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In this paper, we use a method proposed by Bradley and Mangasarian “Feature Selection via
Concave Minimization and Support Vector Machines” to solve the well-known disputed Federalist
Papers classification problem. We find a separating plane that classifies correctly all the ”training
set” papers of known authorship, based on the relative frequencies of only three words. Using the
obtained separating hyperplane in three dimensions, all of the 12 disputed papers ended up on the
Madison side of the separating plane. This result coincides with previous work on this problem
using other classification techniques.

Categories and Subject Descriptors: I.2.7 [Text Analysis]: Natural Language Processing; G.1.6
[Linear programming]: Optimization; K.3.2 [Concept Learning]: learning

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Text Classification, Support Vector Machines

1. INTRODUCTION

1.1 The Federalist Papers

The Federalist Papers were written in 1787-1788 by Alexander Hamilton, John Jay
and James Madison to persuade the citizens of the State of New York to ratify the
U.S. Constitution. As was common in those days, these 77 shorts essays, about
900 to 3500 words in length, appeared in newspapers signed with a pseudonym,
in this instance, “Publius”. In 1778 these papers were collected along with eight
additional articles in the same subject and were published in book form. Since
then, the consensus has been that John Jay was the sole author of five of a total
85 papers, that Hamilton was the sole author of 51, that Madison was the sole
author of 14, and that Madison and Hamilton collaborated on another three. The
authorship of the remaining 12 papers has been in dispute; these papers are usually
referred to as the disputed papers. It has been generally agreed that the disputed
papers were written by either Madison or Hamilton, but there was no consensus
about which were written by Hamilton and which by Madison.

1.2 Mosteller and Wallace (1964)

In 1964 Mosteller and Wallace in the book “Inference and Disputed Authorship:
The Federalist” [1964] using statistical inference concluded: “In summary, we can
say with better foundation than ever before that Madison was the author of the 12
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1 a 15 do 29 is 43 or 57 this

2 all 16 down 30 it 44 our 58 to

3 also 17 even 31 its 45 shall 59 up

4 an 18 every 32 may 46 should 60 upon

5 and 19 for 33 more 47 so 61 was

6 any 20 from 34 must 48 some 62 were

7 are 21 had 35 my 49 such 63 what

8 as 22 has 36 no 50 than 64 when

9 at 23 have 37 not 51 that 65 which

10 be 24 her 38 now 52 the 66 who

11 been 25 his 39 of 53 their 67 will

12 but 26 if 40 on 54 then 68 with

13 by 27 in 41 one 55 there 69 would

14 can 28 into 42 only 56 things 70 your

Table I. Function Words and Their Code Numbers

disputed papers”.

1.3 Robert A. Bosch and Jason A. Smith (1998)

In 1998 Bosch and Smith [Bosch and Smith 1998] used a method proposed by
Bennett and Mangasarian [Bennett and Mangasarian 1992], that utilize linear pro-
gramming techniques to find a separating hyperplane. Cross-validation was used to
evaluate every possible set comprised of one, two or three of the 70 function words.
They obtained the following hyperplane:

−0.5242as + 0.8895our + 4.9235upon = 4.7368.

Using this hyperplane they found that all 12 of the disputed papers ended up on
the Madison side of the hyperplane, that is (> 4.7368).

1.4 Description of the Data

The data we used in this project is identical to the data used by Bosch and Smith
[Bosch and Smith 1998]. They first produced machine-readable texts of the papers
with a scanner and then they used Macintosh software to compute relative frequen-
cies for 70 function words that Mosteller and Wallace identified as good candidates
for author-attribution studies.

The data was obtained from Bosch in a text file. The file contains 118 pairs of
lines of data, one pair per paper. The first line in each pair contains two numbers:
the code of the paper (see pages 269 and 270 of [Mosteller and Wallace 1964]) and
the code number of the author, 1 for Hamilton (56 total), 2 for Madison (50 total)
and 3 for the disputed papers (12 total).

The second line contains 70 floating point numbers that correspond to the relative
frequencies (number of occurrences per 1000 words of the text) of the 70 function
words (See Table 1).

