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Preface 
 
    This book is intended for those interested in the history of mathematics or 
statistics and more or less acquainted with the latter. It will also be useful for 
statisticians; here, indeed, is K. Pearson’s testimony (1978, p. 1): “I do feel 



how wrongful it was to work for so many years at statistics and neglect its 
history”. My exposition is based, in the first place, on my own investigations 
published over some 30 years. True, I am not satisfied with a few of them 
anymore. Note also, that I was unable to check the proofs of some of my 
papers which are therefore corrupted by misprints. I bear in mind Sheynin 
(1989a) whose manuscript was smuggled out of the Soviet Union as well as 
my Russian articles in the Istoriko-Matematicheskie Issledovania from 1993 
onward. 
    I describe the origin of the notions of randomness and subjective or logical 
probability in antiquity, discuss how the main notions of the theory of 
probability were being comprehended by laymen, dwell on the birth of 
political arithmetic and study the history of the theory proper. I also trace the 
development of statistics and its penetration into natural sciences as well as 
the history of the mathematical treatment of observations (Ptolemy, Al-

Biruni, Kepler, the classical error theory). I stop at the axiomatization of 
probability and at the birth of the real mathematical statistics, i.e., at 
Kolmogorov and Fisher. 
    From among adjoining general sources1 written from a modern point of 
view, I mention Stigler (1986), Hald (1990; 1998) and Farebrother (1999). 
The first of these, in spite of its title, only dwells on separate chapters of the 
history of statistics and is corrupted by a free-and-easy attitude towards Euler 
and Gauss. The next two books are specimens of an exposition of a 
mathematical subject, but they are intended for really qualified readers; then, 
some topics in Hald (1998), especially the description of the work of Russian 
mathematicians, are omitted. Finally, Farebrother’s book dwells on the 
treatment of observations. During the last years, quite a few worthless or 
mediocre contributions to my subject have appeared which was apparently 
made possible by unsatisfactory preliminary reviewing (and then justified by 
subsequent superficial abstracting). I do not mention such literature and I also 
note that in 1915 the Petersburg Academy of Sciences awarded a gold medal 
to Chuprov for a review written on its request (Sheynin 1990c, p. 32). Then, I 
quote Truesdell (1984, p. 292): 
  
    By definition, now, there is no learning, because truth is dismissed as an 
    old-fashioned superstition. Instead … there is perpetual ‘research’ on 
    anything and everything. In virtue of the Parkinson’s law, the professional 
    historian must keep on publishing. Whiteside’s monument to Newton, like 
    Wren’s masterpiece for St. Paul, will soon be hidden by towering concrete 
    hives of new bureaus and new slums. 
 
    With sincere gratitude I recall the late Professors Youshkevitch, who was  
always favorably disposed towards me, and Truesdell, the Editor of the 
Archive for History of Exact Sciences, who had to busy himself with my 
English and compelled me to pay due attention to style. In 1991, after moving 
to Germany, I became able to continue my work largely because of Professor 
Pfanzagl’s warm support. In particular, he secured a grant for me (which 
regrettably dried up long ago) from Axel-Springer Verlag. In my papers, I had 
acknowledged the help of many colleagues including the late Doctors 
Chirikov (an able mathematician whose bad health thwarted his scientific 
career) and Eisenhart.  



    The reader should bear in mind that even Markov did not always 
distinguish between strict and non-strict inequalities. A second similar fact is 
that the distinction between a quantity sought (for example, an unknown 
constant) and its statistical estimate had not been explicitly indicated until 
perhaps the end of the 19th century (and still later in the Biometric school). 
Then, the expression such as P (x = m), used for example by Laplace, should 
be understood as P(m � or < x � or < m + dm). I am using the following 
abbreviations: CLT – central limit theorem; LLN – law of large numbers; and 
MLSq – method of least squares. When describing the contributions of 
previous years and centuries I sometimes use modern terms but indicate them 
in square brackets. Thus, [probability] implies that the appropriate author had 
not applied that expression. 
    I have gathered the Notes at the end of the chapter in question; there also 
the reader will find the general sources. A few main sources are shown in a 
separate list at the end of this contribution after which follow all the 
References. I am mentioning many Russian sources; some of them translated 
by myself into English, are available under www.sheynin.de, see References. 
A double page number, e.g. 59/216, provided in a reference means that either 
the pertinent source has double paging, or that it was translated from Russian 
into English with p. 59 of the original contribution corresponding to p. 216 of 
the translation.  
    This text is actually a second edition of my previous contribution, History 
of the Theory of Probability to the Beginning of the 20th Century. I have 
enlarged my exposition, in particular by quoting many more passages from 
different sources instead of simply referring to them and I also eliminated 
many mistakes for whose appearance there was only one cause: having been 
78 years old, I attempted to publish that book as soon as possible. I am now 
older; but I try now to be as careful as possible.  
 
    Note 
    1. Since I also dwell on population statistics, I ought to mention J. & M. 
Dupâquier (1985). Among other issues, they describe the history of national 
and international societies and institutions. 
 
    0. Introduction 

    01. The Stages 
    Kolmogorov (1947, p. 54/69) “tentatively” separated the history of 
probability into four stages: the creation of its “elements” (from Pascal and 
Fermat to Jakob Bernoulli); the 18th, and the commencement of the 19th 
century (from De Moivre to Poisson); the second half of the 19th century 
(Chebyshev, Markov; Liapunov and the origin of mathematical statistics); 
and the beginning of the 20th century. Gnedenko (1958) and Prokhorov & 
Sevastianov (1999) offered, roughly speaking, the same pattern and 
connected the fourth period with the introduction of the ideas and methods of 
the set theory and the theory of functions of a real variable. 
    I stress two points. First, I think that there existed an initial version of the 
theory of probability whose acme were the LLN, the De Moivre – Laplace 

theorem (in essence proved by the former), and the inverse Bayes theorem 
(see §5.2). Second, the modern stage of the theory, considered up to 
Kolmogorov, began with Chebyshev, and this fact should be here more 
clearly reflected. And so, my pattern of the history of probability is as follows. 



    1. Its antenatal period (from Aristotle to the mid-17th century). 
    2.Its early history (from Pascal and Fermat to Jakob Bernoulli). 
    3.The creation of its initial version (finally achieved by Jakob Bernoulli, 

De Moivre and Bayes). 
    4.Its development as an applied mathematical discipline (from Bayes to 
Chebyshev). 
    5. A rigorous proof of its limit theorems (Chebyshev, Markov, Liapunov) 
and its gradual transition to the realm of pure mathematics. 
    6. Axiomatization. 
 
    0.2. Mathematical Statistics 
    Its separation from probability or from statistics in general is difficult. It 
originated in the early years of the 20th century as the result of the work of the 
Biometric school and the Continental direction of statistics. Its aim is the 
systematization, treatment and usage of statistical data (Kolmogorov & 

Prokhorov 1974, p. 480). 
 
    0.3. The Theory of Errors 
    From its origin in the mid-18th century and until the 1920s the stochastic 
theory of errors had been a most important chapter of probability theory. Not 
without reason had P. Lévy (1925, p. vii) maintained that without it his main 
work on stable laws of distribution would have no raison d’être1. In turn, 
mathematical statistics borrowed its principles of maximum likelihood and 
minimal variance from the error theory. Today, the stochastic theory of errors 
is the application of the statistical method to the treatment of observations2.  
    The history of the theory of errors has its own stages. In ancient times, 
astronomers were dealing with observations as they saw fit. At the second 
stage, beginning perhaps with Tycho Brahe, observations ceased to be 
“private property”, but their treatment was not yet corroborated by 
quantitative considerations. This happened during the third stage (Simpson, 

Lambert), and the final, fourth stage was the completion of the classical 
theory of errors (Laplace and especially Gauss) although later Helmert 
fruitfully continued the relevant investigations. 
    The main peculiarity of the error theory is the usage of the notion of real 
(true) value of the constant sought. Fourier (1826, p. 534) defined it as the 
limit of the arithmetic mean, which, incidentally, provides a new dimension to 
the Gaussian postulate of the mean [an expression due to Bertrand (1888a, p. 
176)], see §9.2-2, and to the attempts to justify its usage by the notion of 
consistency, cf. §§9.4-7, 11.2-8, 13.2-7 and 14.4-2. 
 
    0.4. The Statistical Method 
    It might be thought that statistics and statistical method are equivalent 
notions; it is usual, however, to apply the former term when studying 
population and to use the latter in all other instances and especially when 
applying statistics to natural sciences. However, there also exist such 
expressions as medical and stellar statistics, and, to recall, theory of errors 
(§0.3). 
    Three stages might be distinguished in the history of the statistical method. 
At first, conclusions were being based on (statistically) noticed qualitative 
regularities, a practice which conformed to the qualitative essence of ancient 



science. Here, for example, is the statement of the Roman scholar Celsus 
(1935, p.19):  
 
    Careful men noted what generally answered the better, and then began to 
    prescribe the same for their patients. Thus sprang up the Art of medicine.  
 
    The second stage (Tycho in astronomy, Graunt in demography and 
medical statistics) was distinguished by the availability of statistical data. 
Scientists had then been arriving at important conclusions either by means of 
simple stochastic ideas and methods or even directly, as before. During the 
present stage, which dates back to the end of the 19th century, inferences are 
being checked by quantitative stochastic rules. 
  
    Notes 
    1. In 1887 Chebyshev (§13.1-4) indicated that the CLT can substantiate the 
MLSq and Poincaré (§11.2-8), in the last years of his life, stated that the 
theory of errors had naturellement been his main aim in probability. 
    2. I especially note its application to metrology (Ku 1969). There also exists 
a determinate branch of the error theory, unconnected with stochastic 
considerations. Here is one of its problems: Compile such a program for 
measuring angles in the field that the unavoidable errors, both systematic and 
random, will least corrupt the final results (the coordinates of the stations of 
the trigonometric network). Another problem: bearing in mind the same goal, 
determine the optimal form of a triangle of triangulation. It is opportune to 
mention Cotes (1722) who solved 28 pertinent problems concerning plane and 
spherical triangles with various sets of measured elements. I leave such 
problems aside although, in principle, they can be included in the province of 
the design of experiments. The determinate error theory is also related to the 
exploratory data analysis that aims at uncovering the underlying structures 
(e.g., the systematic errors). 
 

    1. The Antenatal Stage  

    1.1. Randomness, Probability, Expectation 
    1.1.1. Aristotle. Ancient scholars repeatedly mentioned randomness and 
(logical or subjective) probability1. The first notion implied lack of aim or 
law, such as a discovery of a buried treasure (Aristotle, Metaphys. 1025a) or a 
sudden meeting of two persons known to each other (Aristotle, Phys. 196b 
30). In the second example randomness might be interpreted as an intersection 
of two chains of determinate events2 and in both cases a small change in the 
action(s) of those involved would have led to an essential change of the result. 
Thus, the treasure would have remained hidden, the meeting would not have 
taken place, cf. §11.2-9 for a link with modernity. In each of these illustrations 
the sudden event could have been (although was not) aimed at; Aristotle 
would not have called random a meeting with a stranger, or a discovery of a 
rusty nail (Junkersfeld 1945, p. 22).  
    The examples above also mean that randomness is a possibility, and 
Aristotle (Methaphys. 1064b – 1065a) indeed said so. It was Hegel (1812, pp. 
383 – 384) who formulated the converse statement. Suppose that a discrete 
random variable takes values xi, i = 1, 2, …, n, with certain probabilities. 
Then, according to Hegel, any xi itself is random.  



    Aristotle’s special example (Phys. 199b 1; also see De generatione 
animalium 767b5) considered deviations from law, monstrosities. The first 
departure of nature from the type “is that the offspring should become female 
instead of male; … as it is possible for the male sometimes not to prevail over 
the female …”. Thus, he attributes the birth of a female to chance but he adds 
that that is a “natural necessity”. His was the first, not really convincing (see 
below), example of a dialectical conflict between randomness and necessity3. 
    Aristotle also reasons on the probable. A probability, he (Anal. Priora 70a 
0) says, is something that happens “for the most part, e.g., the envious hate”4. 
He (De Poet. 1460a 25) even compared two subjective probabilities with each 
other: “a likely impossibility is always preferable to an unconvincing 
possibility”. Understandably, he (Rhetorica 1376a 19) recommended the use 
of probabilities in law courts. 
    Aristotle believed that random events occurred rarely, that is, with a low 
probability, which contradicted his own opinion about the birth of a female. 
Here is his statement (De caelo 292a 30 and 289b 22) that shows, incidentally, 
that games of chance even then provided examples of stochastic 
considerations: “Ten thousand Coan throws [whatever that meant] in 
succession with the dice are impossible” and it is therefore “difficult to 
conceive that the pace of each star should be exactly proportioned to the size 
of its circle”5. Cicero (Franklin 2001, p. 164) came to a similar conclusion 
unconnected, however, with natural sciences.  
    Sometimes Aristotle reasoned in the spirit of [qualitative correlation] 
between, for example, the climate or weather and human health (Problemata 
859b 5, 860a 5). He (Ibidem 951b 0) also thought that it was better to acquit a 
“wrong-doer” than to condemn an innocent person6 so that the statistical idea 
about errors of the two kinds is seen here. Finally, Aristotle (for example, 
Ethica Nicomachea 1104a 24) believed that mean behavior, moderation 
possessed optimal properties. Analogous statements had appeared even earlier 
in ancient China; the doctrine of means is attributed to a student of Confucius 
(Burov et al 1973, pp. 119 – 140). Again, a similar teaching existed in the 
Pythagorean school (Makovelsky 1914, p. 63), and Nicomachus of Gerasa 

(1952, p. 820) stated that a perfect number was in the realm of equality, was a 
mean between numbers the sum of whose divisors was less, and greater that 
the number itself; was between excess and deficiency.  
    In the new time, the arithmetic mean became the main estimator of the 
constants sought in the theory of errors (§1.2.4) and has been applied in civil 
life (§2.1.2). In addition, it is obviously connected with the appropriate 
expectation. 
    Both Plato and Aristotle, as witnessed by Simplicius (Sambursky 1956, p. 
37; an exact reference is only provided on p. 3 of the reprint of this paper), 
called natural sciences “the science of the probable [eikotologia]”. A later 
scholar, Levi ben Gerson, thought that the determinism of natural laws was 
only approximate and probable (Rabinovitch 1973, p. 77, with a reference to 
his work), and, similarly (Ibidem, p. 166), Maimonides held that natural 
philosophy only offered probable theories. 
 
    1.1.2. The Bible and the Talmud (Sheynin 1998b). The earlier part of the 
Talmud is an interpretation of the first five books of the Old Testament. 
Called Mishna, it is subdivided into more than 60 treatises. The other part of 
the Talmud is made up of later commentaries on the Mishna. The Jerusalem 



Talmud was essentially completed in the fourth century and precedes the more 
influential Babylonian Talmud by about a century. I have seen the English 
edition of the Babylonian version (six volumes; London, 1951 – 1955) and I 
also refer to the German edition of the Talmud (12 vols, Berlin, 1930 – 1936) 
and the French edition of the Jerusalem Talmud (six volumes; Paris, 1960).  
    Randomness is mentioned several times in the Old Testament (2 Samuel 
1:6 and 20:1, 1 Kings 22:34, 2 Chronicles 18:33). Thus (the two last and 
identical examples): “A certain man drew his bow at a venture and struck the 
King of Israel”. Here, and in the other cases, randomness implicitly meant 
lack of purpose, cf. §1.1.17. 
    The Talmud makes indirect use of probability (Rabinovitch 1973, Chapter 
4). Thus, in certain cases prohibited fruit could not have exceeded 1/101 of its 
general quantity. Under less rigid demands it was apparently held that only the 
sign of the deviation from 1/2 was essential (Ibidem, p. 45)8.  
    Both the Bible and the Talmud provide examples of attempts to distinguish 
between randomness and causality and to act accordingly. Genesis 41:1 – 6 
discusses cows and ears of corn as seen by the Pharaoh in two consecutive 
dreams. The dreams, essentially the same, differed in form. Both described an 
event with an extremely low probability (more precisely, a miracle), and they 
were thus divine rather than random. Then, Job (9:24 and 21:17 – 18) decided 
that the world was “given over to the wicked” [this being the cause] since the 
alternative had a low statistical probability: “their lamp was put out rarely”. A 
random event of sorts with a rather high probability seems nevertheless 
presented in Exodus 21:29: an attack by an ox will be likely if, and only if, he 
“has been accustomed to gore”. 
    And here are several examples from the Talmud. If in three consecutive 
days (not all at once, or in four days) three (nine) persons died in a town 
“bringing forth” 500 (1500) soldiers, the deaths should be attributed to a 
plague, and a state of emergence must be declared (Taanid 34)9. The 
probability of death of an inhabitant during three days was apparently 
considered equal to 1/2, see Note 8, so that a random and disregarded death of 
three people (in the smaller town) had probability 1/8. The case of all three 
dying at once was for some reason left aside. An early commentator, Rabbi 
Meir, lamely explained the situation by mentioning the goring ox (the German 
edition of the Talmud, Bd. 3, p. 707). A similar and simpler example 
concerned an amulet (Sabbath 62): for being approved, it should have healed 
three patients consecutively.  
    The second example (Leviticus 6:3 – 10) concerned the annual Day of 
Atonement when the High Priest brought up two lots, for the Lord and “for 
Azazel”, one in each hand, from an urn. During 40 years, the first lot 
invariably came up in the Priest’s right hand and that was regarded as a 
miracle and ascribed to his special merit [to a cause]. A special example 
concerned the redemption of the first born by lot (Jerus. Talmud/Sangedrin 
14). Moses wrote “Levite” on 22, 273 ballots and added 273 more demanding 
five shekels each. The interesting point here is that only 22,000 “Levite” 
ballots were needed so that Moses ran the risk of losing some of the required 
money. Nevertheless, the losing ballots turned up at regular intervals, which 
was regarded as a miracle. The existence of the superfluous ballots was not 
explained; I believe that the Israelites were afraid that the last 273 of them to 
draw the lots will be the losers. Such misgivings are, however, unfounded, see 
§8.4. Rabinovitch (1977, p. 335) provided a similar example, again from the 



Talmud. I cite finally the ruling about abandoned infants (Makhshirin 27). A 
child, found in a town whose population was mostly gentile, was supposed to 
be gentile, and an Israelite otherwise (also when the two groups were equally 
numerous). 
 
    1.1.3. Medicine (Sheynin 1974, pp. 117 – 121). Hippocrates described a 
large number of [case histories] containing qualitative stochastic 
considerations in the spirit of the later Aristotle. Thus (1952a, pp. 54 – 55): 
“It is probable that, by means of …, this patient was cured”; or (1952b, p. 90), 
“To speak in general terms, all cases of fractured bones are less dangerous 
than those in which …” He understood that healing depended on the 
constitution and general condition of the patient, i.e., on causes randomly 
changing from one person to another. Hippocrates also formulated qualitative 
[correlational] considerations, as for example (1952c, No. 44): “Persons who 
are naturally very fat are apt to die earlier than those who are slender”. 
     Aristotle left similar reasoning, for example (Problemata 892a 0): “Why is 
it that fair men and white horses usually have grey eyes?”  
   Galen also made use of stochastic reasoning. Most interesting is his remark 
(1951, p. 202) which I shall recall in §11.2-9:  
 
    … in those who are healthy … the body does not alter even from extreme 
    causes; but in old men even the smallest causes produce the greatest 
    change. 
 
    One of his pronouncements (Ibidem, p. 11) might be interpreted as stating 
that randomness was irregular: The body has “two sources of deterioration, 
one intrinsic and spontaneous, the other [which is] extrinsic and accidental”, 
affects the body occasional[ly], irregular[ly] and not inevitabl[y]. In principle, 
one of his conclusions (1946, p. 113) is connected with clinical trials: 
 
    What is to prevent the medicine which is being tested from having a given 
    effect on two [on three] hundred people and the reverse effect on twenty 
    others, and that of the first six people who were seen at first and on whom 
    the remedy took effect, three belong to the three hundred and three to the 
    twenty without your being able to know which three belong to the three 
    hundred, and which to the twenty … you must needs wait until you see the 
    seventh and the eighth, or, to put it shortly, very many people in succession. 
 
    Galen (1951, pp. 20 – 21) also thought that the mean state, a mean 
constitution were best, cf. §1.1.1. 
  
    1.1.4. Astronomy. Astronomers understood that their observations were 
imperfect; accordingly, they attempted to determine some bounds for the 
constants sought. Thus (Toomer 1974, p. 139), the establishement of bounds 
“became a well-known technique … practised for instance by Aristarchus, 

Archimedes and Erathosthenes”.This did not however exclude the need to 
assign point estimates which was done by taking into account previous data 
(including bounds), qualitative considerations and convenience of further 
calculations. Concerning the last-mentioned circumstance Neugebauer (1950, 
p. 252) remarks: 
 



    The ‘doctoring’ of numbers for the sake of easier computation is evident in 
    innumerable examples of Greek and Babylonian astronomy. Rounding-off 
    in partial results as well as in important parameters can be observed 
    frequently often depriving us of any hope of reconstructing the original 
    data accurately. 
 
And, again (Neugebauer 1975, p. 107): 
 
    In all ancient astronomy, direct measurements and theoretical 
    considerations are … inextricably intertwined … ever present numerical 
    inaccuracies and arbitrary roundings … repeatedly have the same order of 
    magnitude as the effects under consideration. 
 
    Theoretical considerations partly replaced measurements in the Chinese 
meridian arc of 723 – 726 (Beer et al 1961, p. 26; Needham 1962, 42). 
    Special attention was being paid to the selection of the optimal conditions 
for observation; for example, to the determination of time intervals during 
which an unavoidable error least influenced the final result10. Thus (Ptolemy 
1984, IX, 2, p. 421): on certain occasions (during stations) the local motion of 
planets is too small to be observable. No wonder that he (Ibidem, III 1, p. 137) 
“abandoned” observations “conducted rather crudely”. Al-Biruni (1967, pp. 
46 – 51), the only Arab scholar to surpass Ptolemy and to be a worthy 
forerunner of Galileo and Kepler, to whom I return below, rejected four 
indirect observations of the latitude of a certain town in favor of its single and 
simple direct measurement. Astronomers undoubtedly knew that some errors, 
for example those caused by refraction, acted one-sidedly (and pertinent 
references are hardly needed), but their separation into random and systematic 
ones occurred only at the end of the 18th century (§6.3.1). But, for example, 
the end of one of Ptolemy’s statements (1956, III, 2, p. 231) hints at such a 
separation: 
 
    Practically all other horoscopic instruments … are frequently capable of 
    error, the solar instruments by the occasional shifting of their positions or 
    of their gnomons, and the water clocks by stoppages and irregularities in 
    the flow of the water from different causes and by mere chance. 
 
Al-Biruni (1967, pp. 155 – 156) formulated a similar statement about water 
clocks. 
    Many authors maintained that Ptolemy had borrowed observations from 
Hipparchus, and, in general, doctored them while R.R. Newton (1977, p. 
379) called him “the most successful fraud in the history of science”. Yes, he 
likely borrowed from Hipparchus, but in good faith, in accordance with the 
day’s custom. No, he had not doctored any observations, but rejected, adjusted 
or incorporated them “as he saw fit” (Gingerich 1983, p. 151; also see 
Gingerich 2002), he was an opportunist ready “to simplify and to fudge” 
(Wilson 1984, p. 43).  
    It is possible that, when selecting a point estimate for the constants sought, 
ancient astronomers were reasonably choosing almost any number within the 
appropriate bounds (see above). Indeed, modern notions about treating 
observations, whose errors possess a “bad” distribution, justify such an 
attitude, which, moreover, corresponds with the qualitative nature of ancient 



science. Ptolemy’s cartographic work corroborates my conclusion: he was 
mainly concerned with semblance of truth [I would say: with general 
correctness] rather than with mathematical consistency (Berggren 1991). A 
related fact pertains even to the Middle Ages (Price 1955, p. 6):  
 
    many medieval maps may well have been made from general knowledge 
    of the countryside without any sort of measurement or estimation of the 
    land by the ‘surveyor’. 
 
    I adduce now two noteworthy statements. 1) Kepler (1609, p. 642/324): 
  
    We have hardly anything from Ptolemy that we could not with good reason 
    call into question prior to its becoming of use to us in arriving at the 
    requisite degree of accuracy. 
  
    2) Newcomb (1878, p. 20): “… all of Ptolemy’s Almagest [his main 
contribution] seems to me to breathe an air of perfect sincerity”11. 
    I especially notice that Ptolemy (1984, III, 1, pp. 132 and 136; IV, 9, p. 
206) and all the more Hipparchus apparently made regular observations. For 
example, in the second instance Ptolemy mentions his “series of observations” 
of the sun. Al-Biruni (1967) repeatedly tells us about his own regular 
observations, in particular (p. 32) for predicting dangerous landslides. Then, 
Levi ben Gerson (Goldstein 1985, pp. 29, 93 and 109) indirectly but strongly 
recommended them. In the first two cases he maintained that his regular 
observations proved that the declination of the stars and the lunar parallax 
respectively were poorly known. Thus, already in those times some contrast 
between the principle of regular (and therefore numerous) observations and 
the selection of the best of these began to take shape, also see §1.2.2.  
    As an astrologer, Ptolemy (1956, I, 2 and I, 3) believed that the influence of 
the heaven was a tendency rather than a fatal drive, that astrology was to a 
large extent a science of qualitative correlation, and Al-Biruni (1934, p. 232) 
likely thought the same way: “The influence of Venus is towards …”, “The 
moon tends …” They both thus anticipated Tycho and Kepler (§1.2.4). 
    Al-Biruni (1967, p. 152) was the first to consider, although only 
qualitatively, the propagation of computational errors and the combined effect 
of observational and computational errors: 
  
    The use of sines engenders errors which become appreciable if they are 
    added to errors caused by the use of small instruments, and errors made by 
    human observers.  
 
    One of his statements (Ibidem, p. 155) on the observation of lunar eclipses 
for determining the longitudinal difference between two cities testified to his 
attempt to exclude systematic influences from final results: Observers of an 
eclipse should 
 
    Obtain all its times [phases] so that every one of these, in one of the two 
    towns, can be related to the corresponding time in the other. Also, from 
    every pair of opposite times, that of the middle of the eclipse must be 
    obtained. 
 



Such a procedure would have ensured some understanding of the systematic 
influences involved, cf. Boscovich’ calculation of a latitudinal difference in 
§6.3.2. 
    For Al-Biruni, see Al-Khazini (1983, pp. 60 – 62), the arithmetic mean 
was not yet the universal estimator of the constants sought; when measuring 
the density of metals he made use of the [mode], the [midrange] as well as of 
some values situated within the extreme measurements12, also see Sheynin 
(1992; 1996a, pp. 21 – 23). 
   
    1.1.5. Maimonides and Thomas Aquinas. In accordance with the Talmud, 
the consumption of some foods was allowed only for priests and in many 
other cases the part of the forbidden food should not have exceeded certain 
limits, cf. §1.1.2. In this connection Maimonides (Rabinovitch 1973, p. 41) 
listed seven relevant ratios, i.e., seven different probabilities of eating the 
forbidden food.  
   The Talmud also qualitatively discussed the estimation of prices for 
quantities depending on chance (Franklin 2001, p. 261). It is opportune to 
recall here that the Roman lawyer Ulpianus compiled a table of expectations 
of life, common for men and women (Sheynin 1977b, pp. 209 – 210), 
although neither the method of its compilation, nor his understanding of 
expectation are known. His table was being used for determining the duration 
of some allowances (Kohli & van der Waerden 1975, p. 515).  
    Maimonides (Rabinovitch 1973, p. 164) mentioned expectation on a 
layman’s level. He noted that a marriage settlement (providing for a widow or 
a divorced wife) of 1000 zuz “can be sold for 100 [of such monetary units], 
but a settlement of 100 can be sold only for less than 10”. It follows that there 
existed a more or less fixed expected value of a future possible gain13.  
    A marriage settlement is a particular case of insurance; the latter possibly 
existed in an elementary form even in the 20th century BC (Raikher 1947, p. 
40). Another statement of Maimonides (Rabinovitch 1973, p. 138) can also be 
linked with jurisprudence and might be considered as an embryo of Jakob 

Bernoulli’s thoughts about arguments (cf. §3.2.1): 
 
    One should not take into account the number of doubts, but rather consider 
    how great is their incongruity and what is their disagreement with what 
    exists. Sometimes a single doubt is more powerful than a thousand other 
    doubts.  
 
Incongruity and disagreement, however, rather have to do with opinions. 
    Thomas was the main commentator of Aristotle and he strove to adapt the 
pagan Philosopher to Christianity. Just as his hero, he believed that random 
events occurred in the minority of cases and were due to some hindering 
causes (Sheynin 1974, p. 103): “Casual and chance events” are such as 
“proceed from their causes in the minority of cases and are quite unknown”; 
 
    Some causes are so ordered to their effects as to produce them not of 
necessity but in the majority of cases, and in the minority to fail in producing 
them … [which] is due to some hindering cause. 
  
    Again following Aristotle, Thomas illustrated that statement by the 
“production of woman” which was nevertheless “included in nature’s 



intention”14. He (Ibidem, p. 108) also maintained that law courts should guide 
themselves by stochastic considerations:15  “In the business affairs of men … 
we must be content with a certain conjectural probability”. On the 
introduction of moral certainty see §§2.1.2, 2.2.2 and 3.2.2. 
    Finally, Thomas (p. 107) attributed ranks and degrees to miracles. At a 
stretch, this meant an introduction of qualitative probabilities. On Thomas also 
see Byrne (1968). 
  
    1.2. Mathematical Treatment of Observations 
    1.2.1. Theory of Errors: General Information. I introduce some notions 
and definitions which will be needed already in §1.4. Denote the observations 
of a constant sought by 
 
    x1, x2, …, xn, x1 � x2  � … � xn.                                                         (1) 
 
It is required to determine its value, optimal in some sense, and to estimate the 
residual error. The classical error theory considers independent observations 
(see §9.4-4), and, without loss of generality, they might also be regarded as of 
equal weight. The problem just formulated is called adjustment of direct 
measurements. The general case is concerned with adjusting indirect 
measurements s1, s2, …, sn (again independent) connected with the unknown 
constants x, y, …, k in number (k < n), by observational equations  
 
    ai x + biy + … + si = 0, i = 1, 2, …, n,                                              (2) 
 
whose coefficients are provided by the appropriate theory. The linearity of this 
system is not restrictive since the approximate values of x, y, … are known. It 
is again required to determine some optimal values of the unknowns and to 
estimate the precision of the results obtained. Systems (2) are of course 
inconsistent and their “solution” has to be sought under some additional 
condition imposed on the unavoidable residual free terms (call them vi). The 
values of the unknowns (xo, yo, …) thus obtained are called their estimates.  
    The MLSq issues from the additional condition 
 
    W = �vi

2 = [vv] = min16,                                                                       (3) 
 
so that 
 
    �W/�x = �W/�y = ... = 0.                                                                      (4) 
 
Conditions (4) easily lead to a system of normal equations 
 
    [aa]xo + [ab]yo + ... + [as] = [av] = 0, 
    [ab]xo + [bb]yo + … + [bs] = [bv] = 0, …                                           (5) 
 
having a positive definite and symmetric matrix. For direct measurements, the 
same condition (3) leads to the arithmetic mean. Another no less important 
and barely known to statisticians pattern of adjusting indirect observations is 
described in §9.4-9. 
 



    1.2.2. Regular Observations. I have mentioned them in §1.1.4. They are 
necessary for excluding systematic, and compensating the action of random 
errors. Kepler is known to have derived the laws of planetary motion by 
issuing from Tycho’s regular observations17, who thought that they provided a 
means for averaging out “random, instrumental and human error” (Wesley 
1978, pp. 51 – 52). Note, however, that both instrumental and human errors 
can well be partly random. Wesley also states that Tycho (somehow) 
combined measurements made by many instruments. 
    Nevertheless, it seems that, when compiling his star catalogs, Flamsteed, 
the founder of the Greenwich observatory, made use of only a part of his 
observations (Baily 1835, p. 376): 
 
    Where more than one observation of a star has been reduced, he has 
generally assumed that result which seemed to him most satisfactory at the 
time, without any regard to the rest. Neither … did he reduce the whole (or 
anything like the whole) of his observations … And, moreover, many of the 
results, which have been actually computed, … have not been inserted in any 
of his MS catalogues. 
 
    Reduction, however, was a tiresome procedure and, anyway, Flamsteed 
likely considered his results as preliminary which is indirectly testified by the 
last lines of the passage just above and by his own pronouncements (Sheynin 
1973c, pp. 109 – 110). 
    Bradley’s principle of treating observations remains somewhat unexplained 
(Ibidem, p. 110; Rigaud 1832). In one case, he (Rigaud, p. 78) derived the 
arithmetic mean of 120 observations, and he (Ibidem, p. 17) supplemented his 
discovery of nutation of the Earth’s axis (he also discovered the aberration of 
light) by stating that 
  
    This points out to us the great advantage of cultivating [astronomy] as well 
    as every other branch of natural knowledge by a regular series of 
    observations and experiments. 
 
At the same time he (p. 29) reported that 
 
    When several observations have been taken of the same star within a few 
    days of each other, I have either set down the mean result, or that 
    observation which best agrees with it. 
 
    And Boyle, the cofounder of scientific chemistry and co-author of the 
Boyle – Mariotte law, kept to his own rule (Boyle 1772, p. 376; Sheynin 
1973c, p. 110, note 42): 
 
    Experiments ought to be estimated by their value, not their number; … a 
    single experiment … may as well deserve an entire treatise … As one of 
    those large and orient pearls may outvalue a very great number of those 
    little … pearls, that are to be bought by the ounce … 
 
    … So are series of observations needed? All depends on the order of the 
random errors, their law of distribution, on the magnitude of systematic 
influences, the precision and accuracy required [the first term concerns 



random errors, the second one describes systematic corruption] and on the 
cost of observation. In any case, it is hardly advisable to dissolve a sound 
observation in a multitude of worse measurements. 
 
    1.2.3. Galileo. The Properties of Errors and a Choice of a Hypothesis. 
When treating discordant observations of the parallax of the New star of 1572 
made by several astronomers, Galileo (1632, Day Third) formulated some 
propositions of the not yet existing error theory18 and, first of all, indicated the 
properties of the “usual” random errors (also known to Kepler, see §1.2.4). 
The method of observations was of course worthless: in those days even 
annual star parallaxes remained unyielding to measurement. Astronomers, 
however, were only interested in placing the New star either “beneath” the 
Moon or “among” the fixed stars. In essence, Galileo compared two natural-
science hypotheses with each other and chose the latter. His test, later applied 
by Boscovich (§6.3.2), was the minimal sum of absolute values of the 
parallaxes. Because of computational difficulties, however, Galileo took into 
account only some of the pairs of observations. Buniakovsky (1846, chapter 
on history of probability) mentioned his investigation in a few lines but did 
not provide a reference; Maistrov (1967, pp. 30 – 34) described Galileo’s 
reasoning but see Hald (1990, pp. 149 – 160) for a detailed and rigorous 
discussion. On another of Galileo’s astronomical finding see Note 17. 
    Apparently during 1613 – 1623 Galileo wrote a note about the game of dice 
first published in 1718, see F.N. David (1962, pp. 64 – 66 and its English 
translation on pp. 192 – 195). He calculated the number of all the possible 
outcomes (and, therefore, indirectly, the appropriate probabilities) and 
testified that gamblers believed that 10 or 11 points turned out more often than 
9 or 12. If only these events are considered (call them A and B respectively), 
then the difference between their probabilities 
 
    P (A) = 27/52, P(B) = 25/52, �P = 1/26 = 0.0385  
 
can apparently be revealed. On determinations of such small differences see 
also Note 10 to Chapter 2. 
 
    1.2.4. Kepler. Randomness and the Treatment of Observations. 
Randomness played a certain part in Kepler’s astronomical constructions. 
True, he (1606, p. 284) denied randomness:  
 
    But what is randomness? Nothing but an idol, and the most detestable of 
    idols; nothing but contempt of God sovereign and almighty as well as of 
    the most perfect world that came out of His hands 
 
(translated from a French translation by Servien (1952, p. 132)). Nevertheless, 
his laws of planetary motion were unable to justify the values of the 
eccentricity of their orbits. He finally had to consider them random, caused by 
disturbances, which was quite in the Aristotelian spirit (§1.1.1)19. In this 
connection I quote Poincaré (1896, p. 1) who most clearly formulated the 
dialectical link between randomness and necessity in natural sciences: 
 
    There exists no domain where precise laws decide everything, they only 
    outline the boundaries within which randomness may move. In accordance 



    with this understanding, the word randomness has a precise and objective 
    sense. 
  
    Nevertheless, a few decades ago physicists and mechanicians began to 
recognize randomness as an essentially more important agent, a fact which I 
am leaving aside. 
    Kepler (1604, p. 337) also decided that a possible (that is, an aimless) 
appearance of the New star in a definite place and at a definite moment (both 
the place and the moment he, in addition, considered remarkable) was so 
unlikely that it should have been called forth by a cause [it had an aim], cf. 
§1.1.1. 
    Kepler (Sheynin 1974, §7) considered himself the founder of scientific 
astrology, of a science of [correlational] rather than strict influence of heaven 
on men and states. Thus (Kepler 1619, book 4, pp. 269 – 270), his heavenly 
bodies were not Mercury, but Copernicus and Tycho Brahe, and the 
constellations at his birth only woke rather than heartened his spirit and the 
abilities of his soul. And (1610, p. 200), “heaven and earth are not coupled as 
cog-wheels in a clockwork”. Before him Tycho likely held the same view 
(Hellman 1970, p. 410), and, much earlier, Ptolemy and Al-Biruni were of 
the same opinion (§1.1.4). For Kepler, the main goal of astrology was not the 
compilation of horoscopes concerning individuals, but the determination of 
tendencies in the development of states for which such circumstances as 
geographical position, climate, etc, although not statistical data, should also be 
taken into account. Cf. the approach of political arithmeticians (§2.1.4). 
    Kepler had to carry out enormous calculations and, in particular, to adjust 
both direct and indirect measurements. The most interesting example in the 
first case (Kepler 1609, p. 200/63) was the adjustment of the four following 
observations (I omit the degrees) 
 
    x1 = 23� 39�, x2 = 27� 37�, x3 = 23� 18�, x4 = 29� 48�. 
 
Without any explanation, Kepler selected x = 24� 33� as the “medium ex 
aequo et bono” (in fairness and justice). A plausible reconstruction (Filliben, 
see Eisenhart 1976) assumes that x was a generalized arithmetic mean with 
weights of observations being 2, 1, 1, and 0 (the fourth observation was 
rejected). But the most important circumstance here is that the Latin 
expression above occurred in Cicero’s Pro A. Caecina oratio and carried an 
implication Rather than according to the letter of the law. Rosental & 
Sokolov, in their Latin textbook intended for students of law (1956, p. 126), 
included that expression in a list of legal phrases and adduced Cicero’s text (p. 
113; German translation see Sheynin 1993c, p. 186). In other words, Kepler, 
who likely read Cicero, called the ordinary arithmetic mean the letter of the 
law, i.e., the universal estimator [of the parameter of location]. 
    It might be thought that such a promotion was caused by increased 
precision of observations; their subjective treatment (§1.1.4) became 
anachronistic. In addition, astronomers possibly began perceiving the mean as 
an optimal estimator by analogy with the ancient idea of the expediency of 
“mean” behavior (§1.1.1)20. 
    Overcoming agonizing difficulties, Kepler repeatedly adjusted indirect 
measurements. I dwell here on two points only. And, first of all: How had he 
convinced himself that Tycho’s observations were in conflict with the 



Ptolemaic system of the world? I believe that Kepler applied the minimax 
principle (§6.3.2) demanding that the residual free term of the given system of 
equations, maximal in absolute value, be the least from among all of its 
possible “solutions”. He apparently determined such a minimum, although 
only from among some possibilities, and found out that that residual was 
equal to 8� which was inadmissible, see his appropriate statement (1609, p. 
286/113): 
 
    The divine benevolence had vouchsafed us Tycho Brahe, a most diligent 
observer, from whose observations the 8� error in this Ptolemaic computation 
is shown … [and, after a few lines] … because they could not have been 
ignored, these eight minutes alone will have led the way to the reformation of 
all of astronomy, and have constituted the material for a great part of the 
present work. 
 
    Then, when actually adjusting observations, he (Ibidem, p. 334/143) 
corrupted them by small arbitrary corrections. He likely applied elements of 
what is now called statistical simulation, but in any case he must have taken 
into account the properties of “usual” random errors, i.e., must have chosen a 
larger number of small positive and negative corrections and about the same 
number of the corrections of each sign. Otherwise, Kepler would have hardly 
achieved success.  
 
    Notes  
    1. I leave aside the views of Democritus, Epicurus and Lucretius since I 
think that their works are not sufficiently understandable. Russell (1962, p. 
83) considered them “strict determinists”, but many other scholars were of the 
opposite opinion. Thus, Kant (1755, p. 344) remarked that the random mutual 
movement of the Lucretius’ atoms had not created the world. Many ancient 
scientists reasoned on randomness, see Note 2. And here is a strange statement 
of Strabo (1969, 2.3.7), a geographer and historian:  
 
    Such a distribution of animals, plants and climates as exists, is not the 
    result of design – just as the difference of race, or of language, is not, either 
    – but rather of accident and chance. 
 
    Chrysippus (Sambursky 1956/1977, p. 6) held that chance was only the 
result of ignorance and St. Augustinus, and, much later, Spinoza and 

Dalembert, expressed similar thoughts (M.G. Kendall 1956/1970, p. 31, 
without an exact reference). Kendall also maintains that Thomas (Sheynin 
1974, p. 104) stated something similar: a thing is fortuitous with respect to a 
certain, but not to a universal cause but I think that that proposition is rather 
vague.  
    2. Bru (Cournot 1843, p. 306) noted that a number of ancient scholars 
expressly formulated such an explanation of chance. An example taken from 
ancient Indian philosophy (Belvalkar & Ranade 1927, p. 458) admits of the 
same interpretation: 
 
    The crow had no idea that its perch would cause the palm-branch to break, 
    and the palm-branch had no idea that it would be broken by the crow’s 
    perch; but it all happened by pure Chance. 



 
Lack of aim or intersection of chains of events may be seen in Hobbes’ 
remark (1646, p. 259): 
  
    When a traveller meets with a shower, the journey had a cause, and the 
    rain had a cause …; but because the journey caused not the rain, nor the 
    rain the journey, we say they were contingent one to another. 
  
He added, however, that the rain was a random event since its cause was 
unknown, cf. above. 
    3. More interesting is a by-law pronounced in ancient India, between the 2nd 
century BC and 2nd century of our era (Bühler 1886, p. 267): 
 
    The witness [in law-suits pertaining to loans], to whom, within seven days 
    after he has given evidence, happens [a misfortune through] sickness, a fire, 
    or the death of a relative, shall be made to pay the debt and a fine. 
 
This was an attempt to isolate necessity (a speedy divine punishment) from 
chance. Another example (Hoyrup 1983) describes the death of 20 murderers 
in an accident with only one person (the one who had unsuccessfully tried to 
prevent the murders) surviving. This story, concerning the year 590 or 
thereabouts, was possibly invented, but in any case it illustrated the same 
attempt.   
    4. Cicero understood the probable just as Aristotle did (Franklin 2001, p. 
116). Much later, in the Digest (the Roman code of civil laws, 533), the same 
interpretation was indirectly repeated (Ibidem, p. 8). 
    5. Apparently: an invariable mutual arrangement of the stars cannot be 
random. Levi ben Gerson (1999, p. 48) left a similar but less direct statement, 
but, strictly speaking, such arguments are not convincing. It is impossible to 
say beforehand which outcomes of ten (say) throws of a coin exhibit 
regularity, and which are a result of chance: all of them are equally probable. 
It is opportune to recall the Dalembert – Laplace problem: The word 
Constantinople is composed of printer’s letters; was the composition random? 
Dalembert (1768a, pp. 254 – 255) stated that all the arrangements of the 
letters were equally probable only in the mathematical sense, but not 
“physically” so that the word was not random. Laplace (1776, p. 152 and 
1814/1995, p. 9) more correctly decided that, since the word had a definite 
meaning [had an aim], its random [aimless] composition was unlikely. He 
thus reasonably refused to solve this problem strictly. Poisson (1837a, p. 114) 
provided an equivalent example and made a similar conclusion. Matthiesen 
(1867), however, reported an extremely rare event: in a game of whist it 
occurred that each of the four gamblers received cards of only one suit. It is of 
course impossible to check this story and, anyway, it is reasonable to follow 
Laplace and Poisson. 
    6. Later authors repeatedly expressed the same idea; I name Maimonides 
(Rabinovitch 1973, p. 111), Thomas Aquinas (Byrne 1968, pp. 223 and 226) 
and even Peter the Great (1716, his Kriegs-Reglement, see Sheynin 1978c, p. 
286, Note 39). I do not think, however, that practice followed such statements. 
    7. It is stated elsewhere (Ecclesiastes 9:11) that time and chance determine 
the fate of man. 



    8. The example described there was dogmatic. Nine shops out of the 
existing ten sell ritually slaughtered meat; someone [a drunk?] bought meat 
somewhere – it is allowed. However, meat found in the street is prohibited 
because the doubt is “half and half”. Half-proofs were mentioned in law 
courts apparently in the 1190s (Franklin 2001, p. 18). 
    9. These numbers indirectly indicated the population of the towns. Deaths 
of infants hardly counted here. 
    10. A good example pertaining to the determinate error theory (§0.3, Note 
2). 
    11. And here is a general estimate of Ptolemy written during Russia’s 
brighter (!) years (Chebotarev 1958, p. 579): his system “held mankind in 
spiritual bondage for fourteen centuries”. 
    12. In accordance with the Talmud (Kelim 176), the volume of a “standard” 
hen’s egg, which served as the unit of volume, was defined as the mean of the 
“largest” and the “smallest” eggs [from a large batch]. The Talmud also 
provided elementary considerations about linear measurements and some 
stipulations regarding their admissible errors (Sheynin 1998b, p. 196). 
    13. Large payments were thus valued comparatively higher and this 
subjective attitude can also be traced in later lotteries up to our days: although 
large winnings are unrealistic, gamblers are apt to hope for them. The 
expectations of the various winnings in the Genoese lottery, that had been 
carried out from the mid-15th century, confirm the conclusion made above: 
they decreased with the increase in the theoretically possible gain (N. 

Bernoulli 1709, p. 321; Biermann 1957; Bellhouse 1981). 
    An embryo of the notion of expectation might be seen in the administration 
of justice in 11th-century India (Al-Biruni 1887, vol. 2, pp. 158 – 160). Thus, 
  
    if the suitor is not able to prove his claim, the defendant must swear. … 
    There are many kinds of oath, in accordance with the value of the object of 
    the claim. 
 
The oath apparently became ever more earnest as that value increased; the 
probability of lying with impunity multiplied by the value in question was the 
expectation of fraudulent gain. However, when 
  
    the object of claim was of some importance, the accused man was invited to 
    drink some kind of a liquid which in case he spoke the truth would do him 
    no harm. 
 
    14. Hardly anyone later recalled that doubtful example; Lamarck (1815, p. 
133), however, believed that there existed deviations from divine design in the 
tree of animal life and explained them by “une … cause accidentelle et par 
consequent variable”. In 1629, William Ames, a theologian, stated that 
random events might occur even with probability p � 1/2, see Bellhouse 
(1988, p. 71) who does not elaborate and provides no exact reference. 
    15. The Laws of Manu (Ibidem) and the ancient Chinese literature (Burov et 
al 1972, p. 108) contain examples of decisions based on elementary stochastic 
considerations, e.g., accept as true the statement of the majority. 
   16. I am using the Gauss notation 
 
    [ab] = a1b1 + a2b2 + … + anbn. 



 
    17. Kepler was unable to coordinate the Ptolemaic system of the world 
with Tycho’s observations (§1.2.4) which compelled him to transform the 
entire astronomy, see below. Another example of how regular observations 
were being used concerns Galileo (Sheynin 1973c, p. 105). Studying 
sunspots, he successfully separated their regular rotation with the sun itself 
from the random component, – from their proper movement relative to the 
sun’s disk. He thus estimated the period of the sun’s rotation as one lunar 
month; the present-day figure is 24.5 – 26.5 days. I return to Galileo in §1.2.3. 
    18. Possibly somewhat exaggerating, Rabinovitch (1974, p. 355), who 
described the legal problems and rituals of the Judaic religion, concluded that 
these propositions (not formulated by Ptolemy) were known even in antiquity. 
    19. Chance also began to be recognized in biology (and even Aristotle 
thought that monstrosities were random, see §1.1.1). Harvey (1651, p. 338) 
stated that spontaneous generation (then generally believed in) occurred 
accidentally, as though aimlessly, again see §1.1.1: 
 
    creatures that arise spontaneously are called automatic …because they 
    have their origin from accident, the spontaneous act of nature. 
 
I would say that Harvey considered randomness an intrinsic feature of nature. 
    Lamarck (1809, p. 62), also see Sheynin (1980, p. 338), kept to the same 
opinion. Harvey (Ibidem, p. 462) also believed that the form of hen’s eggs 
was “a mere accident” and thus indicated an example of intraspecific variation 
and Lamarck (1817, p. 450) explained such variations by accidental causes. 
    20. Astronomers certainly applied the arithmetic mean even before Kepler 
did. Tycho (Plackett 1958, pp. 122 – 123) combined 24 of his observations 
into (12) pairs and calculated the (generalized arithmetic) mean of these pairs, 
and of three separate observations assigning equal weight to each of the 15 
values thus obtained. He chose the pairs in a manner allowing the elimination 
of the main systematic errors and, apparently, so as to estimate, even if 
qualitatively, the influence of random errors in 12 cases out of the 15. The 
separate observations could have been somehow corrected previous to the 
adjustment. I shall describe a similar case in §6.3.2. 
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    2. The Early History  
    2.1. Stochastic Ideas in Science and Society 
    2.1.1. Games of Chance. They fostered the understanding of the part of 
chance in life and, even in antiquity, illustrated practically impossible events 
(§1.1.1) whereas mathematicians discovered that such games provided 
formulations of essentially new problems. Furthermore, although Pascal did 
not apply his relevant studies to any other domain, he (1654b, p. 172) had 
time to suggest a remarkable term for the nascent theory, – Aleae geometria, 
La Géométrie du hazard, – and to indicate his desire to compile a pertinent 
tract. Later Huygens (1657) prophetically remarked that the study of games of 
chance was not a simple “jeu d’esprit” and that it laid the foundation “d’une 
spéculation fort intéressante et profonde”. Leibniz (1704, p. 506) noted that 



he had repeatedly advocated the creation of a “new type of logic” so as to 
study “the degrees of probability” and recommended, in this connection, to 
examine all kinds of games of chance1. In 1703 he wrote to Jakob Bernoulli 
(Kohli 1975b, p. 509):   
  
    I would like that someone mathematically studies different games (in which 
    excellent examples of [the doctrine of estimating probabilities] occur). This 
    would be both pleasant and useful and not unworthy either of you or of 
    another respected mathematician. 
 
    Rényi (1969) attempted to conjecture the essence of Pascal’s proposed 
tract. He could have been right in suggesting its subject-matter but not with 
regard to the year, – 1654, – when Pascal or rather Rényi described it. Another 
shortcoming of Renýi’s attempt is that in spite of treating philosophical issues, 
Pascal (again, Rényi) had not mentioned Aristotle.  
    The theory of probability had originated in the mid-17th century rather than 
earlier; indeed, exactly then influential scientific societies came into being and 
scientific correspondence became usual. In addition, during many centuries 
games of chance had not been sufficiently conducive to the development of 
stochastic ideas (M.G. Kendall 1956/1970, p. 30). The main obstacles were 
the absence of “combinatorial ideas” and of the notion of chance events, 
superstition, and moral or religious “barriers” to the development of stochastic 
ideas. In essence, combinatorial analysis dates back to the 16th century 
although already Levi ben Gerson (Rabinovitch 1973, pp. 147 – 148) had 
created its elements. Montmort (1713, p. 6) had testified to the superstition of 
gamblers; Laplace (1814/1995, pp. 92 – 93) and Poisson (1837a, pp. 69 – 70) 
repeated his statement (and adduced new examples). When a number has not 
been drawn for a long time in the French lottery, Laplace says, “the mob is 
eager to bet on it” and he adds that an opposite trend is also noticeable. The 
same illusions exist in our time although Bertrand (1888a, p. XXII) had 
convincingly remarked that the roulette wheel had “ni conscience ni 
mémoire”. Even a just game (with a zero expectation of loss) is ruinous 
(§6.1.1) and is therefore based on superstition while lotteries are much more 
harmful. Already Petty (1690, vol. 1, p. 64) stated that they were “properly a 
Tax upon unfortunate self-conceited fools” and Arnauld & Nicole (1662, p. 
332) indicated that an expectation of a large winning in a lottery was illusory. 
In essence, they came out against hoping for unlikely favorable events, cf. 
§1.1.5, Note 13. 
 
    2.1.2. Jurisprudence. I mentioned it in §§1.1.1 and 1.1.5 and, in particular, 
I noted that one of the first tests for separating chance from necessity was 
provided for the administration of justice. It seems, however, that the 
importance of civil suits and stochastic ideas in law courts increased exactly in 
the mid-17th century2. Descartes (1644, p. 323) put moral certainty into 
scientific circulation, above all apparently bearing in mind jurisprudence3. 
Arnauld & Nicole (1662, p. 328) mentioned it whereas Leibniz (§3.1.2) 
doubted that observations might lead to it. Niklaus Bernoulli (§3.3.2), in the 
beginning of the 18th century, devoted his dissertation to the application of the 
“art of conjecturing” to jurisprudence. Even the Roman canon law “had an 
elaborate system of full proofs, half proofs, and quarter proofs” (Garber & 



Zabell 1979, p. 51, Note 23). On the Roman code of civil law see also Notes 4 
and 8 in Chapter 1 and Franklin (2001, p. 211). 
    Leibniz (1704, pp. 504 – 505) mentioned degrees of proofs and doubts in 
law and in medicine and indicated that “our peasants have since long ago been 
assuming that the value of a plot is the arithmetic mean of its estimates made 
by three groups of appraisers”4.  
 
    2.1.3. Insurance of Property and Life Insurance. Marine insurance was 
the first essential type of insurance of property. In particular, there existed an 
immoral and repeatedly prohibited practice of betting on the safe arrivals of 
ships. Anyway, marine insurance had been apparently based on rude and 
subjective estimates. Chaufton (1884, p. 349) maintained that in the Middle 
Ages definite values were assigned to risks in marine operations but he 
possibly meant just such estimates. 
    Life insurance exists in two main forms. Either the insurer pays the policy-
holder or his heirs the stipulated sum on the occurrence of an event dependent 
on human life; or, the latter enjoys a life annuity. Life insurance in the form of 
annuities was known in Europe from the 13th century onward although later it 
was prohibited for about a century until 1423 when a Papal bull officially 
allowed it (Du Pasquier 1910, pp. 484 – 485). The annuitant’s age was not 
usually taken into consideration either in the mid-17th century (Hendriks 1853, 
p. 112), or even, in England, during the reign of William III [1689 – 1702] (K. 

Pearson 1978, p. 134). Otherwise, as it seems, the ages had been allowed for 
only in a very generalized way (Sheynin 1977b, pp. 206 – 212; Kohli & van 

der Waerden 1975, pp. 515 – 517; Hald 1990, p. 119). It is therefore hardly 
appropriate to mention expectation here, but at the end of the 17th century the 
situation began to change. 
    It is important to note that in the 18th, and even in the mid-19th century, life 
insurance therefore hardly essentially depended on stochastic considerations5; 
moreover, the statistical data collected by the insurance societies as well as 
their methods of calculations remained secret. A special point is that more or 
less honest business based on statistics of mortality hardly superseded 
downright cheating before the second half of the 19th century. Nevertheless, 
beginning at least from the 18th century, the institute of life insurance strongly 
influenced the theory of probability, see §§4.2 and 6.1.1c. 
    I single out the work of De Witt (1671). He separated four age groups (5 – 
53; 53 – 63; 63 – 73; and 73 – 80 years) and assumed that the chances of death 
increased in a definite way from one group to the next one but remained 
constant within each of them. According to his calculations, the cost of an 
annuity for “young” men should have been 16 times higher than the yearly 
premium (not 14, as it was thought). In the same year, in a letter to another 
mathematician, Hudde, De Witt (Hendriks, 1852 – 1853, vol. 3, p. 109) in an 
elementary way calculated the cost of annuity on several lives (an annuity that 
should be paid out until the death of the last person of the group; usually, of a 
married couple). In the process, he determined the distribution of the maximal 
term of a series of observations [obeying a uniform law]. Kohli & van der 

Waerden (1975) described in detail the history of the institution of life 
insurance including the work of De Witt and Huygens (§2.2.2), and I only 
note that the former had not justified his assumed law of mortality. A likely 
corollary of De Witt’s work was that the price of annuities sold in Holland in 
1672 – 1673 depended on the age of the annuitants (Commelin 1693, p. 1205).  



    Leibniz (1986, pp. 421 – 432), also see Leibniz (2000), in a manuscript 
written in 1680, described his considerations about state insurance, see 
Sofonea (1957). He had not studied insurance as such, but maintained that the 
“princes” should care about the poor, remarked that the society ought to be 
anxious for each individual etc. Much later Süssmilch (§6.2.2) formulated 
similar ideas. 
 
    2.1.4. Population Statistics. The Old Testament (Numbers, Chapter 1) 
reports on a general census, or, more precisely, on a census of those able to 
bear arms. To recall (§1.1.2), the Talmud estimated the population of towns 
only by the number of soldiers “brought forth” [when needed]. In China, in 
2238 BC or thereabouts, an estimation of the population was attempted and 
the first census of the warrior caste in Egypt occurred not later than in the 16th 
century BC (Fedorovitch 1894, pp. 7 – 21). In Europe, even in 15th century 
Italy, for all its achievements in accountancy and mathematics (M.G. Kendall 
1960),  
  
    counting was by complete enumeration and still tended to be a record of a 
    situation rather than a basis for estimation or prediction in an expanding 
    economy. 
 
    Only Graunt (1662) and, to a lesser extent, Petty (1690) can be called the 
fathers of population statistics. They studied population, economics, and 
commerce and discussed the appropriate causes and connections by means of 
elementary stochastic considerations, also see Urlanis (1963) and K. Pearson 
(1978, pp. 30 – 49). It was Petty who called the new discipline political 
arithmetic. He (Petty 1690, vol. 2, p. 244) plainly formulated his denial of 
“comparative and superlative Words” and attempted to express himself in 
“Terms of Number, Weight, or Measure…”; Graunt ubdoubtedly did, if not 
said the same. At least 30 from among Petty’s manuscripts (1927) pertained to 
political arithmetic. This source shows him as a philosopher of science 
congenial in some respects with Leibniz, his younger contemporary. I adduce 
one passage (Ibidem, pp. 39 – 40); also see Sheynin (1977b, pp. 218 – 220): 
 
    What is a common measure of Time, Space, Weight, & motion? What 
    number of Elementall sounds or letters, will … make a speech or language? 
    How to give names to names, and how to adde and substract sensata, & to 
    ballance the weight and power of words; which is Logick & reason. 
  
.    Graunt (1662) studied the weekly bills of mortality in London which 
began to appear in the 16th century and had been regularly published since the 
beginning of the 17th century. For a long time his contribution had been 
attributed to Petty. However, according to Hull (Petty 1899, vol. 1, p. lii), 
Petty 
 
    perhaps suggested the subject of inquiry, … probably assisted with 
    comments upon medical and other questions here and there … procured 
    [some] figures … and may have revised, or even written the Conclusion… 
 
    If so, Petty still perhaps qualifies as co-author, but I shall not mention him 
anymore. And so, Graunt was able to use the existing fragmentary statistical 



data and estimated the population of London and England as well as the 
influence of various diseases on mortality. His main merit consisted in that he 
attempted to find definite regularities in the movement of the population. I 
only indicate that he established that both sexes were approximately equally 
numerous (which contradicted the then established views) and that out of 27 
newly born about 14 were boys. Dealing with large numbers, Graunt did not 
doubt that his conclusions reflected objective reality which might be seen as a 
fact belonging to the prehistory of theLLN. Thus, the statistical ratio 14:13 
was, in his opinion, an estimate of the ratio of the respective [probabilities]. 
    In spite of the meager and sometimes wrong information provided in the 
bills about the age of those dying, Graunt was able to compile the first 
mortality table (common for both sexes). He calculated the relative number of 
people dying within the first six years and within the next decades up to age 
86. According to his table, only one person out of a hundred survived until 
that age. Now, how exactly had Graunt calculated his table? Opinions vary, 
but, in any case, the very invention of the mortality table was the main point 
here. The indicated causes of death were also incomplete and doubtful, but 
Graunt formulated some important relevant conclusions as well (although not 
without serious errors)6. His general methodological (but not factual) mistake 
consisted in that he assumed, without due justification, that statistical ratios 
during usual years (for example, the per cent of yearly deaths) were stable. 
    Halley (1694), a versatile scholar and an astronomer in the first place, 
compiled the next mortality table. He made use of statistical data collected in 
Breslau7, a city with an approximately stationary population. Halley applied 
his table for elementary stochastic calculations connected with life insurance 
and he was also able to find out the general relative population of the city. 
Thus, for each thousand infants aged less than a year, there were 855 children 
from one to two years of age, …, and, finally, 107 persons aged 84 – 100. 
After summing up all these numbers, Halley obtained 34 thousand (exactly) so 
that the ratio of the population to the newly born occurred to be 34. Until 1750 
his table remained the best one (K. Pearson 1978, p. 206). 
    In 1701 Halley (Chapman 1941, p. 5) compiled a chart of Northern Atlantic 
showing the lines of equal magnetic declinations so that he (and of course 
Graunt) might be called the founders of exploratory data analysis, a most 
important, even if elementary stage of statistical investigations. 
    In 1680 – 1682 Leibniz wrote several manuscripts pertaining to the so-
called statecraft (§6.2.1) and political arithmetic and first published in 1866 
(Leibniz 1986, pp. 340 – 349, 370 – 381, 456 – 467 and 487 – 491), see also 
Sheynin (1977b, pp. 224 – 227). He recommended the publication of “state 
tables” (numerical or not?) of remarkable facts and their comparison, year 
with year, or state with state. Their compilation, as he suggested, should have 
been the duty of special recording offices and, as it seems, for such offices 
Leibniz (disorderly) listed 56 questions from which I mention the number of 
inhabitants of a state and the comparison of the birth rate and mortality. Then, 
he thought it advisable to collect information about scientific achievements, 
“clever ideas” and medical and meteorological observations, and to establish 
“sanitary boards” for compiling data on a wide range of subjects 
(meteorology, medicine, agriculture). 
    One of Leibniz’ manuscripts (Ibidem, pp. 456 – 467) was devoted to 
political arithmetic. There, he introduced the moyenne longueur de la vie 
humaine8, necessary, as he remarked, for calculating the cost of annuities; 



assumed, although without substantiation, that the ratio of mortality to 
population was equal to 1:40; and wrongly stated that the mortality law for 
each age group including infants was uniform. Following Arnauld & Nicole 
(1662, pp. 331 and 332), he discussed apparence or degré de la probabilité 
and apparence moyenne [expectation]. 
    Population statistics owed its later development to the general problem of 
isolating randomness from Divine design. Kepler and Newton achieved this 
aim with regard to inanimate nature, and scientists were quick to begin 
searching for the laws governing the movement of population, cf. K. 

