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Abstract— This paper reports on experiments with an artificial
society simulation package. This work is part of a larger project
whose main goal is to investigate the emergence of cooperation
and communication in response of (scalable) environmental chal-
lenges. The specific goals of the experiments reported here include
1) the study a number of extensions of the classical SugarScape
model, 2) to compare two radically different approaches to
communication among the individuals of the population. Our
results demonstrate that a number of the presented extensions
should be taken up in future experiments in artificial societies,
and that the decentralised communication protocol has negative
effects on the system behaviour.

I. INTRODUCTION

The main conceptual framework underlying our investiga-
tions is based on adding the possibility to communicate and
to cooperate to the standard SugarScape model and to study
if communicative and cooperative behaviour emerge under
environmental pressure. The standard SUGARSCAPE model
is a two dimensional grid, wrapped around the edges. Each
position corresponds with an area which can contain multiple
agents and an amount of sugar. Our extension is based on
two premises regarding cooperation. First, we want a model
where cooperation does not result in producing new resources
(sugar). Instead, it helps individuals to utilise resources that
they could not utilise alone. The second requirement is that
the model allows for scaling the necessity for cooperation
by a parameter. The role of communication is that it enables
cooperation. The rules for cooperation are hard-wired in the
sense that under prespecified conditions individuals always
cooperate. Communication, however, is not imposed on the
population. Whether or not individuals communicate depends
on their “personal preferences” and these are subject to evo-
lution (variation and selection). Thus, the question is whether
communication evolves, and whether, and how, various com-
munication protocols affect the population’s survival.

From a broad perspective our work can be considered
complementary to Axelrod’s classical experiments [2], [3]: we
focus on the emergence of communication making premises
on cooperation, while Axelrod focuses on the emergence of
cooperation making premises on communication (i.e., assum-
ing there is none).

This paper is organised as follows. In the next Section,
we explain the concept of an artificial society. Section III
overviews the SUGARSCAPE extensions as investigated here.

Section IV and V describe aspects of cooperation and com-
munication researched in VUSCAPE. Section VI reports on
the implementation of VUSCAPE. Section VII contains report
on the conducted experiments. Section VIII concludes and
contains pointers for future work.

II. ARTIFICIAL SOCIETIES

We let artificial societies be agent-based models of social
processes [1], [8], [9]. Our approach is based on that of Epstein
and Axtel, as we have 1) agents, 2) an environment or space,
and 3) rules. An agent then has internal states and behavioral
rules, which each can be fixed or flexible. Interactions and
changes of internal states depend on rules of behaviour for
the agents and the space. Environments can be abstractly
defined (e.g., a communication network) or more resemble our
own natural environment (e.g., a lattice of resource-bearing
sites). The environment is a medium separate from agents,
on which the agents operate and with which they interact.
Rules can be defined to describe the behaviour of agents and
the environment on different interaction levels, i.e., agent-
environment (e.g., agents looking for and consuming food),
environment-environment (e.g., growing resources), and agent-
agent (e.g., combat and trade).

The artificial world used in this paper is VUSCAPE, version
1.2.3 [6], inherently based on the well known SUGARSCAPE

world, as introduced by Epstein and Axtel [8] as a generic
testbed for social simulation. Like SUGARSCAPE, the VUS-
CAPE world is a two dimensional grid, wrapped around the
edges. Each position corresponds with an area which can
contain multiple agents and an amount of sugar. Sugar grows
from sugar seeds; each seed has a maximum amount of sugar
to which it can grow.

For the purpose of the study described in this paper, we ex-
tended the SUGARSCAPE world in a number of ways, thereby
introducing the possibility to research the specific emergent
phenomena of our interest. Additionally, these adaptations
extend the SUGARSCAPE domain in an interesting generic
way, opening up possibilities to investigate SUGARSCAPE

worlds in wider perspectives.

III. SUGARSCAPE EXTENSIONS

In the first series of experiments presented here, we ex-
tended SUGARSCAPE and investigated the consequences of



these extensions. We made the following adaptations to the
SUGARSCAPE world:

Explorative Behaviour – Agents in VUSCAPE exhibit
explorative behaviour in that an agent randomly moves around
in case it does not know of any sugar to move to or to eat.
Traditionally, in SUGARSCAPE, agents do not exhibit such
behaviour but stay at their location in such situations.

Randomised sugar distribution – The conventional sugar
distribution in SUGARSCAPE is based on two sugar-hills that
are located in the world at appropriate distances from each
other. In this world sugar is concentrated and grows back at
the given location making passive agents viable. To make the
world more demanding, we initially distribute so called sugar
seeds randomly over the grid and move a seed to another
random location if its sugar has been eaten.

Increased grid-point inhabitance – We allow for multiple
agents to be at a single grid-point in VUSCAPE, whereas this
is not allowed in SUGARSCAPE.