Based on the relative frequencies of the words, each paper can be represented
as a vector with 70 real-valued components. This means our training dataset is
now represented by a real-valued matrix A ∈ R106×70 where each row of the matrix
represents a federalist paper which authorship is already known. We also define
a diagonal label matrix D containing the information of the labels of the training
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dataset. If a training datapoint Ai belongs to the “Madison class” then dii = 1, if
it belongs to the “Hamilton class” then dii = −1.

2. NOTATION

We now describe our notation and give some background material. All vectors will
be column vectors unless transposed to a row vector by a prime ′. For a vector x in
the n-dimensional real space Rn, |x| will denote a vector in Rn of absolute values
of the components of x. For a vector x ∈ Rn, x∗ denotes the vector in Rn with
components (x∗)i = 1 if xi > 0 and 0 otherwise (i.e. x∗ is the result of applying
the step function component-wise to x). The base of the natural logarithm will
be denoted by ε, and for a vector y ∈ Rm, ε−y will denote a vector in Rm with
components ε−yi , i = 1, . . . , m. For x ∈ Rn and 1 ≤ p < ∞, the p-norm and the
∞-norm are defined as follows:

‖x‖p =





n
∑

j=1

|xj |
p





1
p

, ‖x‖∞ = max
1≤j≤n

|xj |.

The notation A ∈ Rm×n will signify a real m × n matrix. For such a matrix A′

will denote the transpose of A, and Ai will denote the i-th row of A. A column
vector of ones in a real space of arbitrary dimension will be denoted by e. Thus,
for the column vectors e and y in Rm, the scalar product e′y denotes the sum
m

∑

j=1

yi. A vector of zeros in a real space of arbitrary dimension will be denoted

by 0. A separating plane, with respect to two given point sets A and B in Rn,
is a plane that attempts to separate Rn into two halfspaces such that each open
halfspace contains points mostly of A or B. A real valued function f(x) on Rn is
concave (“mountain-like”) if linear interpolation between two function values never
overestimates the function.

3. THE LINEAR SUPPORT VECTOR MACHINE

We consider the problem, depicted in Figures 1 and 2, of classifying m points in
the n-dimensional real space Rn, represented by the m× n matrix A, according to
membership of each point Ai in the class A+ or A− as specified by a given m×m
diagonal matrix D with plus ones or minus ones along its diagonal. For this problem
the standard support vector machine with a linear kernel [Vapnik 1995; Cherkassky
and Mulier 1998] is given by the following quadratic program with parameter ν > 0:

min
(w,γ,y)∈Rn+1+m

νe′y + 1
2w′w

s.t. D(Aw − eγ) + y ≥ e
y ≥ 0.

(1)
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Written in individual component notation, and taking into account that D is a
diagonal matrix of ± 1, this problem becomes:

min
(w,γ,y)∈Rn+1+m

ν

m
∑

i=1

yi +
1

2

n
∑

j=1

w2
j

s.t. Aiw + yi ≥ γ + 1, for Dii = 1
Aiw − yi ≤ γ − 1, for Dii = −1

yi ≥ 0
i = 1 . . . = m.

(2)

Here, w is the normal to the bounding planes:

x′w = γ + 1
x′w = γ − 1,

(3)

and γ determines their location relative to the origin. See Figure 1. The two classes
are strictly linearly separable when the error variable y = 0 in (1)-(2), as in the case
of Figure 1. If the two classes are strictly linearly separable the plane x′w = γ + 1
bounds the class A+ points, while the plane x′w = γ − 1 bounds the class A−
points as follows:

Aiw ≥ γ + 1, for Dii = 1
Aiw ≤ γ − 1, for Dii = −1.

(4)

The linear separating surface is the plane:

x′w = γ, (5)

midway between the bounding planes (3). The quadratic term in (1), which is twice
the reciprocal of the square of the 2-norm distance 2

‖w‖2
between the two bounding

planes of (3) (see Figure 1), maximizes this distance, often called the “margin”.
Maximizing the margin enhances the generalization capability of a support vector
machine [Vapnik 1995; Cherkassky and Mulier 1998].