Pearson’s appropriate remark in §2.2.3. 
 
    2.2. Mathematical Investigations 
    2.2.1. Pascal and Fermat. In 1654 Pascal and Fermat exchanged several 
letters (Pascal 1654a) which heralded the beginning of the formal history of 
probability. They discussed several problems; the most important of them was 
known even at the end of the 14th century. Here it is: Two or three gamblers 
agree to continue playing until one of them scores n points; for some reason 
the game is, however, ínterrupted on score a:b or a:b:c (a, b, c < n) and it is 
required to divide the stakes in a reasonable way9. Both scholars solved this 
problem (the problem of points; see Takácz 1994) by issuing from one and the 
same rule: the winnings of the gamblers  should be in the same ratio(s) as 
existed between the expectations of their scoring the n points, see for example 
Sheynin (1977b, pp. 231 – 239). The actual introduction of that notion, 
expectation, was their main achievement. They also effectively applied the 
addition and the multiplication theorems10. 
    The methods used by Pascal and Fermat differed from each other. In 
particular, Pascal solved the above problem by means of the arithmetic 
triangle composed, as is well known, of binomial coefficients of the 
development (1 + 1)n for increasing values of n. Pascal’s relevant contribution 
(1665) was published posthumously, but Fermat was at least partly familiar 
with it. Both there, and in his letters to Fermat, Pascal in actual fact made use 
of partial difference equations (Hald 1990, pp. 49 and 57).  
    The celebrated Pascal wager (2000, pp. 676 – 681), also published 
posthumously, in 1669, was in essence a discussion about choosing a 
hypothesis. Does God exist, rhetorically asked the devoutly religious author 
and answered: you should bet. If He does not exist, you may live calmly [and 
sin]; otherwise, however, you can lose eternity. In the mathematical sense, 
Pascal’s reasoning11 is vague; perhaps he had no time to edit his fragment. Its 
meaning is, however, clear: if God exists with a fixed and however low 
probability, the expectation of the benefit accrued by believing in Him is 
infinite. 
 
    2.2.2. Huygens. Huygens was the author of the first treatise on probability 
(1657). Being acquainted only with the general contents of the Pascal – 

Fermat correspondence, he independently introduced the notion of expected 
random winning and, like those scholars, selected it as the test for solving 
stochastic problems. Note that he went on to prove that the “value of 
expectation”, as he called it, of a gambler who gets a in p cases and b in q 
cases was 
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    Jakob Bernoulli (1713, p. 9) justified the expression (1) much simpler than 
Huygens did: if each of the p gamblers gets a, and each of the q others 
receives b, and the gains of all of them are the same, then the expectation of 
each is equal to (1). After Bernoulli, however, expectation began to be 
introduced formally: expressions of the type of (1) followed by definition. 
    Huygens solved the problem of points under various initial conditions and 
listed five additional problems two of which were due to Fermat, and one, to 
Pascal. He solved them later, either in his correspondence, or in manuscripts 
published posthumously. In essence, they demanded the use of the addition 
and multiplication theorems, the actual introduction of conditional 
probabilities and the formula (in modern notation) 
 
    P(B) = �P(Ai)P(B/Ai), i = 1, 2, …, n. 
 
    I describe two of the five additional problems. Problem No. 4 was about 
sampling without replacement. An urn contained 8 black balls and 4 white 
ones and it was required to determine the ratio of chances that in a sample of 7 
balls 3 were, or were not white. Huygens determined the expectation of the 
former event by means of a partial difference equation (Hald 1990, p. 76), cf. 
Korteweg’s remark about Huygens’ analytical methods below. Nowadays 
such problems leading to the hypergeometric distribution (J. Bernoulli 1713, 
pp. 167 – 168; De Moivre 1712, Problem 14 and 1718/1756, Problem 20) 
appear in connection with statistical inspection of mass production. 
    Pascal’s elementary Problem No. 5 was the first to discuss the gambler’s 
ruin. Gamblers A and B undertake to score 14 and 11 points respectively in a 
throw of 3 dice. They have 12 counters each and it is required to determine the 
ratio of the chances that they be ruined. The stipulated numbers of points 
occur in 15 and 27 cases and the ratio sought is therefore (5/9)12.  
    In 1669, in a correspondence with his brother Lodewijk, Huygens (1895), 
see Kohli & van der Waerden (1975), discussed stochastic problems 
connected with mortality and, to be sure, life insurance. So it happened that 
the not yet formed theory of probability spread over new grounds. Issuing 
from Graunt’s mortality table (§2.1.4), Huygens (pp. 531 – 532) introduced 
the probable duration of life (but not the term itself) and explained that it did 
not coincide with expected life. On p. 537 he specified that the latter ought to 
be used in calculations of annuities and the former for betting on human lives. 
Indeed, both he (pp. 524 – 526) and Lodewijk (pp. 484 – 485) mentioned such 
betting. Christiaan also showed that the probable duration of life could be 
determined by means of the graph (a continuous curve passing through 
empirical points given by Graunt’s table of mortality; plate between pp. 530 
and 531) of the function  
 
    y = 1 – F(x),  
 
where, in modern notation, F(x) was a remaining unknown integral 
distribution function with admissible values of the argument being 0 � x � 
100. 



    Also in the same correspondence Huygens (p. 528) examined the expected 
period of time during which 40 persons aged 46 will die out; and 2 persons 
aged 16 will both die. The first problem proved too difficult, but Huygens 
might have remarked that the period sought was 40 years (according to 
Graunt, 86 years was the highest possible age). True, he solved a similar 
problem but made a mistake. He assumed there that the law of mortality was 
uniform and that the number of deaths will decrease with time, but for a 
distribution, continuous and uniform in some interval, n order statistics will 
divide it into (n + 1) approximately equal parts and the annual deaths will 
remain about constant. In the second problem Huygens applied conditional 
expectation when assuming that one of the two persons will die first. Huygens 
never mentioned De Witt (§2.1.3) whose work (an official and classified 
document) had possibly been remaining unknown12. 
    When solving problems on games of chance, Huygens issued from 
expectations which varied from set to set rather than from constant 
probabilities. He was therefore compelled to compose and solve difference 
equations (Korteweg, see Huygens 1888 – 1950, 1920, p. 135) and he (like 
Pascal, see §2.2.1) should be recalled in connection with their history. See 
also Shoesmith (1986). 
    While developing the ideas of Descartes and other scholars about moral 
certainty (§2.1.2), Huygens maintained that proofs in physics were only 
probable and should be checked by appropriate corollaries and that common 
sense should determine the required degree of certainty of judgements in civil 
life. In a letter of 1691 Huygens (1888 – 1950, t. 10, p. 739) had indeed 
mentioned Descartes and, without justification, dismissed probabilities of the 
order of p = 10 –11 although he hardly applied this, or any other number as a 
criterion. Note that Borel (1943, p. 27) proposed p = 10 –6 and 10 –15 as 
insignificant on the human and the terrestrial scale respectively. Also see 
Sheynin (1977b, pp. 251 – 252).  
 
    2.2.3. Newton. Newton left interesting ideas and findings pertaining to 
probability (Sheynin 1971a), but much more important were his philosophical 
views. Here is the opinion of K. Pearson (1926):  
 
    Newton’s idea of an omnipresent activating deity, who maintains mean 
    statistical values, formed the foundation of statistical development through 
    Derham [a religious philosopher] Süssmilch [§6.2.2], Niewentyt [a  
    statistician], Price [Chapter 5] to Quetelet [§10.5] and Florence 
    Nightingale… 
 
Newton had not stated such an idea (although he thought that God regularly 
delivered the system of the world from accumulating corruptions, see below). 
In 1971, answering my question on this point, E.S. Pearson stated: 
 
    From reading [K. Pearson (1978) ] I think I understand what K.P. 
    meant … he has stepped ahead of where Newton had got to, by stating that 
    the laws which give evidence of Design, appear in the stability of the mean 
    values of observations … 
     
    I have since found that K. Pearson (1978, pp. 161 and 653) had attributed 
to De Moivre (1733/1756, pp. 251 – 252) the Divine “stability of statistical 



ratios, that is, the original determination or original design” and referred to 
Laplace who (1814/1995, p. 37) had indeed formulated a related idea: 
 
    In an indefinitely continued sequence of events, the action of regular and 
    constant causes ought, in the long run, to outweigh that of irregular causes. 
 
However, as I also note in §7.1-3, he never mentioned Divine design. 
    K. Pearson (1926) then went over to De Moivre (§4.4) and Bayes (Chapter 
5) and maintained that their work was motivated by theological and 
sociological causes 13 rather than by mathematics itself. 
    And here is Newton’s most interesting pronouncement (1704, Query 31): 
 
    Blind fate could never make all the planets move one and the same way in 
    orbs concentrick, some inconsiderable irregularities excepted, which may 
    have risen from the mutual actions of comets and planets upon one another, 
    and which will be apt to increase, till this system wants a reformation. Such 
    a wonderful uniformity in the planetary system must be allowed the effect of 
    choice. And so must the uniformity in the bodies of animals. 
 
    I have indicated that such considerations are logically imperfect but 
practically certain (Note 5 in Chapter 1). The idea of a divine reformation of 
the system of the world was later abandoned, but Newton’s recognition of the 
existence and role of its random disturbances is very important. Random, I 
specify, in the same sense as the outcome of coin-tossing is. But at the same 
time Newton (1958, pp. 316 – 318), just like Kepler (§1.2.4), denied 
randomness and explained it by ignorance of causes. It was the future 
theologian Bentley, who, in 1693, expressed his thoughts after discussing 
them with Newton. Finally, Newton’s remark (Schell 1960), that the notion of 
chance might be applied to a single trial, has a philosophical side14.  
    When studying the chronology of ancient kingdoms, Newton (1728, p. 52) 
left an interesting statement: 
 
    The Greek Chronologers … have made the kings of their several Cities … 
    to reign about 35 or 40 years a-piece, one with another; which is a length 
    so much beyond the course of nature, as is not to be credited. For by the 
    ordinary course of nature Kings Reign, one with another, about 18 or 20 
    years a-piece; and if in some instances they Reign, one with another, five or 
    six years longer, in others they reign as much shorter: 18 or 20 years is a 
    medium. 
 
    Newton derived his own estimate from other chronological data and his 
rejection of the twice longer period was reasonable. Nevertheless, a 
formalized reconstruction of his decision is difficult: within one and the same 
dynasty the period of reign of a given king directly depends on that of his 
predecessor. Furthermore, it is impossible to determine the probability of a 
large deviation of the value of a random variable from its expectation without 
knowledge of the appropriate variance (which Newton estimated only 
indirectly and in a generalized way). K. Pearson (1928a) described Newton’s 
later indication of the sources of his estimate and dwelt on Voltaire’s 
adjoining remarks, and, especially, on the relevant work of Condorcet. 



    I am now mentioning Newton’s manuscript (1967, pp. 58 – 61) written 
sometime between 1664 and 1666. This is what he wrote: “If the Proportion of 
the chances … bee irrational, the interest [expectation] may bee found after ye 
same manner”. He thought of a ball falling upon the center of a circle divided 
into sectors whose areas were in “such proportion as 2 to �5”. If the ball 
“tumbles” into the first sector, a person gets a, otherwise he receives b, and 
his “hopes is worth”  
 
    (2a + b�5) ÷ (2 + �5). 
 
    This was a generalization of expectation as defined by Huygens (§2.2.2) 
and the first occurrence of geometric probability (§6.1.6). Newton’s second 
example was a throw of an irregular die. He remarked that [nevertheless] “it 
may bee found how much one cast is more easily gotten than another”. He 
hardly thought about analytic calculations, he likely bore in mind statistical 
probabilities. I can only add that Newton may well have seen Graunt’s 

contribution (§2.1.4). 
    In 1693, when answering a question, Newton (Gani 1982) determined the 
[probability] of throwing not less than one, two, and three sixes with six, 12 
and 18 dice respectively (cf. the De Méré problem in Note 10). In the last-
mentioned case, for example, his calculations can be described by the formula 
 
    P = 1 – (18	17/1	2) (5/6)16(1/6)2 – (18/1) (5/6)17(1/6) – (5/6)18.  
 
    2.2.4. Arbuthnot. Arbuthnot (1712) collected the data on births (more 
precisely, on baptisms) in London during 1629 – 1710. He noted that during 
those 82 years more boys (m) were invariably born than girls (f) and declared 
that that fact was “not the Effect of Chance but Divine Providence, working 
for a good End”. Indeed, as he added, boys and men were subject to greater 
dangers and their mortality was higher than that of the females, “as 
Experience convinces us”. Even disregarding such [hardly exhibited] 
regularities as the “constant Proportion” m:f and “fix’d limits” of the 
difference (m – f), the “Value of Expectation” of a random occurrence of the 
observed inequality was less than (1/2)82, he stated.  
    Arbuthnot could have concluded that the births of both sexes obeyed [the 
binomial distribution], which, rather than the inequality m > f, manifested 
Divine design; and could have attempted to estimate its parameter 
(approximately equal to 14:13, see §2.1.4). Then, he had not remarked that 
baptisms were not identical with births; that Christians perhaps somehow 
differed from other people and, again, that London was perhaps an exception. 
And he had not known the comparative mortality of the sexes. Nevertheless, 
later authors took note of his paper, continued to study the same ratio m:f and, 
by following this subject, made important stochastic findings (see especially 
§4.4). Freudenthal (1961, p. xi) even called Arbuthnot the author of the first 
publication on mathematical statistics. From among many other recent 
commentators I name Shoesmith (1987) and H.A. David & Edwards (2001, 
pp. 9 – 11) and I note that Arbuthnot was the first to publish a trick equivalent 
to the application of a generating function of the binomial distribution 
although only for its particular case. Jakob Bernoulli (§3.1.2) applied a 
generating function before Arbuthnot did, but his book only appeared in 1713. 



    In 1715, ‘sGravesande (K. Pearson 1978, pp. 301 – 303; Hald 1990, pp. 
279 – 280) improved on Arbuthnot’s reasoning and discussed it with Niklaus 

Bernoulli, cf. §3.3.4. 
    Bellhouse (1989) described Arbuthnot’s manuscript written likely in 1694. 
There, the author examined the game of dice, attempted to study chronology 
(two examples, cf. §2.2.3) and to a certain extent anticipated his published 
note of 1712. 
 
    Notes 
    1. He himself began studying games of chance in 1675 (Biermann 1955). 
See Gini (1946), Kohli (1975b) and Sylla (1998) for the main body of his 
correspondence with Jakob Bernoulli (with comments). Also published (in 
the original Latin) is the entire correspondence (Leibniz 1971b, pp. 10 – 110; 
Weil et al 1993). 
    2. The volte-face of the public mood can be perceived when considering the 
problem of absentees about whom nothing is known. So as not to violate 
God’s commandment [which one?], Kepler (1610, p. 238) as an astrologer 
refused to state whether a particular absentee was alive or not. Jakob 

Bernoulli (1713, p. 235), however, suggested to study, in such cases, the 
pertinent stochastic considerations as also did Niklaus Bernoulli (§3.3.2).  
    3. This notion was introduced about 1400 for the solution of ethical 
problems (Franklin 2001, p. 69). 
    4. In 1705 he repeated his statement about the appraisal of lots in a letter to 
Jakob Bernoulli (Kohli 1975b, p. 512). Much earlier, in 1680, he included it 
in one of his manuscripts (§2.1.4). 
    5. Several authors mentioned the practice of insuring a number of healthy 
infants, see§3.2.3.  
    6. It might be thought that Graunt attempted to allow for systematic 
corruptions of the data. Thus, he reasonably supposed that the number of 
deaths from syphilis was essentially understated [not only because of the 
difficulty in diagnosing but also] out of ethical considerations. 
    7. He (as well as Leibniz) obtained them from Caspar Neumann, a 
Magister der Philosophie and Member of the Societät der Wissenschaften in 
Berlin. In a letter of 1692 Leibniz (1970, p. 279) stated that the data were 
interesting. On Halley see Böckh (1893). 
    8. Perhaps he was not acquainted with the correspondence of Huygens 
(§2.2.2). 
    9. About 1400 an anonymous Italian author (Franklin 2001, pp. 294 – 296) 
correctly solved this problem for the case of two gamblers, but had not 
sufficiently justified his solution and made a mistake in a more complicated 
instance. It is much more important to note, however, that he had not 
introduced the notion of expectation (cf. below).  
    10. The term probability does not appear in the extant part of the 
correspondence, only chance is applied. De Méré, a man of the world, had 
unintentionally initiated that correspondence by asking Pascal why the 
chances of two apparently equivalent events were different. An elementary 
calculation shows that either the gamblers were able to reveal a difference of 
probabilities equal to 0.0264, cf. §1.2.3, or, as Ore (1960, pp. 411 – 412) and 
van der Waerden (1976) believed, De Méré was able to calculate the 
appropriate probabilities, – but still thought that achieving a six in four throws 



of a die and two sixes in 24 throws of two dice should have been equally 
probable since 24/36 = 4/6. Actually, 
 
    P1 = 1 – (5/6)4  
 0.5177, P2 = 1 – (35/36)24 
 0.4913.  
 
Later Jakob Bernoulli (1713, p. 32) considered the same problem. 
    A queer episode concerning De Méré occurred in the 19th century. Georg 

Cantor mistakenly thought that by his conclusion the man of the world had 
wished to destroy science. Accordingly, he privately called Kronecker (who 
denied the emerging set theory) “Herr von Méré” (Fraenkel 1930, p. 199). 
    11. For a similar reasoning see Arnauld & Nicole (1662, p. 334). 
    12. During the last years of his life Jakob Bernoulli vainly asked Leibniz 
to procure for him a copy of De Witt’s work. 
    13. I would have excluded Niewentyt from the Pearsonian chain; 
Derham, however, had been very influential. 
    14. Here is a similar statement formulated in the 4th century BC (Burov et al 
1972, p. 203): 
 
    Who even before battle gains victory by military estimations has many 
    chances … who has many chances gains victory; who has few chances does 
    not gain victory; all the less he who has no chances at all. 
 
    Literature 
    Edwards (1987); Sheynin (1970c; 1971a; 1977b; 1978b)  
 
    3. Jakob Bernoulli and the Law of Large Numbers 
    I consider Bernoulli’s main work, the Ars conjectandi (AC) 1, published 
posthumously in Latin and touch on his Diary (Meditationes) for 1684 – 1690. 
Only the stochastic part of the latter was published together with the AC (both 
in their original Latin), with other materials and comments (J. Bernoulli 
1975). I also discuss related topics and dwell on Bernoulli’s contemporaries. 
The AC was translated into German in 1899 (reprint: 1999) and its separate 
parts have also appeared in other living languages. In 1913 Uspensky 
translated Part 4 into Russian (reprint: J. Bernoulli 1986). My own translation 
of the same part into English has just appeared (J. Bernoulli 2005). 
 
    3.1. Bernoulli’s Works 
    3.1.1. The Diary. There, Bernoulli studied games of chance and the 
stochastic side of civil law. He (p. 47) noted that the probability2 of a 
visitation of a plague in a given year was equal to the ratio of the number of 
these visitations during a long period of time to the number of years in that 
period. I stress that Bernoulli thus applied the definition of probability of an 
event (of statistical probability!) rather than making use of chances. An 
interesting point in this connection is that he (p. 46, marginal note) wrote out 
the imprint of a review published in 1666 of Graunt’s book (§2.1.4) which 
Bernoulli possibly had not seen; he had not referred to it either in the 
Meditationes itself or in the AC. But the most important in the Meditationes is 
a (fragmentary) proof of the LLN. This fact means that Bernoulli proved it not 
later than in 1690.  
 



    3.1.2. The Art of Conjecturing (1713). Its Contents. The last part of this 
book is entitled “The use and application of the previous doctrine to civil, 
moral and economic affairs” (J. Bernoulli 1713, p. 229) but nothing of the sort 
had appeared there3. Interesting problems are solved in parts 1 and 3 (the 
study of random sums for the uniform and the binomial distributions, a similar 
investigation of the sum of a random number of terms for a particular discrete 
distribution, a derivation of the distribution of the first order statistic for the 
discrete uniform distribution and the calculation of probabilities appearing in 
sampling without replacement). The author’s analytical methods included 
combinatorial analysis and calculation of expectations of winning in each set 
of finite and infinite games and their subsequent summing. 
    Part 1 is a reprint of Huygens’ tract (§2.2.2) including the solution of his 
five additional problems, one of which Bernoulli (1713, p. 167) had, however, 
carried over to Part 3, complete with vast and valuable commentaries. 
Nevertheless, this form again testifies that he was unable to complete his 
contribution. Also in Part 1 Bernoulli (pp. 22 – 28), while considering a game 
of dice, compiled a table which enabled him to calculate the coefficients of xm  
in the development of (x + x2 + … + x6) n  for small values of n. 
    Part 2 did not bear on probability. It dealt with combinatorial analysis and it 
was there that the author introduced the Bernoulli numbers. 
    Part 4 contained the LLN. There also we find a not quite formal “classical” 
definition of probability (a notion which he had not applied when formulating 
that law), a reasoning, in Chapter 2, on the aims of the art of conjecturing 
(determination, as precise as possible, of probabilities for choosing the best 
solutions of problems, apparently in civil life) and elements of stochastic 
logic4.  
    Bernoulli likely considered the art of conjecturing as a mathematical 
discipline based on probability as a measure of certainty and on expectation 
and including (the not yet formally introduced) addition and multiplication 
theorems and crowned by the LLN.  
    Bernoulli informed Leibniz about the progress in his work in a letter of 3 
Oct. 1703 (Kohli 1975b, p. 509). He was compiling it for many years with 
repeated interruptions caused by his “innate laziness” and worsening of 
health; the book still lacked its “most important part”, the application of the 
art of conjecturing to civil life; nevertheless, he, Bernoulli, had already shown 
his brother [Johann] the solution of a “difficult problem, special in its own 
way” [§3.2.3], that justified the applications of the art of conjecturing. 
    Most important both in that letter and in the following correspondence of 
1703 – 17055 (Ibidem, pp. 510 – 512) was the subject of statistical 
probabilities, also see §§3.2.2 – 3.2.3. Leibniz never agreed that observations 
could secure moral certainty but his arguments were hardly convincing. Thus, 
he in essence repeated the statement of Arnauld & Nicole (1662, pp. 304 and 
317) that the finite (the mind; therefore, observations) could not always grasp 
the infinite (for example, God, but also, as Leibniz stated, any phenomenon 
depending on innumerable circumstances).  
    These views were possibly caused by his understanding of randomness as 
something “whose complete proof exceeds any human mind” (his manuscript 
of 1686; Leibniz 1960, p. 288). His heuristic statement does not contradict a 
modern approach to randomness founded on complexity and he was also right 
in the sense that statistical determinations can not definitively corroborate a 
hypothesis. 



    In his letter of 3 Dec. 1703 Leibniz (Gini 1946, p. 405) had also maintained 
that the allowance for all the circumstances was more important than subtle 
calculations, and Bortkiewicz (1923, p. 12) put on record Keynes’ favorable 
attitude towards this point of view and indicated the appropriate opinion of 
Mill (1843, p. 353) who had sharply contrasted the consideration of 
circumstances with “elaborate application” of probability. Mill could have 116    
Bernoulli paid due attention to Leibniz’ criticism: more than a half of Chapter 
4 of Part 4 of the AC in essence coincided with the respective passages from 
his letters to Leibniz; in that chapter, Bernoulli (1713, p. 250), in particular, 
discussed the objections made by “scientists”, that is, by Leibniz6. 
 
    3.2. The Art of Conjecturing, Part 4: Its Main Propositions 
    3.2.1. Stochastic Assumptions and Arguments. Bernoulli examined these 
in Chapters 2 and 3 but did not return to them anymore; he possibly thought of 
applying them in the unwritten pages of his book. The mathematical aspect of 
his considerations consisted in the use of the addition and the multiplication 
theorems for combining various arguments. 
    Unusual was the non-additivity of the [probabilities]7. Here is one of his 
examples (p. 244): “something” possesses 2/3 of certainty but its opposite has 
3/4 of certainty; both possibilities are probable and their probabilities are as 
8:9. Koopman (1940) resumed, in our time, the study of non-additive 
probabilities whose sources can be found in the medieval doctrine of 
probabilism that considered the opinion of each theologian as probable. 
Franklin (2001, p. 74) attributed the origin of probabilism to the year 1577, or, 
in any case (p. 83), to 1611. Nevertheless, similar pronouncements on 
probabilities of opinion go back to John of Salisbury (the 12th century) and 
even to Cicero (Garber & Zabell 1979, p. 46). 
    I note a “general rule or axiom” concerning the application of arguments 
(pp. 234 and 236): out of two possibilities, the safer, the more reliable, or at 
least the more probable should be chosen8; gamblers, however, always acted 
the same way (§1.2.3) if only they did not follow superstitious beliefs 
(§2.1.1). 
 
    3.2.2. Statistical Probability and Moral Certainty. Before going on to 
prove his LLN, Bernoulli (p. 246) explained that the theoretical “number of 
cases” was often unknown, but what was impossible to obtain beforehand, 
might at least be determined afterwards, i.e., by numerous observations. The 
application of statistical [probabilities], he maintained, was not new at all and 
referred to the “celebrated” Arnauld, the co-author of Arnauld & Nicole 
(1662)9. In his Diary, Bernoulli indirectly mentioned Graunt (§3.1.1) and, 
furthermore, quite to the point, in connection with the impossibility of 
determining, without applying statistical data, how much more probable was 
the case of a youth outliving an old man than the opposite instance 10.  
    He informed Leibniz about his opinion (cf. §3.1.2) and added that exactly 
that consideration led him to the idea of replacing, when necessary, prior 
knowledge by posterior. Recall also Bernoulli’s reasoning on the statistical 
probability of a plague epidemic (§3.1.1). 
    I discussed moral certainty in §§2.1.2 and 2.2.2. Bernoulli (p. 238) 
maintained that it ought to be admitted on a par with absolute certainty and 
that judges must have firm instructions about what exactly (for example, 0.99 
or 0.999 of certainty) constituted moral certainty. The latter idea was hardly 



ever put into practice; furthermore, the probability of a just sentence must be 
the higher the more severe it is. On p. 249 Bernoulli mentioned moral 
certainty once more. His theorem will show, he declared, that statistical 
[probability] was a morally certain [a consistent, in modern terms] estimator 
of the theoretical [probability]11. 
 
    3.2.3. The Law of Large Numbers. Bernoulli proved a proposition that, 
beginning with Poisson, is being called the LLN. Let r and s be natural 
numbers, t = r + s, n, a large natural number, � = nt, the number of 
independent12 trials in each of which the studied event occurs with 
[probability] r/t, µ – the number of the occurrences of the event (of the 
successes). Then Bernoulli proved without applying mathematical analysis 
that 
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and estimated the value of � necessary for achieving a given c > 0. In a 
weaker form Bernoulli’s finding meant that 
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where, as also in (1), r/t was the theoretical, and µ/�, the statistical probability. 
    Markov (Treatise, 1924, pp. 44 – 52) improved Bernoulli’s estimate 
mainly by specifying his intermediate inequalities and K. Pearson (1925), by 
applying the Stirling formula achieved a practically complete coincidence of 
the Bernoulli result with the estimate that makes use of the normal distribution 
as the limiting case of the binomial law13. In addition, Pearson (p. 202) 
considered Bernoulli’s estimate of the necessary number of trials in formula 
(1) “crude” and leading to the ruin of those who would have applied it. He 
also inadmissibly compared Bernoulli’s law with the wrong Ptolemaic system 
of the world (and De Moivre with Kepler and Newton):  
 
    Bernoulli saw the importance of a certain problem; so did Ptolemy, but it 
    would be rather absurd to call Kepler’s or Newton’s solution of planetary 
    motion by Ptolemy’s name!  
  
    The very fact described by formulas (1) and (2) was, however, extremely 
important for the development of probability and statistics14; and, anyway, 
should we deny the importance of existence theorems? 
   And so, the LLN established a correspondence between the two 
probabilities15. Bernoulli (p. 249) had indeed attempted to ascertain whether 
or not the statistical probability had its “asymptote”; whether there existed 
such a degree of certainty, which observations, no matter how numerous, were 
unable to ensure. Or, in my own words, whether there existed such positive 
numbers � and  < 1, that 
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    He answered his question in the negative: no, such numbers did not exist. 
He thus established, within the boundaries of stochastic knowledge, a relation 
between deductive and inductive methods and combined statistics with the art 
of conjecturing. Strangely enough, statisticians for a long time had not 
recognized this fact. Haushofer (1872, pp. 107 – 108) declared that statistics, 
since it was based on induction, had no “intrinsic connections” with 
mathematics based on deduction (consequently, neither with probability). A 
most noted German statistician, Knapp (1872a, pp. 116 – 117), expressed a 
strange idea: the LLN was hardly useful since statisticians always made only 
one observation, as when counting the inhabitants of a city. And even later on, 
Maciejewski (1911, p. 96) introduced a “statistical law of large numbers” 
instead of the Bernoulli proposition that allegedly impeded the development 
of statistics. His own law qualitatively asserted that statistical indicators 
exhibited ever lesser fluctuations as the number of observations increased.  
    All such statements definitely concerned the Poisson law as well (European 
statisticians then hardly knew about the Chebyshev form of the LLN) and 
Maciejewski’s opinion likely represented the prevailing attitude of 
statisticians. Here, indeed, is what Bortkiewicz (1917, pp. 56 – 57) thought: 
the expression law of large numbers ought to be used only for denoting a 
“quite general” fact, unconnected with any definite stochastic pattern, of a 
higher or lower degree of stability of statistical indicators under constant or 
slightly changing conditions and given a large number of trials. Even 
Romanovsky (1912, p. 22; 1924, pt 1, p. 15; 1961, p. 127) kept to a similar 
view. Thus, in the last-mentioned contribution he stressed the natural-science 
essence of the law and called it physical. 
    The LLN has its prehistory. It was thought, long before Bernoulli, that the 
number of successes in n “Bernoulli” trials with probability p was 
approximately equal to 
 
    µ = np.                                                                                                 (3) 
 
Cardano (Ore 1963, pp. 152 – 154 and 196), for example, applied this 
formula in calculations connected with games of dice. When compiling his 
mortality table, Halley (§2.1.4) assumed that “irregularities” in his data would 
have disappeared had he much more observations at his disposal. His idea can 
be interpreted as a statement on the increase in precision of formula (3) with 
n16. Also see Graunt’s reasoning (same subsection). 
    A second approach to the LLN took shape in astronomy when the 
arithmetic mean became the universal estimator of the constant sought 
(§1.2.4), call it a. If the expectation of each of the magnitudes (1.1) is equal to 
that constant, i.e., if systematic errors are absent, and if (as always was the 
case) their variances are bounded, it could be thought that a was 
approximately equal to the arithmetic mean of the observations. 
    Similar but less justified statements concerning sums of magnitudes 
corrupted by random errors had also appeared. Thus, Kepler (Sheynin 1973c, 
p. 120) remarked that the total weight of a large number of metal money of the 
same coinage did not depend on the inaccuracy in the weight of the separate 
coins. Then, De Witt (Hendriks 1852 – 1853, vol. 3, pp. 117 – 118) 
maintained that  
 



    When the purchaser of several life annuities comes to divide his capital … 
    upon several young lives – upon ten, twenty, or more – this annuitant may 
    be assured, without hazard or risk of the enjoyment of [a sufficient profit]. 
 
The expectation of a gain Exi from each such transaction was obviously 
positive; if constant, the buyer could expect a total gain of nEx. Much later 
Condorcet (1785, p. 226) testified that those engaged in such “commerce” 
(and apparently ignorant of the LLN) had regarded it as “sûre”. 
    There also likely existed a practice of an indirect participation of (petty?) 
punters in many games at once. At any rate, both De Moivre (1718/1756, 
Problem 70) and Montmort (1708, p. 169) mentioned in passing that some 
persons bet on the outcomes of games17. The LLN has then been known but 
that practice could have existed from much earlier times. And, finally, Gower 
(1993, p. 272) noted that Boscovich (1758, §481) had [somewhat vaguely] 
maintained that the sum of random magnitudes decreased with an increase in 
the number of terms. 
 
    3.2.4. Randomness and Necessity. Apparently not wishing to encroach 
upon theology, Bernoulli (beginning of Chapter 1) refused to discuss the 
notion of randomness. Then, in the same chapter, he offered a subjective 
description of the “contingent” but corrected himself at the beginning of 
Chapter 4 where he explained randomness by the action of numerous 
complicated causes. Finally, the last lines of his book contained a statement to 
the effect that some kind of necessity was present even in random things. He 
referred to Plato who had taught that after a countless number of centuries 
everything returned to its initial state. Bernoulli likely thought about the 
archaic notion of the Great Year whose end will cause the end of the world 
with the planets and stars returning to their positions at the moment of 
creation. Without justification, he widened the boundaries of applicability of 
his law and his example was, furthermore, too complicated. It is noteworthy 
that Kepler (1596) believed that the end of the world was unlikely. In the first 
edition of this book his reasoning was difficult to understand but later he 
substantiated his conclusion by stating, in essence, like Oresme (1966, p. 247) 
did before him, that two [randomly chosen] numbers were “probably” 
incommensurable18. Bernoulli (end of Chapter 1) also borrowed Aristotle’s 
example (§1.1.1) of finding a buried treasure, but, unlike him, had not 
connected it with randomness. 
 
    3.3. Bernoulli’s Contemporaries 
    I dwell somewhat on the ideas and findings of some of Bernoulli’s 
contemporaries but I postpone the discussion of De Moivre, whose first 
publication had appeared before the AC did, until Chapter 4. 
 
    3.3.1. Arnauld. Arnauld & Nicole anonymously put out their book, Art of 
reasoning (1662)19. Arnauld was its main author and I mentioned him in Note 
11 of Chapter 2 (in connection with the Pascal wager), in §2.1.2 (moral 
certainty) and §2.1.1 (an advice to neglect unlikely favorable events). Then 
(§§3.2.2 and 3.2.1), I noted that Bernoulli mentioned him when justifying the 
use of statistical probabilities and borrowed his principle of behavior. Finally, 
Arnauld repeatedly, although without a formal definition, applied the term 
probabilité (for example, on pp. 331 and 332), and degrez de probabilité. 



Recall that Leibniz (§§3.1.2 and 2.1.4), in turn, borrowed from him a 
reasoning and a term. 
 
    3.3.2. Niklaus Bernoulli. He published a dissertation on the application of 
the art of conjecturing to jurisprudence (1709) regrettably not translated into 
any living language. It contained 
    a) The calculation of the mean duration of life for persons of different ages. 
    b) A recommendation of its use for ascertaining the value of annuities and 
estimating the probability of death of absentees about whom nothing is 
known. 
    c) Methodical calculations of expected losses in marine insurance. 
    d) The calculation of expected gains (more precisely, of expected losses) in 
the Genoese lottery. 
    e) Calculation of the probability of truth of testimonies. 
    f) The determination of the life expectancy of the last survivor of a group of 
men (pp. 296 – 297; Todhunter 1865, pp. 195 – 196). Assuming a continuous 
uniform law20 of mortality, he calculated the expectation of the appropriate 
[order statistic]. He was the first to use, in a published work, both this 
distribution and an order statistic. 
    g) A comment on the introduction of expectation by Huygens (p. 291; 
Kohli 1975c, p. 542), see expression (2.1). Bernoulli interpreted it as a 
generalized arithmetic mean and the center of gravity “of all probabilities” 
(this is rather loose).  
    Apparently in accordance with his subject he had not discussed the 
treatment of observations, cf. §2.1.4. Bernoulli’s work undoubtedly fostered 
the spread of stochastic notions in society (cf. §2.1.2), but I ought to add that 
not only did he pick up some hints included in the manuscript of the Ars 
conjectandi, he borrowed separate passages both from it and even from the 
Meditationes (Kohli 1975c, p. 541), never intended for publication. His 
numerous general references to Jakob do not excuse his plagiarism. 
 
    3.3.3. Montmort. He is the author of an anonymous book (1708), important 
in itself and because of its obvious influence upon De Moivre as well as on 
Niklaus Bernoulli, the correspondence with whom Montmort included in 
1713 in the second edition of his work. In the Introduction (p. iii) he indicated 
that in practical activities and considerations it was desirable to be guided by 
“geometry” rather than by superstition, cf. §2.1.1. However, he (p. xii) added 
that, since he was unable to formulate appropriate “hypotheses”, he was not 
studying the applications of [stochastic] methods to civil life21. 
    Henny (1975) and Hald (1990) examined Montmort’s findings. The latter, 
on his p. 290, listed Montmort’s main methods: combinatorial analysis, 
recurrent formulas and infinite series; and on p. 209 Hald added the method 
(the formula) of inclusion and exclusion  
 
    P(�Ai) = �P(Ai) – �P(Ai·Aj) + �P(Ai� Aj� Ak ) – …,                               (4) 
 
where A1, A2, …, An were events and i < j < k < …This formula is an obvious 
stochastic corollary of a general proposition about arbitrarily arranged sets.  
    Here are some problems solved by Montmort (1708, pp. 244 – 246, 46 – 50 
and 203 – 205; 200 – 202; 130 – 143), see Hald (1990, pp. 196 – 198; 206 – 
213; 292 – 297; and 328 – 336) respectively: 



    a) The problem of points. Montmort arrived at the negative binomial 
distribution. He returned to this problem in his correspondence with Niklaus 

Bernoulli (Hald 1990, pp. 312 – 314). 
    b) A study of throwing s points with n dice, each having f faces. Montmort 
applied the combinatorial method and formula (4). 
    c) A study of arrangements and, again, of a game of dice. Montmort arrived 
at the multivariate hypergeometric, and the multinomial distributions.  
    d) A study of occupancies. Tickets numbered 1, 2, …, n, are extracted from 
an urn one by one without replacement. Determine the probability that at least 
one ticket with number k, 1 � k � n, will occur at the k-th extraction. 
Montmort derived the appropriate formulas 
 
    Pn  = 1 – 1/2! + 1/3! – … + (–1)n – 1/n!, limPn  = 1 – 1/e, n � �. 
 
Niklaus Bernoulli and De Moivre returned to this problem, see H.A.David & 
Edwards (2001, pp. 19 – 29). 
 
    3.3.4. Montmort and Niklaus Bernoulli: Their Correspondence. I 
outline their correspondence of 1710 – 1713 (Montmort 1708, pp. 283 – 414). 
    a) The strategic game Her (Hald 1990, pp. 314 – 322). The modern theory 
of games studies it by means of the minimax principle. Nevertheless, already 
Bernoulli indicated that the gamblers ought to keep to [mixed strategies]. 
    b) The gambler’s ruin. Montmort wrote out the results of his calculations 
for some definite initial conditions whereas Bernoulli indicated, without 
derivation, the appropriate formula (an infinite series). Hald believes that he 
obtained it by means of the method of inclusion and exclusion. On this point 
and on the appropriate findings of Montmort and De Moivre see also 
Thatcher (1957), Takácz (1969) and Kohli (1975a). 
    c) The sex ratio at birth (Montmort 1708, pp. 280 – 285; Shoesmith 1985a). 
I only dwell on Bernoulli’s indirect derivation of the normal distribution 
(Sheynin 196822; 1970a, pp. 201 – 203). Let the sex ratio be m/f, n, the total 
yearly number of births, and µ and (n – µ), the numbers of male and female 
births in a year. Denote 
 
    n/(m + f) = r, m/(m + f) = p, f/(m + f) = q, p + q = 1, 
 
and let s = 0(�n). Then Bernoulli’s derivation (Montmort 1708, pp. 388 – 394) 
can be presented as follows: 
 
    P(|µ– rm| � s) 
 (t – 1)/t, t 
 [1 + s (m + f)/mfr]s/2 
 exp[s2(m + f)2/2mfn], 

    P (|µ – rm| � s) 
 1 – exp(s 2/2pqn), P[|µ – np|/ npq � s] 
 1 – exp(–s 2/2). 

 
    This result does not however lead to an integral theorem since s is restricted 
(see above) and neither is it a local theorem; for one thing, it lacks the factor 

π/2 23. 
    d) The Petersburg game. In a letter to Montmort, Bernoulli (Ibidem, p. 402) 
described his invented game. B throws a die; if a six arrives at once, he 
receives an écu from A, and he obtains 2, 4, 8, … écus if a six only occurs at 
the second, the third, the fourth, … throw. Determine the expectation of B’s 
gain. Someone insignificantly changed the conditions of the game; a coin 



appeared instead of the die, and the occurrence of heads (or tails) has been 
discussed ever since. The expectation of gain became 
 
    E� = 1	1/2 + 2	1/4 + 4	1/8 + … = �,                                              (5) 
 
although a reasonable man would never pay any considerable sum in 
exchange for it. 
    This paradox is still being examined. Additional conditions were being 
introduced; for example, suggestions were made to neglect unlikely gains, i.e., 
to truncate the series (5); to restrict beforehand the possible payoff; and, the 
most interesting, to replace expectation by moral expectation24. In addition, 
Condorcet (1784, p. 714) noted that the possibly infinite game nevertheless 
provided only one trial and that only some mean indicators describing many 
such games could lead to an expedient solution. Actually issuing from the 
same idea, Freudenthal (1951) proposed to consider a number of games with 
the role of the gamblers in each of them to be decided by lot. Finally, the 
Petersburg game caused Buffon (1777) to carry out the apparently first 
statistical experiment. He conducted a series of 2048 games; the mean payoff 
was 4.9 units, and the longest duration of play (in six cases), nine throws25. 
From a theoretical point of view, the game was interesting because it 
introduced a random variable with an infinite expectation. 
 
    Notes 
    1. Bernoulli (1713, p. 233) had additionally explained this expression by 
the Greek word stochastice which Bortkiewicz (1917, p. X), with a reference 
to him, put into scientific circulation. Already Wallis (1685, p. 254) had 
applied the expression stochastic (iterative) process and Prevost & Lhuilier 
(1799, p. 3) mentioned stochastics, or “l’art de conjecturer avec rigueur sur 
l’utilité et l’étendue [and the extensiveness] du principe par lequel on estime 
la probabilité des causes”. Hagstroem (1940) indicated that Plato and 
Socrates had applied the term stochastics and that the Oxford English 
Dictionary had included it with a reference to a source published in 1662. 
    2. Bernoulli had not invariably applied this term, see §3.1.2. 
    3. Bearing in mind the published subject of that part, it would have been 
expedient to isolate the mentioned applications of the art of conjecturing. 
    4. The publishers appended the author’s French contribution Lettre à un 
Amy sur les Parties du Jeu de Paume (J. Bernoulli 1975) in which he 
calculated the expectations of winnings in a time-honored variety of tennis. 
    5. I mentioned it in §§2.1.1 and 2.1.2. 
    6. In 1714, in a letter to one of his correspondents, Leibniz (Kohli 1975b, p. 
512) softened his doubts about the application of statistical probabilities and 
for some reason added that the late Jakob Bernoulli had “cultivated” [the 
theory of probability] in accordance with his, Leibniz’, “exhortations”. 
    7. On Bernoulli’s non-additive probabilities see Shafer (1978) and Halperin 
(1988). 
    8. See Arnauld & Nicole (1662, p. 327): we should choose the more 
probable. 
    9. I have found there only one appropriate but not really convincing 
example, see §2.1.2. On their p. 281 these authors mention the possibility of 
posterior reasoning.  
    10. Cf. his Example 4 (Bernoulli 1713, p. 236).  



    11. In a manuscript of 1668 – 1669 (?) Leibniz (1971a) reasoned on the 
application of moral certainty in theology. One of its chapters should have 
included the expression “infinite probability or moral certainty”. In a later 
manuscript of 1693 he (Couturat 1901, p. 232), unfortunately, as it seems, 
isolated logical certainty, physical certainty or “logical probability”, and 
physical probability. His example of the last-mentioned term, the southern 
wind is rainy, apparently described a positive correlative dependence. 
    12. De Moivre (§4.1) was the first to mention independence. 
    13. Markov had not applied that formula apparently because Bernoulli did 
not yet know it. 
    14. Strengthened by the prolonged oblivion of De Moivre’s finding (§4.3). 
    15. Throughout Part 4, Bernoulli considered the derivation of the statistical 
probability of an event given its theoretical probability and this is most 
definitely seen in the formulation of his Main Proposition (the LLN) in 
Chapter 5. However, both in the last lines of that chapter, and in Chapter 4 he 
mentioned the inverse problem and actually alleged that he solved it as well. I 
return to this point in my Chapter 5. 
    16. It is likely, however, that these “irregularities” were caused by 
systematic corruption. 
    17. Cournot (1843, §11) also mentions them vaguely. 
    18. For us, Oresme’s understanding of incommensurability is unusual, but I 
do not dwell on this point. Before him, Levi ben Gerson (1999, p. 166) stated 
that the heavenly bodies would be unable to return to their initial position if 
their velocities were incommensurable. He had not, however, mentioned the 
end of the world. 
    19. Bernoulli possibly thought about that expression when choosing a title 
for his book (and for the new discipline of the same name, the predecessor of 
the theory of probability). 
    20. Huygens’ appropriate reasoning (§2.2.2) appeared in print much later. 
    21. Cf. Daniel Bernoulli’s moral expectation (§6.1.1). 
    22. Only in its reprint of 1970 (p. 232). 
    23. Nevertheless, A.P. Youshkevich (1986) reported that at his request 
three mathematicians, issuing from the description offered by Hald, had 
concluded that Bernoulli had come close to the local theorem. Neither had 
Hald (1998, p. 17) mentioned that lacking factor.  
    24. See Daniel Bernoulli’s memoir of 1738 in §6.1.1. He published it in 
Petersburg, hence the name of the game. 
    25. O. Spieß (1975) dwelt on the early history of the Petersburg game and 
Jorland (1987) and Dutka (1988) described later developments. Dutka also 
adduced the results of its examination by means of statistical simulation.  
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    4. De Moivre and the De Moivre – Laplace Limit Theorem 

    4.1. “The Measurement of Chance” (1712) 
    In his first probability-theoretic work De Moivre (1712) justified the notion 
of expected random gain by common sense rather than defining it formally as 
has been done later, cf. §2.2.2; introduced the multiplication theorem for 
chances (mentioning independence of the events) and applied the addition 
theorem, again for chances; and, in solving one of his problems (No. 26), 



applied the formula (3.4) of inclusion and exclusion. I describe some of his 
problems; I have mentioned Problem 14 (repeated in De Moivre’s Doctrine of 
chances) in §2.2.2. 
    1) Problem No. 2. Determine the chances of winning in a series of games 
for two gamblers if the number of remaining games is not larger than n, and 
the odds of winning each game are a/b. De Moivre notes that the chances of 
winning are as the sums of the respective terms of the development of (a +b)n.  
    2) Problem No. 5. The occurrence of an event has a chances out of (a + b). 
Determine the number of trials (x) after which it will happen, or not happen, 
with equal probabilities1. After determining x from the equation 
 
    (a + b) x – b x = b x, 
  
De Moivre assumes that a/b = 1/q, q � � and obtains 
 
    1 + x/q + x2/2q2 + x3/6q3 + … = 2, x = q ln2,                                     (1) 
 
which resembles the Poisson distribution. 
    3) A lemma. Determine the number of chances for the occurrence of k 
points in a throw of f dice each having n faces. Later De Moivre (1730, pp. 
191 – 197; 1718, Problem No. 3, Lemma) solved this problem by means of a 
generating function of a sequence of possible outcomes of a throw of one die. 
    4) Problem No. 9 (cf. Pascal’s problem from §2.2.2). Gamblers A and B 
have p and q counters, and their chances of winning each game are a and b, 
respectively. Determine the odds of their ruining. By a clever trick that can be 
connected with the notion of martingale (Seneta 1983, pp. 78 – 79) De Moivre 
obtained the sought ratio: 
 
    PA /PB = a q (a p – b p) ÷ b p(a q – b q).                                                  (2) 
 
He left aside the elementary case of a = b.  
    5) Problem No. 25. Ruining of a gambler during a finite number of games 
played against a person with an infinite capital. De Moivre described the 
solution in a generalized way; its reconstruction is due to Hald (1990, pp. 358 
– 360). 
 
    4.2. Life Insurance 
    De Moivre first examined life insurance in the beginning of the 1720s and 
became the most influential author of his time in that field. Issuing from 
Halley’s table (§2.1.4), he (1756b, pp. 262 – 263) assumed a continuous 
uniform law of mortality for all ages beginning with 12 years and a maximal 
duration of life equal to 86 years. I describe some of those of his numerous 
findings which demanded the application of the integral calculus. 
    1) Determine the expected duration of life for a man of a given age if the 
maximal duration, or complement of life is n (n = 86 – age). The answer is n/2 
(p. 288). Reconstruction:  

    �
n

nxdx
0

/  = n/2.  

 
    2) Determine the probability of one person outliving another one if the 
complements of their lives are n and p, n > p (p. 324). Here, in essence, is De 



Moivre’s solution. Let the random durations of the lives of A and B be � and 
�. Then, since at some moment x the complement of A’s life is (n – x), 
 

    P(� � x, � = x) = [(n – z)/n]dz/p, P(� > �) = �
p

0

[(n – z)/n]dz/p = 1 – p/2n. 

 
    3) Determine the expected time E� during which both men with the same 
complements of life as in the previous problem do not die (p. 288). De Moivre 
only provided the answer; a reconstruction (Czuber, Note 22 to the German 
translation of 1906 of De Moivre’s work) is as follows. 
 
    P (x � � � x + dx or x � � � x + dx) = [(n – x)/n]dx/p + [(p – x)p]dx/n, 

    E� = �
p

0

{[(n – x)/n]/p + [(p – x)p]/n}dx = p/2 – p2/6n. 

 
Note that probabilities of the type of P (� � x) easily lead to integral 
distribution functions. 
    Hald (1990, pp. 515 – 546) described in detail the work of De Moivre and 
of his main rival, Simpson, in life insurance. Simpson improved on, and in a 
few cases corrected the former’s findings. After discussing one of the versions 
of mutual insurance, Hald (p. 546) concluded that Simpson’s relevant results 
represented “an essential step forward”.  
 
    4.3. The Doctrine of Chances (1718, 1738, 1756) 
    This work published in three editions, in 1718, 1738, and, posthumously, in 
1756 (reprinted in 1967), was De Moivre’s main achievement. He developed 
it from his previous memoir (§4.1) and he intended it for gamblers so that 
many results were provided there without proof. This fact together with other 
circumstances2 caused his extremely important book, whose translation into 
French contemplated both Lagrange and Laplace

3, to remain barely known 
for many decades. I refer to the reprint of its last edition. 
    In his Introduction, De Moivre listed his main methods: combinatorial 
analysis, recurrent sequences (whose theory he himself developed) and 
infinite series; in particular, he applied appropriately truncated divergent 
series. Also in the Introduction, on pp. 1 – 2 he provided the “classical” 
definition of probability, usually attributed to Laplace, but kept to the 
previous reasoning on expectation (§4.1) and even introduced the value of 
expectation (p. 3), formulated the multiplication theorem for probabilities (not 
for chances, as previously) and, in this connection, once more mentioned 
independence. Two events, A and B, were independent, if, as he stated, 
 
    P(B) = P(B/A), P(A) = P(A/B)  
 
(modern notation here and below). For dependent events (p. 6), three in 
number (say), 
 
    P(A·B·C) = P(A) P(B/A)P(C/A·B).                                                       (3) 
 



    I list now some of the problems from the Doctrine mentioned by Hald 
(1990, pp. 409 – 413) without repeating those described in §4.1 and, for the 
time being, leaving aside the normal distribution. 
    1) The Huygens additional Problem No. 4 (§2.2.2): the appearance of the 
hypergeometric distribution including the multivariate case: Problems NNo. 
20 and 26.  
    2) Runs of successes in n Bernoulli trials including the case of n � �: 
Problems NNo. 34 and 74. 
    3) Coincidences. A generalization of Montmort’s findings (§3.3.3) by the 
method of inclusion and exclusion: Problems 35 and 36. 
    4) The gambler’s ruin: Problems 58 – 71. 
    5) Duration of game: Problems 58 – 64, 68 – 71. 
    For the general reader the main merit of the Doctrine was the study of many 
widely known games whereas De Moivre himself, in dedicating its first 
edition to Newton (reprinted in 1756 on p. 329), perceived his main goal in 
working out 
 
    A Method of calculating the Effects of Chance … and thereby fixing certain 
    rules, for estimating how far some sort of Events may rather be owing to 
    Design than Chance … [so as to learn] from your Philosophy how to 
    collect, by a just Calculation, the Evidences of exquisite Wisdom and 
    Design, which appear in the Phenomena of Nature throughout the 
    Universe. 
 
    I stress that De Moivre wrote this dedication before proving his limit 
theorem (§4.4). See Pearson’s statement on Newton’s influence in §2.2.3. 
 
    4.4. The De Moivre – Laplace Theorem 
    In 1730 De Moivre published his Miscellanea analytica (not translated into 
any living language). Later he appended two supplements; I am interested in 
the second one (1733)4, which he printed in a small number of copies and sent 
out to his colleagues. In 1738 De Moivre translated it into English and 
included in the second, and then, in an extended form, in the third edition of 
the Doctrine (pp. 243 – 254 in 1756). Its title includes the words binomial     
(a + b) n which means that, although studying the particular case of the 
symmetric binomial, De Moivre thought about the general case. He (p. 250) 
also expressly and justly stated that the transition to the general case was not 
difficult. Strangely enough, even recently some authors (Schneider 1988, p. 
118) maintained that De Moivre had only considered the particular case.  
    The date of the compilation of this supplement is known: on the first page 
of its Latin original De Moivre stated that he had concluded (at least its 
mathematical part) about 12 years earlier, i.e., soon after the appearance of the 
Misc. anal. However, he derived much of it somewhat earlier, see below. Here 
are the stages of his calculations (Sheynin 1970a). 
    1) In Book 5 of the Misc. anal. De Moivre determined the ratio of the 
middle term of the symmetric binomial to the sum of all of its terms, and in 
the first supplement to that work he derived, independently from, and 
simultaneously with Stirling the so-called Stirling formula. Only the value of 

the constant, π2 , the latter communicated to him5.  
    2) In the same Book, De Moivre calculated the logarithm of the ratio of the 
middle term of the binomial (1 + 1) n  to the term removed by l from it: 



 
(m + l – 1/2)ln(m + l – 1) + (m – l + 1/2)ln(m – l + 1) – 2mlnm + ln[(m +l)/m]  
 
(m = n/2). However, only in the second supplement De Moivre transformed 
this expression obtaining, as n � �, – 2l 2/n. The ratio itself thus became 
equivalent to 
 
    1 – 2l 2/n + 4l 4/2n 2 – ...                                                                        (4) 
 
Actually, as corroborated by his further calculations, De Moivre thought about 
the inverse ratio.  
    3) Also in the same supplement, after integrating (4), De Moivre calculated 
the ratio of the sum of the terms between the middlemost and the one removed 
from it by l to the sum of all the terms. It was equal to 
 

    [2/ nπ2 ] (l – 2l 3/1·3n + 4l 5/2·5n2 – …).                                            (5) 
 
He then calculated this sum either by numerical integration, or, for l < �n/2, 
by leaving only a few of its first terms. For n � � his main result can be 
written in modern notation as 

    lim P[a � 
npq

np−µ
 � b] =

π2

1
�
b

a

exp (–z2/2) dz.                                  (6) 

 
This is the integral De Moivre – Laplace theorem (see §7.1-3), as Markov 
(1924, p. 53) called it, – a particular case of the CLT, a term introduced by 
Polya (1920). Note that neither De Moivre, nor Laplace knew about uniform 
convergence that takes place here. 
    Todhunter (1865, pp. 192 – 193) inadequately described the essence of De 
Moivre’s finding. He failed to note that De Moivre had actually considered 
the general case of p � q and only stated that “by the aid of Stirling’s 
Theorem the value of Bernoulli’s Theorem is [was] largely increased”6. 
Eggenberger (1894) was the first to note that De Moivre had arrived at the 
[normal distribution]. 
    De Moivre (1718/1756, p. 252) mentioned the study of the sex ratio at birth 
(§2.2.4) and illustrated it by imagined throws of 14 thousand dice each having 
35 faces and painted in two colors, 18 faces white and 17 black7. His 
reasoning (and his general considerations on p. 251) meant that, for him, the 
binomial distribution was a divine law of nature, stochastic only because of 
possible deviations from it. De Moivre thus actually recognized the mutual 
action of necessity and randomness, cf. §3.2.4. 
 
    Notes 
    1. De Moivre thus made use both of chances and probability. 
    2. De Moivre’s symbolism soon became dated; the English language had 
been little known on the Continent; Todhunter, the most influential historian 
of probability of the 19th century, inadequately described De Moivre’s main 
finding (§4.4); and, last but not least, Laplace (1814/1995, p. 119) did not 
sufficiently explain it. 
    3. Lagrange’s letter to Laplace of 30 Dec. 1776 in t. 14 of his Oeuvres 
(1892), p. 66. 



    4. I call this memoir a supplement only for the sake of tradition: its extant 
copies in large libraries were bound to the Misc. anal. 
    5. In the same supplement De Moivre included a table of lg n! for n = 10 
(10) 900 with 14 decimals; reprint (1718/1756, p. 333). Eleven or twelve 
decimals were correct; a misprint occurred in the value of lg 380!. 
    6. In 1740, Simpson directly dwelt on the general case (Hald 1990, pp. 21 
– 23). 
    7. Regular 35-hedrons do not exist, but this is not here important. De 

Moivre thought about 14 thousand yearly births with m:f = 18:17. 
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    5. Bayes 

    5.1. The Bayes Formula and Induction 
    I dwell on the posthumous memoir (Bayes 1764 – 1765) complete with the 
commentaries by Price. In its first part Bayes introduced his main definitions 
and proved a few theorems; note that he defined probability through 
expectation. There was no hint of the so-called Bayes theorem 
 

    P(Ai /B) = 

�
=

n

j
jj

ii

APA/BP

APA/BP

1  

)()(

)()(
, j = 1, 2, …, n,                                      (1) 

 
and it was Cournot (1843, §88) who first applied the term itself, and 
hesitatingly at that. I return to formula (1) in §§7.1-1 and 9.2-2. Here I 
indicate that Bayes had in essence introduced induction into probability and 
that his approach that assumed the existence of prior probabilities or 
distributions (see below) greatly influenced the development of mathematical 
statistics1.  
    Bayes then studied an imaginary experiment, a ball falling on point r 
situated in a unit square ABCD, “to the left” or “to the right” of some straight 
line MN parallel to, and situated between AB and CD. If, after (p + q) trials, 
the point r occurred p times to the right of MN and q times, to the left of it, 
then 
  

    P(b ≤  r ≤  c) = � −
c

b

qp duuu )(1   ÷  � −
1

0

)(1 dvvv qp                      (2) 

 
where bc is a segment within AD. Bayes derived the denominator of (2) 
obtaining the value of the [beta-function] B(p + 1; q + 1) and spared no effort 
in estimating its numerator. The right side of (2) is now known to be equal to 
the difference of two values of the incomplete beta-function 
 
    Ic(p + 1; q + 1) – Ib(p + 1; q + 1). 
  
    Thus, given the results of the experiment, and assuming a uniform prior 
distribution2 of the location of MN and r, the appropriate theoretical 
probability, considered as a random variable, was determined.  



    In his covering letter, Price provided a purely methodical illustration by 
requiring the [probability] of the next sunrise observed 10 6 times in 
succession. Formula (2) indirectly answers his question if b = 1/2 and c = 1 
are chosen; it also provides the probability of the contrary event if b = 0 and c 
= 1/2. Price (Bayes 1764/1970, pp. 149 and 150 – 151) also solved the same 
question for p = 1 and q = 0 and obtained P = 3/4 which is doubtful: knowing 
nothing about the essence of a phenomenon we should have gotten P = 0 (cf. 
Poisson’s reasoning in §8.1). In this case, formula (2) is wrong. Note also that 
Chebyshev (1879 – 1880, p. 158/149) formulated the same problem on an 
everyday level: To determine the probability of a student’s successful answer 
to the next question after his previous successes. 
    I dwell somewhat on the above. After p successes, the probability (this 
time, the actual probability) of the next sunrise is 
 

    P = �
+

1

0

1dxx p  ÷ �
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(cf. §7.1.5) and Polyá (1954, p. 135) remarked that each consecutive success 
(sunrise) provided ever less justification for the next one: 
    Cournot (1843, §93) considered a similar problem: A woman gave birth to 
a boy; determine the probability that her next child will also be a boy. Without 
justification, he stated that “perhaps” the odds were 2:1 but that it was 
impossible to solve that problem. See the opinions of Laplace (§§7.1-1 and 
7.1-5), Gauss (§9.2-2) and Chebyshev (§13.2-7) about the Bayesian 
approach. 
    Beginning with the 1930s and perhaps for three decades English and 
American statisticians had been denying Bayes. I am, however, leaving aside 
that period and I only note that the first and the main critic of the Bayes 
“theorem” or formula was Fisher (1922, pp. 311 and 326) but that he had not 
specified what exactly did he refuse to comply with. It seems that he disagreed 
with the introduction of hardly known prior probabilities and/or with the 
assumption that they were equal to one another, cf., however, Laplace’s 

general statement about rectifying hypotheses (§7.2-1). The papers of 
Cornfield (1967) and Barnard (1967) were also insufficiently definite; the 
former figuratively remarked, on his p. 41, that Bayes had returned from the 
cemetery. 
    It is methodologically important to note that the inverse probability defined 
by formula (1) is tantamount to conditional probability given that the 
stipulated condition has indeed been fulfilled. 
 
