rA Shift Right 
Arithmetic Variable 

Right-shifts the contents of GPR rB (by the number of 
bits designated by the low-order five bits of GPR rA). 
The high-order (rA4..0) bits become sign-extended and 
the resulting word is put in GPR rC 

SRL rC, rB, IMM5 Shift Right Logical Right-shifts the contents of GPR rB by the number of 
bits specified by the immediate value, IMM5. Then zero-
fills the high-order (IMM5) bits and puts the result in 
GPR rC 

SRLV rC, rB, rA Shift Right Logical 
Variable 

Right-shifts the contents of GPR rB (by the number of 
bits designated by the low-order five bits of GPR rA), 
zero-fills the high-order (rA4..0) bits and puts the 32-bit 
result in GPR rC 

Jump Instructions 
Jump instructions change the program flow. These instructions will delay the pipeline by one instruction 
cycle, however an instruction inserted into the delay slot (the instruction immediately following a jump 
instruction) can be executed while the instruction at the branch target address is being fetched. 

Jump and Jump And Link instructions, which are typically used to call subroutines, have the J-type 
instruction format. For these instructions the jump target address is generated as follows: The 26-bit 
immediate value for the target address of the instruction, IMM26, is left-shifted two bits and combined 
with the high-order four bits of the current Program Counter (PC) value, to form a 32-bit absolute 
address. This becomes the branch target address of the jump instruction. 

The Jump And Link instruction puts the return address in register r31. 

Jump Register and Jump And Link Register instructions have the R-type instruction format, which is 
used for returns from subroutines and long-distance jumps to anywhere in the entire 32-bit address 
space. The register value in this format is a 32-bit byte address. 
Note: In the following table (Table 15) the IMM26 operand can be an absolute offset or a symbolic 
address label. 

Table 15. Jump Instructions 

Mnemonic Instruction Description 

J IMM26 Jump Generates a jump target address by left-shifting the 26-
bit immediate value, IMM26, by two bits and combining 
the result with the high-order 4 bits of the address of the 
instruction in the delay slot. The program jumps 
unconditionally to this address after a delay of one 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  55 

instruction cycle 

JAL IMM26 Jump And Link Generates a jump target address by left-shifting the 26-
bit immediate value, IMM26, by 2 bits and combining 
the result with the high-order 4 bits of the address of the 
instruction in the delay slot. The program jumps 
unconditionally to this address after a delay of one 
instruction cycle. The address of the instruction 
following the instruction in the delay slot is placed in 
general purpose register r31 as the return address from 
the jump 

JALR rC, rA Jump And Link 
Register 

Causes the program to jump unconditionally to the 
address in GPR rA after a delay of one instruction 
cycle. The address of the instruction following the delay 
slot is put in GPR rC as the return address from the 
jump. If rC is omitted from the assembly language 
instruction, r31 is used as the default value. rA and rC 
must not be equal, since such an instruction would not 
have the same result if re-executed 

JR rA Jump Register Causes the program to jump unconditionally to the 
address in GPR rA after a delay of one instruction cycle 

Relative Branch Instructions 
Relative branch instructions change the program flow. These instructions effectively delay the pipeline 
by one instruction cycle. An instruction inserted into the delay slot (the instruction immediately following 
a branch instruction) will be executed while the instruction at the branch target address is being 
fetched. 

Branch instructions use the I-type instruction format. Branching is to a relative address, determined by 
adding a 16-bit signed offset to the Program Counter. 
Note: In the following table (Table 16) the IMM16 operand can be an absolute offset or a symbolic 
address label. 

Table 16. Relative Branch Instructions 

Mnemonic Instruction Description 

BEQ rA, rB, IMM16 Branch On Equal Generates a branch target address by adding the 
address of the instruction in the delay slot to a signed 
offset (16-bit immediate value, IMM16, left-shifted two 
bits and sign-extended to 32 bits). The contents of 
GPRs rA and rB are compared and, if equal, the 
program branches to the target address after a delay of 
one instruction cycle 

BGEZ rA, IMM16 Branch On Generates a branch target address by adding the 



TSK3000A 32-bit RISC Processor 

56 CR0121 (v2.0) July 15, 2006  

Greater Than Or 
Equal To Zero 

address of the instruction in the delay slot to a signed 
offset (16-bit immediate value, IMM16, left-shifted two 
bits and sign-extended to 32 bits). If the sign bit of the 
value in GPR rA is 0 (i.e. the value is positive or 0), the 
program branches to the target address after a delay of 
one instruction cycle 

BGEZAL rA, IMM16 Branch On 
Greater Than Or 
Equal To Zero 
And Link 

Generates a branch target address by adding the 
address of the instruction in the delay slot to a signed 
offset (16-bit immediate value, IMM16, left-shifted two 
bits and sign-extended to 32 bits). The address of the 
instruction following the instruction in the delay slot is 
unconditionally placed in general purpose register r31 
as the return address from the branch. If the sign bit of 
the value in GPR rA is 0 (i.e. the value is positive or 0), 
the program branches to the target address after a 
delay of one instruction cycle 

BGTZ rA, IMM16 Branch On 
Greater Than 
Zero 

Generates a branch target address by adding the 
address of the instruction in the delay slot to a signed 
offset (16-bit immediate value, IMM16, left-shifted two 
bits and sign-extended to 32 bits). If the value in GPR 
rA is positive (i.e. the sign bit of rA is 0 and the rA value 
is not 0), the program branches to the target address 
after a delay of one instruction cycle 

BLEZ rA, IMM16 Branch On Less 
Than Or Equal 
To Zero 

Generates a branch target address by adding the 
address of the instruction in the delay slot to a signed 
offset (16-bit immediate value, IMM16, left-shifted two 
bits and sign-extended to 32 bits). If the value in GPR 
rA is negative or 0 (i.e. the sign bit of rA is 1 or the rA 
value is 0), the program branches to the target address 
after a delay of one instruction cycle 

BLTZ rA, IMM16 Branch On Less 
Than Zero 

Generates a branch target address by adding the 
address of the instruction in the delay slot to a signed 
offset (16-bit immediate value, IMM16, left-shifted two 
bits and sign-extended to 32 bits). If the value in GPR 
rA is negative (i.e. the sign bit of rA is 1), the program 
branches to the target address after a delay of one 
instruction cycle 

BLTZAL rA, IMM16 Branch On Less 
Than Zero And 
Link 

Generates a branch target address by adding the 
address of the instruction in the delay slot to a signed 
offset (16-bit immediate value, IMM16, left-shifted two 
bits and sign-extended to 32 bits). The address of the 
instruction following the instruction in the delay slot is 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  57 

unconditionally placed in general purpose register r31 
as the return address from the branch.  If the value in 
GPR rA is negative (i.e. the sign bit of rA is 1), the 
program branches to the target address after a delay of 
one instruction cycle. Register r31 should not be used 
for rA, as this would prevent the instruction from 
restarting 

BNE rA, rB, IMM16 Branch On Not 
Equal 

Generates a branch target address by adding the 
address of the instruction in the delay slot to a signed 
offset (16-bit immediate value, IMM16, left-shifted two 
bits and sign-extended to 32 bits). The contents of 
GPRs rA and rB are compared and, if not equal, the 
program branches to the target address after a delay of 
one instruction cycle 

Special Purpose Instructions 
There are three special instructions used for breakpoints and exceptions. 

Table 17. Special Purpose Instructions 

Mnemonic Instruction Description 

BREAK code Breakpoint If the OCDS is active then the processor will stop at this 
point and flush any instructions that have entered the 
pipeline after the break instruction 

RFE Restore From 
Exception 

Copies the control register bits for previous interrupt 
mask mode and previous user mode (IEp and UMp) to 
the current mode bits (IEc and UMc) and copies the old 
mode bits (IEo and UMo) to the previous mode bits (IEp 
and UMp). The old mode bits remain unchanged 

SYSCALL code System Call Raises a System Call exception and passes control to 
an exception handler. The code field can be used to 
pass information to an exception handler, but the only 
way to have the code field retrieved by the exception 
handler is to use the exception return register to load 
the contents of the memory word containing this 
instruction 

Custom Instructions 
There are, as yet, no custom instructions available in this version of the TSK3000A. 

Generic Instructions 
Each of the assembly language instructions in the preceding sections have direct machine language 
equivalents. These instructions collectively represent the 'core' of the reduced instruction set for the 



TSK3000A 32-bit RISC Processor 

58 CR0121 (v2.0) July 15, 2006  

processor. Using these instructions as building blocks, a number of generic instructions (also referred 
to as pseudo instructions or macros) are defined and supported by the Assembler for the TSK3000A. 
Each of these generic instructions, as listed in Table 18, translate into one or more separate assembly 
language instructions (from the core set) in order to fulfill their task. 
Note: In Table 18 the following operands are used: 

• rA – register index of source operand A 

• rB – register index of source operand B 

• rC – register index of destination 

• IMM5 – 5-bit immediate value 

• IMM16 – 16-bit immediate value 

• IMM32 – 32-bit immediate value 

• target – absolute offset or symbolic address label 

• (rA) – address specified by contents of a base register (GPR rA) 

• target(rA) – based address (can also be represented as offset(base)). The target address is added 
to the contents of the base register (GPR rA) to obtain the actual address. 

Table 18. Generic Instructions 

Mnemonic Instruction 

ABS rC, rA 

ABS rA 

Absolute Value 

ADD rC, rB 

ADD rC, rA, IMM32 

ADD rC, IMM32 

Add 

ADDI rC, IMM16 Add Immediate 

ADDIU rC, IMM16 Add Immediate Unsigned 

ADDU rC, rB 

ADDU rC, rA, IMM32 

ADDU rC, IMM32 

Add Unsigned 

AND rC, rB 

AND rC, rA, IMM32 

AND rC, IMM32 

Bitwise Logical AND 

ANDI rC, IMM16 Bitwise Logical AND Immediate 

B target Branch 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  59 

BAL target Branch And Link 

BEQ rA, IMM32, target Branch On Equal 

BEQZ rA, target Branch On Equal To Zero 

BGE rA, rB, target 

BGE rA, IMM32, target 

Branch On Greater Than Or Equal 

BGEU rA, rB, target 

BGEU rA, IMM32, target 

Branch On Greater Than Or Equal Unsigned 

BGT rA, rB, target 

BGT rA, IMM32, target 

Branch On Greater Than 

BGTU rA, rB, target 

BGTU rA, IMM32, target 

Branch On Greater Than Unsigned 

BLE rA, rB, target 

BLE rA, IMM32, target 

Branch On Less Than Or Equal To 

BLEU rA, rB, target 

BLEU rA, IMM32, target 

Branch On Less Than Or Equal To 
Unsigned 

BLT rA, rB, target 

BLT rA, IMM32, target 

Branch On Less Than 

BLTU rA, rB, target 

BLTU rA, IMM32, target 

Branch On Less Than Unsigned 

BNE rA, IMM32, target Branch On Not Equal 

BNEZ rA, target Branch On Not Equal To Zero 

BREAK Breakpoint 

DIV rA, rB 

DIV rA, IMM32 

DIV rC, rA, IMM32 

Divide 

DIVU rA, rB 

DIVU rA, IMM32 

DIVU rC, rA, IMM32 

Divide Unsigned 

J rA Jump 



TSK3000A 32-bit RISC Processor 

60 CR0121 (v2.0) July 15, 2006  

JAL rA 

JAL rC, target 

Jump And Link 

JALR target 

JALR rA 

JALR rC, target 

Jump And Link Register 

JR target Jump Register 

LA rC, target 

LA rC, target(rA) 

Load Address 

LI rC, IMM32 Load Immediate 

LB rC, (rA) 

LB rC, target 

LB rC, target(rA) 

Load Byte 

LBU rC, (rA) 

LBU rC, target 

LBU rC, target(rA) 

Load Byte Unsigned 

LH rC, (rA) 

LH rC, target 

LH rC, target(rA) 

Load Halfword 

LHU rC, (rA) 

LHU rC, target 

LHU rC, target(rA) 

Load Halfword Unsigned 

LW rC, (rA) 

LW rC, target 

LW rC, target(rA) 

Load Word 

MOVE rC, rA Move 

MULT rA, rB 

MULT rA, IMM32 

MULT rC, rA, IMM32 

Multiply 

MULTU rA, rB Multiply Unsigned 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  61 

MULTU rA, IMM32 

MULTU rC, rA, IMM32 

 

