
XML Accelerator Engine

Jan van Lunteren, Ton Engbersen, Joe Bostian, Bill Carey, Chris Larsson
IBM Research, Zurich Research Laboratory IBM

CH-8803 Rüschlikon, Switzerland Poughkeepsie, NY 12601, USA

Abstract— Emerging trends in information technology create the need
for very high XML processing performance, which might only be achiev-
able by applying a non-traditional processor architecture. This paper
presents a novel programmable state machine technology, called B-FSM,
which can become the key enabler for such an architecture. This technol-
ogy is fully programmable and provides high performance in combination
with low storage requirements and fast incremental updates. Based on the
B-FSM technology, the high-level concept of an XML acceleration engine
called ZUXA is introduced, which provides a processing model optimized
for conditional execution in combination with dedicated instructions for
character and string-processing functions.

I. I NTRODUCTION

The Extensible Markup Language (XML) [1] has become a
fundamental technology to facilitate the description of informa-
tion and its interchange within systems and between nodes in a
heterogenous computing environment. It plays an ever increas-
ing role in user interfaces such as browser- and voice-based, lo-
cal program data representations such as for configuration files,
various standards definitions such as in the security arena, and
program to program communications [2]. Most, if not all, recent
standards describing communications between services in a dis-
tributed environment are described as XML-based grammars.
As a result, any server that produces information in a web ser-
vices context must understand and generate XML documents,
even if these documents only serve as containers for other non-
XML data.

As web services continue to evolve and mature as resources
that are to be delivered on demand, the XML parsing workload
that computing nodes must support is expected to grow at an
increasing rate. Database servers, which historically have been
the repository for large volumes of information, must process
XML data as efficiently as possible or face the threat of being
overwhelmed by the XML parsing overhead [3].

There seems to be a fundamental problem with XML pro-
cessing in software that will prevent the processing rate to be
improved beyond a best processing rate of tens of clock cycles
per character, and that for many XML applications can result
in processing rates on the order of hundreds of clock cycles per
character. This performance bottleneck may only be overcome
by applying a non-traditional processor architecture. This paper
presents a novel programmable state machine technology that
can become a key enabler for building such a novel approach.
The paper is organized as follows: Section II describes the pro-
grammable state machine technology, which is the main topic of
the paper; Section III outlines several performance bottlenecks
of XML processing in software; Section IV describes how the
programmable state machine technology can be used to build a
high-performance XML accelerator engine, and Section V con-
cludes the paper.

II. PROGRAMMABLE STATE MACHINE

A. Design Objectives

The novel state machine technology has been designed to
meet the following requirements:

1. High performance: The objective is to achieve a performance
of one state transition per clock cycle for clock frequencies in
the 0.5-2 GHz range.
2. Storage efficiency: The memory requirements should be
small to allow the cost-efficient use of fast on-chip memory tech-
nologies.
3. Programmable: The state machine has to be fully pro-
grammable. It has to support fast incremental updates of the
data structure, allowing new states and transitions to be added
dynamically without the need for updating the entire data struc-
ture.
4. Wide input and output vectors: The state machine has to be
able to make transitions based on input symbols with a width
between 16 and 32 bits, while it has to be able to generate output
vectors of at least 64 bits for each transition (Mealy machine).
5. Scalability: The state machine has to support state transi-
tion diagrams comprised of tens of thousands of states and state
transitions, and should be scalable to larger numbers of states
and transitions.

Current state-of-the-art schemes have only been able to ad-
dress a subset of these requirements. This section will present
a new programmable state machine that is able to meet all five
requirements. This state machine will be denoted asB-FSM,
which stands for BART-based Finite State Machine, as will be
explained in the following sections.

B. Transition Rules

The B-FSMtechnology will be described using the exam-
ple of a simple state transition diagram shown in Fig. 1, which
detects the first occurrence of one of two patterns “121h” and
“ABh” (‘h’ means hexadecimal notation) in a stream of 4-bit in-
put symbols. Fig. 1 only shows input symbols; output values
will be discussed later.