    5.2. The Limit Theorem 
    I dwell now on the case of n = (p + q) � � which Bayes had not expressly 
discussed. Price, however, remarked that, for a finite n, De Moivre’s results 
were not precise. Timerding, the Editor of the German translation of the Bayes 
memoir, nevertheless went on to consider the limiting case. He issued from 
Bayes’ calculations made for large but finite values of p and q. Applying a 
clever trick, he proved that, as n � �, the probability � of the ball falling to 
the right of MN obeyed the proposition  

    limP{
23 /n/pq

|a| −α
� z} = 

π2

1
�
z

0

exp (–w2/2) dw,                          (3) 



 
where (not indicated by Timerding) a = p/n = E�, pq/n3/2 = var �. 
    In my opinion, this little known proposition is very important. Together 
with the integral De Moivre – Laplace theorem it completed the creation of 
the first version of the theory of probability. The functions in the left sides of 
formulas (4.6) and (3) are random variables, centred and normed in the same 
way, and it is remarkable that Bayes, without knowing the notion of variance, 
apparently understood that (4.6) was not sufficiently precise for describing the 
problem inverse to that studied by De Moivre. Anyway, Price (Bayes 
1764/1970, p. 135) stated that he knew 
 
    of no person who has shewn how to deduce the solution of the converse 
    problem … What Mr De Moivre has done therefore cannot be thought 
    sufficient … 
 
    Jakob Bernoulli (Note 15 in my Chapter 3) maintained that his formulas 
were also fit for solving the inverse problem – but how precisely? De Moivre 
(1718/1756, p. 251) also mentioned the inverse problem: 
 
    Conversely, if from numberless Observations we find the Ratio of the 
    Events to converge to a determinate quantity … then we conclude that this 
    Ratio expresses the determinate Law according to which the Event is to 
    happen. 
 
My question persists: how precisely do we conclude? 
 
    Notes 
    1. A modern encyclopedia (Prokhorov 1999b) contains 14 items 
mentioning him; for example, Bayesian estimator, Bayesian approach, etc. 
There also, the author mistakenly attributes formula (1) to Bayes. 
    2. Bayes himself had not stated that this distribution was uniform, but it is 
nevertheless necessary to make this assumption (K. Pearson 1978, p. 364). 
Without any explanation provided, Mises (1919, §9.2) remarked that Bayes 
had considered the general case as well. Following Czuber, to whom he 
referred, Mises proved that the influence of non-uniformity of the prior 
distribution weakens with the increase in the number of observations. 
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    6. Other Investigations before Laplace 

    6.1. Stochastic Investigations 
    6.1.1. Daniel Bernoulli. He published a number of memoirs pertaining to 
probability and statistics, and, before that, he (1735) provided a stochastic 
reasoning on the structure of the Solar system. The inclinations of the orbits of 
the five (excepting the Earth) then known planets with respect to the Earth 
(considered as random variables with a continuous uniform distribution) were 
small, and the probability of a “random” origin of that circumstance, as he 
concluded, was negligible. I dwelt on the logic of such considerations in 
§1.1.1; here, however, enters a new dimension (see §10.9.4): it was possible to 



study, instead of the inclinations, the arrangement of the poles of the orbits 
(Todhunter 1865, p. 223). 
    In this subsection, I consider only some of Bernoulli’s memoirs and I 
postpone the study of his other work until §§6.2.3 and 6.3, but my general 
conclusion is that he, together with De Moivre, was the main predecessor of 
Laplace. 
    a) Moral expectation. While attempting to explain the paradoxical nature of 
the Petersburg game (§3.3.4), Bernoulli (1738) suggested that the gain y of a 
gambler was determined by his winnings x in accord with the differential 
equation (the first such equation in probability) 
 
    dy = cdx/x, c > 0, so that y = f(x) = cln(x/a) 
 
where a was the gambler’s initial capital. Bernoulli also proposed that the 
expected winnings [px]/�pi where pi were the appropriate probabilities be 
replaced by their “moral expectation”  
 
    �pi f (xi)/�pi. 
 
    He indicated but had not proved (see §7.1-9) that even a “just” game with a 
zero expected loss for each participant became disadvantageous because the 
moral expectation of winnings, again for each, was negative, and that the 
infinite expected gain in the Petersburg game (3.5) could be replaced by a 
finite moral expectation. Then, applying his innovation to a study of marine 
shipping of freight, he maintained (again, without proof, see same subsection 
below) that the freight should be evenly distributed among several vessels. 
    Moral expectation had become popular and Laplace (1812, p. 189) 
therefore proposed a new term for the previous “usual” expectation calling it 
mathematical; his expression persists at least in the Russian literature. At the 
end of the 19th century, issuing from Bernoulli’s idea, economists began to 
develop the theory of marginal utility thus refuting Bertrand’s opinion 
(1888a, p. 66) that moral expectation was useless: 
 
    The theory of moral expectation became classical, and never was a word 
    used more exactly. It was studied and taught, it was developed in books 
    really celebrated. With that, the success came to a stop; no application was 
    made, or could be made, of it. 
 
    I note, finally, that the term itself was due to Gabriel Cramer; Daniel 
Bernoulli quoted a passage from his pertinent letter of 1732 to Niklaus 

Bernoulli. 
    b) A limit theorem. While studying the same problem concerning the sex 
ratio at birth (§§2.2.4, 3.3.4, 4.4), Bernoulli (1770 – 1771), in the first part of 
his memoir, assumed that male and female births were equally probable. It 
followed that the probability that the former constituted a half of 2N births 
will be 
 
    P = [1�3�5�…�(2N – 1)]  ÷  [2�4�6�…�2N] = q(N).                               
 



    He calculated this fraction not by the Wallis formula but by means of 
differential equations. After deriving q(N – 1) and q(N + 1) and the two 
appropriate values of �q, he obtained 
 
    dq/dN = – q/(2N + 2), dq/dN = – q/(2N – 1) 
 
and, “in the mean”, dq/dN = – q/(2N + 1/2). Assuming that the solution of this 
equation passed through point N = 12 and q(12) as defined above, he obtained 
 

    q = 1.12826/ 14 +N . 
 
Application of differential equations was Bernoulli’s usual method in 
probability, also see Item a. 
    Bernoulli also determined the probability of the birth of approximately m 
boys (see below): 
 
    P(m = N ± µ) = q exp(– µ2/N) with µ = 0(�N).                                     (1) 
 
    In the second part of his memoir Bernoulli assumed that the probabilities of 
the birth of both sexes were in the ratio of a:b. Equating the probabilities of m 
and (m + 1) boys being born, again being given 2N births, he thus obtained the 
expected number of male births 
 

    Em = M = 
ba
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which was of course evident. More interesting was Bernoulli’s subsequent 
reasoning for determining the probability of an arbitrary m (for µ of the order 
of �N): 
 

    P(m = M + µ + 1) – P(m = M + µ) � d� = � – (a/b) �
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    The subsequent transformations included the expansion of ln[(M + 1 + 
µ)/(M + 1)] into a power series. Bernoulli’s answer was 
 

    P(m = M ±  µ) = � = P(m = M) exp [–
bM

ba

2

)( 2µ+
], 

 
hence (1). Note that Bernoulli had not applied the local De Moivre (– 

Laplace) theorem. 
    Issuing from some statistical data, he compared two possible pertinent 
ratios but had not made a final choice in favor of either of them. He also 
determined such a value of µ that the sum of probabilities (1), beginning from 
µ = 0, equalled one half. Applying summation rather than integration, he had 
not therefore arrived at an integral limit theorem and (also see above) he did 
not refer to, and apparently had not known about De Moivre’s findings. This 
shows, once again (cf. §4.4), that they had for a long time been forgotten. 



    c) Urn problems. I consider two of these. An urn contains n pairs of white 
and black stripes. Determine the number (here and below, actually, the 
expected number) of paired stripes left after (2n – r) extractions without 
replacement. By the combinatorial method Bernoulli (1768a) obtained 
 
    x = r(r – 1)/(4n – 2); and x = r2/4n if n = �. 
 
    He derived the same result otherwise: when r decreases by dr the 
corresponding dx is either zero [(r – 2x) cases] or dr (2x cases) so that 
 
    dx = [(r – 2x)	0 + 2x�dr]/r, x = r2/4n since r = 2n if x = n. 
 
    Bernoulli then generalized his problem by considering unequal probabilities 
of extracting the stripes of different colors and by introducing stripes of 
several different colors and he (1768b) applied his findings to studying the 
duration of marriages, a subject which was directly linked with insurance of 
joint lives. 
    Suppose now that each of two urns contains an equal number n of balls, 
white and black, respectively. Determine the number of white balls in the first 
urn after r cyclic interchanges of one ball. Bernoulli (1770) solved this 
problem by the same two methods. Thus, he issued from the differential 
equation 
 
    dx = – xdr/n + [(n – x)/n]dr so that x 
 (1/2)n [1 + e– 2r/n]. 
 
    Bernoulli then considered the case of three urns with balls of three different 
colors. He noted that the number of white balls in the first urn was equal to the 
sum of the first, the fourth, the seventh, … terms of the development of        
[(n – 1) + 1]r divided by n r–1. For the other urns he calculated, respectively, 
the sums of the second, the fifth, the eighth, …, and the third, the sixth, the 
ninth, … terms. For the first urn he obtained 
 

    A =
1

1
−rn

[(n – 1)r  + 3
rC (n – 1)r–3 + 6

rC (n – 1)r–6 + ...] 
 ne– r/n S.    (2)  

 
    The expression designated by S obeyed the differential equation 
 
    Sdr3/n3 = d 3S 
 
and was therefore equal to 
 
    S = aer/n + be– r/2n sin(r�3/2n) + ce– r/2n cos(r�3/2n)  
 
where, on the strength of the initial conditions, a = 1/3, b = 0, c = 2/3. 
    Bernoulli also noted the existence of a limiting state, of an equal number of 
balls of each color in each urn. This can be easily verified by referring to the 
theorem on the limiting transition matrix in homogeneous Markov chains. He 
obtained formula (2) by issuing from differential equations 
 
    dx = – xdr/n + [n – (x + y)]dr/n, dy = – ydr/n + xdr/n 
 



where x, y, and [n – (x + y)] were the numbers of white balls in the urns after  
r interchanges1. I return to this problem in §7.1-3; here, I note that Todhunter 
(1865, pp. 231 – 234) simplified Bernoulli’s solution and made it more 
elegant. He wrote the differential equations as 
 
    dx = (dr/n) (z – x), dy = (dr/n) (x – y), dz = (dr/n) (y – z)  
 
and noted that the sum S was equal to 
 
    S = (1/3) [e�r/n + e�r/n + e�r/n] 
 

with �, �, � being the values of 3 1 . 
 
    6.1.2. Dalembert. In the theory of probability, he is mostly known as the 
author of patently wrong statements2. Thus, Dalembert (1754) maintained that 
the probability of heads appearing twice in succession was equal to 1/3 rather 
than to 1/4. Then, he (1768a) reasoned on the difference between 
“mathematical” and “physical” probabilities3, stating without justification 
that, for example, after one of two contrary events had occurred several times 
in succession, the appearance of the other one becomes physically more 
probable. He was thus ridden by prejudices which Montmort had already 
mentioned and which Bertrand later refuted by a few words (§2.1.1). At the 
same time, Dalembert recommended to determine probabilities experimentally 
but had not followed his own advice (which saved him from revealing his 
mistakes). Finally, he (1768b) denied the difference (perfectly well 
understood by Huygens, §2.2.2) between the mean, and the probable 
durations of life. It is opportune to recall Euler’s opinion as formulated in one 
of his private letters of 1763 (Juskevic et al 1959, p. 221): Dalembert tries 
“most shamelessly to defend all his mistakes”. Anyway, Dalembert (1768d, 
pp. 309 – 310) did not ascribe the theory of probability to “precise and true 
calculuses with respect either to its principles or results”4. 
    On the other hand, Dalembert thought that, in a single trial, rare events 
should be considered unrealizable (Todhunter 1865, §473) and that absolute 
certainty was qualitatively different from “the highest probability”. It followed 
from the latter statement that, given a large number of observations, an 
unlikely event might happen (cf. the strong law of large numbers), and, taken 
together, his considerations meant that the theory of probability ought to be 
applied cautiously. Dalembert also reasonably objected to Daniel Bernoulli’s 
work on prevention of smallpox and formulated his own pertinent ideas 
(§6.2.3). I ought to add that Dalembert was indeed praiseworthy for his work 
in other branches of mathematics (and in mechanics); note also that Euler had 
not elaborated his likely correct remark. On his work see also Yamasaki 
(1971). 
 
    6.1.3. Lambert. He was the first follower of Leibniz in attempting to create 
a doctrine of probability as a component of a general teaching of logic. Like 
Dalembert (Note 3), Lambert explained randomness by ignorance of causes, 
but he also stated that all digits in infinite decimal developments of irrational 
numbers were equally probable, which was an heuristic approach to the notion 
of normal numbers, and formulated a modern-sounding idea about the 



connection of randomness and disorder (Lambert 1771, §324; 1772 – 1775), 
also see Sheynin (1971a, pp. 238 – 239; 1971b, p. 246, 1974, pp. 136 – 137). 
    Lambert did not go out of the confines of uniform randomness. To put his 
ideas in perspective, I ought to add that the philosophical treatises of the 18th 
century testify to the great difficulties experienced in generalizing the notion 
of randomness (Sheynin 1991c, §7.1), also see §2.2.4. One example: even in 
the 19th century, many scientists, imagining that randomness was only 
uniform, refused to recognize the evolution of species, and two authors (Baer 
1873, p. 6; Danilevsky 1885, pt 1, p. 194) independently mentioned the 
philosopher depicted in Gulliver’s Travels (but borrowed by Swift from 

Raymond Lully, 13th – 14th centuries). That “inventor”, hoping to get to know 
all the truths, was putting on record each sensible chain of words that 
appeared from among their uniformly random arrangements. 
 
    6.1.4. Buffon. He is mostly remembered for his definitive introduction of 
geometric probabilities (§6.1.6). Then, he reasonably suggested that the value 
of winnings in a game of chance diminished with the increase of the 
gambler’s capital (cf. §6.1.1) and experimentally studied the Petersburg game 
(§3.3.4), proposed the value 1/10,000 as a negligible probability of success in 
a single trial, attempted to solve the problem of the probability of the next 
sunrise (see Chapter 5)5, cf. §7.1-5, and compiled tables of mortality which 
became popular.  
    Negligible, as he thought, was the probability of death of a healthy man 
aged 56 during the next 24 hours, but his figure was apparently too low; K. 

Pearson (1978, p. 193) thought that 1/1,000 would have been more 
appropriate. In addition, negligibility ought to be only chosen for a particular 
event rather than assigned universally. All the above is contained in Buffon’s 
main work (1777). 
 
    6.1.5. Condorcet. He attempted to apply the theory of probability to 
jurisprudence in the ideal and tacitly assumed case of independent judgements 
made by jurors or judges. He also estimated the trustworthiness of testimonies 
and critically considered electoral problems. His main method was the 
application of difference equations. Todhunter (1865, pp. 351 – 410) 
described the work of Condorcet in detail and concluded (p. 352) that in many 
cases it was “almost impossible to discover” what he had meant6: “The 
obscurity and self contradiction are without any parallel …” He, Todhunter, 
will provide some illustrations, “but no amount of examples can convey an 
adequate impression of the extent of the evils”. At the very least, however, 
Laplace and Poisson continued to apply probability to jurisprudence and 
certainly profited to some extent from the work of Condorcet. Poisson (1837a, 
p. 2) mentioned his ideas quite favorably. On Condorcet see also Yamasaki 
(1971). 
 
    6.1.6. Geometric Probabilities.  These were decisively introduced in the 
18th century although the definition of the notion itself, and, for that matter, 
only on a heuristic level, occurred in the mid-19th century (§10.3). Newton 
(§2.2.3) was the first to think about geometric probability; Daniel Bernoulli 
(§6.1.1) tacitly applied it in 1735 as did somewhat later De Moivre (1756b, p. 
323), T. Simpson (1757) and Bayes (§5.1). Dealing with the continuous 
uniform distribution, De Moivre wrote down the probability of the type P (0 < 



� < a) as the ratio of two segments. Simpson noted that in his case (a 
continuous triangular distribution) probabilities were proportional to the areas 
of the appropriate figures. Bayes assumed that, for a continuous uniform 
distribution, the probabilities of a ball falling on different equal segments were 
equal to one another. 
    The Michell (1767) problem became classical: Determine the probability 
that two stars from among all of them, uniformly distributed over the celestial 
sphere, were situated not farther than 1° from each other. Choose an arbitrary 
point (A) on a sphere with center O and imagine a circle perpendicular to OA 
having distance 1° from A. The probability sought is the ratio of the surface of 
the spherical segment thus obtained to that of the sphere. Newcomb and 
Fisher calculated the expected number of closely situated stars (§10.9-4) and 
general issues were also debated. Thus, Proctor (1874, p. 99) wished to 
determine “what peculiarities of distribution might be expected to appear 
among a number of points spread over a plane surface perfectly at random”. 
His was a question now belonging to mathematical statistics and concerning 
the deviations of an empirical density curve from its theoretical counterpart. 
And Bertrand (1888a, pp. 170 – 171) remarked that without studying other 
features of the sidereal system it was impossible to decide whether stars were 
arranged randomly.  
    Buffon (1777) expressly studied geometric probability; the first report on 
his work (Anonymous 1735) had appeared long before his contribution. Here 
is his main problem: A needle of length 2r falls “randomly” on a set of 
parallel lines. Determine the probability P that it intersects one of them. It is 
easily seen that 
 
    P = 4r/�a                                                                                            (3) 
 
where a > 2r is the distance between adjacent lines. Buffon himself had, 
however, only determined the ratio r/a for P = 1/2. His main aim was (Buffon 
1777, p. 471) to “put geometry in possession of its rights in the science of the 
accidental [du hasard]”. Many commentators described and generalized the 
problem above. The first of them was Laplace (§7.1-4) who noted that 
formula (3) enabled to determine [with a low precision] the number �. I treat 
the further history of geometric probability in my Chapter 12. 
 
    6.2. Statistical Investigations 
    6.2.1. Staatswissenschaft (Statecraft). In mid-18th century Achenwall 
(Sheynin 1997b) created the Göttingen school of Staatswissenschaft (also 
known as University Statistics) which described the climate, geographical 
situation, political structure and economics of separate states and estimated 
their population by issuing from data on births and mortality but did not study 
relations between quantitative variables. Achenwall referred to Süssmilch, 
advised state measures fostering the multiplication of the population and 
recommended censuses without which (1763, p. 187) a “probable estimate” of 
the population could be still gotten, see above. He (1752/1756, Intro) also left 
an indirect definition of statistics: 
 
    In any case, statistics is not a subject that can be understood at once with 
    an empty pate. It belongs to a well digested philosophy, it demands a 
    thorough knowledge of European state and natural history taken together 



    with a multitude of concepts and principles, and an ability to comprehend 
    fairly well very different articles of the constitutions of present-day 
    kingdoms [Reiche]. 
 
    Achenwall’s student Schlözer (1804, p. 86) figuratively stated that “History 
is statistics flowing, and statistics is history standing still”. For those keeping 
to Staatswissenschaft this pithy saying became the definition of statistics 
which was thus not compelled to study causal connections in society or 
discuss possible consequences of innovations; which thus failed to adhere to 
the goals of political arithmetic (§2.1.4). The second distinction between the 
two disciplines consisted in that only political arithmetic was mostly 
interested in studying population. Finally, the methods of investigation were 
also different: not numbers, but wordy descriptions lay at the heart of the 
works of the Göttingen school. 
    Tabular statistics which had originated with Anchersen (1741) could have 
served as an intermediate link between words and numbers, but Achenwall 
was apparently opposed to it. Anyway, he (1752, Intro.) stated that he had 
“experienced a public attack” against the first edition of that book by 
Anchersen. “Tabular” statisticians continued to be scorned, they were even 
called Tabellenfabrikanten and Tabellenknechte (slaves of tables) (Knies 
1850, p. 23). 
    By the end of the 19th century, owing to the heterogeneity of its subject, 
Staatswissenschaft disintegrated. K. Pearson (1978, p. 125) remarked that 
political economy (Adam Smith) was the first discipline to break off from it 
and that the “evolution of Political Philosophers” had further curtailed the 
Staatswissenschaft. All this means that statistics, in its modern sense, owes its 
origin to political arithmetic. Consequently, I dwell below on contributions 
which had not belonged to the former subject, but, to the contrary, were 
mathematical or, in any case, issued from statistical data.  
    K. Pearson ( p. 29) also named Edward Chamberlayne (1616 – 1703) the 
“English Achenwall” but he also noted that Chamberlayne had “copied” his 
book from a French work of 1661 (which he did not see). 
 
    6.2.2. Population Statistics. Süssmilch (1741) adhered to the tradition of 
political arithmetic. He collected vast statistical data on the movement of 
population and attempted (as Arbuthnot did, see §2.2.4) to reveal in it divine 
providence but he treated his materials rather loosely. Thus, when taking the 
mean of the data pertaining to towns and rural districts, he tacitly assumed that 
their populations were equally numerous; in his studies of mortality, he had 
not attempted to allow for the differences in the age structure of the 
populations of the various regions etc. Nevertheless, it is possible to believe 
that his works paved the way for Quetelet (§10.5); in particular, he studied 
issues which later came under the province of moral statistics (e.g., 
illegitimate births, crime, suicides). And his tables of mortality had been in 
use even in the beginning of the 19th century. On his work see Birg (1986) and 
Pfanzagl & Sheynin (1997). Like Graunt, Süssmilch discussed pertinent 
causes and offered conclusions. Thus, he (1758) thought of examining the 
dependence of mortality on climate and geographical position and he knew 
that poverty and ignorance were conducive to the spread of epidemics.  
    Süssmilch’s main contribution, the Göttliche Ordnung, marked the origin of 
demography. Its second edition of 1765, included a chapter “On the rate of 



increase and the period of doubling [of the population]” written jointly with 
Euler. Partly reprinted in the latter’s Opera omnia (in t. 7 of ser. 1, 1923), it 
served as the basis of one of Euler’s memoirs (Euler 1767). Süssmilch 
naturally thought that the multiplication of mankind was a divine 
commandment and that, therefore, rulers must take care of their subjects. 
Quite consistently, he condemned wars and luxury and indicated that the 
welfare of the poor was to the advantage of both the state, and the rich. 
Malthus picked up one of their conclusions, viz., that the population 
increased in a geometric progression. 
    Euler is known to have left no contribution to the theory of probability (see, 
however, §6.3.1 devoted to the theory of errors), but he published a few 
memoirs on population statistics collected in the same volume of his works. 
When treating statistical data, he did not introduce any stochastic laws (for 
example, laws of mortality), but such concepts as increase in population and 
the period of its doubling are due to him, and his reasoning was always 
elegant and methodically interesting, in particular for life insurance (Paevsky 
1935). 
    Lambert published a mainly methodical study in population statistics 
(1772). Without due justification he proposed there several laws of mortality 
(§9), formulated the problem concerning the duration of marriages, 
statistically studied children’s mortality from smallpox and the number of 
children in families (§108). See Sheynin (1971b) and Daw (1980) who also 
appended a translation of Lambert’s discussion of the smallpox issue. One of 
his laws of mortality was a sum of two terms and he explained that they 
described physical processes; now, we also see that they belonged to types IX 
and X of the Pearson curves. 
    When considering the last-mentioned subject, Lambert issued from data on 
612 families having up to 14 children and, once more without substantiation, 
somehow adjusted his materials. It is remarkable that he arbitrarily increased 
the total number of children by one half and that the new data, as he 
maintained, were “smoother”. It might be thought that Lambert attempted to 
allow for stillbirths and the death of children. Elsewhere in his work he (§68) 
indicated that statistical investigations should reveal [and explain] 
irregularities. 
 
    6.2.3. Medical Statistics. It originated in the 19th century, partly because 
of the need to combat the devastating visitations of cholera. Interestingly 
enough, the expression medical probability appeared not later than in the mid-
18th century (Mendelsohn 1761, p. 204). At the end of that century 

Condorcet (1795, p. 542) advocated collection of medical observations7 and 
Black (1788, p. 65) even compiled a possibly forgotten “Medical catalogue of 
all the principle diseases and casualties by which the Human Species are 
destroyed or annoyed” that reminded of Leibniz’ thoughts (§2.1.4). Note that 
descriptions belonging to other branches of natural sciences as well have 
actively been compiled (mostly later) and that such work certainly demanded 
preliminary statistical efforts8. Some authors mistakenly stated that their 
compilations ruled out the need for theories (cf. Dalembert’s opinion in Note 
7). Until the beginning of the 20th century, the partisans of complete 
descriptions continued to deny sampling in statistics proper.  
    Especially important was the study of prevention of smallpox. Daniel 

Bernoulli (1766) justified the then practiced inoculation, the communication 



of a mild form of smallpox from one person to another. That procedure, 
however, spread infection, was therefore somewhat dangerous for the 
neighborhood and prohibited for some time, first in England, then in France. 
Referring to statistical data, but not publishing it, Bernoulli suggested that 1/n 
was the yearly rate of the occurrence of smallpox in those who have not had it 
before; that 1/m was the corresponding mortality; that m = n = 8 and that the 
inoculation itself proved fatal in 0.5% of cases.  
    He formed the appropriate differential equation whose solution  
 
    s = m�/[1 + (m – 1)ex/n] 
 
showed the relation between age x (in years) and the number of people of the 
same age, �, of which s had not contacted smallpox. Also by means of a 
differential equation he derived a similar formula for a population undergoing 
inoculation, that is, for its 99.5% which safely endured it and were not 
anymore susceptible to the disease. It occurred that inoculation lengthened the 
mean duration of life by 3 years and 2 months and that it was therefore, in his 
opinion, extremely useful. The Jennerian vaccination, – “the inestimable 
discovery by Jenner, who has thereby become one of the greatest benefactors 
of mankind” (Laplace 1814/1995, p. 83), – was introduced at the end of the 
18th century. Its magnificent success had not however ruled out statistical 
studies. Thus, Simon (1887, vol. 1, p. 230) formulated a question about the 
impermanence of protection against post-vaccinal smallpox and concluded 
that only comprehensive national statistics could provide an answer. 
    Dalembert (1761b; 1768d) criticized Daniel Bernoulli

9. Not everyone will 
agree, he argued, to lengthen his mean duration of life at the expense of even a 
low risk of dying at once of inoculation; then, moral considerations were also 
involved, as when inoculating children. Without denying the benefits of that 
procedure, Dalembert concluded that statistical data on smallpox should be 
collected, additional studies made and that the families of those dying of 
inoculation should be indemnified or given memorial medals. 
    He also expressed his own thoughts, methodologically less evident but 
applicable to studies of even unpreventable diseases. Dietz & Heesterbeek 
(2002) described Bernoulli’s and Dalembert’s investigations on the level of 
modern mathematical epidemiology and mentioned sources on the history of 
inoculation. For his part, K. Pearson (1978, p. 543) stated that inoculation 
was “said to have been a custom in Greece in the 17th century and was 
advocated … in the Phil. Trans. of the Royal Society in 1713”. Also see 
Sheynin (1972b, pp. 114 – 116; 1982, pp. 270 – 272). 
 
    6.2.4. Meteorology. In §2.1.4 I noted that Leibniz recommended regular 
meteorological observations. And, indeed (Wolf 1935, p. 312), 
 
    Observations of barometric pressure and weather conditions were made at 
    Hanover, in 1678, and at Kiel, from 1679 to 1714, at the instigation of 
    Leibniz. 
 
    The Societas meteorologica Palatina in Pfalz (a principality in Germany) 
was established in 1780, and, for the first time in the history of experimental 
science, it organized cooperation on an international scale (Sheynin 1984b, 
§3.1). At about the same time the Société Royale de Médecine (Paris) 



conducted observations in several European countries (Kington 1974). And 
even in the 1730s – 1740s they were carried out in several towns in Siberia in 
accordance with directions drawn up by Daniel Bernoulli in 1733 
(Tikhomirov 1932). In the second half of the 18th century several scholars (the 
meteorologist Cotte, Lambert and Condorcet) proposed plans for 
comprehensive international meteorological studies. 
    The first statistical study of connections between phenomena concerning 
meteorology occurred when Toaldo (1775; 1777) stated that the weather 
depended on the configurations of the Moon. His opinion was not abandoned 
until the mid-19th century (Muncke 1837, pp. 2052 – 2076), but either then, or 
later, in the second half of that century, for example when the connection 
between cyclones and solar activity had been studied (Sheynin 1984a, §4.2), 
no embryo of correlation theory was established, see §10.7. 
 
    6.3. Mathematical Treatment of Observations 
    In modernity, mathematical treatment of observations became necessary 
after regular astronomical observations (Tycho Brahe, §1.2.2) had begun. A 
new problem of natural sciences, the determination of the figure and the size 
of the Earth (of the Earth’s ellipsoid of revolution), presented itself in the 
second half of the 17th century. By means of meridian arc measurements the 
lengths of those arcs were calculated (indirectly, by triangulation). After 
determining the length of one degree of the meridian in two different and 
observed latitudes it becomes possible to calculate both parameters of the 
ellipsoid whereas redundant measurements lead to equations of the type of 
(1.2) in these unknowns which can then be derived more precisely10.  
    The term “Theory of errors” (Theorie der Fehler) is due to Lambert 
(1765a, Vorberichte and §321) who defined it as the study of the relations 
between errors, their consequences, circumstances of observation and the 
quality of the instruments. He isolated the aim of the “Theory of 
consequences” as the study of functions of observed (and error-ridden) 
quantities. In other words, he introduced the determinate error theory (Note 2 
to §0.3) and devoted to it §§340 – 426 of his contribution. Neither Gauss, nor 
Laplace ever used the new terminology, but Bessel (1820, p. 166; 1838b, §9) 
applied the expression “theory of errors” without mentioning anyone and by 
the mid-19th century it became generally known. As far as that theory is 
concerned, Lambert was Gauss’ main predecessor (see §6.3.1). 
   I shall separately consider the adjustment of direct and indirect 
measurements; note, however, that scientists of the 18th century recognized 
the common character of these problems. Thus, in both cases the unknowns 
were called by the same term, “Mittel” (Lambert 1765b, §6) or “milieu” 
(Maire & Boscovich 1770, pp. 484 and 501), also see the method of averages 
(§6.3.2). 
 
    6.3.1. Direct Measurements. The first to touch on this case was Cotes 
(1722).Without any justification he advised to regard the weighted arithmetic 
mean, which he compared with the center of gravity of the system of points, – 
of the observations,– as the “most probable” estimator of the constant 
sought11. He had not explained what he meant by most probable, nor did he 
exemplify his rule. Nevertheless, his authority apparently gave support to the 
existing common feeling (§1.2.4). Without mentioning Cotes Picard (1729, 
pp. 330, 335, 343) called the arithmetic mean véritable; putting forth 



qualitative considerations, Condamine (1751, p. 223) recommended to apply 
it. Then, Laplace (1814/1995, p. 121) stated that “all calculators” followed 
the Cotes rule. Elsewhere Laplace (1812, pp. 351 – 353) remarked that 
astronomers had begun to follow Cotes after Euler (1749) but apparently no 
one could have, or could have not preceded Euler. 
    T. Simpson (1756) applied, for the first time ever, stochastic 
considerations to the adjustment of measurements; for that matter, he made 
use of generating functions. The aim of his memoir was, as he stated, the 
refutation of some authors (left unnamed) who had maintained that one good 
observation was as plausible as the mean of many of them, cf. §1.2.2. 
Simpson assumed that the chances of observational errors  
 
    – v, – v + 1, …, – 2, – 1, 0, 1, 2, …, v – 1, v 
 
were equal [proportional] either to 
 
    r –v, r–v+1, …,  r–2, r–1, 1, r, r2, …, rv–1, rv 

 

or to 
 
    r– v, 2r–v+1, …, (v – 1)r–2, vr–1, (v + 1), vr, (v – 1)r2, …, 2rv–1, rv. 
 
    He assumed that the observational errors obeyed some density law (taking r 
= 1 he thus introduced the uniform and the triangular discrete distributions) 
and his was the first actual introduction of random errors. 
    Denote the observational errors by �i, and by N, the number of some 
chances. Then, as Simpson noted, 
 
    N(�1 + �2 + … + �n = m) was the coefficient of rm in the expansions of 
 
    (r–v + … + r0 + … + rv)n = r–vn(1 – r)–n(1 – r2v+1)n, 
    (r–v + 2r–v+1 + … + (v + 1)r0 + … + 2rv–1 + rv)n = r–vn(1 – r)–2n(1 – rv+1)2n

. 

 
The left sides of these two equalities were generating functions with unit 
coefficients in the first case, and coefficients 
 
    1, 2, …, v + 1, … 2, 1 
 
in the second instance. 
    For both these cases Simpson determined the probability that the absolute 
value of the error of the arithmetic mean of n observations was less than some 
magnitude, or equal to it12. Consequently, Simpson decided that the mean was 
always [stochastically] preferable to a separate observation. He thus arbitrarily 
and wrongly generalized his proof. Simpson also indicated that his first case 
was identical with the determination of the probability of throwing a given 
number of points with n dice each having (v + 1) faces. He himself (1740, 
Problem No. 22), and earlier Montmort (§3.3.3), although without 
introducing generating functions, and De Moivre (1730, pp. 191 – 197) had 
studied the game of dice. 
    Soon Simpson (1757) reprinted his memoir adding to it an investigation of 
the continuous triangular distribution. He passed over to the continuous case 



by assuming that |v| � � leaving the magnitude (m/n)/v constant. Here, the 
fraction in the numerator was the admissible error of the mean and n, as 
before, the number of observations. Simpson’s graph however represented a 
finite v and a continuous argument (the observational errors) and the curve of 
the error of the mean did not possess the distinctive form of the normal 
distribution. 
    Simpson naturally had no knowledge of the variance and the calculation of 
the probability that the error of the mean exceeded the error of a single 
observation occurred to be difficult (Shoesmith 1985b). 
    Without mentioning Simpson, Lagrange (1776) studied the error of the 
mean for several other and purely academic distributions, also by applying 
generating functions (even for continuous laws, thus anticipating the 
introduction of characteristic functions). A possible though inadequate reason 
for leaving out Simpson was the heated dispute over priority between De 

Moivre and him. Lagrange apparently had not wanted to be even indirectly 
involved in it. De Moivre was a scholar of a much higher caliber (a fact 
clearly recognized by Simpson) and 43 years the senior. At least on several 
important occasions Simpson did not refer to De Moivre and, after being 
accused by the latter (1756b; p. xii in edition of 1743) of “mak[ing] a Shew of 
new Rules, and works of mine”, “appeal[ed] to all mankind, whether in his 
treatment of me [of Simpson], he has [not] discovered an air of self-
sufficiency, ill-nature, and inveteracy, unbecoming a gentleman” (Simpson, 
posth. publ. 1775, p. 144). 
    Lagrange’s memoir contained other findings of general mathematical 
interest. He was the first to use integral transformations, and, in Problem 6, he 
derived the equation of the multivariate normal distribution (K. Pearson 
1978, p. 599). In his §18 he introduced the term courbe de la facilité des 
erreurs. Also see Sheynin (1973a, §2). 
    Lambert (1760, §§271 – 306) described the properties of “usual” random 
errors, classified them in accordance with their origin (§282), unconvincingly 
proved that deviating observations should be rejected (§§287 – 291) and 
estimated the precision of observations (§294), again lamely but for the first 
time ever. He then formulated an indefinite problem of determining a 
[statistic] that with maximal probability least deviated from the real value of 
the constant sought (§295) and introduced the principle of maximal 
likelihood, but not the term itself, for a continuous density (§303), 
maintaining, however (§306), that in most cases it will provide estimates little 
deviating from the arithmetic mean. The translator of Lambert’s contribution 
into German left out all this material claiming that it was dated13. 
    Lambert introduced the principle of maximum likelihood for an 
unspecified, more or less symmetric and [unimodal] curve, as shown on his 
figure, call it �(x – xo) where xo was the sought parameter of location. Denote 
the observations by x1, x2, …, xn, and, somewhat simplifying his reasoning, 
write his [likelihood function] as  
 
    �(x1 – xo) �(x2 – xo) … �(xn – xo). 
 
When differentiating this function, Lambert had not indicated that the 
argument here was the parameter xo, etc. 
    In a few years Lambert (1765a) returned to the treatment of observations. 
He attempted to estimate the precision of the arithmetic mean, but did not 



introduce any density and was unable to formulate a definite conclusion. He 
also partly repeated his previous considerations and offered a derivation of a 
density law of errors occurring in pointing an instrument (§§429 – 430) in 
accordance with the principle of insufficient reason: it was a 
semicircumference (with an unknown radius) simply because there were no 
reasons for its “angularity”.  
    Johann III Bernoulli (1789) published a passage from a manuscript of 
Daniel Bernoulli which he had received in 1769 but which was written, as its 
author had told him, much earlier. There, Daniel assumed the density law of 
observational errors as a “semiellipse” or semicircumference of some radius r 
ascertained by assigning a reasonable maximal error of observation and the 
[location parameter] equal to the weighted arithmetic mean with posterior 
weights 
 
    pi = r2 – ( x  – xi)

2.                                                                           (4) 
  
Here, xi were the observations and x , the usual mean. If required, successive 
approximations could have been made. 
    In his published memoir Daniel Bernoulli (1778) objected to the application 
of the arithmetic mean which (§5) only conformed with an equal probability 
of all possible errors and was tantamount to shooting blindly14. Instead, he 
suggested [the maximum likelihood estimator of the location parameter] and 
supported his idea (§9) by indicating that, when one out of several possible 
and incompatible events had occurred, it should be thought that it was the 
event that possessed the highest probability.  
    Listing a few reasonable restrictions for the density curve (but adding to 
these the condition of its cutting the abscissa axis almost perpendicularly), he 
selected a semicircumference with radius equal to the greatest possible, for the 
given observer, error. He then (§11) wrote out the [likelihood function] as 
 
    {[r2 – (x – x1)

2] [r2 – (x – x2)
2] [r2 – (x – x3)

2] …}1/2, 
 
where, in somewhat different notation, x was the unknown abscissa of the 
center of the semicircumference, and x1, x2, x3, …, were the observations. 
Preferring, however, to calculate the maximum of the square of that function, 
Bernoulli thus left the semicircumference for an arc of a parabola. He 
certainly had not known that the variance of the result obtained will change. 
    For three observations his [likelihood equation], as it occurred, was of the 
fifth degree. Bernoulli numerically solved it in one particular instance with 
some values of x1, x2  and x3 chosen arbitrarily (which was admissible for such 
a small number of them). In turn, I present his equation as 
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with unavoidable use of successive approximations. These formulas are 
lacking in Bernoulli’s memoir although the posterior weights (6) were the 
inverse of the weights (4) from his manuscript. This fact heuristically 
contradicted his own preliminary statement about shooting skilfully. Neither 
would have astronomers of his time approved weights increasing towards the 
tails of a distribution. It is now known, however, that these are expedient in 
case of some densities. I also note that, according to Bernoulli, the properly 
normed density was 
 
    y = (3/4r3) [r2 – (x – xo)

2], xo – r � x � xo + r 
 
and that the weights (6) should be corrected accordingly. 
    Euler (1778) commented on Bernoulli’s memoir. He (§6) objected to the 
[principle of maximum likelihood] because, in the presence of a deviating 
observation, even the maximal value of the [likelihood function] became 
small. Euler then (§7) remarked that, in general, there was no need “to have 
recourse to the principle of the maximum, since the undoubted precepts of the 
theory of probability are quite sufficient to resolve all questions of this kind”. 
Gauss (§9.4-2) formulated a similar objection. 
    In the positive part of his commentary, Euler recommended, instead of the 
arithmetic mean, the estimate (5) with posterior weights (4) and he mistakenly 
assumed that Bernoulli had actually chosen these same weights. While 
developing his thoughts, and denoting the n observations by � + �, � + b, � + 
	, …, where 
 
    a + b + c + … = 0,                                                                             (7)  
 
he formed the equation 
 
    nx3 – nr2x + 3Bx – C = 0, B = a2 + b2 + c2 + …, C = a3 + b3 + c3 + …,  
 
from which the estimate � + x should have been calculated with x equal to its 
root least in absolute value. Condition (7) meant that the estimate sought was 
the closest possible to the arithmetic mean; Euler himself (§9) justified his 
choice of the root by noting that x = 0 as r 
 �, that is, as n � �, also see 
below. 
    Euler (§11) also remarked that estimate (5) with weights (4) could be 
obtained from the condition  
 
    [r2 – (xo – a)2]2 + [r2 – (xo – b)2]2 + [r2 – (xo – c)2]2  + … = max.                (8) 
 
The quantities in parentheses are the deviations of observations from the 
estimate sought and their fourth powers are negligible so that condition (8) is 
equivalent to the requirement 
 
    (xo – a)2 + (xo – b)2 + (xo – c)2 + … = min,                                       (9) 
 
whence, in accordance with condition (7), follows the arithmetic mean. 
Condition (9) is heuristically similar to the principle of least squares (which in 
case of one unknown indeed leads to the arithmetic mean) and condition (8) 



with weights (4) resembles the Gaussian principle of maximum weight (of 
least variance). 
    In his last memoir Daniel Bernoulli (1780) separated, for the first time 
ever, observational errors into random (momentanearum) and systematic 
(chronicarum), although not for observations in general. As I remarked in 
§1.1.4, even ancient astronomers undoubtedly knew that some errors were 
systematic. And here is the opinion of D.T. Whiteside (private 
communication, 1972): 
 
    Newton in fact (but not in explicit statement) had a precise understanding 
    of the difference between random and structurally ‘inbuilt’ errors. He was 
    certainly, himself, absorbed by the second type of ‘inbuilt’ error, and many 
    theoretical models of differing types of physical, optical and astronomical 
    phenomena were all consciously contrived so that these structural errors 
    should be minimized. At the same time, he did, in his astronomical practice, 
    also make suitable adjustment for ‘random’ errors in observation … 
 
    I return to Bernoulli. Since he considered pendulums15, he indicated that 
these errors acted proportional to the square root of, and to the time itself 
respectively. Making use of his previous findings (§6.1.1, formula (1)), 
Bernoulli justified his investigation by the [normal distribution] which thus 
first occurred in the theory of errors, although only as a limiting law. 
    The number of vibrations of a seconds pendulum during a day is 2N = 
86,400; Bernoulli assumed that (N + µ) of them were slower, and (N – µ) 
faster than stipulated, with periods of (1 + �) and (1 – �) respectively. His 
simple pattern meant that the number of positive (say) errors possessed a 
symmetric binomial distribution and that the error of the pendulum 
accumulated after a large number of vibrations will have a normal 
distribution. 
    In his previous work Bernoulli (1770 – 1771) noted that, for N = 10,000, 
 

    [2/ Nπ ] �
µ

0

exp(– x2/N)dx = 1/2 

 
if µ = 47.25. Now, having N = 43,200, he obtained, for the same probability of 
1/2, 
 

    µ = 47.25 32.4  
 100. 
 
    It was this calculation that caused his conclusion (above) about the behavior 
of random errors. Already in the 19th century, however, it became known that 
such errors can possess other laws of distribution (e.g., §10.9.4). 
    Note also that Bernoulli came close to introducing the probable error; to 
recall (§2.2.2), Huygens discussed the probable duration of life. Bernoulli was 
also the first to introduce elementary errors. I do not however set high store by 
this fact; indeed, this notion is not necessary for proving the CLT. I conclude 
by remarking that Bernoulli had not investigated the more general pattern of 
an unequal number of the slower and the faster vibrations although it 
corresponded to the case of unequal probabilities of male and female births, 



also studied by him. Neither had he said anything about the possible 
dependence between the periods of successive vibrations. 
 
    6.3.2. Indirect measurements. Here, I consider the adjustment of 
redundant systems 
 
    ai x + bi y + … + si = vi, i = 1, 2, …, n                                                    (10)  
 
in k unknowns (k < n) and residual free terms vi (see §1.2.1). In case of two 
unknowns (cf. beginning of §6.3) astronomers usually separated systems (10) 
into all possible groups of two equations each and averaged the solutions of 
these groups. In other words, if (xij; yij) is the solution of group (i; j), i, j = 1, 
2, …, n, i < j, then, in accordance with this method of combinations, the final 
estimates of the unknowns were 
 

    xo = (1/ 2
nC )�xij, yo = (1/ 2

nC )�yij.  

 
The residual free terms were thus neglected. 
    In 1757 and later Boscovich (Cubranic 1961, pp. 90 – 91; Maire & 
Boscovich 1770, pp. 483 – 484) applied this method but it did not satisfy him, 
see below. Interestingly enough, in the first case he (Cubranic 1961, p. 46) 
derived the arithmetic mean of four latitudinal differences in an unusual way: 
he first calculated the halfsums of all six pairwise differences and then took 
their mean. He apparently attempted to exclude, without changing the final 
result, the unavoidable systematic errors and thus to ensure a (qualitative) 
estimation of the order of random errors16. In the 19th century, it was 
discovered that the MLSq led to the same result as the method of 
combinations, although only if the particular solutions were appropriately 
weighted (Whittaker & Robinson 1949, p. 251). 
    For the case of three unknowns the method of combinations becomes 
unwieldy. In an astronomical context, Mayer (1750) had to solve 27 
equations in three unknowns. He separated them into three groups of nine 
equations each, calculated three particular solutions (see below), and, finally, 
averaged them. The plausibility of the results thus obtained depended on the 
expediency of the separation and it seems (Stigler 1986, pp. 21 – 25) that 
Mayer had indeed made a reasonable choice. Being mostly interested in only 
one unknown, he included the equations with its greatest and smallest in 
absolute value coefficients in the first, and the second group respectively. 
Note also that Mayer believed that the precision of results increased as the 
number of observations, but in his time this mistake was understandable. 
Mayer solved each group of equations under an additional condition 
 
    �vi = 0,                                                                                                   (11) 
 
where i indicates the number of an equation; if the first group includes the first 
nine of them, then i = 1, 2, …, 9. Biot (1811, pp. 202 – 203) testified that 
before the advent of the MLSq astronomers had always applied the method of 
Mayer.  
    In a letter of 1850 Gauss (Peters 1860 – 1865, 1865, Bd. 6, p. 90) remarked 
that Mayer had only calculated by means of primitive combinations. He 
referred to Mayer’s manuscripts, but it is likely that Mayer’s trick was almost 



the same in both cases. And Gauss himself, in an earlier letter of the same 
year (Ibidem, pp. 66 – 67), recommended a similar procedure for calibrating 
an aneroid. Anyway, Laplace (1812, pp. 352 – 353) testified that the “best” 
astronomers had been following Mayer. 
    Condition (11) determines the method of averages and Lambert’s 

recommendation (1765b, §20) about fitting an empirical straight line might be 
interpreted as its application. Lambert separated the points (the observations) 
into two groups, with smaller and larger abscissas, and drew the line through 
their centers of gravity. He employed a similar procedure when fitting curves 
by separating the points into several groups. 
    The method of averages was intuitively considered as conforming to the 
equal possibility of errors of each sign (Maire & Boscovich 1770, p. 501), 
and, apparently, as leading in case of one unknown to the arithmetic mean. 
See §10.1 for its further history. 
    The Boscovich method. He (Maire & Boscovich 1770, p. 501) adjusted 
systems (10) under additional conditions 
 
    v1 + v2 + … + vn = 0, |v1| + |v2| + ... + |vn| = min,                             (12; 13)                                                               
  
the first of which determined the method of averages. It can be allowed for by 
summing all the equations and eliminating one of the unknowns from the 
expression thus obtained. The mean (milieu), as Boscovich remarked, should 
be connected “par une certaine loi aux règles des combinaisons fortuites et du 
calcul des probabilités”17. He was unable, however, to explain how his 
conditions conformed to his aim.  
    Boscovich’s second condition (13)18 linked his method with the [median]. 
Indeed, his geometric adjustment of systems (10) consisted in constructing a 
straight line whose slope occurred to be equal to the median of some fractions. 
In other words: for meridian arc measurements systems (10) are 
 
    ai x + y + si = vi.                                                                                     (14) 
 
After allowing for condition (12), we have 
  
    [ai – (1/n)�ai]x + [si – (1/n)�si] = 0. 
 
Calculate the n values of x and choose as the estimate their median. 
    Laplace (§7.2-6) also made use of the Boscovich method. 
    The minimax method. According to it, systems (10) are solved under the 
additional condition 
 
    |vmax| = min, 
 
with the minimum being determined from among all possible and expedient 
solutions19. In §2.1.4 I indicated that Kepler had apparently made use of some 
elements of this method (true, not even for algebraic equations). It does not 
ensure optimal, in any sense, results, but allows to check whether the theory, 
underlying the given system (10), is correct. Indeed, any other method of its 
solution will lead to a greater value of |vmax|, the gap between theory and 
observation will be wider, and the correctness of the former might mistakenly 
be questioned. 



    Gusak (1961) described the history of the minimax method from 1778, 
when Euler had applied it to an important but, in my context, irrelevant study, 
to Chebyshev. However, Euler (1749) made use of the rudiments of that 
method much earlier. When solving systems of the type of (10), he compared 
only a few “solutions” with each other20. Then, Lambert (1765a, §420) 
recommended the same method but owned that he did not know how to apply 
it “in a general manner and without many roundabout ways”. Laplace (1789, 
pp. 493, 496 and 506 and elsewhere) applied the minimax method for 
preliminary investigations, – for checking whether or not the results of 
meridian arc measurements and pendulum observations contradicted the 
theory according to which the Earth was an oblate ellipsoid of revolution. 
Since the method of minimax has no stochastic underpinning, I am not 
describing the appropriate algorithms introduced by Laplace; I note, however, 
that it is applied in the theory of statistical decision-making (Lehmann 1959, 
Chapter 9). 
 
    Notes 
    1. Lagrange (1777) solved a similar problem for a finite number of urns 
and balls of two colors as well as some other stochastic problems by means of 
partial difference equations. 
    2. He published many memoirs and papers on the theory of probability and 
its applications (§6.2.3) and it is difficult to organize them bibliographically; 
on this point see Paty (1988). Todhunter (1865) devoted an entire chapter to 

Dalembert. 
    3. Cf. the Dalembert – Laplace problem (Note 5 in Chapter 1). In 1750 
Dalembert declared that randomness was only caused by ignorance (Note 1 in 
Chapter 1). The denial of randomness, also upheld by Kepler (§1.2.4) and 
Laplace (§7.3), although only by mere words, proved fruitless. 
    4. Regarding his really strange attitude towards medicine see Note 7. 
    5. His unsubstantiated conclusion was absolutely wrong. Loveland (2001) 
attempted to reconstruct Buffon’s reasoning. 
    6. Recall (§3.3.4) that Condorcet reasonably remarked on the Petersburg 
game. 
    7. Dalembert (1821, p. 163) should also be mentioned. The first edition of 
this contribution published in 1759 apparently had not contained any such 
statement. Note, however, that he died in 1783 so that he formulated his 
similar desire in the 18th century. Dalembert even stated that a physician was a 
blind man who could strike either the disease or the patient by his club and 
added, on p. 167, that the best doctor was the one who least believed in 
medicine. 
    8. The same author, Black, appended a “Chart of all the fatal diseases and 
casualties in London during … 1701 – 1776” to his book. 
    9. In the first case he discussed Bernoulli’s report; I stress that the latter’s 
memoir appeared only in 1766. Later Dalembert rewrote his memoirs. See 
Todhunter (1865, pp. 265 – 271, 277 – 278 and 282 – 286) for a detailed 
description of his proposals. 
    10. Not the semiaxes of the ellipsoid, a and b (a > b), were determined, but 
rather a and the flattening (a – b)/a. The flattening had also been derived from 
pendulum observations; see §10.10.1 where I describe the pertinent work of 
Ivory. 



    11. Only Fourier (1826, p. 534) determined the véritable objet de la 
recherche (the constant sought, or its “real” value) as the limit of the 
arithmetic mean of n appropriate observations as n � �. Many authors, 
beginning perhaps with Timerding (1915, p. 83) [and including Mises (1964a, 
pp. 40 and 46], without mentioning Fourier and independently from each 
other, introduced the same definition. One of them (Eisenhart 1963, p. 31) 
formulated the unavoidable corollary: the mean residual systematic error had 
to be included in that “real” value:  
 
    The mass of a mass standard is … specified … to be the mass of the metallic  
    substance of the standard plus the mass of the average volume of air 
    adsorbed upon its surface under standard conditions. 
 
However, even leaving systematic influences aside, the precision of 
observations is always restricted (§11.2-8) so that the term “limit” in the 
Fourier definition (which is in harmony with the Mises definition of 
probability) must not be understood literally. I indicate also that Gauss 
(Werke, Bd. 9, 1903, pp. 278 – 281; Schreiber 1879, p. 141) measured each 
angle in the field until becoming convinced that further work was 
meaningless. 
    12. The distributions introduced by Simpson, if considered continuous, can 
be directly compared with each other in the sense that the respective variances 
are v2/3 and v2/6. 
    13. In a letter of 1971 E.S. Pearson informed me that “curiously” his 
father’s Lectures (1978), – then not yet published, – omitted Lambert. He 
explained: 
 
    It was not because [Lambert’s] writings were in German of which my father 
    was an excellent scholar. I suppose … that he selected the names of the 
    personalities he would study from a limited number of sources, e.g., 
    Todhunter, and that these did not include Lambert’s name. [Todhunter did 
    refer to Lambert but had not described his work.] Of course, K.P. was over 
    70 by the time his history lectures passed the year 1750, and no doubt his 
    exploration was limiting itself to the four Frenchmen, Condorcet, 
    D’Alembert, La Grange and Laplace. 
 
     14. Here, however, is K. Pearson’s reasonable qualitative statement (1978, 
p. 268): small errors are more frequent and have their due weight in the mean. 
    15. For this reason his memoir was attributed to practical mechanics and 
until my publication (Sheynin 1972b) its stochastic nature had not been 
noticed. 
    16. Tycho’s example (Note 20 in Chapter 1) is more convincing. 
    17. The last term deserves attention: it was hardly used before Boscovich. 
    18. Galileo (§1.2.3) and Daniel Bernoulli (1735, pp. 321 – 322) applied 
this condition in the case in which the magnitudes such as vi were positive by 
definition. The latter derived the plane of the solar equator in such a way that 
the sum of the inclinations of the planetary orbits, considered positive, relative 
to the equator, was minimal. W. Herschel (1805) determined the movement 
of the Sun by issuing from the apparent motion of the stars. The sum of these 
motions depends on the former and its minimal value, as he assumed, 
provided an expedient estimation of that movement. Herschel’s equations 



were not even algebraic, but, after some necessary successive approximations, 
they might have been considered linear. Note that in those times the motion of 
a star could have been discovered only in the plane perpendicular to the line of 
vision. Here is W. Herschel’s earlier reasoning (1783, p. 120): 
 
    We ought … to resolve that which is common to all the stars … into a single 
    real motion of the Solar system, as far as that will answer the known facts, 
    and only to attribute to the proper motions of each particular star the 
    deviations from the general law the stars seem to follow … 
 
Such, he added, were “the rules of philosophizing”. Compare now Newton’s 
Rule No. 1 of reasoning in philosophy (1729, p. 398): “We are to admit no 
more causes of natural things than such as are both true and sufficient to 
explain their appearances”. 
    When treating direct measurements W. Herschel (1806) preferred the 
median rather than the arithmetic mean (Sheynin 1984a, pp. 172 – 173). 
    19. It is remarkable that the minimax method corresponds, as Gauss (1809 
b, §186) noted, to the condition 
 
    lim(v1

2k + v2
2k + ... + vn

2k) = min, k � �. 
 
    20. Stigler (1986, pp. 27 – 28) called Euler’s memoir (1749) a “statistical 
failure” and, in his opinion, Euler was a mathematician who “distrusted” the 
combination of equations. Without perceiving the main goal of the method of 
minimax, and mentioning a classic in a free and easy manner, Stigler got into 
a mess. Wilson (1980, p. 262, note 438) concluded that Euler was “stymied by 
the finding that, for certain of the variables, the equations led to wildly 
different values …” He continued: “In a certain sense, Euler recognized that 
his theory was inadequate”. In his second book Stigler (1999, pp. 317 – 318) 
unblushingly called Euler a great statistician. 
    For that matter, in the 18th century practitioners experienced difficulties 
when deciding how to adjust their observations (Bru 1988, pp. 225 – 226); 
and at the turn of that century Laplace and Legendre simply refused to adjust 
a triangulation chain laid out between two baselines. Instead, likely fearing the 
propagation of large errors, they decided to calculate each half of the chain 
starting from its own baseline (Sheynin 1993b, p. 50). Much later Laplace (ca. 
1819, pp. 590 – 591) defended their decision by the previous ignorance of a 
“vraie théorie” of adjustment and added that his justification of the MLSq had 
changed the situation. 
    I supplement Bru’s description by indicating that Maupertuis (1738, p. 
160; 1756b, pp. 311 – 319) calculated his triangulation twelve times (each 
time taking into account differing sets of measured angles), selected two of his 
results and adopted their mean values. 
    It is instructive to note that, before the adjustment proper of the Soviet 
primary triangulation, each of its chains situated between baselines and 
astronomically determined azimuths was replaced by an appropriate geodetic 
line (cf. beginning of §10.6). Only these lines were then adjusted after which 
each chain was finally dealt with independently from one another. One of the 
benefits of this procedure was that it prevented the systematic errors from 
“freely walking” over the entire network, as Izotov, the leading assistant of 
Krasovsky, the calculator of the Krasovsky spheroid (Sheynin 1973d), 



explained ca. 1950 in one of his lectures at the Moscow Geodetic Institute in 
which I attended. 
 
    Literature 
    Sheynin (1970b; 1971b; 1972a; 1972b; 1973b; 1978b; 2003b) 
 
    7. Laplace 

    7.1. Theory of probability 
    Laplace devoted a number of memoirs to the theory of probability and later 
combined them in his Théorie analytique des probabilités (abbreviation: TAP) 
(1812). I describe its second Livre; in the first one he studied the calculus of 
generating functions with application to the solution of ordinary and partial 
difference equations and the approximate calculation of integrals. When 
referring to the TAP, I often indicate only the page numbers. 
    1) In Chapter 1 Laplace provided the “classical” definition of probability 
(introduced by De Moivre, see §4.3), formulated the addition and 
multiplication theorems for independent events as well as theorems 
concerning conditional probabilities. He described the same material in his 
Essai philosophique …1 where he (1814/1995, p. 10), in addition, included the 
so-called Bayes theorem, see formula (5.1), calling it a principle. Much earlier 
he (1774, p. 29) introduced a “fundamental principle”, – the same theorem for 
the case of constant prior probabilities P(Ai): 
 
P(Ai /B)/P(Aj /B) = P(B/Ai)/P(B/Aj).  
 
    2) In Chapter 2 Laplace solved a number of problems by means of 
difference, and partial difference equations. I consider three other problems. 
    a) In an astronomical context Laplace studied sampling with replacement. 
Tickets numbered from 0 to n are extracted from an urn. Determine the 
probability that the sum of k numbers thus extracted will be equal to s (p. 
257). Let these numbers be t1, t2, …, tk, then 
 
    t1 + t2 + ... + tk = s.                                                                          (1) 
 
Laplace calculated the number of combinations leading to equality (1) 
allowing for the condition ti � n, i = 1, 2, ..., k by assigning to these ti 
probabilities 
 
    (1 – ln+1)/(n + 1)                                                                                       (2) 
 
with l = 0 for ti � n and l = 1 otherwise. Earlier, I (Sheynin 1973a, pp. 291 – 
298) discussed Laplace’s use of discontinuity factors in somewhat more 
detail. I also described his similar method which he applied in 1810 and which 
dates back to De Moivre and Simpson (Ibidem, pp. 278 – 279). If, for 
example, two (three) of the t’s exceed n, the factor (2) is raised to the second 
(to the third) power etc.  
    Laplace calculated the probability sought and considered the case of s, n � 
� and his formula on p. 260 for the distribution of the sum of independent, 
continuous variables obeying the uniform law on interval [0; 1] corresponds 
with modern literature (Wilks 1962, §8.3.1) which does not, however, 
demand large values of s and n. 