NEG rC, rA 

NEG rA 

Negate 

NEGU rC, rA 

NEGU rA 

Negate Unsigned 

NOP No Operation 

NOR rC, rB 

NOR rC, rA, IMM32 

NOR rC, IMM32 

Bitwise Logical NOR 

NOT rC, rA 

NOT rA 

Bitwise Logical NOT 

OR rC, rB 

OR rC, rA, IMM32 

OR rC, IMM32 

Bitwise Logical OR 

ORI rC, IMM16 Bitwise Logical OR Immediate 

ROL rC, rA, IMM5 

ROL rC, rA, rB 

ROL rC, IMM5 

ROL rC, rB 

Rotate Left 

ROR rC, rA, IMM5 

ROR rC, rA, rB 

ROR rC, IMM5 

ROR rC, rB 

Rotate Right 

SB rC, (rA) 

SB rC, target 

SB rC, target(rA) 

Store Byte 

SEQ rC, rA, rB 

SEQ rC, rA, IMM32 

Set On Equal To 



TSK3000A 32-bit RISC Processor 

62 CR0121 (v2.0) July 15, 2006  

SGE rC, rA, rB 

SGE rC, rA, IMM32 

Set On Greater Than Or Equal To 

SGEU rC, rA, rB 

SGEU rC, rA, IMM32 

Set On Greater Than Or Equal To Unsigned 

SGT rC, rA, rB 

SGT rC, rA, IMM32 

Set On Greater Than 

SGTU rC, rA, rB 

SGTU rC, rA, IMM32 

Set On greater Than Unsigned 

SH rC, (rA) 

SH rC, target 

SH rC, target(rA) 

Store Halfword 

SLA rC, rA, IMM5 

SLA rC, rA, rB 

SLA rC, IMM5 

SLA rC, rB 

Shift Left Arithmetic 

SLAV rC, rA, rB 

SLAV rC, rB 

Shift Left Arithmetic Variable 

SLE rC, rA, rB 

SLE rC, rA, IMM32 

Set On Less Than Or Equal To 

SLEU rC, rA, rB 

SLEU rC, rA, IMM32 

Set On Less Than Or Equal To Unsigned 

SLL rC, rA, rB 

SLL rC, IMM5 

SLL rC, rB 

Shift Left Logical 

SLLV rC, rB Shift Left Logical Variable 

SLT rC, rB 

SLT rC, rA, IMM32 

SLT rC, IMM32 

Set On Less Than 

SLTI rC, IMM16 Set On Less Than Immediate 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  63 

SLTU rC, rB 

SLTU rC, rA, IMM32 

SLTU rC, IMM32 

Set On Less Than Unsigned 

SLTIU rC, IMM16 Set On Less Than Immediate Unsigned 

SNE rC, rA, rB 

SNE rC, rA, IMM32 

Set On Not Equal To 

SRA rC, rA, rB 

SRA rC, IMM5 

SRA rC, rB 

Shift Right Arithmetic 

SRAV rC, rB Shift Right Arithmetic Variable 

SRL rC, rA, rB 

SRL rC, IMM5 

SRL rC, rB 

Shift Right Logical 

SRLV rC, rB Shift Right Logical Variable 

SUB rC, rB 

SUB rC, rA, IMM32 

SUB rC, IMM32 

Subtract 

SUBU rC, rB 

SUBU rC, rA, IMM32 

SUBU rC, IMM32 

Subtract Unsigned 

SW rC, (rA) 

SW rC, target 

SW rC, target(rA) 

Store Word 

XOR rC, rB 

XOR rC, rA, IMM32 

XOR rC, IMM32 

Bitwise Logical Exclusive OR 

XORI rC, IMM16 Bitwise Logical Exclusive OR Immediate 

 



TSK3000A 32-bit RISC Processor 

64 CR0121 (v2.0) July 15, 2006  

Instruction Set – Detailed Reference 

ABS (Macro) 
Absolute Value 

Assembler Format Example Translates to… 

abs rC, rA abs $3, $4 sra $at, rA, 31 

xor rC, rA, $at 

sub rC, rC, $at 

abs rA abs $4 sra $at, rA, 31 

xor rA, rA, $at 

sub rA, rA, $at 

  



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  65 

ADD, ADDU 
Add Word 

Assembler Format:     add rC, rA, rB 

Example: add $3, $4, $5 

Description: Adds the contents of GPRs rA and rB and puts the result in GPR rC. 

Operation: rC ← rA + rB 

Instruction Type: R-Type 

Instruction Fields: rA = Register index of operand A 

 rB = Register index of operand B 

 rC = Register index of destination 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 rA rB rC 0 0 0 0 0 1 0 0 0 0 1 

Latency: 1 

Notes:  

The following code example illustrates how overflow detection can be handled, in software, when 
adding two signed operands: 
add rC, rA, rB 

xor rD, rC, rA -----compare sign of sum and operand rA 

xor rE, rC, rB -----compare sign of sum and operand rB 

and rD, rD, rE -----bitwise logically AND the comparison values 

slt rD, rD, $0 -----if result less than ‘0’, flag overflow 

rD will be set to ‘1’ if an overflow occurred, otherwise it will be set to ‘0’. 



TSK3000A 32-bit RISC Processor 

66 CR0121 (v2.0) July 15, 2006  

ADD (Macro) 
Add 

Assembler Format Example Translates to… 

add rC, rB add $3, $4 add rC, rC, rB (with rA = rC) 

add rC, rA, IMM32 add $3, $2, 0x12345678 see note 2 

add rC, IMM32 (see note 1) add $3, 0x12345678 see note 2 

Notes: 

1) This format can also be written as: add rC, rC, IMM32 (with rA = rC) 

2) If the signed IMM32 operand fits into a signed 16-bit operand, then these two macro formats 
translate into single ADDI machine instructions: 

add rC, rA, IMM32 translates to….. addi rC, rA, IMM16 

add rC, IMM32 translates to….. addi rC, rC, IMM16 (with rA = rC) 

If the IMM32 operand does not fit, or has an unknown value, then these two macro formats translate to: 

  li $at, IMM32 

  add rC, rA, $at 

 

 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  67 

ADDI, ADDIU 
Add Immediate Word 

Assembler Format:     addi rB, rA, IMM16 

Example: addi $3, $4, 0x1234 

Description: Sign-extends the 16-bit immediate value, IMM16, adds it to the contents of GPR 
rA and puts the result in GPR rB. 

Operation: rB ← rA + SignExtend(IMM16) 

Instruction Type: I-Type 

Instruction Fields: rA = Register index of operand A 

 rB = Register index of destination 

 IMM16 = 16-bit immediate data value 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 0 0 1 rA rB IMM16 

Latency: 1 

Notes: 

The following code example illustrates how overflow detection can be handled, in software, when 
adding two signed operands: 
addi rB, rA, IMM16 

xor rC, rB, rA     -----compare sign of sum and operand rA 

xori rD, rB, IMM16 -----compare sign of sum and IMM16 

and rC, rC, rD     -----bitwise logically AND the comparison values 

slt rC, rC, $0     -----if result less than ‘0’, flag overflow 

rC will be set to ‘1’ if an overflow occurred, otherwise it will be set to ‘0’ 



TSK3000A 32-bit RISC Processor 

68 CR0121 (v2.0) July 15, 2006  

ADDI (Macro) 
Add Immediate 

Assembler Format Example Translates to… 

addi rC, IMM16 addi $3, oxFFFF addi rC, rC, IMM16 (where rA = rC) 

  



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  69 

ADDIU (Macro) 
Add Immediate Unsigned 

Assembler Format Example Translates to… 

addiu rC, IMM16 addiu $3, oxFFFF addiu rC, rC, IMM16 (where rA = rC) 

 



TSK3000A 32-bit RISC Processor 

70 CR0121 (v2.0) July 15, 2006  

ADDU (Macro) 
Add Unsigned 

Assembler Format Example Translates to… 

addu rC, rB addu $3, $4 addu rC, rC, rB (with rA = rC) 

addu rC, rA, IMM32 addu $3, $2, 0x12345678 see note 2 

addu rC, IMM32 (see note 1) addu $3, 0x12345678 see note 2 

Notes: 

1) This format can also be written as: addu rC, rC, IMM32 (with rA = rC) 

2) If the signed IMM32 operand fits into a signed 16-bit operand, then these two macro formats 
translate into single ADDIU machine instructions: 

addu rC, rA, IMM32 translates to….. addiu rC, rA, IMM16 

addu rC, IMM32 translates to….. addiu rC, rC, IMM16 (with rA = rC) 

If the IMM32 operand does not fit, or has an unknown value, then these two macro formats translate to: 

  li $at, IMM32 

      addu rC, rA, $at 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  71 

AND 
Bitwise Logical AND 

Assembler Format:     and rC, rA, rB 

Example: and $3, $4, $5 

Description: Bitwise logically ANDs the contents of GPRs rA and rB and puts the result in 
GPR rC. 

Operation: rC ← rA ^ rB 

Instruction Type: R-Type 

Instruction Fields: rA = Register index of operand A 

 rB = Register index of operand B 

 rC = Register index of destination 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 rA rB rC 0 0 0 0 0 1 0 0 1 0 0 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

72 CR0121 (v2.0) July 15, 2006  

AND (Macro) 
Bitwise Logical AND 

Assembler Format Example Translates to… 

and rC, rB and $3, $4 and rC, rC, rB (with rA = rC) 

and rC, rA, IMM32 and $3, $2, 0x12345678 see note 2 

and rC, IMM32 (see note 1) and $3, 0x12345678 see note 2 

Notes: 

1) This format can also be written as: and rC, rC, IMM32 (with rA = rC) 

2) If the signed IMM32 operand fits into an unsigned 16-bit operand, then these two macro formats 
translate into single ANDI machine instructions: 

and rC, rA, IMM32 translates to….. andi rC, rA, IMM16 

and rC, IMM32 translates to….. andi rC, rC, IMM16 (with rA = rC) 

If the IMM32 operand does not fit, or has an unknown value, then these two macro formats translate to: 

  li $at, IMM32 

      and rC, rA, $at 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  73 

ANDI 
Bitwise Logical AND Immediate 

Assembler Format:     andi rB, rA, IMM16 

Example: andi $3, $4, 0x1234 

Description: Zero-extends the 16-bit immediate value, IMM16, bitwise logically ANDs it with 
the contents of GPR rA and puts the result in GPR rB. 

Operation: rB ← rA ^ ZeroExtend(IMM16) 

Instruction Type: I-Type 

Instruction Fields: rA = Register index of operand A 

 rB = Register index of destination 

 IMM16 = 16-bit immediate data value 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 1 0 0 rA rB IMM16 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

74 CR0121 (v2.0) July 15, 2006  

ANDI (Macro) 
Bitwise Logical AND Immediate 

Assembler Format Example Translates to… 

andi rC, IMM16 andi $3, oxFFFF andi rC, rC, IMM16 (where rA = rC) 

 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  75 

B (Macro) 
Branch 

Assembler Format Example Translates to… 

b target b Shifter beq $0, $0, target 

 



TSK3000A 32-bit RISC Processor 

76 CR0121 (v2.0) July 15, 2006  

BAL (Macro) 
Branch and Link 

Assembler Format Example Translates to… 

bal target bal Shifter bgezal $0, target 

 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  77 

BEQ 
Branch On Equal 

Assembler Format:     beq rA, rB, target 

Example: beq t2, $0, _myfunc 

Description: Generates a branch target address by adding the address of the instruction in 
the delay slot to a signed offset (a 16-bit immediate value, IMM16, calculated 
from the target operand, left-shifted two bits and sign-extended to 32 bits). The 
contents of GPRs rA and rB are compared and, if equal, the program branches 
to the target address after a delay of one instruction cycle. 

