Sumario	Efectos del disolvente	Ampliación	Aplicaciones	Conclusiones
	0000 000000	000	0000 000000 000000000	

Cálculo de las derivadas de la energía libre en disolución empleando un método de mecánica cuántica / mecánica molecular y la aproximación del campo medio

Ignacio Fernández Galván

Universidad de Extremadura

21 de diciembre del 2004

I. Fdez. Galván

Universidad de Extremadura

Sumario ●○	Efectos del disolvente 0000 000000	Ampliación 000 0000	Aplicaciones 0000 000000 0000000000	Conclusiones O
Obj	jetivos			o U
0	Validez de la aproxima Aproximación clave en la	ción del campo os métodos teóri	medio cos para disoluci	ones
	Cálculo de energía libr Esencial para determina	<mark>e en disolución</mark> r estabilidades r	elativas	
	Optimización de geom Estructuras estables y est	etría en disoluc stados de transi	:ión ción	
	Programa informático Para permitir la aplicació	n de los método	os desarrollados	
6	Aplicaciones prácticas Comprobación del métor	do y sistemas de	e interés	

Universidad de Extremadura

Sumario ●○	Efectos del disolvente 0000 000000	Ampliación 000 0000	Aplicaciones 0000 000000 00000000000000	Conclusiones O
Obj	jetivos			
0	Validez de la aproximaci Aproximación clave en lo Cálculo de energía libre Esencial para determinar	ión del campo s métodos teór en disoluciór estabilidades i	o medio icos para disoluci n relativas	ones
	Optimización de geome Estructuras estables y es	e <mark>tría en disoluc</mark> tados de transi	ción ción	
	Programa informático Para permitir la aplicación	n de los método	os desarrollados	
5	Aplicaciones prácticas Comprobación del métod	o y sistemas d	e interés	

Universidad de Extremadura

Sumario ●○	Efectos del disolvente 0000 000000	Ampliación 000 0000	Aplicaciones 0000 000000 0000000000	Conclusiones O
Obj	etivos			O <u>m</u>
1 2 3	Validez de la aproximación Aproximación clave en lo Cálculo de energía libre Esencial para determinar Optimización de geome Estructuras estables y es	sión del campo s métodos teór en disoluciór estabilidades r etría en disoluci tados de transi	o medio icos para disolucio n relativas ción ción	ones
	Programa informático Para permitir la aplicación	n de los método	os desarrollados	
6	Aplicaciones prácticas Comprobación del métod	lo y sistemas d	e interés	

Universidad de Extremadura

Sumario ●○	Efectos del disolvente 0000 000000	Ampliación 000 0000	Aplicaciones 0000 000000 0000000000	Conclusiones O
Obj	etivos			
1 2 3	Validez de la aproximación Aproximación clave en los Cálculo de energía libre Esencial para determinar Optimización de geome Estructuras estables y es	ión del campo s métodos teóri en disolución estabilidades r etría en disoluci tados de transi	medio icos para disolucio elativas sión ción	ones
4	Programa informático Para permitir la aplicación	n de los método	os desarrollados	
6	Aplicaciones prácticas Comprobación del métod	lo y sistemas de	e interés	

Universidad de Extremadura

Sumario ●○	Efectos del disolvente	Ampliación 000 0000	Aplicaciones 0000 000000 0000000000000	Conclusiones O
Objetivos				
 Valide Aproximation Cálcul Esencia Optim Estruct Progra Para p Aplica Compression 	z de la aproximac mación clave en los o de energía libre al para determinar ización de geome turas estables y es ama informático ermitir la aplicación ciones prácticas robación del métod	ión del campo s métodos teór en disolución estabilidades n etría en disoluci tados de transi n de los método	o medio icos para disoluci relativas ción ción os desarrollados e interés	ones

Universidad de Extremadura

Sumario	Efectos del disolvente	Ampliación	Aplicaciones	Conclusiones
0●	0000 000000	000 0000	0000 000000 000000000	

Efectos del disolvente

Métodos para el estudio de los efectos del disolvente El método ASEP/MD

Ampliación del método ASEP/MD

Cálculo de energía libre Optimización de geometría

Aplicaciones

Validez de la aproximación del campo medio Equilibrio anomérico en la xilopiranosa Estudio de reacciones en disolución

Conclusiones

I. Fdez. Galván

Sumario	Efectos del disolvente	Ampliación	Aplicaciones	Conclusiones
0●	0000 000000	000 0000	0000 000000 000000000	

Efectos del disolvente

Métodos para el estudio de los efectos del disolvente El método ASEP/MD

Ampliación del método ASEP/MD

Cálculo de energía libre Optimización de geometría

Aplicaciones

Validez de la aproximación del campo medio Equilibrio anomérico en la xilopiranosa Estudio de reacciones en disolución

Conclusiones

I. Fdez. Galván

Sumario	Efectos del disolvente	Ampliación	Aplicaciones	Conclusiones
0●	0000 000000	000 0000	0000 000000 000000000	

Efectos del disolvente

Métodos para el estudio de los efectos del disolvente El método ASEP/MD

Ampliación del método ASEP/MD

Cálculo de energía libre Optimización de geometría

Aplicaciones

Validez de la aproximación del campo medio Equilibrio anomérico en la xilopiranosa Estudio de reacciones en disolución

Conclusiones

I. Fdez. Galván

Sumario	Efectos del disolvente	Ampliación	Aplicaciones	Conclusiones
0●	0000 000000	000 0000	0000 000000 000000000	

Efectos del disolvente

Métodos para el estudio de los efectos del disolvente El método ASEP/MD

Ampliación del método ASEP/MD

Cálculo de energía libre Optimización de geometría

Aplicaciones

Validez de la aproximación del campo medio Equilibrio anomérico en la xilopiranosa Estudio de reacciones en disolución

Conclusiones

I. Fdez. Galván

Sumario	Efectos del disolvente	Ampliación	Aplicaciones	Conclusiones
	0000 000000	000	0000 000000 000000000	

Efectos del disolvente

Métodos para el estudio de los efectos del disolvente El método ASEP/MD

Ampliación del método ASEP/MD

Cálculo de energía libre Optimización de geometría

Aplicaciones

Validez de la aproximación del campo medio Equilibrio anomérico en la xilopiranosa Estudio de reacciones en disolución

Conclusiones

I. Fdez. Galván

Sumario 00	Efectos del disolvente ●ooo ○○○○○○	Ampliación 000 0000	Aplicaciones 0000 000000 00000000000000	Conclusiones O	
Métodos para el estudio de los efectos del disolvente					
Import					

- Molécula aislada
- Métodos de «alto nivel»
- Procesos atmosféricos y algunos industriales

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

토I일 《 문 》 《 문 》 《 **67** 》 《 미 》

Sumario 00	Efectos del disolvente ●ooo ○ooooo	Ampliación 000 0000	Aplicaciones 0000 000000 00000000000000	Conclusiones O
Métodos para e	l estudio de los efectos del disolvente			
Import	ancia de la solvata	ción		

- Molécula aislada
- Métodos de «alto nivel»
- Procesos atmosféricos y algunos industriales

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

토I티 《 토 》 《 토 》 《 🗗 》 《 ㅁ 》

Sumario 00	Efectos del disolvente ●ooo ○ooooo	Ampliación 000 0000	Aplicaciones 0000 000000 00000000000000	Conclusiones O
Métodos para e	l estudio de los efectos del disolvente			
Import	ancia de la solvata	ción		

- Molécula aislada
- Métodos de «alto nivel»
- Procesos atmosféricos y algunos industriales

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

토|님 《 문 》 《 문 》 《 **문** 》 《 **다** 》

Sumario 00	Efectos del disolvente ●○○○ ○○○○○○	Ampliación 000 0000	Aplicaciones 0000 000000 000000000000000000000000	Conclusiones O	
Métodos para el estudio de los efectos del disolvente					
Import	ancia de la solvata		U EX		

- Molécula aislada
- Métodos de «alto nivel»
- Procesos atmosféricos y algunos industriales

Fase condensada o «en disolución»

- El entorno forma parte del sistema
- Cálculo teórico complicado
- Procesos biológicos y naturales

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

토I⊐ 《토》《토》《@》《□》

Sumario 00	Efectos del disolvente ●○○○ ○○○○○○	Ampliación 000 0000	Aplicaciones 0000 000000 00000000000000	Conclusiones o		
Métodos para el estudio de los efectos del disolvente						
Import	o U					

- Molécula aislada
- Métodos de «alto nivel»
- Procesos atmosféricos y algunos industriales

Fase condensada o «en disolución»

- El entorno forma parte del sistema
- Cálculo teórico complicado
- Procesos biológicos y naturales

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

린 = 《 폰 》 《 폰 **》 《 뮨 》 《 므 》**

Sumario 00	Efectos del disolvente ●ooo ○○○○○○	Ampliación 000 0000	Aplicaciones 0000 000000 00000000000000	Conclusiones O		
Métodos para el estudio de los efectos del disolvente						
Import	o U					

- Molécula aislada
- Métodos de «alto nivel»
- Procesos atmosféricos y algunos industriales

Fase condensada o «en disolución»

- El entorno forma parte del sistema
- Cálculo teórico complicado
- Procesos biológicos y naturales

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

토I⊐ 《문》《문》《@》《□》

Sumario	Efectos del disolvente o●oo oooooo	Ampliación 000 0000	Aplicaciones 0000 000000 000000000000000000000000	Conclusiones O
Métodos p	ara el estudio de los efectos del disolvente			
Dific	cultades de los cálculos	s en disolue	ción	
	Elevado número de partí No es posible reducir el nú sin alterar las propiedades	culas en el s mero de mole del sistema	<mark>istema</mark> éculas	
	Ausencia de simetría No es posible aplicar las si empleadas para otros tipos	mplificacione s de cálculos	S	
	Baja especificidad de las Existe un gran número de que contribuyen a las prop	interaccion configuracion iedades	es del sistema	
•	sin alterar las propiedades Ausencia de simetría No es posible aplicar las si empleadas para otros tipos Baja especificidad de las Existe un gran número de que contribuyen a las prop	del sistema mplificacione s de cálculos interaccione configuracion iedades	s es es del sistema	

Universidad de Extremadura

Sumario 00	Efectos del disolvente o●oo oooooo	Ampliación 000 0000	Aplicaciones 0000 000000 0000000000	Conclusiones ○
Métodos para el estu	dio de los efectos del disolvente			
Dificultad	es de los cálculos	en disolución	I	Ø.
 Elevac No es sin alte Ausen No es emplea Baja e Existe que co 	do número de partícu posible reducir el núm erar las propiedades d ncia de simetría posible aplicar las sim adas para otros tipos d specificidad de las in un gran número de co ontribuyen a las propie	Ilas en el sister ero de molécula el sistema plificaciones de cálculos nteracciones onfiguraciones d dades	ma as el sistema	

Universidad de Extremadura

Universidad de Extremadura

Sumario 00	Efectos del disolvente ○○●○ ○○○○○○	Ampliación 000 0000	Aplicaciones 0000 000000 0000000000	Conclusiones ○
Métodos para e				
Métod				

Clasificación según la manera de tratar al soluto y al disolvente

I. Fdez. Galván

Universidad de Extremadura

EX

Cálculo de las derivadas de la energía libre en disolución

《曰》《聞》《王》《王》 비도

Universidad de Extremadura

Sumario 00	Efectos del disolvente oo●o oooooo	Ampliación 000 0000	Aplicaciones 0000 000000 000000000000000000000000	Conclusiones ☉
Métodos para e	l estudio de los efectos del disolvent	е		
Métod	os teóricos para el	estudio de di	soluciones	Ŭ
Clasifica	ación según la manera	a de tratar al <mark>so</mark> l	l <mark>uto</mark> y al <mark>disolve</mark> r	ite
Cuánti	cos			
Coste o	computacional			
muy ele	evado			
► Su	permoléculas			

► Car-Parrinello

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

토I티 《 토 》 《 토 》 《 🗗 》 《 ㅁ)