    Also in an astronomical context, already in 1776, Laplace solved a problem 
concerning such distributions by very complicated recursion relations 
(Sheynin 1973a, pp. 287 – 290). Note, however, that even Simpson and 
Lagrange (§6.3.1) obtained similar findings in the theory of errors. 
    Laplace treated the two other problems, to which I am now going over, in 
the same way as he did earlier in 1781. 
    b) Non-negative [random variables] t1, t2, …, tk   with differing laws of 
distribution �i(t) are mutually independent and their sum is s. Determine the 
integral  
 

    � �(t1; t2; …; tk) �1(t) �2(t) … �k(t) dt1 dt2 … dtk 

 
over all possible values of the variables; � is to be yet chosen. Laplace then 
generalizes his very general problem still more by assuming that each function 
�i(t) can be determined by different formulas on different intervals of its 
domain. 
    When solving this problem, Laplace derived the Dirichlet formula and 
even in a more general version. The case of � � 1 enabled him to determine 
the probability of equality (1) (which interested Laplace here also). He then 
once more specified his problem by assuming that 
 
    �i(t) = a + bt + ct2. 
 
    c) An interval OA is divided into equal or unequal parts and perpendiculars 
are erected to the interval at their ends. The number of perpendiculars is n, 
their lengths (counting them from O to A) form a non-increasing sequence and 
the sum of these lengths is given. Suppose now that the sequence is chosen 
repeatedly; what, Laplace asks, would be the mean broken line connecting the 
ends of the perpendiculars? The mean value of a current perpendicular? Or, in 
the continuous case, the mean curve? Each curve might be considered as a 
realization of a stochastic process and the mean curve sought, its expectation. 
Laplace was able to determine this mean curve (Sheynin 1973a, p. 297) by 
issuing from his previous problem2 and, in 1781, he attempted to apply his 
finding in the theory of errors (§7.2) and for studying expert opinions. 
Suppose that some event can occur because of n mutually exclusive causes. 
Each expert arranges these in an increasing (or decreasing) order of their 
[subjective] probabilities, which, as it occurs, depend only on n and the 
number of the cause, r, and are proportional to 
 

    
1

1

1

11

+−
++

−
+

rn
...

nn
. 

 
    The comparison of the sums of these probabilities for each cause will show 
the mean opinion about its importance. To be sure, different experts will 
attribute differing perpendiculars to one and the same cause. 
    3)The third Chapter is devoted to the integral “De Moivre – Laplace” 
theorem and to several interesting problems connected with the transition to 
the limit. In proving that theorem (§4.4) Laplace applied the Euler – 

MacLaurin summation formula, and, a second innovation, calculated the 



remainder term to allow for the case of large but finite number of trials. His 
formula was: 

    P(|µ – np – z| � l) = (2/��) �
′xx/nl 2

0

exp(– t2)dt + '2/ xxn π exp(–l 2n/2xx�). (3) 

Here p was the probability of success in a single Bernoulli trial, µ, the total 
number of successes in n trials, q = 1 – p, z is unknown but |z| < 1, x = np + z, 
and x� = nq – z. 
    Laplace indicated that his theorem was applicable for estimating the 
theoretical probability given statistical data, cf. the Bayes theorem in §5.2, but 
his explanation was not clear, cf. Todhunter (1865, pp. 554 – 556). 
Insufficiently clear is also Hald’s description (1990, §24.6). 
    Already Daniel Bernoulli (§6.1.1) solved one of Laplace’s problem: There 
are two urns, each containing n balls, some white and the rest black; on the 
whole, there are as many white balls as black ones. Determine the probability 
u that the first urn will have x white balls after r cyclic interchanges of one 
ball. The same problem was solved by Lagrange (1777, pp. 249 – 251), 
Malfatti (Todhunter 1865, pp. 434 – 438) and Laplace, (1811; and in the 
same way in the TAP). 
    Laplace worked out a partial difference equation and “mutilated it most 
unsparingly” (Todhunter 1865, p. 558) obtaining a partial differential 
equation 
 
    u�r/n = 2u + 2µu�µ + u�µµ, x = (n + µ�n)/2 
 
and expressed its solution in terms of functions related to the [Chebyshev – ] 
Hermite polynomials (Molina 1930, p. 385). Later Markov (1915b) 

somewhat generalized this problem by considering the cases of n � � and r/n 

� � and n � � and r/n = const and Steklov (1915) proved the existence and 

uniqueness of the solution of Laplace’s differential equation with appropriate 
initial conditions added whereas Hald (2002) described the history of those 
polynomials. Hostinský (1932, p. 50) connected Laplace’s equation with the 
Brownian movement and thus with the appearance of a random process 
(Molina 1936). 
    Like Bernoulli, Laplace discovered that in the limit, and even in the case of 
several urns, the expected (as he specified on p. 306) numbers of white balls 
became approximately equal to one another in each of them. He also remarked 
that this conclusion did not depend on the initial distribution of the balls. 
Finally, in his Essai (1814/1995, p. 42), Laplace added that nothing changed if 
new urns, again with arbitrary distributions of balls, were placed in among the 
original urns. He declared, apparently too optimistically, that  
     
    These results may be extended to all naturally occurring combinations in 
    which the constant forces animating their elements establish regular 
    patterns of action suitable to disclose, in the very mist of chaos, systems 
    governed by these admirable laws. 
 
Divine design was absent, cf. De Moivre’s dedication of his book to Newton 
in §4.3. 



    The Daniel Bernoulli – Laplace problem in essence coincides with the 
celebrated Ehrenfests’ model (1907) which is usually considered as the 
beginning of the history of stochastic processes. The existence of the limiting 
state in this problem can be justified by the Markov ergodic theorem for 
Markov chains. 
    4) I touch on Chapter 4 in §7.2-4. Laplace devoted Chapter 5 to the 
detection of constant causes (forces) in nature. Thus, he attempted to estimate 
the significance of the daily variation of the atmospheric pressure. K. Pearson 
(1978, p. 723) noted that nowadays the Student distribution could be applied 
in such investigations, that some of the assumptions which Laplace made 
proved wrong, etc and, in addition, that Laplace had unjustifiably rejected 
those days during which the variation exceeded 4mm.  
    Laplace remarked that the calcul des probabilités can be applied to 
medicine and economics. It may be argued that he thought about stochastic 
analysis of statistical data, see his Essai (1814/1995, p. 61). 
    Concerning geometric probability, Laplace only discussed the Buffon 

problem. To repeat (§6.1.6), a needle of length 2r falls from above on a set of 
parallel lines. The distance between adjacent lines is a ≥  2r and the 
probability p that the needle intersects a line is 
 
    p = 4r/�a. 
 
Without proof Laplace mistakenly stated that, for a = 1, 2r = �/4 was the 
optimal length of the needle for statistically determining � although he 
provided the correct answer, 2r = 1, in the first edition of the TAP.  
    Gridgeman (1960) described the proof, and I shall only explain a certain 
pertinent point. Namely, when demanding that the variance of � be as small as 
possible, he noted that  
 
    var p = p(1 – p)/n = pq/n 
 
where n was the number of the trials. Now, var µ = pqn with µ being the 
number of intersections achieved. Consequently, 
 
    var � = (�2/4r)2 (pq/n) = min, etc. 
 
    Laplace’s later conclusion can be easily obtained by demanding that µ be as 
precise as possible (var µ = min). Todhunter (1865, pp. 590 – 591) provided 
a much more complicated reconstruction. 
    5) In Chapter 6 Laplace solved some problems by means of the Bayes 
approach (see §5.1) although without referring to him; true, he mentioned 
Bayes elsewhere (1814/1995, p. 120). Here is one of them. Denote the 
unknown probability that a newly born baby is a boy by x and suppose that 
during some time p boys and q girls were born. Then the probability of that 
“compound” event will be proportional to 
 
    y = x p(1 – x)q.                                                                                     (4) 
   
If z(x) is the prior distribution of x, then 
 



    P(a � x � b) = �
b

a

yz dx  ÷  �
1

0

yz dx, 0 < a < b < 1.                                (5) 

 
If, as Laplace nevertheless assumed, z was constant, and if p and q were large, 
the probability sought will be expressed by an integral of an exponential 
function of a negative square. 
    And so, Laplace actually estimated the probability x. For the curve (4) the 
point of its maximum 
 
    � = p/(p + q)                                                                                       (6) 
 
seems to be its natural estimator, but Ex, or, more precisely, the expectation of 
a random variable � with distribution 
 

    x p(1 – x)q ÷ �
1

0

x p(1 – x)q dx, 

does not coincide with (6): the latter is only an asymptotically unbiased 
estimator of x. This expectation is evidently 
 

    E � = 
2

1

++

+

qp

p
.                                                                                   (7) 

 
    The introduction of functions z(x) allowed to assume an equal probability 
for each value of x, but the choice of such functions remained undecided. 
Laplace went on to discuss the bivariate case and then solved another 
problem. Suppose that the inequality p > q persisted during a number of years. 
Determine the probability that the same will happen for the next hundred 
years. There is no doubt that Laplace understood that his problem made sense 
only under invariable social and economic conditions. Here is his answer: 
 

    P = �
1

0

x p(1 – x)qz100dx  ÷  �
1

0

x p(1 – x)qdx 

 
where z is the sum of the first n terms of the development [x + (1 – x)]2n and 
2n = p + q. 
   A similar problem in which q = 0, p = m and z = xn led Laplace to the 
probability of such z: 
 
    P = (m + 1) ÷ (m + n + 1). 
 
In the Essai Laplace (1814/1995, p. 11) applied this formula, slightly different 
from his previous formula (7), for solving Price’s problem about the next 
sunrise (§5.1) but he only mentioned Buffon (§6.1.4), and, as expected, did 
not agree with his solution.  
    Finally, Laplace determined the population of France given sampling data, 
and, for the first time ever, estimated the precision of (his version of) 
sampling. Suppose that N and n are the known numbers of yearly births in 
France as a whole and in some of its regions and m is the population of those 
regions. Laplace naturally assumed that 



 
    M = (m/n)N. 
 
He then had to estimate the fraction 
 

    �
1

0

xN+n (1 – x)m–n+M–N dx  ÷  �
1

0

xn(1 – x)m–n dx 

 
(Hald 1998, p. 288).  
    K. Pearson (1928a) noted some imperfections in Laplace’s reasoning and 
achieved a reduction of the variance of his result; it should have been 
multiplied by [(N – n) ÷ (N + n)]1/2. Here are his two main remarks. First, 
Laplace considered (m, n) and (M, n) as independent samples from the same 
infinite population whereas they were not independent and the very existence 
of such a population was doubtful. Second, Laplace chose for the magnitude 
sought an absolutely inappropriate uniform prior distribution. Pearson also 
negatively described Laplace’s calculation of the incomplete beta-function. 
However, he (1934, Intro.) also owned that that problem remained very 
difficult and he thus actually exonerated Laplace. 
    Pearson’s first remark had to do with Laplace’s supplementary urn 
problem. Suppose that an urn contains infinitely many white and black balls. 
After n drawings without replacement m white balls were extracted; a second 
sample of an unknown volume provided r white balls. Denoting 
 
    k = nr/m + z, 
 
Laplace derived a limit theorem 
 

    P(|k – nr/m| < z) = 1 – 2 � S

m

π

3

exp(– m3z2/S)dz, S = 2nr (n – m) (m + r).  

The limits of integration, as Laplace formally assumed, were z and �. 
    Later Markov (1900b) proved that, for an unknown m, 
 

    P [|
k

r

n

m
− | < (t/2) )(1/  )1( nk/ + ] > 1 – 1/t2, t > 0. 

  
He (1914a) then specified that all prior probabilities of the appearance of a 
white ball were equal to one another and proved, in addition, that the same 
inequality of the Bienaymé – Chebyshev type held also for “indefinite” 
[random] fractions m/n and r/k. Like the last of the Mogicanes, Markov 
consistently refused to use the then new term, random variable, see §14.2-1. 
    6) In Chapter 7 Laplace studied the influence of a possible inequality of 
probabilities assumed equal to each other. For example, when tossing a coin 
the probability of heads can be (1 ± a)/2 with an unknown a. Supposing that 
both signs were equally probable, Laplace derived the probability of throwing 
n heads in succession 
 
    P = (1/2) [(1 + a )n + (1 – a)n] ÷ 2n  
 



which was greater than 1/2n  for n > 1. 
    Suppose now (a general case) that the probability is not p, as assumed, but 
(p + z), |z| � a, with density �(z). Then the probability of a “compound” event 
y will be 
 

    P = �
−

a

a

y (p + z) �(z) dz  ÷ �
−

a

a

�(z) dz 

 
(cf. formula (5) above). In case of an unknown density �(z) it should be 
replaced by the density of z, Laplace adds. The appearance of denominators in 
such formulas seems to be unnecessary. 
    Laplace then considers tickets put into an urn. Suppose, he says, that the 
probabilities of their extraction are not equal to one another. However, the 
inequalities will be reduced had the tickets been put into the urn not in an 
assigned order, but according to their random extraction from an auxiliary urn, 
and still more reduced in case of additional auxiliary urns. Laplace had not 
proved this statement, he only justified it by a general principle: randomness 
diminished when subjected to more randomness. This is perhaps too general, 
but Laplace’s example was tantamount to reshuffling a deck of cards (to 
events connected into a Markov chain), and his conclusion was correct 
(Feller 1950, §9 of Chapter 15). 
    7) Chapter 8 was devoted to population statistics, to the mean durations of 
life and marriages. Laplace did not apply there any new ideas or methods. 
However, he studied anew the Daniel Bernoulli model of smallpox, adopted 
more general assumptions and arrived at a more general differential equation 
(Todhunter 1865, pp. 601 – 602). 
    8) In Chapter 9 Laplace considered calculations made in connection with 
annuities and introduced the “Poisson” generalization of the Jakob Bernoulli 
theorem (Molina 1930, p. 372). Suppose that two contrary events can occur in 
each independent (as he clearly indicated) trial i with probabilities qi and pi 

respectively, qi + pi = 1, i = 1, 2, …, s, and that these events signify a gain � 
and a loss µ, respectively. For constant probabilities q and p the expected gain 
after all these trials will be s(q� – pµ), as Laplace for some reason derived it in 
a complicated way. He then estimated this magnitude for the case of a large s 
by means of his limit theorem (3). Then, generalizing the result obtained to 
variable probabilities, he introduced the characteristic function of the final 
gain  
   
    [p1 + q1 exp(�1�i)] [p2 + q2 exp(�2�i)] … [ps  + qs exp(�s�i)], 
 
applied the inversion formula and obtained the normal distribution, all this 
similar to the derivation of the law of distribution of a linear function of 
observational errors (§7.2-4). 
    9) In Chapter 10 Laplace described his thoughts about moral expectation 
(§6.1.1). If the physical capital of a gambler is x, his moral capital will be  
 
    y = k lnx + lnh, h, x > 0. 
 
Let �x take values a, b, c, … with probabilities p, q, r, … Then 
 



    Ey = k[pln(x + a) + qln(x + b) + …] + lnh, 
 
    E�y < E�x.                                                                                   (8)                                                                                                                 
 
In other words, even a just game (E�x = 0) is disadvantageous. Todhunter 
(1865, p. 215) proved inequality (8) simpler than Laplace did. However, a 
more general expression Ef(x) � f (Ex) holds for convex functions (Rao 1965, 
§1e5) so that, if x > 0, 
 
    E(– lnx) � – lnEx, Elnx � lnEx < Ex. 
 
    Laplace then proved that the freight in marine shipping should be evenly 
distributed among several vessels. I provide my own proof (Sheynin 1972b, 
pp. 111 – 113). Suppose that the capital of the freightowner is a, the value of 
the freight, A, the probability of a safe arrival of a vessel, p, and q = 1 – p. 
Then 
    a) If the freight is thus distributed on n vessels, the moral expectation of the 
freightowner’s capital is (here and below 0 � k � n and k is the number of the 
lost ships) 
 
    y(n) = � k

nC p n–k q k ln{[A(n – k)/n] + a}.                                            (9) 

 
    b) Independently from n the corresponding moral expectation is equal to the 
right side of (9) where, however, the logarithm is replaced by its argument so 
that obviously 
 
    a + �[(n – k)/n]p n–k q k = a + Ap. 
 
    c) For any increasing function f (x) the moral expectation (9) is restricted: 
  
    y(n) = � k

nC p n-kq kf{[A(n – k)/n] + a} < f (A + a) (p + q)n = f (A + a). 

 
    d) Let f (x) be continuous and increasing and have a decreasing derivative. 
Then y(n) increases monotonically but is restricted by the moral expectation 
(9). The proof is here rather long and I refer readers to my paper (1972b, pp. 
112 – 113). 
    Many authors after Laplace dwelt on moral expectation (cf. §6.1.1); I 
mention here Ostrogradsky whose work is only known due to Fuss’ report 
(1836, pp. 24 – 25); also see Ostrogradsky (1961b, pp. 293 – 294). He did not 
at all admit Daniel Bernoulli’s hypothesis; he expressed the “moral fortune” 
by an arbitrary function of the physical fortune and he was able to solve the 
main problems connected with the moral fortune with such breadth and so 
precisely as could only be desired, Fuss wrote. Note, however, that the 
logarithmic function also appears in the celebrated Weber – Fechner 
psychophysical law and is applied in the theory of information. 
    The connection of marine insurance with moral expectation provided an 
occasion for Laplace (1814/1995, p. 89) to express himself in favor of 
insurance of life and even to compare a nation with an association “whose 
members mutually protect their property by proportionally supporting the 
costs of this protection”. 



    10) In the eleventh, the last, Chapter, and, in part, in Supplement 1 to the 
TAP, Laplace examined the probability of testimonies. Suppose that an urn 
contains 1,000 numbered tickets. One of them is extracted, and a witness 
states that that was ticket number i, 1 � i � 1,000. He may tell the truth and be 
deceived or not; or lie, again being deceived or not. Laplace calculated the 
probability of the fact testified by the witness given the probabilities of all the 
four alternatives. In accordance with one of his corollaries, the witness’s 
mistake or lie becomes ever more probable the less likely is the fact 
considered in itself (p. 460). 
    Laplace next introduced the prior probability of a studied event confirmed 
by m witnesses and denied by n others. If it is 1/2 and the probability of the 
truthfulness of each witness is p, then the probability of the event was 
 

    P = 
nmnm
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    Suppose now that the probabilities of truthfulness are pi > 1/2 and the prior 
probability of the event is 1/n. If the event is reported by a chain of r 
witnesses, then (p. 466) 
 

    P = (1/n) + [(n – 1)/n]
r
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so that for n = 2 and n � � 

 
    P = (1/2) +(1/2) (2p1 – 1) (2p2 – 1) … (2pr – 1) and P = p1 p2 … pr  
 
respectively. 
    Laplace next examines verdicts brought in by s independent judges (jurors) 
assuming that each of them decides justly with probability p > 1/2. The 
probability of a unanimous verdict is 
 
    p s + (1 – p)s = i/n. 
 
Here, the right side is known (n is the total number of verdicts of which i were 
brought in unanimously). For s = 3 (p. 470) 
 
    p = 1/2 + [(4i – n)/12n]1/2. 
 
If 4i < n, it should have been concluded that Laplace’s (very restrictive) 
assumptions were wrong; he did not however make this remark. 
    If, in different notation, the probability of a just verdict reached by each 
judge (juror) was unknown, and p judges condemned, and q of them acquitted 
the defendant, the indirect probability of a just final verdict was (p. 527) 
 

    �
1

2/1

u p(1 – u)q du  ÷ �
1

0

v p(1 – v) qdv  

 



(cf. formulas from Laplace’s Chapter 6). Laplace stated that the verdicts were 
independent, but only in passing (on p. 523). Poisson (1837a, p. 4) indicated 
that Laplace had considered the defendant innocent unless and until 
pronounced guilty: his formulas had not included any prior probability of 
guilt. In Poisson’s opinion, this should be assumed to exceed 1/2. I note that 
his remark had nothing to do with any individual case. 
    In §8.9.1 I return to the application of probability in jurisprudence; here, I 
additionally refer to Zabell (1988a). 
 
    7.2. Theory of Errors 
    Laplace’s work on the theory of errors can be easily separated into two 
stages. While treating it in the 18th century, he was applying the comparatively 
new tool, the density3, and trying out several rules for the selection of 
estimators for the real values of the constants sought. His equations proved 
too complicated and he had to restrict his attention to the case of three 
observations. Later Laplace proved (not rigorously) several versions of the 
CLT and was able to drop his restriction, but he had to adopt other conditions. 
Here is Bienaymé’s precise conclusion (1853/1867, p. 161), also noticed by 
Idelson (1947, p. 11):  
 
    For almost forty years Laplace had been presenting … memoirs on 
    probabilities, but … had not wanted to combine them into a general theory.  
 
However, Bienaymé continued, the CLT [non-rigorously proved by him] 
enabled Laplace to compile his TAP. 
    1) The Year 1774. Without substantiation, Laplace assumed that, for any x1 
and x2, the sought density �(x) of observational errors satisfied the equation 
 
    ��(x2)/��(x1) = �(x2)/�(x1) 
 
and obtained 
 
    �(x) = (m/2)e–m||.                                                                                (10) 
 
   Later, while discussing suchlike decisions, Laplace (1798 – 1825, t. 3, p. xi) 
argued that the adopted hypotheses ought to be “incessantly rectified by new 
observations” until “veritable causes or at least the laws of the phenomena” be 
discovered. A similar passage occurred earlier in his Essai (1814/1995, p. 
116). Cf. Poisson et al (1835, pp. 176 – 177): the main means for revealing 
the “vérité” were induction, analogy and hypotheses founded on facts and 
“incessantly verified and rectified by new observations”.  
    Suppose that the observations are a, b, and c, and p = b – a, q = c – b. 
Issuing from the [likelihood function]  
 
    f (x) = �(x) �(p – x) �(p + q – x)                                         (11) 
 
rather than from the density, Laplace determined the parameter sought, e [the 
median] with respect to curve (11); alternatively, he applied the condition 
 
    �| – �| f (x)dx = min, || < + �  
 



whence it followed that the integrals of f (x) over (– �; e] and [e; + �) were 
equal to each other so that e, just the same, was the median. I note that neither 
function (10) nor (11) contained a location parameter. For small values of m 
the magnitude x = e – a 
 (2p + q)/3 and therefore e did not coincide with the 
arithmetic mean and function (10) became 
 
    �(x) = (m/2) (1 – m||) 
 m/2 = Const. 
 
Laplace was not satisfied with these corollaries and had thus rejected the 
median. Note that for a random variable � with density (10) var � = 2/m2 so 
that a small m really invites trouble. 
    He then studied the case of an unknown parameter m by applying the 
principle of inverse probability, that is, by the so-called Bayes formula (5.1) 
with equal prior probabilities, but made a mistake in his calculations (Sheynin 
1977a, p. 7). Stigler (1986, pp. 115 – 116) explained its essence but wrongly 
indicated that, since Laplace had not then read the Bayes memoir, he was 
unable to borrow the “Bayes formula”. Yes, indeed unable, but simply 
because that formula was lacking in the work of his predecessor. 
    2) The Year 1781. Laplace again issued from the [likelihood function] of 
the type of (11) and put forward four possible conditions for determining the 
real value of the constant sought: the integrals of f (x) or xf (x) over [– N; 0] 
and [N; 0], where N was the greatest possible error, should be equal to each 
other; or, the value of the second integral over [– N; N] should be minimal; 
and his final condition was the application of the [maximium likelihood 
principle]. Recall, however, that the curve (11) did not include a location 
parameter so that it should have been somehow inserted. Anyway, Laplace 
decided in favor of his third condition (which coincided with the first one). 
    So as to select a density, Laplace examined a special problem (§7.1-2), and, 
not really convincingly, obtained a “mean” law of error 
 
    y = (1/2a) lna/||, || � a.                                                                    (12)  
 
He referred to the principle of insufficient reason and noted that function (12) 
was even and decreased with ||, – that is, conformed to the properties of 
“usual” errors; the restriction  � 0 hardly bothered him. 
    Next Laplace studied what might be called the multidimensional Bayes 
method. Suppose that observational errors �i, i = 1, 2, …, n, having “facility” 
xi have occurred. Then the probability of the observed system of errors is 
 

    P = 
� � nn

n

dx...dxdxx...xx...

x...xx
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where the integrals are taken over all possible values of each variable; 
actually, Laplace considered a more general case in which each �i occurred ki 
times. Multiplying the obtained expression by the product of all the 
differentials, Laplace arrived at the probability element of an n-dimensional 
random vector. It was now possible for him to determine the law of 
distribution of observational errors provided that the prior information stated 
above was available. 
    In connection with density (12) Laplace carried out a special study 
introducing the Dirac delta-function which had already appeared in Euler’s 



works, see Truesdell (1984, p. 447, Note 4, without an exact reference). One 
of Laplace’s conditions for determining an estimator xo of the real value of the 
constant sought given its observations x1, x2, …, xn was (see Item 1 above) 
that the integrals  
 

    � �(x – x1) �(x – x2) … �(x – xn ) 

 
over [– a; xo] and [xo; a] should be equal to each other. Laplace indicated, 
without proof, that in case of an infinite a the arithmetic mean could be 
obtained from the density law (12). He apparently thought that the function 
(12) then became constant, cf. his similar derivation in Item 1 above.  
    Laplace then went over to a “much more general proposition” for density 
 
    y = �(�x) = �(– �x) = q, if �x = 0 and = 0 otherwise; � � 0. 
 
In actual fact, he considered a sequence of functions �(�x) such that 
 
    �(�x) = q(�), � = {�1; �2; … �n; …} � 0. 
 
If �x = t, then 
 
    �(t) = q if t = 0 and || < + � and = 0 otherwise (when t � 0, || = + �), 
 
and, obviously, 
 

    �
∞

∞−

�(t)dt = C ( = 1). 

 
Laplace had not written these last equalities, but I think that he had actually 
introduced the Dirac delta-function  
 
    �(t) = lim (�/��) exp (– �2t2), � � �. 
 
Laplace could have regarded the equalities above as representing a uniform 
distribution of observational errors having an arbitrarily wide, rather than 
assigned beforehand domain. His proposition consisted in that the unknown 
constant xo was equal to the appropriate arithmetic mean, but it can hardly be 
proved in the context of generalized functions: Laplace had to consider the 
integral  
 

    � �[�(x – x1)] �[�(x – x2)] … �[�(x – xn)], 

 
which does not exist in their language. 
    3) The Years 1810 – 1811. Laplace (1810a) considered n [independent] 
discrete random errors (or magnitudes) uniformly distributed on interval [– h; 
h ]. After applying a particular case of characteristic functions and the 
inversion formula, he proved, very carelessly and non-rigorously, that, in 

modern notation, as n � �, 

 



    lim P (|��i /n| � s) =
πσ 2

3
�
s

0

exp(– x2/2 2)dx, i = 1, 2, …, n,         (13) 

 
where  2 = h2/3 was the variance of each � i. He then generalized his 
derivation to identically but arbitrarily distributed variables possessing 
variance. When proving the [CLT] he (p. 304) made use of an integral of a 
complex-valued function and remarked that he hoped to interest “géométres” 
in that innovation and thus separated himself from (pure) mathematicians, see 
also Laplace (1774, p. 62; 1812, p. 365). 
    In a supplement to this memoir Laplace (1810b), apparently following 
Gauss, turned his attention to the MLSq, and derived it without making any 
assumptions about the arithmetic mean (cf. §9.2), but he had to consider the 
case of a large number of observations and to suppose that the means of their 
separate groups were also normally distributed. 
    Laplace (1811) returned to least squares soon enough. This time he 
multiplied the observational equations in one unknown 
 
    aix + si = �i, i = 1, 2, …, n, 
 
where the right sides were errors rather than residuals, by indefinite 
multipliers qi and summed the obtained expressions: 
 
    [aq]x + [sq] = [�q]. 
 
The estimator sought was 
 
    xo = – [sq]/[aq] + [�q]/[aq] ≡  – [sq]/[aq] + m. 
 
Tacitly assuming that all the multipliers qi were of the same order, Laplace 
non-rigorously proved another version of the CLT: 
 

    P(m = �) = [1/ m π2 ]exp(– �2/2 m
2),  2

m = k�
2][

][

aq

qq
, k� = �

∞

∞−

x2�(x)dx 

 
where �(x) was an even density of observational errors possessing variance. 
   Then Laplace determined the multipliers by introducing the condition  
 

    �
∞

∞−

|z|P(z)dz = min                                                                                (14) 

 
which led him to equalities q = µai, and then to the principle of least squares 
(in the case of one unknown) 
 
    x = [as] ÷ [aa]. 
 
    Finally, Laplace generalized his account to the case of two unknowns. He 
multiplied the observational equations (in two unknowns) by two sets of 
indefinite multipliers {mi} and {ni}

4 and obtained a bivariate normal 
distribution for independent components and, once more applying the 



condition of least absolute expectation, arrived at the principle of least 
squares.  
    And so, the derived principle essentially depended on the existence of the 
normal distribution. First, the CLT was necessary; second, the use of 
conditions of the type of (14) would have otherwise been extremely difficult. 
No wonder that Laplace’s theory had not been enjoying practical success, the 
less so since it demanded the existence of a large number of observations. I 
adduce a wrong statement formulated on this point by Tsinger (1862, p. 1) 
who compared the importance of the Gaussian and the Laplacean approaches: 
 
    Laplace provided a rigorous [?] and impartial investigation … it can be 
    seen from his analysis that the results of the method of least squares receive 
    a more or less significant probability only on the condition of a large 
    number of observations; … Gauss endeavored, on the basis of extraneous 
    considerations, to attach to this method an absolute significance … with a 
    restricted number of observations we have no possibility at all to expect a 
    mutual cancellation of errors and … any combination of observations can 
    … equally lead to an increase of errors as to their diminution.  
 
With regard to Gauss see Chapter 9. Here, I note that Tsinger lumped together 
both justifications of the MLSq due to Gauss and that practice demanded the 
treatment of a finite (and sometimes a small) number of observations rather 
than limit theorems. 
    4) Chapter 4 of the TAP. Laplace non-rigorously proved the CLT for 
sums and sums of absolute values of independent, identically distributed 
errors restricted in value as well as for the sums of their squares and for their 
linear functions. All, or almost all of this material had already been contained 
in his previous memoirs although in 1811 he only proved the local theorem 
for linear functions of errors. 
    In §23 Laplace formulated his aim: to study the mean result of 
“observations nombreuses et non faites encore …” This was apparently the 
first explicit statement concerning general populations; see §14.2-1 for the 
appropriate opinion of Chebyshev and Markov and §10.9.5 for similar 
statements in physics. 
    5) In Supplement 1 to the TAP Laplace (1816) considered observational 
equations in (let us say) two unknowns 
 
    ai x + bi y + li = vi, i = 1, 2, …, s. 
 
Suppose that �x and �y are the errors of the least-squares estimators of the 
unknowns, denote the even density of the observational errors by �(u/n) with 
|u| ≤  n, the moments by the letter k with appropriate subscripts, � = �x�s, � = 
�y�s, 
 

    �2 = 2
24 2kkk

k

−
, Q2 =�

=

s

i 1

(ai� + bi�)2 and t = 
k

snk

s

vv 2
22][

− . 

 
    Laplace calculated 
 
    P(�; �) ~ exp{– Q2(2[vv] – 2t�s)}, P(t) ~ exp{– (�2/4n4) [t + (Q2/s�s)]2}. 
 



It thus occurred that P(�; �; t) which he also obtained showed that t was 
independent of �; �; or, the sample variance was independent from the 
estimators of the unknowns; to repeat, the observational errors were assumed 
to possess an even distribution, – and a normal distribution in the limit. For a 
proof of Laplace’s result see Meadowcroft (1920). 
    Laplace also considered non-even distributions and recommended, in such a 
case, to demand that the sum of vi be zero. Since [av] = 0 is the first normal 
equation written down in another form, this demand is fulfilled for ai = const 
(or bi = const); otherwise, it is an additional normal equation corresponding to 
a fictitious unknown, the mean systematic error of observations. 
    Finally, Laplace derived a formula for estimating the precision. Without 
explanation (which appeared on p. 571 of his Supplement 2) he approximated 
the squared sum of the real errors by the same sum of the residuals and arrived 
at an estimator of the variance 
 

    m = 
s

vv][
. 

 
Without naming anyone Gauss (1823b, §§37 – 38) remarked that that formula 
was not good enough, see §9.4-6. Interestingly, Laplace (1814/1995, p. 45) 
stated that “the weight of the mean result increases like the number of 
observations divided [the French word was indeed divisé] by the number of 
parameters”. 
    6) In Supplement 2 to the TAP Laplace (1818) adopted the normal law as 
the distribution of observational errors themselves and not only as the law for 
their means. Indeed, the new “repeating” theodolites substantially reduced the 
error of reading and thus equated its order with that of the second main error 
of the measurement of angles in triangulation, the error of sighting. The error 
in the sum of the three angles of a triangle (the appropriate discrepancy, or its 
closing) could therefore be also regarded as normally distributed with density 

 

    �(x) = π3/h exp(– hx2/3)  
 
where h = 1/2 2  was the measure of precision of an angle. 
    Tacitly assuming that h was a [random variable], Laplace proved that 
 
    Eh = 3n/2!2, �(x) = h n/2exp[(– h/3)!2]  

 
were its expectation and density, !2, the sum of n squares of the triangular 
discrepancies. He computed the probability of the joint realization of errors 
obeying the normal law in a triangle and concluded that an equal distribution 
of the closing of the triangle among its angles was advantageous. The MLSq 
leads to the same conclusion, and for that matter, irrespective of the normal 
law. Then, when adjusting a chain of triangles rather than a separate triangle, 
two additional conditions (never mentioned by Laplace) have to be allowed 
for, – those corresponding to the existence of two baselines and, possibly, two 
astronomical azimuths, – and a preliminary distribution of the closings is of 
course possible but not necessary.  
    And so, let the observational errors have density 
 



    �(x) = π/h exp (– hx2). 
 
Denote the closing of triangle i by Ti and suppose that the errors of the angles 
�i, �i and �i already obey the condition 
 
    �i + �i + �i = Ti. 
 
    Laplace derived the relations  
 

    P(�i; Ti) ~ π3/h  exp [– (h/3) Ti
2],  

    P(T1; T2; …; Tn) ~ ( π3/h )n/2 exp {– (h/3)[TT]}, 
 

    P(h) = 

�
∞

−

−

0

])[3( 2

])[3( 2  

dheh

eh

TT/h/n

TT/h/n

, Eh = �
∞

0

hP(h)dh = 
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3

][ 2
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The error involved in the approximation just above can be easily estimated: in 
his Supplement 3 Laplace took n1 = 26 and n2 = 107. Finally, supposing that h 
= Eh, 
 

      = 1/ h2  = n/TT 3][ , 

 
not a bad result (improved by the approximation above!). 
    Laplace next investigates the adjustment of equations in one unknown by 
the MLSq for normally distributed errors. The interesting point here is that he 
had not indicated that the distribution of the residuals was also normal; in 
other words, that that distribution was [stable]. 
    In the same Supplement Laplace discussed the Boscovich method of 
adjusting meridian arc measurements (§6.3.2). Write the initial equations in a 
different form, 
 
    pi y – ai  + xi = 0, i = 1, 2, …, n, pi  > 0, a1/p1 > a2/p2 > … > an/pn. 
 
The second unknown is presumed to be eliminated, and xi are the residual free 
terms. The Boscovich conditions, or, rather, his second condition, leads to 
 
    y = ar /pr  
 
with error – xr /pr, i.e., to the calculation of this second unknown from one 
equation only. This latter is determined by inequalities 
 
    p1 + p2 + … + pr–1 < pr+ pr+1 + … + pn,  
    p1 + p2 + … + pr > pr+1 + pr+2 + … + pn. 
 
    And so, these inequalities determine the sample median of the fractions     
ai /pi. Suppose now that the observational errors have an even density �(x) and 
 



    k� = �
∞

0

x2�(x)dx.  

   
Then, as Laplace showed, basing his derivation on variances5 rather than on 
absolute expectations as before, the Boscovich method was preferable to the 
MLSq if, and only if, 
 
    4�2(0) > 1/(2k�). 
 
According to Kolmogorov (1931), the median is preferable to the arithmetic 
mean if 
 
    1/[2 �(m)] < 1,  2 = 2k�, 
 
and m is the population median. 
    While translating Laplace’s Mécanique Céleste into English, Bowditch 
(Laplace 1798 – 1825/1832, vol. 2, §40, Note) stated: 
 
    The method of least squares, when applied to a system of observations, in 
    which one of the extreme errors is very great, does not generally give so 
    correct a result as the method proposed by Boscovich … the reason is, that 
    in the former method, this extreme error [like any other] affects the result in 
    proportion to the second power of the error; but in the other method, it is 
    as the first power. 
 
    In other words, the robustness of the Boscovich method is occasioned by its 
connection with the median. 
    7) In Supplement 3 to the TAP Laplace (ca. 1819) begins by evaluating a 
chain of 26 triangles (Perpignan – Formentera) which was a part of a much 
longer chain of 107 triangles. For the same normal distribution �(x) he has 
 

    � = �
∞

∞−

ϕ dxx|x| )( , �� = �
∞

∞−

ϕ dxxx )( 2 , �� = ��2/2. 

 
    The empirical value of � for the longer chain was  
 
    (1/107) (|T1| + |T2| + … + |T107|) = 1.62 so that (1.622/2) � = 4.13. 
 
With subscripts 1 and 2 denoting the shorter and the longer chains 
respectively, Laplace has 
 
    [TT]1 = 4.13·26 = 107.8; empirical value, (26/107)[TT]2 = 108.8.  
 
    This calculation shows that, first, Laplace preferred to evaluate [TT]1 by 
[TT]2 rather than use its actual value which was hardly correct since the 
pertinent conditions of observations could well have been different. Second, 
Laplace has thus qualitatively checked the realization of the normal law. 
    Next Laplace considers the adjustment of equations 
 
    pi x = ai + mi�i + ni�i, i = 1, 2, …, n 



 
in one unknown, x, and independent errors �i and �i both distributed normally 
with differing measures of precision; he only mentioned independence later 
(1827, p. 349). Laplace explained his calculation by referring to his pp. 601 – 
603 which does not help but at least he concluded that the error of x was 
distributed normally so that he knew that the normal law was [stable], cf. 
§9.2-6. However, the variance of the emerged law depended on the 
application of the MLSq which meant that the result just formulated was not 
sufficiently general. 
    Also in 1827 Laplace (p. 343) stated that the MLSq was a particular case of 
the “most advantageous” method of adjustment (based on the minimal value 
of the expected absolute error and the presumed normal law, see end of §7.2-
3). Before 1823, he would have been partly in the right, but not afterwards, 
not since Gauss’ second justification of the MLSq had appeared. 
    8) In Note 5 I indicated that Laplace had successfully treated the case of 
dependence between random variables. Elsewhere, however, he (1827) 
somehow erred when investigating the atmospheric pressure. Its mean daily 
variation in Paris during 11 years was 0.763mm, or 0.940mm, if, during the 
same years, only three months, from February to April, were taken into 
consideration. When attempting to find out whether the difference between 
the two values was significant, Laplace had not indicated that they were not 
independent6. He made one more mistake: when solving his equations in two 
unknowns, the action of the Moon and the time of the maximal pressure, he 
had not stated that, again, the appropriate free terms were not independent. 
Without justifying his remark, K. Pearson (1914 – 1930, vol. 3A, p. 1) stated 
that “Condorcet often and Laplace occasionally failed because [the] idea of 
correlation was not in their mind”. Elsewhere, he (1978, p. 658) left a similar 
remark, again without substantiation; there also, on p. 671, he added that 
Laplace was “rarely a good collector, or a safe guide in handling [the data]”. 
Pearson exaggerated: on the then possible scientific level, and issuing from 
observations, Laplace proved that the Solar system will remain stable for a 
long time and completed the explanation of the movement of its bodies in 
accordance with the law of universal gravitation. 
  
    7.3. Philosophical Views 
    Laplace (1814/1995, p. 2) stated that, for a mind, able to “comprehend” all 
the natural forces, and to “submit these data to analysis”, there would exist no 
randomness “and the future, like the past, would be open” to it. Nowadays, 
this opinion cannot be upheld (§1.2.4); however, other remarks are also in 
order.  
    a) Such a mind does not exist and neither is there any comprehensive theory 
of insignificant phenomena, a fact which Laplace undoubtedly knew. He 
therefore actually recognized randomness (Dorfman 1974, p. 265). 
    b) In addition, there exist unstable movements, sensitive to small changes 
of initial conditions, cf. §11.2-9. 
    c) Already previous scholars, for example, Maupertuis (1756a, p. 300) and 
Boscovich (1758, §385), kept to the “Laplacean determinism”. Both 
mentioned calculations of past and future (“to infinity on either side”, as 
Boscovich maintained) but, owing to obvious obstacles, see above Item a, 
both disclaimed any such possibility.  



    In his Essai Laplace (1814/1995, p. 37) additionally provided examples of 
“statistical determinism”, – of the stability of the number of dead letters and of 
the profits made by those running lotteries. He explained all this by the action 
of the LLN (more precisely, by its, then barely known, Poisson form, see 
§7.1-8). Participation in lotteries only depends on free will, cf. Quetelet’s 
similar statement in §10.5 and Petty’s opinion (§2.1.1)7.  
    In his early memoirs, Laplace (e.g., 1776, pp. 144 – 145), like Newton 
(§2.2.3), had not recognized randomness and explained it by ignorance of the 
appropriate causes, or by the complexity of the studied phenomenon. He even 
declared that the theory of probability, that estimated the degrees of likelihood 
of phenomena, was indebted for its origin to the weakness of the mind and a 
similar statement occurred in his Essai (1814/1995, p. 3). Thus, probability 
became for him an applied mathematical discipline servicing natural sciences8 
and, even for this reason alone, he had not separated mathematical statistics 
from it, although he (1774, p. 56) noted the appearance of “un nouveau genre 
de problème sur les hasards”, and even (1781, p. 383) of “une nouvelle 
branche de la théorie des probabilités” 9. 
 
    7.4. Conclusions 
    Laplace collected his earlier memoirs in one contribution which cannot, 
however, be regarded as a single whole. He never thought about solving 
similar problems in a similar way (and his Essai was not a masterpiece of 
scientific-popular literature, see Note 1). Then, many authors complained that 
Laplace had described his reasoning too concisely. Here, for example, is what 
Bowditch (Todhunter 1865, p. 478), the translator of Laplace’s Traité de 
mécanique céleste into English, sorrowfully remarked:  
 
    Whenever I meet in La Place with the words ‘Thus it plainly appears’ I am 
    sure that hours, and perhaps days of hard study will alone enable me to 
    discover how it plainly appears.  
 
This can also be said about the TAP. 
    The Laplacean definition of probability (to repeat: first introduced by De 

Moivre, see §4.3) was of course unsatisfactory, but nothing better had 
appeared until the advent of the axiomatic theory (or, the Mises debatable 
formula). Here is the testimony of Kamke (1933, p. 14): In 1910, it was said at 
Göttingen University that probability was a number situated between 0 and 1 
about which nothing more was known. Similar statements were due to Mises 
in 1919, to Keynes in 1921, and to Lévy (who was born in 1886) in his earlier 
life (Cramér 1976, §2.1) as well as to Markov (§14.1-5). 
    But the opinion of Doob (1989) was even more interesting. In 1946  
 
    To most mathematicians mathematical probability was to mathematics as 
black marketing to marketing; … the confusion between probability and the 
phenomena to which it is applied … still plagues the subject; [the significance 
of the Kolmogorov monograph] was not appreciated for years, and some 
mathematicians sneered that … perhaps probability needed rigor, but surely 
not rigor mortis; … the role of measure theory in probability … still 
embarasses some who like to think that mathematical probability is not a part 
of analysis. 
 



    All this means that Laplace is here exonerated. However, he had not even 
heuristically introduced the notion of random variable and was therefore 
unable to study densities or characteristic functions as mathematical objects. 
His theory of probability remained an applied mathematical discipline 
unyielding to development which necessitated its construction anew. It is 
opportune to note that Maxwell referred to Laplace only twice, see Sheynin 
(1985, p. 364 and 366n) and my §10.9.5, and Boltzmann did not mention him 
at all. 
    At the same time, however, Laplace introduced partial differential 
equations and, effectively, stochastic processes into probability, and non-
rigorously proved several versions of the CLT by applying characteristic 
functions and the inversion formula. 
    On that basis, he constructed his version of the theory of errors, which 
essentially depended on the existence of normally distributed observational 
errors and was therefore unsuccessful . In the not yet existing mathematical 
statistics Laplace investigated the statistical significance of the results of 
observation, introduced the method of statistical simulation, studied his 
version of sampling and extended the applicability of the Bayesian approach 
to statistical problems.  
    Laplace had not regarded himself as a pure mathematician, but he knew the 
Dirichlet formula (even in a generalized version), introduced the Dirac delta-
function and integrals of complex-valued functions. He had also indicated 
(long before the strong law of large numbers became known) that in 
probability theory limit was understood in a special way. Molina (1930, p. 
386) quoted his memoir (1786, p. 308) where Laplace had contrasted 
(although not clearly enough) the “approximations” admitted in the theory of 
probability with certainty provided in analysis. 
 
    Notes 
    1. The Essai ran through a number of editions and was translated into many 
languages. It attracted the public to probability, but the complete lack of 
formulas there hindered its understanding. The appearance of Quetelet’s 

superficial contributions written in good style (§10.5) had a negative effect on 
the fate of the Essai. 
    2. For a simpler derivation of its equation see Todhunter (1865, pp. 545 – 
546). 
    3. Laplace applied several pertinent terms. In his TAP, he finally chose loi 
de probabilité or loi des erreurs. 
    4. The quantities [�m] and [�n] which appearred here were not independent. 
Without indicating this, Laplace correctly solved his problem. 
    5. In his Supplement 3 Laplace once more applied the variance as the main 
measure of precision of observations. 
    6. Retaining excessive decimals was of course traditional. Gauss (1828, 
§§23 – 25) and even Fisher (Science, vol. 84, 1936, pp. 289 – 290) might be 
mentioned here as well. 
    7. Kant (1763, p. 111) indicated that the relative number of marriages 
(which obviously depended on free will) was constant. 
    8. The subjects discussed by Laplace in his Exposition (1796) had not 
demanded stochastic reasoning, but he undoubtedly applied them, for 
example, in the Traité (1798 – 1825), to say nothing about the treatment of 
observations, and his determinism had not hindered him at all. Thus, Laplace 



(1796, p. 504) qualitatively explained irregularities in the Solar system by the 
action of random causes. Elsewhere he (1812, p. 361) stated that a certain 
magnitude, although having been indicated by [numerous] observation[s], was 
neglected by most astronomers, but that he had proved its high probability and 
then ascertained its reality. Thus, in general, unavoidable ignorance 
concerning a single random event becomes a cognizable regularity.  
    9. Lagrange, in a letter to Laplace of 13.1.1775, see t. 14 of his Oeuvres, 
1892, p. 58, used this latter expression. Inductive stochastic conclusions 
occurred in the Talmud (§1.1.2) and Arbuthnot’s memoir (§2.2.4) and the 
work of many other authors, especially Bayes, which had appeared before 
Laplace, might be today attributed, at least in part, to mathematical statistics. 
  
    Literature 
    Sheynin (1976; 1977a; 1978b) 
 
    8. Poisson 
    Like Laplace, Poisson had published a number of memoirs on the theory of 
probability, then combined them in his monograph (1837a) whose juridical 
title did not reflect its contents; only its subtitle promised to discuss, as a 
preliminary, the general principles of the calculus of probability. I describe 
both this contribution (referring only to its page numbers) and his other works. 
First, however, I quote Poisson’s statement (p. 1) about the place of 
probability in mathematics and then describe the scope of the Elements of the 
Calculus of Probability and Social Arithmetic as formulated by him 
(Programmes 1837, p. 26). And so, probability became “une des principales 
branches des mathématiques, soit par le nombre et l’utilité de ses applications, 
soit par le genre d’analyse auquel il a donne naissance” [to which it gave 
birth]. 
    The Programmes listed: 1) Topics of probability itself (general principles, 
the Bernoulli theorem, probabilities of future events derived from the 
probabilities of similar previous events). 2) Tables of mortality, mean duration 
of life, smallpox, inoculation and vaccination. Here also, expectation, cf. 
§13.3. 3) Institutions depending on probabilities of events (annuities, 
insurance, loans). 4) Mean values of a large number of observations. The soon 
forgotten term social arithmetic (appearing also below in §8.9) thus 
designated population and medical statistics. Now, we would rather say social 
statistics. 
 
    8.1. Subjective Probability 
    The aim of the calculus of probability, as Poisson (pp. 35 – 36) maintained, 
was the determination, in any doubtful “questions”, of the ratio of the cases 
favorable for the occurrence of an event to all possible cases, and its principles 
should be regarded as “un supplément nécessaire de la logique”. He (pp. 30 
and 31) remarked that the appropriate probability changed with experience, 
and was subjective, but that the chance of an event remained constant. 
Already Leibniz (§2.1.1) and then De Morgan (1847)1 and Boole (1952) 
attempted to justify probability by elements of mathematical logic, see also 
Halperin (1988).  
    The stressed difference between chance and probability (also recognized by 
Cournot, see §10.3) is now forgotten, although Poisson attempted to adhere 
to it. Thus (p. 47), he showed that the subjective probability of extracting a 



white ball from an urn containing white and black balls in an unknown 
proportion was equal to 1/2 “as it should have been”. This conforms to the 
principles of the theory of information and he himself was satisfied with the 
result obtained since it corresponded to “la perfaite perplexite de notre esprit”.  
 
    8.2. Two New Notions 
    Poisson (1829, §1) defined the distribution function of a random variable as 
 
    F(x) = P(� < x) 
 
and (Ibidem) introduced the density as the derivative of F(x). Later he (1837b, 
pp. 63 and 80) similarly treated the continuous case. Davidov (1885) and 
Liapunov (1900) had noted his innovation, but distribution functions only 
became generally used in the 20th century. 
    Poisson (pp. 140 – 141) was also the first to introduce the notion of a 
discrete random variable although he named it by an obviously provisional 
term, chose A2. He then (p. 254) considered a random variable with values 
being multiples of some �, assumed that � � 0 and thus went over, in 
accordance with the tradition of his day, to a continuous variable3. As 
compared with Simpson, who studied random observational errors (§6.3.1), 
Poisson’s innovation here was a formal heuristic definition of a random 
variable and its more general (not necessarily connected with the theory of 
errors) understanding. 
 
    8.3. The De Moivre – Laplace Limit Theorem 
    Poisson (p. 189) provided his own derivation of that theorem by issuing 
from the probability4 of the occurrence of contrary events A and B not less 
than m times (not more than n times) in µ = m + n Bernoulli trials 
 

    P = p m{1 + mq + 
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where p and q were the probabilities of the occurrence of these events in a 
single trial, p + q = 1, and q/p = a. 
    His results were, however, tantamount to formula (7.3), see Sheynin 
(1978c, pp. 253 – 254). Montmort (1708, p. 244), also see Todhunter (1865, 
p. 9), knew formula (1) and formula (2) occurred in Laplace’s TAP, Chapter 
6. 
    For small values of q Poisson (p. 205) derived the approximation 
 
    P � e-�(1 + � + �2/2! + … + �n/n!),                                                        (3) 
 
where mq � µq = �. Poisson had not provided the expression 
 
    P(� = m) = e-��m/m!. 
  
    8.4. Sampling Without Replacement 



    Poisson (pp. 231 – 234) examined sampling without replacement from an 
urn containing a white balls and b black ones (a + b = c) and applied the 
result obtained for appraising a model of France’s electoral system. Suppose 
that the sample contained m white, and n black balls (m + n = s). Its 
probability, as Poisson indicated, was represented by the [hypergeometric] 
distribution. For large a and b as compared with the sample, Poisson 
determined an approximate expression for that probability under an additional 
condition 
 
    n > m.                                                                                                     (4) 
 
    If a series of k such samples are made, then 
 
    s1 + s2 + … + sk = c.  
 
After calculating the probability of the condition (4) being fulfilled j times out 
of k, Poisson concluded that, even if b only somewhat exceeded a, j will 
apparently be too large. For k = 459, which was the number of electoral 
districts in France, c = 200,000, equal to the number of the voters (less than 
1% of the population!). Suppose also that each voter is a member of one of the 
two existing parties; that the voters are randomly distributed over the districts; 
and that the proportion of party memberships is 90.5:100. Then, as Poissson 
concluded, remarking, however, that his model was too simplified, the 
probability of electing a deputy belonging to the less numerous party was very 
low. 
    Poisson (1825 – 1826) studied sampling without replacement also in 
connection with a generally known game. Cards are extracted one by one 
from six decks shuffled together as a single whole until the sum of the points 
in the sample obtained will be in the interval [31; 40]. The sample is not 
returned and a second sample of the same kind is made. It is required to 
determine the probability that the sums of the points are equal. Poisson solved 
this difficult problem which demanded ingenuity; in particular, he introduced 
a bivariate generating function (Sheynin 1978c, pp. 290 – 292), also see my 
§8.5 below. Only later, when solving the electoral problem (above), Poission 
remarked that the result of the second sampling might be considered 
independent from the first one if only it, the first one, remained unknown. 
    Suppose (Poisson 1837a, pp. 231 – 234) that an urn contains a white balls 
and b black ones. Two samples without replacement are made, one after the 
other, and g and m white balls and h and n black ones are extracted 
respectively, g + h = r. The probability of the second sample is 
 

    P(a; b; m; n) =� [P(a – g; b – h; m; n) P(a; b; g; h)] 

 
where the sum is extended over g, h = 0, 1, 2, …; g + h = r and the letters in 
parentheses are the appropriate arguments. The right side of the formula does 
not depend on r which might be therefore assumed to be zero. This remark 
indeed proves Poisson’s statement as well as the finding of another author, 
Mondesir (1837). This episode and its further history is described in Sheynin 
(2002c). Here, I only mention Chuprov. In a letter of 1921 he (Sheynin 1990, 
p. 117) stated: 
 



    Not knowing the prior data it is impossible to distinguish a series of 
    numbers obtained when extracting the tickets without replacement from a 
    series obtained according to the usual way of replacing … the ticket. 
 
Also see Chuprov (1923, pp. 666 – 667; 1924, p. 490). The first to consider 
sampling without replacement was Huygens (§2.2.2). 
 
    8.5. Limit Theorems for the Poisson Trials 
    Suppose that contrary events A and B occur in trial j with probabilities pj 
and qj (pj + qj = 1). Poisson (p. 248) determined the probability that in s trials 
event A occurred m times, and event B, n times (m + n = s). He wrote out the 
generating function of the random variable m (or, the bivariate generating 
function of m and n) as 
 
    X = (up1 + vq1) (up2 + vq2) … (ups + vqs)  
 
so that the probability sought was the coefficient of umvn in the development 
of X. His further calculations (lacking in Chapter 9 of Laplace’s TAP) 
included transformations 
 
    u = eix, v = e–ix, upj + vqj = cosx + i(pj – qj) sinx = "i exp(irj), 
    "j = {cos2x + [(pj – qj)sinx]2}1/2, rj = arctg[(pj – qj)tgx]. 
 
    Excluding the case of pj or qj decreasing with an increasing s, and without 
estimating the effect of simplifications made, Poisson (pp. 252 – 253) derived 
the appropriate local and integral limit theorems. They were, however, 
complicated and their importance apparently consisted in extending the class 
of studied random variables. 
 
    8.6. The Central Limit Theorem 
    Poisson (p. 254) introduced a [lattice] random variable whose values were 
multiples of some � on a finite interval and depended on the number of the 
trial. Applying the appropriate characteristic function and the inversion 
formula, he determined the probability that the sum of these values s was 
obeying certain inequalities a� � s � b�. He then went over to the sum of 
continuous variables by assuming that � � 0, a, b � � with finite a� and b� 
and (p. 268) derived the [CLT] for s under a single (not adequately explained) 
condition, again without estimating the effect of simplifications made5. In 
accordance with the context, it seems, however, that he supposed that the 
variances of the terms of s were finite and bounded away from zero. He (p. 
258) also made use of the Dirichlet discontinuity factor which he considered 
known. Dirichlet introduced it in two papers, both published in 1839, see his 
Werke, Bd. 1, 1899, pp. 377 – 410. Poisson (1824; 1829) earlier proved 
several versions of the CLT in the same way. He (1824, §§4 and 6) introduced 
then the so-called Cauchy distribution and found out that it was [stable]. For a 
modern exposition see Hald (1998, pp. 317 – 327).  
    Poisson (1824, §§8 – 10) also considered a linear function 
 
    E = a1�1 + a2�2 + … + an�n  
 



of discrete and continuous independent random variables �i. In the second 
instance he (1824, p. 288) obtained the appropriate CLT and noted that that 
theorem did not hold for variables with density 
 

    �(x) = e–2|x|, |x| < + �  

 
and either ai = 1/(i + 1) or 1/(2i – 1). Markov (1899c, p. 42) mentioned these 
exceptional cases in his debates with Nekrasov about the CLT; in the 
translation of his note, I have inadvertently omitted his exact reference to 
Poisson. 
    Poisson also applied the CLT for estimating the significance of 
discrepancies between empirical indicators obtained from different series of 
observations. For the Bernoulli trials he studied the discrepancies between 
probabilities of events (p. 224) and between the appropriate frequencies 
(p.294) and, for his own pattern (§8.7), between the mean values of a random 
variable (p. 288). Cournot (1843, Chapters 7 and 8) borrowed his findings 
without mentioning him. 
 
    8.7. The Law of Large Numbers  
    Here is how he defined this law in his Préambule (p. 7): 
 
    Things of every kind obey a universal law that we may call the law of large 
    numbers Its essence is that if we observe a very large number of events of 
    the same nature, which depend on constant causes and on causes that vary 
    irregularly, sometimes in one manner  sometimes in another, i.e., not 
    progressively in any determined sense, then almost constant proportions 
    will be found among these numbers. 
 
    He went on to state qualitatively that the deviations from his law became 
ever smaller as the number of observations increased. Bortkiewicz (1904, p. 
826, Note 13) remarked that the Préambule was largely contained in Poisson’s 
previous work (1835). Poisson (1837a, pp. 8 – 11) illustrated his vague 
definition by various examples, which, however, did not adequately explain 
the essence of the law but were interesting indeed. Thus (pp. 9 and 10), the 
LLN explains the stability of the mean sea level and of the existence of a 
mean interval between molecules. Beginning with 1829, Poisson’s 
contributions had been containing many direct or indirect pronouncements on 
molecular conditions of substance, local parameters of molecular interactions, 
etc. sometimes connected with the LLN (Sheynin 1978c, p. 271, note 25). 
    Poisson then (pp. 138 – 142) formulated but did not prove three 
propositions characterizing the LLN. These were based on the standard 
formula (which Poisson had not written out) 
 
    P(B) = �P(Ai) P(B/Ai). 
 
In actual fact, he studied the stability of statistical indicators by means of the 
CLT, see Hald (1998, pp. 576 – 582). 
    It should be thought that Poisson described his law in a very complicated 
way; no wonder that Bortkiewicz (1894 – 1896, Bd. 10, p. 654) declared that 
“There hardly exists such a theorem that had met with so many objections as 



the law of large numbers”. Here, in addition, is a passage from Bortkiewicz’ 
letter to Chuprov of 1897 (Sheynin 1990c, p. 42): 
 
    Or take … my last three-hour talk with Markov about the law of sm. [small] 
    numbers [§15.1.2]. It caused me nothing but irritation. He again demanded 
    that I change the title. With respect to this topic we got into conversation 
    about the law of l. nn. It happens that Markov (like Chebyshev) attributes 
    this term to the case when all the probabilities following one another in n 
    trials are known beforehand … In concluding, Markov admitted that 
    perhaps there did exist ‘some kind of ambiguity’ in Poisson’s reasoning, 
    but he believed that it was necessary to take into account the later authors’ 
    understanding of the term ‘law of l. nn.’ …  
 
    The LLN was not recognized for a long time. In 1855 Bienaymé declared 
that it contained nothing new (§10.2) which apparently compelled Cournot 
(1843) to pass it over in silence. Even much later Bertrand (1888a, pp. 
XXXII and 94) considered it unimportant and lacking in rigor and precision. 
However, already Bessel (1838a, especially §9) guardedly called the Poissson 
law a “principle” of large numbers, Buniakovsky (1846, p. 35) mentioned it 
and Davidov (1854; 1857, p. 11) thought it important. It is nevertheless 
possible (§3.2.3) that statisticians had recognized the Bernoulli, and the 
Poisson (and the Chebyshev) laws of large numbers only in the qualitative 
sense. 
 
    8.8. The Theory of Errors and Artillery 
    In the theory of errors Poisson offered his proof of the CLT (§8.6) and a 
distribution-free test for the evenness of the density of observational errors 
(1829, §10). He (1837b) also applied the theory of probability and the error 
theory to artillery firing, although mostly in a methodical sense6. He 
recommended the variance as the main estimator of scattering which 
conformed to Laplace’s later idea, see §7.2-5. One of his problems (1837b, 
§7) consisted in determining the distribution of the square of the distance of 
some point from the origin given the normal distributions of the point’s 
distances from the two coordinate axes. He thus was perhaps the first to treat 
clearly the densities as purely mathematical objects. 
 
    8.9. Statistics 
    In §6.2 I described the development of statistics in the 18th century and I 
return to this subject in Chapter 10. Here, I discuss the appropriate 
pronouncements of Poisson and some other scholars. Recall first of all (§8.6) 
that Poisson investigated the significance of empirical discrepancies. Quetelet 
(1869, t. 1, p. 103), who had corresponded with Poisson, testified that the 
latter had mentioned statisticians, who “pretended to substitute their fantasies 
for the veritable principles of [their] science, with derisive severity”.  
    In a few other cases (and twice in joint papers) Poisson expressed himself 
more definitely. Thus (Libri – Carrucci et al 1834, p. 535):  
 
    The most sublime problems of the arithmétique sociale can only be resolved 
    with the help of the theory of probability. 
 
A year later Poisson et al (1835, p. 174) stated that 



 
    Statistics carried into effect always is, after all, the functioning mechanism 
    of the calculus of probability, necessarily concerning infinite [?] masses, an 
    unrestricted number of facts; and (p. 176) [with respect to the applicability 
    of mathematics] the state of the medical sciences is not worse than, not 
    different from the situation with all the physical and natural sciences, 
    jurisprudence, moral and political sciences etc7. 
 
    This opinion was, however, questioned. Poinsot (Poisson 1836, p. 380) 
declared that the application of the calculus of probability to “moral things”, 
such as the verdicts of law courts and elections, was a “dangerous illusion”, 
also see §8.9.1. Double (1837, pp. 362 – 363) sharply objected to the 
application of statistics in medicine and stated that “each case appear[ed] to 
me [to him] a new and a separate problem”. However, he mistakenly 
identified statistics with the numerical method (see §10.9). Cauchy (1821, p. 
V) cautiously pronounced a similar opinion: The only method of natural 
sciences consisted in subjecting observations to calculus, but the mathematical 
sciences should not “exceed their bounds”. Later he (1845, p. 242), however, 
expressed himself quite differently: statistics, as he maintained, provided the 
means, infallible in a sense, for judging doctrines and institutions, and should 
be applied “with full rigor”. 
    