Operation: If rA = rB Then 

      PC ← PC + 4 + SignExtend(IMM16 * 4) 

 Else 

      PC ← PC + 4 

Instruction Type: I-Type 

Instruction Fields: rA = Register index of operand A 

 rB = Register index of operand B 

 target = a symbolic address label or a hard-coded PC-offset in bytes 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 1 0 0 rA rB IMM16 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

78 CR0121 (v2.0) July 15, 2006  

BEQ (Macro) 
Branch On Equal 

Assembler Format Example Translates to… 

beq rA, IMM32, target beq $3, 0x12345678, Shifter li $at, IMM32 

beq rA, $at, target 

 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  79 

BEQZ (Macro) 
Branch On Equal To Zero 

Assembler Format Example Translates to… 

beqz rA, target beqz $3, Shifter beq rA, $0, target 

 



TSK3000A 32-bit RISC Processor 

80 CR0121 (v2.0) July 15, 2006  

BGE (Macro) 
Branch On Greater Than Or Equal 

Assembler Format Example Translates to… 

bge rA, rB, target bge $3, $4, Shifter slt $at, rA, rB 

beq $at, $0, target 

bge rA, IMM32, target bge $3, 0x12345678, Shifter li $at, IMM32 

slt $at, rA, $at 

beq $at, $0, target 

Notes: 

In the second of the two formats, if IMM32 fits into a 16-bit value, then the macro translates into the 
following machine instructions: 

slti $at, rA, IMM16 

beq $at, $0, target 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  81 

BGEU (Macro) 
Branch On Greater Than Or Equal Unsigned 

Assembler Format Example Translates to… 

bgeu rA, rB, target bgeu $3, $4, Shifter sltu $at, rA, rB 

beq $at, $0, target 

bgeu rA, IMM32, target bgeu $3, 0x12345678, Shifter li $at, IMM32 

sltu $at, rA, $at 

beq $at, $0, target 

Notes: 

In the second of the two formats, if IMM32 fits into a 16-bit value, then the macro translates into the 
following machine instructions: 

sltiu $at, rA, IMM16 

beq $at, $0, target 



TSK3000A 32-bit RISC Processor 

82 CR0121 (v2.0) July 15, 2006  

BGEZ 
Branch On Greater Than Or Equal To Zero 

Assembler Format:     bgez rA, target 

Example: bgez $3, _myfunc 

Description: Generates a branch target address by adding the address of the instruction in 
the delay slot to a signed offset (a 16-bit immediate value, IMM16, calculated 
from the target operand, left-shifted two bits and sign-extended to 32 bits). If the 
sign bit of the value in GPR rA is 0 (i.e. the value is positive or 0), the program 
branches to the target address after a delay of one instruction cycle. 

Operation: If rA >= 0 Then 

      PC ← PC + 4 + SignExtend(IMM16 * 4) 

 Else 

PC ← PC + 4 

Instruction Type: I-Type 

Instruction Fields: rA = Register index of operand A 

 target = a symbolic address label or a hard-coded PC-offset in bytes 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 1 rA 0 0 0 0 1 IMM16 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  83 

BGEZAL 
Branch On Greater Than Or Equal To And Link 

Assembler Format:     bgezal rA, target 

Example: bgezal $3, _myfunc 

Description: Generates a branch target address by adding the address of the instruction in 
the delay slot to a signed offset (a 16-bit immediate value, IMM16, calculated 
from the target operand, left-shifted two bits and sign-extended to 32 bits). The 
address of the instruction following the instruction in the delay slot is 
unconditionally placed in general purpose register r31 as the return address 
from the branch. If the sign bit of the value in GPR rA is 0 (i.e. the value is 
positive or 0), the program branches to the target address after a delay of one 
instruction cycle. 

Operation: If rA >= 0 Then 

  PC ← PC + 4 + SignExtend(IMM16 * 4) 

  GPR[31] ← PC + 8 

 Else 

  PC ← PC + 4 

Instruction Type: I-Type 

Instruction Fields: rA = Register index of operand A 

 target = a symbolic address label or a hard-coded PC-offset in bytes 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 1 rA 1 0 0 0 1 IMM16 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

84 CR0121 (v2.0) July 15, 2006  

BGT (Macro) 
Branch On Greater Than 

Assembler Format Example Translates to… 

bgt rA, rB, target bgt $3, $4, Shifter slt $at, rB, rA 

bne $at, $0, target 

bgt rA, IMM32, target bgt $3, 0x12345678, Shifter li $at, IMM32 

slt $at, $at, rA 

bne $at, $0, target 

 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  85 

BGTU (Macro) 
Branch On Greater Than Unsigned 

Assembler Format Example Translates to… 

bgtu rA, rB, target bgtu $3, $4, Shifter sltu $at, rB, rA 

bne $at, $0, target 

bgtu rA, IMM32, target bgtu $3, 0x12345678, Shifter li $at, IMM32 

sltu $at, $at, rA 

bne $at, $0, target 

 



TSK3000A 32-bit RISC Processor 

86 CR0121 (v2.0) July 15, 2006  

BGTZ 
Branch On Greater Than Zero 

Assembler Format:     bgtz rA, target 

Example: bgtz $3, _myfunc 

Description: Generates a branch target address by adding the address of the instruction in 
the delay slot to a signed offset (a 16-bit immediate value, IMM16, calculated 
from the target operand, left-shifted two bits and sign-extended to 32 bits). If the 
value in GPR rA is positive (i.e. the sign bit of rA is 0 and the rA value is not 0), 
the program branches to the target address after a delay of one instruction 
cycle. 

Operation: If rA > 0 Then 

  PC ← PC + 4 + SignExtend(IMM16 * 4) 

 Else 

  PC ← PC + 4 

Instruction Type: I-Type 

Instruction Fields: rA = Register index of operand A 

 target = a symbolic address label or a hard-coded PC-offset in bytes 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 1 1 1 rA 0 0 0 0 0 IMM16 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  87 

BLE (Macro) 
Branch On Less Than Or Equal To 

Assembler Format Example Translates to… 

ble rA, rB, target ble $3, $4, Shifter slt $at, rB, rA 

beq $at, $0, target 

ble rA, IMM32, target ble $3, 0x12345678, Shifter li $at, IMM32 

slt $at, $at, rA 

beq $at, $0, target 

 



TSK3000A 32-bit RISC Processor 

88 CR0121 (v2.0) July 15, 2006  

BLEU (Macro) 
Branch On Less Than Or Equal To Unsigned 

Assembler Format Example Translates to… 

bleu rA, rB, target bleu $3, $4, Shifter sltu $at, rB, rA 

beq $at, $0, target 

bleu rA, IMM32, target bleu $3, 0x12345678, Shifter li $at, IMM32 

sltu $at, $at, rA 

beq $at, $0, target 

 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  89 

BLEZ 
Branch On Less Than Or Equal To Zero 

Assembler Format:     blez rA, target 

Example: blez $3, _myfunc 

Description: Generates a branch target address by adding the address of the instruction in 
the delay slot to a signed offset (a 16-bit immediate value, IMM16, calculated 
from the target operand, left-shifted two bits and sign-extended to 32 bits). If the 
value in GPR rA is negative or 0 (i.e. the sign bit of rA is 1 or the rA value is 0), 
the program branches to the target address after a delay of one instruction 
cycle. 

Operation: If rA <= 0 Then 

  PC ← PC + 4 + SignExtend(IMM16 * 4) 

 Else 

  PC ← PC + 4 

Instruction Type: I-Type 

Instruction Fields: rA = Register index of operand A 

 target = a symbolic address label or a hard-coded PC-offset in bytes 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 1 1 0 rA 0 0 0 0 0 IMM16 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

90 CR0121 (v2.0) July 15, 2006  

BLT (Macro) 
Branch On Less Than 

Assembler Format Example Translates to… 

blt rA, rB, target blt $3, $4, Shifter slt $at, rA, rB 

bne $at, $0, target 

blt rA, IMM32, target blt $3, 0x12345678, Shifter li $at, IMM32 

slt $at, rA, $at 

bne $at, $0, target 

Notes: 

In the second of the two formats, if IMM32 fits into a 16-bit value, then the macro translates into the 
following machine instructions: 

slti $at, rA, IMM16 

bne $at, $0, target 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  91 

BLTU (Macro) 
Branch On Less Than Unsigned 

Assembler Format Example Translates to… 

bltu rA, rB, target bltu $3, $4, Shifter sltu $at, rA, rB 

bne $at, $0, target 

bltu rA, IMM32, target bltu $3, 0x12345678, Shifter li $at, IMM32 

sltu $at, rA, $at 

bne $at, $0, target 

Notes: 

In the second of the two formats, if IMM32 fits into a 16-bit value, then the macro translates into the 
following machine instructions: 

sltiu $at, rA, IMM16 

bne $at, $0, target 



TSK3000A 32-bit RISC Processor 

92 CR0121 (v2.0) July 15, 2006  

BLTZ 
Branch On Less Than Zero 

Assembler Format:     bltz rA, target 

Example: bltz $3, _myfunc 

Description: Generates a branch target address by adding the address of the instruction in 
the delay slot to a signed offset (a 16-bit immediate value, IMM16, calculated 
from the target operand, left-shifted two bits and sign-extended to 32 bits). If the 
value in GPR rA is negative (i.e. the sign bit of rA is 1), the program branches to 
the target address after a delay of one instruction cycle. 

Operation: If rA < 0 Then 

  PC ← PC + 4 + SignExtend(IMM16 * 4) 

 Else 

  PC ← PC + 4 

Instruction Type: I-Type 

Instruction Fields: rA = Register index of operand A 

 target = a symbolic address label or a hard-coded PC-offset in bytes 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 1 rA 0 0 0 0 0 IMM16 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  93 

BLTZAL 
Branch On Less Than Zero And Link 

Assembler Format:     bltzal rA, target 

Example: bltzal $3, _myfunc 

Description: Generates a branch target address by adding the address of the instruction in 
the delay slot to a signed offset (a 16-bit immediate value, IMM16, calculated 
from the target operand, left-shifted two bits and sign-extended to 32 bits). The 
address of the instruction following the instruction in the delay slot is 
unconditionally placed in general purpose register r31 as the return address 
from the branch.  If the value in GPR rA is negative (i.e. the sign bit of rA is 1), 
the program branches to the target address after a delay of one instruction 
cycle. Register r31 should not be used for rA, as this would prevent the 
instruction from restarting. 

Operation: If rA < 0 Then 

  PC ← PC + 4 + SignExtend(IMM16 * 4) 

  GPR[31] ← PC + 8 

 Else 

  PC ← PC + 4 

Instruction Type: I-Type 

Instruction Fields: rA = Register index of operand A 

 target = a symbolic address label or a hard-coded PC-offset in bytes 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 1 rA 1 0 0 0 0 IMM16 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

94 CR0121 (v2.0) July 15, 2006  

BNE 
Branch On Not Equal 

Assembler Format:     bne rA, rB, target 

Example: bne $3, $4, _myfunc 

Description: Generates a branch target address by adding the address of the instruction in 
the delay slot to a signed offset (a 16-bit immediate value, IMM16, calculated 
from the target operand, left-shifted two bits and sign-extended to 32 bits). The 
contents of GPRs rA and rB are compared and, if not equal, the program 
branches to the target address after a delay of one instruction cycle. 

Operation: If rA <> rB Then 

  PC ← PC + 4 + SignExtend(IMM16 * 4) 

 Else 

  PC ← PC + 4 

Instruction Type: I-Type 

Instruction Fields: rA = Register index of operand A 

 rB = Register index of operand B 

 target = a symbolic address label or a hard-coded PC-offset in bytes 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 1 0 1 rA rB IMM16 

Latency: 1 

 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  95 

BNE (Macro) 
Branch On Not Equal 

Assembler Format Example Translates to… 

bne rA, IMM32, target bne $3, 0x12345678, Shifter li $at, IMM32 

bne rA, $at, target 

 



TSK3000A 32-bit RISC Processor 

96 CR0121 (v2.0) July 15, 2006  

BNEZ (Macro) 
Branch On Not Equal To Zero 

Assembler Format Example Translates to… 

bnez rA, target bnez $3, Shifter bne rA, $0, target 

  



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  97 

BREAK 
Breakpoint 

Assembler Format:     break code 

Example: break 314 

Description: If the OCDS is active then the processor will stop at this point and flush any 
instructions that have entered the pipeline after the break instruction. 

Operation: Processor stops 

Instruction Type: I-Type 

Instruction Fields:  

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 Code 0 0 1 1 0 1 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

98 CR0121 (v2.0) July 15, 2006  

BREAK (Macro) 
Breakpoint 

Assembler Format Example Translates to… 

break break break 0 

 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  99 

DIV 
Divide Word 

Assembler Format:     div rC, rA, rB 

Example: div $2, $3, $4 

Description: Divides the contents of GPR rA by the contents of GPR rB, treating both 
operands as 32-bit two's complement integers. The quotient word is loaded into 
special register LO and also into GPR rC, the sign of which will be negative if 
the operands are of opposite signs. The remainder word is loaded into special 
register HI, the sign of which will be the same as the numerator. 

 An overflow exception is never raised. If the divisor is zero, the result is 
undefined. 

