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Abstract. It is a well established fact that in Zermelo-Fraenkel set theory,
Tychonoff’s Theorem, the statement that the product of compact topological
spaces is compact, is equivalent to the Axiom of Choice. On the other hand,
Urysohn’s Metrization Theorem, that every regular second countable space is
metrizable, is provable from just the ZF axioms alone. A. H. Stone’s The-
orem, that every metric space is paracompact, is considered here from this
perspective. Stone’s Theorem is shown not to be a theorem in ZF by a forc-
ing argument. The construction also shows that Stone’s Theorem cannot be
proved by additionally assuming the Principle of Dependent Choice.

Introduction

Given an infinite set X , is it possible to define a Hausdorff topology on X such
that X has at least two non-isolated points? In ZFC, the answer is easily shown
to be yes. However, models of ZF exist that contain infinite sets that cannot be
expressed as the union of two disjoint infinite sets (amorphous sets—see [6]). For
any model of ZF containing an amorphous set, the answer is no. So, as we see, even
the most innocent of topological questions may be undecidable from the Zermelo-
Fraenkel axioms alone. Further examples of the counter-intuitive behaviour of
‘choiceless topology’ can be found in [3] and [4].

The concept of paracompactness in a topological space was first defined by
Dieudonné in [2], in which he proved that every metrizable space that is second
countable or locally compact is paracompact. The importance of paracompactness
in general topology was raised when A. H. Stone proved the theorem of the title,
namely that every metric space is paracompact [11]. Mary Ellen Rudin later im-
proved the proof in [10]. One notable point about Rudin’s proof is the very first
line: ‘Let U = {Uα} be an open cover indexed by ordinals’, an immediate use of
the Axiom of Choice. Stone’s original proof also uses Choice, but in a less obvious
manner. We are therefore prompted to ask whether this is an essential part of
Stone’s Theorem: just how heavily does Stone’s Theorem depend on the Axiom of
Choice? We address this question here.

The fact that every separable metrizable space is paracompact can be proved
from ZF [4]. That every second countable metric space is paracompact, Dieudonné’s
original result, can also be so proved (but recall from [4] that there are models of
ZF containing second countable metric spaces that are not separable). However, we
show that this is not true of the general theorem: we construct symmetric models
of ZF in which there are metric spaces that are not paracompact.
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Symmetric models of ZF

We review some facts about symmetric models, referring the reader to [6] for
further details. Our notation follows that of [6] and [7].

Let M be a transitive model of ZFC and B a complete Boolean algebra in M.
For an automorphism π of B, we extend π to MB by induction on the rank of
x ∈ MB:

(1) π(0) = 0;
(2) dom(πx) = {πy : y ∈ dom(x)} and (πx)(πy) = π(x(y)).
It follows that π is a one-to-one function from MB onto itself, and πx̌ = x̌ for

every x ∈ M. Let G be a group of automorphisms of B. A non-empty set F of
subgroups of G is called a normal filter on G if and only if for all subgroups H,K
of G,

(i) if K ∈ F and K ⊆ H then H ∈ F ,
(ii) if H ∈ F and K ∈ F then H ∩K ∈ F ,
(iii) if π ∈ G and H ∈ F then πHπ−1 ∈ F .
Let F be a fixed normal filter. For each x ∈ MB, define sym(x) = {π ∈ F :

πx = x}. We say that x ∈ MB is symmetric if sym(x) ∈ F . The class HS ⊆MB

of all hereditarily symmetric names is defined by recursion:
(a) 0 ∈ HS;
(b) if dom(x) ⊆ HS and x is symmetric, then x ∈ HS.
Now let G be an M-generic ultrafilter on B and iG be the interpretation of MB

by G. Define N = {iG(x) : x ∈ HS}. Then N is a symmetric extension of M and
M⊆ N ⊆M[G] . More importantly, N is a model of ZF.

The partial order

We use one partial order as the basis for our symmetric model constructions,
namely P = Fn(ω×R×ω1×ω1, 2, ω1), the set of partial functions p with |dom(p)| <
ω1, dom(p) ⊆ ω ×R × ω1 × ω1 and ran(p) = {0, 1}. We define the ordering on P
by p 6 q if and only if q ⊆ p. Let B = RO(P ) in M, the complete Boolean algebra
of regular open sets of P in M.