    8.9.1. Jurisprudence. Poisson (1837a, pp. 1 – 2) thought that the study of 
the probabilities of verdicts and, in general, of majority decisions, was a most 
important application of the calculus of probability. He (p. 17) perceived his 
main goal in that field as an examination of the stability of the rate of 
conviction and of the probability of miscarriage of justice as well as in the 
comparison of judicial statistics of different countries and (p. 7) in proving the 
applicability of mathematical analysis to “things that are called moral”.  
    Poisson was mainly interested in studying criminal offences. Unlike 
Laplace, he (pp. 4 and 318) introduced a positive probability (k) of the 
defendant’s guilt. One of his formulas (p. 333) determined the probability that 
the defendant, convicted by (n – i) jurors out of n, was really guilty: 
 
    Pi = kt m/[kt m + (1 – k)], t = u/(1 – u). 
 
Here, m = n – 2i, and u was the probability of a correct verdict reached by 
each juror (judge). Poisson noted that the right side did not depend on n; 
however, supposing that n was odd (say), i could have varied up to its greatest 
value, (n – 1)/2 and what mattered was the sum of all of the values of Pi. He 
derived a similar formula for a continuous random u by introducing its 
unknown prior density. 
    One of Poisson’s statement (pp. 375 – 376) is debatable: he thought that the 
rate of conviction should increase with crime. 
    The application of the theory of probability to jurisprudence continued to be 
denied. Here are the two most vivid pertinent statements (Mill 1843, p. 353; 
Poincaré 1896, p. 20): 
 
    Misapplications of the calculus of probability … made it the real 
     opprobrium of mathematics. It is sufficient to refer to the applications 
    made of it to the credibility of witnesses, and to the correctness of the 



    verdicts of juries. 
 
    And, people “influence each other” and act like the “moutons de Panurge”. 
Nevertheless, the pertinent work of Laplace and Poisson (and of their 
predecessor, Condorcet, §6.1.5) had undoubtedly attracted the public to the 
problems of the administration of justice and showed what could be hoped for 
in the ideal case. I return to Poincaré in §11.2. 
 
    8.9.2. Medical Statistics. I mentioned this discipline in §6.2.3. Now I say 
that Poisson had certainly contributed to its development. Here is a statement 
of Gavarret (1840, p. xiii), his former student who later took to medicine: 
 
    Only after long reflection on the lectures and writings of the illustrious 
    geometer, we grasped all the extensiveness of the systematic application of 
    the experimental method in the art of healing. 
 
    In his book, that became very well known, Gavarret explained the normal 
approximation to the binomial law and the calculation of admissible 
discrepancies of frequencies in series of Poisson trials and (p. 194) stressed 
the importance of checking null hypotheses. In Russia, in the 1850s, Davidov 
(Ondar 1971), who was well acquainted with the work of Poisson and 
Cournot (§10.3), popularized the application of the statistical method to 
medicine. I mention him again in §10.4-8. 
 
    Notes 
    1. When describing his attempt to generalize the normal law, De Morgan 
(1864, p. 421) declared that if the probability of a certain event was 2.5, it 
meant that the event “must happen twice with an even chance of happening a 
third time”. It is hardly possible to formulate a more strange statement. 
    2. Earlier Poisson (1830, pp. 141 and 146) used the same letter A for 
designating an observed constant, – of “some thing”. Consequently, it hardly 
stood later for “aléatoire”. 
    3. Poisson (1837a, p. 274, and earlier (1833, p. 637)) corroborated the 
transition from discrete to continuous by a trick that can be described by 

Dirac’s delta-function. When introducing density �(x) equal to zero 
everywhere excepting a finite number of points ci, i = 1, 2, …, n, and such that 
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Poisson had thus introduced that function of the type of 
 
    �(x) = �gi �(x – ci). 
 
    4. Poisson was unable to keep to his announced distinction between chance 
and probability and I am therefore making use of the modern term. 
    5. Poisson referred to his p. 155 and to his memoir (1829, §8), but, as I see 
it, the situation remained unclear. Later he (1837a, pp. 312 – 313) repeated the 
formula of the CLT for the mean value of a random variable without 



introducing any conditions and even without demanding that its domain was 
restricted to a finite interval. 
    6. From 1812 (and until?) Poisson was “examinateur de l’arme de 
l’artillerie“ (Arago 1850, p. 602). 
    7. Laplace (1814/1995, p. 61) urged to “apply to the political and moral 
sciences the method based on observation and the calculus, a method that has 
served us so successfully in the natural sciences”. It is difficult to say what 
exactly is included into moral sciences; see however Poinsot’s statement 
below. Beginning at least with Quetelet, the study of phenomena depending 
on free will (although only crimes, suicides, and marriages) was considered to 
constitute the subject of moral statistics. Then, however, the domain of that 
branch of statistics essentially broadened and includes now, for example, 
philanthropy and professional and geographical mobility of the population. 
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    9. Gauss 
    This chapter is mostly devoted to the MLSq1. I (1979) have somewhat 
dwelt on Gauss’ investigations in probability proper. Gauss was a tireless 
collector of statistical data, even of non-essential nature, and successfully 
managed the widows’ fund of the Göttingen University. His correspondence 
and scientific legacy include a study of the mortality of newly-born and of the 
members of tontines (of closed societies of mutually insured persons). In the 
theory of probability, he left the inversion formula for the Fourier transform 
of the density function. 
    Gauss also solved the first problem in the metric theory of numbers. He 
considered the expansion of a number M (0 < M < 1) into a continued fraction 
with unit numerators and investigated the probability P(n; x) that, beginning 
with its (n + 1)-st convergent, the “tail” of this fraction was less than x. If all 
the permissible values of M were equally probable or more or less so, then, as 
he explained his problem in a letter of 1812 to Laplace (Werke, Bd. 10/1, pp. 
371 – 372), P(0; x) = x and 
 

    lim P(n; x) = 
2 ln

)(1 ln x+
, n � �. 

 
    Nevertheless, he was not quite satisfied with his solution and asked Laplace 
to have a look at the problem. He, Gauss, was sure that Laplace will find a 
plus complete solution, – a pre-limiting expression. A phrase from Gauss’ 
Mathematisches Tagebuch written in 1800 (p. 552 of the same source) 
testifies that Gauss had already then derived the equality above – and had then 
been satisfied with his work. 
    Stäckel (Gauss, Werke, Bd. 10/1, pp. 554 – 556) and then Kuzmin (1928) 
proved this equality and the latter also derived an asymptotic expansion for 
P(n; x). 
    Here, I also repeat in a few words his general opinion (Werke, Bd. 12, pp. 
201 – 204) about the applications of the theory of probability as described by 
W.E.Weber in one of his letters of 1841. If only based on numbers, Gauss 
reasoned, such applications could be greatly mistaken; the nature of the 
studied subject ought also to be taken into account. However, probability 



provides clues when nothing except numbers is known as for example when 
dealing with annuities; and in jurisprudence, it can determine the desired 
number of witnesses and jurors [but hardly without allowing for “the nature” 
of law courts].  
 
    9.1. The Method of Least Squares before 1809 
    It had been indirectly and inaccurately applied from the mid-18th century 
(§6.3.2) and its peculiar version was possibly known even earlier. When some 
point P was graphically intersected from three or more given stations, a 
triangle, or a polygon of errors appeared on the surveyor’s table sheet and it 
was apparently natural to select the position of P by eye in such a manner that 
the sum of the squares of its distances from the sides of the triangle (of the 
polygon) was minimal. To a certain extent I can justify my opinion by 
mentioning an experimental smoothing of a broken line by eye (Tutubalin 
1973, p. 27): on the whole, the curves thus drawn were as accurate as if 
determined by the MLSq.  
  
    9.1.1. Huber. Many authors, for example Merian (1830, p. 148), stated that 
somewhat before 1802 the Swiss mathematician and astronomer Huber had 
discovered the principle of least squares, but that, living far from scientific 
centers, he had not reported his finding to anyone. However, Dutka (1990), 
who referred to a forgotten paper (W. Spieß 1939), concluded otherwise. It 
occurs that Spieß quoted Huber himself who had mentioned “Legendre’s 
criterion [Maßstab] of least squares”. 
 
    9.1.2. Legendre (1805, pp. 72 – 73) introduced the principle of least 
squares: 
 
    Of all the principles that can be proposed [for solving redundant systems of 
    linear equations], I think there is none more exact, or easier to apply, than 
    that which we have used in this work; it consists of making the sum of the 
    squares of the errors [of the residuals] a minimum. This method establishes 
    a kind of equilibrium among the errors, which, since it prevents the 
    extremes from dominating, is appropriate for revealing the state of the 
    system which most nearly approaches the truth. 
 
(Transation by Stigler (1986, p. 13).) Legendre also indicated that the absolute 
values of the extremes [again: of the residuals] should be confined within the 
shortest possible interval. He had not added that it was the minimax principle 
(§6.3.2) rather than his innovation that ensured his desire. 
  
    9.1.3. Adrain. The American mathematician Adrain (1809) justified the 
principle of least squares and the [normal distribution]2 at about the same time 
as Gauss did and applied it to the solution of several problems, see below 
(Dutka 1990). He also indicated that the lack of space prevented him to 
discuss the adjustment of pendulum observations. About ten years later he 
(1818a) published that study in which he revealed two mistakes in Laplace’s 
pertinent calculations (1798 – 1825, t. 2, §42 of Livre 3). The same year his 
derivation of the length of the larger semi-axis of the Earth’s ellipsoid of 
revolution (1818b) appeared. Incidentally, that length (6378.629km) was 



sufficiently close to a modern determination of 1940 by F.N.Krasovsky 

(6378.245km).  
    Adrain’s main paper was first mentioned much later (C. Abbe 1871) but his 
second article had become known to Olbers who (Schilling 1909, p. 711) 
informed Gauss about it. An American author, wrote Olbers to Gauss, had 
mentioned his previous paper and “ascribed” the MLSq to himself. Gauss 
hardly made any comment; the priority strife with Legendre was apparently 
enough for him.  
    Here are Adrain’s derivations of the normal distribution. 
    a) Lines a and b are measured in the field with errors x and y respectively 
and 
 
    x/a = y/b                                                                                           (1) 
 
and the total error is fixed:  
 
    x + y = c.                                                                                                (2) 
 
Introducing the density of the observational errors � and tacitly assuming their 
independence, Adrain applied the principle of [maximum likelihood] 
 
    �(x; a) �(y; b) = max 
 
so that, after allowing for conditions (1) and (2), 
 
    [��(x; a)/�(x; a)]dx + [��(y; b)/�(y; b)]dy = 0, ��(x; a)/�(x; a) = mxa, etc. 
 
    b) Suppose that for linear measurements 
 
    x2 + y2 = r2, 
 
then 
 
    W = �(x) �(y) – �(x2 + y2) = max, ��(x)�(y) – 2�x = 0, �(x)��(y) – 2�y = 0, 
    ��(x)/x�(x) = ��(y)/y�(y) = c, etc. 
 
Adrain then wrote out the joint distribution of both these errors and indicated 
that the appropriate contour lines were ellipses (ellipses of errors, as they were 
later called in the theory of errors). 
    Conditions (1) and (2) hardly conform to reality; thus, the former describes 
the action of systematic errors. Also arbitrary is the condition applied in the 
second justification. Nevertheless, John Herschel (1850), Maxwell (1860), 
Thomson & Tait (1867, p. 314) and Krylov (1950, Chapt. 8) repeated that 
demonstration without any references (Sheynin 1965). Later on Kac (1939) 
and Linnik (1952) weakened the condition of independence. 
    Adrain was now able to prove quite simply that the arithmetic mean of 
direct measurements was optimal; this, of course, conformed to the principle 
of least squares in case of several unknowns. Finally, Adrain showed how to 
adjust a traverse (a polygon with measured sides and bearings) by the 
principle of least squares and, what is also remarkable, he calculated 



corrections to directly measured magnitudes rather than to their functions 
which were not independent from each other. 
 
    9.1.4. Gauss. He (1809a; 1809b, §186) applied the principle of least 
squares from 1794 or 1795. In the second instance, he called it “our principle” 
which badly offended Legendre. I (Sheynin 1999b; 1999d) described the 
possible cases in which Gauss could have applied the MLSq before 1805 and 
named many of his colleagues and friends to whom he had communicated his 
discovery. Unexpectedly, it occurred that von Zach, who allegedly refused to 
testify to Gauss’ priority, had not until 1805 known the formulation of the 
principle of least squares, and, furthermore, that he (1813, p. 98n) indirectly 
agreed with the latter’s statements by repeating them without any qualification 
remarks: 
 
    The celebrated Dr Gauss was in possession of that method since 1795 and 
    he advantageously applied it when determining the elements of the 
    elliptical orbits of the four new [minor] planets as it can be seen in his 
    excellent work [Theoria motus]. 
 
    Gauss’ claim about his early use of the MLSq is not generally accepted, see 
for example Marsden (1995, p. 185) who nevertheless had not mentioned the 
opposite opinion of Brendel (1924) and Galle (1924, p. 9) or of Gauss’ 
contemporaries3. In any case, Gerardy (1977), drawing on archival sources, 
discovered that Gauss, in 1802 – 1807, had participated in land surveying (in 
part, for his own satisfaction) and concluded, on p. 19 (note 16) that he started 
using the method not later than in 1803. There are many other instances 
including that mentioned by von Zach (above) in which Gauss could have 
well applied his invention at least for preliminary, trial calculations, or short 
cuts. For him, the MLSq was not a cut and dry procedure, see §9.5-3. Then, 
possible mistakes in the data and weighing the observations could have made 
justification impossible.   
    As to the communication of his discovery, I proved that among those whom 
Gauss had informed before 1805 were Bessel and Wolfgang Bolyai (the 
father of the cofounder of the non-Euclidean geometry, Janos or Johann 
Bolyai), – and Olbers which was known long ago. 
    Formally speaking, it was certainly Legendre who discovered the principle 
of least squares; here, however, is a commentator’s opinion (Biermann 1966, 
p. 18): “ What is forbidden for usual authors, ought to be allowed for Gausses 
and in any case we must respect his [Gauss’] initial considerations”. 
 
    9.2. Theoria Motus (1809b) 
    In accordance with the publisher’s demand, this book appeared in Latin. Its 
German original is lost and Gauss’ correspondence (letter from Olbers of 
27.6.1809, see Schilling (1900, p. 436)) proves that, while translating, he 
essentially changed its text. The treatment of observations occupies only a 
small part of the book. 
    1) The Boscovich method (see §6.3.2). Suppose that n equations (1.2) in m 
unknowns (n > m) are adjusted by that method. Then, as Gauss (§186) 
remarked, equation (6.13) meant that exactly m residual free terms will be 
zero. Somewhat below, in the same §186, Gauss qualified his statement by 
taking into account the other Boscovich equation (6.12) but mistakenly 



attributed it to Laplace. In §174 he stated that the formulated corollary was 
undesirable although in §§188 – 189 he apparently agreed that the Boscovich 
method might ensure a first approximation. His remark, that can be easily 
proved, means that he knew an important theorem in linear programming. 
    2) The [normal distribution] (§§175 – 177). Gauss (§177) assumed “as an 
axiom” that the arithmetic mean of many observations was the most probable 
value of the measured constant “if not absolutely precisely, then very close to 
it”. He (§175) derived the density � of observational errors believing that it 
was [unimodal] and “in most cases” even; this, then, was his understanding of 
the properties of random errors. Finally, in order to justify the principle of 
[maximal likelihood], Gauss (§176) proved the “fundamental principle” of 
inverse probability, see my §7.1-1, for the case of equal probabilities of the 
various hypotheses. However, the principle of the arithmetic mean (above) 
already implied his restriction (Whittaker & Robinson 1949, p. 219).  
    And so, if the observations are denoted by xi, i = 1, 2, …, n, then, according 
to the principle of maximal likelihood, 
 
[��(x1 – a)/�(x1 – a)] + [��(x2 – a)/�(x2 – a )] + ... + [��(xn – a)/�(xn – a )] = 0, 
 
where a is the estimator sought, coinciding, as stipulated, with the arithmetic 
mean xo. If 
 
    xi = x1 – nN, i = 2, 3, …, n, 
 
then 
 
    x1 + (x2 + x3 + … + xn) = x1 + (n – 1)x1 – n (n – 1)N, 
    N = (x1 – xo)/(n – 1), xi – xo = – N, 
 
    ��(x1 – xo)/�(x1 – xo) = (1 – n)��(– N)/�(– N) = – (1 – n)��(N)/�(N), 
    ��[N(n – 1)]/{(1 – n) �[N(n – 1)]} = – ��(N)/�(N), ��(x)/x�(x) = Const, 
 
    �(x) = (h/��)exp(– h2 x2), h > 0.                                                        (3) 
 
     Gauss (§178) called h the “measure of precision” (gradus praecisionis). It 
might be supposed that, from the very beginning, he was not satisfied with his 
derivation. His wording of the principle of the arithmetic mean and of the 
properties of the density of observational errors contained qualification 
remarks whereas the obtained principle of least squares (see below Item 3) 
occurred to be an axiom. Again, it is difficult to believe that Gauss was 
pleased with the appearance of a universal law of error. Later he (1821, pp. 
193 and 194; 1823a, p. 196) remarked that his derivation had depended on a 
hypothetically assumed distribution. And here is Bertrand’s opinion (1888a, 
p. XXXIV): Gauss had not claimed to establish the “vérité”, he attempted to 
search for it. Bertrand (pp. 180 – 181) also remarked that the mean of the 
values of some function did not coincide with the mean value of its 
arguments, which, in his opinion, testified against the principle of arithmetic 
mean. Gauss, however, considered direct measurements. Note also that he (his 
letter to Encke of 1831; Werke, Bd. 8, pp. 145 – 146) “not without interest” 
acquainted himself with the attempt of his correspondent to justify the 
arithmetic mean by deterministic analytical axioms. Many authors made 



similar efforts. Zoch (1935) concluded that, although they were unsuccessful, 
the postulate of the arithmetic mean could nevertheless be established without 
stochastic considerations. His finding was unrelated to the theory of errors, 
but the pertinent investigations apparently served as the point of departure for 
the theory of invariant statistical hypotheses and estimators (Lehmann 1959, 
Chapter 6). 
    Gauss (1845, p. 143) left a lesser known statement about the arithmetic 
mean. He remarked that the random variations corrupting observations mostly 
compensate one another so that the mean becomes ever more reliable as the 
number of observations increases. This is “generally absolutely right”, and 
often led to “splendid results” in natural sciences. However, Gauss continued, 
an important condition, often overlooked and difficult to check, was that the 
disordered variations ought to be entirely independent from each other, cf. 
§9.4-4. 
    3) The principle of least squares (§179) followed immediately. Gauss, 
however, added that, similar to the principle of the arithmetic mean, it should 
be considered an axiom [considered as a corollary of an axiom?]. A special 
point here is that, instead of the real errors the principle of least squares is 
formulated with regard to residual free terms. Helmert (1872, p. 75) indicated 
this fact but paid scant attention to it and had not mentioned Gauss. 
Apparently he had not realized that the normal law was [stable], cf. §7.2-6 and 
9.2-7.  
    4) The precision of the arithmetic mean. Gauss, naturally, restricted his 
attention to the case of the [normal distribution]. Later he (§9.4) abandoned 
this restriction. 
    5) The precision of a random sum (marginal note to §183, not included in 
the German translation). Suppose that 
 
    x = a + b + c + ..., 
 
then 
 
    hx = 1 ÷ [(1/ha

2) + (1/hb
2) + (1/hc

2) + ... ]1/2.  
 
Gauss did not explain his note; it might be supposed that the terms above were 
normally distributed since he only introduced h for that law. However, he may 
well have derived this formula in the general case. 
    6) The precision of the [estimators of the] unknowns (§182; 1811, §13). 
Suppose that these estimators are determined by solving a system of normal 
equations in accordance with the Gauss method of successive eliminations. 
Then, assuming that the precision of a direct measurement is unity, the 
precision of the estimator of the last unknown is equal to the root of its 
coefficient in the last reduced equation. Also see my §9.4-5. 
 
    9.3. “Determining the Precision of Observations” (1816) 
    1) The precision of the measure of precision h in formula (3). Suppose that 
the errors of m [independent] observations are �, �, �, … Then the most 
probable value of that magnitude is determined by the condition 
 
    h m exp[– h2 (�2 + �2 + �2 + …)] = max 
 



and is therefore equal to 
 
    ho = {m/[2(�2 + �2 + �2 + …]}1/2 = 1/ �2. 
  
    In the last expression, which is my own,   is the mean square error of an 
observation. Gauss also indicated that 
 

    P (ho – � � h � ho + �) = ! (��m/ho), !(t) = (2/��) �
t

0

exp (– z2)dz 

so that, for P = 1/2, � = "ho/�m, " 
 0.477. In addition, for distribution (3),  
 
    P(|| � "�h) = 1/2, and r = �/h 
 
is the probable error formally introduced by Bessel (1816, pp. 141 – 142). 
    Let 

    Sn = |�|n + |�|n + |�|n + ..., Kn = �
∞

∞−

xn�(x)dx, 

then, for large values of m, 
 
    P (– � � Sn – mKn � �) = !{�/[2m(K2n – Kn

2)]1/2},                                 (4) 
 
where m Kn is the most probable [the mean] value of Sn. In actual fact, Gauss 
treated absolute moments and the formula for Kn should be corrected. Formula 
(4) was proved by Helmert (§10.6) and then by Lipschitz (1890), but Cramér 
(1946, §28.2) noted that it was a particular case of the CLT. 
    Finally, Gauss derived a formula for the absolute moments of the normal 
law 
 
    mKn = Sn0 = m�[(n – 1)/2]/h n��, �(x) = #(x + 1), 
 
so that h (and therefore r) could have been estimated by Sn0, the mean value of 
Sn. Comparing the probable intervals of r for different n, Gauss concluded that 
n = 2 secured its best estimator. 
    In one of his letters of 1825 Gauss (Werke, Bd. 8, p. 143) objected to the 
probable error as “depending on a hypothesis” [on the law of distribution]. 
Still, again in his correspondence, he applied it quite a few times (Sheynin 
1994a, p. 261). Natural scientists, for example Mendeleev (§10.10.3) and 
Newcomb (§10.9.4), followed suit and Bomford (1971, pp. 610 – 611) 
“reluctantly” changed from probable to mean square error in the last (!) 
edition of his book. 
    2) Denote 1/h�2 = � and let n = 2. Then 
 

    [m(K4 – K2
2)]1/2 = �2 m2  

 
and, in accordance with formula (4), the sum of squares S2 is distributed 

normally N [m�2; �2 m2 ]. This is the asymptotic chi-squared distribution, cf. 
Cramér (1946, §20.2). 
 
    9.4. “The Theory of Combinations“ (1823 – 1828) 



    I consider the main part of this memoir in which Gauss provided his 
definitive justification of the MLSq by the principle of maximum weight [of 
minimal variance], and I add a few words about its supplement (1828). 
    1) Random errors and the density of observational errors. Gauss (§§1 – 3) 
distinguished between random and systematic errors but had not provided 
their formal definition. He (§4) then repeated (see my §9.2-2) the definition of 
density and listed its properties. The mean value of the errors (§5) was equal 
to zero; otherwise, as Gauss additionally remarked, it determined the action of 
constant errors. 
    2) The measure of precision. Gauss (§6) introduced a measure of precision 
[the variance] 
 

    m2 = �
∞

∞−

x2�(x)dx 

 
calling it the mean error to be feared, – des mittleren zu befürchtenden Fehler, 
errorum medium metuendum (1821, p. 194; 1823b, §7). Gauss (§7 and his 
letter to Bessel of 28.2.1839, Werke, Bd. 8, pp. 146 – 147) stressed that an 
integral measure of precision was preferable to a local measure. He (1823b, 
§6) also indicated that the quadratic function was the simplest [from among 
integral measures], and in 1821 he (p. 192) dwelt on his choice in more detail: 
it was also connected with “some other, extremely important advantages 
which no other function possesses. However, any other even degree could 
have been selected as well …” Could have been chosen in spite of the 
advantages of the variance? Bienaymé (1853/1867, pp. 167 – 169) proved 
that a formula of the type of (5), see below, was not valid for any other even 
exponent; a clear exposition of this proof is due to Idelson (1947, pp. 269 – 
271). Therefore, Bienaymé continued, the choice of the variance was 
unavoidable. I doubt, however, that, as he believed (p.169), Gauss was here 
mistaken. The sample variance (see Item 6) is distribution-free. 
    3) An inequality of the Bienaymé – Chebyshev type. Gauss (§9) examined 
the probability 
 

    µ = P(|�| � �m) = �
−

m

m

λ

λ

�(x)dx 

 
for a [unimodal] density of observational errors � having variance m2 and 
proved (§10) that 
 

    � � µ�3 for µ � 2/3 and � � 2/3 µ−1  for 2/3 � µ � 1. 

 
Cramér (1946, §15.7 and Example 4 to Chapters 15 – 20) more easily proved 
this “remarkable” theorem, as Gauss called it, whereas Seal (1967, p. 210) 
indicated, that Gauss had wished to abandon the universality of the normal 
distribution since it occurred that, anyway, P(|�| � 2m) � 0.89. But should we 
forget his own, although indirect arguments and doubts? 
    4) Independence. Gauss (§18) indicated that, if some observation was 
common for two functions of observational results, the errors of these 
functions will not be independent from one another and the mean value of 



their product will not therefore vanish. In one of his examples, Gauss 
calculated the variance of a linear form of independent random variables4. 
    Gauss (1809b, §175; 1823b, §15) mentioned independence even earlier but 
without explanation, and, later he (1826, p. 200; 1828, §3) described the 
mutual dependence of magnitudes known from observation by the existence 
of functional connections between them. This meant, for example, that the 
adjusted angles of a triangle, since their sum was equal to 180° plus the 
spheroidal excess, were dependent on one another. See also end of §9.2-2. 
    His reasoning heuristically resembles the definition of independence of 
events in the axiomatic theory: events are independent if the probability of 
their product is equal to the product of their probabilities. Now, in 
mathematical statistics the definition of independence is different. An 
orthogonal transformation of independent and normally distributed 
magnitudes leads to their as though “adjusted” values, – to their linear forms 
of a certain type, which are nevertheless independent (the Fisher lemma; 
Cramér (1946, §29.2)). Here is K. Pearson’s appropriate statement (1920, p. 
187): for Gauss 
 
    The observed variables are independent, for us [they] are associated or 
    correlated. For him the non-observed variables are correlated owing to 
    their known geometrical relations with observed variables; for us, [they] 
    may be supposed to be uncorrelated causes, and to be connected by 
    unknown functional relations with the correlated variables. 
 
    5) The principle of maximum weight for [unbiassed] estimators. Gauss 
described this subject ponderously. For that matter, Helmert (1872) and 
Idelson (1947) are in general much better understood. Suppose that, without 
loss of generality, the initial equations are 
 
    ai x + bi y = Gi = gi + �i, i = 1, 2, …, n  
 
where �i is the error of the free term gi. The estimators of the unknowns might 
be represented by linear forms, for example by x = [�G] with unknown 
coefficients �i so that 
 
    mx

2 = [��]m2                                                                                     (5) 
 
where m2 is the variance of an observation.  
    It is easy to prove that [a�] = 1, [b�] = 0 and the condition of maximal 
weight will be 
 
    W = [��] – 2Q11[a�] – 2Q12[b�] = max 
 
where Q11 and Q12 are the Lagrange multipliers. Similar considerations, and, 
in particular, an estimation of precision resembling formula (5), are also 
possible for the other unknowns. It occurs that the estimators of the unknowns 
are determined from the normal equations and their weights are calculated by 
means of the Lagrange multipliers of the type of Qii which, like the other 
multipliers Qij, are determined from the same normal equations with partly 
unit and partly zero free terms. Thus, in formula (5) [��] = Q11. According to 
the above, it follows that such formulas can be made use of even before 



observation; the general layout of the geodetic network and the crude values 
of its angles obtained during reconnaissance make it possible to calculate the 
Qij. And (what Gauss had not known) these multipliers are connected with 
covariations; thus, Q12 = E(xy).  
    6) The estimator of the sample [variance]. Gauss (§§37 – 38) proved that, 
for n observations and k unknowns, the unbiassed sample variance and its 
estimator were, respectively, 
 
    m2 = E[vv]/(n – k), mo

2 = [vv]/(n – k)                                             (6a, b) 
 
where vi were the residual free terms of the initial equations. Instead of the 
mean value, the sum of squares [vv] itself has to be applied. Coupled with the 
principle of maximal weight (least variance), formulas (6) provide effective 
estimators, as they are now called. Gauss (1823a, p. 199) remarked that the 
acceptance of his formula (6b) instead of the previous expression (§7.2-5) 
whose denominator was equal to n was demanded by the “dignity of science”.  
    7) The precision of the estimator of the sample variance. Gauss (§40) 
directly calculated the boundaries of the var mo

2 by means of the fourth 
moment of the errors and indicated that for the normal distribution 
 
    var mo

2 = 2m4/(n – k).                                                                          (6c) 
 
He somehow erred in calculating the abovementioned boundaries, see (10.11); 
in addition, his formulas should have included the unknown magnitude E�i

2 (�i 
were the observational errors) rather than m2. Formula (6c) shows that mo

2 is a 
consistent estimator of the sample variance; this persists in the general case, 
see formulas (10.11). 
    8) Other topics. Gauss also determined the variance of a linear function of 
the estimators of the unknowns (which are not independent) and provided 
expedient procedures for further calculations after additional data become 
known or after the weights of some observations have to be changed. 
    9) Another manner of adjusting observations. In the supplement (1828) to 
his memoir Gauss described the adjustment of observations by the MLSq 
according to the pattern of conditional observations. In geodetic practice, it is 
often expedient to issue from the directly measured magnitudes and 
conditional equations rather than from observational equations (1.2). 
Sometimes both kinds of equations are made use of, but I leave this case aside 
and consider now a (later) typical chain of, say, 10 triangles of triangulation. 
Each angle is measured as are the lengths of two extreme sides (baselines) 
whose directions (azimuths) are determined by astronomical observations. 
The observational errors are such that both the baselines and the azimuths 
might be considered exact; only the angles are adjusted. Each measured angle 
qi provides an equation 
 
    xi – qi = vi                                                                                      (7) 
 
where the first term is the real value of the angle and the right side is the 
sought correction. Now, the condition of closing the first triangle (I disregard 
its excess) is 
 
    x1 + x2 + x3 – 180° = 0.                                                                          (8) 



 
    Extremely simple is also the condition that demands that the azimuth of the 
first baseline plus the algebraic sum of the appropriate angles be equal to the 
azimuth of the second baseline. The sine theorem is however needed for the 
transition from the first baseline to the second one, but a first approximation is 
achieved by introducing the measured angles so that the required 
trigonometric equation is linearized. It follows that all the conditions can be 
written as 
 
    [av] + w1 = 0, [bv] + w2 = 0, etc.                                                      (9) 
 
Formed by means of equations (7), they should be exactly fulfilled and the 
number of the terms in the square brackets is either three, as in equations of 
the type of (8), or more, depending on the number of the triangles in the chain. 
The adjustment proper consists in determining the conditional minimum of [vv 
] with the usual application of the Lagrange multipliers and the corrections vi 
are determined through these multipliers. Strangely enough, only Helmert 
(1872, p. 197) was the first to provide such an explanation. 
 
    9.5. Additional Considerations 
    Having substantiated the MLSq, Gauss nevertheless deviated from rigid 
rules; one pertinent example is in §6.3.2. Here, I have more to say. 
    1) The number of observations. In his time, methods of geodetic 
observations were not yet perfected. Gauss himself was successfully 
developing them and he understood that a formal estimation of precision 
could describe the real situation only after all the conditions (§9.4-9) were 
allowed for, i.e., only after all the field work was done. It is no wonder, then, 
that Gauss continued to observe each angle at each station until being satisfied 
that further work was useless, see Note 11 in Chapter 6. 
    2) Rejection of outliers. This delicate operation does not yield to formal 
investigation since observations are corrupted by systematic errors, and, in 
general, since it is difficult to distinguish between a blunder and a “legitimate” 
large error. Statistical tests, that had appeared in the mid-century, have not 
been widely used in the theory of errors. Gauss himself (letter to Olbers of 
1827, Werke, Bd. 8, pp. 152 – 153) had indicated that, when the number of 
observations was not very large, and a sound knowledge of the subject was 
lacking, rejection was always doubtful.  
    3) Calculations. Without even a comptometer, Gauss was able to carry out 
difficult calculations; once he solved a system of 55 normal equations (letter 
to Olbers of 1826; Werke, Bd. 9, p. 320). His preparatory work (station 
adjustment; compilation of the initial equations, see §9.4-9, and of the normals 
themselves) had to be very considerable as well. 
    Sometimes Gauss applied iterative calculations (letter to Gerling of 1823; 
Werke, Bd. 9, pp. 278 – 281), also see Forsythe (1951) and Sheynin (1963). 
The first to put on record this fact, in 1843, was Gerling himself. Then, Gauss 
(1809b, §185) left an interesting qualitative remark stating that “it is often 
sufficient” to calculate approximately the coefficients of the normal equations. 
The American astronomer Bond (1857) had applied Gauss’ advice and 

Newcomb (1897a, p. 31) followed suit. 
    As a calculator of the highest caliber (Maennchen 1930, p. 3),  
 



    Gauss was often led to his discoveries by means of mentally agonizing 
     precise calculations … we find [in his works] substantial tables whose 
    compilation would in itself have occupied the whole working life of some 
    calculators of the usual stamp. 
 
    Maennchen did not study Gauss’ geodetic calculations possibly because in 
his time the solution of systems of linear equations had not yet attracted the 
attention of mathematicians.  
    For my part, I note that, when compiling a certain table of mortality, Gauss 
(Werke, Bd. 8, pp. 155 – 156) somehow calculated the values of exponential 
functions bn and cn for n = 3 and 7(5)97 with lg b = 0.039097 and lg c = – 
0.0042225. 
    Here, now, is Subbotin’s conclusion (1956, p. 297) about the determination 
of the orbits of celestial bodies but applicable to my subject as well: 
Lagrange and Laplace 
 
    Restricted their attention to the purely mathematical aspect [of the 
    problem] whereas Gauss had thoroughly worked out his solution from the 
    point of view of computations taking into account all the conditions of the 
    work of astronomers and [even] their habits. 
 
    4) Estimation of precision (Sheynin 1994a, pp. 265 – 266). In his letters to 
Bessel (in 1821) and Gerling (in 1844 and 1847) Gauss stated that the 
estimation of precison based on a small number of observations was 
unreliable. In 1844 he combined observations made at several stations and 
treated them as a single whole, cf. Laplace’s attitude (§9.2-7). And in 1847 
Gauss maintained that, lacking sufficient data, it was better to draw on the 
general knowledge of the situation.  
 
    9.6. More about the Method of Least Squares 
    1) In spite of Gauss’ opinion, his first justification of the MLSq became 
generally accepted (Sheynin 1995c, §3.4), in particular because the 
observational errors were (and are) approximately normal whereas his mature 
contribution (1823) was extremely uninviting; and the work of Quetelet 

(§10.5) and Maxwell (§10.9.5) did much to spread the idea of normality. 
Examples of deviation from the normal law were however accumulating both 
in astronomy and in other branches of natural sciences as well as in statistics 
(Sheynin 1995c, §3.5; again Quetelet and Newcomb, see §10.9.4). And, 
independently from that fact, several authors came out against the first 
substantiation. Markov (1899a), who referred to Gauss himself (to his letter 
to Bessel, see my §9.4-2), is well known in this respect but his first 
predecessor was Ivory (§10.10.-1).  
    The second justification was sometimes denied as well. Thus, Bienaymé 
(1852, p. 37) declared that Gauss had provided considerations rather than 
proofs; see also Poincaré’s opinion in §11.2-7. 
    2) When justifying the MLSq in 1823 in an essentially different way, Gauss 
called the obtained estimators most plausible (maxime plausibiles, or, in his 
preliminary note (1821), sicherste, rather than as before, maxime probabile, 
wahrscheinlichste. For the case of the normal distribution, these are jointly 
effective among unbiassed regular estimators5.  



    The second substantiation of the MLSq can be accomplished by applying 
the notions of multidimensional geometry (Kolmogorov 1946; Hald 1998, 
pp. 473 – 474). Kolmogorov (p. 64) also believed that the formula for m2 (6a) 
should, after all, be considered as its definition. Much earlier Tsinger (1862, 
§33) stated that it already “concealed” the MLSq. 
 
    9.7. Other Topics.  
    Gauss and Bessel were the originators of a new direction in practical 
astronomy and geodesy which demanded a thorough examination of the 
instruments and investigation of the plausibility of observational methods.  
     I mentioned Bessel in §9.7 as well as in §§9.3-1 and 9.4-2. His 
achievements in astronomy and geodesy are well known; in addition to those 
already cited, I name the determination of astronomical constants; the first 
determination of a star’s parallax; the discovery of the personal equation; the 
development of a method of adjusting triangulation; and the derivation of the 
parameters of the Earth’s ellipsoid of revolution. He also determined the 
density of the total observational error made up of many heterogeneous 
components, but a rigorous solution of such problems became possible, with a 
doubtful exception of one of Cauchy’s memoir (§10.1), only much later 
(§13.1-4)6. 
    The personal equation is the systematic difference of the moments of the 
passage of a star through the cross-hairs of an astronomical instrument as 
recorded by two observers. When studying this phenomenon, it is necessary to 
compare the moments fixed by the astronomers at different times and, 
consequently, to take into account the correction of the clock. Bessel (1823) 
had indeed acted appropriately, but in one case he failed to do so, and his 
pertinent observations proved useless. He made no such comment; 
furthermore, without any justification, he greatly overestimated their 
precision.  
    Bessel (1838a, §§1 and 2) determined the densities of two functions of a 
continuously and uniformly distributed random variable, and, unlike Laplace, 
he clearly formulated this problem. Nevertheless, he erred in his computations 
of the pertinent variances and probable errors7. 
    It became customary to measure each angle of a chain of triangulation an 
equal number of times and, which was more important, to secure their mutual 
independence so as to facilitate the treatment of the observations, – to separate 
the station adjustment from the adjustment of the chain as a whole. Bessel, 
however, did not keep to the abovementioned condition (and had to adjust all 
the observations at once). There are indications that the actual rejection of his 
method annoyed him8. 
 
    Notes 
    1. This term should only be applied to the method as substantiated by Gauss 
in 1823; until then, strictly speaking, the principle of least squares ought to be 
thought of. 
    2. Adrain included his work in a periodical published by himself for the 
year 1808; however, its pertinent issue appeared only in 1809 (Hogan 1977). 
Adrain’s library included a copy of Legendre’s memoir (Coolidge 1926) in 
which, however, the normal distribution was lacking; furthermore, it is 
unknown when had Adrain obtained the memoir. The term normal 



distribution appeared in 1873 (Kruskal 1978) and was definitively introduced 
by K. Pearson in 1894. 
    3. Their opinion should not be forgotten. Here is another example. Encke 
(1851, p. 2) believed that Gauss had applied the MLSq when determining the 
orbit of Ceres, the first-discovered minor planet (Gauss did not comment). In 
Note 20 to Chapter 6 I mentioned an unadmissible free and easy manner 
adopted by a certain author (Stigler 1986) with respect to Euler. His attitude 
towards Gauss was not better. Here are his statements: Legendre 
“immediately realized the method’s potential” (p. 57), but “there is no 
indication that [Gauss] saw its great potential before he learned of Legendre’s 
work” (p. 146); then (p. 143), only Laplace saved Gauss’s argument [his first 
justification of the MLSq] from joining “an accumulating pile of essentially 
ad hoc constructions”; and, finally (p. 145), Gauss “solicited reluctant 
testimony from friends that he had told them of the method before 1805”. I 
(Sheynin 1999b; 1999d) had refuted these astonishing declarations which 
Stigler (1999), the first ever slanderer of the great man, repeated slightly less 
impudently, also see §9.1.4. Regrettably, no-one supported me; on the 
contrary, Stigler’s first book met with universal approval although he, in 
addition, left aside the ancient history as well as such scholars as Kepler, 
Lambert and Helmert. Hald (1998, p. xvi), whose outstanding contribution 
deserves highest respect, called Stigler’s book “epochal”. I am unable to 
understand suchlike opinions. 
    4. It is not amiss to add that the primary triangulation of the Soviet Union 
consisted of chains independent one from another in the Gauss’ sense. This, 
together with other conditions, enabled the geodesists to estimate realistically 
the precision of the whole great net (Sakatow 1950, pp. 438 – 440). And in 
general, geodesists, not necessarily mentioning Gauss, were keeping to his 
opinion. I also note that Kapteyn (1912), who had not cited Gauss and was 
unsatisfied with the then originating correlation theory, proposed to estimate 
quantitatively the dependence between series or functions of observations by 
issuing from the same notion of independence, see Sheynin (1984a, §9.2.1). 
His article went unnoticed. 
    5. Concerning this rarely mentioned concept see Cramér (1946, §32.6). 
    6. In 1839 Gauss informed Bessel (Werke, Bd. 8, pp. 146 – 147) that he had 
read the latter’s memoir with interest although the essence of the problem had 
been known to him for many years. 
    7. I (Sheynin 2000b) discovered 33 mistakes in arithmetical and simple 
algebraic operations in Bessel’s contributions collected in his Abhandlungen 
(1876). Not being essential, they testify to his inattention and undermine the 
trust in the reliability of his more involved calculations. 
    8. In 1825, Gauss had a quarrel with Bessel but no details are known 
(Sheynin 2001d, p. 168). Even in 1817 Olbers (Erman 1852, Bd. 2, p. 69) 
regretted that the relations between Bessel and Gauss were bad. In 1812, in a 
letter to Olbers, Bessel (Ibidem, Bd. 1, p. 345) had called Gauss 
“nevertheless” the inventor of the MLSq, but in 1844, in a letter to Humboldt 
(Sheynin 2001d, p. 168), he stressed Legendre’s priority. 
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    10. The Second Half of the 19th Century 



    Here, I consider the work of several scholars (§§10.1 – 10.7), statistics 
(§10.8), and its application to various branches of natural sciences (§10.9). 
The findings of some natural scientists are discussed in §10.10 since it proved 
difficult to describe them elsewhere. 
 
    10.1. Cauchy 
    Cauchy published not less than 10 memoirs devoted to the treatment of 
observations and the theory of probability. Eight of them (including those of 
1853 mentioned below) were reprinted in t. 12, sér. 1, of his Oeuvres 
complètes (1900). In particular, he studied the solution of systems of 
equations by the principle of minimax (§6.3.2) and proved the theorem in 
linear programming known to Gauss (§9.1-1). He had also applied the method 
of averages (§6.3.2) and Linnik (1958, §14.5), who cited his student L.S. 
Bartenieva, found out that the pertinent estimators were unbiassed and 
calculated their effectiveness for the cases of one and two unknown(s). I 
briefly describe some of Cauchy’s findings. 
    Cauchy (1853b) derived the even density of observational errors demanding 
that the probability for the error of one of the unknowns, included in equations 
of the type of (1.2), to remain within a given interval, was maximal. Or, 
rather, he derived the appropriate characteristic function 
 
    �(!) = exp(– !µ+1), c, ! > 0, µ real                                                         (1) 
 
and noted that the cases µ = 1 and 0 led to the [normal law] and to the 
“Cauchy distribution”, see §8.6. The function (1) is characteristic only when 1 
< µ � 1 and the appropriate distributions are [stable]. 
    In two memoirs Cauchy (1853c; 1853d) proved the [CLT] for the linear 
function 
 
    A = [m�]                                                                                        (2) 
 
of [independent] errors �i having an even density on a finite interval. In both 
cases he introduced characteristic functions of the errors and of the function 
(2), obtained for the latter 
 
    $(!) = exp(– s! 2) 
 
where 2s was close to  2, the variance of (2), and, finally, arrived at 
 

    P(|�| � �) 
 (�2/ ��) �
α

0

exp(– x2/2 2)dx. 

 
    It is important that he had also estimated the errors due to assumptions 
made and Freudenthal (1971, p. 142) even declared that his proof was 
rigorous by modern standards; see, however, §13.1-4. 
    Cauchy devoted much thought to interpolation of functions, and, in this 
connection, to the MLSq, but, like Poisson, he never cited Gauss. In one case 
he (1853a, pp. 78 – 79) indicated that the MLSq provided most probable 
results only in accordance with the Laplacean approach [that is, only for the 
normal distribution] and apparently considered this fact as an essential 
shortcoming of the method. 



 
    10.2. Bienaymé  
    Heyde & Seneta (1977) described his main findings; I follow their account 
and abbreviate their work as HS. Bru et al (1997) published two of 
Bienaymé’s manuscripts and other relevant archival sources. 
    1) A limit theorem (Bienaymé 1838; HS, pp. 98 – 103). Bienaymé had 
“essentially” proved the theorem rigorously substantiated by Mises (1919; 
1964b, pp. 352 – 355). It was the latter (1964b, p. 352) who used the 
abovementioned adverb. Suppose that n trials are made with some event Ai 
from among m mutually exclusive events (i = 1, 2, …, m) occurring in each 
trial with probability !i and that xi is the number of times that Ai happened, �xi 
= n. Treating the probabilities !i as random variables, Bienaymé studied the 
distribution of their linear function in the limiting case xi, n � �, xi/n = Ci. As 
a preliminary, he had to derive the posterior distribution of the !i given xi 
tacitly assuming that the first (m – 1) of these probabilities were random 
variables with a uniform prior distribution. Actually, Bienaymé proved that 
the assumption about the prior distributions becomes insignificant as the 
number of the multinomial trials increases.  
    Note that Nekrasov (1890) had forestalled Czuber, whom Mises named as 
his predecessor. Assuming some natural restrictions, he proved a similar 
proposition concerning the Bernoulli trials. 
    2) The Liapunov inequalities (Bienaymé 1840b; HS, pp. 111 – 112). 
Without proof, Bienaymé1 indicated that the absolute initial moments of a 
discrete random variable obeyed inequalities which could be written as 
 
    (E|�|m)1/m � (E|�|n)1/n, 0 � m � n. 
 
Much later Liapunov (1901a, §1) proved that 
 
    (E|�|m)s–n < (E|�|n)s–m < E(|�|s)m–n, s > m > n � 0. 
 
He applied these inequalities when proving the [CLT]. 
    3) The law of large numbers. Bienaymé (1839) noted that the variation of 
the mean statistical indicators was often greater than it should have been in 
accordance with the Bernoulli law, and he suggested a possible reason: some 
causes acting on the studied events, as he thought, remained constant within a 
given series of trials but essentially changed from one series to the next one. 
Lexis and other “Continental” statisticians took up this idea without citing 
Bienaymé (Chapter 15) but it was also known in the theory of errors where 
systematic errors can behave in a similar way. Bienaymé, in addition, 
somehow interpreted the Bernoulli theorem as an attempt to study suchlike 
patterns of the action of causes. He (1855) repeated this statement and, on p. 
202, he mistakenly reduced the Poisson LLN to the case of variable 
probabilities whose mean value simply replaced the constant probability of the 
Bernoulli trials, also see HS, §3.3, and my §8.7-3. 
    4) The Bienaymé – Chebyshev inequality (Bienaymé 1853; HS, pp. 121 – 
124; Gnedenko & Sheynin 1978, pp. 258 – 262). This is the name of the 
celebrated inequality 
 
    P(|� – E�| < �) > 1 – var�/�2, � > 0.                                             (3) 
 



    Differing opinions were pronounced with regard to its name and to the 
related method of moments. Markov touched on this issue four times. In 
1912, in the Introduction to the German edition of his Treatise (1900a), he 
mentioned “the remarkable Bienaymé – Chebyshev method”. At about the 
same time he (1912b, p. 218/74) argued that  
 
    Nekrasov’s statement [that Bienaymé’s idea was exhausted in Chebyshev’s 
    works] is refuted by indicating a number of my papers which contain the 
    extension of Bienaymé’s method [to the study of dependent random 
    variables]. 
 
    Then, Markov (1914b, p. 162) added that the “starting point” of 
Chebyshev’s second proof of Poisson’s LLN “had been … indicated by … 
Bienaymé” and that in 1874 Chebyshev himself called this proof “a 
consequence of the new method that Bienaymé gave”. Nevertheless, Markov 
considered it “more correct” to call the method of moments after both 
Bienaymé and Chebyshev, and “sometimes” only after the latter, since “it 
only acquires significance through Chebyshev’s work” [especially through his 
work on the CLT]. Finally, Markov (Treatise, 1924, p. 92) stated that 
Bienaymé had indicated the main idea of the proof of the inequality (3), 
although restricted by some conditions, whereas Chebyshev was the first to 
formulate it clearly and to justify it. 
    Bienaymé (1853/1867, pp. 171 – 172) considered a random sum, apparently 
(conforming to the text of his memoir as a whole) consisting of identically 
distributed terms, rather than an arbitrary magnitude �, as in formula (3). This 
is what Markov possibly thought of when he mentioned some conditions. HS, 
pp. 122 – 123, regarded his proof, unlike Chebyshev’s substantiation [§13.1-
3] , “short, simple, and … frequently used in modern courses …” Yes, Hald 
(1998, p. 510) repeated it in a few lines and then got rid of the sum by 
assuming that it contained only one term. Gnedenko (1954, p. 198) offered 
roughly the same proof but without citing Bienaymé. 
    Bienaymé hardly thought that his inequality was important (Gnedenko & 
Sheynin 1978, p. 262; Seneta 1998, p. 296). His main goal was to prove that 
only the variance was an acceptable estimator of precision in the theory of 
errors (see §9.4-2) and, accordingly, he compared it with the fourth moment 
of the sums of random [and independent] errors. Consequently, and the more 
so since he never used integrals directly, I believe that Chebyshev (1874; 
Gnedenko & Sheynin 1978, p. 262) overestimated the part of his predecessor 
in the creation of the method of moments. Here are his words:  
 
    The celebrated scientist presented a method that deserves special attention. 
    It consists in determining the limiting value of the integral …given the 
    values of the integrals…    
 
The integrand in the first integral mentioned by Chebyshev was f (x) and the 
limits of integration were [0; a]; in the other integrals, f (x), x f (x), x2f (x), … 
and the limits of integration, [0; A], f (x) > 0 and A > a. 
    5) Runs up and down (Bienaymé 1874; 1875; HS, pp. 124 – 128). Suppose 
that n observations of a continuous random variable are given. Without proof 
Bienaymé indicated that the number of intervals between the points of 



extremum (almost equal to the number of these points) is distributed 
approximately normally with parameters 
 
    mean …(2n – 1)/3, variance ... (16n – 29)/90.                                       (4) 
 
    He maintained that he knew this already 15 or 20 years ago. HS states that 
these findings were discovered anew; nevertheless, the authors derive 
formulas (4), the first of them by following Bertrand, also see Moore (1978, 
p. 659). Bienaymé checked the agreement between several series of 
observations and his findings. Some of the data did not conform to his theory 
and he concluded that that happened owing to unrevealed systematic errors. I 
return to his test in §10.3. 
    6) The method of least squares (Bienaymé 1852; HS, pp. 66 – 71). 
Bienaymé correctly remarked that least variance for each estimator separately 
was not as important as the minimal simultaneous confidence interval for all 
the estimators. Keeping to the Laplacean approach to the MLSq (see his 
remark in my §9.6), he restricted his attention to the case of a large number of 
observations. Bienaymé also assumed that the distribution of the observational 
errors was known and made use of its first moments and even introduced the 
first four cumulants and the multivariate Gram – Charlier series (Bru 1991, 
p. 13; Hald 2002, pp. 8 – 9). He solved his problem by applying the principle 
of maximum likelihood, introducing the characteristic function of the [vector 
of the] errors and making use of the inversion formula. True, he restricted his 
choice of the [confidence] region; on the other hand, he derived here the %2 
distribution. Bienaymé’s findings were interesting indeed, but they had no 
direct bearing on the theory of errors. Furthermore, his statement (pp. 68 – 69) 
that both the absolute expectation and variance were unreliable estimators of 
precision was certainly caused by his adoption of the method of maximum 
likelihood and is nowadays forgotten. 
    7) A branching process (Bienaymé 1845; HS, pp. 117 – 120). Bienaymé 
had formulated the properties of criticality of a branching process while 
examining the same problem of the extinction of noble families that became 
attributed to Galton. D.G. Kendall (1975) reconstructed Bienaymé’s proof 
and reprinted his note and Bru (1991) quoted a passage from Cournot’s 

contribution of 1847 who had solved a stochastic problem in an elementary 
algebraic way and had indicated that it was tantamount to determining the 
probability of the duration of the male posterity of a family,– to a problem in 
which “Bienaymé is engaged”. Bru thought it highly probable that Cournot 
had borrowed his study from Bienaymé. 
    8) An approach to the notion of sufficient estimator (Bienaymé 1840a; HS, 
pp. 108 – 110). When investigating the stability of statistical frequencies (see 
also Item 3), Bienaymé expressed ideas that underlie the notion of sufficient 
estimators. For m and n Bernoulli trials with probability of success p the 
number of successes has probability 
 

    P(�i = k) = k
sC pk(1 – p)s–k 

 
with s = m and s = n respectively and i = 1 and 2 denoting these series of 
trials. It is easy to ascertain that the probability P(�1 = r, �2 = a – r|�1 + �2 = a) 
does not depend on p. Bienaymé thought that this property, that takes place 
when the totality of the trials is separated into series, could prove the 



constancy of the laws of nature. However, statisticians (Fourier, whom he 
mentioned; Quetelet (1846, p. 199)) pragmatically considered such a 
separation as the best method for revealing variable causes. HS additionally 
noted that Bienaymé should have understood that all the information about the 
unknown probability p [if it was constant] was provided by the totality of the 
trials, that Bienaymé had wrongly calculated the variance of the 
hypergeometric distribution, and that he made use of a particular case of the 
CLT for checking a null hypothesis. 
 
    10.3. Cournot 
    Cournot intended his main contribution (1843) for a broader circle of 
readers. However, lacking a good style and almost completely declining the 
use of formulas, he hardly achieved his goal. Recall also (the end of §8.7) that 
Cournot passed over in silence the LLN. I describe his work as a whole; when 
referring to his main book, I mention only the appropriate sections. 
    1) The aim of the theory of probability. According to Cournot (1875, p. 
181), it was “The creation of methods for assigning quantitative values to 
probabilities”. He thus moved away from Laplace (§7.3) who had seen the 
theory as a means for revealing the laws of nature. Cf. Chebyshev’s opinion 
in §13.2-1. 
    2) The probability of an event (§18): this is the ratio of the extent (étendue) 
of the favorable chances to the complete extent of all the chances2. The 
modern definition replaced “extent” by a clear mathematical term, “measure”. 
I stress that Cournot’s definition included geometric probability, which until 
him had been lacking any formula, and thus combined it with the classical 
case. Cournot (§113) also introduced probabilities unyielding to measurement 
and (§§233 and 240.8) called them philosophical. They might be related to 
expert estimates whose treatment is now included in the province of 
mathematical statistics. 
    3) The term médiane. This is due to Cournot (§34). 
    4) The notion of randomness. In a book devoted to exonerating games of 
chance La Placette (1714) explained (not clearly enough) randomness as an 
intersection of independent chains of determinate events, thus repeating the 
statements of many ancient scholars (see Note 1 to my Chapter 1). Cournot 
(§40) expressed the same idea, and, in §43, indirectly connected randomness 
with unstable equilibrium by remarking that a right circular cone, when stood 
on its vertex, falled in a “random” direction. This was a step towards 
Poincaré’s viewpoint (§11.2). Cournot (1851, §33, Note 38; 1861, §61, pp. 65 
– 66) also recalled Lambert’s attempt to study randomness (see my §6.1.3)3, 
and (1875, pp. 177 – 179) applied Bienaymé’s test (§10.2-3) for investigating 
whether the digits of the number � were random. He replaced its first 36 digits 
by signs plus and minus (for example, 3; 1; 4; 1 became – ; +; –) and counted 
21 changes in the new sequence. Comparing the fractions 21/36 = 0.583 and 
[(2�36 + 1)/3�36] = 0.667, see the first of the formulas (3), Cournot decided 
that the accordance was good enough, but reasonably abstained from a final 
conclusion. 
    5) A mixture of distributions. Given the densities of separate groups of ni, i 
= 1, 2, …, m, observations, Cournot (§81) proposed the weighted mean 
density as their distribution. He had not specified the differences between the 
densities, but in §132 he indicated that they might describe observations of 
different precision and in §135 he added, in a Note, that observational errors 



approximately followed the [normal law]. I describe the attempts to modify 
the normal law made by astronomers in §10.9.4. 
    6) Dependence between the decisions of judges and/or jurors. Cournot 
(1838; 1843, §§193 – 196 and 206 – 225) gave thought to this issue. Suppose 
(§193) that in case of two judges the probabilities of a correct verdict are s1 
and s2. Then the probability that they agree is 
 
    p = s1s2 + (1 – s1) (1 – s2)                                                         (5) 
 
so that, if s1 = s2 = s > 1/2 , 
 

    s = (1/2) + (1/2) 12 −p ). 

 
    Statistical data provided the value of p; it should have obviously exceeded 
1/2. If the data made it also possible to ascertain s1 and s2, and equations of the 
type of (5) will not be satisfied, it would be necessary to conclude that the 
verdicts were not independent. Cournot’s study was hardly successful in the 
practical sense, but it at least testified to an attempt to investigate dependence 
between some events. 
    7) A critical attitude towards statistics; a description of its aims and 
applications. Cournot (§103) declared that statistics had blossomed 
exuberantly and that [the society] should be on guard against its “premature 
and wrong” applications which might discredit it for some time and delay the 
time when it will underpin all the theories concerning the “organization 
sociale”. Statistics, he (§105) continued, should have its theory, rules, and 
principles, it ought to be applied to natural sciences, to physical, social and 
political phenomena; its main goal was (§106) to ascertain “the knowledge of 
the essence of things”, to study the causes of phenomena (§120). The theory 
of probability was applicable to statistics (§113) and the “principe de 
Bernoulli” was its only pertinent sound foundation (§115). 
    These statements were not at all unquestionable (§§6.2.1 and 10.6.1). 
Cournot, however, went further: the theory of probability might be 
successfully applied in astronomy, and the “statistique des astres, if such an 
association of words be permitted, will become a model for every other 
statistics” (§145). He himself, however, statistically studied the parameters of 
planetary and cometary orbits, but not the starry heaven, and his statement 
was inaccurate: first (§10.9), by that time statistics had begun to be applied in 
a number of branches of natural sciences; second (Sheynin 1984a, §6 ff.), 
stellar statistics had then already originated. 
    8) Explanation of known notions and issues. Cournot methodically 
explained the notion of density (§§64 – 65) and the method of calculating the 
density of a function of a (of two) random variable(s) (§§73 – 74). He also 
described how should statistics be applied in natural sciences and 
demography, discussed the treatment of data when the probabilities of the 
studied events were variable, etc.  
    Taken as a whole, Cournot made a serious contribution to theoretical 
statistics. Chuprov (1905, p. 60), bearing in mind mathematics as well as 
philosophy and economics, called him a man of genius. Later he (1909, p. 30) 
stated that Cournot was “one of the most profound thinkers of the 19th 
century, whom his contemporaries failed to appreciate, and who rates ever 
higher in the eyes of posterity”. Lastly, Chuprov (1925a, p. 227) characterized 



the French scientist as “the real founder of the modern philosophy of 
statistics”. All this seems to be somewhat exaggerated and in any case I do not 
agree with Chuprov’s opinion about Cournot’s “real substantiation” and 
“canonical” proof of the LLN (1905, p. 60; 1909, pp. 166 – 168). Up to 1910, 
when he began corresponding with Markov, Chuprov was rather far from 
mathematical statistics. He had not remarked that Cournot did not even 
formulate that law, and that his “Lemma”, as Chuprov called it [rare events do 
not happen, see Cournot (1843, §43) interpreted by Chuprov as “do not 
happen often”], was not new at all, see my §§ 2.1.2, 2.2.2 and 3.2.2 
concerning moral certainty and §6.1.2 with regard to Dalembert who 
formulated the same proposition. 

    10.4. Buniakovsky 

    Several European mathematicians had attempted to explicate the theory of 
probability simpler than Laplace did. Lacroix (1816), the mathematical level of whose book 
was not high, Cournot (§10.3), whose main contribution was translated into German in 1849, 
and De Morgan (1845) might be named here. In Russia, Buniakovsky (1846) achieved the 
same aim; his treatise was the first comprehensive Russian contribution so that Struve (1918, 
p. 318) called him “a Russian student of the French mathematical school”. I discuss the main 
issues considered by him both in his main treatise and elsewhere. 

    1) The theory of probability. In accordance with its state in those times, 
Buniakovsky (1846, p. I) attributed it to applied mathematics. He (Ibidem) also maintaned 
that 

 

    The analysis of probabilities considers and quantitatively estimates even 

    such phenomena … which, due to our ignorance, are not subject to any 

    suppositions. 

 

This mistaken statement remained, however, useless: Buniakovsky never attempted 
to apply it; furthermore, he (p. 364; 1866a, p. 24) went back on his opinion. 

    2) Moral expectation (see §6.1.1). Independently from Laplace, Buniakovsky 
(1846, pp. 103 – 122) proved Daniel Bernoulli’s conclusion that an equal distribution of a 
cargo on two ships increased the moral expectation of the freightowner’s capital as compared 
with transportation on a single ship. Later he (1880) considered the case of unequal 
probabilities of the loss of each ship. Then, he (1866a, p. 154) mentioned moral expectation 
when stating that the statistical studies of the productive population and the children should be 
separated, and he concluded with a general remark:  

 

    Anyone, who does not examine the meaning of the numbers, with which he 

    performs particular calculations, is not a mathematician. 

 

Soviet statisticians, however, did not trust mathematicians (Note 7 to Chapter 15). 