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

티닉 《 돈 》 《 돈 》 《 🗗 》 《 ㅁ 》

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

]= 《 E 》 《 E 》 《 B 》 《 D 》

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

]= 《문》《문》《**문**》《**□**》

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

티닉 《문》《문》《曰》《曰》

Sumario 00	Efectos del disolvente	Ampliación 000 0000	Aplicaciones 0000 000000 0000000000	Conclusiones ⊙		
Métodos para el estudio de los efectos del disolvente						
Métodos mixtos 🛛 🖉						

Métodos QM/MM

- Estructura del disolvente
- Técnicas de simulación
- Alto coste computacional

Métodos de campo medio

. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

린닉 《 문 》 《 문 》 《 [] 》 《 [] 》

Sumario 00	Efectos del disolvente ooo● oooooo	Ampliación 000 0000	Aplicaciones 0000 000000 00000000000000	Conclusiones O
Métodos para e	l estudio de los efectos del disolvente			
Método	os mixtos			Ŭ.
Métoc	los discretos	Métoc	los de campo m	nedio

Métodos QM/MM

- Estructura del disolvente
- Técnicas de simulación
- Alto coste computacional

I. Fdez. Galván

Universidad de Extremadura

Sumario 00	Efectos del disolvente ooo● ○○○○○○	Ampliación 000 0000	Aplicaciones 0000 000000 000000000000000000000000	Conclusiones O		
Métodos para el	Métodos para el estudio de los efectos del disolvente					
Método	os mixtos					

Métodos QM/MM

- Estructura del disolvente
- Técnicas de simulación
- Alto coste computacional

Métodos de campo medio

 $\bullet \longrightarrow \bullet \longrightarrow \bullet$

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

릴릭 《 문 》 《 문 》 《 데 》 《 머 》

Sumario 00	Efectos del disolvente ○○○● ○○○○○○	Ampliación 000 0000	Aplicaciones 0000 000000 00000000000000	Conclusiones O			
Métodos para el estudio de los efectos del disolvente							
Método	os mixtos			Ø.			

Métodos QM/MM

- Estructura del disolvente
- Técnicas de simulación
- Alto coste computacional

Métodos de campo medio

 $\bullet \longrightarrow \bullet \longrightarrow \bullet$

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

릴릭 《 문 》 《 문 》 《 데 》 《 머 》

Sumario 00	Efectos del disolvente ○○○● ○○○○○○	Ampliación 000 0000	Aplicaciones 0000 000000 000000000000000000000000	Conclusiones O		
Métodos para el estudio de los efectos del disolvente						
Método	os mixtos					

Métodos QM/MM

- Estructura del disolvente
- Técnicas de simulación
- Alto coste computacional

Métodos de campo medio

Hamiltoniano efectivo

- Perturbación promedio
- Disolvente continuo
- N.º de cálculos reducido

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

토|리 《 토 》 《 토 》 《 데 》 《 머 》

Sumario	Efectos del disolvente	Ampliación	Aplicaciones	Conclusiones
	000 000000	000 0000	0000 000000 000000000	
Métodos para e	l estudio de los efectos del disolvente			

Métodos mixtos

Métodos discretos

Métodos QM/MM

- Estructura del disolvente
- Técnicas de simulación
- Alto coste computacional

Métodos de campo medio

Hamiltoniano efectivo

- Perturbación promedio
- Disolvente continuo
- N.º de cálculos reducido

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

릴닉 《 문 》 《 문 》 《 [] 》 《 미 》

Sumario	Efectos del disolvente	Ampliación	Aplicaciones	Conclusiones		
	000 000000	000 0000	0000 000000 000000000			
Métodos para el estudio de los efectos del disolvente						

Métodos mixtos

Métodos discretos

Métodos QM/MM

- Estructura del disolvente
- Técnicas de simulación
- Alto coste computacional

Métodos de campo medio

Hamiltoniano efectivo

- Perturbación promedio
- Disolvente continuo
 - N.º de cálculos reducido

. Fdez. Galván

Cálculo de las derivadas de la energía libre en disolución

린닉 《문》《문》《曰》

Sumario	Efectos del disolvente	Ampliación	Aplicaciones	Conclusiones		
	000 ● 000000	000 0000	0000 000000 000000000			
Métodos para el estudio de los efectos del disolvente						

Métodos mixtos

Métodos discretos

Métodos QM/MM

- Estructura del disolvente
- Técnicas de simulación
- Alto coste computacional

Métodos de campo medio

Hamiltoniano efectivo

- Perturbación promedio
- Disolvente continuo
- ► N.º de cálculos reducido

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

릴릭 《 문 》 《 문 》 《 데 》 《 머 》

Sumario 00	Efectos del disolvente ○○○○ ●○○○○○	Ampliación 000 0000	Aplicaciones 0000 000000 000000000000000000000000	Conclusiones ☉
El método ASE	P/MD			
El mét	odo ASEP/MD			o
Average	ed S olvent Electrostati	c P otential from	M olecular D ynai	mics

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

[프] * 문 * 온 * 4 문 * 4 문 * 4 모]
Sumario 00	Efectos del disolvente ○○○○ ●○○○○○	Ampliación 000 0000	Aplicaciones 0000 000000 00000000000000	Conclusiones ○
El método ASEF	P/MD			
El méto Average	odo ASEP/MD ed Solvent Electrostation	c P otential from	n M olecular D ynai	mics
	1 I			

Características

► Método mixto Soluto → mecánica cuántica Disolvente → mecánica clásica

 Simulaciones de dinámica molecular Método QM/MM

► Aproximación del campo medio Un único cálculo: (Ĥ⁰ + ⟨V_{dis}⟩)Ψ = EΨ

I. Fdez. Galván

Universidad de Extremadura

Sumario 00	Efectos del disolvente ○○○○ ●○○○○○○	Ampliación 000 0000	Aplicaciones 0000 000000 0000000000	Conclusiones O
El método ASEP/MD				
El método Averaged S	ASEP/MD Solvent Electrostatic	P otential from	M olecular D ynar	nics

Universidad de Extremadura

Sumario 00	Efectos del disolvente ○○○○ ●○○○○○	Ampliación 000 0000	Aplicaciones 0000 000000 0000000000	Conclusiones ○
El método ASE	P/MD			
El méte	odo ASEP/MD			
Average	ed S olvent E lectrostati	c P otential from	n M olecular D ynai	mics

Universidad de Extremadura

Sumario 00	Efectos del disolvente ○○○○ ○●○○○○	Ampliación 000 0000	Aplicaciones 00000 000000000000000000000000000000	Conclusiones O
El método ASEI	P/MD			
Esquei	ma del método			Ŭ.
	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

골[= 《 문 》 《 문 》 《 **문** 》 《 **다**)

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

된]픽 《 문 》 《 문 》 《 **라** 》 《 다)

Universidad de Extremadura

Aplicaciones

Sumario

Cálculo de las derivadas de la energía libre en disolución

Efectos del disolvente

Cálculo de las derivadas de la energía libre en disolución

비밀 《 문 》 《 문 》 《 团 》 《 日 》

Cálculo de las derivadas de la energía libre en disolución

_ . _ . . _ . . _ . . _ .

Cálculo de las derivadas de la energía libre en disolución

비밀 《 문 》 《 문 》 《 🗗 》 《 ㅁ 》

Sumario 00	Efectos del disolvente ○○○○ ○○○○●○	Ampliación 000 0000	Aplicaciones 0000 000000 00000000000000	Conclusiones O
El método ASE	P/MD			
Términ	os energéticos en	ASEP/MD		Ū

Dinámica molecular

- ► Campo de fuerzas clásico
- Moléculas rígidas
- ► Interacción electrostática ∑∑ q₁q₁ r²₂
- ► Interacción Van der Waals $\sum \sum 4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right]$

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

된[= 《 E 》 《 E 》 《 B 》 《 D 》

Sumario 00	Efectos del disolvente ○○○○ ○○○○●○	Ampliación 000 0000	Aplicaciones 0000 000000 0000000000	Conclusiones ○
El método ASE	P/MD			
Términ	os energéticos en	ASEP/MD		O

Dinámica molecular

- Campo de fuerzas clásico
- Moléculas rígidas
- ► Interacción electrostática ∑∑ qiqi r²_i.
- ► Interacción Van der Waals $\sum \sum 4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right]$

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

토I크 《 문 》 《 문 》 《 **문** 》 《 **므** 》

Sumario 00	Efectos del disolvente ○○○○ ○○○○●○	Ampliación 000 0000	Aplicaciones 0000 000000 00000000000000	Conclusiones O
El método ASE	P/MD			
Términ	os energéticos en	ASEP/MD		Ŭ

Dinámica molecular

- Campo de fuerzas clásico
- Moléculas rígidas
- ► Interacción electrostática ∑∑ q_iq_j r²_i
- ► Interacción Van der Waals $\sum \sum 4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right]$

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

된]픽 《 문 》 《 문 》 《 **라** 》 《 **다** 》

Sumario	Efectos del disolvente	Ampliación	Aplicaciones	Conclusiones
	0000 0000●0	000 0000	0000 000000 000000000	
El método ASEI				
Términos energéticos en ASEP/MD				

- Campo de fuerzas clásico
- Moléculas rígidas
- ► Interacción electrostática ∑∑ q_iq_j r²_i
- ► Interacción Van der Waals $\sum \sum 4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right]$

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

된[일 《 문 》 《 문 》 《 **문** 》 《 **다** 》

Sumario	Efectos del disolvente
	000000

Ampliación

Aplicaciones

Conclusiones

El método ASEP/MD

Términos energéticos en ASEP/MD

Dinámica molecular

- Campo de fuerzas clásico
- Moléculas rígidas
- ► Interacción electrostática ∑∑ q_iq_j r²_{ii}
- ► Interacción Van der Waals $\sum \sum 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right]$

Cálculos cuánticos

- Descripción cuántica del soluto
- Disolvente como conjunto de cargas externas
- Interacción electrostática $\widehat{H}_{QM/MM}^{elec} \rightarrow (q_s \leftrightarrow e, q_s \leftrightarrow Z_{\alpha})$
- $\begin{array}{l} \mbox{Interacción Van der Waals} \\ \widehat{H}^{vdw}_{QM/MM} \rightarrow \langle E_{vdw} \rangle \end{array}$

. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

린닉 《 문 》 《 문 》 《 **라** 》 《 **다** 》

Sumario	Efectos del disolvente	Amp
		000
	000000	

Ampliación

Conclusiones

El método ASEP/MD

Términos energéticos en ASEP/MD

Dinámica molecular

- Campo de fuerzas clásico
- Moléculas rígidas
- ► Interacción electrostática ∑∑ q_iq_j r²_{ii}
- ► Interacción Van der Waals $\sum \sum 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right]$

Cálculos cuánticos

- Descripción cuántica del soluto
- Disolvente como conjunto de cargas externas
- Interacción electrostática $\widehat{H}_{QM/MM}^{elec} \rightarrow (q_s \leftrightarrow e, q_s \leftrightarrow Z_{\alpha})$
- $\begin{array}{l} \mbox{Interacción Van der Waals} \\ \widehat{H}^{vdw}_{QM/MM} \rightarrow \langle E_{vdw} \rangle \end{array}$

. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

린닉 《 문 » 《 문 » 《 🗗 » 《 ㅁ »

Sumario	Efectos del disolvente	Ampliación	Aplicad
	0000 0000●0	000	0000

Conclusiones o

El método ASEP/MD

Términos energéticos en ASEP/MD

Dinámica molecular

- Campo de fuerzas clásico
- Moléculas rígidas
- ► Interacción electrostática ∑∑ q_iq_j r²_{ii}
- ► Interacción Van der Waals $\sum \sum 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right]$

Cálculos cuánticos

- Descripción cuántica del soluto
- Disolvente como conjunto de cargas externas
- $\begin{array}{l} \blacktriangleright \quad \mbox{Interacción electrostática} \\ \widehat{H}^{elec}_{QM/MM} \rightarrow (q_s \leftrightarrow e, q_s \leftrightarrow Z_{\alpha}) \end{array} \end{array}$
- Interacción Van der Waals $\widehat{H}^{vdw}_{QM/MM} \rightarrow \langle E_{vdw} \rangle$

. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

린님 《문》《문》《曰》

Sumario	Efectos del disolvente	
	0000 0000●0	

Ampliación

Conclusiones

El método ASEP/MD

Términos energéticos en ASEP/MD

Dinámica molecular

- Campo de fuerzas clásico
- Moléculas rígidas
- ► Interacción electrostática ∑∑ q_iq_j r²_{ii}
- ► Interacción Van der Waals $\sum \sum 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right]$

Cálculos cuánticos

- Descripción cuántica del soluto
- Disolvente como conjunto de cargas externas
- Interacción electrostática $\widehat{H}_{QM/MM}^{elec} \rightarrow (q_s \leftrightarrow e, q_s \leftrightarrow Z_{\alpha})$
- $\label{eq:horizontal} \begin{array}{l} \blacktriangleright \mbox{ Interacción Van der Waals} \\ \widehat{H}^{vdw}_{QM/MM} \rightarrow \langle E_{vdw} \rangle \end{array}$

. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

토|일 《 문 》 《 문 》 《 [] 》 《 미 》

Sumario oo	Efectos del disolvente ○○○○ ○○○○○●	Ampliación 000 0000	Aplicaciones 0000 000000 000000000000000000000000	Conclusiones O
El método ASEP/MD				
Propiedad	les del método AS	SEP/MD		
Númer Solame	r <mark>o reducido de cálcu</mark> ente un cálculo por ca	u <mark>los cuántic</mark> ada iteraciór	:os n (5-10)	
 Métod Posibili y méto 	os cuánticos de «al idad de introducir cor dos multiconfiguracio	to nivel » relación elec males	ctrónica	
 Estruc Consid alredeo 	t ura del disolvente leración explícita de la dor del soluto	a ordenaciór	n del disolvente	
 Polariz La dist se equ 	zación simultánea d ribución electrónica d ilibran mutuamente.	e soluto y d lel soluto y la	lisolvente a estructura del di	solvente

Cálculo de las derivadas de la energía libre en disolución

Sumari 00	b Efectos del disolvente ○○○○ ○○○○●	Ampliación 000 0000	Aplicaciones 0000 000000 0000000000	Conclusiones O
El méto	do ASEP/MD			
Pro	opiedades del método A	SEP/MD		
•	 Número reducido de cálo Solamente un cálculo por o Métodos cuánticos de «a Posibilidad de introducir co y métodos multiconfiguraci 	culos cuántic cada iteración Ito nivel» rrelación elec onales	cos n (5-10) ctrónica	
	Estructura del disolvente Consideración explícita de alrededor del soluto	la ordenació	n del disolvente	
	Polarización simultánea o La distribución electrónica se equilibran mutuamente.	de soluto y d del soluto y la	lisolvente a estructura del di	solvente

Cálculo de las derivadas de la energía libre en disolución

Sum 00	rio Efectos del disolvente ○○○○ ○○○○●	Ampliación 000 0000	Aplicaciones 0000 000000 0000000000	Conclusiones O
El m	todo ASEP/MD			
Ρ	ropiedades del método	ASEP/MD		
	 Número reducido de o Solamente un cálculo p Métodos cuánticos de Posibilidad de introducio v métodos multiconfigue 	calculos cuántico or cada iteración «alto nivel» r correlación elec racionales	cos 1 (5-10) Ctrónica	
	 Estructura del disolve Consideración explícita alrededor del soluto 	nte de la ordenación	n del disolvente	
	 Polarización simultáne La distribución electrón se equilibran mutuamer 	ea de soluto y d ica del soluto y la nte.	lisolvente a estructura del di	isolvente

Cálculo de las derivadas de la energía libre en disolución

Sumario oo	Efectos del disolvente ○○○○ ○○○○○●	Ampliación 000 0000	Aplicaciones 0000 000000 00000000000	Conclusiones O
El método ASEP/MD				
Propiedad	les del método	ASEP/MD		Ū
Númer Solame	r <mark>o reducido de cá</mark> ente un cálculo po	l <mark>lculos cuántic</mark> r cada iteración	os (5-10)	
 Métod Posibili y méto 	os cuánticos de « idad de introducir « dos multiconfigura	« <mark>alto nivel»</mark> correlación elec icionales	trónica	
 Estruc Consid alredeo 	t ura del disolven leración explícita d dor del soluto	<mark>te</mark> le la ordenaciór	n del disolvente	
 Polariz La dist se equ 	ribución simultánea ribución electrónic ilibran mutuament	a de soluto y d a del soluto y la e.	<mark>isolvente</mark> a estructura del di	isolvente

Cálculo de las derivadas de la energía libre en disolución

Sumario	Efectos del disolvente	Ampliación	Aplicaciones	Conclusiones
	0000 000000	000	0000 000000 000000000	

Efectos del disolvente

Métodos para el estudio de los efectos del disolvente El método ASEP/MD

Ampliación del método ASEP/MD

Cálculo de energía libre Optimización de geometría

Aplicaciones

Validez de la aproximación del campo medio Equilibrio anomérico en la xilopiranosa Estudio de reacciones en disolución

Conclusiones

I. Fdez. Galván

Cálculo de las derivadas de la energía libre en disolución

Sumario 00	Efectos del disolvente	Ampliación ●○○ ○○○○	Aplicaciones 0000 000000 00000000000	Conclusiones O
Cálculo de ener	gía libre			
La ene	rgía libre			
Definici	ones de energía libro	e		
► Ene	ergía libre de <mark>Helmhol</mark>	tz: Pro	ocesos a volumer	n constante
► Ene	ergía libre de Gibbs :	Pr	rocesos a presiór	n constante

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

린닉 《문》《문》《曰》《曰》

Sumario 00	Efectos del disolvente 0000 000000	Ampliación ●○○ ○○○○	Aplicaciones 0000 000000 000000000000000000000000	Conclusiones O
Cálculo de ener	gía libre			
La ene	rgía libre			
Definici	ones de energía libre			
► Ene	ergía libre de <mark>Helmholtz</mark> :	P	rocesos a volumen	constante
► Ene	ergía libre de Gibbs :	F	Procesos a presión	constante

Objetivo

Calcular **diferencias** de energía libre entre distintos estados

Métodos

I. Fdez. Galván

Cálculo de las derivadas de la energía libre en disolución

Universidad de Extremadura

Sumario 00	Efectos del disolvente 0000 000000	Ampliación ○●○ ○○○○	Aplicaciones 0000 000000	Conclusiones ○
Cálculo de energ	ía libre		000000000	
Cálculo	de la energía libre	•		
 Pert ΔG_μ Part E = ΔG_μ Intro ΔG_μ 	surbación termodiná $A \rightarrow B = \frac{1}{\beta} \ln \left\langle e^{\beta \Delta E} \right\rangle_{B}$ sición de la energía $E_{QM} + E_{QM/MM} + E_{M}$ $A \rightarrow B = \Delta E_{QM} + \frac{1}{\beta} \ln \left\langle e^{\beta \Delta E} \right\rangle_{A \rightarrow B}$ oducción de estados $A \rightarrow B = \Delta E_{QM} + \frac{1}{\beta} \sum_{i=A}^{B}$	mica $\beta = \frac{1}{k_{B}T}$ M $\left\langle e^{\beta \Delta E_{QM/MM}} \right\rangle_{B}$ s intermedios $\ln \left\langle e^{\beta \Delta_{\xi} E_{QM/MM}} \right\rangle_{B}$	\rangle_{i}	

Universidad de Extremadura

Sumario
CorrectionEffectos del disolvente
correctionAmpliación
correctionAplicaciones
correctionConclusiones
correctionCálculo de energía libreCálculo de la energía libreCálculo de la energía libre•Perturbación termodinámica
$$\Delta G_{A \to B} = \frac{1}{\beta} \ln \left\langle e^{\beta \Delta E} \right\rangle_{B}$$
 $\beta = \frac{1}{k_{B}T}$ ••Partición de la energía
 $E = E_{QM} + E_{QM/MM} + E_{MM}$
 $\Delta G_{A \to B} = \Delta E_{QM} + \frac{1}{\beta} \ln \left\langle e^{\beta \Delta E_{QM/MM}} \right\rangle_{B}$ •Introducción de estados intermedios
 $\Delta G_{A \to B} = \Delta E_{QM} + \frac{1}{\beta} \sum_{i=A}^{B} \ln \left\langle e^{\beta \Delta_i E_{QM/MM}} \right\rangle_i$

Universidad de Extremadura

Universidad de Extremadura

Universidad de Extremadura

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

린님 《문》《문》《**라**》《다.

	Gumario DO	Efectos del disolvente 0000 000000	Ampliación ○○● ○○○○	Aplicaciones 0000 000000 0000000000	Conclusiones ○		
0	Cálculo de energía libre	•					
	Aplicación en el método ASEP/MD						
	Δ	$\Delta G_{A \to B} = \Delta E_{QM} + \frac{1}{\beta}$	$\sum_{i=A}^{B} \ln \left\langle e^{\beta \Delta_{i} E_{QI}} \right\rangle$	$\left \Delta V \right\rangle_{i} + \Delta V$			
	ΔE_{QM}	Cálculo ASEP/MD d	e los dos estad	os por separado	1		
	i	Estados intermedios	entre A y B de	finidos			
		por interpolación de	cargas atómica	as, parámetros, e	etc.		
	$\langle \cdots \rangle_i$	Promedio de configu	raciones obten	idas con el estad	do i		
	$\Delta_i E_{\text{QM}/\text{MM}}$	Energía de interacci	ón soluto-disolv	rente,			
		calculada clásicame	ente: $E_{i+1} - E_i$				
		Energía del punto ce	ero y efectos en	trópicos			

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

티닉 《 문 》 《 문 **》 《 뮨 》 《 다**

	Sumario	Efectos del disolvente 0000 000000	Ampliación oo● oooo	Aplicaciones 0000 000000 000000000	Conclusiones O			
0	Cálculo de energía libre							
	Aplicaciór	n en el método ASE	B					
	1	$\Delta G_{A\toB} = \Delta E_{QM} + \frac{1}{\beta}$	$\sum_{i=A}^{-} \ln \left\langle e^{\beta \Delta_i E_Q} \right\rangle$	$\left M/MM \right\rangle_{i} + \Delta V$				
	ΔE_{QN}	Cálculo ASEP/MD d	le los dos estad	los por separado				
	i	Estados intermedios	s entre A y B de cargas atómica	finidos as parámetros e	etc			
	$\langle \cdots \rangle_{i}$	Promedio de configu	uraciones obten	iidas con el estad	do i			
	$\Delta_{i} E_{QM/MN}$	Energía de interacci calculada clásicamo	ón soluto-disolv ente: E _{i+1} – E _i	/ente,				
	ΔV	/ Energía del punto ce	ero y efectos er	trópicos				

Universidad de Extremadura

- Hipersuperficie N-dimensional: $E = f(\vec{r})$
- Localización de puntos estacionarios en la superficie: ∂E/∂ r = 0 Punto estacionario (r*) → estructura molecular

Universidad de Extremadura

• Hipersuperficie N-dimensional: $E = f(\vec{r})$

► Localización de puntos estacionarios en la superficie: $\partial E/\partial \vec{r} = C$ Punto estacionario $(\vec{r}^*) \rightarrow$ estructura molecular

I. Fdez. Galván

Universidad de Extremadura

- Hipersuperficie N-dimensional: $E = f(\vec{r})$
- Localización de puntos estacionarios en la superficie: ∂E/∂r = 0 Punto estacionario (r*) → estructura molecular

Universidad de Extremadura

- Hipersuperficie N-dimensional: $E = f(\vec{r})$
- ► Localización de puntos estacionarios en la superficie: $\partial E/\partial \vec{r} = 0$ Punto estacionario $(\vec{r}^*) \rightarrow$ estructura molecular

Cálculo de las derivadas de la energía libre en disolución

Universidad de Extremadura

- (aproximación de Born-Oppenheimer)
- Hipersuperficie N-dimensional: $E = f(\vec{r})$
- ► Localización de puntos estacionarios en la superficie: $\partial E/\partial \vec{r} = 0$ Punto estacionario $(\vec{r}^*) \rightarrow$ estructura molecular

Cálculo de las derivadas de la energía libre en disolución

Universidad de Extremadura

Sumario	Efectos del disolvente	Ampliación	Aplicaciones	Conclusiones
00 0000 000000		000 0●00	0000 000000 000000000	
Optimización de	e geometría			

Métodos de optimización

o U Ex

Métodos de primer orden

Gradiente: $\vec{g} = \partial E / \partial \vec{r}$

Pendiente máxima

Gradiente conjugado

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

린픽 《문》《문》《**라**》《**다**》

Sumario 00	Efectos del disolvente 0000 000000	Ampliación ○○○ ○●○○	Aplicaciones 0000 000000 000000000	Conclusiones ○			
Optimización de geometría							
Método	os de optimización			0			

Ü

Métodos de primer orden

Gradiente: $\vec{g} = \partial E / \partial \vec{r}$

- Pendiente máxima
- Gradiente conjugado

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

린티 《 문 》 《 문 》 《 [] 》 《 [] 》

Sumario 00	Efectos del disolvente oooo ooooooo	Ampliación ○○○ ○●○○	Aplicaciones 0000 000000 0000000000	Conclusiones O				
Optimización de	Optimización de geometría							
Método	os de optimización		0					

О	P		0	
_		17		
		L		
	Ì	Ň	Y	7
		-7	~	N.