Define the following elements of M[G] together with their canonical names:

xnrα = {δ ∈ ω1 : ∃p ∈ G p(n, r, α, δ) = 1},
dom(xnrα) = {δ̌ : δ ∈ xnrα},
xnrα(δ̌) = sup{p ∈ P : p(n, r, α, δ) = 1} = unrαδ,

Xnr = {xnrα : α ∈ ω1},
dom(Xnr) = {xnrα : α ∈ ω1},
Xnr(xnrα) = 1,

Rn = {Xnr : r ∈ R},
dom(Rn) = {Xnr : r ∈ R},
Rn(Xnr) = 1,

M = {Rn : n ∈ ω},
dom(M) = {Rn : n ∈ ω},
M(Rn) = 1.
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Let d(x, y) = |x − y| be the usual distance function on R that generates the Eu-
clidean topology (in M). Recall that if G is P-generic over M then (R)M =
(R)N = (R)M[G], where M⊆ N ⊆M[G]—see [7, 7.6.14].

Theorem 1. Let M be a transitive model of ZFC. There is a symmetric extension
N of M which contains a collection of sets Rn for which there is no set S ∈ N
with ∅ 6= S ∩ Rn ( Rn for all n and where

⋃
Rn can be topologized as a metric

space with each Rn a connected subspace.

Proof. We define a group G and a filter F such that the names xnrα, Xnr, Rn and
M are all symmetric. Observe that every permutation π on ω × R × ω1 induces
an order-preserving 1-1 mapping on P, by (πp)(π(n, r, α), δ) = p(n, r, α, δ), and an
automorphism of B, by πu = sup{πp : p 6 u}. One can check that

π(unrαδ) = uπ(n,r,α)δ and π(xnrα) = xπ(n,r,α) . . . .(†)
Let G be the group of all automorphisms of B induced by permutations of ω×R×ω1

satisfying π(n, r, α) = (n, ρ(r), α′), where π(n, r, .) is a permutation on ω1 for fixed
n, r and ρ = ρπ : R → R is either a reflection about some point xπ ∈ R, or the
identity map.

By (†), dom(πXnt) = {xπ(n,t,α) : α ∈ ω1} = dom(Xnρ(t)). It follows that, as

π ∈ G is an automorphism of B, π(Rn) = Rn and π(M) = M .
For each finite subset e ⊆ ω ×R × ω1, let fix(e) = {π ∈ G : ∀s ∈ e π(s) = s}.

Let F be the filter on G generated by {fix(e) : e ∈ [ω ×R× ω1]
<ω}.

Claim 1.1. F is a normal filter on G.

Proof. Omitted.

Let HS be the set of all hereditarily symmetric names in MB. Let N be the
symmetric extension of M given by the interpretation of HS by G.

Claim 1.2. For all n, r and α, the sets xnrα, Xnr, Rn,M are in the model N .

Proof. By (†), sym(xnrα) = fix((n, r, α)) ∈ F . Inductively, δ̌ ∈ HS for all δ ∈ ω1,
so dom(xnrα) ⊆ HS. Hence xnrα ∈ HS. Fix α0 ∈ ω1. Then

sym(Xnr) = {π ∈ G : πXnr = Xnr}
= {π : dom(πXnr) = dom(Xnr)

and πXnr(πxnrα) = π(Xnr(xnrα)) = π(1) = 1}
⊇ fix(n, r, α0).

So sym(Xnr) ∈ F and dom(Xnr) ⊆ HS. Thus each Xnr is in HS. It follows
that dom(Rn) ⊆ HS and sym(Rn) = G, so dom(M) ⊆ HS and sym(M) = G.
Therefore each Rn and M is in HS. By the definition of the interpretation of MB

by G, we have xnrα, Xnr, Rn,M ∈ N .

Claim 1.3. There is no function f ∈ N such that dom(f) = M and f(Rn) is a
proper non-empty subset of Rn for each n.

Proof. Assume there is such an f ∈ N . Let f be a symmetric name for f and let
p0 ∈ G be such that

p0  (f is a function) and (∀ň ∅ 6= f(Rn) ( Rn).
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Let e be a finite subset of ω×R× ω1 such that fix(e) ⊆ sym(f). Pick n ∈ ω such

that e ∩ ({n} ×R× ω1) = ∅. Then there are r, s ∈ R and p 6 p0 such that

p  Xnr ∈ f(Rn) and Xns /∈ f(Rn).