The B-FSMtechnology describes a state transition diagram
using a small number of so-called state-transition rules, which
involve match operators for the current state and input symbol
values, and a next state value. The transition rules are assigned
priorities to resolve situations in which multiple transition rules
are matching simultaneously. This will be explained using the
following list of state-transition rules that can be derived for the
state transition diagram of Fig. 1:

1

S0

S1

S4

1
S2

2 1

 0,3..9,B..F

B

 A1 A
A

0,2..9,C..F

S3

S5

1

A

0,2..9,B..F

0,2..9,B..F

Fig. 1. Example State Transition Diagram.

rule current state input next state priority
R1 S2 1h S3 2
R2 * 1h S1 1
R3 S1 2h S2 1
R4 S4 Bh S5 1
R5 * Ah S4 1
R6 * * S0 0

The ‘*’ symbol (wildcard) represents a “don’ t care” condition.

The B-FSM operates in the following way. In each cycle, the
highest-priority transition rule that matches the current state and
input symbol is searched, and is used to determine the next state
value. For example, transition rulesR1 andR2 specify that with
an input symbol 1h, a transition will be made to state S3 if the
current state is S2 and that a transition will be made to state S1

if the current state is any state other than S2. This is achieved
by assigning rule R1 a higher priority than rule R2. Transition
rule R6 can be regarded as a default rule that is used if no other
matching rule has been found. As can be verified, the entire
state transition diagram in Fig. 1 is described by the six transi-
tion rules R1 to R6.

Fig. 2 shows a block diagram of the B-FSM based on the
operation described. The transition rules are stored in a so-called
transition-rule memory, encoded as shown in Fig. 3. The so-
called test part of each transition rule contains a state field, an
input field and a 2-bit flags field indicating whether the state
and input are “don’ t care” . The result part contains a next-state
field and an output field. In each cycle a rule selector will select
the highest-priority transition rule that matches the current state
(stored in the state register) and input symbol. The result part of
the transition rule selected will then be used to update the state
register and to generate an output value.

Algorithms have been developed that automatically derive
state-transition rules from any kind of state transition diagram (a
detailed discussion of this topic exceeds the scope of this paper).
However, it has been our experience that for several applications
including parsing, it is often more intuitive to describe functions
directly using state-transition rules involving match conditions,
wildcards, and priorities, than using conventional state transition
diagrams.

rule selector
transition

rule memory

state
register

next state

current
state

input

output

Fig. 2. Rule Selection.

input
current
state

flags
next
state

output

result parttest part

Fig. 3. Transition-Rule Vector.

C. BART-based Rule Selection

The rule selector is based on the BART algorithm, which is a
scheme for exact-, prefix- and ternary-match searches, support-
ing fast search performance in combination with high storage-
efficiency and fast incremental updates. BART is based on a
novel hash function with the special property that the maximum
number of collisions for any hash index can be limited by a con-
figurable bound P . The hash index is extracted from bit posi-
tions within the search key vector, which are selected to realize
the maximum collision bound P . The value of P is based on
the memory access granularity to ensure that all collisions for
a given hash index can be resolved by a single memory access
and by at most P parallel comparisons. For a detailed descrip-
tion of BART, including the fast incremental update function,
the reader is referred to [4] [5].

The application of BART for transition-rule selection will
now be illustrated using the transition rules described above.
The search key in this case consists of the state and input fields
in the test part of a transition rule.

The above transition rules listed in binary notation are:
rule current state input next state priority
R1 010b 0001b 011b 2
R2 xxxb 0001b 001b 1
R3 001b 0010b 010b 1
R4 100b 1011b 101b 1
R5 xxxb 1010b 100b 1
R6 xxxb xxxxb 000b 0

The ‘x’ symbol represents a “don’ t care” bit.

In this example, a 3-bit state vector is used, and state S0 is en-
coded as 000b, state S1 as 001b, and so on.

The underscored bit position, which is the most significant bit
of the input symbol, is an example of a hash index for which the
maximum number of collisions is limited to P = 4. This can
easily be verified: If the most significant input bit equalled 0b,
then only rules R1, R2, R3, and R6 could be matching. If this
bit were ‘1’ , then only rulesR4,R5 andR6 could match. In both
cases, the number of collisions per hash index value does not ex-

2

rule R6rule R3

rule R6rule R4

rule R2rule R1

transition rule memory

address
generator

rule selector

table addr
register

1

output

state
register

next
state

mask
register

rule R5

current
state

0

input

Fig. 4. Transition-Rule Table.

ceed P = 4 rules. Note that the hash index is typically extracted
from multiple bit positions that are not necessarily adjacent (see
[4]).