 If rC is not specified, $0 will be used by default. 

 Ordinarily, instructions are placed after this instruction to check for zero division 
and overflow. 

Operation: LO ← rA div rB 

 rC ← rA div rB 

 HI ← rA mod rB 

Instruction Type: R-Type 

Instruction Fields: rA = Register index of operand A 

 rB = Register index of operand B 

 rC = Register index of destination 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 rA rB rC 0 0 0 0 0 0 1 1 0 1 0 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

100 CR0121 (v2.0) July 15, 2006  

DIV (Macro) 
Divide 

Assembler Format Example Translates to… 

div rA, rB div $3, $4 div $0, rA, rB 

div rA, IMM32 div $3, 0x12345678 li $at, IMM32 

div rA, $at 

div rC, rA, IMM32 div $2, $3, 0x12345678 LI $AT, IMM32 

div rC, rA, $at 

 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  101 

DIVU 
Divide Unsigned Word 

Assembler Format:     divu rC, rA, rB 

Example: divu $2, $3, $4 

Description: Divides the contents of GPR rA by the contents of GPR rB, treating both 
operands as 32-bit unsigned positive values. The quotient word is loaded into 
special register LO and also GPR rC. The remainder word is loaded into special 
register HI. Both quotient and remainder values will always be positive. 

 If rC is not specified, $0 will be used by default. 

Operation: LO ← (Unsigned) rA div (Unsigned) rB 

 rC ← (Unsigned) rA div (Unsigned) rB 

 HI ← (Unsigned) rA mod (Unsigned) rB 

Instruction Type: R-Type 

Instruction Fields: rA = Register index of operand A 

 rB = Register index of operand B 

 rC = Register index of destination 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 rA rB rC 0 0 0 0 0 0 1 1 0 1 1 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

102 CR0121 (v2.0) July 15, 2006  

DIVU (Macro) 
Divide Unsigned 

Assembler Format Example Translates to… 

divu rA, rB divu $3, $4 divu $0, rA, rB 

divu rA, IMM32 divu $3, 0x12345678 li $at, IMM32 

divu rA, $at 

divu rC, rA, IMM32 divu $2, $3, 0x12345678 LI $AT, IMM32 

divu rC, rA, $at 

 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  103 

J 
Jump 

Assembler Format:     j target 

Example: j _myfunc 

Description: Generates a jump target address by left-shifting a 26-bit immediate value 
IMM26 (calculated from the target operand) by two bits and combining the result 
with the high-order 4 bits of the address of the instruction in the delay slot. The 
program jumps unconditionally to this address after a delay of one instruction 
cycle. 

Operation: PC ← (PC31..28 : IMM26 x 4) 

Instruction Type: J-Type 

Instruction Fields: target = a symbolic address label or a hard-coded address in bytes  

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 0 IMM26 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

104 CR0121 (v2.0) July 15, 2006  

J (Macro) 
Jump 

Assembler Format Example Translates to… 

j rA j $3 jr rA 

 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  105 

JAL 
Jump And Link 

Assembler Format:     jal target 

Example: jal _myfunc 

Description: Generates a jump target address by left-shifting a 26-bit immediate value 
IMM26 (calculated from the target operand) by 2 bits and combining the result 
with the high-order 4 bits of the address of the instruction in the delay slot. The 
program jumps unconditionally to this address after a delay of one instruction 
cycle. The address of the instruction following the instruction in the delay slot is 
placed in general purpose register r31 as the return address from the jump. 

Operation: GPR[31] ← PC + 8 

 PC ← (PC31..28 : IMM26 x 4) 

Instruction Type: J-Type 

Instruction Fields: target = a symbolic address label or a hard-coded address in bytes 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 1 IMM26 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

106 CR0121 (v2.0) July 15, 2006  

JAL (Macro) 
Jump And Link 

Assembler Format Example Translates to… 

jal rA jal $3 jalr $ra, rA 

jal rC, target jal rC, Shifter lui $at, @HI(target) 

addiu $at, $at, @LO(target) 

jalr rC, $at 

 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  107 

JALR 
Jump And Link Register 

Assembler Format:     jalr rA 

 jalr rC, rA 

Example: jalr $4 

 jalr $30, $4 

Description: Causes the program to jump unconditionally to the address in GPR rA after a 
delay of one instruction cycle. The address of the instruction following the delay 
slot is put in GPR rC as the return address from the jump. If rC is omitted from 
the assembly language instruction, the address stored in general purpose 
register r31 is used as the default value. 

 rA and rC must not be equal, since such an instruction would not have the same 
result if re-executed. This error is not trapped, however the result is undefined. 

 Since instructions must be aligned on a word boundary, the two low-order bits 
of the value in target register rA must be 00. 

Operation: rC ← PC + 8 

 PC ← rA 

Instruction Type: R-Type 

Instruction Fields: rA = Index of register containing jump address 

 rC = Index of register containing return address 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 rA 0 0 0 0 0 rC 0 0 0 0 0 0 0 1 0 0 1 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

108 CR0121 (v2.0) July 15, 2006  

JALR (Macro) 
Jump And Link Register 

Assembler Format Example Translates to… 

jalr target jalr Shifter lui $at, @HI(target) 

addiu $at, $at, @LO(target) 

jalr $ra, $at 

jalr rA jalr $3 jalr $ra, rA 

jalr rC, target jalr $4, Shifter lui $at, @HI(target) 

addiu $at, $at, @LO(target) 

jalr rC, $at 

 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  109 

JR 
Jump Register 

Assembler Format:     jr rA 

Example: jr $3 

Description: Causes the program to jump unconditionally to the address in GPR rA after a 
delay of one instruction cycle. 

 Since instructions must be aligned on a word boundary, the two low-order bits 
of target register rA must be 00. 

Operation: PC ← rA 

Instruction Type: R-Type 

Instruction Fields: rA = Index of register containing jump address 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 rA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

110 CR0121 (v2.0) July 15, 2006  

JR (Macro) 
Jump Register 

Assembler Format Example Translates to… 

jr target jr Shifter lui $at, @HI(target) 

addiu $at, $at, @LO(target) 

jr $at 

 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  111 

LA (Macro) 
Load Address 

Assembler Format Example Translates to… 

la rC, target la $3, Shifter see note 1 

la rC, target(rA) la $3, Shifter($2) see note 2 

Notes: 

1) If the address is an absolute expression, then this format becomes identical to the LI macro 
instruction and will translate as such. If the address is a relocatable expression, then this format 
translates to: 

  lui $at, @HI(target) 

  addiu rC, $at, @LO(target) 

2) If the address is an absolute expression, then this format translates into single ADDIU machine 
instruction, or in a LI plus an ADDIU. In this case the second format for this macro can better be 
described as ‘la rC, offset(rA)’ – i.e. load an offset added to an address defined in GPR rA. 

If the address is a relocatable expression, then this format translates to: 

  lui $at, @HI(target) 

      addiu $at, $at, @LO(target) 

      addu rC, $at, rA 

unless the source register is the GP register ($28) and the assembler runs with the –gp-relative option 
enabled, in which case the second format translates into the following single machine instruction: 

  addiu rC, rA, @GPREL(target) 



TSK3000A 32-bit RISC Processor 

112 CR0121 (v2.0) July 15, 2006  

LB 
Load Byte 

Assembler Format:     lb rB, IMM16(rA) 

Example: lb $3, 2($5) 

Description: Generates a 32-bit effective address by sign-extending the 16-bit immediate 
value, IMM16, and adding it to the contents of GPR rA. It then sign-extends the 
byte at the memory location pointed to by the effective address and loads the 
result into GPR rB. 

Operation: rB ← SignExtend(Mem8[rA + SignExtend(IMM16)]) 

Instruction Type: I-Type 

Instruction Fields: rA = Register index of operand A (base address) 

 rB = Register index of destination 

 IMM16 = 16-bit immediate data value 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 0 0 0 rA rB IMM16 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  113 

LB (Macro) 
Load Byte 

Assembler Format Example Translates to… 

lb rC, (rA) lb $3, ($4) lb rC, 0(rA) 

lb rC, target lb $3, Shifter lui $at, @HI(target) 

lb rC, @LO(target)($at) 

lb rC, target(rA) lb $3, Shifter($4) lui $at, @HI(target) 

addu $at, $at, rA 

lb rC, @LO(target)($at) 

Notes: 

With respect to the third format for this macro, if the source register is the GP register ($28) and the 
assembler runs with the –gp-relative option enabled, the format translates into the following single 
machine instruction: 

lb rC, @GPREL(target)($gp) 



TSK3000A 32-bit RISC Processor 

114 CR0121 (v2.0) July 15, 2006  

LBU 
Load Byte Unsigned 

Assembler Format:     lbu rB, IMM16(rA) 

Example: lbu $3, 2($5) 

Description: Generates a 32-bit effective address by sign-extending the 16-bit immediate 
value, IMM16, and adding it to the contents of GPR rA.  It then zero-extends the 
byte at the memory location pointed to by the effective address and loads the 
result into GPR rB. 

Operation: rB ← ZeroExtend(Mem8[rA + SignExtend(IMM16)]) 

Instruction Type: I-Type 

Instruction Fields: rA = Register index of operand A (base address) 

 rB = Register index of destination 

 IMM16 = 16-bit immediate data value 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 1 0 0 rA rB IMM16 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  115 

LBU (Macro) 
Load Byte Unsigned 

Assembler Format Example Translates to… 

lbu rC, (rA) lbu $3, ($4) lbu rC, 0(rA) 

lbu rC, target lbu $3, Shifter lui $at, @HI(target) 

lbu rC, @LO(target)($at) 

lbu rC, target(rA) lbu $3, Shifter($4) lui $at, @HI(target) 

addu $at, $at, rA 

lbu rC, @LO(target)($at) 

Notes: 

With respect to the third format for this macro, if the source register is the GP register ($28) and the 
assembler runs with the –gp-relative option enabled, the format translates into the following single 
machine instruction: 

lbu rC, @GPREL(target)($gp) 



TSK3000A 32-bit RISC Processor 

116 CR0121 (v2.0) July 15, 2006  

LH 
Load Halfword 

Assembler Format:     lh rB, IMM16(rA) 

Example: lh $3, 2($5) 

Description: Generates a 32-bit effective address by sign-extending the 16-bit immediate 
value, IMM16, and adding it to the contents of GPR rA. It then sign-extends the 
halfword at the memory location pointed to by the effective address and loads 
the result into GPR rB. 

Operation: rB ← SignExtend(Mem16[rA + SignExtend(IMM16)]) 

Instruction Type: I-Type 

Instruction Fields: rA = Register index of operand A (base address) 

 rB = Register index of destination 

 IMM16 = 16-bit immediate data value 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 0 0 1 rA rB IMM16 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  117 

LH (Macro) 
Load Halfword 

Assembler Format Example Translates to… 

lh rC, (rA) lh $3, ($4) lh rC, 0(rA) 

lh rC, target lh $3, Shifter lui $at, @HI(target) 

lh rC, @LO(target)($at) 

lh rC, target(rA) lh $3, Shifter($4) lui $at, @HI(target) 

addu $at, $at, rA 

lh rC, @LO(target)($at) 

Notes: 

With respect to the third format for this macro, if the source register is the GP register ($28) and the 
assembler runs with the –gp-relative option enabled, the format translates into the following single 
machine instruction: 

lh rC, @GPREL(target)($gp) 



TSK3000A 32-bit RISC Processor 

118 CR0121 (v2.0) July 15, 2006  

LHU 
Load Halfword Unsigned 

Assembler Format:     lhu rB, IMM16(rA) 

Example: lhu $3, 2($5) 

Description: Generates a 32-bit effective address by sign-extending the 16-bit immediate 
value, IMM16, and adding it to the contents of GPR rA. It then zero-extends the 
halfword at the memory location pointed to by the effective address and loads 
the result into GPR rB. 