If the classes are linearly inseparable then the two planes bound the two classes
with a “soft margin” (i.e. bound approximately with some error) determined by
the nonnegative error variable y, that is:

Aiw + yi ≥ γ + 1, for Dii = 1
Aiw − yi ≤ γ − 1, for Dii = −1.

(6)

The 1-norm of the error variable y is minimized parametrically with weight ν in (1)
resulting in an approximate separation as depicted in Figure 2, for example. Points
of A+ that lie in the halfspace {x | x′w ≤ γ +1} (i.e. on the plane x′w = γ +1 and
on the wrong side of the plane) as well as points of A− that lie in the halfspace
{x | x′w ≥ γ − 1} are called support vectors.
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A− 

A+ x’w=γ + 1 

x’w=γ − 1 

w 

2/|w|

Fig. 1. The Linearly Separable Case: The bounding planes of equation (3) with margin
2

‖w‖2
, and the plane of equation (5) separating A+, the points represented by rows

of A with Dii = +1, from A−, the points represented by rows of A with Dii = −1.

A− 

A+ x’w=γ + 1 

x’w=γ − 1 

w 

2/|w|

error y
i
 

Fig. 2. The Linearly Inseparable Case: The approximately bounding planes of equa-
tion (3) with a soft (i.e. with some error) margin 2

‖w‖2
, and the plane of equation

(5) approximately separating A+ from A−.
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Support vectors, which constitute the complement of the strictly separated points
by the bounding planes (3), completely determine the separating surface. Minimiz-
ing the number of such exceptional points can lead to a minimum length description
model [Mitchell 1997, p. 66],[Blumer et al. 1987] that depends on much fewer data
points. Computational results indicate that such lean models generalize as well as
or better than models that depend on many more data points. In the next section
of the paper an algorithm that minimizes the norm of the error for the misclassified
points as well as the number of input space features.

4. FEATURE SELECTION VIA CONCAVE MINIMIZATION

In order to make use of a faster linear programming based approach, instead of the
standard quadratic programming formulation (1), we reformulate (1) by replacing
the 2-norm by a 1-norm as follows [Mangasarian 2000; Bradley and Mangasarian
1998]:

min
(w,γ,y)∈Rn+1+m

νe′y + ‖w‖1 = ν

m
∑

i=1

yi +

n
∑

j=1

|wj |

s.t. D(Aw − eγ) + y ≥ e
y ≥ 0.

(7)

This SVM‖ · ‖1 reformulation in effect maximizes the margin, the distance between
the two bounding planes of Figures 1 and 2, using a different norm, the ∞-norm, and
results with a margin in terms of the 1-norm, 2

‖w‖1
, instead of 2

‖w‖2
[Mangasarian

1999]. The mathematical program (7) is easily converted to a linear program as
follows:

min
(w,γ,y,v)∈Rn+1+m+n

νe′y + e′v = ν

m
∑

i=1

yi +

n
∑

j=1

vj

s.t. D(Aw − eγ) + y ≥ e
v ≥ w ≥ −v
y ≥ 0,

(8)

where, at a solution, v is the absolute value |w| of w. This fact follows from
the constraints v ≥ w ≥ −v which imply that vi ≥ |wi|, i = 1 . . . , n. Hence
at optimality, v = |w|, otherwise the objective function can be strictly decreased
without changing any variable except v. We will modify this linear program so as
to generate an SVM with as few nonzero components of w as possible by adding
an error term e′|w|∗ to the objective function, where ∗ denotes the step function as
defined in the Introduction. The term e′|w|∗ suppresses nonzero component of the
vector w and results in separating hyperplanes that depend on fewer features.

min
(w,γ,y,v)∈Rn+1+m+n

νe′y + e′v∗

s.t. D(Aw − eγ) + y ≥ e
v ≥ w ≥ −v

y ≥ 0.