Fig. 4 shows the corresponding hash table, which will be
called transition-rule table. The address generator will extract
the hash index from bit positions within the state and input vec-
tors that are selected by a mask stored in the mask register. This
index value will be added to the start address of the transition-
rule table, which is stored in the table-address register, to obtain
a memory address. The transition-rule table entry that is read
from the transition-rule memory contains at most P transition-
rule vectors corresponding to the transition rules mapped on the
hash index. These transition rules are ordered by decreasing pri-
ority within each table entry. The test parts of these P transition
rules are compared in parallel with the actual values of the state
register and input symbol, while taking potential “don’ t care”
conditions indicated by the flags field into account. The result
part of the first, and therefore highest-priority, matching transi-
tion rule, will be used to update the state register and to generate
an output value.

D. State Clusters

To support very large state transition diagrams involving mul-
tiple thousands of states and transitions, the state transition dia-
gram is partitioned into so-called state clusters. States within a
state cluster are regarded as local states that are assigned state
vectors that are only unique within the same state cluster. As a
result, a state can only be identified uniquely by the state cluster
in which it is located in combination with its local state vector.
This concept is illustrated in Fig. 5, which shows an example of
the partitioning of the (small) state transition diagram of Fig. 1
into two state clusters, involving local states that are only unique
within the same state cluster. Note that state clusters will typ-
ically contain many more states and transitions than are shown
in Fig. 5.

For each state cluster, a transition-rule table is created using
the BART algorithm as described in Section II-C and stored in
the transition-rule memory shown in Fig. 4. State transitions
within the same state cluster are encoded using transition-rule
vectors as shown in Fig. 3 and are executed as described in Sec-

tion II-C. State transitions to different state clusters are encoded
using the transition-rule vector shown in Fig. 6, which includes
an additional table address and mask field. The values of these
fields are used to update the corresponding registers in Fig. 4 in
order to realize a “ transition” to a different transition-rule table
that “ implements” the state cluster in which the next state is lo-
cated. The type of a transition-rule vector (Fig. 3 or Fig. 6) is
encoded using a flag bit (not shown).

The rationale behind the state cluster concept is the follow-
ing. The combination of the table address and a (local) state
value can be regarded as a global state vector that uniquely iden-
tifies each state in the entire state transition diagram. Now only
a small part of this vector (the local state) is actually processed;
namely, bit extraction to form an hash index value, and paral-
lel testing against the state fields of at most P transition-rule
vectors. The larger part of the global state vector (the table ad-
dress) is directly used to generate a memory address. As a con-
sequence, the B-FSM concept can be scaled to state transition
diagrams consisting of tens of thousands of states and transi-
tions, and even beyond, by simply enlarging the width of the
table address vector, without increasing the processing complex-
ity. The only performance impact would arise from the access
and cycle times of a larger memory.

A second advantage of the state-cluster concept is that it al-
lows both the storage-efficiency and update performance to be
improved because the BART algorithm is applied on smaller
portions of the data structure. Algorithms are being developed
for automatic partitioning of a state transition diagram into state
clusters; however, a detailed discussion of this topic would ex-
ceed the scope of this paper.

E. Performance Evaluation

The “execution” of a state transition by the B-FSM involves
three phases: (1) address generation, (2) memory access, and
(3) transition-rule selection, including state-register update and
output generation. Several mechanisms have been developed to
speed up each of these phases. For example, the implementa-
tion of the address-generator function can be simplified signif-
icantly through state encoding optimizations, proper alignment
of the transition-rule tables, and by exploiting characteristics of

3

S0

S1

S2

1
S0

2 1

 0,3..9,B..F

B

 A1 A
A

0,2..9,C..F

S1

S3

1

A

0,2..9,B..F

0,2..9,B..F

state cluster 2

state cluster 1

Fig. 5. State Clusters.

input mask
current
state

flags
next
state

output
table

address

result parttest part

Fig. 6. Rule Vector for Transitions to a different State Cluster.

actual state transition diagrams for the intended application (in
this case, XML processing).