Operation: rB ← ZeroExtend(Mem16[rA + SignExtend(IMM16)]) 

Instruction Type: I-Type 

Instruction Fields: rA = Register index of operand A (base address) 

 rB = Register index of destination 

 IMM16 = 16-bit immediate data value 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 1 0 1 rA rB IMM16 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  119 

LHU (Macro) 
Load Halfword Unsigned 

Assembler Format Example Translates to… 

lhu rC, (rA) lhu $3, ($4) lhu rC, 0(rA) 

lhu rC, target lhu $3, Shifter lui $at, @HI(target) 

lhu rC, @LO(target)($at) 

lhu rC, target(rA) lhu $3, Shifter($4) lui $at, @HI(target) 

addu $at, $at, rA 

lhu rC, @LO(target)($at) 

Notes: 

With respect to the third format for this macro, if the source register is the GP register ($28) and the 
assembler runs with the –gp-relative option enabled, the format translates into the following single 
machine instruction: 

lhu rC, @GPREL(target)($gp) 



TSK3000A 32-bit RISC Processor 

120 CR0121 (v2.0) July 15, 2006  

LI (Macro) 
Load Immediate 

Assembler Format Example Translates to… 

li rC, IMM32 li $3, 0x12345678 see notes 

Notes: 

The expression should result in a 32-bit integer value in the range -231 to 232 – 1. There are four 
possible machine instruction representations of this macro instruction, depending on the value of the 
expression: 

ori rC, $0, IMM32 if IMM32 is in the range 0 to 216 – 1 (i.e. from 0000_0000h to 0000_FFFFh) 

addiu rC, $0, IMM32 if IMM32 is in the range -215 to -1 (i.e. from FFFF_8000h to FFFF_FFFFh) 

lui rC, @MSH(IMM32) if IMM32 is a multiple of 216 (i.e. of the form xxxx_0000h) 

lui $at, @MSH(IMM32) 

ori rC, $at, 
@LSH(IMM32) 

for all other values of IMM32 

Relocatable expressions are not allowed. 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  121 

LUI 
Load Upper Immediate 

Assembler Format:     lui rB, IMM16 

Example: lui $3, 0x0123456F + 2 

Description: Left-shifts 16-bit immediate value, IMM16, by 16 bits, zero-fills the low-order 16 
bits of the word, and puts the result in GPR rB. 

Operation: rB ← ((IMM16 << 16) : 0000h) 

Instruction Type: I-Type 

Instruction Fields: rB = Register index of destination 

 IMM16 = 16-bit immediate data value 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 1 1 1 0 0 0 0 0 rB IMM16 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

122 CR0121 (v2.0) July 15, 2006  

LW 
Load Word 

Assembler Format:     lw rB, IMM16(rA) 

Example: lw $3, 0($5) 

Description: Generates a 32-bit effective address by sign-extending the 16-bit immediate 
value, IMM16, and adding it to the contents of GPR rA. It then loads the word at 
the memory location pointed to by the effective address into GPR rB. 

Operation: rB ← Mem32[rA + SignExtend(IMM16)] 

Instruction Type: I-Type 

Instruction Fields: rA = Register index of operand A (base address) 

 rB = Register index of destination 

 IMM16 = 16-bit immediate data value 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 0 1 1 rA rB IMM16 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  123 

LW (Macro) 
Load Word 

Assembler Format Example Translates to… 

lw rC, (rA) lw $3, ($4) lw rC, 0(rA) 

lw rC, target lw $3, Shifter lui $at, @HI(target) 

lw rC, @LO(target)($at) 

lw rC, target(rA) lw $3, Shifter($4) lui $at, @HI(target) 

addu $at, $at, rA 

lw rC, @LO(target)($at) 

Notes: 

With respect to the third format for this macro, if the source register is the GP register ($28) and the 
assembler runs with the –gp-relative option enabled, the format translates into the following single 
machine instruction: 

lw rC, @GPREL(target)($gp) 



TSK3000A 32-bit RISC Processor 

124 CR0121 (v2.0) July 15, 2006  

MFC0 
Move From Special Function Register 

Assembler Format:     mfc0 rB, rC 

Example: mfc0 $3, TBHI 

Description: Loads the contents of special function register rC into GPR rB. 

Operation: rB ← SPR[rC] 

Instruction Type: R-Type 

Instruction Fields: rB = Register index of destination 

 rC = Register index of operand C 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 0 0 0 0 0 0 0 rB rC 0 0 0 0 0 0 0 0 0 0 0 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  125 

MFHI 
Move From HI 

Assembler Format:     mfhi rC 

Example: mfhi $3 

Description: Loads the contents of SFR HI into GPR rC. 

Operation: rC ← HI 

Instruction Type: R-Type 

Instruction Fields: rC = Register index of destination 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 rC 0 0 0 0 0 0 1 0 0 0 0 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

126 CR0121 (v2.0) July 15, 2006  

MFLO 
Move From LO 

Assembler Format:     mflo rC 

Example: mflo $3 

Description: Loads the contents of SFR LO into GPR rC. 

Operation: rC ← LO 

Instruction Type: R-Type 

Instruction Fields: rC = Register index of destination 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 rC 0 0 0 0 0 0 1 0 0 1 0 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  127 

MTC0 
Move To Special Function Register 

Assembler Format:     mtc0 rB, rC 

Example: mtc0 $3, PIT 

Description: Loads the contents of GPR rB into special function register rC. 

Operation: SPR[Rc] ← rB 

Instruction Type: R-Type 

Instruction Fields: rB = Index of source GPR 

 rC = Index of destination SFR 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 0 0 0 0 1 0 0 rB rC 0 0 0 0 0 0 0 0 0 0 0 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

128 CR0121 (v2.0) July 15, 2006  

MOVE (Macro) 
Move 

Assembler Format Example Translates to… 

move rC, rA move $3, $4 or rC, rA, $0 

 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  129 

MTHI 
Move To HI 

Assembler Format:     mthi rA 

Example: mthi $3 

Description: Loads the contents of GPR rA into SFR HI. 

Operation: HI ← rA 

Instruction Type: R-Type 

Instruction Fields: rA = Index of source GPR 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 rA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

130 CR0121 (v2.0) July 15, 2006  

MTLO 
Move To LO 

Assembler Format:     mtlo rA 

Example: mtlo $3 

Description: Loads the contents of GPR rA into SFR LO. 

Operation: LO ← rA 

Instruction Type: R-Type 

Instruction Fields: rA = Index of source GPR 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 rA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  131 

MULT 
Multiply Word 

Assembler Format:     mult rC, rA, rB 

Example: mult $3, $4, $5 

Description: Multiplies the contents of GPR rA by the contents of GPR rB, treating both 
operands as 32-bit two's complement values. The low-order word of the 
multiplication result is put in special register LO and also in GPR rC. The high-
order word of the result is put in special register HI. 

 If rC is omitted in assembly language, $0 is used as the default value. 

 This instruction cannot raise an integer overflow exception. 

Operation: HILO ← (Signed) rA * (Signed) rB 

Instruction Type: R-Type 

Instruction Fields: rA = Register index of operand A 

 rB = Register index of operand B 

 rC = Register index of destination 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 rA rB rC 0 0 0 0 0 0 1 1 0 0 0 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

132 CR0121 (v2.0) July 15, 2006  

MULT (Macro) 
Multiply 

Assembler Format Example Translates to… 

mult rA, rB mult $3, $4 mult $0, rA, rB 

mult rA, IMM32 mult $3, 0x12345678 li $at, IMM32 

mult rA, $at 

mult rC, rA, IMM32 mult $2, $3, 0x12345678 LI $AT, IMM32 

mult rC, rA, $at 

 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  133 

MULTU 
Multiply Unsigned Word 

Assembler Format:     multu rC, rA, rB 

Example: multu $3, $4, $5 

Description: Multiplies the contents of GPR rA by the contents of GPR rB, treating both 
operands as 32-bit unsigned positive values. The low-order word of the 
multiplication result is put in special register LO and also in GPR rC. The high-
order word of the result is put in special register HI. 

 If rC is omitted in assembly language, $0 is used as the default value. 

 This instruction cannot raise an integer overflow exception. 

Operation: HILO ← (Unsigned) rA * (Unsigned) rB 

Instruction Type: R-Type 

Instruction Fields: rA = Register index of operand A 

 rB = Register index of operand B 

 rC = Register index of destination 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 rA rB rC 0 0 0 0 0 0 1 1 0 0 1 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

134 CR0121 (v2.0) July 15, 2006  

MULTU (Macro) 
Multiply Unsigned 

Assembler Format Example Translates to… 

multu rA, rB multu $3, $4 multu $0, rA, rB 

multu rA, IMM32 multu $3, 0x12345678 li $at, IMM32 

multu rA, $at 

multu rC, rA, IMM32 multu $2, $3, 0x12345678 LI $AT, IMM32 

multu rC, rA, $at 

 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  135 

NEG (Macro) 
Negate 

Assembler Format Example Translates to… 

neg rC, rA neg $3, $4 sub rC, $0, rA 

neg rA neg $4 sub rA, $0, rA (with rC = rA) 

 



TSK3000A 32-bit RISC Processor 

136 CR0121 (v2.0) July 15, 2006  

NEGU (Macro) 
Negate Unsigned 

Assembler Format Example Translates to… 

negu rC, rA negu $3, $4 subu rC, $0, rA 

negu rA negu $4 subu rA, $0, rA (with rC = rA) 

 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  137 

NOP (Macro) 
No Operation 

Assembler Format Example Translates to… 

nop nop sll $0, $0, 0 

 



TSK3000A 32-bit RISC Processor 

138 CR0121 (v2.0) July 15, 2006  

NOR 
Bitwise Logical NOR 

Assembler Format:     nor rC, rA, rB 

Example: nor $3, $4, $5 

Description: Bitwise logically NORs the contents of GPR rA with the contents of GPR rB, and 
loads the result in GPR rC. 

Operation: rC ← rA NOR rB 

Instruction Type: R-Type 

Instruction Fields: rA = Register index of operand A 

 rB = Register index of operand B 

 rC = Register index of destination 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 rA rB rC 0 0 0 0 0 1 0 0 1 1 1 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  139 

NOR (Macro) 
Bitwise Logical NOR 

Assembler Format Example Translates to… 

nor rC, rB nor $3, $4 nor rC, rC, rB (with rA = rC) 

nor rC, rA, IMM32 nor $3, $4, 0x12345678 

nor rC, IMM32 nor $3, 0x12345678 

li $at, IMM32 

nor rC, rA, $at 

 



TSK3000A 32-bit RISC Processor 

140 CR0121 (v2.0) July 15, 2006  

NOT (Macro) 
Bitwise Logical NOT 

Assembler Format Example Translates to… 

not rC, rA not $3, $4 nor rC, rA, $0 

not rA not $4 nor rA, rA, $0 (with rC = rA) 

 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  141 

OR 
Bitwise Logical OR 

Assembler Format:     or rC, rA, rB 

Example: or $3, $4, $5 

Description: Bitwise logically ORs the contents of GPR rA with the contents of GPR rB, and 
loads the result in GPR rC. 

Operation: rC ← rA OR rB 

Instruction Type: R-Type 

Instruction Fields: rA = Register index of operand A 

 rB = Register index of operand B 

 rC = Register index of destination 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 rA rB rC 0 0 0 0 0 1 0 0 1 0 1 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

142 CR0121 (v2.0) July 15, 2006  

OR (Macro) 
Bitwise Logical OR 

Assembler Format Example Translates to… 

or rC, rB or $3, $4 or rC, rC, rB (with rA = rC) 

or rC, rA, IMM32 or $3, $2, 0x12345678 see note 2 

or rC, IMM32 (see note 1) or $3, 0x12345678 see note 2 

Notes: 

1) This format can also be written as: or rC, rC, IMM32 (with rA = rC) 

2) If the signed IMM32 operand fits into an unsigned 16-bit operand, then these two macro formats 
translate into single ORI machine instructions: 

or rC, rA, IMM32 translates to….. ori rC, rA, IMM16 

or rC, IMM32 translates to….. ori rC, rC, IMM16 (with rA = rC) 

If the IMM32 operand does not fit, or has an unknown value, then these two macro formats translate to: 

  li $at, IMM32 

      or rC, rA, $at 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  143 

ORI 
Bitwise Logical OR Immediate 

Assembler Format:     ori rB, rA, IMM16 

Example: ori $3, $4, 0x1234 

Description: Zero-extends the 16-bit immediate value, IMM16, bitwise logically ORs the 
result with the contents of GPR rA, and loads the result in GPR rB. 

Operation: rB ← rA OR ZeroExtend(IMM16) 

Instruction Type: I-Type 

Instruction Fields: rA = Register index of operand A 

 rB = Register index of destination 

 IMM16 = 16-bit immediate data value 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 1 0 1 rA rB IMM16 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

144 CR0121 (v2.0) July 15, 2006  

ORI (Macro) 
Bitwise Logical OR Immediate 

Assembler Format Example Translates to… 

ori rC, IMM16 ori $3, oxFFFF ori rC, rC, IMM16 (where rA = rC) 

 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  145 

RFE 
Restore From Exception 

Assembler Format:     rfe 

Example: mfc0 t1, COP_ExceptionReturn 

 j t1 

 rfe 

Description: Copies the control register bits for previous interrupt mask mode and previous 
user mode (IEp and UMp) to the current mode bits (IEc and UMc) and copies 
the old mode bits (IEo and UMo) to the previous mode bits (IEp and UMp). The 
old mode bits remain unchanged. 