Fix these n, r, s and p. Pick ε ∈ ω1 such that for all α > ε and all t and δ,
(n, t, α, δ) /∈ dom(p). Let ρ be the reflection of R about the point r+s

2 , so ρ(r) = s
and ρ(s) = r. The sets of ordinals [0, ε] and (ε, 2ε] are order isomorphic. Let φ be
the order isomorphism: φ(0) = ε + 1, φ(ε) = 2ε, φ(ω) = ε + ω and so on, and let
π ∈ G be the permutation on ω ×R× ω1 defined by

π(m, t, α) =


(m, t, α), m 6= n,

(n, ρ(t), φ(α)), m = n, α ∈ [0, ε],

(n, ρ(t), φ−1(α)), m = n, α ∈ (ε, 2ε],

(n, ρ(t), α), m = n, α > 2ε.

Then π has the following properties:
(i) πf = f—after all, by the definition of e and the choice of n, π ∈ fix(e).

(ii) πXnt = Xnρ(t).

(iii) πp and p are compatible elements of P. If (m, t, α, δ) ∈ dom(p) ∩ dom(πp)
for m 6= n, then (πp)(m, t, α, δ) = p(m, t, α, δ) by definition of π. If (n, t, α, δ) ∈
dom(p)∩dom(πp), then (π−1(n, t, α), δ) ∈ dom(p), πp(n, t, α, δ) = p(π−1(n, t, α), δ)
and α < ε. But π−1(n, t, α) = (n, ρ(t), φ−1(α)), so

πp(n, t, α, δ) = p(π(n, ρ(t), φ−1(α)), δ) = p(n, t, α, δ).

To establish the Claim, notice that, by (iii), πp∪ p is a well-defined extension of
p. But πp  π(Xnr) ∈ πf(π(Rn)) and π(Xns) /∈ πf(π(Rn)). So, by (i) and (ii),
πp  Xns ∈ f(Rn) and Xnr /∈ f(Rn). Therefore

πp ∪ p  (Xns /∈ f(Rn)) and (Xns ∈ f(Rn)).

This is a contradiction.

The reader should observe from Claim 1.3 that functions such as f(Rn) = {Xn0},
where 0 is the additive identity on R, have no symmetric name and hence are not
in N .

Claim 1.4.
⋃
Rn can be given a metrizable topology where each Rn is connected.

Proof. Consider the following elements of M[G]:

dn = {(Xnr, Xns,
d(r, s)

1 + d(r, s)
) : r, s ∈ R},

D = {dn : n ∈ ω},
E = {(Xnr, Xms, 1) : n 6= m and r, s ∈ R}.

One can check that each of these sets has a symmetric name, and hence they are
elements of N . E ∪⋃D defines the required metric on

⋃
Rn in N . This completes

the proof of Theorem 1.

We now use the collection M ∈ N to construct a space contradicting Stone’s
Theorem.

Theorem 2. It is consistent relative to ZF that there is a (locally connected, locally
compact) metric space that is not paracompact.
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Proof. Let M = {Rn : n ∈ ω} be the collection of sets constructed in Theorem
1. As above, X =

⋃
M is a metric space (the reader may like to check that it is

locally compact and to compare this with the results of [2]). We show that X is
not paracompact.

Define an open cover U = {Bε(x) : x ∈ Rn, ε ∈ R and n ∈ ω}. Suppose U had
a locally finite open refinement, V . Let S = {x ∈ X : ∀V ∈ V x /∈ V − V } and, for
n ∈ ω, let Sn = S ∩Rn. We claim that Sn is a proper subset of every Rn.

Pick any x ∈ Rn and some open setW such that x ∈W andW meets only finitely
many elements of V . Suppose that W meets precisely the sets V0, V1, . . . , Vk ∈ V .
Define a finite F ⊆ ω inductively by i ∈ F if and only if W ∩ Vi ∩

⋂{Vj : j < i, j ∈
F} 6= ∅. Let O = W ∩⋂i∈F Vi. Then, for V ∈ V , V ∩O 6= ∅ if and only if V = Vi
for some i 6 k. Hence (V − V ) ∩ O = ∅ for all V ∈ V , i.e. ∅ 6= O ⊆ Sn. Also, for
any V ∈ V with V ⊆ Rn, V is an open bounded subset of Rn. As Rn is connected,
there is some z ∈ V − V , i.e. z /∈ Sn.