(9)
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Note that wi = 0 implies that the separating hyperplane does not depends on
feature i, this is:

wx − γ =

n
∑

i=1

wixi − γ =
∑

i/wi 6=0

wixi − γ

The discontinuity of the step function term e′v∗ is handled by using an smooth
concave exponential approximation on the nonnegative real line [Mangasarian 1996]
as is done in [Bradley and Mangasarian 1998]. For v ≥ 0, the approximation of the
step vector v∗ of (9) by the concave exponential, vi∗ ≈ 1−ε−αvi , i = 1, . . . , m, that
is:

v∗ ≈ e − ε−αv, α > 0, (10)

where ε is the base of natural logarithms, leads to the following smooth reformula-
tion of problem (9):

min
(w,γ,y,v)∈Rn+1+m+n

νe′y + e′(e − ε−αv)

s.t. D(Aw − eγ) + y ≥ e
v ≥ w ≥ −v
y ≥ 0.

(11)

Note that:

e′(e − ε−αv) = n −

n
∑

i=1

ε−αvi . (12)

It can be shown [Bradley et al. 1998, Theorem 2.1] that, for a finite value of the
parameter α (appearing in the concave exponential), the smooth problem (11) gen-
erates an exact solution of the nonsmooth problem (9). We note that this problem
is the minimization of a concave objective function over a polyhedral set. Even
though it is difficult to find a global solution to this problem, a fast successive lin-
ear approximation (SLA) algorithm [Bradley et al. 1998, Algorithm 2.1] terminates
finitely (usually in 4 to 7 steps) at a stationary point which satisfies the minimum
principle necessary optimality condition for problem (11) [Bradley et al. 1998, The-
orem 2.2] and leads to a locally minimal number of nonzero w, that is, a solution
depending in fewer features.

Algorihtm 4.1. Successive Linearization Algorithm (SLA) for (11). Choose
ν, µ, α > 0. Start with some (w0, γ0, y0, v0). Having (wi, γi, yi, vi) determine the
next iterate by solving the linear program:

min
(w,γ,y,v)∈Rn+1+m+n

α(ε−αvi

)′(v − vi)

s.t. D(Aw − eγ) + y ≥ e
v ≥ w ≥ −v
y ≥ 0.

(13)

Stop when:

νe′(y − yi) + e′(v − vi) + α(ε−αvi

)′(v − vi) ≤ tol (14)
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Comment: The parameter α was set to 5. The parameters ν and µ were chosen
with the help of a tuning set surrogate for a testing set to simultaneously minimize
the number of support vectors, number of input space features and tuning set error.
The tolerance for the stopping criteria tol was set to 10−5.

We turn our attention now to numerical implementation and testing.

5. NUMERICAL RESULTS

A ten-fold cross validation procedure was applied to determine an optimal value
for the parameter ν based on the training data. For each fold I defined a tuning
set consisting of 10% of the data on that fold for tuning purposes. Based on tuning
set results we picked the best value of ν in the set {2i/i = −6,−5, . . . , 0, . . . , 5, 6}.

The initial starting solution (w0, γ0) was generated randomly using a uniform
distribution function that generates random numbers between 1 and 100. Note
that a “good” but somewhat more expensive choice of an initial estimates for the
algorithm 4.1is the solution to the linear programming formulation problem 8.

Using the approach described above We obtained a separating hyperplane only
depending on three features in three dimensions:

−0.5368to− 24.6634upon− 2.9532would = −66.6159,

which was obtained with ν = 2−5 starting from a random point.
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Fig. 3. Obtained Hyperplane in 3 dimensions

The final set of three features was chosen based on the number of times they
appear through the ten-fold process. We obtained a hyperplane that classified all
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the training data correctly and all the 12 of the disputed papers ended up on the
Madison side of the hyperplane (> −66.6159).

6. CONCLUSION

We have applied Support vector machine feature selection via concave minimiza-
tion to solve the well-known disputed Federalist Papers classification problem. Our
results are very similar with those obtained by Bosch and Smith [Bosch and Smith
1998]. Bosch and Smith tried to solve the problem using all the possibles combi-
nations of 1,2 and 3 words out of 70. This method involves solving 57225 linear
programming problems without considering the tuning phase. Instead using our
approach we solve only 4 to 7 linear programming without including the tuning
phase and around 5 × 13 = 65 including the tuning phase.
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