 Normally an RFE instruction is placed in the delay slot after a JR instruction, in 
order to restore the PC. 

Operation: IEc ← IEp 

 UMc ← UMp 

 IEp ← IEo 

 UMp ← UMo 

Instruction Type: R-Type 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

146 CR0121 (v2.0) July 15, 2006  

ROL (Macro) 
Rotate Left 

Assembler Format Example Translates to… 

rol rC, rA, IMM5 rol $3, $4, 16 srl $at, rA, 32 – IMM5 

sll rC, rA, IMM5 

or rC, rC, $at 

rol rC, rA, rB rol $3, $4, $5 subu $at, $0, rB 

srlv $at, rA, $at 

sllv rC, rA, rB 

or rC, rC, $at 

rol rC, IMM5 rol $3, 16 srl $at, rC, 32 – IMM5 

sll rC, rC, IMM5 

or rC, rC, $at 

rol rC, rB rol $3, $5 subu $at, $0, rB 

srlv $at, rC, $at 

sllv rC, rC, rB 

or rC, rC, $at 

 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  147 

ROR (Macro) 
Rotate Right 

Assembler Format Example Translates to… 

ror rC, rA, IMM5 ror $3, $4, 16 sll $at, rA, 32 – IMM5 

srl rC, rA, IMM5 

or rC, rC, $at 

ror rC, rA, rB ror $3, $4, $5 subu $at, $0, rB 

sllv $at, rA, $at 

srlv rC, rA, rB 

or rC, rC, $at 

ror rC, IMM5 ror $3, 16 sll $at, rC, 32 – IMM5 

srl rC, rC, IMM5 

or rC, rC, $at 

ror rC, rB ror $3, $5 subu $at, $0, rB 

sllv $at, rC, $at 

srlv rC, rC, rB 

or rC, rC, $at 

 



TSK3000A 32-bit RISC Processor 

148 CR0121 (v2.0) July 15, 2006  

SB 
Store Byte 

Assembler Format:     sb rB, IMM16(rA) 

Example: sb $3, 2($5) 

Description: Generates a 32-bit effective address by sign-extending the 16-bit immediate 
value, IMM16, and adding it to the contents of GPR rA. It then stores the least 
significant byte of register rB at the resulting effective address. 

Operation: Mem8[rA + SignExtend(IMM16)] ← rB7..0 

Instruction Type: I-Type 

Instruction Fields: rA = Register index of operand A 

 rB = Register index of operand B 

 IMM16 = 16-bit immediate data value 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 1 0 0 0 rA rB IMM16 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  149 

SB (Macro) 
Store Byte 

Assembler Format Example Translates to… 

sb rC, (rA) sb $3, ($4) sb rC, 0(rA) 

sb rC, target sb $3, Shifter lui $at, @HI(target) 

sb rC, @LO(target)($at) 

sb rC, target(rA) sb $3, Shifter($4) lui $at, @HI(target) 

addu $at, $at, rA 

sb rC, @LO(target)($at) 

Notes: 

With respect to the third format for this macro, if the source register is the GP register ($28) and the 
assembler runs with the –gp-relative option enabled, the format translates into the following single 
machine instruction: 

sb rC, @GPREL(target)($gp) 



TSK3000A 32-bit RISC Processor 

150 CR0121 (v2.0) July 15, 2006  

SEQ (Macro) 
Set On Equal To 

Assembler Format Example Translates to… 

seq rC, rA, rB seq $3, $4, $5 xor rC, rA, rB 

sltiu rC, rC, 1 

seq rC, rA, IMM32 seq $3, $4, 0x12345678 li $at, IMM32 

xor rC, rA, $AT 

sltiu rC, rC, 1 

Notes: 

If IMM32 is in the range 0 to 216 – 1 (i.e. from 0000_0000h to 0000_FFFFh) then the second macro 
format translates to: 

xori rC, rA, IMM32 

sltiu rC, rC, 1 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  151 

SGE (Macro) 
Set On Greater Than Or Equal To 

Assembler Format Example Translates to… 

sge rC, rA, rB sge $3, $4, $5 slt rC, rA, rB 

xori rC, rC, 1 

sge rC, rA, IMM32 sge $3, $4, 0x12345678 li $at, IMM32 

slt rC, rA, $at 

xori rC, rC, 1 

Notes: 

If IMM32 is in the range -215 to 215 – 1 (i.e. from 0000_0000h to 0000_7FFFh or from FFFF_8000h to 
FFFF_FFFFh) then the second macro format translates to: 

slti rC, rA, IMM32 

xori rC, rC, 1 



TSK3000A 32-bit RISC Processor 

152 CR0121 (v2.0) July 15, 2006  

SGEU (Macro) 
Set On Greater Than Or Equal To Unsigned 

Assembler Format Example Translates to… 

sgeu rC, rA, rB sgeu $3, $4, $5 sltu rC, rA, rB 

xori rC, rC, 1 

sgeu rC, rA, IMM32 sgeu $3, $4, 0x12345678 li $at, IMM32 

sltu rC, rA, $at 

xori rC, rC, 1 

Notes: 

If IMM32 is in the range -215 to 215 – 1 (i.e. from 0000_0000h to 0000_7FFFh or from FFFF_8000h to 
FFFF_FFFFh) then the second macro format translates to: 

sltiu rC, rA, IMM32 

xori rC, rC, 1 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  153 

SGT (Macro) 
Set On Greater Than 

Assembler Format Example Translates to… 

sgt rC, rA, rB sgt $3, $4, $5 slt rC, rB, rA 

sgt rC, rA, IMM32 sgt $3, $4, 0x12345678 li $at, IMM32 

slt rC, $at, rA 

 

 



TSK3000A 32-bit RISC Processor 

154 CR0121 (v2.0) July 15, 2006  

SGTU (Macro) 
Set On Greater Than Unsigned 

Assembler Format Example Translates to… 

sgtu rC, rA, rB sgtu $3, $4, $5 sltu rC, rB, rA 

sgtu rC, rA, IMM32 sgtu $3, $4, 0x12345678 li $at, IMM32 

sltu rC, $at, rA 

 

 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  155 

SH 
Store Halfword 

Assembler Format:     sh rB, IMM16(rA) 

Example: sh $3, 2($5) 

Description: Generates an unsigned 32-bit effective address by sign-extending the 16-bit 
immediate value, IMM16, and adding it to the contents of GPR rA. It then stores 
the least significant halfword of register rB at the resulting effective address. 

Operation: Mem16[rA + SignExtend(IMM16)] ← rB15..0 

Instruction Type: I-Type 

Instruction Fields: rA = Register index of operand A 

 rB = Register index of operand B 

 IMM16 = 16-bit immediate data value 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 1 0 0 1 rA rB IMM16 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

156 CR0121 (v2.0) July 15, 2006  

SH (Macro) 
Store Halfword 

Assembler Format Example Translates to… 

sh rC, (rA) sh $3, ($4) sh rC, 0(rA) 

sh rC, target sh $3, Shifter lui $at, @HI(target) 

sh rC, @LO(target)($at) 

sh rC, target(rA) sh $3, Shifter($4) lui $at, @HI(target) 

addu $at, $at, rA 

sh rC, @LO(target)($at) 

Notes: 

With respect to the third format for this macro, if the source register is the GP register ($28) and the 
assembler runs with the –gp-relative option enabled, the format translates into the following single 
machine instruction: 

sh rC, @GPREL(target)($gp) 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  157 

SLA (Macro) 
Shift Left Arithmetic 

Assembler Format Example Translates to… 

sla rC, rA, IMM5 sla $3, $4, 4 sll rC, rA, IMM5 

sla rC, rA, rB sla $3, $4, $5 sllv rC, rA, rB 

sla rC, IMM5 sla $3, 4 sll rC, rC, IMM5 (where rA = rC) 

sla rC, rB sla $3, $5 sllv rC, rC, rB (where rA = rC) 

Notes: 

SLA is identical to SLL and can be used wherever SLL is used. 



TSK3000A 32-bit RISC Processor 

158 CR0121 (v2.0) July 15, 2006  

SLAV (Macro) 
Shift Left Arithmetic Variable 

Assembler Format Example Translates to… 

slav rC, rA, rB slav $3, $4, $5 sllv rC, rA, rB 

slav rC, rB slav $3, $5 sllv rC, rC, rB (where rA = rC) 

Notes: 

SLAV is identical to SLLV and can be used wherever SLLV is used. 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  159 

SLE (Macro) 
Set On Less Than Or Equal To 

Assembler Format Example Translates to… 

sle rC, rA, rB sle $3, $4, $5 slt rC, rB, rA 

xori rC, rC, 1 

sle rC, rA, IMM32 sle $3, $4, 0x12345678 li $at, IMM32 

slt rC, $at, rA 

xori rC, rC, 1 

 

 



TSK3000A 32-bit RISC Processor 

160 CR0121 (v2.0) July 15, 2006  

SLEU (Macro) 
Set On Less Than Or Equal To Unsigned 

Assembler Format Example Translates to… 

sleu rC, rA, rB sleu $3, $4, $5 sltu rC, rB, rA 

xori rC, rC, 1 

sleu rC, rA, IMM32 sleu $3, $4, 0x12345678 li $at, IMM32 

sltu rC, $at, rA 

xori rC, rC, 1 

 

 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  161 

SLL 
Shift Left Logical 

Assembler Format:     sll rC, rB, IMM5 

Example: sll $3, $4, 4 

Description: Left-shifts the contents of GPR rB by the number of bits specified by the 
immediate value, IMM5. Then zero-fills the low-order bits and puts the result in 
GPR rC. 

Operation: rC ← rB << IMM5 

Instruction Type: R-Type 

Instruction Fields: rB = Register index of operand B 

 rC = Register index of destination 

 IMM5 = 5-bit immediate data value (shift amount) 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 0 0 0 0 0 rB rC IMM5 0 0 0 0 0 0 

Latency: 1 

Notes: 

SLA is identical to SLL and can be used wherever SLL is used. 



TSK3000A 32-bit RISC Processor 

162 CR0121 (v2.0) July 15, 2006  

SLL (Macro) 
Shift Left Logical 

Assembler Format Example Translates to… 

sll rC, rA, rB sll $3, $4, $5 sllv rC, rA, rB 

sll rC, IMM5 sll $3, 4 sll rC, rC, IMM5 (where rA = rC) 

sll rC, rB sll $3, $5 sllv rC, rC, rB (where rA = rC) 

Notes: 

SLA is identical to SLL and can be used wherever SLL is used. 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  163 

SLLV 
Shift Left Logical Variable 

Assembler Format:     sllv rC, rB, rA 

Example: sllv $3, $4, $5 

Description: Left-shifts the contents of GPR rB (by the number of bits designated by the low-
order five bits of GPR rA), zero-fills the low-order bits and puts the 32-bit result 
in GPR rC. 

Operation: rC ← rB << rA4..0 

Instruction Type: R-Type 

Instruction Fields: rA = Register index of operand A (shift amount) 

 rB = Register index of operand B 

 rC = Register index of destination 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 rA rB rC 0 0 0 0 0 0 0 0 1 0 0 

Latency: 1 

Notes: 

SLAV is identical to SLLV and can be used wherever SLLV is used. 



TSK3000A 32-bit RISC Processor 

164 CR0121 (v2.0) July 15, 2006  

SLLV (Macro) 
Shift Left Logical Variable 

Assembler Format Example Translates to… 

sllv rC, rB sllv $3, $4 sllv rC, rC, rB (where rA = rC) 

Notes: 

SLAV is identical to SLLV and can be used wherever SLLV is used. 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  165 

SLT 
Set On Less Than 

Assembler Format:     slt rC, rA, rB 

Example: slt $3, $4, $5 

Description: Compares the contents of GPRs rB and rA as 32-bit signed integers. If rA is 
less than rB, a ‘1’ is placed into GPR rC, otherwise GPR rC is loaded with ‘0’. 