    3) Geometric probabilities (§6.1.4). Buniakovsky (1846, pp. 137 – 143) 
generalized the Buffon problem by considering the fall of the needle on a system of congruent 
equilateral triangles. His geometric reasoning was, however, complicated and his final 
answer, as Markov (Treatise, 1924, p. 186) maintained, was wrong. Markov himself had been 
solving an even more generalized problem, but his own graph was no less involved and, as it 
seems, no-one has checked his solution. Buniakovsky also investigated similar problems 
earlier (1837) and remarked then that their solution, together with [statistical simulation], 
might help to determine the values of special transcendental functions. In the same 
connection, Laplace only mentioned the number �. 



    4) “Numerical” probabilities. Buniakovsky (1836; 1846, pp. 132 – 137) solved an 
elementary problem on the probability that a quadratic equation with coefficients “randomly” 
taking different integral values had real roots. Much more interesting are similar problems of 
later origin, for example on the reducibility of fractions (Chebyshev, see §13.2-8) or those 
concerning the set of real numbers. 

    5) A random walk. Buniakovsky (1846, pp. 143 – 147) calculated the probability 
that a castle, standing on square A of a chessboard, reached square B (possibly coinciding with 
A) in exactly x moves if its movement was “uniformly” random. Before that, random walks 
(here, it was a generalized random walk) had occurred only indirectly, when studying a series 
of games of chance. 

    Buniakovsky’s problem was, however, elementary. The castle could have been in 
only two states,– it could have reached B either in one move, or in two moves; the case A � B 
belongs to the latter, but might be isolated for the sake of expediency. Buniakovsky formed 
and solved a system of three pertinent difference equations for the number of cases leading to 
success. It turned out that the mean probability (of its three possible values) was equal to 1/64 
and did not depend on x. He had not interpreted his result, but indicated that it was also 
possible to solve the problem in an elementary way, by direct calculation. Note that the first n 
moves (n � 1), if unsuccessful, do not change anything, and this circumstance apparently 
explains the situation. 

    6) Statistical control of quality. Buniakovsky (1846, Adendum; 1850) proposed to 
estimate probable military losses in battle by sample data. His study was hardly useful, the 
more so since he applied the Bayesian approach assuming an equal prior probability of all 
possible losses, but he (1846, pp. 468 – 469) also indicated that his findings might facilitate 
the acceptance “of a very large number of articles and supplies” only a fraction of which was 
actually examined. 

    Statistical control of quality was then still unknown although even Huygens 

(§2.2.2) had solved a pertinent urn problem. Ostrogradsky (1848), possibly following 
Buniakovsky4, picked up the same issue. He stated, on p. 322/ 215 that the known solutions 
[of this problem] “sont peu exactes et peu conformes aux principes de l’analyse des hasards”. 
He did not elaborate, and his own main formula (p. 342/228) was extremely involved (and 
hardly checked by anyone since). 

    7) The history of the theory of probability. Buniakovsky was one of the first 
(again, after Laplace) to consider this subject and a few of his factual mistakes might well be 
overlooked. In his popular writings he showed interest in history of mathematics in general 
and in this field he possibly influenced to some extent both Markov and the eminent historian 
of mathematics, V.V. Bobynin (1849 – 1919). 

    8) Population statistics. Buniakovsky (1846, pp. 173 – 213) described various 
methods of compiling mortality tables, studied the statistical effect of a weakening or 
disappearance of some cause of death (cf. §6.2.3), calculated the mean and the probable 
durations of marriages and associations and, following Laplace, solved several other 
problems. 

    After 1846, Buniakovsky actively continued these investigations. He compiled 
mortality tables for Russia’s Orthodox believers and tables of their distribution by age (1866a; 
1866b; 1874) and estimated the number of Russian conscripts ten years in advance (1875b). 
Noone ever verified his forecast and the comments upon his tables considerably varied. 
Bortkiewicz (1889; 1898b) sharply criticized them, whereas Davidov (Ondar 1971), who, in 
1886, published his own study of mortality in Russia, noted a serious methodical mistake in 
their compilation but expressed an opposite opinion. Finally, Novoselsky (1916, pp. 54 – 55) 
mainly repeated Davidov’s criticism, but indicated that Buniakovsy’s data were inaccurate 
and incomplete (as Buniakovsky himself had repeatedly stressed) and called his tables “a 
great step forward”. 

    In 1848 Buniakovsky published a long newspaper article devoted to a most 
important subject, to the dread of cholera. However, he likely had not paid due attention to 
this work. Much later Enko (1889) provided the first mathematical model of an epidemic (of 
measles). It is now highly appreciated (Dietz 1988; Gani 2001) and it might be regretted that 
Buniakovsky did not become interested in such issues. 



    From among other studies, I mention Buniakovsky’s solution of a problem in the 
theory of random arrangements (1871) that, however, hardly found application, and an 
interesting urn problem (1875a) connected with partition of numbers. An urn contains n balls 
numbered from 1 through n. All at once, m balls (m < n ) are extracted; determine the 
probability that the sum of the numbers drawn was equal to s. This problem, which Laplace 
(§7.1-2) solved in a different way, demanded from Buniakovsky the calculation of the 
coefficient of t mx s in the development of 

 

    (1 + tx) (1 + tx2) … (1 + txn). 

 

Buniakovsky solved this problem by means of an involved partial difference 
equation and only for small values of m; he then provided a formula for the transition from m 
to (m + 1). 

    For several decades Buniakovsky’s treatise (1846) continued to influence strongly 
the teaching of probability theory in Russia; in spite of the work of previous Russian authors, 
he it was who originated the real study of the theory beyond Western Europe. Not without 
reason Markov (1914b, p. 162) called that treatise “beautiful”. I am duty bound, however, to 
remark that Buniakovsky did not pay attention to the work of Chebyshev; after 1846, he 
actually left probability for statistics. 

 

    10.5. Quetelet 

    At the beginning of his scientific career Quetelet visited Paris and met leading 
French scientists. Some authors indicated that he was much indebted to Laplace but I think 
that the inspiration to him was Fourier, the Editor of the Recherches (1821 – 1829). 

    Quetelet tirelessly treated statistical data and attempted to standardize statistics on 
an international scale. He was coauthor of the first statistical reference book (Quetelet & 
Heuschling 1865) on the population of Europe (including Russia) and the USA that contained 
a critical study of the initial data; in 1853, he (1974, pp. 56 – 57) served as chairman of the 
Conférence maritime pour l’adoption d’un système uniforme d’observation météorologiques à 
la mer and the same year he organized the first International Statistical Congress. K. Pearson 
(1914 – 1930, 1924, vol. 2, p. 420) praised Quetelet for “organizing official statistics in 
Belgium and … unifying international statistics”. 

    Quetelet’s writings (1869; 1871) contain many dozens of pages devoted to various 
measurements of the human body, of pulse and respiration, to comparisons of weight and 
stature with age, etc. and he extended the applicability of the [normal law] to this field. 
Following Humboldt’s advice (Quetelet 1870), he introduced the term anthropometry and 
thus curtailed the boundaries of anthropology. He was possibly influenced by Babbage 

(1857), an avid collector of biological data. In turn, Quetelet impressed Galton (1869, p. 26) 
who called him “the greatest authority on vital and social statistics”. While discussing Galton 
(1869), K. Pearson (1914 – 1930, vol. 2, 1924, p. 89) declared:  

 

    We have here Galton’s first direct appeal to statistical method and the text 

    itself shows that [the English translation of Quetelet (1846)] was Galton’s 

    first introduction to the … normal curve. 

 

    In those days the preliminary analysis of statistical materials was extremely 
important first and foremost because of large systematic corruptions, forgeries and 
incompleteness of data. Quetelet came to understand that statistical documents were only 
probable and that, in general, tout l’utilité of statistical calculations consisted in estimating 
their trustworthiness (Quetelet & Heuschling 1865, p. LXV). 

    Quetelet (1846) left recommendations concerning the compilation of 
questionnaires and the preliminary checking of the data; maintained (p. 278) that too many 
subdivisions of the data was a charlatanisme scientifique, and, what was then understandable, 



opposed sampling (p. 293). This contribution contained many reasonable statements. In 1850, 
apparently bearing in mind its English translation, Darwin (1887, p. 341) noted:  

 

    How true is a remark … by Quetelet, … that no one knows in disease what 

    is the simple result of nothing being done, as a standard with which to 

    compare homoepathy, and all other such things. 

  

    It is instructive that Quetelet never mentioned Darwin and (1846, p. 259) even 
declared that “the plants and the animals have remained as they were when they left the hands 
of the Creator”. His attitude partly explains why the statistical study of the evolution of 
species had begun comparatively late (in the Biometric school). I note that Knapp (1872b), 
while discussing Darwin’s ideas, had not mentioned randomness and said nothing about 
statistically studying biological problems.  

    Quetelet collected and systematized meteorological observations5 and described 
the tendency of the weather to persists by elements of the theory of runs. Keeping to the 
tradition of political arithmetic (§2.1.4), he discussed the level of postal charges (1869, t. 1, 
pp. 173 and 422) and rail fares (1846, p. 353) and recommended to study statistically the 
changes brought about by the construction of telegraph lines and railways (1869, t. 1, p. 419). 
His special investigation (1836, t. 2, p. 313; first noted in 1832) was a quantitative description 
of the changes in the probabilities of conviction of the defendants depending on their 
personality (sex, age, education) and Yule (1900, pp. 30 – 32) favorably, on the whole, 
commented upon his work as the first attempt to measure association. 

    Quetelet is best remembered for the introduction of the Average man (1832a, p. 4; 
1832b, p. 1; 1848b, p. 38), inclinations to crime (1832b, p. 17; 1836, t. 2, p. 171 and 
elsewhere) and marriage (1848a, p. 77; 1848b, p. 38), – actually, the appropriate probabilities, 
– and statements about the constancy of crime (1829, pp. 28 and 35 and many other sources). 
In spite of his shortcomings (below), the two last-mentioned items characterized Quetelet as 
the originator of moral statistics. 

    The Average man, as he thought, had mean physical and moral features, was the 
alleged type of the nation and even of entire mankind. Reasonable objections were levelled 
against this concept to which I add that Quetelet had not specified the notion of average as 
applied here. Sometimes he had in mind the arithmetic mean, in other cases (1848a , p. 45), 
however, it was the median, and he (1846, p. 216) only mentioned the Poisson LLN in 
connection with the mean human stature. Cournot (1843, p. 143) stated that the Average man 
was physiologically impossible (the averages of the various parts of the human body were 
inconsistent one with another), and Bertrand (1888a, p. XLIII) ridiculed Quetelet: 

 

    In the body of the average man, the Belgian author placed an average soul.  

    [The average man] has no passions or vices [wrong; see below], he is 

    neither insane nor wise, neither ignorant nor learned. … [he is] mediocre in 

    every sense. After having eaten for thirty-eight years an average ration of a 

    healthy soldier, he has to die not of old age, but of an average disease that 

    statistics discovers in him. 

 

    Nevertheless, the Average man is useful even now at least as an average producer 
and consumer; Fréchet (1949) replaced him by a closely related “typical” man. 

    Quetelet (1848a, p. 82; 1869, t. 2, p. 327) indicated that the real inclination to 
crime of a given person might well differ considerably from the apparent mean tendency and 
he (1848a, pp. 91 – 92) related these inclinations to the Average man. It seems, however, that 
he had not sufficiently stressed these points; after his death, a noted statistician (Rümelin 
1867, p. 25) forcibly denied any criminal tendency in himself.  



    Quetelet (1836, t. 1, p. 10) declared that the [relative] number of crimes was 
constant, and that 

 

    Each social state presupposes … a certain number and a certain order of 

    crimes, these being merely the necessary consequences of its organization.  

 

However, he had not justified his statement by statistical data. The alleged constancy 
did not take place (Rehnisch 1876): Quetelet had not studied criminal statistics attentively 
enough. Then, constancy of crime could only happen under constant social conditions, but 
this consideration had only indirectly followed from his statements. 

    A special point concerns laws of distribution. Quetelet (1848a, p. 80; 1869, t. 2, 
pp. 304 and 347) noticed that the curves of the inclinations to crime and to marriage plotted 
against ages were exceedingly asymmetric and he (1846, pp. 168 and 412 – 424) also knew 
that asymmetric densities occurred in meteorology. Nevertheless, he (1853) returned to 
traditional concepts and maintained that “causes spéciales” and anomalies were responsible 
for the appearance of asymmetric distributions. Even more: Quetelet (1848a, p. viii) 
introduced a mysterious “loi des causes accidentelles” whose curve could be asymmetric 
(1853, p. 57)! In short, he had revealed here (and elsewhere, see above) his general attitude 
which Knapp (1872a, p. 124) explained by his “spirit, rich in ideas, but unmethodical and 
therefore unphilosophical”. 

    Nevertheless, Quetelet had been the central figure of statistics in the mid-19th 
century. Freudenthal (1966, p. 7) correctly concluded that there were statistical bureaux and 
statisticians, but no statistics [as a discipline] before Quetelet. 

 

    10.6 Helmert 

    It was Helmert who mainly completed the development of the classical Gaussian 

theory of errors; furthermore, some of his findings were interesting for mathematical 
statistics. Until the 1930s, his treatise (1872) remained the best source for studying the error 
theory and the adjustment of triangulation. 

Indeed, its third, posthumous edition of 1924 carried a few lines signed by a person 
(H.Hohenner) who explained that, upon having been asked by the publishers, he had stated 
that the treatise still remained the best of its kind. His opinion, he added, convinced the 
publishers. 

    Helmert (1886, pp. 1 and 86) was the first to consider appropriate geodetic lines 
rather than chains of triangulation, and this innovation, developed by Krasovsky, became the 
essence of the method of adjustment of the Soviet primary triangulation (Sakatow 1950, §91). 
Another of his lesser known contributions (Helmert 1868) was a study of various 
configurations of geodetic systems. Quite in accordance with the not yet existing linear 
programming, he investigated how to achieve necessary precision with least possible effort, 
or, to achieve highest possible precision with a given amount of work. Some equations 
originating in the adjustment of geodetic networks are not linear, not even algebraic; true, 
they can be linearized (§9.4-9), and perhaps some elements of linear programming could have 
emerged then, in 1868, but this had not happened. Nevertheless, Helmert noted that it was 
expedient to leave some angles of a particular geodetic system unmeasured, cf. §9.2-1, but 
this remark was only academic: all angles have always been measured at least for securing a 
check upon the work as a whole. 

    I describe now Helmert’s stochastic findings.  

    1) The chi-square distribution (E. Abbe 1863; M.G. Kendall 1971). Abbe derived 
it as the distribution of the sum of the squares of normally distributed errors. He wished to 
obtain a test for revealing systematic errors, and he required, in particular, the distribution of 
the abovementioned function of the errors since it was indeed corrupted by those errors. 
Exactly his test rather than the distribution obtained was repeatedly described in the geodetic 
literature whereas Linnik (1958/1961, pp. 109 – 113) introduced a modified version of the 
Abbe test. 



    Helmert (1876b) provided his own derivation of the %2 distribution which he first 
published without justification (1875a). Neither then nor much later (see Item 2) did he 
mention Abbe. Actually, he continued after Gauss (1816), see §9.3, by considering 
observational errors �1, �2, …, �n and the sum of their powers ��i

n for the uniform and the 
[normal] distributions and for an arbitrary distribution as n � �. In the last instance, he 
proved the Gauss formula (9.4) and then specified it for the abovementioned distributions. He 
derived the %2 distribution by induction beginning with n = 1 and 2; Hald (1952, pp. 258 – 
261) provided a modernized derivation. 

    2) Much later Helmert (1905) offered a few tests for revealing systematic 
influences in a series of errors which he wrote down as 

 

    v1�1 + v2�2 + … + vn�n 

 

with vi = 1 or – 1 and �i > 0. He issued from the formula 

 

    P(|� – &�| � m) 
 0.68                                                                               (6) 

 

where m was the mean square error of � (and thus restricted his attention to the 
normal law): if the inequality in the left side of (6) did not hold, then, as he thought, 
systematic influences were present. When deriving his tests, Helmert considered �vi, |�vi|, 
runs of signs of the vi and functions of the errors �i themselves and in this last-mentioned case 
he provided a somewhat modified version of the Abbe test.  

    3) The Peters formula (1856) for the mean absolute error. For n normally 
distributed errors it was 

 

    ! = �|vi|/ )1( −nn , 1 � i � n                                                    (7) 

 

with vi being the deviations of the observations from their arithmetic mean. Helmert 
(1875b) derived formula (7) anew because Peters had tacitly and mistakenly assumed that 
these deviations were mutually independent. Passing over to the errors �i, Helmert calculated 
the appropriate integral applying for that purpose the Dirichlet discontinuity factor. However, 
since the normal distribution is stable, it is possible to say now at once (H.A. David 1957) that 
formula (7) is correct because 

 

    E�|vi| = )1( −nn /h�� 

 

where h is the appropriate parameter [measure of precision] of the initial normal 
distribution and, as it should be, ! = 1/h��. 

    Helmert also attempted to generalize the Peters formula by considering indirect 
measurements with k unknowns (k > 1). He was unable to derive the appropriate formula but 
proved that a simple replacement of (n – 1) in formula (6) by (n – k) resulted in 
underestimating the absolute error. 

    4) Helmert (1876b) calculated the variance of the estimator (7). His main difficulty 
here was the derivation of E|vivj|, i < j, but he was able to overcome it and obtained 

 

    {�/2 + arcsin[1/(n – 1)] – n + )2( −nn }/�nh2. 

 



Later Fisher (1920, p. 761) independently derived this formula. 

    5) In the same paper Helmert investigated the precision of the Gauss formula 
(9.6b). For direct measurements it can be replaced by the expression for the mean square error 

 

    m =
1

][

−n

vv
.  

 

Helmert derived it for the normal distribution by the principle of maximum 
likelihood, but had not remarked that the esimator obtained (which, however, directly 
followed from (9.6a) and was always applied in practice in geodesy) was, unlike the Gauss 
formula, biassed. 

    Denote the observational errors by �i and their mean by �, then 

 

    vi = �i – �  

 

and the probability that these errors had occurred, as Helmert indicated in the context 
of his proof, was equal to 

 

    P = n(h/��)nexp[– h2([vv] + n�2)] dv1 dv2 … dvn–1 d�.          (8) 

 

This formula shows that, for the normal distribution, [vv], – and, therefore, the 
variance as well,– and the arithmetic mean are independent. Helmert had thus proved the 
important Student – Fisher theorem although without paying any attention to it. 

    A special feature in Helmert’s reasoning was that, allowing for (9.6c), he wrote 
down the Gauss formula (9.6b) for the case of direct measurements (and, to repeat, for the 
normal distribution) as 

 

    mo 
2 = 

1

][

−n

vv
 [1 ± �2/ 1−n ];                                            (9) 

 

that is, he considered the variance together with its mean square error, cf. Item 2 and 
formula (6) above6. 

    Formula (9) also indirectly indicated the relative mean square error; Czuber 
(1891, p. 460) testified that Helmert had thought that var mo

2/mo
2 was more important than var 

mo
2 by itself and Eddington (1933, p. 280) expressed the same opinion. Czuber also proved 

that, for the normal distribution, that relative error was minimal for the estimator (9.6b). 

    In addition, Helmert noted that for small values of n the var mo
2 did not estimate 

the precision of formula (9.6b) good enough and derived the following formula 

 

    E[m – 
1

][

−n

vv
]2 = (1/h2){1 – �2#(n/2)/#[(n – 1)/2] 1−n }. (10)  

 

He issued from the probability of the values of vi, i = 1, 2, …, (n – 1) 

 

    P = �n(h/��)n–1 exp(– h2[vv]) dv1 dv2 … dvn–1 



 

that follows from formula (8), noted that the probability P(� � [vv] � � + d�) was 
equal to the appropriate integral, and introduced new variables 

 

    t1      = �2(v1 + 1/2v2 + 1/2 v3 + 1/2v4 + … + 1/2vn–1),  

    t2    =             2/3 (v2 + 1/3v3 + 1/3v4 + … + 1/3vn–1), 

    t3      =                             3/4 (v3 + 1/4v4 + … + 1/4vn–1), …, 

   tn – 1 =                                                                   )1/( −nn vn–1. 

 

    Note that [vv] = [tt] where, however, the first sum consisted of n terms and the 
second one, of (n – 1) terms, and the Jacobian of the transformation was �n. The derivation 
of formula (10) now followed immediately since Helmert knew the %2 distribution. Taken 
together, the transformations from {�} to {v} and from {v} to {t} are called after him.  

    Kruskal (1946) transformed formula (8) by introducing a bivariate “Helmert 
distribution” with variables 

 

    s = nvv /][ , u = x – µ, 

 

where x was the arithmetic mean of n normally distributed observations N(µ;  ), and 
replaced h by  . He mentioned several authors who had derived that new distribution by 
different methods, determined it himself by induction and indicated that the Student 
distribution followed from it, see Hald (1998, p. 424). 

    Finally, Helmert corrected the boundaries of the estimator (9.6b). As indicated by 
Gauss they were 

 

    2(�4 – 2s4)/(n – k); [1/( n – k)] (�4 – s4) + (k/n) (3s4 – �4)  

 

where �4 was the fourth moment of the errors and s2 = Em2. Helmert had discovered 
that the lower boundary was wrong and Kolmogorov et al (1947) independently repeated his 
finding. Here is the final result; Maltzev (1947) proved that the lower bound was attainable: 
for non-negative and non-positive (v4 – 3s4) respectively, the variance var mo

2 is contained 
within  

 

    [(�4 – s4)/(n – k) – (k/n) (�4 – 3s4)/(n – k); (�4 – s4)/(n – k)],                 (11a) 

    [(�4 – s4)/(n – k); (�4 – s4)/(n – k) + (k/n) (3s4 – �4)/(n – k)].                  (11b) 

 

    10.7. Galton 

    Being influenced by his cousin, Darwin, Galton began to study the heredity of 
talent and published an important treatise (1869) on that subject; incidentally, he introduced 
the term eugenics. In a letter of 1861 Darwin (1903, p. 181) favorably mentioned it. He (1876, 
p. 15) also asked Galton to examine his investigation of the advantages of cross-fertilization 
as compared with spontaneous pollination. Galton compared the two processes with regard to 
their characteristics and, in particular, to the ordered heights of the seedlings. In the latter 
instance, he noted that the signs of almost all the differences between the corresponding 
heights coincided. Note that Seidel (1865) arranged the years 1856 – 1864 in the decreasing 
order of the first, and then of the second series of numbers describing two phenomena. The 



conformity between the two series was, in his opinion, striking and Seidel thus, like Galton 
later on, applied rank correlation. I return to him below and in §10.9.1. 

    Galton (1863) devised an expedient system of symbols for weather charts and 
immediately discovered the existence of previously unknown anticyclones. From the point of 
view of statistics, he had thus reasonably studied his initial data. Galton (K. Pearson 1914 – 
1930, vol. 2, Chapter 12) also invented composite photographs of kindred persons (of people 
of a certain nationality or occupation, or criminals), all of them taken on the same film with an 
appropriately shorter exposure. In any case, his innovation was much more justified than 
Quetelet’s Average man.  

    Galton, in 1892, became the main inventor of fingerprinting. Because of its 
reliability, it did not demand statistical analysis and superseded the previous system of 
identification developed by Alph. Bertillon (1893). This latter procedure was partially based 
on anthropometry and made use of from the 1890s to the beginning of the 20th century. 
Another of Galton’s invention (1877) was the so-called quincunx, a device for visually 
demonstrating the appearance of the normal distribution as the limiting case of the binomial 
law (Stigler 1986, pp. 275 –281). A special feature of that device was that it showed that the 
normal law was stable. Galton’s main statistical merit consisted, however, in the introduction 
of the notions of regression and correlation. The development of correlation theory became 
one of the aims of the Biometric school, and Galton’s close relations with Pearson were an 
important cause of its successes. 

    Recall (§§1.1.1 and 1.1.3) that reasoning in the spirit of qualitative correlation was 
not foreign to ancient scholars which was in comformity with the qualitative nature of the 
science of those days. And what about modernity? In the 1870s, several scientists (C. 
Meldrum, in 1872 and 1875; J.N. Lockyer, in 1873; H.F. Blanford, in 1880, see Sheynin 
(1984a, p. 160)) took notice of the dependence between solar activity and elements of 
terrestrial magnetism and on meteorological phenomena but not a word did they say about 
developing a pertinent quantitative theory. And even though Seidel, in 1865 – 1866 (§10.9.1), 
quantitatively studied the dependence between two, and then three factors, he did not hint at 
generalizing his findings. Galton was meritorious indeed! For the sake of comprehensiveness 
I repeat (Note 4 to Chapter 9) that in 1912 Kapteyn provided an “astronomical” version of 
the correlation coefficient. 

 

    10.8 Statistics 

    Here, I discuss the situation in statistics in the 19th century. Related 
material is in §§6.2 and 10.5.  
    The Staatswissenschaft held its ground for many decades. In France, 
Delambre (1819, p. LXVII) argued that statistics was hardly ever engaged in 
discussions or conjectures and did not aim at perfecting theories, and that 
political arithmetic ought to be “distinguished” from it. Under statistics he 
understood geodetic, meteorological and medical data, mineralogical 
descriptions and even art expositions. I believe however that the two last-
mentioned items were rather soon excluded from such lists. 
    The newly established London Statistical Society declared that statistics 
“does not discuss causes, nor reason upon probable effects” (Anonymous 
1839, p. 1). True, they denied that “the statist [!] rejects all deductions, or that 
statistics consists merely of columns of figures” and stated that “all 
conclusions shall be drawn from well-attested data and shall admit of 
mathematical demonstration”. This announcement was thus ambiguous; the 
Society attempted to adhere to its former statement, but in vain. Anyway, 
Woolhouse (1873, p. 39) testified that “These absurd restrictions have been 
necessarily disregarded in … numerous papers”. Indeed, that statistics should 
explain the present state of a nation by considering its previous states was 
declared a century before that (Gatterer 1775, p. 15). And the very title of 



Dufau (1840) called statistics “The theory of studying the laws according to 
which the social events were developing”. 

    During the 19th century the importance of statistics had been considerably 
increasing. Graunt (1662, p. 79) was not sure whether his work would be “necessary to 
many, or fit for others, than the Sovereign, and his chief Ministers …” and the classical 
investigations of the sex ratio at birth (§§2.2.4, 3.3.4, 4.4, 6.1.1) had not found direct 
applications. However, by the mid-19th century it became important to foresee how various 
transformations will influence society and Quetelet (§10.5) repeatedly stressed this point. 
Then, at the end of the 19th century censuses of population, answering an ever widening range 
of questions, began to be carried out in various countries. It is nevertheless instructive to 
compare the situation at that time with what is happening nowadays7. 

    1) Public opinion was not yet studied, nor was the quality of mass production 
checked by statistical methods, cf. §10.4-6. 

    2) Sampling had been considered doubtful8. Cournot (1843) passed it over in 
silence and Laplace’s determination of the population of France based on sampling (§7.1-5) 
was largely forgotten. Quetelet (§10.5) opposed sampling. Even much later Bortkiewicz 
(1904, p. 825) and Czuber (1921, p. 13) called sampling “conjectural calculation” and 
Chuprov (1912) had to defend that procedure vigorously, even in spite of the inexorable 
increase in statistical materials. Indeed, already the beginning of the century witnessed 
“legions” of new data (Lueder 1812, p. 9) and the tendency to amass sometimes useless or 
unreliable data revealed itself in various branches of natural sciences (§10.9).  

    3) The development of the correlation theory began at the end of the 19th century 
(§§10.7, 15.2), but even much later Kaufman (1922, p. 152) declared that “the so-called 
method of correlation adds nothing essential to the results of elementary analysis”. See, 
however, §14.1-4. 

    4) The variance began to be applied in statistics only after Lexis (§15.1), but even 
later Bortkiewicz (1894 – 1896, Bd. 10, pp. 353 – 354) stated that the study of precision was 
an accessory goal, a luxury, and that the statistical flair was much more important, cf. the 
opinion of Gauss in §9.5-1. This point of view had perhaps been caused by the presence of 
large systematic corruptions in the initial materials.  

    5) Not just a flair, but a preliminary data analysis (which, however, does not call 
off the definitive estimation of the plausibility of the final results and which received general 
recognition only a few decades ago) is necessary, and should be the beginning of the 
statistician’s work. Splendid examples of such analysis had occurred much earlier and to these 
I attribute the introduction of contour lines (Halley, in 1701, see §2.1.4, drew lines of equal 
magnetic declinations over North Atlantic, also see §10.9.3). 

    6) Econometrics originated only in the 1930s. 

    I list now the difficulties, real and imaginary, of applying the theory of probability 
to statistics. 

    7) The absence of “equally possible” cases whose existence is necessary for 
understanding the classical notion of probability. Statisticians repeatedly mentioned this 
cause, also see §3.2.3. True, Cournot (§10.3-7 and -8) explained that equipossibility was not 
necessary (and, in the first place, mentioned the “Bernoulli principle”), but his advice was 
hardly heard. Lexis (1874, pp. 241 – 242; 1886, pp. 436 – 437; 1913, p. 2091) also cited 
equipossibility. In the second case, in a paper devoted to the application of probability theory 
to statistics, he even added that the introduction of that notion led to the subjectivity of the 
theory of probability. Elsewhere, however, Lexis reasoned differently; he had no integral 
viewpoint. Thus, statistics is mainly based on the theory of probability (1877, p. 5); if the 
statistical probability tends to its theoretical counterpart, equally possible cases might be 
assumed (Ibidem, p. 17); and the “pattern” of the theory of probability is the highest scientific 
form in which statistics might be expressed (1874, p. 241).  

    8) Disturbance of the constancy of the probability of the studied event and/or of 
the independence of trials. I repeat (§10.2-3) that before Lexis statisticians had only 
recognized the Bernoulli trials; and even much later Kaufman (1922/1928, pp. 103 – 104) 
declared that the theory of probability was applicable only to these trials, and, for that matter, 
only in the presence of equally possible cases. He mentioned several allegedly likeminded 



authors including Markov and Yule, but did not supply the exact references and I am inclined 
to believe that the real issue was to investigate whether or not the given statistical trials were 
Bernoullian. As to the equally possible cases, see Item 7 above 9. 

    9) The abstract nature of the (not yet axiomatized) theory of probability. The 
history of mathematics testifies that the more abstract it became, the wider had been the range 
of its applicability. Nevertheless, statisticians had not expected any help from the theory of 
probability. Block (1886, p. 134) thought that it was too abstract and should not be applied 
“too often”, and Knapp (1872a, p. 115) called it difficult and hardly useful beyond the sphere 
of games of chance and insurance. 

 

    10.9. Statistics and Natural Sciences 

    In the 19th century, the statistical method gave rise to a number of disciplines and I 
discuss the relevant situation in several branches of natural sciences. First, however, I note the 
existence of the so-called numerical 

method usually attributed to the French physician Louis (1825) who introduced it by 
calculating the frequencies of the symptoms of various diseases so as to facilitate diasgnosing. 
He and his adherents attempted to replace qualitative descriptions by directly obtained 
statistical data (cf. Petty’s statement in §2.1.4). Bouillaud (1836), who inserted numerous 
passages from Laplace’s Essai philosophique (1814) in his book, favorably described the 
numerical method and (p. 187) added only a few words about the “calcul approximatif ou des 
probabilités”. It, as he stated, was almost always the only means for generalizing the results 
obtained; and the advantages of this “kind of calculus” are such that its discussion was not 
necessary. 

    Unlike Bouillaud, Gavarret did not sidestep this issue (§8.9.2), and he 
(1840, p. x) reasonably remarked that the numerical method was not in itself 
scientific and was not based on “general philosophy”. It can be traced back to 
the 18th century (see below and §6.2.3) and my description (§§10.9. 1 – 
10.9.4) shows that the numerical method continued in existence for many 
decades. Furthermore, empiricism had been a feature of the Biometric school 
(§15.2).  
    In statistics proper, Fourier’s fundamental Recherches (1821 – 1829) 
concerning Paris and the Département de la Seine might be here mentioned. 
This contribution almost exclusively consisted of statistical tables with data on 
demography, industry, commerce, agriculture and meteorology. True, 
empiricism was not sufficient even for compiling tables. Then, the abundance 
of materials led to the wrong idea that a mass of heterogeneous data was better 
than a small amount of reliable observations (§10.9.1). 
    In actual fact, the numerical method originated with Anchersen when 
statisticians have begun to describe states in a tabular form (and thus 
facilitated the use of numbers), see §6.2.1. Recall (§2.1.4), moreover, that 
Leibniz recommended compilation of Staatstafeln.  

    10.9.1. Medicine. In 1835, Poisson et al (§8.9) indicated that statistics might be 
applied in medicine. Surgery occurred to be the first branch of medicine to justify their 
opinion. Already in 1839 there appeared a (not really convincing) statistical study of the 
amputation of limbs. Soon afterwards physicians learned that the new procedure, anesthesia, 
could cause complications, and began to compare statistically the results of amputation made 
with and without using it. The first such investigation (J.Y. Simpson 1847 – 1848, p. 102) 
was, however, unfortunate: its author had attempted to obtain reliable results by issuing from 
materials pertaining to several English hospitals during 1794 – 1839: 

 

    The data I have adduced … have been objected to on  the ground that they 

    are collected from too many different hospitals, and too many sources. But, 



     … I believe all our highest statistical authorities will hold that this very 

    circumstance renders them more, instead of less, trustworthy. 

 

    I ought to add, however, that Simpson (Ibidem, p. 93) stated that only a statistical 
investigation could estimate the ensuing danger.  

    At about the same time Pirogov introduced anesthesia in military surgery and 
began to compare the merits of the conservative treatment of the wounded versus amputation. 
Much later he (1864, p. 690) called his time “transitional”: 

 

    Statistics shook the sacred principles of the old school, whose views had 

    prevailed during the first decades of this century, – and we ought to 

    recognize it,– but it had not established its own principles. 

 
    Pirogov (1849, p. 6) reasonably believed that the application of statistics in 
surgery was in “complete agreement” with the latter because surgical diseases 
depended incomparably less on individual influences. However, he repeatedly 
indicated that medical statistics was unreliable. Thus (1864/1865 – 1866, p. 
20): 
 
    Even a slightest oversight, inaccuracy or arbitrariness makes [the data] far 
    less reliable than the figures founded only on a general impression with 
    which one is left after a mere but sensible observation of cases.  
 
Later he (1879, p. 40) singled out an important pertinent cause: 
 
    Extremely different circumstances separate the entire mass of information 
    in too insignificant and very dissimilar groups which does not allow any 
    correct conclusion about the worth of a certain amputation. 
 
    In essence, he advocated attentive allowance for all circumstances and 
minimal statistical technique which was in accordance with his time and 
especially so with the originating military surgery (of which he was the 
founder). 

    Pirogov was convinced in the existence of regularities in mass phenomena. Thus 
(1850 – 1855, p. 382), each epidemic disease as well as each “considerable” operation had a 
constant mortality rate, whereas war was a “traumatic epidemic” (1882, p. 295). This latter 
statement apparently meant that under war conditions the sickness rate and mortality from 
wounds obeyed statistical laws. Then (1854, p. 2), the skill of the physicians [but not of witch 
doctors] hardly influenced the total result of the treatment of many patients. Here is his highly 
relevant opinion (1871, pp. 48 – 49):  

 

    On what does the success of treatment or the decrease of mortality in the 
    army depend? Surely not on therapy and surgery by themselves. Without an 
    efficient administration [of medicine] little can the masses expect from 
    therapy and surgery even in time of peace, much less during such a 
    catastrophe as war. 

 

    Note finally Pirogov’s possibly correct statement (1864, pp. 5 – 6): without the not 
yet existing doctrine of individuality, real progress in medical statistics is impossible. 



    Pirogov participated in the Crimean war, in which Florence Nightingale, on the 
other side, showed her worth both as a medical nurse and a statistician, cf. Pearson’s relevant 
statement in §2.2.3. She would have wholeheartedly approved of Pirogov’s conclusion 
(above) concerning the success of treatment. 

    Such new disciplines as epidemiology and public hygiene appeared within 
medicine in the 19th century. I discussed the inoculation of smallpox in §6.2.3 and mentioned 
Enko’s essential finding at the end of §10.4. In 1866, Farr (Brownlee 1915) preceded Enko; 
his study of cattle plague only methodically belonged to epidemiology, and, interestingly 
enough, Brownlee published his note in a medical journal. Farr indicated that he had also 
investigated the visitations of cholera and diphtheria of 1849 and 1857 – 1859 respectively.  

    But it seems that epidemiology was properly born when cholera epidemics had 
been ravaging Europe. The English physician Snow (1855) compared mortality from cholera 
for two groups of the population of London, – for those whose drinking water was either 
purified or not. He ascertained that purification decreased mortality by eight times, and he 
thus discovered how did cholera epidemics spread, and proved the essential applicability of 
the first stage of the statistical method (§0.4). Pettenkofer (1886 – 1887) published a 
monstrous collection of statistical materials pertaining to cholera, but he was unable to 
process them. He (1865, p. 329) stressed that no cholera epidemic was possible at a certain 
moment without a local “disposition” to it and he attached special importance to the level of 
subsoil water. His view does not contradict modern ideas about the necessary threshold 
values. However, Pettenkofer did not believe in contemporary bacteriological studies and 
opposed Snow. For an estimate of his views see Winslow (1943, p. 335).  

    Seidel (1865 – 1866) investigated the dependence of the monthly cases of typhoid 
fever on the level of subsoil water, and then on both that level and the rainfall. It occurred that 
the signs of the deviations of these figures from their mean yearly values coincided twice 
more often than not and Seidel quantitatively (although indirectly and with loss of 
information) estimated the significance of the studied connections. His work remained, 
however, completely forgotten. 

    Already Leibniz (§2.1.4) recommended to collect and apply information 
concerning a wide range of issues, which, as I add now, pertained to public hygiene. 
Condorcet (1795, pp. 316 and 320) described the aims of “mathématique sociale” [political 
arithmetic] and mentioned the study of the influence of temperature, climate, properties of 
soil, food and general habits on the ratio of men and women, birth-rate, mortality and number 
of marriages. Much later, M. Lévy (1844) considered the influence of atmosphere, water and 
climate as well as of the suitable type of clothes and appropriate food on man. 

    From its origin in the mid-19th century, public hygiene began statistically studying 
a large number of problems, especially those caused by the Industrial Revolution in England 
and, in particular, by the great infant mortality. Thus, in Liverpool only 2/3 of the children of 
gentry and professional persons lived to the age of five years (Chadwick 1842, p. 228). 
Pettenkofer (1873) estimated the financial loss of the population of Munich ensuing from 
such diseases as typhoid fever and his booklet can be attributed to this discipline. In Russia 
his student Erismann (1887) published a contribution on sanitary statistics. 

 

    10.9.2. Biology. The attempts to connect the appearance of leaves, flowers and 
fruits on plants of a given species with the sums of mean daily temperatures began in the 18th 
century (Réaumur 1738) and Quetelet (1846, p. 242) proposed to replace those sums by the 
sums of squares, but he was still unable to compare both procedures quantitatively. Also in 
the 19th century, vast statistical materials describing the life of plants were published 
(DeCandolle 1832), and Babbage (1857) compiled a statistical questionnaire for the class of 
mammalia. In Russia, Baer (1860 – 1875) with associates conducted a large-scale statistical 
investigation of fishing. 

    Humboldt created the geography of plants (Humboldt & Bonpland 1815; 
Humboldt 1816) which was based on collection and estimation of statistical data. Darwin had 
to study various statistical problems, for example on cross-fertilization of plants (§10.7), the 
life of earthworms (§12-2) and on the inheritance of a rare deformity in humans (1868, vol. 1, 
p. 449). In the last-mentioned case Stokes provided the solution (apparently by applying the 



Poisson distribution) at his request. Statistical tables and summaries with qualitative 
commentaries occur in a number of Darwin’s writings and he also collected statistical data. 

    Being the main author of the hypothesis of the origin of species, he made use of 
such terms as variation and natural selection without defining any of them. And, when 
reasoning about randomness, he understood it in differing ways. In the problem concerning 
the deformity Darwin decided that it was not random (not merely possible). In two other cases 
in which he discussed the hypothesis of evolution he understood randomness as ignorance of 
causes (1859, p. 128), cf. Laplace (§7.3), and, in 1881, as lack of purpose (1903, p. 395), cf. 
Aristotle (§1.1.1). It is also remarkable that Darwin (1859, p. 77) actually described 
randomness as the effect of complicated causes, cf. Poincaré (§11.2-8):  

 

    Throw up a handful of feathers, and all fall to the ground according to 

    definite laws; but how simple is the problem where each shall fall 

    compared with problems in the evolution of species. 

 

The stochastic essence of the evolution hypothesis was evident both for its partisans 
and the opponents; Boltzmann, however, was an exception (§10.9.5). 

    I reconstruct now Darwin’s model of evolution. Introduce an n-dimensional 
(possibly with n = �) system of coordinates, the body parameters of individuals belonging to 
a given species (males and females should, however, be treated separately), and the 
appropriate Euclidean space with the usual definition of distances between its points. At 
moment tm each individual is some point of that space and the same takes place at moment 
tm+1 for the individuals of the next generation. Because of the “vertical” variation, these, 
however, will occupy somewhat different positions. Introduce in addition point (or subspace) 
V, corresponding to the optimal conditions for the existence of the species, then its evolution 
will be represented by a discrete stochastic process of the approximation of the individuals to 
V (which, however, moves in accordance with the changes in the external world) and the set 
of individuals of a given generation constitutes the appropriate realization of the process. 
Probabilities describing the process (as well as estimates of the influence of habits, instincts, 
etc) are required for the sake of definiteness, but they are of course lacking. 

    The main mathematical argument against Darwin’s hypothesis was that a 
purposeful evolution under “uniform” randomness was impossible; see end of §6.1.3 with 
regard to the difficulties of generalizing the notion of randomness. Only Mendel’s 
contributions (1866; 1866 – 1873, publ. 1905), forgotten until the beginning of the 20th 
century, allowed to answer such criticisms. True, great many objections and problems still 
remain, but at the very least Darwin had transformed biology as a science. In addition, his 
work was responsible for the appearance of the Biometric school (§15.2). 

    From the mathematical point of view, Mendel did nothing except for an 
elementary application of the binomial distribution, but his memoir marked the origin of a 
new direction in biology, of genetics, and provided an example of a fundamental finding 
achieved by elementary means. True, Mendel had also based his conclusions on experiments, 
and these became the object of many discussions with regard to his initial data and to his 
subjective and objective honesty. Such scholars as Fisher (1936)and van der Waerden 
(1968) participated in the debates, and finally all doubts have possibly blown over the more so 
since Mendel’s life and his meteorological observations and investigations unquestionably 
testify in his favor. It is thought that Mendel was born in a mixed Czech-German family; 
actually, however, he was German, and in 1945 – 1946 the descendants of his relatives were 
driven out of the then Czechoslovakia10.  

 

    10.9.3. Meteorology. The material pertaining to the 18th century is in §6.2.4. 
Humboldt (1818, p. 190) maintained that 

  

    to discover the laws of nature [in meteorology] we ought to determine the 

    mean state of the atmosphere and the constant type[s] of its variations 



    before examining the causes of the local perturbations11. 

 

    He (1845 – 1862, Bd. 1, pp. 18 and 72; Bd. 3, p. 288) conditioned the investigation 
of natural phenomena by examination of mean states. In the latter case he mentioned “the sole 
decisive method [in natural sciences], that of the mean numbers”. He himself (1817, p. 466) 
introduced isotherms and climatic belts (known to ancient scholars who had only possessed 
qualitative knowledge of temperature) and thus separated climatology from meteorology; 
much later he (1845 – 1862, Bd. 4, p. 59) added that he had borrowed the idea of contour lines 
from Halley (§2.1.4) [and had therefore also applied a splendid particular instance of 
exploratory data analysis]. Humboldt (1817, p. 532) also recommended the application of 
contour lines for winter and summer. It is somewhat strange that, when offering a definition 
of climate, he (1831, p. 404) had not directly linked it with mean states.  

    Dove (1837, p. 122) came out against “the domination” of mean values; 
largely following Humboldt (see above), he (1839, p. 285) formulated the 
aims of meteorology as the “determination of mean values [of temperature], 
derivation of the laws of [its] periodic changes and indication of rules for 
[determining its] irregular changes”, and he attached no less importance to the 
spatial scatter of the temperature. Later Dove (1850, p. 198) introduced 
monthly isotherms. 
    Meteorological observations multiplied, and they had been published 
without being of use to the general readership of scientific periodicals. Biot 
(1855, pp. 1179 – 1180), for example, had opposed that practice and 
Mendeleev (1876, p. 267) remarked that the prevailing “collecting” school of 
meteorologists needed nothing but “numbers and numbers”. Later he (1885, p. 
527) optimistically decided that a new meteorology was being born and that 
“little by little” it had begun, [still] basing its work on statistical data, to 
“master, synthesize, forecast”. 
    Lamont (1867, p. 247) maintained that the irregular temporal changes of 
the atmosphere were not random “in the sense of the calculus of probability” 
and (p. 245) recommended his own method of studying, instead, simultaneous 
observations made at different localities. Quetelet (1849, t. 1, Chapt. 4, p. 53) 
remarked that the differences of such observations conformed to accidental 
errors, but he did not elaborate. 
    Lamarck, the most eminent biologist of his time, seriously occupied 
himself with physics, chemistry and meteorology. In meteorology, his merits 
had for a long time been ignored (Muncke 1837), but he is now remembered 
for his “pioneer work in the study of weather” (Shaw & Austin 1942, p. 130) 
and I (Sheynin 1984b, §6) quoted several of his important pronouncements. 
He repeatedly applied the term météorologie statistique (e.g., 1800 – 1811, t. 
4, p. 1) whose aim (Ibidem, t. 11, p. 9 – 10) was the study of climate, or, as he 
(Ibidem, t. 4, pp. 153 – 154) maintained elsewhere, the study of the climate, of 
regularities in the changes of the weather and of the influence of various 
meteorological phenomena on animals, plants and soil.  

    The study of densities of the distributions of meteorological elements began in the 
mid-19th century; Quetelet, for example, knew that these densities were asymmetric (§10.5). 
At the end of the century Meyer (1891, p. 32), when mentioning that fact, stated that the 
theory of errors was not applicable to meteorology. However, mathematical statistics does not 
leave aside the treatment of asymmetric series of observations, and already K. Pearson 

(1898) made use of Meyer’s material for illustrating his theory of asymmetric curves. 

 

    10.9.4. Astronomy. Already Daniel Bernoulli (§6.1.1) and Laplace (§7.1-2) 
stochastically studied regularities in the Solar system. In actual fact, they considered the 



planets as elements of a single population, and this approach was vividly revealed in the later 
investigations of the asteroids. Newcomb (1861a and elsewhere) repeatedly compared the 
theoretical (calculated in accordance with the uniform distribution) and the real parameters of 
their orbits; true, he was yet unable to appraise quantitatively his results. Poincaré (§11.2-4) 
stochastically estimated the total number of the small planets. 

    Of special interest are Newcomb’s considerations (1862) on the distribution of the 
asteroids, likely based on his later published and even more interesting statement (1881). His 
former contribution makes difficult reading mostly because of its loose style. As I understand 
him, Newcomb intuitively arrived ar the following proposition: a large number of independent 
points A1 = (B1 + b1t), A2 = (B2 + b2t), … where t denoted time, and the other magnitudes were 
constant, will become almost uniformly distributed over a circumference. In 1881 Newcomb 
remarked that the first pages of logarithmic tables wore out “much faster” than the last ones 
and set out to derive the probability that the first significant digits of empirically obtained 
numbers will be n1, n2, … Without any proof he indicated that, if numbers s1, s2, …, sn  were 
selected “at random”, the positive fractional parts of the differences (s1 – s2), (s2 – s3), … will 
tend, as n � �, to a uniform distribution over a circumference, and that the empirical 
magnitudes, to which these differences conform, will have equally probable mantissas of their 
logarithms. Newcomb’s reasoning heuristically resembles the Weyl celebrated theorem that 
states that the terms of the sequence {nx}, where x is irrational, n  = 1, 2, …, and the braces 
mean “drop the integral part”, are uniformly distributed on a unit interval. In the sense of the 
information theory, Newcomb’s statement means that each empirical number tends to provide 
one and the same information. Several authors, independently one from another, proved that 
Newcomb was right. One of them (Raimi 1976, p. 536) called his statement an “inspired 
guess” and reasonably noted that it was not, however, universally valid. 

    By the mid-century, after processing observations made over about a century, a 
rough periodicity of the number of sunspots was established. Newcomb (1901), who studied 
their observations from 1610 onward, arrived at T = 11.13 years. The present-day figure is T 
� 11 years but a strict periodicity is denied. In any case, it might be thought that the numbers 
of sunspots constitute a time series, an object for stochastic studies. I note that Newcomb 
considered the maxima and the minima of that phenomenon as well as half the sums of the 
numbers of the sunspots “corresponding to the year of minimum and the following maximum, 
or vice versa” (p. 4). He determined the four appropriate values of T and their mean without 
commenting on the possible dependence between them. 

    The variation of the terrestrial latitudes is known to be caused by the movement of 
the pole about some point along a curve resembling a circumference with period 1.2 years. 
Newcomb (1892) checked the then proposed hypothesis that the movement was periodic with 
T = 1.17 years and he assumed that the pole moved uniformly along a circumference. Some of 
his calculations are doubtful (and not sufficiently detailed, a feature peculiar to many of his 
works), but he correctly concluded that the hypothesis was [apparently] valid.  

    In 1767 Michell (§6.1.6) attempted to determine the probability that two stars 
were close to each other. By applying the Poisson distribution, Newcomb (1859 – 1861, vol. 
1, pp. 137 – 138; 1860, pp. 437 – 439) calculated the probability that some surface with a 
diameter of 1° contained  s stars out of N scattered “at random” over the celestial sphere and 
much later Fisher (Hald 1998, pp. 73 – 74) turned his attention to that problem. Newcomb 
(1904a), like Boole (1851), also reasoned on the distinction between a random and a uniform 
distribution. Newcomb (1861b) also solved a related problem in which he determined the 
probability of the distance between the poles of two great circles randomly situated on a 
sphere. Issuing from other initial considerations, Laplace (1812, p. 261) and Cournot (1843, 
§ 148) earlier provided solutions differing both from each other and from Newcomb’s answer 
(Sheynin 1984a, pp. 166 – 167). 

    About 1784 William Herschel started counting the number of stars situated in 
different regions of the sky. He thought that his telescope was able to penetrate right up to the 
boundaries of the (finite!) universe and hoped to determine its configuration.  In one section 
of the Milky Way he (1784, p. 158) counted the stars in six fields selected “promiscuously” 
and assumed the mean number of them as an estimate for the entire section. Much later 
Herschel (1817) proposed a model of a uniform spatial distribution of the stars. He fixed the 
boundaries for the distances of the stars of each magnitude but he allowed the stars to be 
randomly distributed within these boundaries. When estimating the precision of his model for 
the stars of the first seven magnitudes, Herschel calculated the sum of the deviations of his 



model from reality. For the first four magnitudes the sum was small although the separate 
deviations were large. Recall (§6.3.2) that, when adjusting observations, Boscovich applied a 
similar test with respect to absolute deviations and that Herschel himself (1805) made use of it 
when determining the direction of the Sun’s movement (Note 17 to Chapter 6). 

    Herschel (1817, p. 579) indicated that 

 

    any star promiscuously chosen … out of [14,000 stars of the first seven 

    magnitudes] is not likely to differ much from a certain mean size of them 

    all.  

 

    He certainly did not know that, with regard to size, the stars are incredibly 
different; its mean value is a worthless quantity, and, in general, stochastic statements, made 
in the absence of data, are hardly useful. A formal check in accordance with the Bienaymé – 

Chebyshev inequality would have revealed Herschel’s mistake. But in any case it occurred 
that the stars, even earlier than the asteroids, have been considered as elements of a single 
population (in the last-mentioned instance, wrongly). 

    Stellar statistics really originated in the mid-19th century with the study of the 
proper motions of hundreds of stars (until 1842, when astronomers started to use the 
Doppler’s invention, only in the directions perpendicular to the appropriate lines of sight). 
The calculated mean proper motions for stars of a given magnitude proved, however, almost 
meaningless since the magnitudes depended on distances. Beginning with W. Herschel, 
astronomers thought that the proper motions were random, but they understood randomness in 
different ways. Newcomb (1902a) assumed that their projections on an arbitrary axis were 
normally distributed. He derived, although without providing his calculations, the density 
laws of their projections on an arbitrary plane and their own distribution. Both these laws 
were connected with the %2 distribution.  

    The general statistical study of the starry heaven became more important than a 
precise determination of the parameters of some star (Hill & Elkin 1884, p. 191): 

 

    The great Cosmical questions to be answered are not so much what is the 

    precise parallax of this or that particular star, but – What are the average 

    parallaxes of those of the first, second, third and fourth magnitude 

    respectively, compared with those of lesser magnitude? [And] What 

    connection does there subsist between the parallax of a star and the amount 

    and direction of its proper motion or can it be proved that there is no such 

    connection or relation? 

 

    Then, Kapteyn (1906b; 1909) described a stochastic picture of the stellar universe 
by the laws of distribution of the (random!) parameters, parallaxes and peculiar motions, of 
the stars. He (1906a) also initiated the study of the starry heaven by [stratified] sampling; here 
is a passage from a letter that he received in 1904 on this subject from one of his colleagues 
and inserted on his p. 67: 

 

    As in making a contour map, we might take the height of points at the 

    corners of squares a hundred meters on a side, but we should also take the 

    top of each hill, the bottom of each lake, …, and other distinctive points. 

 



In statistics, sampling became recognized at about the same time, although not 
without serious resistance (You Poh Seng 1951) and its most active partisan was Kiaer, also 
see §10.8-2.  

    Newcomb (1902b, pp. 302 and 303) offered a correct estimate of Kapteyn’s work: 

 

    In recent times what we may regard as a new branch of astronomical 

    science is being developed … This is what we now call the science of stellar 

    statistics. The statistics of the stars may be said to have commenced with 

    Herschel’s gauges of the heavens … The outcome of Kapteyn’s conclusions 

    is that we are able to describe the universe as a single object … 

 

    The compilation of vast numerical materials (catalogs, yearbooks) was also of a 
statistical nature. Moreover, sometimes this direction of work had been contrasted to 
theoretical constructions. Thus, Proctor (1873) plotted 324 thousand stars on his charts 
attempting to leave aside any theories on the structure of the stellar system, but the 
development of astronomy proved him wrong. 

    Calculation and adjustment of observations, their reasonable comparison has 
always been important for astronomy. Here, I again ought to mention, in the first place, 
Newcomb. Benjamin (1910) and many other commentators stated that he had to process more 
than 62 thousand observations of the Sun and the planets and that his work included a 
complete revision of the constants of astronomy. I add that he discussed and compared 
observations obtained at the main observatories of the world and that he hardly had any aids 
except for logarithmic tables. In addition he published some pertinent theoretical studies. He 
was of course unable to avoid the perennial problem of the deviating observations. At first he 
regarded them with suspicion, then (1895, p.186), however, became more tolerant. If a series 
of observations did not obey the normal law, Newcomb (1896, p. 43) preferred to assign a 
smaller weight to the “remote” observations, or, in case of asymmetric series, to choose the 
median instead of the arithmetic mean. He had not mentioned Cournot (§10.3-3), and, in two 
memoirs published at the same time, he (1897a; 1897b) called the median by two (!) other, 
nowadays forgotten, terms.  

    Mendeleev (§10.10.3) objected to combining different summaries of observations; 
Newcomb, however, had to do it repeatedly, and in such cases he (1872), hardly managing 
without subjective considerations, assigned weights to individual astronomical catalogs 
depending on their systematic errors. Interestingly enough, he then repeated such adjustments 
with weights, depending on random errors. 

    After determining that the normal law cannot decribe some astronomical 
observations necessarily made under unfavorable conditions, Newcomb (1886) proposed for 
them (and, mistakenly, for all astronomical observations altogether) a generalized law, a 
mixture of normal laws with differing measures of precision occurring with certain 
probabilities. The measure of precision thus became a discrete random variable, and the 
parameters of the proposed density had to be selected subjectively. Newcomb noted that his 
density led to the choice of a generalized arithmetic mean with weights decreasing towards 
the “tails” of the variational series. He had also introduced some simplifications, and later 
authors noted that they led to the choice of the location parameter by the principle of 
maximum likelihood. Newcomb hardly knew that his mixture of normal laws was not normal 
(Eddington 1933, p. 277). In turn, two authors generalized Newcomb’s law (Lehmann – 
Filhés 1887; Ogorodnikov 1928; 1929a; 1929b), see Sheynin (1995c, pp. 179 – 182), but their 
work was of little practical importance. 

    Like Mendeleev (§10.10.3), Newcomb (1897b, p. 165) thought that the 
discrepancy between two empirical magnitudes was essential if it exceeded the sum of the 
two appropriate probable errors, and it seems that this rigid test had been widely accepted in 
natural sciences. Here is Markov’s relevant pronouncement from a rare source (Sheynin 
1990b; pp. 453 – 454): he 

 



    like[d] very much Bredikhin’s rule according to which ‘in order to admit 

    the reality of a computed quantity, it should at least twice numerically 

    exceed its probable error’. I do [he does] not know, however, who 

    established this rule or whether all experienced calculators recognized it. 

 

    In other words, the difference between zero and a “real” non-zero quantity must 
twice exceed its probable error, a statement that conformed to Mendeleev’s and Newcomb’s 

opinion. But still, Newcomb several times indicated that some quantity a determined by him 
had mean square error b even when the latter much exceeded the former including the case 
(1901, p. 9) of a = 0.05 and b = 0.92! 

    Repeatedly applying the MLSq, Newcomb sometimes deviated from strict rules; 
see one such example in §9.5-3. In another case he (1895, p. 52) thought that small 
coefficients in a system of normal equations might be neglected, but he had not provided any 
quantitative test. Newcomb realized that, when forming normal equations, the propagation of 
round-off errors could result in their interdependence, and he reasonably concluded that in 
such cases the calculations should be made with twice as many significant digits. This is what 
he (1867) did when studying the calculations of the Kazan astronomer Kowalski, who had 
noted that, out of the four normal equations which he formed, only two were independent. It is 
now known that ill-conditioned observational equations should rather be processed without 
forming normal equations, – for example, by successive approximations. 

    Newcomb’s calculation (1874, p. 167) presents a special case. Having 89 
observational equations in five unknowns, he formed and solved the normal equations. Then, 
however, he calculated the residual free terms of the initial equations and somehow solved 
them anew (providing only the results of both solutions). He apparently wished to exclude 
systematic influences as much as possible, but how? 

    Newcomb (1895, p. 82; 1897a, p. 161) mistakenly stated, although mentioning 
earlier the definitive Gaussian justification of the MLSq, that the method was unseparable 
from the normal law. I note also his unfortunate reasoning (Newcomb & Holden 1874, p. 270) 
similar to the one in §10.9.5: for systematic error s and random errors r1 and r2, as he went on 
to prove, and only for the normal law, by considering the appropriate double integral, that 

 

    E[(s + r1) (s + r2)] = s2. 

 

    It might be concluded that Newcomb necessarily remained more or less within the 
boundaries of the classical theory of errors and simple stochastic patterns. At the same time, 
the extant correspondence between him and K. Pearson during 1903 – 1907 (Sheynin 2002b, 
§7.1) testifies that he wished to master the then originating mathematical statistics. Here is a 
passage from his letter of 1903 to Pearson: 

 

    You are the one living author whose production I nearly always read when 

    I have time and can get at them, and with whom I hold imaginary 

    interviews while I am reading. 

 

    I mention finally Newcomb’s statistical contribution (1904b) in which he 
examined the classical problem of the sex ratio at birth (see §§2.2.4, 3.3.4, 4.4 and 6.1.1). He 
assumed that there existed three kinds of families numbered, say, m, n, and n, for whom the 
probabilities of the birth of a boy were p, p + � and  p – � respectively and he studied, in the 
first place, the births of twins. The sex of the embryo, as he thought, became established only 
after the action of a number of successive causes made it ever more probable in either sense. 

 



    10.9.5. Physics. The kinetic theory of gases originated in mid-19th century as the 
result of the penetration of the statistical method into physics. Clausius (1857) introduced the 
notion of mean velocity of molecules and then (1858) determined the law of distribution of 
their free paths. More precisely, he determined a linear function of that law; in modern 
notation, [1 – F(x)] where F(x) was infinitely divisible. He (1889 – 1891, p. 71) made a point 
to prove the equality E(�/E�) = 1 for the velocity � of a molecule, which might be explained 
by the unenviable state of the theory of probability after Laplace, see §7.4. 

    Being content with considering the mean velocity of molecules, Clausius (1857, 
pp. 238 and 248) also asserted that molecules moved with essentially differing velocities. 
Even Boscovich (1758, §481) stated something similar but perhaps presumed that the 
differences between these velocities were not large: The “points” [atoms] of “a particle” [of 
light, as in §477, or of any body, as in §478] move “together with practically the same 
velocity”, and the entire particle will “move as a whole with the single motion that is induced 
by the sum [the mean] of the inequalities pertaining to all its points”. 

    Maxwell (1860) established his celebrated distribution of the velocities of 
monatomic molecules. He tacitly assumed that the components of the velocity were 
independent; later this restriction was weakened (§9.1.3). Maxwell (1879, pp. 715 and 721) 
and then Boltzmann (1887, p. 264; 1895 – 1899, Bd. 2, p. 144) introduced fictitious physical 
systems and became able to consider the probability that a system was situated in a certain 
phase. They actually made use of an infinite general population. Maxwell (1873) effectively 
connected randomness with instability and noted, in spite of Laplace, that the movement of a 
given molecule was unpredictable, and he prophetically declared that in future physicists will 
possibly study “singularities and instabilities”. 

    With respect to separate molecules, Boltzmann (1868, p. 50; 1895 – 1899, Bd. 1, 
p. 50) introduced the time average probability, – and maintained that it was equivalent to the 
“usual” phase average probability, also see §12-2. When studying polyatomic gases, 
Boltzmann (1871) defined the probability of its state as a product such as fd� where f was 
some function, varying in time, of the coordinates and velocities of the separate molecules 
and d�, the product of the differentials of those parameters. For stochastic processes, such 
functions determine the distribution of a system of random variables at the appropriate 
moment.  