Métodos de primer orden

Gradiente: $\vec{g} = \partial E / \partial \vec{r}$

- Pendiente máxima
- Gradiente conjugado

Métodos de segundo orden Gradiente: $\vec{g} = \partial E / \partial \vec{r}$ Hessiana: $\vec{H} = \partial^2 E / \partial \vec{r}^2$

- Newton-Raphson
- cuasi-Newton

RFO

. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

토I크 《 문 》 《 문 》 《 [] 》 《 □ 》

Sumario 00	Efectos del disolvente 0000 000000	Ampliación ○○○ ○●○○	Aplicaciones 0000 000000 0000000000	Conclusiones O
Optimización de	e geometría			
Método	os de optimización			O T

U

Métodos de primer orden

Gradiente: $\vec{g} = \partial E / \partial \vec{r}$

- Pendiente máxima
- Gradiente conjugado

Métodos de segundo orden Gradiente: $\vec{g} = \partial E / \partial \vec{r}$ Hessiana: $\vec{H} = \partial^2 E / \partial \vec{r}^2$

- Newton-Raphson
- cuasi-Newton

RFO

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

린닉 《 돈 》 《 돈 》 《 🗗 》 《 ㅁ 》

Sumario 00	Efectos del disolvente 0000 000000	Ampliación ○○○ ○●○○	Aplicaciones 0000 000000 0000000000	Conclusiones O			
Optimización de	Optimización de geometría						
Método	os de optimización			Ū			

Métodos de primer orden

Gradiente: $\vec{g} = \partial E / \partial \vec{r}$

- Pendiente máxima
- Gradiente conjugado

Métodos de segundo orden Gradiente: $\vec{g} = \partial E / \partial \vec{r}$ Hessiana: $\vec{H} = \partial^2 E / \partial \vec{r}^2$

- Newton-Raphson
- cuasi-Newton

RFO

Es necesario poder obtener las derivadas de la energía con respecto a las coordenadas nucleares

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

토I티 《 티 》 《 티 》 《 **리** 》 《 미)

Sumario 00	Efectos del disolvente 0000 000000	Ampliación ○○○ ○○●○	Aplicaciones 0000 000000 0000000000	Conclusiones O
Optimización de	e geometría			
Optimi	zación en disolució	ón		
	timización del soluto d	entro del «disol	vente promedio»	

- Superficie de energía: energía libre
- Cálculo de las derivadas de la energía libre en disolución

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

코l티 《 코》 《 코》 《 **리**》 《 미 》

Sumario 00	Efectos del disolvente 0000 000000	Ampliación ○○○ ○○●○	Aplicaciones 0000 000000 0000000000	Conclusiones O			
Optimización de geometría							
Optimi	zación en disolució	ón					
► Op	timización del soluto d	entro del «disol	vente promedio»				

Superficie de energía: energía libre

Cálculo de las derivadas de la energía libre en disolución

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

린티 《문》《문》《**문**》《**문**》

Sumario 00	Efectos del disolvente 0000 000000	Ampliación ○○○ ○○●○	Aplicaciones 0000 000000 0000000000	Conclusiones O				
Optimización de	Optimización de geometría							
Optimi	zación en disolució	ón		Ŭ.				
► Op	timización del soluto d	entro del «disol	vente promedio»					

- Superficie de energía: energía libre
- > Cálculo de las derivadas de la energía libre en disolución

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

'토|티 《 토 》 《 토 》 《 🗗 》 《 ㅁ 》

Sumario 00	Efectos del disolvente 0000 000000	Ampliación ○○○ ○○●○	Aplicaciones 0000 000000 000000000	Conclusiones ○
Optimización de	e geometría			
Optimi	zación en disolucio	ón		
► Op	timización del soluto d	entro del «disol	vente promedio»	

Cálculo de las derivadas de la energía libre en disolución

 $\frac{\partial G}{\partial \vec{r}} = \left\langle \frac{\partial E}{\partial \vec{r}} \right\rangle$ $\vec{g}(\vec{r}) \simeq \frac{\partial \langle E \rangle}{\partial \vec{r}}$

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

Superficie de energía: energía libre

토I티 《 토 》 《 토 》 《 🗗 》 《 O 》

Sumario 00	Efectos del disolvente 0000 000000	Ampliación ○○○ ○○●○	Aplicaciones 0000 000000 000000000	Conclusiones O
Optimización de	e geometría			
Optimi	Ū			

- Optimización del soluto dentro del «disolvente promedio»
- Superficie de energía: energía libre
- Cálculo de las derivadas de la energía libre en disolución

Gradiente

$$\frac{\partial G}{\partial \vec{r}} = \left\langle \frac{\partial E}{\partial \vec{r}} \right\rangle$$

$$\vec{g}(\vec{r}) \simeq \frac{\partial \langle E \rangle}{\partial \vec{r}}$$

Universidad de Extremadura

Sun 00	nario I	Efectos del disolv 0000 000000		Ampliación ○○○ ○○●○	Aplicaciones 0000 000000 0000000000	Conclusiones O
Opt	imización de geome	tría				
C	Optimización en disolución					
	 Optimización del soluto dentro del «disolvente promedio» Superficie de energía: energía libre Cálculo de las derivadas de la energía libre en disolución 					
	Gradiente		Hessiana			
	$\frac{\partial G}{\partial \vec{r}} = \left\langle \frac{\partial}{\partial \vec{r}} \right\rangle$	$\left \frac{E}{\vec{r}}\right\rangle$	$\frac{\partial^2 G}{\partial \vec{r}^2} = \left\langle \frac{\partial^2}{\partial \vec{r}} \right\rangle$	$\left \frac{E}{2}\right\rangle + \beta \left[\left\langle \frac{\partial E}{\partial \vec{r}}\right\rangle\right]$	$\left\langle \frac{\partial E}{\partial \vec{r}} \right\rangle - \left\langle \frac{\partial E}{\partial \vec{r}} \right\rangle$	$\left \frac{\partial E}{\partial \vec{r}}\right\rangle$
	$\vec{g}(\vec{r}) \simeq \frac{\partial}{\partial t}$	$\frac{\langle E \rangle}{\partial \vec{r}}$		$\vec{\breve{H}}(\vec{r}) \simeq$	$\frac{\partial^2 \langle E \rangle}{\partial \vec{r}^2}$	

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

릴릭 《 문 》 《 문 》 《 [] 》 《 □ ·

Sumario 00	Efectos del dis ococo ocococo	solvente	Ampliación ○○○ ○○●○	Aplicaciones 0000 000000 000000000000000000000000	Conclusiones O
Optimización de	e geometría				
Optimi	zación en c	lisolució	òn		
 Optimización del soluto dentro del «disolvente promedio» Superficie de energía: energía libre Cálculo de las derivadas de la energía libre en disolución 					
Gradie	ente	Hessia			
ðG	/ 9E \	∂²G	$/ \partial^2 E \setminus [/]$	9E / \ 9E /	/ 9E 9E /]

 $\frac{\partial G}{\partial \vec{r}} = \left\langle \frac{\partial E}{\partial \vec{r}} \right\rangle$ $\frac{\partial^2 G}{\partial \vec{r}^2} = \left\langle \frac{\partial^2 E}{\partial \vec{r}^2} \right\rangle + \beta \left[\left\langle \frac{\partial E}{\partial \vec{r}} \right\rangle \left\langle \frac{\partial E}{\partial \vec{r}} \right\rangle - \left\langle \frac{\partial E}{\partial \vec{r}} \frac{\partial E}{\partial \vec{r}} \right\rangle \right]$ $\vec{g}(\vec{r}) \simeq \frac{\partial \langle E \rangle}{\partial \vec{r}^2}$ $\vec{H}(\vec{r}) \simeq \frac{\partial^2 \langle E \rangle}{\partial \vec{r}^2}$

I. Fdez. Galván

Universidad de Extremadura

Sumario 00	Efectos del dis 0000 000000	olvente	Ampliación ○○○ ○○●○	Aplicaciones 00000 000000 00000000000000000000000	Conclusiones O
Optimización de	geometría				
Optimi	zación en d	isolución			Ø U
 Optimización del soluto dentro del «disolvente promedio» Superficie de energía: energía libre Cálculo de las derivadas de la energía libre en disolución 					
Gradie	ente	Hessiana			
∂G _	/ 3E \	$\partial^2 G = / \partial^2$	Ε\[/	9E / / 9E /	/ 9E 9E \]

GradienteHessiana $\frac{\partial G}{\partial \vec{r}} = \left\langle \frac{\partial E}{\partial \vec{r}} \right\rangle$ $\frac{\partial^2 G}{\partial \vec{r}^2} = \left\langle \frac{\partial^2 E}{\partial \vec{r}^2} \right\rangle + \beta \left[\left\langle \frac{\partial E}{\partial \vec{r}} \right\rangle \left\langle \frac{\partial E}{\partial \vec{r}} \right\rangle - \left\langle \frac{\partial E}{\partial \vec{r}} \frac{\partial E}{\partial \vec{r}} \right\rangle \right]$ $\vec{g}(\vec{r}) \simeq \frac{\partial \langle E \rangle}{\partial \vec{r}}$ $\vec{H}(\vec{r}) \simeq \frac{\partial^2 \langle E \rangle}{\partial \vec{r}^2}$

I. Fdez. Galván

Universidad de Extremadura

Universidad de Extremadura

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

린닉 《문》《문》《**문》**《**문**》《曰)

Universidad de Extremadura

Universidad de Extremadura

Universidad de Extremadura

Sumario 00	Efectos del disolvente	Ampliación 000 0000	Aplicaciones 0000 000000 0000000000	Conclusiones ⊙
				0

Efectos del disolvente

Métodos para el estudio de los efectos del disolvente El método ASEP/MD

Ampliación del método ASEP/MD Cálculo de energía libre Optimización de geometría

Aplicaciones

Validez de la aproximación del campo medio Equilibrio anomérico en la xilopiranosa Estudio de reacciones en disolución

Conclusiones

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

린닉 《문》《문》《**문**》《**문**》

- Ampliamente utilizada en las teorías de efecto del disolvente
- Permite reducir los grados de libertad del sistema
- Introduce el disolvente como una «perturbación promedio»

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

린티 《 문 》 《 문 》 《 **라** 》 《 **다** 》

- Ampliamente utilizada en las teorías de efecto del disolvente
- Permite reducir los grados de libertad del sistema
- Introduce el disolvente como una «perturbación promedio»

Universidad de Extremadura

- Ampliamente utilizada en las teorías de efecto del disolvente
- Permite reducir los grados de libertad del sistema
- Introduce el disolvente como una «perturbación promedio»

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

된[일 《 문 》 《 문 》 《 [] 》 《 미 》

- Ampliamente utilizada en las teorías de efecto del disolvente
- Permite reducir los grados de libertad del sistema
- Introduce el disolvente como una «perturbación promedio»

Problema

¿Puede sustituirse el **promedio de configuraciones** por la propiedad obtenida para una **configuración promedio**?