The feasibility and the performance of the B-FSM concept
including these optimization mechanisms have been validated
using simulation models and an FPGA-based hardware proto-
type. A detailed discussion and performance analysis, however,
will be postponed to a future paper owing to space limitations
and ongoing further evaluation work. Instead, the following
statements are made regarding the design objectives stated in
Section II-A:

1. High performance: Synthesis experiments have shown that
an execution rate of one transition per clock cycle should easily
be achieved for clock frequencies of several hundred MHz. On-
going experiments investigate the maximum frequency, which
we expect to be in the GHz range.
2. Storage efficiency: The B-FSM is very storage efficient ow-
ing to the use of the BART algorithm. In contrast to previous
programmable state-machine concepts that use the entire state
and input vectors to index a memory, no exponential relation
exists between the size of the state and input vectors and the
storage requirements. We expect the storage requirements to
grow close to linear with the number of transition-rule vectors
for several parsing applications.
3. Programmable: The B-FSM is fully programmable. The
BART scheme supports fast incremental updates, allowing dy-
namic addition and removal of states and transitions (see [4]).
4. Wide input and output vectors: Because the input symbol is
only involved in relatively simple processing steps (also a bene-
fit of the optimizations referred to in the preceding section), the
input symbol width will not be a performance-limiting factor
for symbol widths in the range of 16 to 32 bits. Because out-
put generation is not part of the critical path, the output field in
a transition rule can be made as large as desired, and will only

impact the required width of the transition-rule memory.
5. Scalability: The concept of state clusters allows the B-FSM
to support state transition diagrams comprised of tens of thou-
sands of states and state transitions.

III. SOFTWARE LIMITATIONS FOR XML PROCESSING

Conventional general-purpose processors are characterized
by the sequential nature of the instruction execution, in which
instructions are selected based on their location (address) within
memory using a program counter that is incremented each time
an instruction has been executed. Conditions are typically eval-
uated one at a time, and affect the instruction execution flow
by means of explicit conditional branch instructions. For this
mode of operation, several mechanisms (e.g., multiple instruc-
tion issue, prefetching, branch prediction) have been developed
to optimize the performance [6]. Because of the nature of these
mechanisms, state-of-the-art processors will be able to achieve
good performance for applications involving a predictable in-
struction execution flow in which conditional branches and other
less predictable events form a relatively small portion of the total
instruction count.

A key function of an XML parser consists of the evaluation
of multiple conditions that can occur at the granularity of strings
and even at individual characters in the XML document being
processed. Examples of such conditions are testing whether a
character is a legal name character, whether an end tag matches
a previously processed start tag and is correctly nested, whether
an attribute name is unique for a given element, and so on.
The nature and frequency at which these conditions occur re-
sult in a less predictable instruction flow, and consequently, in
a non-optimal performance on a general-purpose processor as
described above (e.g., owing to execution-pipeline stalls in the
case of mispredicted branches). A related problem is that con-
ventional processors do not provide an efficient way of evaluat-
ing multiple conditions of various types in parallel.

Other (fundamental) performance bottlenecks arise from the
limited amount of parallelism available on a conventional pro-
cessor, which does not allow the streaming nature of XML pars-
ing to be exploited efficiently by processing the XML document
in a pipelined fashion, and from the inability to process variable-
length encoded character streams efficiently (e.g., UTF-8).

IV. XML ACCELERATOR

This section provides an introductory description on how
the B-FSM technology presented in Section II is used as core
technology for a novel XML Accelerator Engine called ZUXA
(Zurich XML Accelerator), which is intended to overcome the
software bottlenecks discussed in Section III.

ZUXA consists of two main components that are shown in
Fig. 7: the programmable state machine (B-FSM) and an in-
struction handler. The former dispatches instructions to the
latter, which are selected based on state information, the in-
put character stream and processing results received from the
instruction handler. The instruction handler implements the
ZUXA “instruction set” , which includes a variety of string and
character processing functions that can be applied to the input
character stream and used to generate output.

