A Million Years of Computing

David P. Anderson Space Sciences Laboratory University of California – Berkeley davea@ssl.berkeley.edu

What is scientific computing?

High-energy physics

Molecular biology

protein

DNA

Climate change study

Artificial life

Weapons of mass destruction

Measuring computing power

- FLOPS: floating-point operations per second
 - e.g. 2.458817 + 15.49848 = 17.957297
 - -1 GigaFLOPS = 1 billion (10⁹) FLOPS
 - -1 TeraFLOPS = 1 trillion (10¹²) FLOPS
 - 1 PetaFLOPS = 1 quadrillion (10^{15}) FLOPS
- Storage (memory, disk)
 - 1 byte = 8 bits (e.g. 00100011)
 - Megabytes, Gigabytes etc.

Computing paradigms

Supercomputer history

1938	Zuse Z1	0.9 FLOPS
1946	ENIAC	50 KFLOPS
1958	UNIVAC LARC	500 KFLOPS
1975	Burroughs ILLIAC IV	150 MFLOPS
1976	Cray-1	250 MFLOPS
1983	Cray X-MP/4	941 MFLOPS
1985	Cray-2/8	3.9 GFLOPS
1993	Thinking Machines	65.5 GFLOPS
1996	Hitachi SR2201	220 GFLOPS
2000	IBM ASCI White	7.2 TFLOPS
2002	NEC Earth Simulator	35 TFLOPS
2006	IBM Blue Gene/L	280 TFLOPS

PCs versus Supercomputers

- PCs trail supercomputers by about 20 years
- 100,000 PCs = = 1 supercomputer
- There are ~ 1 billion PCs on the Internet
- Consumer products (PCs, game consoles) are getting faster faster
- PC owner buys PC, maintains it, buys electricity
- But: PCs are unreliable and untrusted

Volunteer computing

<u>Project</u>	<u>start</u>	<u>where</u>	<u>area</u>	<u>peak #hosts</u>
GIMPS	1994		math	10,000
distributed.net	1995		cryptography	100,000
SETI@home I	1999	UCB	SETI	600,000
Folding@home	1999	Stanford	biology	200,000
United Devices	2002	commercial	biomedicine	200,000
CPDN	2003	Oxford	climate change	150,000
LHC@home	2004	CERN	physics	60,000
Predictor@home	2004	Scripps	biology	100,000
WCG	2004	commercial	biomedicine	200,000
Einstein@home	2005	LIGO	astrophysics	200,000
SETI@home II	2005	UCB	SETI	850,000
Rosetta@home	2005	U. Wash	biology	100,000
SIMAP	2005	T.U. Munich	bioinformatics	10,000

Performance of BOINC projects

- 680,000 participants in 245 countries
- 1,000,000 computers
- 400 TeraFLOPS (more than BlueGene!)
- 12 Petabytes of free disk space
- SETI@home: 2.7 million years of computer time
- But the potential is much larger!

projects

Some BOINC-based projects

Climateprediction.net (Oxford University)

LHC@home (CERN)

SETI@home (U.C. Berkeley)

Target 12: Dockerincohesin complex Target 15: Immunity protein-colicin tRNAse complex Target 14: Myosin phospatase-targeting subunit—protein S/T phosphatase

A State State State

Rosetta@home (Univ. of Washington)

How to participate

- Install and run BOINC client software
 - http://boinc.berkeley.edu
 - Available for Windows, Mac OS X, Linux
- Enter the URL of a project
 - e.g.: http://setiathome.berkeley.edu
- Enter your email address and password
- Done!

Credit

Community features

Done

• Message boards

- Science, technical, social

- User profiles
- Teams
- Translations
- Web sites
 - (statistics, teams)

Account managers

Conclusion

- Scientific computing
 - Will always need more computing power
- Volunteer computing
 - The computing paradigm of the future
- BOINC
 - Middleware for volunteer computing
- Goals
 - 1000+ projects
 - 10 million volunteers
 - Give the public a voice in science research policy