I. Fdez. Galván

Cálculo de las derivadas de la energía libre en disolución

Universidad de Extremadura

Sumario 00	Efectos del disolvente 0000 000000	Ampliación 000 0000	Aplicaciones 0●00 000000 000000000	Conclusiones O
Validez de la ap	roximación del campo medio			
Diferer	ncia entre ASEP/MI	D y métodos QI	M/MM tradicio	nales 🚎
Si	in ACM (QM/MM)			
2		wy way he		* •
·	2 ~ ~ ~	· • •	· • • • • • •	
•	have to	5 r ~	in r	~.

Universidad de Extremadura

Sumario 00	Coco Coco Coco Coco Coco Coco Coco Coco	Ampliacion 000 0000	Aplicaciones 0000 000000 000000000	O O
Validez de la ap	roximación del campo medio			
Diferer	ncia entre ASEP/ME) y métodos (QM/MM tradicio	onales 🔍
S	in ACM (QM/MM)			L

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

린님 《문》《문》《문》《日》

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

린티 《 문 》 《 문 》 《 [] 》 《 □)

Sumario 00	Efectos del disolvente 0000 000000	Ampliación 000 0000	Aplicaciones ○●○○ ○○○○○○ ○○○○○○○○○○○○○○○	Conclusiones ○
Validez de la ap	roximación del campo medio			
Diferer	ncia entre ASEP/M	D y métodos Q	M/MM tradicior	nales 📼
		Co	on ACM (ASEP/N	ID)
)	the second second	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		, •
-	× ~ ~	\mathbf{x}	- • • • • • • •	•
	have the	the property of	سم مخ	∿ ≠•

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

토[닉 《 문 》 《 문 》 《 **문** 》 《 **미**)

Universidad de Extremadura

Universidad de Extremadura

Sumario 00	Efectos del disolvente 0000 000000	Ampliación 000 0000	Aplicaciones 00●0 000000 0000000000	Conclusiones ○						
Validez de la ap	Validez de la aproximación del campo medio									
Comprobación de la validez de la ACM										

Método

Se comparan los valores de distintas propiedades cuando:

- Se obtiene el promedio de múltiples cálculos cuánticos
- Se realiza un único cálculo con la aproximación del campo medio

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

린닉 《 문 » 《 문 » 《 데 » 《 머 »

Sumario	Efectos del disolvente	Ampliación	Aplicaciones	Conclusiones					
	0000 000000	000 0000	0000 000000 000000000						
Validez de la aproximación del campo medio									

Comprobación de la validez de la ACM

Método

Se comparan los valores de distintas propiedades cuando:

- Se obtiene el promedio de múltiples cálculos cuánticos
- Se realiza un único cálculo con la aproximación del campo medio

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

린님 《문》《문》《曰》《曰》

Sumario	Efectos del disolvente	Ampliación	Aplicaciones	Conclusiones			
	0000 000000	000 0000	00●0 000000 0000000000				
Validez de la aproximación del campo medio							

Comprobación de la validez de la ACM

Método

Se comparan los valores de distintas propiedades cuando:

- Se obtiene el promedio de múltiples cálculos cuánticos
- Se realiza un único cálculo con la aproximación del campo medio

Universidad de Extremadu

I. Fdez. Galván

ma	

Efectos del disolvente

Ampliación

Aplicaciones

Validez de la aproximación del campo medio

Comprobación de la validez de la ACM

Método

Se comparan los valores de distintas propiedades cuando:

- Se obtiene el promedio de múltiples cálculos cuánticos
- Se realiza un único cálculo con la aproximación del campo medio

Sistemas

- Líquidos puros metanol, etanol y propanol
- Disoluciones acuosas
 Formaldehído, acetaldehído y acetona

. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

린닉 《 문 》 《 문 **》 《 문 》 《 문** 》 《 **모** 》

ma	ari	

Efectos del disolvente

Ampliación

Aplicaciones

Validez de la aproximación del campo medio

Comprobación de la validez de la ACM

Método

Se comparan los valores de distintas propiedades cuando:

- Se obtiene el promedio de múltiples cálculos cuánticos
- Se realiza un único cálculo con la aproximación del campo medio

Sistemas

- Líquidos puros metanol, etanol y propanol
- Disoluciones acuosas
 Formaldehído, acetaldehído y acetona

Propiedades

- Energía de interacción
- Momento dipolar

. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

린닉 《 문 》 《 문 》 《 **라** 》 《 다)

Sumario Efectos d 00 0000 000000	el disolvente	A 0 0	mpliación oo ooo	Aplicacio 000● 000000 000000	nes	Conclusi ○	
Validez de la aproximación del ca	ampo medio						
Resultados para la aproximación del campo medio							
Comparación de r a partir de 100 com	Comparación de resultados con ACM y sin ACM a partir de 100 configuraciones de la dinámica molecular Configuraciones						
		— (kcal/m	nol) ———		(D)		
Sistema	$\langle E^{\text{elec}} \rangle$	EACM	ΔΕ	$\langle \mu angle$	μ^{ACM}		
Metanol	-19,1	-18,6		2,46	2,45		
Etanol	-16,5	-16,0		2,27	2,25		
Propanol	–14,3	-14,0		2,15	2,13		
Formaldehído	-9,2	-8,8		2,99	2,99		
Acetaldehído	-8,9	-8,5		3,46	3,46		
Acetona	_21,9	-21,1		4,48	4,47		

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

]= 《문》《문》《**문**》《**라**》《曰)

Sumario Efect 00 000 00 000	t os del disolvente 0 000	A 0 0	mpliación oo ooo	Aplicaciones 000● 00000000000000000000000000000000	3 00	Conclusio O	
Validez de la aproximación o	lel campo medio						
Resultados para la aproximación del campo medio							
Comparación d a partir de 100	Comparación de resultados con ACM y sin ACM a partir de 100 configuraciones de la dinámica molecular Configuraciones						
		— (kcal/m	nol) ————		— (D) —		
Sistema	$\langle E^{\text{elec}} \rangle$	EACM	ΔΕ	$\langle \mu \rangle$	μ^{ACM}	Δμ	
Metanol	_19,1	-18,6		2,46	2,45		
Etanol	-16,5	-16,0		2,27	2,25		
Propanol	-14,3	-14,0		2,15	2,13		
Formaldehic	lo –9,2	-8,8		2,99	2,99		
Acetaldehíde	o –8,9	-8,5		3,46	3,46		
Acetona	–21,9	-21,1	0,78	4,48	4,47	0,01	

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

티닉 《 문 》 《 문 》 《 문 》 《 다)

Sumario Efectos d 00 0000 0000000 000000	del disolvente		mpliación oo ooo	Aplicaciones 000● 00000000000000000000000000000000	s 00	Conclusion O	
Validez de la aproximación del c	ampo medio						
Resultados para la aproximación del campo medio							
Comparación de resultados con ACM y sin ACM a partir de 100 configuraciones de la dinámica molecular Configuraciones							
		— (kcal/m	iol) ———		— (D) —		1
Sistema	$\langle E^{\text{elec}} \rangle$	EACM	ΔΕ	$\langle \mu \rangle$	μ^{ACM}	Δμ	I
Metanol	_19,1	-18,6	0,40	2,46	2,45	0,01	I
Etanol	-16,5	-16,0	0,51	2,27	2,25	0,02	I
Propanol	-14,3	-14,0	0,29	2,15	2,13	0,02	I
Formaldehído	-9,2	-8,8	0,40	2,99	2,99	0,00	I
Acetaldehído	-8,9	-8,5	0,40	3,46	3,46	0,00	I
Acetona	-21,9	-21,1	0,78	4,48	4,47	0,01	

Los errores introducidos por la ACM son mínimos

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

린픽 《 문 》 《 문 》 《 [] 》 《 미)

Sumario Efectos 00 0000 000000000000000000000000000000000000	del disolvente	A 0 0	mpliación oo ooo		Aplicacione	9 5 900	Conclusio ○	ones
Validez de la aproximación del o	ampo medio							
Resultados para la aproximación del campo medio								
Comparación de resultados con ACM y sin ACM a partir de 100 configuraciones de la dinámica molecular Configuraciones								
		— (kcal/m	iol) ———			(D)		
Sistema	$\langle E^{\text{elec}} \rangle$	EACM	ΔE	ΔW	$\left< \mu \right>$	μ^{ACM}	Δμ	
Metanol	-19,1	-18,6	0,40	0,20	2,46	2,45	0,01	
Etanol	-16,5	-16,0	0,51	0,25	2,27	2,25	0,02	
Propanol	-14,3	-14,0	0,29	0,15	2,15	2,13	0,02	
Formaldehído	-9,2	-8,8	0,40	0,28	2,99	2,99	0,00	
Acetaldehído	-8,9	-8,5	0,40	0,25	3,46	3,46	0,00	
Acetona	-21,9	-21,1	0,78	0,45	4,48	4,47	0,01	

Los errores introducidos por la ACM son mínimos

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

린닉 《 문 » 《 문 » 《 🗗 » 《 ㅁ)

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

린글 《문》《문》《라》《다)

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

티닉 《 문 » 《 문 » 《 🗗 » 《 ㅁ)

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

테닉 《문》《문》《**라**》《曰)

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

티닉 《혼》《혼》《郄》《曰》

Universidad de Extremadura

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

토]픽 《토》《토》《**叔**》《口》

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

티닉 《 돈 》 《 돈 》 《 문 》 《 다 》

Universidad de Extremadura

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

린닉 《문》《문》《**문**》《**曰**》

Universidad de Extremadura

Universidad de Extremadura

	Universidad de Extremadura
Cálculo de las derivadas de la energía libre en disolución	

El efecto anomérico estabiliza al anómero a en vacío

I. Fdez. Galván

Universidad de Extremadura

El efecto anomérico estabiliza al anómero a en vacío

I. Fdez. Galván

Universidad de Extremadura

Universidad de Extremadura

Universidad de Extremadura

Otros métodos (PCM) dan resultados incorrectos

I. Fdez. Galván

Universidad de Extremadura

Se reproduce la tendencia experimental: β es más estable

Otros métodos (PCM) dan resultados incorrectos

I. Fdez. Galván

Universidad de Extremadura

Universidad de Extremadura

Universidad de Extremadura

Sumario 00	Efectos del disolvente 0000 000000	Ampliación 000 0000	Aplicaciones ○○○○ ○○○○○● ○○○○○○○○○○	Conclusiones O
Equilibrio anome	erico en la xilopiranosa			
Resum	en del estudio de l	a xilopiranos	a	
► Moo Sen Mer	<mark>delo de la glucosa</mark> nejanza estructural er nor complejidad confo	ntre xilosa y glue rmacional de la	cosa i xilosa	
► Efe	<mark>cto anomérico</mark> abiliza el anómero α e	en vacío		
► Est En d Inte	abilización de β en o disolución se favorece racción favorable del	lisolución e la presencia d H ₂ O con el OF	el anómero β ł anomérico	

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

린글 《 문 》 《 문 》 《 @ 》 《 ㅁ 》

Su 00	nario Efectos del disolvente 0000 0000000	Ampliación 000 0000	Aplicaciones ○○○○ ○○○○○● ○○○○○○○○○○	Conclusiones ○
Eq	ilibrio anomérico en la xilopiranosa			
I	lesumen del estudio de	la xilopiranos	a	
	 Modelo de la glucosa Semejanza estructural en Menor complejidad confo 	ntre xilosa y glu ormacional de la	cosa a xilosa	
	 Efecto anomérico Estabiliza el anómero α el 	en vacío		
	 Estabilización de β en α En disolución se favorece Interacción favorable del 	<mark>disolución</mark> e la presencia d H ₂ O con el OH	el anómero β l anomérico	

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

토|님 《문》《문》《@ 》《D)