The following sections will describe the high-level operation
of the programmable state machine and instruction handler. This

4

rule selector

instruction
handler

state
register

results

current
state

input

output

transition
rule memory

B-FSM

instructions

next state

Fig. 7. The ZUXA XML Accelerator.

input
character

current
state

result part

conditions
next
state

instructions and
operands

test part

Fig. 8. ZUXA Transition-Rule Vector.

description will be restricted to a few functions and is only in-
tended to illustrate the basic concept. A future paper will discuss
the ZUXA concept and functionality in more detail.

A. Programmable State Machine

The “ input” to the programmable state machine consists of
the input character retrieved from the input stream and the pro-
cessing results received from the input handler. The “output”
consists of instructions and operand values that are dispatched
to the input handler. Fig. 8 shows the corresponding ZUXA
transition-rule vector, in which the original input field (Fig. 3)
is replaced by an input character field and a conditions field,
whereas the original output field is replaced by an instructions
and operands field. Because the B-FSM supports wide input
vectors, see Section II, transitions can be made based on a set
of multiple conditions (e.g., eight) in combination with wide in-
put character vectors, for example, 16-bit UTF-16 code units or
even wider. The wide output vector supported by the B-FSM
allows multiple instructions and operand values to be associated
and dispatched with each state transition.

The ZUXA concept can be regarded as a processing model
that allows a very flexible “programming” of a large number of
potential execution paths in the form of an enhanced state transi-
tion diagram, in which the actual path through the diagram taken
during the program execution is selected by real-time evalua-
tion of different sets of multiple conditions for each transition.
In a more general form, the ZUXA concept can be seen as a
processing model in which instructions are associated with sets
of multiple conditions (including wildcards and priorities). In
each “execution cycle” , all these conditions are evaluated and
the instructions for which all conditions evaluate positively are
selected for execution. There is some similarity of this approach
with a CAM (content addressable memory), where a memory lo-
cation is selected based on its contents (“conditions”), whereas

a conventional processor architecture can be compared with an
SRAM, which selects a memory location only based on its ad-
dress.

B. Instruction Handler

This section will focus on the basic concept of interaction be-
tween the programmable state machine and the instruction han-
dler. It will be restricted to a few functions for illustration pur-
poses. A complete description will be postponed to a future
paper, as mentioned above.

Because of the high performance of the programmable state
machine and its ability to process large input vectors, it can re-
act quickly to a large number of input events, in this case the
input character stream and processing results provided by the
instruction handler. The instruction handler, therefore, does not
have to implement functions that have to execute for a longer pe-
riod in stand-alone fashion, but can instead implement simpler
(and faster) functions that run under tight control of the pro-
grammable state machine.

This concept will now be illustrated using an example in
which the input character stream is tested against two strings,
“ Internet” and “Xml parser” . Figs. 9 (a) and (b) show five state-
transition rules and the corresponding state transition diagram,
which comprise the “program” executed by the programmable
state machine. The initial state is state S0. If the current in-
put symbol is ‘ I’ then transition rule R1 will match, involving
a transition to state S1 and an instruction “select string[1]” will
be dispatched to the instruction handler. This instruction will
position a read pointer at the first character of string 1 in the
character memory shown in Fig. 9 (c). If the current input sym-
bol is ‘X’ then transition ruleR2 will match and the read pointer
will be positioned at the start of string 2.

Rules R3 and R4 involve two conditions denoted as “match”
and “ last” , which the instruction handler provides to the pro-
grammable state machine as part of the results vector shown in
Fig. 7. The “match” condition evaluates to true if the current
input symbol matches the “current” character in the selected
string, i.e., the character referred to by the read pointer. The
“ last” condition evaluates to true if the read pointer refers to
the last character of the selected string in the character mem-

5

rule current input conditions next instructions priority
state state

R1 S0 ‘ I’ * S1 select string[1] 1
R2 S0 ‘X’ * S1 select string[2] 1
R3 S1 * match, not last S1 incr. read ptr 1
R4 S1 * match, last S2 nop 1
R5 * * * S3 nop 0

S
0

'X''I'

select
string [2]

select
string [1]

"match & not last"
incr. read ptr

"match & last"

S2 S3

S1

"else" "else"

string 2

r
s

r

a

l

p

m

e
t

n

t
e
r

n

e

character memory

string 1

(a) (b) (c)