Operation: If rA < rB Then 

  rC ← 1 

 Else 

  rC ← 0 

Instruction Type: R-Type 

Instruction Fields: rA = Register index of operand A 

 rB = Register index of operand B 

 rC = Register index of destination 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 rA rB rC 0 0 0 0 0 1 0 1 0 1 0 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

166 CR0121 (v2.0) July 15, 2006  

SLT (Macro) 
Set On Less Than 

Assembler Format Example Translates to… 

slt rC, rB slt $3, $4 slt rC, rC, rB (with rA = rC) 

slt rC, rA, IMM32 slt $3, $2, 0x12345678 see note 2 

slt rC, IMM32 (see note 1) slt $3, 0x12345678 see note 2 

Notes: 

1) This format can also be written as: slt rC, rC, IMM32 (with rA = rC) 

2) If the signed IMM32 operand fits into a signed 16-bit operand, then these two macro formats 
translate into single SLTI machine instructions: 

slt rC, rA, IMM32 translates to….. slti rC, rA, IMM16 

slt rC, IMM32 translates to….. slti rC, rC, IMM16 (with rA = rC) 

If the IMM32 operand does not fit, or has an unknown value, then these two macro formats translate to: 

  li $at, IMM32 

      slt rC, rA, $at 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  167 

SLTI 
Set On Less Than Immediate 

Assembler Format:     slti rB, rA, IMM16 

Example: slti $3, $4, 0x8764 

Description: Sign-extends the 16-bit immediate value, IMM16 and compares the result with 
the contents of GPR rA, treating both values as 32-bit signed integers. If rA is 
less than the sign extended IMM16 value, a ‘1’ is placed into GPR rB, otherwise 
GPR rB is loaded with ‘0’. 

Operation: If rA < SignExtend(IMM16) Then 

  rB ← 1 

 Else 

  rB ← 0 

Instruction Type: R-Type 

Instruction Fields: rA = Register index of operand A 

 rB = Register index of destination 

 IMM16 = 16-bit immediate data value 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 0 1 0 rA rB IMM16 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

168 CR0121 (v2.0) July 15, 2006  

SLTI (Macro) 
Set On Less Than Immediate 

Assembler Format Example Translates to… 

slti rC, IMM16 slti $3, oxFFFF slti rC, rC, IMM16 (where rA = rC) 

 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  169 

SLTIU 
Set On Less Than Immediate Unsigned 

Assembler Format:     sltiu rB, rA, IMM16 

Example: sltiu $3, $4, 0x1234 

Description: Sign-extends the 16-bit immediate value, IMM16 and compares the result with 
the contents of GPR rA, treating both values as 32-bit unsigned integers. If rA is 
less than the sign extended IMM16 value, a ‘1’ is placed into GPR rB, otherwise 
GPR rB is loaded with ‘0’. 

Operation: If (Unsigned)rA < (Unsigned)SignExtend(IMM16) Then 

  rB ← 1 

 Else 

  rB ← 0 

Instruction Type: I-Type 

Instruction Fields: rA = Register index of operand A 

 rB = Register index of destination 

 IMM16 = 16-bit immediate data value 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 0 1 1 rA rB IMM16 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

170 CR0121 (v2.0) July 15, 2006  

SLTIU (Macro) 
Set On Less Than Immediate Unsigned 

Assembler Format Example Translates to… 

sltiu rC, IMM16 sltiu $3, oxFFFF sltiu rC, rC, IMM16 (where rA = rC) 

 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  171 

SLTU 
Set On Less Than Unsigned 

Assembler Format:     sltu rC, rA, rB 

Example: sltu $3, $4, $5 

Description: Compares the contents of GPRs rB and rA as 32-bit unsigned integers. If rA is 
less than rB, a ‘1’ is placed into GPR rC, otherwise GPR rC is loaded with ‘0’. 

Operation: If (Unsigned)rA < (Unsigned)rB Then 

  rC ← 1 

 Else 

  rC ← 0 

Instruction Type: R-Type 

Instruction Fields: rA = Register index of operand A 

 rB = Register index of operand B 

 rC = Register index of destination 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 rA rB rC 0 0 0 0 0 1 0 1 0 1 1 

Latency: 1 

 



TSK3000A 32-bit RISC Processor 

172 CR0121 (v2.0) July 15, 2006  

SLTU (Macro) 
Set On Less Than Unsigned 

Assembler Format Example Translates to… 

sltu rC, rB sltu $3, $4 sltu rC, rC, rB (with rA = rC) 

sltu rC, rA, IMM32 sltu $3, $2, 0x12345678 see note 2 

sltu rC, IMM32 (see note 1) sltu $3, 0x12345678 see note 2 

Notes: 

1) This format can also be written as: sltu rC, rC, IMM32 (with rA = rC) 

2) If the signed IMM32 operand fits into a signed 16-bit operand, then these two macro formats 
translate into single SLTIU machine instructions: 

sltu rC, rA, IMM32 translates to….. sltiu rC, rA, IMM16 

sltu rC, IMM32 translates to….. sltiu rC, rC, IMM16 (with rA = rC) 

If the IMM32 operand does not fit, or has an unknown value, then these two macro formats translate to: 

  li $at, IMM32 

      sltu rC, rA, $a 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  173 

SNE (Macro) 
Set On Not Equal To 

Assembler Format Example Translates to… 

sne rC, rA, rB sne $3, $4, $5 
xor rC, rA, rB 

sltu rC, $0, rC 

sne rC, rA, IMM32 sne $3, $4, 0x12345678 
li $at, IMM32 

xor rC, rA, rB 

sltu rC, $0, rC 

Notes: 

If IMM32 is in the range 0 to 216 – 1 (i.e. from 0000_0000h to 0000_FFFFh) then the second macro 
format translates to: 

xori rC, rA, IMM32 

sltu rC, $0, rC 



TSK3000A 32-bit RISC Processor 

174 CR0121 (v2.0) July 15, 2006  

SRA 
Shift Right Arithmetic 

Assembler Format:     sra rC, rB, IMM5 

Example: sra $3, $4, 4 

Description: Right-shifts the contents of GPR rB by the number of bits specified by the 
immediate value, IMM5. The high-order (IMM5) bits become sign-extended and 
the resulting word is put in GPR rC. 

Operation: rC ← rB >> IMM5 

Instruction Type: R-Type 

Instruction Fields: rB = Register index of operand B 

 rC = Register index of destination 

 IMM5 = 5-bit immediate data value (shift amount) 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 0 0 0 0 0 rB rC IMM5 0 0 0 0 1 1 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  175 

SRA (Macro) 
Shift Right Arithmetic 

Assembler Format Example Translates to… 

sra rC, rA, rB sra $3, $4, $5 srav rC, rA, rB 

sra rC, IMM5 sra $3, 4 sra rC, rC, IMM5 (where rA = rC) 

sra rC, rB sra $3, $5 srav rC, rC, rB (where rA = rC) 

 



TSK3000A 32-bit RISC Processor 

176 CR0121 (v2.0) July 15, 2006  

SRAV 
Shift Right Arithmetic Variable 

Assembler Format:     srav rC, rB, rA 

Example: srav $3, $4, $5 

Description: Right-shifts the contents of GPR rB (by the number of bits designated by the 
low-order five bits of GPR rA). The high-order (rA4..0) bits become sign-extended 
and the resulting word is put in GPR rC. 

Operation: rC ← rB >> rA4..0 

Instruction Type: R-Type 

Instruction Fields: rA = Register index of operand A 

 rB = Register index of operand B 

 rC = Register index of destination 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 rA rB rC 0 0 0 0 0 0 0 0 1 1 1 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  177 

SRAV (Macro) 
Shift Right Arithmetic Variable 

Assembler Format Example Translates to… 

srav rC, rB srav $3, $4 srav rC, rC, rB (where rA = rC) 

 



TSK3000A 32-bit RISC Processor 

178 CR0121 (v2.0) July 15, 2006  

SRL 
Shift Right Logical 

Assembler Format:     srl rC, rB, IMM5 

Example: srl $3, $4, 4 

Description: Right-shifts the contents of GPR rB by the number of bits specified by the 
immediate value, IMM5. Then zero-fills the high-order (IMM5) bits and puts the 
result in GPR rC. 

Operation: rC ← rB >> IMM5 

Instruction Type: R-Type 

Instruction Fields: rB = Register index of operand B 

 rC = Register index of destination 

 IMM5 = 5-bit immediate data value (shift amount) 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 0 0 0 0 0 rB rC IMM5 0 0 0 0 1 0 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  179 

SRL (Macro) 
Shift Right Logical 

Assembler Format Example Translates to… 

srl rC, rA, rB srl $3, $4, $5 srlv rC, rA, rB 

srl rC, IMM5 srl $3, 4 srl rC, rC, IMM5 (where rA = rC) 

srl rC, rB srl $3, $5 srlv rC, rC, rB (where rA = rC) 

 



TSK3000A 32-bit RISC Processor 

180 CR0121 (v2.0) July 15, 2006  

SRLV 
Shift Right Logical Variable 

Assembler Format:     srlv rC, rB, rA 

Example: srlv $3, $4, $5 

Description: Right-shifts the contents of GPR rB (by the number of bits designated by the 
low-order five bits of GPR rA), zero-fills the high-order (rA4..0) bits and puts the 
32-bit result in GPR rC. 

Operation: rC ← rB >> rA4..0 

Instruction Type: R-Type 

Instruction Fields: rA = Register index of operand A 

 rB = Register index of operand B 

 rC = Register index of destination 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 rA rB rC 0 0 0 0 0 0 0 0 1 1 0 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  181 

SRLV (Macro) 
Shift Right Logical Variable 

Assembler Format Example Translates to… 

srlv rC, rB srlv $3, $4 srlv rC, rC, rB (where rA = rC) 

 



TSK3000A 32-bit RISC Processor 

182 CR0121 (v2.0) July 15, 2006  

SUB, SUBU 
Subtract Word 

Assembler Format:     sub rC, rA, rB 

Example: sub $3, $4, $5 

Description: Subtracts the contents of GPR rB from GPR rA and puts the result in GPR rC. 

Operation: rC ← rA - rB 

Instruction Type: R-Type 

Instruction Fields: rA = Register index of operand A 

 rB = Register index of operand B 

 rC = Register index of destination 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 rA rB rC 0 0 0 0 0 1 0 0 0 1 1 

Latency: 1 

Notes: 

The following code example illustrates how overflow detection can be handled, in software, when 
subtracting two signed operands: 
sub rC, rA, rB 

xor rD, rA, rB -----compare sign of operand rA with operand rB 

xor rE, rA, rC -----compare sign of operand rA and the difference 

and rD, rD, rE -----bitwise logically AND the comparison values 

slt rD, rD, $0 -----if result less than ‘0’, flag overflow 

rD will be set to ‘1’ if an overflow occurred, otherwise it will be set to ‘0’ 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  183 

SUB (Macro) 
Subtract 

Assembler Format Example Translates to… 

sub rC, rB sub $3, $4 sub rC, rC, rB (with rA = rC) 

sub rC, rA, IMM32 sub $3, $4, 0x12345678 see note 2 

sub rC, IMM32 (see note 1) sub $3, 0x12345678 see note 2 

Notes: 

1) This format can also be written as: sub rC, rC, IMM32 (with rA = rC) 

2) If the negated signed IMM32 operand fits into a signed 16-bit operand, then these two macro 
formats translate into a single ADDI machine instruction, with the IMM32 operand negated. 

If the IMM32 operand does not fit, or has an unknown value, then these two macro formats translate to: 

  li $at, IMM32 

      sub rC, rA, $at 



TSK3000A 32-bit RISC Processor 

184 CR0121 (v2.0) July 15, 2006  

SUBU (Macro) 
Subtract Unsigned 

Assembler Format Example Translates to… 

subu rC, rB subu $3, $4 subu rC, rC, rB (with rA = rC) 

subu rC, rA, IMM32 subu $3, $4, 0x12345678 see note 2 

subu rC, IMM32 (see note 1) subu $3, 0x12345678 see note 2 

Notes: 

1) This format can also be written as: subu rC, rC, IMM32 (with rA = rC) 

2) If the negated signed IMM32 operand fits into a signed 16-bit operand, then these two macro 
formats translate into a single ADDIU machine instruction, with the IMM32 operand negated. 

If the IMM32 operand does not fit, or has an unknown value, then these two macro formats translate to: 

  li $at, IMM32 

      subu rC, rA, $a 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  185 

SW 
Store Word 

Assembler Format:     sw rB, IMM16(rA) 

Example: sw $3, 2($5) 

Description: Generates a 32-bit effective address by sign-extending the 16-bit immediate 
value, IMM16, and adding it to the contents of GPR rA. It then stores the 
contents of GPR rB at the resulting effective address. 