Sumario oo	Efectos del disolvente	Ampliación 000 0000	Aplicaciones ○○○○ ○○○○○● ○○○○○○●	Conclusiones O							
Equilibrio anomérico en la xilopiranosa											
Resumen	del estudio de la	a xilopiranos	a	O U							
Model Semej Menor	cosa a xilosa										
Efecto Estabi	<mark>anomérico</mark> liza el anómero α e	n vacío									
 Estabilitation En disinteracional 	ilización de β en d olución se favorece cción favorable del 1	l <mark>isolución</mark> e la presencia d H ₂ O con el OF	el anómero β t anomérico								

Universidad de Extremadura

Sumario oo	Efectos del disolvente 0000 000000	Ampliación 000 0000	Aplicaciones ○○○○ ○○○○○○ ●○○○○○○○○	Conclusiones ○					
Estudio de reacciones en disolución									
Energía de	e activación de la	reacción de I H ^H →c —cι	Aenshutkin	Ű					

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

토[비 《 린 》 《 린 》 《 **曰** 》 《 **曰** 》

Sumario 00	Efectos del disolvente 0000 000000	Ampliación 000 0000	Aplicaciones ○○○○ ○○○○○○ ●○○○○○○○○	Conclusiones O
Estudio de reaccione	s en disolución			
Energía d	e activación de la	reacción de M	lenshutkin	U U U

Universidad de Extremadura

Sumario 00	Efectos del disolvente	Ampliación 000 0000	Aplicaciones ○○○○ ○○○○○○ ●○○○○○○○○○	Conclusiones ○
Estudio de reaccion	es en disolución			
Energía c	le activación d	$ \begin{array}{c} H & \text{e la reacción de} \\ H & H & H \\ H & H & H \\ H & H \end{array} $	Menshutkin ເເ [⊖]	U U U U

Universidad de Extremadura

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

·문[일 《 문 》 《 문 》 《 D 》 《 D ·

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

린닉 《 문 » 《 문 » 《 [] » 《 미)

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

토[닉 《 토 » 《 토 » 《 🗗 » 《 ㅁ »

- Derivados del triazeno como antitumorales
- Proceso inicial de la isomerización cis-trans y la descomposición
- Estudio ASEP/MD combinado con dinámica QM/MM tradicional

Universidad de Extremadura

Derivados del triazeno como antitumorales

Proceso inicial de la isomerización cis-trans y la descomposición

Estudio ASEP/MD combinado con dinámica QM/MM tradicional

I. Fdez. Galván

Universidad de Extremadura

Derivados del triazeno como antitumorales

Proceso inicial de la isomerización cis-trans y la descomposición

Estudio ASEP/MD combinado con dinámica QM/MM tradicional

I. Fdez. Galván

Universidad de Extremadura

Derivados del triazeno como antitumorales

Proceso inicial de la isomerización cis-trans y la descomposición

Estudio ASEP/MD combinado con dinámica QM/MM tradicional

I. Fdez. Galván

Universidad de Extremadura

Proceso inicial de la isomerización cis-trans y la descomposición

Estudio ASEP/MD combinado con dinámica QM/MM tradicional

I. Fdez. Galván

Universidad de Extremadura

Estudio ASEP/MD combinado con dinámica QM/MM tradicional

I. Fdez. Galván

Universidad de Extremadura

Estudio ASEP/MD combinado con dinámica QM/MM tradicional

I. Fdez. Galván

Universidad de Extremadura

Estudio ASEP/MD combinado con dinámica QM/MM tradicional

I. Fdez. Galván

Universidad de Extremadura

- Proceso inicial de la isomerización cis-trans y la descomposición
- Estudio ASEP/MD combinado con dinámica QM/MM tradicional

Universidad de Extremadura

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

토[닉 《 문 » 《 문 » 《 [] » 《 · · ·

Sumario 00	Efectos del disolvente 0000 000000	Ampliación 000 0000	Aplicaciones ○○○○ ○○○○○○ ○○○●○○○○○○	Conclusiones O		
Estudio de reacciones en disolución						
Resulta	idos: optimización	n				

Universidad de Extremadura

Sumario 00	Efectos del disolvente oooo ooooooo	Ampliación 000 0000	Aplicaciones ○○○○ ○○○○○○ ○○○●○○○○○○	Conclusiones O		
Estudio de reacciones en disolución						
Resulta	ados: optimización	n	o U			

Universidad de Extremadura

Sumario 00	Efectos del disolvente	Ampliación 000 0000	Aplicaciones ○○○○ ○○○○○○ ○○○●○○○○○○	Conclusiones O		
Estudio de reacciones en disolución						
Resultados: optimización en disolución				Ŭ.		

Universidad de Extremadura

Universidad de Extremadura

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

토|님 《 토 》 《 토 》 《 🗗 》 《 미 .

Universidad de Extremadura

Universidad de Extremadura

ξ

I. Fdez. Galván

Universidad de Extremadura

Jniversidad de Extremadura

Jniversidad de Extremadura

Su 00	mario	Efectos del disolvente	A 0 0	mpliación 1000 1000	Aplicaciones ○○○○ ○○○○○ ○○○○○●○○○	Conclusiones O	
Est	Estudio de reacciones en disolución						
Trayectorias de reacción: resultados						Ū.	
	l ipos de	trayectorias		1			
	Total de	trayectorias	50				

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

필]픽 《 문 » 《 문 » 《 [] » 《 ㅁ »

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

Cálculo de las derivadas de la energía libre en disolución

Cálculo de las derivadas de la energía libre en disolución

Cálculo de las derivadas de la energía libre en disolución

Cálculo de las derivadas de la energía libre en disolución

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

]]픽 《 문 » 《 문 » 《 🗇 » 《 □ »

Universidad de Extremadura

Universidad de Extremadura

Universidad de Extremadura

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

]]픽 《 문 》 《 문 》 《 🗗 》 《 ㅁ)

Universidad de Extremadura

Universidad de Extremadura

Sumario	Efectos del disolvente 0000 000000	Ampliación 000 0000	Aplicaciones ○○○○ ○○○○○○ ○○○○○○○●	Conclusiones O
Estudio d	e reacciones en disolución			
Res	umen del estudio del	triazeno		Ū
	 Participación del dise La presencia de una n tanto en vacío como e Separación de carga El estado de transiciór a un par iónico N₃H₄⁺ 	olvente nolécula de agu n disolución s en disolución OH ⁻	ia facilita la reacc se asemeja	ión
	 Efectos dinámicos de En el mecanismo estu de la estructura del dis 	el disolvente diado, se aprec solvente sobre l	ia la influencia a reacción	
	 Otros mecanismos Un estudio más compl mecanismos para la re 	leto debería inc eacción de desp	luir otros posibles plazamiento protó	s

Universidad de Extremadura

Suma	rio Efectos del o	disolvente	Ampliación 000 0000	Aplicaciones ○○○○ ○○○○○○ ○○○○○○○●	Conclusiones O
Estud	io de reacciones en disolució	n			
R	esumen del est	udio del t	riazeno		
	 Participació La presencia tanto en vac 	n del diso a de una m ío como en	lvente olécula de agu i disolución	a facilita la reacció	ón 📔
	 Separación El estado de a un par ióni 	de cargas transición co $N_3H_4^+$ (en disolución OH	se asemeja	
	 Efectos dina En el mecan de la estruct 	<mark>ámicos de</mark> ismo estud ura del disc	I disolvente liado, se aprec olvente sobre l	ia la influencia a reacción	
	 Otros meca Un estudio n mecanismos 	nismos nás comple para la rea	eto debería inc acción de desp	luir otros posibles plazamiento protór	lico

Universidad de Extremadura

Sum a 00	ario Efectos del disolvente	Ampliación 000 0000	Aplicaciones ○○○○ ○○○○○○ ○○○○○○	Conclusiones O
Estu	lio de reacciones en disolución			
R	esumen del estudio del tri	azeno		o U
	 Participación del disolv La presencia de una mol tanto en vacío como en c 	r <mark>ente</mark> écula de agu lisolución	a facilita la reacciór	ו
	 Separación de cargas El estado de transición e a un par iónico N₃H₄⁺ O 	n disolución : H [—]	se asemeja	
	 Efectos dinámicos del e En el mecanismo estudia de la estructura del disolo 	disolvente Ido, se aprec vente sobre l	ia la influencia a reacción	
	 Otros mecanismos 			

Un estudio más completo debería incluir otros posibles mecanismos para la reacción de desplazamiento protónico

I. Fdez. Galván

Universidad de Extremadura

Sumario 00	Efectos del disolvente	Ampliación 000 0000	Aplicaciones 0000 000000 0000000000	Conclusiones ●
Conclu	siones			

Universidad de Extremadura

Sumario	Efectos del disolvente	Ampliación	Aplicaciones
	0000 000000	000 0000	0000 000000 000000000

Conclusiones

Conclusiones

- Aproximación del campo medio

 Los errores introducidos, del orden del 5 %, confirman la utilidad de esta aproximación

 Optimización de geometrías

 El método desarrollado permite localizar puntos estacionarios en la superficie de energía libre con un coste reducido

 Diferencias de energía libre

 Lunto con la optimización de geometrías
 - el análisis termodinámico de equilibrios y reacciones

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

토I티 《 토 》 《 토 》 《 @ 》 《 D 》

Sumario	Efectos del disolvente	Ampliación	Aplicaciones
	0000 000000	000 0000	0000 000000 000000000

Conclusiones

Conclusiones

Aproximación del campo medio

 Los errores introducidos, del orden del 5 %, confirman la utilidad de esta aproximación

 Optimización de geometrías

 El recíta de esta aproximación

El método desarrollado permite localizar puntos estacionarios en la superficie de energía libre con un coste reducido

 Diferencias de energía libre Junto con la optimización de geometrías, permite el análisis termodinámico de equilibrios y reacciones

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

토|리 《 토 》 《 토 》 《 데 》 《 미 》

Sumario	Efectos del disolvente	Ampliación	Aplicaciones
	0000 000000	000 0000	0000 000000 000000000

Conclusiones

Conclusiones

Aproximación del campo medio

 Los errores introducidos, del orden del 5 %, confirman la utilidad de esta aproximación

 Optimización de geometrías

 El métada deserrallada permita lacalizar puntos estacionarios

El método desarrollado permite localizar puntos estacionarios en la superficie de energía libre con un coste reducido

O Diferencias de energía libre

Junto con la optimización de geometrías, permite el análisis termodinámico de equilibrios y reacciones

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

토I티 《 토 》 《 토 》 《 🗗 》 《 ㅁ 》

Campo medio

Xilopiranosa

00

Método totalmente acoplado

Volver

 Los resultados del soluto se transfieren al disolvente

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

린티 《 문 》 《 문 》 《 🗗 》 《 ㅁ 》

Campo medio

Xilopiranosa

8

Método totalmente acoplado

- Líquidos puros (disolvente = soluto)
- Los resultados del soluto se transfieren al disolvente

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

코hə 《 코 》 《 코 》 《 **리** 》 《 미 》

Campo medio 0 00

00

Disolvente polarizable

Volver O

 Transiciones electrónicas (disolvente fijo)

Cálculo de dipolos inducidos

. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

릴릭 《 문 》 《 문 》 《 데 》 《 머 》

Campo medio o oo Xilopiranosa

00

Disolvente polarizable

Volver

- Transiciones electrónicas (disolvente fijo)
- Cálculo de dipolos inducidos

. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

퇴닉 《 문 » 《 문 » 《 🗗 » 《 □ »

Campo medio o oo

8

Disolvente polarizable

- Transiciones electrónicas (disolvente fijo)
- ► Cálculo de dipolos inducidos

Universidad de Extremadura

I. Fdez. Galván

Cálculo de las derivadas de la energía libre en disolución

린닉 《문》《문》《**문**》《**曰**》

Variantes	de	ASEP/MD

Campo medio 0 00 Xilopiranosa

8

Métodos para el cálculo de energía libre

Perturbación termodinámica

$$\Delta G = G_{\text{B}} - G_{\text{A}} = \frac{1}{\beta} \ln \left\langle e^{\beta (E_{\text{B}} - E_{\text{A}})} \right\rangle_{\text{B}}$$