Hence we have shown that if U has a locally finite open refinement, S has a
proper intersection with each Rn, contrary to the property of M .

We record here that the Principle of Dependent Choice (DC) holds in our model,
demonstrating that Stone’s Theorem cannot be proved from ZF+ DC:

Principle of Dependent Choice. If R is a relation on a set X such that for all
x ∈ X there exists y ∈ X with xRy, then for any ζ ∈ X there exists a sequence
f : ω → X with f(0) = ζ and f(n)Rf(n+ 1) for all n ∈ ω.

Theorem 3. Stone’s Theorem cannot be proved from ZF +DC.

Proof. Observe that if p0 > p1 > · · · > pn > . . . for a sequence of pn ∈ P, then
there is a q ∈ P with q 6 pn for all n ∈ ω, namely q =

⋃
n∈ω pn. We can now

repeat the proof of Lemma 8.5 in [6] to show that if g ∈ M[G] is a function on ω
with values in N , then g ∈ N .

To complete the proof, suppose X ∈ N and R ∈ N is a relation on X , as in
the hypothesis of DC. Then X and R are in M[G] and, using DC in M[G], given
ζ ∈ X there is an f ∈ M[G], f : ω → X , with f(0) = ζ and f(n)Rf(n+ 1) for all
n ∈ ω. It follows that f ∈ N . Therefore Dependent Choice holds in N .

Recall from [6] that AC is equivalent to ∀κ DCκ. By reproducing the proof of
Theorem 1 using the partial order P = Fn(λ ×R × λ × λ, 2, λ) for regular λ and
by generating the normal filter with sets having support less than λ, we obtain a
ZF model of ∀κ < λ DCκ in which Stone’s Theorem fails.

Notice that an essential part of the proof of Theorem 2 is the fact that every
proper open subset of a connected space has a non-empty border.

Theorem 4. (ConZF) There exists a zero-dimensional metric space that is not
paracompact.

Proof. Let G be the group of automorphisms of B induced by permutations π of
ω×R× ω1 satisfying π(n, r, α) = (n, σ(r), α′), where π(n, r, .) is a permutation on
ω1 for fixed n, r and σ : R → R is a translation by some rational value. Let F be
the (normal) filter on G generated by {fix(e) : e ∈ [ω × R × ω1]

<ω}, and N the
natural symmetric model.
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In addition to the previous elements of M[G], consider the following sets:

Qn = {Xnr : r ∈ Q},
In = {Xnr : r /∈ Q}.

As σ is a rational shift, the Qn and In have symmetric names and hence are
elements of N .

Claim 4.1. There is no function f ∈ N such that dom(f) = ω and for all n ∈ ω,
∅ 6= f(n) ( Qn.

Proof. Follow the proof of Claim 1.3, noting that r and s can be chosen to be
rational and π ∈ G can be constructed appropriately.

Notice that Q =
⋃{Qn : n ∈ ω} ∈ N .

Claim 4.2. Q is a zero-dimensional metric space.

Proof. The metric on
⋃
M induces a metrizable topology on Q. A symmetric name

exists for the linear order on Rn, so each Rn is linearly ordered in N . The base of
clopen sets {(x, y) ∩Qn : x, y ∈ In, n ∈ ω} shows that Q is zero-dimensional.

Claim 4.3. Q is not paracompact.

Proof. Let U be the open cover consisting of all open intervals with endpoints in
some Qn. Suppose V were a locally finite open refinement of U . For x ∈ Q,
define the open set Vx =

⋂{V ∈ V : x ∈ V }, ord(x) = |{V ∈ V : x ∈ V }|, and
V ′ = {Vx : x ∈ X}. Let S be the set of all x ∈ Q satisfying

either (1) x ∈ Qn, ∃y ∈ Qn ord(x) 6= ord(y) and ∀z ∈ Qn ord(x) 6 ord(z)

or (2) whenever x ∈ V ∈ V ′ ∃y ∈ V ∀u, v ∈ V d(x, y) > 2

3
d(u, v).

Let Sn = S ∩Qn. If there are x, y ∈ Qn with ord(x) 6= ord(y), then Sn is a proper
subset of Sn. If not, the sets in V ′ meeting Qn will be pairwise disjoint, and hence
Sn will be a proper subset of Qn, because Qn is densely ordered. In any case, we
have a contradiction to Claim 4.1.