Operation: Mem32[rA + SignExtend(IMM16)] ← rB 

Instruction Type: I-Type 

Instruction Fields: rA = Register index of operand A (base address) 

 rB = Register index of operand B 

 IMM16 = 16-bit immediate data value 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 1 0 1 1 rA rB IMM16 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

186 CR0121 (v2.0) July 15, 2006  

SW (Macro) 
Store Word 

Assembler Format Example Translates to… 

sw rC, (rA) sw $3, ($4) sw rC, 0(rA) 

sw rC, target sw $3, Shifter lui $at, @HI(target) 

sw rC, @LO(target)($at) 

sw rC, target(rA) sw $3, Shifter($4) lui $at, @HI(target) 

addu $at, $at, rA 

sw rC, @LO(target)($at) 

Notes: 

With respect to the third format for this macro, if the source register is the GP register ($28) and the 
assembler runs with the –gp-relative option enabled, the format translates into the following single 
machine instruction: 

sw rC, @GPREL(target)($gp) 



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  187 

SYSCALL 
System Call 

Assembler Format:     syscall code 

Example: syscall 

Description: Raises a System Call exception and passes control to an exception handler. 
The code field can be used to pass information to an exception handler, but the 
only way to have the code field retrieved by the exception handler is to use the 
exception return register to load the contents of the memory word containing 
this instruction. 

Operation: SystemCallException 

Instruction Type: I-Type 

Instruction Fields: code =  

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 Code 0 0 1 1 0 0 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

188 CR0121 (v2.0) July 15, 2006  

XOR 
Bitwise Logical Exclusive OR 

Assembler Format:     xor rC, rA, rB 

Example: xor $3, $4, $5 

Description: Bitwise logically exclusive-ORs the contents of GPR rA with the contents of 
GPR rB and loads the result in GPR rC. 

Operation: rC ← rA XOR rB 

Instruction Type: R-Type 

Instruction Fields: rA = Register index of operand A 

 rB = Register index of operand B 

 rC = Register index of destination 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 rA rB rC 0 0 0 0 0 1 0 0 1 1 0 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  189 

XOR (Macro) 
Bitwise Logical Exclusive OR 

Assembler Format Example Translates to… 

xor rC, rB xor $3, $4 xor rC, rC, rB (with rA = rC) 

xor rC, rA, IMM32 xor $3, $2, 0x12345678 see note 2 

xor rC, IMM32 (see note 1) xor $3, 0x12345678 see note 2 

Notes: 

1) This format can also be written as: xor rC, rC, IMM32 (with rA = rC) 

2) If the signed IMM32 operand fits into an unsigned 16-bit operand, then these two macro formats 
translate into single XORI machine instructions: 

xor rC, rA, IMM32 translates to….. xori rC, rA, IMM16 

xor rC, IMM32 translates to….. xori rC, rC, IMM16 (with rA = rC) 

If the IMM32 operand does not fit, or has an unknown value, then these two macro formats translate to: 

  li $at, IMM32 

      xor rC, rA, $at 



TSK3000A 32-bit RISC Processor 

190 CR0121 (v2.0) July 15, 2006  

XORI 
Bitwise Logical Exclusive OR Immediate 

Assembler Format:     xori rB, rA, IMM16 

Example: xori $3, $4, 0x1234 

Description: Zero-extends the 16-bit immediate value, IMM16, bitwise logically exclusive-
ORs it with the contents of GPR rA, then loads the result in GPR rB. 

Operation: rC ← rA XOR ZeroExtend(IMM16) 

Instruction Type: I-Type 

Instruction Fields: rA = Register index of operand A 

 rC = Register index of destination 

 IMM16 = 16-bit immediate data value 

Encoding: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 1 1 0 rA rB IMM16 

Latency: 1 

  



TSK3000A 32-bit RISC Processor 

CR0121 (v2.0) July 15, 2006  191 

XORI (Macro) 
Bitwise Logical Exclusive OR Immediate 

Assembler Format Example Translates to… 

xori rC, IMM16 xori $3, oxFFFF xori rC, rC, IMM16 (where rA = rC) 

Revision History 
 

Date Version No. Revision 

14-Dec-2004 1.0 New Release 

04-Jan-2005 1.1 Updated information with respect to Programmable Interval Timer 

08-Feb-2005 1.2 Modifications to debug panel information in On-Chip Debugging section. 

09-May-2005 1.3 Updated for SP4 

24-Jun-2005 1.4 Figures 10 and 28 updated, modifications in On-Chip Debugging section. 

30-Sep-2005 1.5 TBH changed to TBHI in example for MFC0 instruction. Extent of vectored 
interrupt range corrected in text (from EB+01F8h to EB+00F8h) 

12-Dec-2005 1.6 Path references updated for Altium Designer 6 

15-Jul-2006 2.0 Updated for Altium Designer 6.4. 

Software, hardware, documentation and related materials:  

Copyright © 2006 Altium Limited. 

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use 
only and will not be copied or posted on any network computer or broadcast in any media, and (2) no modifications 
of the document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or 
electronic, including translation into another language, except for brief excerpts in published reviews, is prohibited 
without the express written permission of Altium Limited. Unauthorized duplication of this work may also be 
prohibited by local statute. Violators may be subject to both criminal and civil penalties, including fines and/or 
imprisonment. Altium, Altium Designer, Board Insight, CAMtastic, CircuitStudio, Design Explorer, DXP, LiveDesign, 
NanoBoard, NanoTalk, Nexar, nVisage, P-CAD, Protel, SimCode, Situs, TASKING, and Topological Autorouting 
and their respective logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All other 
registered or unregistered trademarks referenced herein are the property of their respective owners and no 
trademark rights to the same are claimed. 


	Features  
	Available Devices  
	 RISC Processor Background  
	History  
	“Soft” FPGA Processors  
	Why use “Soft” Processors?  
	Field reconfigurable hardware 
	Faster time to market 
	Improving and extending product life-cycles 
	Creating application-specific coprocessors 
	Implementing multiple processors within a single device 
	Lowering system cost 
	Avoiding processor obsolescence 

	The TSK3000A  
	Wishbone Bus Interfaces  
	Wishbone OpenBUS Processor Wrappers  
	Processor Abstraction System  
	Design Migration  
	Architectural Overview  
	Symbol  
	Pin Description  
	Configuring the Processor from the Schematic Design  
	Internal Processor Memory 
	Multiply/Divide Unit (MDU) 
	On-Chip Debug System 
	Breakpoints on Reset 


	 Memory & I/O Management  
	Defining the Memory Map  
	Building the Bridge Between the Hardware and Software 
	Dedicated System Interconnect Components 
	Configurable Interconnect Components 
	Configuring the Processor 

	Division of Memory Space  
	Internal Memory 
	External Memory 
	External Memory Interface Time-out 

	Peripheral I/O 
	Peripheral I/O Interface Time-outs 


	Data Organization  
	 Words, Half-Words and Bytes 
	Physical Interface to Memory and Peripherals 
	Peripheral I/O 


	 Hardware Description  
	Block Diagram  
	Pipeline  
	Pipeline Architecture 
	Instruction Fetch Stage (IF) 
	Instruction Decode Stage (ID) 
	Execute Stage (EX) 
	Memory Access Stage (MA) 
	Write Back Stage (WB) 

	Pipeline Hazards 
	Data Forwarding Hazards 
	Long Instruction Hazards 
	Load Hazards 
	Branch Hazards 


	General Purpose Registers  
	Conventional Usage of General Purpose Registers 

	Special Function Registers  
	Control/Status register (Status) 
	Interrupt Enable register (IEnable) 
	Interrupts Pending register (IPending) 
	Time Base (TBLO & TBHI) 
	Reading the time base 

	Programmable Interval Timer Limit register (PIT) 
	Reading the Programmable Interval Limit 
	Writing the Programmable Interval Limit 

	Debug Data register (Debug) 
	Exception Return register (ER) 
	Exception Base register (EB) 
	Interrupt Mode register (IMode) 

	Additional Registers  
	Program Counter (PC) 
	High Word register (HI) 
	Low Word register (LO) 

	 Register Reset Values  
	Wishbone Communications  
	 Writing to a Slave Wishbone Peripheral Device 
	Reading from a Slave Wishbone Peripheral Device 
	 Writing to a Slave Wishbone Memory Device 
	Reading from a Slave Wishbone Memory Device 
	 Wishbone Timing 

	 Interrupts & Exceptions  
	Hardware Generated Exceptions (Interrupts) 
	Interrupt Modes 
	Generating an Interrupt 

	Programmable Interval Timer 
	Setting up the Interval Timer to Generate Interrupts 
	Handling an Interrupt Generated by the Interval Timer 
	Changing the Rate of Interrupt Generation 

	Software Generated Exception 
	 Returning from an Interrupt 


	 On-Chip Debugging  
	Adding Debug Functionality to the Standard Core  
	Accessing the Debug Environment  

	Instruction Set  
	Instruction Format  
	Instruction Set – Functional Groupings  
	Data Transfer Instructions 
	Arithmetic Instructions 
	Bitwise Logical Instructions 
	Move Instructions 
	Comparison Instructions 
	Shift Instructions 
	Jump Instructions 
	Relative Branch Instructions 
	Special Purpose Instructions 
	Custom Instructions 
	Generic Instructions 

	Instruction Set – Detailed Reference  
	ABS (Macro) 
	ADD, ADDU 
	ADD (Macro) 
	ADDI, ADDIU 
	ADDI (Macro) 
	ADDIU (Macro) 
	ADDU (Macro) 
	AND 
	AND (Macro) 
	ANDI 
	ANDI (Macro) 
	B (Macro) 
	BAL (Macro) 
	BEQ 
	BEQ (Macro) 
	BEQZ (Macro) 
	BGE (Macro) 
	BGEU (Macro) 
	BGEZ 
	BGEZAL 
	BGT (Macro) 
	BGTU (Macro) 
	BGTZ 
	BLE (Macro) 
	BLEU (Macro) 
	BLEZ 
	BLT (Macro) 
	BLTU (Macro) 
	BLTZ 
	BLTZAL 
	BNE 
	BNE (Macro) 
	BNEZ (Macro) 
	BREAK 
	BREAK (Macro) 
	DIV 
	DIV (Macro) 
	DIVU 
	DIVU (Macro) 
	J 
	J (Macro) 
	JAL 
	JAL (Macro) 
	JALR 
	JALR (Macro) 
	JR 
	JR (Macro) 
	LA (Macro) 
	LB 
	LB (Macro) 
	LBU 
	LBU (Macro) 
	LH 
	LH (Macro) 
	LHU 
	LHU (Macro) 
	LI (Macro) 
	LUI 
	LW 
	LW (Macro) 
	MFC0 
	MFHI 
	MFLO 
	MTC0 
	MOVE (Macro) 
	MTHI 
	MTLO 
	MULT 
	MULT (Macro) 
	MULTU 
	MULTU (Macro) 
	NEG (Macro) 
	NEGU (Macro) 
	NOP (Macro) 
	NOR 
	NOR (Macro) 
	NOT (Macro) 
	OR 
	OR (Macro) 
	ORI 
	ORI (Macro) 
	RFE 
	ROL (Macro) 
	ROR (Macro) 
	SB 
	SB (Macro) 
	SEQ (Macro) 
	SGE (Macro) 
	SGEU (Macro) 
	SGT (Macro) 
	SGTU (Macro) 
	SH 
	SH (Macro) 
	SLA (Macro) 
	SLAV (Macro) 
	SLE (Macro) 
	SLEU (Macro) 
	SLL 
	SLL (Macro) 
	SLLV 
	SLLV (Macro) 
	SLT 
	SLT (Macro) 
	SLTI 
	SLTI (Macro) 
	SLTIU 
	SLTIU (Macro) 
	SLTU 
	SLTU (Macro) 
	SNE (Macro) 
	SRA 
	SRA (Macro) 
	SRAV 
	SRAV (Macro) 
	SRL 
	SRL (Macro) 
	SRLV 
	SRLV (Macro) 
	SUB, SUBU 
	SUB (Macro) 
	SUBU (Macro) 
	SW 
	SW (Macro) 
	SYSCALL 
	XOR 
	XOR (Macro) 
	XORI 
	XORI (Macro) 


	Revision History  