 Simular el sistema con el soluto en estado B

En cada configuración introducir B y A

3 Calcular $(E_B - E_A)$ y ΔG

. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

린님 《문》《문》《문》《日》

Variantes	de	ASEP/MD

Campo medio

Xilopiranosa

8

Métodos para el cálculo de energía libre

Perturbación termodinámica

$$\Delta G = G_{\text{B}} - G_{\text{A}} = \frac{1}{\beta} \ln \left\langle e^{\beta (E_{\text{B}} - E_{\text{A}})} \right\rangle_{\text{B}}$$

- Simular el sistema con el soluto en estado B
- En cada configuración introducir B y A
- **6** Calcular $(E_B E_A)$ y ΔG

. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

린픽 《문》《문》《**纪**》《묘》

Variantes	de	ASEP/MD

Campo medio

Xilopiranosa

8

Métodos para el cálculo de energía libre

Perturbación termodinámica

$$\Delta G = G_{B} - G_{A} = \frac{1}{\beta} \ln \left\langle e^{\beta (E_{B} - E_{A})} \right\rangle_{B}$$

- Simular el sistema con el soluto en estado B
- En cada configuración introducir B y A

3 Calcular $(E_B - E_A)$ y ΔG

. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

린글 《혼》《혼》《⑫》《曰》

Campo medio ^O ^O Xilopiranosa

00

Métodos para el cálculo de energía libre

Perturbación termodinámica

$$\Delta G = G_{\mathsf{B}} - G_{\mathsf{A}} = \frac{1}{\beta} \ln \left\langle \mathsf{e}^{\beta(\mathsf{E}_{\mathsf{B}} - \mathsf{E}_{\mathsf{A}})} \right\rangle_{\mathsf{B}}$$

Integración termodinámica

$$\Delta G = G_{\text{B}} - G_{\text{A}} = \int_{\text{A}}^{\text{B}} \left\langle \frac{\partial \text{E}(\lambda)}{\partial \lambda} \right\rangle_{\lambda} \text{d}\lambda$$

1 Definir $E(\lambda)$ entre E_A y E_B

- Simular estados intermedios con E(λ)
- Obtener ∂E(λ)/∂λ
- Integrar numéricamente entre A y B

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

]= 《문》《문》《**문**》《**문**》

Campo medio 0 00 Xilopiranosa

00

Métodos para el cálculo de energía libre

Perturbación termodinámica

$$\Delta G = G_{\mathsf{B}} - G_{\mathsf{A}} = \frac{1}{\beta} \ln \left\langle \mathsf{e}^{\beta(\mathsf{E}_{\mathsf{B}} - \mathsf{E}_{\mathsf{A}})} \right\rangle_{\mathsf{B}}$$

Integración termodinámica

$$\Delta G = G_{\text{B}} - G_{\text{A}} = \int_{\text{A}}^{\text{B}} \left\langle \frac{\partial E(\lambda)}{\partial \lambda} \right\rangle_{\lambda} \text{d}\lambda$$

- **1** Definir $E(\lambda)$ entre E_A y E_B
- Simular estados intermedios con E(λ)
- Obtener ∂E(λ)/∂λ
- Integrar numéricamente entre A y B

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

테믹 《 코 » 《 코 » 《 @ » 《 □ »

Campo medio ^O ^O Xilopiranosa

00

Métodos para el cálculo de energía libre

Perturbación termodinámica

$$\Delta G = G_{\mathsf{B}} - G_{\mathsf{A}} = \frac{1}{\beta} \ln \left\langle e^{\beta (E_{\mathsf{B}} - E_{\mathsf{A}})} \right\rangle_{\mathsf{B}}$$

Integración termodinámica

$$\Delta G = G_{\text{B}} - G_{\text{A}} = \int_{\text{A}}^{\text{B}} \left\langle \frac{\partial E(\lambda)}{\partial \lambda} \right\rangle_{\lambda} \text{d}\lambda$$

- **1** Definir $E(\lambda)$ entre E_A y E_B
- Simular estados intermedios con E(λ)
- **3** Obtener $\partial E(\lambda)/\partial \lambda$
- Integrar numéricamente entre A y B

. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

린픽 《 코 » 《 코 » 《 데 » 《 머 »

Campo medio ^O ^O Xilopiranosa

00

Métodos para el cálculo de energía libre

Perturbación termodinámica

$$\Delta G = G_{\mathsf{B}} - G_{\mathsf{A}} = \frac{1}{\beta} \ln \left\langle e^{\beta (E_{\mathsf{B}} - E_{\mathsf{A}})} \right\rangle_{\mathsf{B}}$$

Integración termodinámica

$$\Delta G = G_B - G_A = \int_A^B \left\langle \frac{\partial E(\lambda)}{\partial \lambda} \right\rangle_\lambda d\lambda$$

- **1** Definir $E(\lambda)$ entre E_A y E_B
- Simular estados intermedios con E(λ)
- **3** Obtener $\partial E(\lambda)/\partial \lambda$
- Integrar numéricamente entre A y B

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

]= 《토》《토》《@》《□》

○ ●		
Métodos para el cálculo de energ	gía libre	 Volver operation
$\label{eq:GB} \begin{split} & \text{Perturbación termodinámica} \\ & \Delta G = G_{\text{B}} - G_{\text{A}} = \frac{1}{\beta} \ln \left< e^{\beta (E_{\text{B}} - E_{\text{A}})} \right>_{\text{B}} \end{split}$		
$\label{eq:GB} \begin{split} & \text{Integración termodinámica} \\ \Delta G = G_B - G_A = \int_A^B \left\langle \frac{\partial E(\lambda)}{\partial \lambda} \right\rangle_\lambda d\lambda \end{split}$	 Definir E_i entre Simular soluto E_i en cada pas Calcular ∆G 	EAYEB cambiante, co
$\label{eq:deltaG} \begin{split} & \text{Desarrollo lento} \\ & \Delta G = G_{\text{B}} - G_{\text{A}} = \sum_{i=0}^{N} (E_{i+1} - E_i) \end{split}$		

I. Fdez. Galván

Variantes de ASEP/MD

Cálculo de las derivadas de la energía libre en disolución

•	0 00	0 0
Métodos para el cálculo de ene	ergía libre	 Volver o^{mm} U
$\label{eq:action} \begin{array}{l} \mbox{Perturbación termodinámica} \\ \Delta G = G_{B} - G_{A} = \frac{1}{\beta} \ln \left\langle e^{\beta (E_{B} - E_{A})} \right\rangle_{B} \end{array}$		
$\label{eq:G} \begin{split} & \text{Integración termodinámica} \\ & \Delta G = G_{\text{B}} - G_{\text{A}} = \int_{\text{A}}^{\text{B}} \left\langle \frac{\partial E(\lambda)}{\partial \lambda} \right\rangle_{\lambda} \text{d}\lambda \end{split}$	 Definir E_i entre Simular soluto E_i en cada pas Calcular ΔG 	e E _A y E _B cambiante, so
$\label{eq:deltaG} \begin{split} & \text{Desarrollo lento} \\ & \Delta G = G_B - G_A = \sum_{i=0}^N (E_{i+1} - E_i) \end{split}$		

I. Fdez. Galván

Variantes de ASEP/MD

Cálculo de las derivadas de la energía libre en disoluciór

•	0 00	0 0
Métodos para el cálculo de ene	ergía libre	Volver Oper
Perturbación termodinámica $\Delta G = G_{B} - G_{A} = \frac{1}{\beta} \ln \left\langle e^{\beta (E_{B} - E_{A})} \right\rangle_{B}$		
$\label{eq:GB} \begin{split} & \text{Integración termodinámica} \\ & \Delta G = G_B - G_A = \int_A^B \left\langle \frac{\partial E(\lambda)}{\partial \lambda} \right\rangle_\lambda d\lambda \end{split}$	 Definir E_i entre Simular soluto α E_i en cada pas Calcular ΔG 	E _A y E _B cambiante, o
$\label{eq:deltaG} \begin{split} & \text{Desarrollo lento} \\ & \Delta G = G_B - G_A = \sum_{i=0}^N (E_{i+1} - E_i) \end{split}$		

I. Fdez. Galván

Variantes de ASEP/MD

Cálculo de las derivadas de la energía libre en disolución

Variantes de ASEP/MD oo	Energía libre ○	Campo medio ● ○○	Xilopiranosa ○ ○

Metanol

Promedio de cálculos cuánticos, no se aplica la ACM Dinámica molecular de 50 ps, 1000 configuraciones

N	$\langle {\rm E}^{\rm elec} angle$ (kcal/mol)	$\langle \mu \rangle$ (D)	
50	-19,28	2,47	
100	-19,07	2,46	
500	-19,01	2,46	
1000	-19,01	2,46	

— 1000 configuraciones —

I. Fdez. Galván

Cálculo de las derivadas de la energía libre en disolución

Variantes de ASEP/MD oo	Energía libre O	Campo medio ● ○○	Xilopiranosa ○ ○

Metanol

Promedio de cálculos cuánticos, no se aplica la ACM Dinámica molecular de 50 ps, 1000 configuraciones

N	$\langle {\rm E}^{\rm elec} angle$ (kcal/mol)	$\langle \mu \rangle$ (D)	
50	-19,28	2,47	
100	-19,07	2,46	
500	-19,01	2,46	
1000	-19,01	2,46	

1000 configuraciones —

I. Fdez. Galván

Cálculo de las derivadas de la energía libre en disolución

Universidad de Extremadura

Variantes de ASEP/MD oo	Energía libre O	Campo medio ● ○○	Xilopiranosa ○ ○

Metanol

Promedio de cálculos cuánticos, no se aplica la ACM Dinámica molecular de 50 ps, 1000 configuraciones

N	$\langle {\rm E}^{\rm elec} angle$ (kcal/mol)	$\langle \mu angle$ (D)	
50	-19,28	2,47	
100	-19,07	2,46	
500	-19,01	2,46	
1000	-19,01	2,46	

1000 configuraciones —

I. Fdez. Galván

Cálculo de las derivadas de la energía libre en disolución

Variantes de ASEP/MD oo	Energía libre O	Campo medio ● ○○	Xilopiranosa ○ ○

Metanol

Promedio de cálculos cuánticos, no se aplica la ACM Dinámica molecular de 50 ps, 1000 configuraciones

N	$\langle {\rm E}^{\rm elec} angle$ (kcal/mol)	$\langle \mu angle$ (D)	
50	-19,28	2,47	
100	-19,07	2,46	
500	-19,01	2,46	
1000	-19,01	2,46	

1000 configuraciones —

I. Fdez. Galván

Cálculo de las derivadas de la energía libre en disolución

Variantes de ASEP/MD oo	Energía libre O	Campo medio ● ○○	Xilopiranosa ○ ○

Metanol

Promedio de cálculos cuánticos, no se aplica la ACM Dinámica molecular de 50 ps, 1000 configuraciones

N	$\langle {\rm E}^{\rm elec} angle$ (kcal/mol)	$\langle \mu \rangle$ (D)
50	-19,28	2,47
100	-19,07	2,46
500	-19,01	2,46
1000	-19,01	2,46

1000 configuraciones

I. Fdez. Galván

Cálculo de las derivadas de la energía libre en disolución

Influ	Influencia del número de configuraciones					0		
Meta	nol							ų
Prom	nolio de	cálculos c	uánticos r		anlica la ACM			
Diná	mica mo		50 nc 100		nfiguracionos			
Dinai	mica mu	neculal de	50 ps, 100		ingulaciones			
							()	
	N		$\langle \mu \rangle$		Intervalo (ps)	(Eelec)	$\langle \mu \rangle$	
		(kcal/mol)	(D)			(kcal/mol)	(D)	
	50	-19,28	2,47		0-5	-18,95	2,41	
	100	-19,07	2,46		15-20	-17,86	2,46	
	500	-19,01	2,46		30-35	-20.79	2.56	
	1000	-19.01	2.46		45-50	-17.59	2.38	
_		- , -	, -			,	_,00	
	• • • • •							
	L 1000) configuracio	ones —		└── 1000 conf	iguraciones	;	
I. Fdez. Ga	Iván					Universida	d de Extrema	adura
Cálculo de	Cálculo de las derivadas de la energía libre en disolución - 프님픽 《 문 》 《 문 》 《 문 》 《 문 》 《 문							