    From 1871 onward Boltzmann had been connecting the proof of the second law 
of thermodynamics with stochastic considerations; however, he (1886, p. 28) then indicated 
that the 19th century will be the age of “mechanical perception of nature, the age of Darwin”, 
and (1904a, p. 368) that the theory of evolution was understandable in mechanical terms, that 
(1904b, p. 136) it will perhaps become possible to describe electricity and heat mechanically. 
The possible reason for his viewpoint was that he did not recognize objective randomness. 

     

    10.10. Natural scientists 

    10.10.1. Ivory. In a letter to Olbers of 1827, Gauss (Schilling 1909, pp. 475 – 
476) called Ivory an “acute” mathematician, but indicated that the “spirit” of the MLSq was 
alien to him. In 1825 – 1830 Ivory published 11 papers in one and the same periodical [the 
last of these was Ivory (1830)] devoted to the derivation of the flattening of the Earth’s 
ellipsoid of revolution by means of pendulum observations. It is not amiss to add that his main 
contributions pertained to the mathematical theory of attraction. 

    In accordance with the Clairaut theorem, the Earth’s flattening (see Note 10 to 
Chapter 6) is determined by two observations of [the acceleration of] gravity at different 
latitudes; however, unavoidable errors necessitate the use of redundant observations. To 
strengthen Gauss’ remark, I state that Ivory was simply ignorant of the MLSq and without 
justification called it not good enough. He denied it in words but applied the MLSq, perhaps 
not even realizing it at once. Thus, starting from equations of the type (1.1) with ai = 1 he 
(1826b, pp. 244 – 245) stated that the condition 'vi = 0, unlike the requirement of the MLSq 
[av] = [bv] = … = 0, see equations (1.5), was expedient. He failed to notice that in his case the 
expedient condition coincided with the demand that [av] = 0.  

    Then, having at his disposal 5 – 7 observations, only one of which was made at a 
southern station, he (1826a, p. 9) combined it with each of the others (so as to have pairs with 
a large latitudinal difference between stations) and calculated the flattening from the thus 



obtained pairs. The weight of the equatorial observation became absurdly great and its error 
corrupted all the pairs in the same way. An utterly unworthy manner of treatment, as Gauss 
stated.  

    Only later did Ivory remark that the local anomalies of gravity can essentially 
influence the end result, – and rejected a large part of the available observations, – up to 31%, 
see Ivory (1826b, p. 242), – and even began doubting whether it was possible to derive a 
single flattening. Local anomalies are indeed extremely troublesome (also see §10.9.3 where I 
indirectly mentioned local perturbations of temperature). Finally, when estimating the 
precision of his results, he had not applied the variance.  

    I ought to add two remarks. First, his final result (1828, p. 242) was sufficiently 
close to the flattening of the Krasovsky ellipsoid of 1940 (Sakatov 1950, p. 364): e = 0.00333 
– 0.00338 and 0.00335, respectively. In addition, Ivory (1825, p. 7), without, however, 
mentioning Gauss, maintained that the MLSq should be substantiated by the principle of 
maximum weight. Second, Ivory actually wished to solve two problems at once: to find out 
whether the observations were consistent with an ellipsoidal Earth, and to adjust them. It is 
the minimax method (§6.3.2) rather than the MLSq that is best for solving the first problem. 

 

    10.10.2 Fechner. He (1860) was the founder of psychophysics and therefore 

became one of the first to introduce the statistical method, although not in the crucial 
direction, into physics. Being the coauthor of the logarithmic Weber – Fechner law 
connecting stimuli with sensations, he extended the range of its application after making a 
great number of experiments (1860; 1887). He had to study the methods of experimentation, 
and the modern method of paired comparisons (H.A. David 1963) owes much to him.  

    In the theory of errors Fechner had been mentioning Gauss, but he also attempted, 
sometimes unsuccessfully, to introduce his own innovations, or to repeat unknown to him 
previous findings. Thus, issuing from elementary but apparently non-rigorous considerations, 
he (1874, p. 74) provided a formula for estimating the precision of observations which 
coincided with the Peters formula (7) but was applicable to any distributions. Then, 
proceeding from the Gaussian formulas (§9.3), he compared two competing expressions 
connecting the magnitudes of the stars with their brightnesses, solved redundant systems of 
equations by the method of pairwise combinations (§6.3.2), and remarked, without 
substantiation (and hardly correctly), that that method asymptotically tended to the MLSq 
(1887, p. 217). 

    Fechner’s main innovation was, however, the collective, – actually, the set of 
observed values of a random variable. He (1897) proposed to study collectives by applying 
several mean values, their mutual arrangement, and their deviations (including absolute and 
normed deviations) from the observations. He mostly paid attention to asymmetric collectives 
and he even attempted to discover a universal asymmetric distribution for errors in natural 
sciences (cf. §10.5). Fechner especially examined the double normal law (two different 
normal laws for the smaller and the larger values of observations in the variational series 
respectively, turning into one another at the point of maximal probability, i.e., at the mode), 
and the double lognormal law. It occurred, however (K. Pearson 1905) that in both cases he 
had predecessors. Fechner also attempted, although not very successfully, to separate the real 
and the apparent (caused by an insufficient number of observations) asymmetry. 

    Finally, Fechner (1897, pp. 365 – 366) studied the dependence of the successive 
daily air temperatures by comparing their course with the arrangement of winning (numbered) 
tickets of a reputed German lottery. When examining the results of the lottery, he achieved an 
interesting result pertaining to the runs up and down (cf. §10.2-5). Furthermore, Fechner even 
introduced a measure of dependence varying from 0 to 1, but describing only “positive” 
dependences. His contribution appeared posthumously, after the Galton correlation theory 
had emerged. 

    Mises (1928, pp. 26 and 99) highly appraised Fechner’s efforts and owned (p. 99) 
that Fechner’s “constructions prompted, at least me [Mises], to adopt a new viewpoint”. Two 
more passages by K. Pearson (1905, p. 189) and Freud (1925, p. 86) are in order: 

 

    All the leading statisticians from Poisson to Quetelet, Galton, Edgeworth 



    and Fechner … have realized that asymmetry must be in some way 

    described before we can advance in our theory of variation [in biology]. 

 

    I was always open to the ideas of Fechner and have followed that thinker 

    upon many important points. 

 

    10.10.3. Mendeleev. From 1893 to 1907 Mendeleev was Director of Russia’s 
Main Board of Measures and Weights and he processed observations both as a chemist and a 
metrologist. He (1887, p. 82) paid special attention to the quality of measurements and 
objected to the combination of observations obtained by different methods and under different 
conditions as well as to their amassing. Mendeleev (1875, p. 209) thought that an 
observational series should be “harmonious”, that is, that its median should coincide with its 
arithmetic mean, or (his second definition) that the mean of its middlemost third should 
coincide with the mean of the means of its extreme thirds. In the first case, he mistakenly 
added that the coincidence meant that the appropriate distribution was normal. 

    Mendeleev had not mentioned the second Gaussian justification of the MLSq and 
made a few mistakes in his theoretical considerations. On the other hand, the deviation of the 
arithmetic mean from the median, normed in a certain way, is nowadays recognized as a 
measure of asymmetry of the appropriate distribution (Yule & Kendall 1958, p. 161). For 
Mendeleev, the probable error was the main estimator of precision and he (1860, p. 46) 
assumed that the admissible deviation between two means was the sum of their probable 
errors (cf. §10.9.4). Suppose that these errors are equal to each other; then, for the normal 
distribution, their sum is 1.35  where   is the standard deviation (or the mean square error) of 
each mean. On the other hand, the standard deviation of the difference between the means is 
 �2 and it thus occurs that the studied difference is essential when it is equal to its standard 
deviation. Mendeleev’s (or Bredikhin’s, or Newcomb’s) rule seems to be too rigid. A 
different rule was recommended recently (Dorsey & Eisenhart 1969, p. 50) in which the 
probable errors of individual measurements were involved instead. 

 

    Notes 

    1. He published many very short notes and insufficiently described his findings, 
sometimes, like in this case, without proof. 

    2. Cournot only explained his understanding of the distinction between chance 
and probability in §48 and not clearly enough. True, in his Préface he published Poisson’s 
letter of 1836 where its author had indicated that with regard to that point they were 
unanimous, cf. §8.1. 

    3. Noone apparently recalled it before Cournot; and only Chuprov (1909, p. 188) 
mentioned it afterwards. 

    4. He read his work in 1846, but the existing materials testify that already then he 
could have known Buniakovsky’s book, and exactly him did Ostrogradsky apparently 
criticize (see below). He barely busied himself with probability, but he (1858) made the 
calculations necessary for the work of a society of mutual insurance. In §7.1-9 I mentioned his 
attempt to generalize the notion of moral expectation. On Ostrogradsky see Gnedenko 

(1951). 

    5. In a letter of 1841 Faraday (1971, vol. 1, p. 398) wrote him in this connection: 

  

    You are indeed a worthy example in activity & power to all workers in 

    science and if I cannot imitate your example I can at least appreciate & 

    value it. 

 



    Köppen (1875, p. 256), an eminent meteorologist, noted that “ever since the early 
1840s” the Belgian meteorological observations “proved to be the most lasting [in Europe] 
and extremely valuable”. 

    6. The application of the mean square error with a double sign became standard in 
the theory of errors at least after Helmert; Gauss (1816, §§6 and 8) sometimes, but not 
always, kept to the same practice. 

    7. The Handbook of social indicators published in 1989 by the UN, see De Vries 
(2001), listed several hundred indicators separated into 13 groups. They help to trace the 
range of problems of modern statistics. Several papers on the newest goals of statistics in the 
“information society” are collected in the International Statistical Review, vol. 71, No. 1, 
2003. 

    8. It had been applied in England from the 12th century onward for checking the 
quality of batches of new coins (Stigler 1977). Ptukha (1961) described its usage in Russia 
from the 17th century. 

    9. It is worthwhile to mention Liebermeister (ca. 1876), who, in a medical context, 
studied the possibility of distinguishing between equality and inequality of success 
probabilities in two (small) series of binomial trials. Starting from a Laplacean formula based 
on the existence of uniform prior distribution, and assuming that the two probabilities 
coincided, he considered the size of the tail probability (of the hypergeometric distribution). 
His main formula had hardly ever reappeared. See Seneta (1994).  

    10. Private communication (2003) by Prof. Walter Mann, a grandson of Mendel’s 
nephew, Alois Schindler, and a typographic text of the latter’s manuscript (of his report of 
1902). 

    11. Still earlier the problem of allowing for local anomalies presented itself when 
pendulum observations began to be used for determining the flattening of the Earth’s ellipsoid 
of revolution, see §10.10.1. 
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    11. Bertrand and Poincaré 
    Passing now to Bertrand, I disturb the chronology of description, but not 
its logic: he was not interested in the work of Chebyshev. This is also true 
with regard to Poincaré who never mentioned Chebyshev’s followers in 
probability (Markov and Liapunov) either. 
 
    11.1. Bertrand 
    In 1855 Bertrand had translated Gauss’ works on the MLSq into French1, 
but his own work on probability began in essence in 1887 – 1888 when he 
published 25 notes in one and the same periodical as well as his main treatise 
(1888a), written in great haste and carelessly, but in a very good literary style. 
I take up its main issues and state right now that it lacks a systematic 
description of its subject. 
    1) “Uniform” randomness. By several examples Bertrand proved that the 
expression “at random”, or even “uniformly” random, was not definite 
enough. Thus, he maintained that the Michell problem (§6.1.6) should have 
been generalized: remarkable was not only a small distance between stars, but 
some other features of their mutual arrangement as well. One of his examples 
(p. 4) became classical. Determine the probability, Bertrand asked, that a 
randomly drawn chord of a given circle was longer than the side of an 
equilateral triangle inscribed in the circle. He listed three possible answers: 



    a) One endpoint of the chord is fixed; p = 1/3. 
    b) The chord’s direction is fixed; p = 1/2. 
    c)The location of the center of the chord in any point of the circle is equally  
probable; p = 1/4. 
    I return to this problem in Chapter 12. 
    2) Statistical probability and the Bayesian approach. Heads appeared m = 
500,391 times in n = 106  tosses of a coin (p. 276). The statistical probability 
of that event is p = 0.500391; it is unreliable, not a single of its digits merits 
confidence. After making this astonishing declaration, Bertrand compared the 
probabilities of two hypotheses, namely, that the probability was either p1 = 
0.500391, or p2 = 0.499609. However, instead of calculating 
 
    [p1

mp2
n] ÷ [p2

mp1
n], 

 
he applied the De Moivre – Laplace theorem and only indicated that the first 
probability was 3.4 times higher than the second one. So what should have the 
reader thought? 
    As I understand him, Bertrand (p. 161) “condemned” the Bayes “principle” 
only because the probability of the repetition of the occurrence of an event 
after it had happened once was too high (cf. the problem about the sunrise in 
§5.1). This conclusion was too hasty, and the reader was again left in 
suspense: what might be proposed instead? Note that Bertrand (p. 151) 
mistakenly thought that the De Moivre – Laplace theorem precisely 
described the inverse problem, the estimation of the theoretical probability 
given the statistical data. 
    3) Statistics of population. Bertrand indicated that there existed a 
dependence between trials (or their series) and that the probabilities of the 
studied events could change. He referred only to Dormoy and had not 
provided any concrete examples, but he (p. 312) noted that, when studying the 
sex ratio at birth, both Laplace and Poisson had assumed without justification 
that the probability of a male birth was constant in time and space. 
Bortkiewicz (1930, p. 53) concluded that Dormoy was much less important 
than Lexis. 
    4) Mathematical treatment of observations. Bertrand paid much attention to 
this issue, but his reasoning was amateurish and sometimes wrong. Even if, 
when translating Gauss (see above), he had grasped the essence of the MLSq, 
he barely remembered that subject after more than 30 years. Thus, he (pp. 281 
– 282) attempted to prove that the sample variance (9.6b) might be replaced 
by another estimator of precision having a smaller variance. He failed to 
notice, however, that, unlike the Gauss statistic, his new estimator was 
biassed. Furthermore, when providing an example, Bertrand calculated the 
variance of (9.6b) for the case of the normal distribution instead of applying 
the Gauss formula (9.6c). 
    At the same time Bertrand also formulated some sensible remarks. He (p. 
248) expressed a favorable opinion about the second Gauss justification of the 
MLSq and indicated (p. 267) that, for small errors, the even distribution 
 
    �(x) = a + bx2 

 

could be approximately represented by an exponential function of a negative 
square, – that the first susbstantiation of the method was approximately valid. 



Finally, Bertrand provided an argument against the postulate of the arithmetic 
mean, see §9.2-2. 
    5) Several interesting problems in addition to that described in Item 1. I 
dwell on a random composition of balls in an urn; on sampling without 
replacement; on the ballot problem; and on the gambler’s ruin. 
    a) White and black balls are placed in the urn with equal probabilities and 
there are N balls in all. A sample made with replacement contained m white 
balls and n black ones. Determine the most probable composition of the urn 
(pp. 152 – 153). Bertrand calculated the maximal value of the product of the 
probabilities of the sample and of the hypotheses on the composition of the 
urn. 
    b) An urn has sp white balls and sq black ones, p + q = 1. Determine the 
probability that after n drawings without replacement the sample will contain 
(np – k) white balls (p. 94). Bertrand solved this problem applying the 
[hypergeometric distribution] and obtained, for large values of s and n, an 
elegant formula 
 

    P = [1/ pqnπ2 ] )/( nss − exp[– k2s/2pqn(s – n)]. 

 
He (1887b) published this formula earlier without justification and noted that 
the variable probability of extracting the balls of either color was “en quelque 
sorte un régulateur”. 
    c) Candidates A and B scored m and n votes respectively, m > n and all the 
possible chronologically differing voting records were equally probable. 
Determine the probability P that, during the balloting, A was always ahead of  
B (p. 18). Following André (1887), who provided a simple demonstration, 
Bertrand proved that 
 
    P = (m – n)/(m + n),                                                                 (1) 
 
see also Feller (1950, §1 of Chapter 3). Actually, Bertrand (1887a) was the 
first to derive formula (1) by a partial difference equation. This ballot problem 
has many applications (Feller, Ibidem). Takácz (1982) traced its history back 
to De Moivre (§4.1-5). He indicated that it was extended to include the case 
of m � µn for positive integral values of µ and that he himself, in 1960, had 
further generalized that extended version. 
    d) I select one out of the few problems on the gambler’s ruin discussed by 
Bertrand (pp. 122 – 123). Gambler A has m counters and plays with an 
infinitely rich partner. His probability of winning any given game is p. 
Determine the probability that he will be ruined in exactly n games (n > m). 
Bertrand was able to solve this problem by applying formula (1). Calculate the 
probability that A loses (n + m)/2 games and wins (n – m)/2 games; then, 
multiply it by the probability that during that time A will never have more than  
m counters, that is, by m/n. 
    In two of his notes Bertrand (1888b; 1888c) came close to proving that for a 
sample from a normal population the mean and the variance were 
independent. Heyde & Seneta (1977, p. 67n) indicated this fact with respect to 
Bertrand’s second note; see §§ 7.2-5 and 10.6-5 for the previous findings of 
Laplace and Helmert.  
    Taken as a whole, Bertrand’s treatise is impregnated with its non-
constructive negative (and often unjustified) attitude towards the theory of 



probability and treatment of observations. And at least once he (pp. 325 – 
326) wrongly alleged that Cournot had supposed that judges decided their 
cases independently one from another, see §10.3-6. I ought to add, however, 
that Bertrand exerted a strong (perhaps too strong) influence upon Poincaré, 
and, in spite of its spirit, on the revival of the interest of French scientists in 
probability (Bru & Jongmans 2001). 
 
    11.2 Poincaré 
    In the theory of probability, Poincaré is known for his treatise (1896); I 
refer to its extended edition of 1912. I note first of all that he had passed over 
in silence not only the Russian mathematicians (§11), but even Laplace and 
Poisson, and that his exposition was imperfect. Following Bertrand, Poincaré 
(p. 62) called the expectation of a random variable its probable value; denoted 
the measure of precision of the normal law either by h or by �h; made use of 
loose expressions such as “z lies between z and z + dz” (p. 252). 
    Several times Poincaré applied the formula 
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where $(x) was a restricted positive function, xo, the only point of its 
maximum, and the limits of integration could have been infinite (although 
only as the result of a formal application of the Bayesian approach). Poincaré 
(p. 178) only traced the proof of (2) and, for being true, some restrictions 
should perhaps be added. To place Poincarè’s trick in the proper perspective, 
see Erdélyi (1956, pp. 56 – 57). I discuss now some separate issues mostly 
from Poincaré’s treatise.  
    1) The theory of probability. Poincaré (1902, p. 217) declared that “all the 
sciences” were nothing but an “unconscious application” of the calculus of 
probability, that the theory of errors and the kinetic theory of gases were based 
on the LLN and that the calculus of probability “will evidently ruin them” (les 
entrainerait évidemment dans sa ruine). Therefore, as he concluded, the 
calculus was only of practical importance2. Another strange pronouncement is 
in his treatise (1896, p. 34). As I understand him, he maintained that a 
mathematician is unable to understand why forecasts concerning mortality 
figures come true. 
    Then, Poincaré unconditionally censured the application of the theory of 
probability to the administration of justice, generalized Mill’s pertinent 
statement by calling its application to “moral sciences” in general “le scandale 
des mathématiques” and declared that the appropriate findings made by 

Condorcet and Laplace were senseless; see my §8.9.1. Finally, I (Sheynin 
1991a, p. 167) quoted Poincaré’s letter written, apparently in 1899, in 
connection with the notorious Dreyfus case, where he had objected to a 
stochastic study of handwriting for identifying the author of a certain 
document. 
    The interest in application of probability to jurisprudence is now revived. 
Heyde & Seneta (1977, p. 34) had cited several pertinent sources published up 
to 1975; to these I am adding Gastwirth (2000) and Dawid (2005) who 
emphasized the utmost importance of interpreting background information 
concerning stochastic reasoning. 



    2) Poincaré (1892a) had published a treatise on thermodynamics which Tait 
(1892) criticized for his failure to indicate the statistical nature of this 
discipline. A discussion followed in which Poincaré (1892b) stated that the 
statistical basis of thermodynamics did not satisfy him since he wished to 
remain “entirely beyond all the molecular hypotheses however ingenious they 
might be”; in particular, he therefore passed the kinetic theory of gases over in 
silence. Soon he (1894, p. 246) made known his doubts: he was not sure that 
that theory could account for all the known facts. In a later popular booklet 
Poincaré (1905, pp. 210 and 251) softened his attitude: physical laws will 
acquire an “entirely new aspect” and differential equations will become 
statistical laws; laws, however, will be shown to be imperfect and provisional. 
    3) Geometric probability. On its previous history see §6.1.6; its further 
development is described in Chapter 12. Here, I only indicate that Poincaré 
explained the paradoxical nature of the Bertrand problem (§11.1-1). 
    4) The binomial distribution. Suppose that m Bernoulli trials with 
probability of success p are made and the number of successes is �. Poincaré 
(pp. 79 – 84), in a roundabout and difficult way, derived (in modern notation) 
E(� – mp)2 and E|� – mp|. In the first case he could have calculated E�2; in the 
second instance he obtained 
 

    E|� – mp| 
 2mpq mp
mC p mpq mq, q = 1 – p. 

 
    5) The Bayesian approach: estimating the total number (N) of the asteroids. 
Poincaré (pp. 163 – 168) assumed that only M of them were known and that, 
during a certain year, n minor planets were observed, m of which were known 
before. Introducing a constant probability p = n/N of observing an asteroid 
during a year and applying the Bayesian approach, he obtained 
 
    EN � n/p. 
 
He was not satisfied with this pseudo-answer and assumed now that p was 
unknown. Again applying the Bayesian approach and supposing that p took 
with equal probability all values within the interval [0; 1], he derived instead  
 
    EN = (M/m)n. 
 
    He could have written this formula at once; in addition, it was possible to 
recall the Laplace problem of estimating the population of France by sample 
data (§7.1-5). It is nevertheless interesting that Poincaré considered the 
unknown number of the minor planets as a random variable. 
    6) Without mentioning Gauss (1816, §5), Poincaré (pp. 192 – 194) derived 
the moments of the [normal] distribution 
 

    �(y) = π/h exp(– hy2)                                                          (3) 
 
obtaining 
 

    Ey2p = 
pp ph

p
22 !

)!(2
                                                                        (4) 

 



and proved, by issuing from formula (2), that the density function whose 
moments coincided with the respective moments of the [normal] law was 
[normal]. This proposition was, however, due to Chebyshev (1887a), see also 
Bernstein (1945, p. 420/78). 
    Then Poincaré (pp. 195 – 201) applied his investigation to the theory of 
errors. He first approximately calculated E y 2p for the mean y  of a large 

number n of observations having Eyi = 0 and Eyi
2 = Const, equated these 

moments to the moments (4) and thus expressed h through Eyi
2. This was a 

mistake: y , being a mean, had a measure of precision nh rather than h. 

Poincaré (p. 195) also stated that Gauss had calculated E y 2; actually, Gauss 

(1823, §15) considered the mean value of 'yi
2/n.  

    The main point here and on pp. 201 – 206, where Poincaré considered the 
mean values of (y1 + y2 + … + yn)

2p with identical and then non-identical 
distributions and Eyi = 0, was the non-rigorous proof of the CLT: for errors of 
sensiblement the same order and constituting une faible part of the total error, 
the resulting error follows sensiblement the Gauss law (p. 206). 
    Also for proving the normality of the sum of errors Poincaré (pp. 206 – 208, 
only in 1912) introduced characteristic functions which did not conform to 
their modern definition. Nevertheless, he was able to apply the Fourier 

formulas for passing from them to densities and back. These functions were 
 

    f(�) = �px e
�x, f (�) = � �(x)e�xdx                                               (5) 

 
and he noted that 
 
    f (�) = 1 + �Ex/1! + �2 Ex2/2! + …                                              (6) 
 
    Markov (1898, p. 269) referred, but had not commented on Poincaré 
(1896, pp. 169 – 186 = 1912, pp. 189 – 206). I repeat that there, on p. 
173/194, Poincaré had applied his formula (2). 
    7) Homogeneous [Markov chains]. Poincaré provided interesting examples 
that might be interpreted in the language of these chains. 
    a) He (p. 150) assumed that all the asteroids moved along one and the same 
circular orbit, the ecliptic, and explained why were they uniformly scattered 
across it. Denote the longitude of a certain minor planet by l = at + b where a 
and b are random and t is the time, and, by �(a; b), the continuous joint 
density function of a and b. Issuing from the expectation 
 

    Eeiml = �� �(a; b)eim(at + b)da db 

 
(which is the appropriate characteristic function in the modern sense), 
Poincaré not very clearly proved his proposition that resembled the celebrated 
Weyl theorem (beginning of §10.9.4). The place of a planet in space is only 
known with a certain error, and the number of all possible arrangements of the 
asteroids on the ecliptic might therefore be assumed finite whereas the 
probabilities of the changes of these arrangements during time period [t; t + 1] 
do not depend on t. The uniform distribution of the asteroids might therefore 
be justified by the ergodic property of homogeneous Markov chains having a 
finite number of possible states. 



    b) The game of roulette. A circle is alternately divided into a large number 
of congruent red and black sectors. A needle is whirled with force along the 
circumference of the circle, and, after having made a great number of 
revolutions, stops in one of the sectors. Experience proves that the 
probabilities of red and black coincide and Poincaré (p. 148) attempted to 
justify that fact. Suppose that the needle stops after travelling a distance s (2� 
< s < A). Denote the corresponding density by �(x), a function continuous on  
[2�; A] and having a bounded derivative on the same interval.Then, as 
Poincaré demonstrated, the difference between the probabilities of red and 
black tended to zero as the length of each red (and black) arc became 
infinitesimal (or, which is the same, as s became infinitely large). He based his 
proof on the method of arbitrary functions (Khinchin 1961, No. 2, pp. 88 – 
89/421 – 422; von Plato 1983) and himself sketched its essence. Poincaré also 
indicated that the rotation of the needle was unstable: a slight change in the 
initial thrust led to an essential change in the travelled distance (and, possibly, 
to a change from red to black or vice versa). 
    c) Shuffling a deck of cards (p. 301). In an extremely involved manner, by 
applying hypercomplex numbers, Poincaré proved that after many shuffling 
all the possible arrangements of the cards tended to become equally probable. 
See §7.1-6. 
    8) Mathematical treatment of observations. In a posthumously published 
Résumé of his work, Poincaré (1921, p. 343) indicated that the theory of errors 
“naturally” was his main aim in the theory of probability and that statement 
reflected the situation in those times. In his treatise he (pp. 169 – 173) derived 
the normal distribution of observational errors mainly following Gauss; then, 
like Bertrand, changed the derivation by assuming that not the most probable 
value of the estimator of the [location parameter] coincided with the 
arithmetic mean, but its mean value. He (pp. 186 – 187) also noted that, for 
small absolute errors x1, x2, …, xn, the equality of f (z) to the mean value of f 
(xi), led to z, the estimate of the real value of the constant sought, being equal 
to the arithmetic mean of xi. It seemed to him that he thus corroborated the 
Gauss postulate3. Finally, Poincaré (p. 188) indicated that the [variance] of 
the arithmetic mean tended to zero with the increase in the number of 
observations and referred to Gauss (who nevertheless had not stated anything 

at all about the case of n � �, cf. §9.4-7). “Nothing”, however, followed since 

other linear means had the same property, as Markov (1899a, p. 250/140) 
stated mentioning a wrong remark made by Maievsky. Poincaré himself 
(1896, pp. 196 – 201 and 217) twice proved the [consistency] of the arithmetic 
mean. In the second case he issued from a characteristic function of the type 
of (5) and (6) and passed on to the characteristic function of the arithmetic 
mean. He noted that, if that function could not be represented as (6), the 
consistency of the arithmetic mean was questionable, and he illustrated that 
fact by the Cauchy distribution. Perhaps because of all this reasoning on the 
mean Poincaré (p. 188) declared that Gauss’ rejection of his first 
substantiation of the MLSq was “assez étrange” and corroborated this 
conclusion by remarking that the choice of the [parameter of location] should 
not be made independently from the distribution (which directly contradicted 
Gauss’ mature thoughts). 
    Poincaré (pp. 217 – 218) also stated that very small errors made it 

impossible to obtain absolute precision as n � �. If so, these errors originate 



from the non-evenness of the law of distribution (Bayes; see Stigler (1986, p. 
94 – 95) and Cournot (1843, §137)), the variability of that law (again 
Cournot) and, I would add, some interdependence of the observations. 
    9) Randomness. Poincaré discussed randomness both in his treatise and in 
his scientific-popular booklets, but he never systematized his reasoning and I 
shall have to describe his various interpretations of chance. 
    a) Instability of equilibrium or movement. Some of the statements made by 
Aristotle (§1.1.1) and Galen (§1.1.3) meant that small causes might lead to 
considerable consequences, and Maxwell (1873, pp. 364 and 366) illustrated 
“singularity and instability” by the unstable refraction of rays within biaxial 
crystals. Poincaré (p. 4) was the first to state directly that randomness was 
instability of equilibrium or movement and he (pp. 4 – 5) provided a few 
examples: the instability of a cone stood on its vertex (§10.3-4); the roulette; 
the scattering of the asteroids; unstable states of the atmosphere. His third 
example, just like Newton’s reasoning on the irregularities in the Solar system 
(§2.2.3), was nevertheless connected with great intervals of time. Poincaré 
also argued that Laplace (whom he did not name) was wrong: forecasting the 
future (§7.3) was impossible because of the instability of motion. I have not 
found any connections between the just described explanation of randomness 
and Poincaré’s study of stability in mathematics or astronomy. 
    b) Complicated causes. Already Leibniz (§3.1.2) heuristically explained 
randomness by the complexity of causes. Laplace (1796, p. 504) qualitatively 
connected the existence of small irregularities in the system of the world with 
the action of innumerable differences between temperatures and between 
densities of the diverse parts of the planets. Maxwell (1860) assumed that the 
distribution of the velocities of molecules setted in after a great number of 
collisions among a great number of particles, but he did not mention 
randomness. And once more Poincaré was the first to do so. He (pp. 7 – 8) 
maintained that the molecular motion was random because of the combined 
action of instability and complexity of causes, but he then mentioned the 
shuffling of cards, the mixing of liquids and powders and (p. 15) “even” of 
molecules in the kinetic theory of gases. 
    c) Small causes leading to small consequences. Poincaré (p. 10) provided 
only one example, that, furthermore, did not belong to natural sciences: small 
causes led to small errors of measurement; he also indicated that these errors 
were considered random because their causes were too complicated. 
    d) Intersection of chains of determinate events. I mentioned this explanation 
in §§1.1.1 and 10.3-4. Poincaré (p. 10) allowed it, but his first two 
explanations were his main ones; and he apparently forgot here about the third 
one. 
    e) Randomness and necessity. Poincaré (see §1.2.4) formulated a highly 
proper idea on the combined action of randomness and necessity. Regrettably, 
he had not mentioned the appearance of necessity in mass random 
phenomena. 
    For Poincaré, the theory of probability remained an accessory subject, and 
his almost total failure to refer to his predecessors excepting Bertrand 
testifies that he was not duly acquainted with their work. Furthermore: in 1912 
he was already able to, but did not apply Markov chains. At the same time, 
however, he became the author of a treatise that for about 20 years had 
remained the main writing on probability in Europe. Le Cam’s declaration 
(1986, p. 81) that neither Bertrand, nor Poincaré “appeared to know“ the 



theory was unjust: he should have added that, at the time, Markov was 
apparently the only one who did master probability. On Bertrand see end of 
§11.1. 
 
    Notes 
    1. The title-page of the French translation carried a phrase “Translated and 
published avec l’autorisation de l’auteur”, but Bertrand himself (C.r. Acad. 
Sci. Paris, t. 40, 1855, p. 1190) indicated that Gauss, who had died the same 
year, was only able to send him “quelques observations de détail”. 
    2. Poincaré always applied the term “calcul” rather than “théorie” of 
probability. It is hardly amiss to note that in 1882 – 1891 Markov had 
published five mimeographed editions of his lectures called Theory of 
probability, but that he called his treatise (1900 and later editions) Calculus of 
probability (in both cases, in Russian). Another point: at least in 1892 
Poincaré was not prepared to believe in the statistical nature of the second law 
of thermodynamics; in addition to Item 2 above, see Sheynin (1991a, p. 141). 
    3. In the same context Poincaré (p. 171) argued that everyone believed that 
the normal law was universal: experimentators thought that that was a 
mathematical fact and mathematicians believed that it was experimental. 
Poincaré referred to the oral statement of Lippmann, an author of a treatise on 
thermodynamics. 
 
        Literature 
    Sheynin (1991a; 1994c) 
 
    12. Geometric Probability 
    On the development of the notion of geometric probability in the 18th 
century and earlier see §6.1.6, and on its definition by Cournot see §10.3-4; I 
described the Bertrand problem on the length of a random chord in §11.1-1. 
Here, I discuss the further history of the same notion.  
    1) Cournot (1843, §74) applied geometric probability for deriving the 
distribution of a function of several random arguments. Here is one of his 
examples. The arguments of the function u = |x – y| are uniformly distributed 
on segment  [0; 1]. After calculating the areas of the appropriate figures, he 
concluded that 
     
    P(u � a) = (1 – a2), 0 � a � 1. 
 
    The determination of the probability of the contrary event would have led 
Cournot to the once popular encounter problem (Laurent 1873, pp. 67 – 69): 
two persons are to meet at a definite spot during a specified time interval, their 
arrivals are independent and occur “at random”. The first one to arrive waits 
for a certain time and then leaves. Determine the probability of the encounter. 
    2) Most eminent natural scientists of the 19th century tacitly applied 
geometric probability. Boltzmann (1868, p. 50) defined the probability (the 
time average probability, see §10.9-5) that the velocity of a molecule was 
contained in an interval [c; c + dc] as the ratio of the time during which that 
event took place to the total time of observation. I do not dwell on an earlier 
definition of probability in physics or the further considerations concerning 
the ergodic hypothesis. Maxwell (1860) applied geometric probability while 
deriving his celebrated law. 



    When studying the life of earthworms, Darwin (1881, pp. 52 – 55) strewed 
paper triangles over some ground. They were dragged away by the worms but 
he recovered most of them and found out that the worms had not seized 
“indifferently by chance any part” of the triangles. He thought about several 
possibilities of “chance”, and, in particular, he decided, in actual fact, that the 
number of times a worm would have seized “by chance” any side of a triangle 
was proportional to its length1. 
    3) Seneta et al (2001) described the pertinent investigations of Sylvester, 
Crofton and Barbier which led to the appearance of integral geometry. I only 
mention Sylvester’s remarkable problem: To determine the probability that 
four points taken “at random” within a finite convex domain will form a 
convex quadrilateral. 
    4) Poincaré (1896, p. 97; 1912, p. 118) noted that the probability that a 
point (x; y) was situated within some figure was equal to the appropriate 
integral 
 

    �� �(x; y) dx dy 

 
where � should be somehow specified. He then went over to the Bertrand 
problem (§11.1-1) but mentioned only two of its solutions and provided his 
own reasoning tacitly assuming that � � 1. The chord can be fixed with 
respect to the center of the circle O and the polar axis passing through, and 
beginning in O, by two parameters, � and �,– the polar angles of A, an 
endpoint of the chord, and of P, its center; or, by two other parameters, ! and 
",– the polar coordinates of P. Now, the integrals over the given circle 
 

    �� d� d� � �� d" d! 

 
and this, as Poincaré stated, explained the paradoxical nature of the problem. 
He also studied the probability that rotated figures satisfy certain conditions 
but he did not state that his investigation was connected with the Bertrand 
paradox, cf. Item 7 below. 
    5) Czuber (1908, pp. 107 – 108) discovered three more natural solutions of 
the Bertrand problem. 
       a) One endpoint of the chord is fixed, and the chord passes through any 
point of the circle; p = 1/3 + �3/2� 
 0.609. 
       b) Both endpoints of the chord are chosen randomly; this case coincided 
with Bertrand’s first version. 
       c) Two points of the chord situated inside the circle are chosen randomly; 
p = 1/3 + 3�3/4�  
 0.746. 
    6) It turned out (De Montessus 1903) that the Bertrand problem had an 
uncountable set of answers. Suppose that Ox is the x-axis and mark points D 
and C on its positive half,– its intersections with concentric circumferences 
with common center in point O and radii OD = 1/2 and OC = 1. Arbitrary 
 



 

    Fig. 1. De Montessus (1903). A 
point moves along the axis from D to 
infinity, and, correspondingly, the 
probability sought in the Bertrand 
problem is seen to have an 
uncountable set of values. OD = 1/2, 
OC = 1. 
 

points M2(x) and M3(x) are situated on the same halfaxis, between the two 
circles and beyond the larger of them respectively. Tangents A2B2 and A3B3 to 
the smaller circumference pass through M2 and M3 respectively, and M3T is a 
tangent to the larger circumference with point of contact T. Finally, M1(x) is 
an arbitrary point on the same halfaxis inside the smaller circle. 
    For points M2 and M3 the probability sought is, respectively, 
 
    p2 = angle A2M2O/� = [2arcsin(1/2x)]/�, 
    p3 = angle A3M3O/angle TM3O = [arc sin(1/2x)]/[arcsin(1/x)], 
 
 with 1/2 � x � 1 and x � 1 respectively. 
    When moving from point O in the positive direction (say), the probability 
p2 decreases from 1 at point D to 1/3, and, from point C to infinity, probability 
p3 increases from 1/3 to 1/2. It is rather difficult to prove that p3 increases 
monotonically (and De Montessus had not done it), but already for x = 1.01 
and 1.1 it is 0.36 and 0.41 respectively and it reaches value (1/2 – 1/1,600 ) at  
x = 10. 
    Note that the coincidence of points M2 or M3 with D leads to Bertrand’s 

first solution and the movement M3 � � provides his second case. His third 
solution concerned a point rather than a straight line and was thus different. 
    De Montessus calculated the general mean probability of the studied event. 
However, it was hardly proper to include in the calculation, as he did, points 
such as M1 for which the stipulated condition was certainly satisfied. More 
important, while calculating the mean probability for the continuous case, De 
Montessus first determined a finite sum, and, when adding together the 
appropriate fractions, he added separately their numerators and their 
denominators. 
    7) Schmidt (1926) issued from Poincaré’s considerations and indicated in 
addition that the probability sought should persist under translation and 
rotation of the coordinate system (invariance under reflection is now also 
included). Accordingly, he proved that this condition is only fulfilled for the 
("; !) coordinate system, see Item 4, and when transforming that system into 
another one (with the appropriate Jacobian being of course allowed for)2.  
    For a modern viewpoint on geometric probability see M.G. Kendall & 
Moran (1963); in particular, following authors of the 19th century (e.g., 
Crofton 1869, p. 188), they noted that it might essentially simplify the 
calculation of integrals. Then, Ambartzumian (1999) indicated that geometric 
probability and integral geometry are connected with stochastic geometry. 
 
    Notes 
    1. Darwin considered several possibilities of a “random” dragging of  



triangles and in that sense his study forestalled the Bertrand problem on the 
length of a random chord. Darwin attempted to ascertain whether or not the 
worms acted somewhat intelligently, and he concluded that they had not 
seized the triangles indifferently. 
    2. Prokhorov (1999a) believed that, from the geometrical point of view, 
the most natural assumption in the Bertrand problem was that ! and " were 
independent and uniformly distributed, 0 � ! � 2�, 0 � " � 1. 
  
    Literature  
    Sheynin (2004) 
 
    13. Chebyshev 

    13.1. His Contributions 
    1) His Master’s dissertation (1845). It was intended as a manual for 
students of the Demidov Lyceum in Yaroslavl and Chebyshev gave 
there an account of the theory of probability barely applying 
mathematical analysis; for example, he replaced integration by 
summing. Already then, however, he consistently estimated the errors of 
“prelimiting” relations. The dissertation apparently had an addendum 
published somewhat later, see Item 2. 
    2) The Poisson LLN (1846); see Prokhorov (1986) for a detailed 
exposition. Chebyshev solved the following problem. In n [independent] 
trials the probability of success was p1, p2, …, pn. Determine the 
probability that the total number of successes was µ. By clever 
reasoning he obtained the formula 
 

    P(µ � m) � 
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where m > ns +1 and s was the mean probability of success. 
    This result was interesting in itself and, in addition, it enabled 
Chebyshev to prove the Poisson theorem, cf. §8.7. He did not fail to 
indicate the necessary number of trials for achieving a stipulated 
probability of the approximation of the frequency of success µ/n to s. As 
stated in the title of the memoir, Chebyshev had indeed not applied any 
involved mathematical tools, but his transformations were burdensome. 
His proof was rigorous (although he had not indicated that the trials 
were independent) and he (p. 259) had the right to reproach Poisson 
whose method of derivation did not provide the limits of the error of his 
approximate analysis. Later Chebyshev (1879 – 1880, pp. 162 – 
163/152) explicated one of his intermediate transformations more 
clearly, also see Bernstein (1945, p. 412/68). 
    3) The Bienaymé – Chebyshev inequality (cf. §10.2-4). Chebyshev 
(1867) considered discrete [random variables] with a finite number of 
possible values; without loss of generality I simplify his derivation by 
assuming that each of the n variables has an equal number of values. 
Chebyshev showed that 
 



    P{|�(�i – E�i)| < �[�{E�i
2 – (E�i)

2}]1/2}> 1 – 1/�2, � > 0.        (1) 
 
    Unlike Heyde & Seneta (§10.2-4) I believe that Chebyshev derived 
this inequality in about the same way as Bienaymé did, only in much 
more detail. True, he restricted his attention to discrete variables 
whereas Bienaymé, without elaborating, apparently had in mind the 
continuous case; his memoir was devoted to the mathematical treatment 
of observations. Modern authors, whom I mentioned in §10.2-4, repeat 
the derivation for the latter instance; actually, already Sleshinsky (1893) 
had done it.  
    Chebyshev immediately derived a corollary, which, in somewhat 
different notation, was 
 
   lim P(�|�i – E�i|/n < �) = 1, n � � 
 
and he (1879 – 1880, pp. 166 – 167/155 – 156) specified this formula 
for the case in which the random variables coincided one with another. 
Chebyshev thus obtained a most important and very simple corollary: 
the arithmetic mean was a [consistent] estimator of the expectation of a 
random variable. Both corollaries assume that the expectations and 
variances of the appropriate variables are uniformly restricted and 
Chebyshev had indeed indicated this restriction (in another language). 
In the last-mentioned source, and even earlier in another context, he 
(1867, p. 183) introduced indicator variables (taking values 0 and 1 with 
respective probabilities) but not the term itself. 
    4) [The central limit theorem]. The title of the appropriate memoir (1887) mentions two 
theorems the first of which was the proposition on the arithmetic mean (see Item 3) and 
Chebyshev only repeated its formula. He then went on to the CLT noting that it “leads” to the 
MLSq, – leads, as I comment, in accordance with the Laplacean approach. 

    Chebyshev first of all referred to his inequalities for an integral of a 
non-negative function whose moments up to some order coincided with 
the same moments of the appropriate, in a definite sense, normal 
distribution. He (1874) had published these inequalities without proof 
and Markov (1884) and then Stieltjes substantiated them. Chebyshev 
himself also justified them afterwards but without mentioning his 
predecessors. A detailed history of these inequalities is due to Krein 
(1951). 
    Chebyshev considered random variables u1, u2, …, un having 
densities �i(x) and moments  
 
    Eui = 0, |Eui

2| < C, |Eui
3| < C, …  

 
These conditions are not sufficient. The random variables ought to be 
independent, and Chebyshev certainly thought so, but he had not 
indicated the restriction 
 
    lim[(1/n) �Eui

2] � 0, i = 1, 2, …, n, n � �.                                 (2)   
 



On the other hand, it was not necessary to demand that the moments 
were uniformly bounded and Chebyshev possibly did not express such a 
restriction. Here is Liapunov’s indirect testimony (1901b, p. 57/57n4): 
it occurs that Chebyshev sometimes used the singular form instead of 
the plural. Liapunov provided a few examples and, in particular, quoted 
Chebyshev’s expression “the absolute value of the mathematical 
expectations” from his formula of the CLT. 
    Chebyshev noted that the density f (x) of the fraction 
 
    x = �ui /�n                                                                                    (3) 
 
can be determined by means of the multiple integral 
 

    f (x)dx = � �� ... �1(u1)�2(u2) …�n (un)du1du2 … dun                   (4) 

 
extended over the values of the variables at which the fraction above is 
situated within the interval [x; x + dx]. He multiplied both parts of (4) 
by esx where s was some constant and integrated them over (– �; + �) 
so that the right side became separated into a product of n integrals with 
the same limits of integration. Chebyshev then developed both parts in 
powers of s (the right side, after taking its logarithm) and equated the 
coefficients of the same powers of that magnitude to each other. Thus 
the integrals  
 

    � f(x)dx, � xf (x)dx, � x2f (x)dx, …  

 
or, in other words, the moments of magnitude (3), were determined up 
to some order (2m – 1). It occurred that, as n � �, again with the same 
limits of integration, 
 

    � esxf (x)dx = exp(s2/2q2)                                                                (5) 

 
where 1/q2 was the arithmetic mean of the second moments of ui  and it 
is here that the condition (2) was needed. Applying his previously 
mentioned estimates of the integral of a non-negative function, 
Chebyshev now completed his proof: 
 

    lim P(� � 
�
�

2E2 i

i

u

u
� �) = (1/��) �
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α

exp(– x2)dx, n � �.           (6) 

 
For finite values of n the same probability, as Chebyshev indicated 
without a rigorous demonstration, was determined by a development in 
polynomials now called after Chebyshev and Hermite. 



    Bernstein (1945, pp. 423 – 425/82 – 84) indicated that the 
abovementioned expansion in powers of s diverged at |s| � 0 and that 
Markov (1898, p. 268), when proving the Chebyshev theorem anew, 
without explaining the situation had therefore introduced an additional 
restriction,– not (2), but 
 
    lim Eun

2 � 0, n � �. 
 
    In addition, Markov wrote out the expressions that Chebyshev had 
actually applied in his investigation: 
 

    lim �
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t mexp(– t2)dt, n � �.      (7) 

 
    Issuing from the Chebyshev inequalities, Markov also proved that 
these expressions meant that the appropriate density tended to the 
normal density whereas Chebyshev had apparently thought it evident. 
For a detailed discussion see Kolmogorov’s commentary in Chebyshev 
(1944 – 1951, vol. 3, 1948, pp. 404 – 409). 
    Sleshinsky (1892) turned his attention to the Chebyshev 
demonstration of the CLT even before Markov did. He issued from 
Cauchy’s findings (§10.1) and, as he stated on his p. 204, aimed at 
simplifying (not specifying) his predecessor. In spite of Freudenthal’s 
opinion and following Heyde & Seneta (1977, pp. 95 – 96), I think that 
the Cauchy investigation was nevertheless imperfect. And, once more 
repeating the last-mentioned commentators, I note that Sleshinsky 
apparently proved the CLT rigorously although only for a linear 
function of observational errors having an even density. Liapunov 
(1900, p. 360) remarked that these conditions were too restrictive. Like 
Chebyshev (§0.3, Note 1), Sleshinsky maintained that his findings 
justified the MLSq [once more: only in the Laplacean sense]. 
 
    13.2. His Lectures 
    Chebyshev delivered lectures on the theory of probability at 
Petersburg University from 1860 to 1882. In 1936, A.N. Krylov 
published those read in 1879/1880 as recorded by Liapunov and I refer 
to his publication by mentioning only the page numbers. In his 
Foreword Krylov declared that Liapunov had reproduced the lectures 
“exactly as they were read, including all the fine points”. Prudnikov 
(1964, p. 183), however, thought differently: “It was hardly possible to 
write down Chebyshev’s lectures minutely and it is natural that their 
extant record is fragmentary”. This seems to be at least partly true. 
Krylov also indicated that he had rewritten the Liapunov manuscript “in 
accordance with the new system of spelling at the same time checking 
all the derivations…” I translated this book correcting perhaps a 
hundred (I repeat: a hundred) mathematical misprints but I do not claim 



that I revealed all of them. Ermolaeva (1987) briefly described a more 
detailed record of Chebyshev’s lectures read during September 1876 – 
March 1878, discovered by herself but still unpublished. She had not 
indicated whether the newly found text essentially differed from the 
published version. 
    The lectures were devoted to definite integrals, the theory of finite 
differences and the theory of probability. I discuss only their last section 
but I begin by several general comments. Chebyshev attempted to apply 
the simplest methods; for example, he used summing, and, if necessary, 
went on to integration only at the last moment; he introduced 
characteristic functions only in the discrete case; as I mentioned above; 
he did not specify that he considered independent events or variables; he 
was not interested in the philosophical aspect of probability1; and, 
among the applications of the theory of probability, he almost 
exclusively discussed the mathematical treatment of observations. 
    1) The main notions. Chebyshev (p. 148/141) declared that the aim of 
the theory of probability was “to determine the chances of the 
occurrence of a certain event”, and he continued: “the word ‘event’ 
means anything whose probability is being determined”, and probability 
“serves to denote some magnitude that is to be measured”. The use of 
“chance” and “probability” in the same sentence was perhaps an elegant 
variation; in essence, however, Chebyshev made a small heuristic step 
towards an axiomatic theory2. It is not amiss to adduce a modern 
formula (Prokhorov & Sevastianov 1999, p. 77): the theory of 
probability studies mathematical models of random events and  
 
    given the probabilities of some random events, makes it possible to 
    determine the probabilities of other random events somehow 
    connected with the first ones. 
 
    Chebyshev (p. 160/150) introduced an unusual and hardly useful 
generalized definition of expectation, – of the expectation of the 
occurrence of one out of several incompatible events. The sum of the 
products of the type piai, as he stated, described these events by their 
probabilities and the magnitudes “measuring” them. Note that he mainly 
discussed discrete variables. 
    Tacitly following Laplace (§7.4), Chebyshev (p. 165/155) indicated 
that the concept of limit in probability theory differed from that in 
analysis. Still, I am unable to agree with such equalities (or misprints?) 
as (pp. 167, 183, 204/156, 171, 190) 
 
    lim m/n = p.                                                                                 (8) 
 
    2) The limit theorem for Poisson trials (p. 167 and 201ff/156, 187ff). 
Determine the probability Pn, m that in n trials an event having 
probabilities pi, i = 1, 2, …, n, respectively, occurred m times. Applying 
a little known formula from the first section of his lectures (p. 59/63) 
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for the coefficents of the series 
 
    f (x) = Ao + A1 x + A2 x

2 + … + Am x
m + …, 

 
Chebyshev obtained 
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qi = 1 – pi. After some transformations and considering only small 
values of � it occurred that  
 

    Pn, m = (1/�) �
π

0

exp(– nQ�2/2) cos [(np – m)�]d� 

 
where p was the mean probability of success and Q = �piqi /n. 
Assuming for large values of n an infinite upper limit in the obtained 
integral, Chebyshev finally got 
 

    P[|m/n – p| < t nQ /2 ] = (2/��) �
t

0

exp (– z2)dz 

 
(without the sign of limit!) and noted that formula (8), or, as he concluded, the Poisson LLN, 
followed from it. He naturally did not here admonish his predecessor. 
    3) The Bernoulli pattern (pp. 168 – 175/157 – 163). Chebyshev wrote out the generating 
function of the binomial distribution (in usual modern notation) 

 
    �Pn, m t

m = (pt + q) n, m = 0, 1, 2, …, n                                   (10) 
 
and calculated the appropriate expectation and variance by the modern 
method (by differentiating this function once and twice etc.) although 
without indicating its generality. He then repeated this derivation 
otherwise. Assuming that in equation (10) t = e�, Chebyshev multiplied 
both its parts by e–�pn, developed the exponential functions in powers of 
� and equated the coefficients of � and then of �2. In concluding, he (pp. 
179 – 183/167 – 171) derived the local and the integral De Moivre – 
Laplace limit theorems and (pp. 183 – 186/171 – 175) paid attention to 
the calculation of the integral of the exponential function of a negative 
square. I note his unusual manner which, in this case, becomes evident 
when he stated that the abovementioned integral with the limits of 
integration being [u; + �) was equal to the value of the integrand at the 
lower limit multiplied by some proper fraction, – rather than by a real 
number situated in the interval (0; 1). 



    4) A limit theorem for the multinomial distribution (pp. 205 – 207 
and 214 – 218/190 – 193, 198 – 203). Chebyshev considered n trials in 
each of which occurred one and only one event out of A1, A2, …, Ak with 
event Ai meaning that some function took the value i. All the events 
were equally probable so that each had probability 1/k. Suppose that 
event Ai happened mi times, then 
 
    m1 + m2 + … + mk = n, P(m1 + 2m2 + ... + kmk = s) = Ps, 
 
    �Pst 

s = t n(t k – 1)n/k n(t – 1) n                                               (11) 
 
after which Chebyshev determined Ps. 
    When considering the limiting case he expressed the right side of (11) 
as 
 
    f (t) = Ao + A1t + A2t 

2 + … + Ast 
s + …  

 
and made use of the expression (9) so as to obtain 
 

    knPs = (1/2�) �
−

π

π

e�i(n–s){[ek�i – 1] ÷ [e�i – 1]} n d�, 

 
where the n-th power of the fraction was equal to 
 
    e n(k–1)�i/2 [sin(k�/2) ÷ sin(�/2)] n 

 

so that 
 

    Ps = (1/�) �
π

0

cos{([n(k – 1)/2] – s)�}{[sin k�/2] ÷ [k sin �/2]} n d�, 

 
and, for large values of k, again without the sign of limit,  
 

    P(|s – kn/2| < ku 6/n ) = (2/��) �
u

0

exp (– t2) dt. 

 
    5) [The central limit theorem] (pp. 219 – 224/203 – 206). At the time, 
Chebyshev had not yet known its rigorous proof. I only note his 
pronouncement (p. 224/206): the formula that he obtained was not 
derived  
 
    in a rigorous way … we have made various assumptions but did not 
    determine the boundary of the ensuing error. In its present state, 
    mathematical analysis cannot derive this boundary in any 
    satisfactory fashion. 
 



    6) Statistical inferences. Chebyshev solved two problems which, 
however, were considered before him. In the first of these he (pp. 187 – 
192/175 – 180) derived the Bayes limit theorem (§5.2), and in the 
second he (pp. 193 – 201/181 – 187) studied the probability of a 
subsequent result in Bernoulli trials. An event occurred m times in n 
trials; determine the probability that it will happen r times in k new 
trials. Guiding himself mostly by the Stirling theorem, Chebyshev non-
rigorously derived an integral limit theorem similar to that obtained by 
Laplace (§7.1-5). His formula (again without the sign of limit) was 
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    Later Markov (1914a) indicated the same formula, although correctly 
written down as a limit theorem. He hardly remembered its occurrence 
in Chebyshev’s lectures.  
    7) Mathematical treatment of observations (pp. 224 – 252/207 – 231). 
Chebyshev (p. 227/209) proved that the arithmetic mean was a 
[consistent] estimator of the unknown constant. Unlike Poincaré 
(§11.2-7), he (pp. 228 – 231/209 – 212) justified its optimality by noting 
that, among linear estimators, the mean ensured the shortest probable 
intervals for the ensuing error. The variance of the arithmetic mean was 
also minimal (Ibidem); although Chebyshev had not paid special 
attention to that estimator of precision, it occurred that he, in principle, 
based his reasoning on the definitive Gaussian substantiation of the 
MLSq (§9.4). 
But at the same time Chebyshev (pp. 231 – 236/212 – 216) derived the 
normal distribution as the universal law of error in about the same way 
as Gauss did in 1809 (§9.2). “The Gauss method”, Chebyshev (p. 
250/229) maintained, bearing in mind exactly that attempt later 
abandoned by Gauss, was based on the doubtful “law of hypotheses”, – 
on the “Bayes theorem” with equal prior probabilities. Chebyshev 
several times censured that “law” when discussing the Bayesian 
approach in his lectures; in this case, it is opportune to recall Whittaker 
& Robinson’s remark in §9.2-2. I also note that Chebyshev (p. 249/228) 
wrongly thought that the Gauss formula (9.6) for the sample variance 
had only appeared “recently” and that it assumed a large number of 
observations. Then, Gauss (§9.4-6) argued that his formula, unlike the 
formerly applied expression whose denominator was the number of 
observations, was also necessary for the “dignity of science”. 
Chebyshev indicated that he considered only random errors having zero 
expectations, but he did not mention that the Gauss formula provided an 
unbiassed estimation. It might be concluded that the treatment of 
observations hardly interested him. 
    8) Cancellation of a fraction (pp. 152 – 154/144 – 146). Determine 
the probability P that a “random” fraction A/B cannot be cancelled. 



Denote the probability that a prime number m cannot be cancelled out of 
A/B by pm.Then  
 
    P = p2 p3 p5 … pm … 
 
Since the probability that A or B is divisible by m is 1/m (this was an 
essential assumption, see comment below!),  
 
    pm = 1 – 1/m2, 
 
    P = (1 – 1/22) (1 – 1/32) (1 – 1/52) … (1 – 1/m2) …,                 (13) 
 
    1/P = 1 + 1/22 + 1/32 + 1/42 + … = �2/6,                               (14) 
 
    P = 6/�2. 
 
    Chebyshev did not explain the transition from product to series, but it 
was known to Euler (1748, Chapter 15, §§275 – 277). Chebyshev 
determined the sum (14) by two different methods. One of them 
consisted in equating the coefficients of x2 in two different expansions 
of (ln sinx)/x of which at least the second one was again known to Euler 
(Ibidem, Chapter 9, §158): 
 
    ln(1 – x2/6 + x4/120 – ...) = ln[(1 – x2/�2) (1 – x2/4�2) (1 – x2/9�2) ...]. 
 
   Chebyshev also remarked that if a fraction could not be reduced by 2, 
3, or 5, then 1/19 < 1 – P < 1/20, which testifies once again that he paid 
due attention to practical considerations3. Markov 4 remarked that 
Kronecker (1894, Lecture 24) solved the same problem and indicated 
Dirichlet’s priority. Kronecker had not supplied an exact reference and 
I was unable to check his statement; he added that Dirichlet had 
determined the probability sought “if it existed at all”.  
    Bernstein (1928, p. 219/8) refuted Chebyshev’s solution by noting 
that his assumption led to contradiction. He also adduced further 
considerations, and, in particular, indicated, on p. 220/9, that the theory 
of numbers dealt with regular number sequences for which the limiting 
or asymptotic frequencies of numbers of some class, unlike 
probabilities, “which we will never determine experimentally”, might be 
studied. See Postnikov (1974) on the same problem and on the 
stochastic theory of numbers.  
 
    13.3. Some General Considerations 
    And so, Chebyshev argued that the propositions of the theory of 
probability ought to be rigorously demonstrated and its limit theorems 
should be supplemented by estimation of the errors of “prelimiting” 
relations (Kolmogorov 1947, p. 56/72). He himself essentially 
developed the LLN and, somewhat imperfectly, proved for the first time 



the CLT; on the study of these two issues depended the “destiny” of the 
theory of probability (Bernstein 1945, p. 411/66). His students, 
Markov and Liapunov in the first place, also contributed to the theory 
(§§14.1 – 14.3). 
    Kolmogorov continued: Chebyshev was the first to appreciate clearly 
and use “the full power” of the concepts of random variable and [its] 
expectation. I take issue with the expression in inverted commas. 
Indeed, Chebyshev had not made use of Poisson’s heuristic definition of 
random variable (§8.2), had not applied this term5 and did not study 
densities or generating functions as mathematical objects. Then, the 
entire development of the theory of probability from Chebyshev onward 
might be described as an ever fuller use of the power of the 
abovementioned concepts; thus, it had since began to study dependent 
random variables, their systems and chains. 
    Here also is Bernstein’s conclusion (1945, p. 432/92):  
 
    The genius of Chebyshev and his associates, who, in this field [theory 
    of probability], have left mathematicians of Western Europe far 
    behind, have surmounted the crisis of the theory of probability that 
    had brought its development to a stop a hundred years ago. 
 
    “Crisis” may be understood as a dangerous and unstable state; in this 
case, as the theory’s extremely unfavorable state as compared with the 
main branches of mathematics then rapidly developing in Europe. Two 
circumstances ought to be mentioned here. First, “in spite of his 
splendid analytical talent, Chebyshev was a pathological conservative”. 
This is the opinion of Novikov (2002, p. 330) who corroborated it by 
referring to V.F. Kagan (1869 – 1953), an eminent geometrician. The 
latter, “when being a young Privat-Docent”, had listened to 
Chebyshev’s scornful statement on the “trendy disciplines like the 
Riemann geometry and complex-variable analysis”. Even Liapunov 
(1895, pp. 19 – 20), who 
 
    understood and was able to appreciate the achievements of the West 
    European mathematicians, made in the second half of the [19th]  
    century, better than the other representatives of the [Chebyshev] 
    Petersburg school  
 
(Bernstein 1945, p. 427/87), called Riemann’s ideas “extremely 
abstract”; his investigations, “pseudo-geometric” and sometimes, again, 
too abstract and having nothing in common with Lobachevsky’s “deep 
geometric studies”. Strangely enough, Liapunov did not recall Klein, 
who had in 1871 presented a unified picture of the non-Euclidean 
geometry in which the findings of Lobachevsky and Riemann appeared 
as particular cases. 
    On the other hand, Tikhomandritsky (1898, p. IV) testified that in 
1887 he had showed Chebyshev his “course” and that the latter “stated 



that … it is necessary to transform the entire theory of probability”. It is 
difficult to say what exactly did he mean. His words must have been 
known; I found later references to them (Maciejewski 1911, p. 87; 
Gnedenko & Gikhman 1956, p. 487). On the Petersburg school of the 
theory of probability see also Bernstein (1940). 
 