Fig. 9. String Compare.

ory. Rules R3 andR4 implement a string-compare function that
tests a selected string in the character memory against the input
character stream. Each time the current input character matches
the current character in the selected string, rule R3 is executed,
involving a transition to (the same) state S1 and an increment of
the read pointer by one. Rule R3 is iterated until the last char-
acter in the selected string has been reached, which, in the case
of a match, will trigger transition rule R4 involving a transition
to state S2. State S2 will therefore be reached if the input char-
acter stream matches with either string 1 or string 2. If the input
character stream does not match with one of these two strings,
then a transition to state S3 will be made, based on the “default”
transition rule R5.

This example illustrates the two ways in which the pro-
grammable state machine can be used in the parsing process:
(1) rules R1 and R2 parse the input character stream directly by
immediate testing of the input characters, and (2) rules R3 and
R4 control the instruction handler to perform the actual pars-
ing of the input character stream. The latter mode of opera-
tion is very storage-efficient: the number of transition rules and,
consequently, the storage requirements of programmable state
machine, are independent of the length of the strings involved.
Longer strings (e.g., 1000 characters) would only require more
storage in the character memory, which is fully optimized for
storing string data in contrast to transition-rule vectors, which
are optimized for storing “control” data.

In addition to the relatively simple string-compare function
described above, the instruction handler will also implement
several character- and string-processing functions for writing
character strings from the input into the character memory, and
for encoding, conversion, searching, filtering, and output gener-
ation. Furthermore, it will also provide various computational
capabilities as required by several state-of-the-art parsing appli-
cations.

C. Performance Evaluation

The ZUXA concept is being validated in two ways: (1) a
software-based simulation model and (2) a hardware prototype
based on an FPGA [7]. Several programs (state transition dia-
grams) have been created implementing subsets of the function-
ality required for a range of XML parsing and processing appli-
cations, such as well-formedness checking, validation, canoni-

calization and transformation (e.g., XML to HTML). These pro-
grams are being used to process a large set of actual XML doc-
uments, using both the simulation model and the hardware pro-
totype.

Early results prove the feasibility of the concept and have con-
firmed its potential to achieve a processing rate of one character
per clock cycle. Ongoing work includes expanding the func-
tionality of ZUXA to support a wider variety of character- and
string-processing functions and optimization of the state transi-
tion diagrams based on actual XML document characteristics.

Again, a detailed discussion and performance analysis of the
ZUXA concept will be postponed to a future paper.

V. CONCLUSIONS

A novel programmable state machine technology, called B-
FSM, has been presented, that provides full programmability in
combination with a processing rate of one transition per clock
cycle, high storage-efficiency, support of wide input and output
vectors, and scalability to tens of thousands of states and state-
transition rules.

Building on the B-FSM technology, the high-level concept
of an XML acceleration engine called ZUXA has been intro-
duced. ZUXA is intended to overcome performance bottle-
necks of software-based XML processing by providing a pro-
cessing model that is optimized for conditional execution in-
volving large numbers of various conditions, in combination
with dedicated instructions for character- and string-processing
functions.

REFERENCES

[1] Extensible Markup Language (XML), http://www.w3.org/XML.
[2] The Cover Pages: XML applications,

http://xml.coverpages.org/xmlApplications.html.
[3] M. Nicola and J. John, “XML parsing: a threat to database performance,”

Proc. of the 12th Intl. Conference on Information and knowledge manage-
ment, pp. 175-178, November 2003.

[4] J. van Lunteren, “Searching very large routing tables in wide embedded
memory,” Proc. IEEE Globecom, vol. 3, pp. 1615-1619, November 2001.

[5] J. van Lunteren and A.P.J. Engbersen, “Fast and scalable packet classifica-
tion,” IEEE Journal of Selected Areas in Communications, vol. 21, no. 4,
pp. 560-571, May 2003.

[6] J.L. Hennessy and D.A. Patterson, “Computer architecture: a quantitative
approach,” , 2nd edition. Morgan Kaufmann Publishers, Inc., 1996. ISBN
1-55860-329-8.

[7] FPGA-based rapid-prototyping platform Spyder-Virtex-X2/XCV2000,
http://www.x2e.de.

6