Campo medio ●

Campo medio

Xilopiranosa

Variantes de ASEP/MD

Campo medio

Xilopiranosa

Variantes de ASEP/MD

Campo medio

Xilopiranosa

Variantes de ASEP/MD

Campo medio

Xilopiranosa

Variantes de ASEP/MD

Variantes de ASEP/MD oo	Energía libre ☉	Campo medio ○ ●○	Xilopiranosa ○ ○
Eveluesián en re	vimede de le con	en en ente Ctevik	
Evaluación apro	ximada de la con	nponente Stark	
Componente Star	[.] k		EX
 Error cometido por la aproxim 	o en la energía de ir ación del campo me	iteracción soluto-disolvedio ($\Delta W = \langle W angle - W^{ m Ac}$	vente ™)
Debido a la de	sestimación de la c	orrelación instantánea	entre

las moléculas de disolvente y la distribución electrónica del soluto

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

된[빅 《 문 》 《 문 》 《 [] 》 《 미 》

Variantes de ASEP/MD oo	Energía libre ○	Campo medio ○ ●○	Xilopiranosa ○ ○
Evaluación aprox	kimada de la con	ponente Stark	Volver O O U I
Componente Star	k		
Error cometido	en la energía de in	teracción soluto-disol	vente

- por la aproximación del campo medio ($\Delta W = \langle W \rangle W^{ACM}$)
- Debido a la desestimación de la correlación instantánea entre las moléculas de disolvente y la distribución electrónica del soluto

Universidad de Extremadura

Variantes de ASEP/MD oo	Energía libre ☉	Campo medio ○ ●○	Xilopiranosa ○ ○
Evaluación aproxi	imada de la con	nponente Stark	Volver O

- ► Error cometido en la energía de interacción soluto-disolvente por la aproximación del campo medio ($\Delta W = \langle W \rangle W^{ACM}$)
- Debido a la desestimación de la correlación instantánea entre las moléculas de disolvente y la distribución electrónica del soluto

Sistema modelo: dipolo polarizable

- Promedio de configuraciones:
- Configuración promedio:
- Componente Stark:

 $W = -\vec{\mu}^{0} \cdot \vec{E} - \frac{1}{2}\vec{\alpha} \cdot \vec{E}^{2}$ $V = -\vec{\mu}^{0} \cdot \vec{E} - \frac{1}{2}\vec{\alpha} \cdot \vec{E}^{2}$ $\Delta W = \frac{1}{2}\vec{\alpha} \cdot (\langle \vec{E} \rangle^{2} - \langle \vec{E}^{2} \rangle)$

I. Fdez. Galván

Cálculo de las derivadas de la energía libre en disolución

Variantes de ASEP/MD oo	Energía libre O	Campo medio ○ ●○	Xilopiranosa ○ ○
Evaluación aproxim	nada de la com	ponente Stark	 ✓ Volver O O O O O

- ► Error cometido en la energía de interacción soluto-disolvente por la aproximación del campo medio ($\Delta W = \langle W \rangle W^{ACM}$)
- Debido a la desestimación de la correlación instantánea entre las moléculas de disolvente y la distribución electrónica del soluto

Sistema modelo: dipolo polarizable

- Promedio de configuraciones:
- Configuración promedio:
- Componente Stark:

 $\langle W \rangle = -\vec{\mu}^{0} \cdot \langle \vec{E} \rangle - \frac{1}{2} \vec{\vec{\alpha}} \cdot \langle \vec{E}^{2} \rangle$ $V = -\vec{\mu}^{0} \cdot \vec{E} - \frac{1}{2} \vec{\vec{\alpha}} \cdot \vec{E}^{2}$ $\Delta W = \frac{1}{2} \vec{\vec{\alpha}} \cdot \left(\langle \vec{E} \rangle^{2} - \langle \vec{E}^{2} \rangle \right)$

I. Fdez. Galván

Cálculo de las derivadas de la energía libre en disolución

Variantes de ASEP/MD oo	Energía libre ○	Campo medio ○ ●○	Xilopiranosa ○ ○
Evaluación apro	kimada de la com	ponente Stark	Volver O □

- ► Error cometido en la energía de interacción soluto-disolvente por la aproximación del campo medio ($\Delta W = \langle W \rangle W^{ACM}$)
- Debido a la desestimación de la correlación instantánea entre las moléculas de disolvente y la distribución electrónica del soluto

Sistema modelo: dipolo polarizable

- Promedio de configuraciones:
- Configuración promedio:
- Componente Stark:

$$\langle W \rangle = -\vec{\mu}^{0} \cdot \langle \vec{E} \rangle - \frac{1}{2} \vec{\vec{\alpha}} \cdot \langle \vec{E}^{2} \rangle W = -\vec{\mu}^{0} \cdot \vec{E} - \frac{1}{2} \vec{\vec{\alpha}} \cdot \vec{E}^{2} \Delta W = \frac{1}{2} \vec{\vec{\alpha}} \cdot (\langle \vec{E} \rangle^{2} - \langle \vec{E}^{2} \rangle)$$

I. Fdez. Galván

Cálculo de las derivadas de la energía libre en disolución

Variantes de ASEP/MD oo	Energía libre ⊙	Campo medio ○ ●○	Xilopiranosa ○ ○
Evaluación apro	oximada de la com	ponente Stark	Volver O

- ► Error cometido en la energía de interacción soluto-disolvente por la aproximación del campo medio ($\Delta W = \langle W \rangle W^{ACM}$)
- Debido a la desestimación de la correlación instantánea entre las moléculas de disolvente y la distribución electrónica del soluto

Sistema modelo: dipolo polarizable

- Promedio de configuraciones:
- Configuración promedio:
- Componente Stark:

 $\langle W \rangle = -\vec{\mu}^{0} \cdot \langle \vec{E} \rangle - \frac{1}{2} \vec{\vec{\alpha}} \cdot \langle \vec{E}^{2} \rangle$ $W^{\text{ACM}} = -\vec{\mu}^{0} \cdot \langle \vec{E} \rangle - \frac{1}{2} \vec{\vec{\alpha}} \cdot \langle \vec{E} \rangle^{2}$ $\Delta W = \frac{1}{2} \vec{\vec{\alpha}} \cdot \left(\langle \vec{E} \rangle^{2} - \langle \vec{E}^{2} \rangle \right)$

I. Fdez. Galván

Cálculo de las derivadas de la energía libre en disolución

Variantes de ASEP/MD oo	Energía libre ⊙	Campo medio ○ ●○	Xilopiranosa ○ ○
Evaluación apro	ximada de la com	ponente Stark	Volver O

- ► Error cometido en la energía de interacción soluto-disolvente por la aproximación del campo medio ($\Delta W = \langle W \rangle W^{ACM}$)
- Debido a la desestimación de la correlación instantánea entre las moléculas de disolvente y la distribución electrónica del soluto

Sistema modelo: dipolo polarizable

- Promedio de configuraciones:
- Configuración promedio:
- Componente Stark:

 $\langle W \rangle = -\vec{\mu}^{0} \cdot \langle \vec{E} \rangle - \frac{1}{2} \vec{\vec{\alpha}} \cdot \langle \vec{E}^{2} \rangle$ $W^{\text{ACM}} = -\vec{\mu}^{0} \cdot \langle \vec{E} \rangle - \frac{1}{2} \vec{\vec{\alpha}} \cdot \langle \vec{E} \rangle^{2}$ $\Delta W = \frac{1}{2} \vec{\vec{\alpha}} \cdot \left(\langle \vec{E} \rangle^{2} - \langle \vec{E}^{2} \rangle \right)$

I. Fdez. Galván

Cálculo de las derivadas de la energía libre en disolución

Variantes de ASEP/MD oo	Energía libre o	Campo medio ○ ○●	Xilopiranosa ○ ○

Resultados: evaluación de la componente Stark

✓ Volver

Ũ

 $\Delta W = -\frac{1}{2}\vec{\vec{\alpha}} \cdot \left(\langle \vec{E}^2 \rangle - \langle \vec{E} \rangle^2 \right)$

 \vec{E} : calculado clásicamente

	(a_0^3)		—— (kca	al/mol) ———
Sistema	α	ΔE^{int}	ΔW	0 0,5 1
Metanol	19,5	0,40	0,20	_
Etanol	31,0	0,51	0,25	
Propanol	42,1	0,29	0,15	-
Formaldehído	14,4	0,40	0,28	
Acetaldehído	25,3	0,40	0,25	
Acetona	35,6	0,78	0,45	

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

린닉 《 문 》 《 문 》 《 **67** 》 《 다 》

Variantes de ASEP/MD oo	Energía libre ○	Campo medio ○ ○●	Xilopiranosa ○ ○

Resultados: evaluación de la componente Stark

 $\Delta W = -\frac{1}{2}\vec{\vec{\alpha}} \cdot \left(\langle \vec{E}^2 \rangle - \langle \vec{E} \rangle^2 \right) \qquad \vec{E} : \text{calculado clásicamente}$

	(a_0^3)		(kca	al/mol)
Sistema	α	ΔE^{int}	ΔW	0 0,5 1
Metanol	19,5	0,40	0,20	
Etanol	31,0	0,51	0,25	
Propanol	42,1	0,29	0,15	
Formaldehído	14,4	0,40	0,28	
Acetaldehído	25,3	0,40	0,25	
Acetona	35,6	0,78	0,45	

I. Fdez. Galván

Universidad de Extremadura

0----

Variantes de ASEP/MD oo	Energía libre ⊙	Campo medio ○ ○●	Xilopiranosa O O	
Resultados: eva	Volver			

$\Delta W = -\frac{1}{2}\vec{\vec{\alpha}} \cdot \left(\langle \vec{E}^2 \rangle - \langle \vec{E} \rangle^2 \right) \qquad \vec{E} : \text{calculado clásicamente}$

	(a_0^3)	(kcal/mol)			
Sistema	α	ΔE^{int}	ΔW	0 0,5 1	
Metanol	19,5	0,40	0,20	-	
Etanol	31,0	0,51	0,25		
Propanol	42,1	0,29	0,15		
Formaldehído	14,4	0,40	0,28		
Acetaldehído	25,3	0,40	0,25		
Acetona	35,6	0,78	0,45		

Una fórmula sencilla permite reducir el error en ~ 50 %

I. Fdez. Galván

Universidad de Extremadura

Cálculo de las derivadas de la energía libre en disolución

릴릭 《 문 》 《 문 》 《 데 》 《 머 》

Cálculo de las derivadas de la energía libre en disolución

12

15

I. Fdez. Galván

1,515 -

0

Cálculo de las derivadas de la energía libre en disolución

3

6

9

Iteración ASEP/MD

Cálculo de las derivadas de la energía libre en disolución

Variantes de ASEP/MD oo	Energía libre O	Campo medio o oo	Xilopiranosa ● ○
Optimización er	n disolución de la	xilopiranosa	Volver Oper
119,0 118,5 (a) 118,0 H-0-117,0 0 117,0 116,5 116,5 115,5 115,0 0 3	6 9 12	Obs	ervaciones Poca variación de geometría en disolución Resultados similares para los anómeros α y β

Cálculo de las derivadas de la energía libre en disolución

Vari 00	antes de ASEP/MD	Energía libre ○	Campo 0 00	medio Xilopirano ● ○	osa
C	Optimización en	disolución de la	xilopirand	OSa Volver @	Ū
	119,0 118,5 (a) 118,0 H 117,5 O 1117,0 O 1117,0 O 1116,5 1116,0 1115,5 1115,0 0 3			 Observaciones Poca variación de geometría en disolución Resultados similares para los anómeros α y β 	EX
		teración ASEP/MD			

Cálculo de las derivadas de la energía libre en disolución

Universidad de Extremadura

Universidad de Extremadura