    Notes 
    1. Prudnikov (1964, p. 91) quoted a paper of V.A. Latyshev, an 
educationalist and a student of Chebyshev, published in 1893: 
 
    One of the most distinguished [Russian] mathematicians … had the 
    habit of expressly telling his students that he did not advise [them] to 
    engage in the philosophical aspect of mathematics since this was not 
    very helpful for acquiring the knowledge of mathematics, and even 
    rather harmful. 
 
    Prudnikov added that Latyshev had certainly meant Chebyshev. 
Recall (§5.1) that Chebyshev formulated the problem on the next 
sunrise in everyday language. 
    2. Chebyshev (1845, p. 29) provided a similar definition of the aims 
of the theory of probability much earlier. It is hardly amiss to remark 
that for Laplace the theory served for discovering the laws of nature. 
Boole (1851, p. 251) expressed ideas similar to those formulated by 
Chebyshev: 
 
    The object of the theory of probabilities may be thus stated: Given the 
    separate probabilities of any propositions to find the probability of  
    another proposition. 
 
He (1854, p. 288) was also the first to argue that the theory should be 
axiomatized: 
 
     The claim to rank among the pure sciences must rest upon the degree 
    in which it [the theory of probability] satisfies the following 
    conditions: 1st. That the principles upon which its methods are 
    founded should be of an axiomatic nature. 
 
He listed two other general scientific conditions. On Boole’s probability 
see Hailperin (1976) who does not, however, dwell on axiomatization. I 
do not describe the appropriate events of the 20th century; the general 
studies of that issue are Barone & Novikoff (1978) and Hochkirchen 
(1999). 
    3. Note however Chebyshev`s unqualified statement (Ibidem, p. 
214/198): Different lotteries are equally fair if the expected gains are the 
same and equal to the [equal] stakes. This contradicts the reasonable 
opinion of both Dalembert and Buffon (§§6.1.2 and 6.1.4) that a low 
probability of a single [favorable] event be disregarded. 



    4. I refer to the German translation of his treatise (1912, p. 148) from 
the Russian edition of 1908 and to p. 241 of its last edition of 1924. 
    5. The term “random quantity” appeared at the end of the 19th century 
(Vasiliev 1885, pp. 127 – 131; Nekrasov 1888, p. 77) whereas the 
English expression “random magnitude” was possibly introduced later 
(Whitworth 1901, p. 207). I had not, however, seen the previous 
editions of that book. 
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    14. Markov, Liapunov, Nekrasov 
    I consider here the work of three outstanding scholars; with regard to 
Nekrasov, however, qualification remarks will follow. 
 
    14.1. Markov: General Information 
    Markov was very peculiar, see his detailed biography (Markov Jr 1951). I 
shall only add that he wrote many newspaper articles, mostly of a sharp 
social-political nature, a part of which were published only recently 
(Grodzensky 1987)1. I myself also published some of them, see below. In 
§14.2 I consider his main findings; here, I sketch some additional issues; and 
his study of statistical series is described in §15.3. 
    1) History of the theory of probability. Markov undoubtedly paid attention 
to it. He investigated the Bernoulli LLN (§3.2.3); he initiated a jubilee 
meeting of the Petersburg Academy of Sciences in 1913 celebrating the 
bicentenary of the law, as well as the publication of a Russian translation of 
pt. 4 of the Ars Conjectandi (see §3). Markov left several statements about the 
history of the Bienaymé – Chebyshev inequality and the method of moments 
(§10.2-4), argued for the second Gauss justification of the MLSq (as 
mentioned in §9.6.1), introduced an apt term, “De Moivre – Laplace limit 
theorem” (1924, p. 53) and stressed De Moivre’s part in establishing the 
“Stirling formula”. This last edition of his Treatise includes many interesting 
historical remarks. As far as his number-theoretic papers collected in his 
Selected works (1951) are concerned, I can at least add that they contain many 
references to his predecessors. 
    2) Insurance of life. In his Treatise (1900a), Markov described the pertinent 
theory but did not add any new findings. However, he actively collaborated 
with pension funds scrupulously considering all practical details of their work 
(Sheynin 1997c), and in 1906 he published two newspaper articles 
destructively criticizing a proposed scheme for insuring children (reprinted in 
same article). 
    3) Calculations. “Markov liked calculating and was good at it” (Linnik et al 
1951, p. 615). In the theory of probability, most important is his table of the 
normal distribution (1888) giving it to 11 digits for the argument x = 0 (0.001) 
3 (0.01) 4.8 with the differences of all the necessary orders (for example, with 
the first three differences for x � 2.649) being adduced. According to a reputed 
reference book (Fletcher et al 1962), two tables of the normal distribution, one 
of them Markov’s, and the other, published ten years later, remained beyond 
compare up to the 1940s. In an indirect way, Markov (1899b, p. 30) made 
known his attitude toward calculation:  



 
    Many mathematicians apparently believe that going beyond the field of 
    abstract reasoning into the sphere of effective calculations would be 
    humiliating. 
 
    4) Correlation theory. In §10.6-3 I indicated that statisticians had doubted it. 
The same was true with regard to Markov. Slutsky (1912a) had collected and 
generalized the relevant findings of the Biometric school, and even a few 
decades later Kolmogorov (1948) still called his book important and 
interesting. Markov, however, did not duly estimate it. He mentioned it in 
three letters to Chuprov, all written in 1912 (Ondar 1977a, pp. 53 – 58), and 
he (p. 53) stated that it interested, but did not “attract” him, and (p. 58) did not 
“like it very much”.  
    Also in 1912, Slutsky exchanged a few letters with Markov and, in 
particular, he (Sheynin 1990c, pp. 45 – 46) stated: 
 
    I believe that the shortcomings of Pearson’s exposition are temporary and 
    of the same kind as the known shortcomings of mathematics in the 17th and 
    18th centuries. A rigorous basis for the work of the geniuses was built only 
    post factum, and the same will happen with Pearson. I took upon myself to 
    describe what was done. Sometime A.A. Chuprov will set forth the subject 
    of correlation from the philosophical and logical point of view, and 
    describe it as a method of research. An opportunity will present itself to a 
    ripe mathematical mind to develop the mathematical basis of the theory. 
 
    In a few years Markov (1916a, p. 533/212) critically mentioned the 
correlation theory:  
 
    Its positive side is not significant enough and consists in a simple usage of 
    the method of least squares to discover linear dependences. However, not 
    being satisfied with approximately determining various coefficients, the 
    theory also indicates their probable errors and enters here the region of 
    fantasy, hypnosis and faith in such mathematical formulas that, in actual 
    fact, have no sound scientific justification. 
 
    Now, discovering dependences, even if only linear, is indeed important; and 
the estimation of plausibility of the results obtained is an essential part of any 
investigation. True, at the time such estimation had not been done properly. 
Considering a paper of a contemporary Russian author, Markov (pp. 534 – 
535/212 – 213) pointed out an obvious senselessness: the calculated 
correlation coefficient was 0.09 with probable error 0.14. In addition, these 
figures greatly changed when Markov left aside some of the observations 
made use of. However (Linnik; see his comment on that paper (Markov 1951, 
p. 670/215)), without knowedge of the distribution of the population, the 
sample correlation coefficient cannot properly estimate the general 
coefficient. 
    5) Principles of the theory of probability. In essence, Markov left that issue 
aside. Thus, in the German edition of his Treatise (1912, translated from the 
Russian edition of 1908, p. iii) he declared that he did not discuss it in detail. 
At about the same time, he (1911c, pp. 149 – 150) pessimistically estimated 
suchlike efforts:  



 
    I shall not defend these basic theorems connected to the basic notions of … 
    equal probability, of independence of events, and so on, since I know that 
    one can argue endlessly on the basic principles even of a precise science 
    such as geometry.  
 
    Markov (Treatise, 1908, p. and 1924, c. 2) also stated, somewhat 
indefinitely, that 
 
    various concepts are defined not by words, each of which can in turn 
    demand definition, but rather by [our] attitude towards them ascertained 
    little by little. 
 
Apparently: some (not various) concepts must be admitted without definition. 
It ought to be added, however, that, except for the axiomatic approach, only 

Mises was able to abandon the classical definition of probability (see also 
§7.4). Note, however, that Markov, apparently as a student of Chebyshev, 
underrated the then originating axiomatic direction of probability as well as 
the theory of functions of a complex variable (A.A.Youshkevitch 1974, p. 
125). 
    On p. 10 of his Treatise (1924) Markov formulated the following axiom: If 
there are several equally possible events, some of them favorable, the others 
not, with regard to event A, then, after A occurs, the unfavorable events “fall 
through” whereas the others remain equally possible. I do not see how can it 
be otherwise. Then, on pp. 13 – 19 Markov proved the addition and the 
multiplication theorems (in a rather complicated way and mentioning his 
axiom) and on p. 24 concluded that these theorems along with his axiom serve 
“as an unshakeable base for the calculus of probability as a chapter of pure 
mathematics”. 
    So here we are! His axiom, never mentioned by any later author, allegedly 
transformed the theory of probability… 
    6) Mathematical statistics. In 1910 Markov (Ondar 1977a, p. 5) had denied 
Pearson, but by the end of his life he somewhat softened his attitude. Here is 
a passage from Chuprov’s letter, written apparently in 1924, to Isserlis 
(Sheynin 1990c, p. 55):  
 
    Markov regarded Pearson, I may say, with contempt. Markov’s temper was 
    no better than Pearson’s, he could not stand even slightest contradictions 
    either2. You can imagine how he took my persistent indications to the 
    considerable scientific importance of Pearson’s works. My efforts thus 
    directed were not to no avail as proved by [Markov 1924]. After all, 
    something [Pearsonian] occurred to be included in the field of Markov’s 
    scientific interests. 
 
    Chuprov (1925b) also published a review of the mentioned edition of 
Markov’s Treatise. Here, I only cite his reasonable criticism of Markov’s 
treatment of correlation theory: 
 
    The choice of questions on which attention is concentrated is fortuitous, 
    their treatment within the bounds of the chapter on the method of least 
    squares is incomplete, the connection made between the theory of 



    correlation and the theory of probability is inadequate … 
 
    Now, what statistical innovations had Markov included in this last edition 
of his Treatise? A study of statistical series and of the Pearsonian correlation 
theory (§14.2-1). He considered linear correlation and applied the MLSq for 
determining the parameters of the lines of regression and discussed the case of 
[random variables] with densities of their distributions being quadratic forms. 
Markov also included a general reference to Slutsky (1912a) and certainly did 
not repeat his earlier harsh words about imagination, hypnotism, etc. 
    Below (§14.2-1) I shall add that Markov paid no attention either to the chi-
squared test or to the Pearsonian curves. 
    7) Teaching probability theory in school. In 1914 Nekrasov made an 
attempt to introduce probability into the school curriculum. Markov, who 
could not stand him at all, either as a man, or as a mathematician, was not 
invited to the pertinent discussion by correspondence, but he voiced his 
opinion in an ad hoc paper (1915a). He sharply protested against the concrete 
school program proposed by Nekrasov, but, as I understand him, did not 
object to the very principle. In 1914, he published a relevant newspaper article 
(reprinted in Sheynin 1993a, p. 200/137), and in 1916 he was member of the 
Commission established by the Academy of Sciences to study Nekrasov’s 
proposal. Its review was extremely negative (Report 1916) both with respect 
to Nekrasov’s program and to his understanding of the main issues of 
mathematical analysis, cf. Nekrasov’s statement about the concept of limit in 
§14.4. 
    8) Methodological issues. Many authors praised the methodological value 
of Markov’s contributions. Bernstein (1945, p. 425/85) stated that Markov’s 
Treatise and memoirs were “specimens of preciseness and lucidity of 
exposition”. Linnik et al (1951, p. 615) maintained that Markov’s language 
was distinct and clear, and that he thoroughly trimmed the details. A striking 
example proving the opposite is Markov’s failure to discuss the adjustment of 
direct conditional observations (§9.4-9) in his Treatise. And I do not trust 
Chuprov (1925b, p. 154) who thought that the exposition in Markov’s 
Treatise was “transparently clear”. 
    Excepting Markov himself (§14.2-1) the only author with whom I agree is 
Idelson (1947, p. 101). He remarked that the chapter on the MLSq in the 
Treatise (1924) was ponderously written. Indeed, Markov’s general rule was 
to rewrite his formulas rather than to number, and then to refer to them. Thus, 
on pp. 328 – 330 of the Treatise a long equality appeared five times in 
succession! Then, he disregarded demonstrative pronouns. On p. 328, for 
example, he wrote: “The choice of coefficients [a displayed line of them 
followed] is at our disposal. We shall subject the coefficients [the same line 
was repeated] to two conditions …” 
    Then, Markov refused to apply the term random magnitude (as it has been 
called in Russia), see §14.2-1, and the expressions normal law and coefficient 
of correlation were likewise absent in his works. As the Russian saying goes: 
“The whole company broke step, the lieutenant alone is in step”. Markov’s 
literary style was pedestrian and sometimes hardly understandable (1906, p. 
341/143) and, from one edition to another, the structure of his Treatise became 
ever more complicated. A few more remarks are in §14.2-1. 
 
    14.2. Markov: His Main Investigations 



    1) Mathematical treatment of observations. Linnik et al (1951, p. 637/238) 
believed that, when substantiating the MLSq, Markov had  “in essence” 
introduced concepts “equivalent” to the modern concepts of unbiassed and 
effective statistics for estimating parameters of the laws of distribution. 
Markov, however, only indirectly estimated parameters (he never used such 
an expression), and, which is more important, it could be just as possible to 
attribute those concepts to Gauss. Nor do I agree with Idelson (1947, p. 14) 
who mentioned the Gauss method, developed by Markov “up to the highest 
logical and mathematical perfection”. In §9.6-1 I mentioned Markov’s 
resolute stand for the second Gauss substantiation of the MLSq; this (and his 
remark on the [consistency] of the arithmetic mean being inadequate, see 
§11.2-7) is all that he really accomplished here. Neyman (1934, p. 595) 
erroneously attributed that justification to Markov and F.N. David & Neyman 
(1938) repeated this mistake. 
    In his Treatise (1900) Markov in essence combined the treatment of 
observations with the study of correlation (§14.1-4), statistical series and 
interpolation; this, perhaps, reflected his attempt to include the MLSq into the 
then originating mathematical statistics, but his innovation was methodically 
doubtful. 
    The discussion of statistical series was rather involved for an educational 
aid and did not mention Chuprov’s relevant papers (1916a; 1918 – 1919) the 
first of which Markov himself had communicated to the Izvestia of the 
Petersburg Academy of Sciences. Note that Chuprov (1925b, pp. 154 and 155) 
politely remarked that Markov had left out the works of other authors not 
belonging to the “stream” of his own contribution. I would say that this 
criticism was too mild. 
    In connection with statistical series Markov (pp. 349 – 353) considered 
Weldon’s experiment with 26,306 throws of 12 dice (K. Pearson 1900) and 
decided, after applying the CLT and the Bayes theorem with transition to the 
normal law, that the probability of a 5 or a 6 was higher than 1/3. Unlike 
Pearson, he had not used the chi-squared test and he could have left an 
impression that (although suitable for a small number of trials as well) it was 
not needed at all.  
    As to interpolation, the only point of contact with the MLSq was the 
calculation of the empirical coefficients according to the principle of maximal 
weight. 
    Markov passed over in silence the Pearsonian curves perhaps owing to their 
insufficient substantiation. However, he reprinted the Introduction to the 
edition of 1913 where he had stated that the use of approximate methods in 
applied mathematics was unavoidable even when an estimation of their error 
was impossible, and (1915a, p. 32) maintained that Pearson’s “empirical” 
formulas did not demand theoretical proof. I think that Markov followed here 
(as he did with his chains left without any applications to natural sciences) his 
own rigid principle hardly worthy of exact imitation (Ondar 1977a, Letter 44 
to Chuprov of 1910): “I shall not go a step out of that region where my 
competence is beyond any doubt”. 
    The explication of the MLSq proper was involved, and Markov himself 
knew it. In a letter of 1910 to Chuprov he (Ondar 1977a, p. 21) wrote: “I 
have often heard that my presentation is not sufficiently clear”. In 1893, his 
former student, Koialovitch (1893 – 1909), writing to Markov, formulated 
some puzzling questions: 



 
    As far as I understand you, you consider each separate observation as a 
    value of a possible result. Thus, a series of results … is possible for each 
    measurement, and one of them is realized. I am prepared to understand all 
    this concerning one observation. However, if there are, for example, two 
    observations, then I cannot understand the difference between the series of 
    all the possible results of the first observation … and the similar series for 
    the second measurement … The problem will certainly be solved at once if 
    you say that the probabilities of the same error in these two series are 
    different, but you will hardly want to introduce the notion of probability of 
    error in your exposition. 
 
    The situation had not improved with time. Contrary to what he himself (pp. 
323 and 373) stated while following Chebyshev (1879 – 1880, p. 227/208), 
he (pp. 327 and 374) maintained that only one possible observation 
corresponded to each actually made. He never clearly explained that 
observational errors were [random variables] and that a series of observations 
was a [random] sample and had a density function. Wherever possible, 
Markov (Ondar 1977a, Letter 53 to Chuprov of 1912) excluded “the 
completely undefined expressions random and at random”. Instead, he added, 
he introduced an appropriate explanation in each particular case. However, at 
least sometimes he simply wrote indefinite which was much worse; 
incidentally, the translators of Ondar (1977a) modernized Markov’s letters by 
translating indefinite as random. Cf. Note 5 to Chapter 13. 
    The chapter on the MLSq in Markov’s Treatise was hardly inviting either 
for mathematicians or geodesists. Both would have been disappointed by the 
lack of discussion of Pearson’s work whereas the latter, in addition, had not 
needed interpolation or investigation of statistical series but would have 
wished to see much more about correlation. And the absence of the Gauss 

brackets (Note 16 in my Chapter 1) as well as the appearance of the long-ago 
dated term practical geometry instead of geodesy (p. 462) would have 
annoyed them.  
    I also mention that Markov destructively criticized a paper (Galitzin 1902) 
devoted to the study of the solidity of glass tubes. His review was extant as a 
manuscript and I (Sheynin 1990b) published it. Markov had not applied any 
new method, but he thorougly treated Galitzin’s data and allowed for every 
possible circumstance. It was in connection with the discussion of Galitzin’s 
paper that Markov stated his opinion about the “Bredikhin rule” (§10.9.4). 
    2) The LLN. Markov (1906, p. 341/143) noted that the condition 
 
    limE{[(�1 + �2 + … + �n) – (E�1 + E�2 + … + E�n)]

2/n2} = 0, n � �       (1) 
 
was sufficient for the sequence �1, �2, …, �n, … of random variables to obey 
the LLN; or, in accordance with his formula, to comply with the condition 
 
    limP{|(�1 + �2 + … + �n ) – (E�1 + E�2 + … + E�n)| < �} = 1, n � �. 
 
    Then Markov (1906, pp. 342 – 344/143 – 146; Treatise, 1913, pp. 116 – 
129) derived a few relevant sufficient conditions for sequences of 
independent, and, especially, dependent random variables and (Ibidem, pp. 
351/150 and 119 respectively; Treatise, 1924, p. 174) provided examples of 



sequences not obeying the law, and, in addition (Treatise, 1913, p. 129), 
proved that independent variables obeyed the LLN if, for every i, there existed 
the moments 
 
    E� i = ai, E|�i – ai|

1+ < C, 0 <  < 1. 
 
    In connection with his investigations of the LLN Markov (Treatise, 1900; p. 
86 in the edition of 1924) had proved that, for a positive random variable �, 
 
    P (� � t2E�) > 1 – 1/t 2 
 
and Bortkiewicz (1917, p. 36) and Romanovsky (1925a; 1925b) called this 
inequality after Markov. 
    3) [The CLT]. As I mentioned at the end of §13.1, Markov specified the 
conditions of theorem (13.6) proved by Chebyshev. He (1898, p. 268) 
considered independent random variables ui with zero expectations3 and, 
following Chebyshev, supposed that, for finite or4 infinite values of k,  
 
    lim|Eun

k| < + �, n � �.                                                                     (2) 
 
In addition, Markov, however, demanded that 
 
    limEun

2 � 0, n � �.                                                                                (3) 
 
    Markov several times returned to the CLT. 
    a) For equalities (13.7) to hold, he (1899a, p. 234/130 – 131) assumed 
condition (2) and, for the transition to the theorem he (p. 240/135) additionally 
introduced restriction (or, rather, two restrictions): as n � �, 
 
    limE[(u1 + u2 + … + un)

2] = �, lim[E(u1 + u2 + … + un)
2/n] � �. (4; 5) 

 
       b) Later Markov (1907, p. 708) again proved formula (13.7). Referring to 
his papers (1898; 1899a), he now introduced conditions (2) (for finite values 
of k) and (5) but did not restrict the values of ui. On his next page Markov 
abandoned condition (5) “if only” 
 
    limEun

2 = �, n � �                                                                             (6) 
 
and the values of ui remained finite. Restrictions (4) and (6) certainly 
coincided. 
    Finally, Markov (1908a) essentially extended the applicability of the 
method of moments by replacing his conditions by Liapunov’s single 
restriction (1901a, p. 159) 
 

    lim 
( ) 212
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δ+

δ+

�
�  = 0,  > 0, n � �.                                                (7) 

 
   In 1913 Markov included a modified version of his last-mentioned study in 
his Treatise; it is also reprinted (Markov 1951, pp. 319 – 338). Translation: [5, 
141 – 155]. 



    In connection with condition (3) Markov (1899c, p. 42/28) mentioned the 
example provided by Poisson (1824, §10). The latter proved that the limiting 
distribution of the linear form 
 
    L = �1 + 1/3�2 + 1/5�3 + … 
 
of random variables �i with density e–2|| was 
 
    lim P(|L| � 	) = 1 – (4/�)arc tge–2c, n � �. 
 
In this example 
 
    lim var [�n/(2n – 1)] = 0, n � �. 
 
    Markov himself (1899a, pp. 242 – 246/136 – 138) also provided an 
example in which the condition (3) had not held and the CLT did not take 
place and in addition he mentioned Poisson without adducing the exact 
reference. 
    The appearance of condition (5) remains, however, unclear. Nekrasov 
(1900 – 1902, 1902, pp. 292 and 293) introduced it for independent variables 
instead of restriction (3). Liapunov (1901a, p. 175) maintained that it was not 
sufficient (but was he then acquainted with the third part of Nekrasov’s 
contribution?) and mentioned Markov’s examples. Seneta (1984, p. 39) 
indicated, however, that Markov’s published papers had not contained such 
examples and that condition (3) was necessary and sufficient for the CLT in 
the case of uniformly restricted variables. 
    4) Markov chains. This term is due to Bernstein (1926, §16); Markov 
himself (1906, p. 354/153) called them simply chains. He issued from a paper 
by Bruns of the same year, but the prehistory of Markov chains is much 
richer. Here are the main relevant issues. 
    a) The Daniel Bernoulli – Laplace urn problem, the predecessor of the 

Ehrenfests’ model (§7.1-3). 
    b) The study of the Brownian movement (Brush 1968). 
    c) The problem of the extinction of families (§10.2-7). 
    d) The problem of random walks (Dutka 1985). 
    e) Some of Poincaré’s findings (§11.2-6). 
    f) The work of Bachelier (for example, Bachelier (1900)) on financial 
speculations, also see Courtault et al (2000); Taqqi (2001). 
    Markov (1906, pp. 345 and 354/146, 153) considered simple homogeneous 
chains of random events and discrete random variables and proved that the 
LLN was applicable both to the number of successes and to the sequences of 
these variables. Later he (1910, p. 476/186 – 187) extended the first of these 
findings to simple nonhomogeneous chains. 
    Markov proved the CLT for his chains by means of condition (13.7). He 
considered simple homogeneous chains of events (1906) and of random 
variables (1908b); simple nonhomogeneous (1910) and complex 
homogeneous (1911a; 1911b) chains of random variables; simple 
homogeneous chains of indirectly observed events (1912a). While studying 
the chains, Markov established important ergodic theorems but had not paid 
them any special attention; in this connection, I mentioned one of his solved 
problems in §7.1-3. 



    It is difficult to imagine that Markov had not grasped the essential 
importance of the chains for various applications, but he did not say anything 
about that, and his only relevant and mostly methodical example (Treatise, 
1913) was a study of the alternation of consonants and vowels in the Russian 
language, see Petruszewycz (1983). In 1910 Markov himself, in his letters to 
Chuprov, remarked more than once that he was restricting his field of work 
by what was well known to him, see §14.2-1. I note also that at the time 
physics was not yet duly studied in Russia (Kolmogorov 1947, p. 59/75). 
    In conluding, I ought to add that Markov widely applied the method of 
moments, and only he who repeats some of his investigations (for example, of 
his study of the limiting behavior of the terms obtained by decomposing 
algebraic fractions), will be able to estimate the obstacles which he overcame. 
Bernstein (1945, p. 427/87) contrasted Markov and Liapunov. The latter had 
applied the classical transcendental analysis as developed by that time 
whereas the method of moments, Bernstein maintained, “did not facilitate the 
problem [of proving the CLT] but rather transferred all its difficulties 
elsewhere”. It might be imagined, however, that Markov wished to ascertain 
how powerful was the method of moments; he himself (Treatise, 1913, p. 322) 
indicated that Liapunov had “shaken” the importance of the method of 
moments and that he, Markov, therefore decided to prove the CLT anew (see 
above). 
 
    14.3 Liapunov 
    The theory of probability remained an episode in his scientific work. He 
(1900; 1901a) proved the [CLT] assuming a single condition (7). I briefly 
repeat (Bernstein 1945, pp. 427ff/87ff) that a characteristic function 
determines the sought law of distribution independently from the existence of 
the relevant moments and that the expansion in powers of s which Chebyshev 
(§13.1-4) made use of did not anymore lead to difficulties after replacing that 
argument by is. Liapunov proved that under his condition the characteristic 
function of a centered and normed sum of random variables tended to the 
characteristic function of a normed normal law. I also mention Lindeberg 
(1922b, p. 211) whose proof of the CLT was simpler and became better 
known5. He referred to his previous paper (1922a) and continued:  
 
    I see now that already Liapunov had explicated general findings which not 
    only surpass the results achieved by Mises [a reference to his article of 
    1919 followed] but which make it possible to derive most of what I have 
    established. … The study of Liapunov’s work prompted me to check anew 
    the method that I have applied. 
 
    A special point is connected here with the CLT for large deviations. 
Chebyshev thought that the limits of integration, � and �, in formula (13.6) 
describing that theorem, were “any”. Nekrasov (1911, p. 449/67) arbitrarily 
interpreted that expression as “variable”. I discuss Nekrasov in §14.4; here, I 
say that he could have well indicated that, on the contrary, he had generalized 
the Chebyshev theorem. In his previous polemic paper Liapunov (1901b, p. 
61/55) declared that he had assumed that these limits were given beforehand 
and that otherwise the probability, written down in the left side of formula 
(13.6), could have no limit at all, – but nevertheless be asymptotically 
expressed by the normal law of distribution6. 



 
    14.4. Nekrasov 
    Nekrasov’s life and work are clearly separated into two stages. From 1885 
and until about 1900 he had time to publish remarkable memoirs both in 
Russia and Germany and to become Professor and Rector of Moscow 
University; I mentioned him in §10.2. In 1898 he sketched the proof of the 
[CLT] for sums of [lattice random variables]. Then, however, his personality 
changed. His writings became unimaginably verbose, sometimes obscure and 
confusing, and inseparably linked with ethical, political and religious 
considerations. Here is a comparatively mild example (1906, p. 9): 
mathematics accumulated 
 
    psychological discipline as well as political and social arithmetic or the 
    mathematical law of the political and social development of forces  
    depending on mental and physiological principles. 
 
    Furthermore, Nekrasov’s work began to abound with elementary 
mathematical mistakes and senseless statements. Thus (Nekrasov 1901, p. 
237/43 – 44): it is possible to assume roughly that x n, n > 0, is the limit of sin 
x as || � 0, and “the conclusions made by [Chebyshev, Markov and 
Liapunov] never differ from such an understanding of limit”. I provide a 
second and last out of many possible illustrations from Nekrasov’s letter of 
20.12.1913 to Markov (Archive, Russian Acad. Sci., Fond 173, inventory 1, 
55, No. 5/107); translation, [5, pp. 106 – 107]: 
 
    I distinguish the viewpoints of Gauss and Laplace [on the MLSq] by the 
    moment with regard to the experiment. The first one is posterior and the 
    second one is prior. It is more opportune to judge à posteriori because 
    more data are available, but this approach is delaying, it lags behind, 
    drags after the event. 
  
    At least the attendant reasons for such a change were Nekrasov’s religious 
upbringing (before entering Moscow University he graduated from a Russian 
Orthodox seminary), his work from 1898 onward as a high official at the 
Ministry of People’s Education7, and his reactionary views. At least once 
Nekrasov (A.V. Andreev 1999, p. 103) mentioned the Integral Knowledge of 
the religious philosopher V.S. Soloviev (1853 – 1900) and it is opportune to 
quote Soloviev’s pronouncement (Radlov 1900, p. 787) with which, in actual 
fact, Nekrasov became absorbed: “veritable knowledge is a synthesis of 
theology, rational philosophy and positive science”. Andreev indeed maintains 
that Nekrasov became split between mathematics and such philosophy. 
Bortkiewicz (1903, p. 124 in translation) notes that Nekrasov “especially 
often mentioned Soloviev in vain”, – and sometimes justifiably, as I am 
inclined to believe. 
    Concerning Nekrasov’s social and political views I turn to his letter of 1916 
to P.A. Florensky (Sheynin 1993a, p. 196/133): “the German – Jewish culture 
and literature” pushes “us” to the crossroads. World War I was then going on, 
but that fact only to some extent exonerates Nekrasov. I shall now dwell on 
some concrete issues. 
    1) Teaching the theory of probability. In §14.1-6 I mentioned Nekrasov’s 
proposal for teaching probability in school and the rejection of the curriculum 



drawn up by him. I add now that already in 1898 Nekrasov made a similar 
proposal concerning the Law Faculty of Moscow University, also rejected or 
at least forgotten. However (Sheynin 1995a, p. 166/207), during 1902 – 1904 
the theory of probability was not taught there even at the Physical and 
Mathematical Faculty, and hardly taught during 1912 – 1917. 
    2) The MLSq. Nekrasov (1912 – 1914) mistakenly attributed to Legendre 
an interpolation-like application of the method and (1914) acknowledged his 
failure to notice, in 1912, the relevant work of Yarochenko (1893a; 1893b), 
but still alleged (wrongly) to have considered the issue in a more general 
manner. Yarochenko justified the arithmetic mean and the MLSq in general 
by a reference to Chebyshev’s memoir (1867), – that is, by the Bienaymé – 
Chebyshev inequality (§9.4-7). Note that the first such statement appeared 
simultaneously with the Chebyshev memoir (Usov 1867). Recall also 
Nekrasov’s strange pronouncement about Laplace and Gauss quoted above. 
     3) [The CLT]. It was Nekrasov who had considered the CLT for large 
deviations, – for the case that began to be studied only 50 years later. Suppose 
that independent [lattice] random variables (linear functions of integral 
variables) � i, i = 1, 2, …, n, have finite mean values ai and variances  i

2 and 
 
    m = �1 + �2 + … + �n. 
 
Denote 
 
    |x(m)| = |m – �ai|/(� i

2)1/2. 
 
Nekrasov restricted his attention to the case in which |x| < n p, 0 < p < 1/6 and 
stated that, for all values of m1 and m2 which conformed to that condition, 
 

    P(m1 < �1 + �2  + … + �n < m2) ~ [1/ π2 ] � exp (– t2/2) dt. 

 
The limits of integration were x(m1) and x(m2) respectively.  
    In all, Nekrasov (1898) formulated six theorems and proved them later 
(1900 – 1902). Neither Markov, nor Liapunov had sufficiently studied them; 
indeed, it was hardly possible to understand him and A.D. Soloviev (1997, pp. 
15 – 16) reasonably inferred that “neither any contemporaneous 
mathematician, nor any historian of mathematics had examined the … memoir 
[1900 – 1902] in any detail”. He himself was only able to suggest that 
Nekrasov had indeed proved his theorems and he reminded his readers that 
Markov had indicated some mistakes made by Nekrasov. Furthermore, 
Soloviev (pp. 13 – 14) remarked that Nekrasov had wrongly understood the 
notion of lattice variables (not like I described above). In his general 
conclusion Soloviev (p. 21) stated that Nekrasov had imposed on the studied 
variables an excessively strict condition (the analyticity of the generating 
functions in some ring, which was much stronger than presuming the 
existence of all of the moments) and that it was generally impossible to check 
his other restrictions. Both Soloviev, and the first of the modern 
commentators, Seneta (1984, §6), agree in that Nekrasov’s findings had not 
influenced the development of the theory of probability8. This regrettable 
outcome was certainly caused both by Nekrasov’s inability to express himself 



intelligibly and by the unwieldiness of his purely analytical rather than 
stochastic approach (A.D. Soloviev, p. 21). 
 
    Notes 
    1. Grodzensky regrettably had not adduced an index of the letters he 
discovered and did not indicate which of them had indeed been published at 
once. 
    2. The excessive sharpness of his statements is generally known. Here is a 
passage from a letter of Zhukovsky, the then President of the Moscow 
Mathematical Society, of 23.11.1912 to Markov (Archive, Russian Academy 
of Sciences, Fond 173, inventory 1, 56 No. 1): 
 
    I cannot fail to reproach you for the expressions concerning the honorable 
    Sergei Alekseevich Chaplygin in your letter. They can hardly be called 
    proper. 
 
    Chaplygin (1869 – 1942) was cofounder of aerohydrodynamics (and an 
active member of the Society). Markov’s letter reflected the polemic between 
him and Nekrasov in the Society’s periodical, Matematichesky Sbornik. 
    The second and last example (K.A. Andreev’s letter of 1915 to Nekrasov; 
Chirikov & Sheynin 1994, p. 132/155): Markov  
 
    remains to this day an old and hardened sinner in provoking debate. I had 
    understood this long ago, and I believe that the only way to save myself  
   from the trouble of swallowing the provocateur’s bait is a refusal to respond 
   to any of his attacks …    
 
    Andreev had published a posthumous manuscript of V.G. Imshenetsky and 
Markov severely criticized its incompleteness. Nevertheless, Markov himself, 
soon before his death, agreed to publish his last, and also incomplete 
manuscript (Besikovitch 1924, p. XIV).  
    3. Until he began to study his chains, Markov always introduced these two 
conditions. In one case (1899a, p. 240/135) he apparently had not repeated 
them from his p. 234/131.  
    4. A misprint occurred in the Russian translation of the French original. 
    5. Thus, Gnedenko (1954/1973, pp. 254 – 259) proves the theorem under 
the Lindeberg condition and then explains that the Liapunov restriction leads 
to the former.  
    6. Liapunov’s correspondence with K.A. Andreev in 1901 (Sheynin 1989b) 
testifies that he had initially wished to publish his note in the Matematichesky 
Sbornik, that the leadership of the Moscow Mathematical Society (Bugaev, 
Nekrasov (!)) opposed his desire, and that he essentially expanded his first 
draft on Andreev’s advice. 
    7. Here is K.A. Andreev’s opinion (letter of 1901 to Liapunov; Gordevsky 
1955, p. 40): Nekrasov 
 
    reasons perhaps deeply, but not clearly, and he expresses his thoughts still 
    more obscurely. I am only surprised that he is so self-confident. In his 
    situation, with the administrative burden weighing heavily upon him, it is 
    even impossible, as I imagine, to have enough time for calmly considering 
    deep scientific problems, so that it would have been better not to study them 



    at all.  
 
    8. It might be added, however, that Markov (1912b, p. 215/73) sometimes 
considered the refutation of Nekrasov’s mistaken statements as one of the 
aims of his work. A similar explanation is contained in one of his letters of 
1910 to Chuprov (Ondar 1977a, p. 5). 
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    15. The Birth of Mathematical Statistics 

    15.1. The Stability of Statistical Series 
    By the end of the 19th, and in the beginning of the 20th century, statistical 
investigations on the Continent were mostly restricted to the study of 
population. In England, on the contrary, the main field of application for 
statistical studies at the time had been biology. It is possible to state more 
definitely that the so-called Continental direction of statistics originated as the 
result of the work of Lexis whose predecessors had been Poisson, Bienaymé, 
Cournot and Quetelet. Poisson and Cournot (§8.6) examined the significance 
of statistical discrepancies “in general”, – without providing concrete 
examples. Cournot (§10.3-6) also attempted to reveal dependence between the 
decisions reached by judges (or jurors). Bienaymé (§10.2-3) was interested in 
the change in statistical indicators from one series of trials to the next one and 
Quetelet (§10.5) investigated the connections between causes and effects in 
society, attempted to standardize statistical data worldwise and created moral 
statistics.  
    All this had been occurring against the background of statements that the 
theory of probability was only applicable to statistics if, for a given totality of 
observations, “equally possible cases” were in existence, and the appropriate 
probability remained constant (§10.8). 
 
    15.1.1. Lexis. He (1879) proposed a distribution-free test for the equality of 
probabilities in different series of observations; or, in other words, a test for 
the stability of statistical series. Suppose that there are m series of ni 
observations, i = 1, 2, …, m, and that the probability of success was constant 
throughout and equal to p. If the number of successes in series i was ai, the 
variance of these magnitudes could be calculated by two independent 
formulas (Lexis 1879, §6) 
 
     1

2 = pqn,  2
2 = [vv]/(m – 1)                                                 (1; 2) 

 
where n was the mean of ni, vi, the deviations of ai from their mean, and q = 1 
– p. Formula (2) was due to Gauss, see (9.6b); he also knew formula (1) (a 
posthumously published note; Werke, Bd. 8, 1900, p. 133). The frequencies of 
success could also be calculated twice. Note however that Lexis applied the 
probable error rather than the variance. 
    Lexis (§11) called the ratio 
 
    Q =  2/ 1                                                                                        (3) 
 



the coefficient of dispersion. In accordance with his terminology, the case Q = 
1 corresponded to normal dispersion (with some random deviations from unity 
nevertheless considered admissible); he called the dispersion supernormal, 
and the stability of the totality of observations subnormal if Q > 1 (and 
indicated that the probability p was not then constant); and, finally, Lexis 
explained the case Q < 1 by dependence between the observations, called the 
appropriate variance subnormal, and the stability, supernormal. He did not, 
however, pay attention to the last-mentioned case. 
    Lexis (§1) qualitatively separated statistical series into several types and 
made a forgotten attempt to define stationarity and trend. He had not 
calculated either the expectation, or the variance of his coefficient (which was 
indeed difficult), neither did he say that that was necessary. Recall (§9.4) that 
Gauss, after introducing the sample variance, indicated that it was [unbiassed] 
and determined its variance. Lexis’ main achievement was perhaps his attempt 
to check statistically some stochastic model; it is apparently in this sense that 
Chuprov’s remark on the need to unite him and Pearson (§15.2) should be 
understood. 
 
    15.1.2. Bortkiewicz. I mentioned him in §8.7 in connection with the LLN 
and, in §10.8-4, I dwelt on his statement about the estimation of precision of 
statistical inferences. Of Polish descent, Vladislav Iosifovich Bortkevich was 
a lawyer by education. He was born and studied in Petersburg. At the end of 
the 19th century he continued his education in Germany (he was Lexis’ 
student) and in 1901 secured a professorship in Berlin and remained there all 
his life as Ladislaus von Bortkiewicz. In 1912 the Russian statistician P.D. 
Asarevich (Fortunatov 1914, p. 237) mentioned him thus: “Each time I see 
him, I feel sorry that he was lost to Russia. There’s a genuine man of science”. 
In a letter of 1905 to Chuprov (Sheynin 1990c, p. 38) Bortkiewicz indicated 
that in Germany he felt himself “perfectly well”, whereas a cataclysm was 
possible in Russia. Bortkiewicz had indeed published most of his 
contributions in German (which he knew hardly worse than Russian), but he 
did not lose his ties with Russia. He (1903) sharply criticized Nekrasov for 
the latter’s statements that the theory of probability can soften “the cruel 
relations” between capital and labor (p. 215/115) and (p. 219/123) exonerate 
the principles of firm rule and autocracy as well as for Nekrasov’s “sickening 
oily tone” (p. 215/115) and “reactionary longings” (p. 216/117)1. Then, 
Slutsky (1922) referred to a letter received from Bortkiewicz and, finally, at 
least during his last years he was connected with the then existing in Berlin 
Russian Scientific Institute and Russian Scientific Society (Sheynin 2001f, p. 
228). 
    Bortkiewicz achieved interesting findings and his example is extremely 
instructive since he was not initially acquainted with mathematics. In 1896, in 
a letter to Chuprov (Sheynin 1990c, p. 39), he declared that the 
differentiation of an integral with respect to its (lower) limit was impossible. It 
should also be borne in mind that Bortkiewicz’ work is insufficiently known 
mostly because of his pedestrian style and excessive attention to details 
whereas his papers defending his law of small numbers (see below) published 
in 1908 – 1909 in Italian are completely forgotten; his manuscript of the first 
of these papers in its original German is kept at Uppsala University. 
    Bortkiewicz had determined EQ and EQ2. Chuprov several times mentioned 
this fact (Sheynin 1990c, pp. 64, 69, 110) and in 1916 Markov (Ondar 1977a, 



p. 93) stated that Bortkiewicz’ “research … while not fully accurate, is 
significant” and even (Markov 1911c, p. 153) that “some” of his relevant 
studies “deserve greater attention”. It is most interesting that Bortkiewicz 
introduced his law of small numbers (1898a) for studying the stability of 
statistical series2, see Winsor (1947, pp. 160 – 161). He argued that a series 
consisting of independent observations with differing probabilities of the 
occurrence of a rare event might be considered as a sample from a single 
totality. This fact, or, more precisely, the decrease of the pertinent coefficient 
of dispersion to unity with the decrease of the number of observations he had 
indeed called the law of small numbers. 
    From the very beginning his publication aroused debates (Sheynin 1990c, 
pp. 40 – 43). I repeat that Chuprov advised Bortkiewicz to refer to Poisson, 
and that in 1909 – 1911, in his letters to Chuprov, Bortkiewicz stressed the 
distinction between it and the Poisson formula. The low value of probability, 
as he argued, was not his main assumption; the rarity of the event might have 
been occasioned by a small number of observations. Incidentally, this 
explanation raises doubts about the applicability here of the Poisson law. For 
that matter, Bortkiewicz had never comprehensively explained his law. Here 
is what Chuprov wrote to Markov in 1916 (Letter No. 69a; Sheynin 1990c, p. 
68): 
 
    It is difficult to say to what extent the law of small numbers enjoys the 
    recognition of statisticians since it is not known what, strictly speaking, 
    should be called the law of small numbers. Bortkiewicz did not answer my 
    questions formulated in the note on p. 398 of the second edition of the 
    Essays [Chuprov 1909; p. 285 in 1959] either in publications or in written 
    form; I did not question him orally at all since he regards criticisms of the 
    law of sm. numb. very painfully. 
 
Mathematicians now simply dismiss the law of small numbers as another term 
for the Poisson limit theorem (Kolmogorov 1954). 
    Markov repeatedly discussed that law in his letters of 1916 to Chuprov 
(Ondar 1977a); he indicated that Bortkiewicz had wrongly combined his data 
and (p. 108) “chose material that was pleasing to him”3 and that (pp. 81 and 
108) for small numbers the coefficient of dispersion could not be large. He 
also publicly repeated his last-mentioned statement (1916b, p. 55/216). In 
1916, in answer to Markov, Chuprov (Sheynin 1990c, p. 67) apparently 
disagreed that Bortkiewicz had wrongly combined his materials and reported 
that Yastremsky (1913) had also proved Markov’s main statement. Finally, 
Quine & Seneta (1987) minutely described Bortkiewicz’ law and indicated 
more definitely that for small independent and integral random variables a 
large value of Q was unlikely. 
    I ought to add that after 60 years of its neglect Bortkiewicz was the first to 
pick up Poisson’s law and that for a long time his contribution (1898a) had 
remained the talk of the town. Thus, Romanovsky (1924, book 17, p. 15) 
called Bortkiewicz’ innovation “the main statistical law”. 
 
    15.1.3. Markov and Chuprov. In his letters of 1910 to Chuprov, Markov 
(Ondar 1977a) proved that Lexis’ considerations were wrong. Thus, it 
occurred that the dispersion could also be normal when the observations were 
dependent. In addition, he constructed an example of independent 



observations which, when being combined into series in different ways, were 
characterized either by super- or subnormal dispersions. However, later 
Chuprov, in a letter of 1923 to his former student Chetverikov (Sheynin 
1990c, p. 111), remarked that stability was only determined for concrete 
series. 
    Also in 1910, Chuprov, in a letter to Markov, provided examples of 
dependences leading to super- and subnormality of dispersion; in 1914 he 
even decided that the coefficient of dispersion should be “shelved” to which 

Bortkiewicz strongly objected (Sheynin 1990c, p. 112). Then, in 1916 both 
Markov and Chuprov proved that EQ2 = 1 (see details Ibidem, pp. 112 – 113). 
Finally, Chuprov (1918 – 1919; see Ibidem, pp. 113 – 114) definitively 
refuted the applicability of the coefficient of dispersion, a fact that is hardly 
known even now. Thus, Särndal (1971, pp. 376 – 377), who briefly described 
the work of Lexis and noted that it prompted Charlier “to look … into 
questions of nonnormality of data”, did not mention it at all.  
    In the same contribution Chuprov (p. 205) proved, in a most elementary 
way, a general formula for the dispersion: 
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Included here were n random variables � i anyhow dependenent on each other 
and the results of a single observation xi of each of them. Romanovsky (1923) 
published a very favorable review of Chuprov’s work but did not indicate that 
the latter’s notation was too involved and impeded understanding. 
    I also note that Chuprov partly issued from his manuscript (1916 or 1917) 
There, the author determined EQ2 anew and provided qualitative 
considerations concerning the distribution of the coefficient of dispersion. 
Chuprov sent his manuscript to Markov, and it is mentioned or implied in 
their correspondence of 1917 (Sheynin 1990c, pp. 70 – 75 and, possibly, 
Ondar 1977a, p. 116ff). 
 
    15.2. The Biometric School 
    That name itself implies the periodical Biometrika whose first issue 
appeared in 1902 with a subtitle Journal for the Statistical Study of Biological 
Problems. Its first editors were Weldon (a widely educated biologist who died 
in 1906), Pearson and Davenport4 “in consultation” with Galton. The 
editorial there contained the following passage: 
 
    The problem of evolution is a problem in statistics … [Darwin established] 
    the theory of descent without mathematical conceptions5  … [but] every 
    idea of Darwin – variation, natural selection … – seems at once to fit itself 
    to mathematical definition and to demand statistical analysis … The 
    biologist, the mathematician and the statistician have hitherto had widely 
    differentiated fields of work … The day will come … when we shall find 
    mathematicians who are competent biologists, and biologists who are 
    competent mathematicians … 
 



    Here also is a passage from a note which Pearson had compiled (and 
apparently sent around) in 1920 and which his son, E.S. Pearson (1936 – 
1937, vol. 29, p. 164), quoted: The aim of the Biometric school was 
 
    to make statistics a branch of applied mathematics … to extend, discard or 
    justify the meagre processes of the older school of political and social 
    statisticians, and, in general, to convert statistics in this country from being 
    the playing field of dilettanti and controversialists into a serious branch of 
    science … Inadequate and even erroneous processes in medicine, in 
    anthropology [anthropometry], in craniometry, in psychology, in 
    criminology, in biology, in  sociology, had to be criticized … with the aim 
    of providing those sciences with a new and stronger technique.  
 
    Note that almost all the disciplines mentioned above were included in 
Pearson’ s main field of interests and that he had not found a single kind word 
for Continental statisticians. The rapid success of the new school was certainly 
caused by the hard work of its creators, but also by the efforts of their 
predecessor, Edgeworth. Chuprov (1909, p. 27 – 28) provided his correct 
characteristic. A talented statistician (and economist), he was excessively 
original and had an odd style; he was therefore unable to influence strongly 
his contemporaries. However, in his native country he at least paved the way 
for the perception of mathematical-statistical ideas and methods. His works 
have appeared recently in three volumes (1996). 
    Pearson, perhaps at once, became the main editor of Biometrika, and 
among his authors were Chuprov and Romanovsky

6. The beginning of his 
scientific work can be connected with his Grammar of science (1892) which 
earned him the brand of a “conscientious and honest enemy of materialism” 
and “one of the most consistent and lucid Machians”. That was Lenin’s 
conclusion of 1909 from his Materialism and empiriocriticism; note that the 
latter term is tantamount to Mach’s philosophy, i.e., to a variety of subjective 
idealism. It is, however, difficult to imagine that Pearson evaded reality. But 
at the same time Mach’s followers define the aim of science as  description 
rather than study of phenomena and Pearson separated experience (statistical 
data) from theory (from the appropriate stochastic patterns),7 although he did 
not at all keep to the tradition of the Staatswissenschaft (§6.2.1). 
    Pearson’s Grammar … became widely known8 and he was elected to the 
Royal Society; Newcomb, as President of the forthcoming International 
Congress of Arts and Sciences (St. Louis, 1904), invited him to read a report 
on methodology of science9. Such scholars as Boltzmann and Kapteyn had 
participated there. Newcomb’s attitude towards Pearson was also reflected in 
one of his pronouncements of 1903, see §10.9-4. 
    I mention two more facts concerning Pearson. In 1921 – 1933 he had read a 
special course of lectures at University College and in 1978 his son, E.S. 

Pearson, published them making use of the extant notes and likely provided 
the title itself. After Todhunter (1865), this contribution was apparently the 
first considerable work in its field and on its first page the author expressed 
his regret that he did not study the history of statistics earlier (see my Preface). 
E.S. Pearson supplied a Preface where he illustrated his father’s interest in 
general history. But in my context it is more important to mention K. 
Pearson’s fundamental biography of Galton (1914 – 1930), perhaps the most 
immense book from among all works of such kind, wherever and whenever 



published. Pearson also devoted several papers to the history of probability 
and statistics; I mentioned three of them (§§2.2.3, 3.2.3 and 7.1-5) and 
disagreed with the main conclusion of the second one. In two more articles 
Pearson (1920; 1928b) studied the history of correlation and maintained that 
some authors including Gauss could have applied the ideas and methods of 
correlation theory, but that it would be nevertheless wrong to attribute to them 
its beginnings. 
    The work of Pearson and his followers [Student (real name, Gosset), Yule 
and others] is partly beyond the boundaries of my investigation and I shall 
only sketch the main directions of Pearson’s subsequent (after about 1894) 
studies, of the person who (Hald 1998, p. 651)  
 
    between 1892 and 1911 … created his own kingdom of mathematical 
    statistics and biometry in which he reigned supremely, defending its ever 
    expanding frontiers against attacks. 
 
    Yes, indeed, the work of Fisher began exactly in 1911 and he was only able 
to publish a single paper in Biometrika (in 1915), but at the end of the day he 
surpassed Pearson. The latter’s main merits include the development of the 
principles of the correlation theory and contingency, the introduction of the 
“Pearsonian curves” for describing empirical distributions, rather than for 
replacing the normal law by another universal density, which was what 
Newcomb (§10.9.4) had attempted to accomplish, and the %2 test as well as the 
compilation of numerous statistical tables. Pearson (1896 with additions in 
1901 and 1916) constructed the system of his curves in accordance with 
practical considerations but had not sufficiently justified it by appropriate 
stochastic patterns. That system was defined as the solution of the differential 
equation 
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with four parameters. The case b = c = 0 naturally led to the normal 
distribution; otherwise, 12 types of curves appeared of which at least some 
were practically useful. Pearson determined the parameters by the method of 
moments, – by four sample moments of the appropriate distribution. Recall 
(§10.2-4) that the same term is used in the theory of probability in a quite 
another way. The “statistical” method of moments is opportune, but the 
estimates thus calculated often have an asymptotic efficiency much less than 
unity (Cramér 1946, §33.1)10. 
    Bernstein (1946, pp. 448 – 457) indicated a stochastic pattern (sampling 
with balls being added) that led to the most important Pearsonian curves. He 
referred to Markov and, on p. 337, to Polya (1931) as his predecessors. 
Markov (1917) had indeed considered the abovementioned pattern and 
mentioned the Pearsonian curves on his very first page; Bernstein, however, 
mistakenly indicated another of his papers.  
    Pearson (E.S. Pearson 1936 – 1937, vol. 29, p. 208 with reference to his 
record of the lectures of his father) paid special attention to the notion of 
correlation and stated that  
 
    The purpose of the mathematical theory of statistics is to deal with the 



    relationship between 2 or more variable quantities, without assuming that 
    one is a single-valued mathematical function of the rest. 
 
    Abbe, and then Helmert derived the %2 distribution for revealing systematic 
influences in the theory of errors (§10.6-1) whereas Pearson (1900) introduced 
the chi-squared test in the context of mathematical statistics. True, not at once, 
he began applying it for checking the goodness of fit; independence in 
contingency tables; and homogeneity. In spite of its importance, the chi-
squared test hardly “clears” empiricism of its dangers as Fisher, in 1922, 
claimed (Hald 1998, p. 714). 
 
    15.3. The Merging of the Continental Direction and the Biometric 

School? 
    I (§14.1-4) noted that the Continental statisticians were not recognizing 
Pearson, also see Ondar (1977b, p. 157/142) who quoted Chuprov’s similar 
statement. Many of his colleagues, Chuprov wrote, “like Markov, shelve the 
English investigations without reading them”. The cause of that attitude was 
the empiricism of the Biometric school (Chuprov 1918 – 1919, t. 2, pp. 132 – 
133): 
 
    The reluctance, characteristic of English researchers, to deal with the 
    notions of probability and expectation led to much trouble. It greatly 
    damaged clearness … and even directed them to a wrong track … 
    However, after casting away that clothing … and supplementing the 
    neglected, [the kinship between Lexis and Pearson] will 
    become obvious… Not Lexis against Pearson, but Pearson refined by Lexis, 
    and Lexis enriched by Pearson should be the slogan of those who are 
    dissatisfied with the heartless empiricism. 
 
    Fisher (1922, pp. 311 and 329n) also indicated that Pearson had been 
confusing theoretical and empirical indicators. Similar pronouncements were 
due to Anderson (Sheynin 1990c, p. 120 – 121), Chuprov’s student and the 
last representative of the Continental direction11, but I shall only quote 
Kolmogorov (1948, p.143/68):  
 
    Notions held by the English statistical school about the logical structure of 
    the theory of probability which underlies all the methods of mathematical 
    statistics remained on the level of the eighteenth century. 
 
    Enumerating the “main weaknesses” of the Pearsonian school, 
Kolmogorov (Ibidem) indicated that  
 
    Rigorous results concerning the proximity of empirical sample 
    characteristics to theoretical related only to the case of independent trials 
    … in spite of the great … work done … the auxiliary tables used in 
    statistical studies proved highly imperfect in respect of cases intermediate 
    between “small” and “large” samples. 
 
    So, did the two statistical streams merge, as Chuprov would have it? In 
1923 he had become Honorary Fellow of the Royal Statistical Society and in 



1926, after his death, the Society passed a resolution of condolence (Sheynin 
1990c, p. 126) which stated that his 
 
    contributions to science were admired by all … they did much to harmonise 
    the methods of statistical research developed by continental and British 
    workers.  
 
    In §14.1-4 I mentioned the unilateral and, for that matter, only partly 
successful attempts made by Chuprov, and the vain efforts of Slutsky to 
reconcile Markov with Pearson’s works. And Bauer (1955, p. 26) recently 
reported that he had investigated, on Anderson’s initiative, how both schools 
had been applying analysis of variance and concluded (p. 40) that their work 
was going on side by side but did not tend to unification. More details about 
Bauer`s study are contained in Heyde & Seneta (1977, pp. 57 – 58) where it 
also correctly indicated that, unlike the Biometric school, the Continental 
direction had concentrated on nonparametric statistics. 
    I myself (Gnedenko & Sheynin 1978, p. 275) suggested that mathematical 
statistics12 properly originated as the coming together of the two streams; even 
now I think that that statement was not original (but am unable to mention 
anyone). However, now I correct myself. At least until the 1920s, say, British 
statisticians had continued to work by themselves. E.S. Pearson (1936 – 
1937), in his study of the work of his father, had not commented on 
Continental statisticians and the same is true about other such essays 
(Mahalanobis 1936; Eisenhart 1974). We only know that K. Pearson 
regretted his previous neglect of the history of statistics (see my Preface). 
    I believe that English, and then American statisticians for the most part only 
accidentally discovered the findings already made by the Continental school. 
Furthermore, the same seems to happen nowadays as well. Even Hald (1998) 
called his book History of Mathematical Statistics, but barely studied the work 
of that school. In 2001, Biometrika (vol. 88) published five essays devoted to 
its centenary but not a word was said in any of them about the Continent, not 
once was Chuprov mentioned. It is opportune to add that Cramér (1946, 
Preface) aimed to unite, in his monograph, English and American statistical 
investigations (and, in the first place, the work of Fisher) with the new, purely 
mathematical theory of probability created “largely owing to the work of” 
French and Russian mathematicians.  
    In 1919 there appeared in Biometrika an editorial remarkably entitled 
Peccavimus! (we were guilty). Its author, undoubtedly Pearson, corrected his 
mathematical and methodological mistakes made during several years and 
revealed mostly by Chuprov (Sheynin 1990c, p. 54) but he had not taken the 
occasion to come closer to the Continental statisticians. 
  
    Notes 
    1. Bortkiewicz’ paper appeared in a rare Russian political periodical 
published abroad. I discovered that journal in the Rare books section of the 
(former) Lenin State Library in Moscow. A few other copies of the 
periodical’s same issue, which I since found in Germany, do not, however, 
contain the paper in question; perhaps it was only included in a part of the 
edition. 
    2. In 1897 Bortkiewicz also unsuccessfully attempted to publish his work 
in Russian, in a periodical of the Petersburg Academy of Sciences. His request 



was refused since the contribution was to appear elsewhere (although only in 
German), see Sheynin (1990c, p. 42 – 43).  
    3. This charge was not proved; furthermore, it contradicts our perception of 
his personality. 
    4. An author of a paper published in 1896, of a book devoted to biometry 
which appeared in 1899, and of two subsequent notes (M.G. Kendall & Doig 
1968). 
    5. Already in Darwin’s times, a theory was supposed to be quantitatively 
corroborated. Darwin, however, provided nothing of the sort and it would be 
more proper to say, as in §10.9.2, “hypothesis of the origin of species”. 
    6. In 1912, Slutsky had submitted two manuscripts to Pearson who 
rejected both. Three letters from Slutsky to Pearson (but no replies) are extant 
(Univ. College London, Pearson Papers 856/4 and 856/7; Sheynin 1999c, pp. 
229 – 236). In this connection Slutsky had corresponded with Chuprov 
(Sheynin 1990c, pp. 46 – 47) and soon published one of his manuscript, – the 
one, whose refusal by Pearson he called a misunderstanding, – elsewhere 
(1914). 
    7. See §15.3. Bortkiewicz sharply objected to it in his polemic paper 
(1915). 
    8. Here is Neyman’s remarkable recollection (E.S. Pearson 1936 – 1937, 
vol. 28, p. 213): in 1916, he read the Grammar of Science on advice of his 
teacher at Kharkov University, S.N. Bernstein, and the book greatly 
impressed “us”. I note that, in turn, Pearson (1978, p. 243) had mentioned 
Lenin: Petersburg “ has now for some inscrutable reason been given the name 
of the man who has practically ruined it”. 
    It is not difficult to imagine that Pearson was given a hostile reception in 
the Soviet Union. This issue is beyond my chronological boundaries and I 
only mention two episodes (Sheynin 1998c, pp. 536 and 538, note 16). 
    a) Maria Smit, the future Corresponding Member of the Academy of 
Sciences, 1930: the Pearsonian curves are based 
 
    on a fetishism of numbers, their classification is only mathematical. 
    Although he does not want to subdue the real world as ferociously as it was 
    attempted by … Gaus [Gauss], his system nevertheless rests only on a 
    mathematical foundation and the real world cannot be studied on this basis 
    at all. 
 
    b) A.Ya. Boiarsky, L. Zyrlin, 1947: they blasphemously charged Pearson 
with advocating racist ideas that “forestalled the Göbbels department”. 
    Only somewhat more reserved was the anonymous author in the Great Sov. 
Enc., 2nd ed., vol. 33, 1955, p. 85. Soviet statistics and statisticians endured 
real suffering. The same Smit, in 1931 (Sheynin 1998c, p. 533, literal 
translation): “the crowds of arrested saboteurs are full of statisticians”. 
    9. Pearson refused to come because of his financial problems and 
unwillingness to leave his Department under “less complete supervision” 
(Sheynin 2002b, pp. 143 and 163, Note 8). 
    10. Here is a passage from the extant part of an unsigned and undated letter 
certainly written by Slutsky to Markov, likely in 1912 (Sheynin 1999c, p. 
132/226): 
 
     are not independent in magnitude from the sum of the already accumulated 



    deviations or that the probabilities of equal deviations are not constant, we 
    shall indeed arrive at the formula [Slutsky wrote down formula (1) with k = 
    0 and F(x) instead of the trinomial in the denominator] … Much material 
    [already shows that the Pearsonian curves are useful but] … it seems 
    desirable also for the asymmetric Pearson curves … to provide a 
    theoretical derivation which would put [them] in the same line as the Gauss 
    curve on the basis of the theory of probability (hypergeometric series).  
 
    11. Oskar Nikolaevich Anderson (1887 – 1960), a Russian German, 
emigrated in 1920. In 1924 – 1942 he lived and worked in Bulgaria, then in 
Germany (in West Germany), was the leading statistician in both these 
countries and a founder-member of the international Econometric Society 
(Anderson 1946). Also see Sheynin (1990c, pp. 58 – 60), H. & R. Strecker 
(2001) and his collected works (Anderson 1963). 
    12. Many authors prefer the term theoretical statistics, but there exists a 
certain distinction between the two notions: only theoretical statistics studies 
an important stage of statistical investigations, the preliminary data analysis. I 
mentioned that stage in §§2.1.4 and 10.5. See also Sheynin (1999a, pp. 707 – 
708). 
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