Further research

As we observed after Theorem 3, ZF + (∀κ < λDCκ) does not imply Stone’s
Theorem, for any λ. It is natural to ask, therefore, whether other weakenings of
AC imply Stone’s Theorem:

Question. Does ZF+ BPI, OP or SP imply Stone’s Theorem?

Recall from [9] that the Boolean Prime Ideal Theorem, the statement that ev-
ery Boolean algebra has a prime ideal, is equivalent to Tychonoff’s Theorem for

compact Hausdorff spaces, which is equivalent to the existence of the Stone-C̆ech
compactification for Tychonoff spaces and also to the Compactness Theorem of
first-order logic. BPI implies the Ordering Principle, OP, the statement that every
set can be linearly ordered. Note that the ZFC proof of Stone’s Theorem in [12]
almost follows through using only ZF+OP. The only part of the argument which
does not extend to this system is in showing that the locally finite refining collection
of open sets covers the space.

The Selection Principle states that for every family of sets F with at least two
elements there is a function f such that for each F ∈ F , ∅ 6= f(F ) ( F . SP follows
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from AC and implies OP [6]. Clearly SP fails in any model where Stone’s Theorem
is made to fail in the way we have devised here.

As indicated by the referee, the Axiom of Choice for infinite sets of pairs, C(∞, 2),
fails in our models, and hence so do each of BPI, OP and SP, since these all imply
C(∞, 2). For instance, to see that C(∞, 2) fails in the model of Theorem 4 we
argue as follows:

IfA is any subset ofQn, then fix((n, 0, α)) ⊆ sym(A) for any α, since π(n, r, α) =
(n, r, α′) for any π ∈ fix((n, 0, α)). Hence every subset of every Qn is in N . Now
if P is the set of unordered pairs {{C,D} : C,D ⊆ Qn for some n,C 6= D}, then
sym(P) = G, so P ∈ N . Suppose that f were a choice function for P with symmet-
ric name f , and let e be a finite subset of ω ×R × ω1 such that fix(e) ⊆ sym(f).

Pick n ∈ ω such that e ∩ ({n} ×R× ω1) = ∅, and let On = {Xn,2i+1 : i ∈ Z} and
En = {Xn,2i : i ∈ Z}. Then, without loss of generality, there exists some p such
that

p  (f is a function) and (f((On, En)) = On).

With ε and φ as in Claim 1.3, define π ∈ G by

π(m, t, α) =


(m, t, α), m 6= n,

(n, r + 1, φ(α)), m = n, α ∈ [0, ε],

(n, r + 1, φ−1(α)), m = n, α ∈ (ε, 2ε],

(n, r + 1, α), m = n, α > 2ε.

Now, as in 1.3, π(f) = f , π(On, En) = (On, En), and πp and p are compatible. So

πp ∪ p  (f((On, En)) = On) and (f((On, En)) = En),

a contradiction, completing the argument.
On the other hand, Proposition 5 below shows that all proofs of Stone’s Theorem

(known to the authors) actually prove a stronger conclusion which implies AC. It
is based on an idea from [1]. Let us call a refinement V of U effective if there is
a function a : V → U such that V ⊆ a(V ) for all V ∈ V . (We do not require
that each a(V ) be non-empty, but only that V covers). Let us also say that a
space is effectively metacompact if every open cover has an effective point-finite
open refinement.

Proposition 5. (ZF) If every discrete metric space is effectively metacompact,
then the Axiom of Choice holds.

Proof. Let F be any family of disjoint non-empty sets and let X = F ∪ ⋃F
have the discrete metric. Let V be an effective point-finite open refinement of the
open cover U = {{x, F} : x ∈ F ∈ F}, with associated function a. For each
F ∈ F , let C(F ) = {V : F ∈ V }. Now each C(F ) is finite and non-empty, so
f(F ) = {x : {x, F} = a(V ), V ∈ C(F )} is a finite and non-empty subset of F , for
each F ∈ F .

Thus the Axiom of Multiple Choice holds for an arbitrary collection of non-empty
pairwise disjoint sets, F , but MC implies AC in ZF [6, 9.1].

Finally, it is possible to work with models of set theory with atoms, ZFA, to
construct non-paracompact metric spaces. With reference to the question above,
Mostowski has shown in [8] that SP is false in every model in which the set of atoms
cannot be well ordered.
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