Randomised age initialisation – In SUGARSCAPE mod-
els, the age parameter of agents is initialised uniformly (at
0), and this brings with it some surprising phenomena that
are not necessarily realistic. A typical example of such an
effect is that the first generation is born at the same time,
starts reproducing together, grows old simultaneously and dies
out at approximately the same time. The effects of such a
setup echoes through the whole simulation until finished. We
initialise the ages of agents randomly (between fixed mini-
mum and maximum values), thereby preventing the mentioned
methodological errors resulting from initialisation at 0.

Sugar Redistribution – In the SUGARSCAPE world sugar
grows back at a given location making passive strategies
rewarding: agents can stay put because they are guaranteed
a minimal amount of new-grown sugar at the next turn. This
way, passive (i.e., not too mobile) agents are viable. As we are
interested in explorative behaviour, VUSCAPE moves a seed
to another random location if the sugar has been eaten.

Recovery Period – After mating, an agent is not able to
mate for a while: the recovery period. With this parameter, we
can control population dynamics, which has always been an
important issue in SUGARSCAPE investigations.

Cooperation – Cooperative behaviour of agents is stim-
ulated by means of setting a cooperation threshold. This
threshold is in the reported work set as the maximum amount
of sugar that an agent can eat on its own.

Communication – Agents receive information (listen) from
other agents about amounts of sugar at their locations and
announce (talk) the amount of sugar at their own locations.

The issues of cooperation and communication are described
in detail in the next Sections.

IV. COOPERATION

Cooperation has been widely studied since the early de-
velopments of game theory in the 1940s and 50s. The phe-
nomenon of cooperation has been put onto strong footing
by social scientist Axelrod [2], [3]. Cooperation is related to
our thinking and acting in our social, political and economic

relation with others. The question that Axelrod [2] poses
underlying this relationship is how cooperation can develop,
assuming each individual has an incentive to be selfish. The
approach that Axelrod follows to build up an understanding
of cooperation is to make assumptions on individual motives
(e.g., selfishness) and then analyse consequences of indi-
vidual behaviours upon the behaviour of the entire system.
The novelty of Axelrod’s approach lies in the fact that the
concerned individuals deciding upon a strategy to adopt, do
not exhibit rationality or maximising behaviour, nor is there a
need for a central authority, notions of trust, altruism, threats,
commitments or exchange of messages.

Axelrod recognised a possible problem with the
competition-based approach to finding good player strategies,
namely the expectation of each participant on what strategies
other participants might submit. To get around this problem,
a more objective means was necessary to find good strategies.
Such a means was found in the area of genetic algorithms. In
[3], Axelrod introduces concepts and techniques of complexity
theory (the study of many actors and their interactions) for
investigating aspects of competition and collaboration that go
beyond the prisoner’s dilemma paradigm. The complexity of
real-world situations requires approaches being able to cope
with this. Axelrod motivates the choice of social simulation
as the vehicle for such approaches, thereby distancing
himself from game-theoretical models that are based upon the
assumption of rational choice. For a detailed game-theoretical
review of Axelrod’s work, the reader is directed to [4].

V. COMMUNICATION

In our artificial society, agents are endowed with talk and lis-
ten capabilities, which are genetically evolvable. Both talking
and listening are evolving features as they undergo variation
and selection. The talk feature determines whether the agent
performs a communicative action itself, namely informing
other agents of: 1) the amount of sugar that is on its location,
and 2) the coordinates of its location. The listen feature is used
in the observation and decision making processes of the agent.
By listening, the agent receives information from other agents
about amounts of sugar at the locations of those agents.

After initialisation, the average talk preference and listen
preference over all agents is 0.5. With a preference p, an
agent communicates the amount of sugar at its location with
probability p in case it needs help to harvest the sugar at its
location, i.e., it is above the cooperation threshold. With a
listen preference q the agent takes up received information
from other agents in its decision process on where to move
to; with probability 1−q the agent does not consider received
information from other agents.

A. Multicast Model

Communication between agents in the first series of ex-
periments described here, is implemented by means of mul-
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Fig. 1. Multicast communication in VUSCAPE over the axes. In this example,
agent A multicasts information, which can be received by agents B and C.

ticasting1. Multicasted messages from agents travel over the
axes; they are not heard in the whole world, since agents can
only move horizontally and vertically. Theoretically, the agents
only receive messages from locations to which they can jump
immediately.

Figure 1 shows agent A multicasting a message, which is
received by agents B and C. In case there are other agents
in the world that are not on the same axes as agent A, these
other agents will not receive messages from agent A.

The multicast communication is implemented by a cen-
tralised messageboard. Agents can post their messages to this
board (talking) and they can read out messages from this board
(listening). In VUSCAPE, an option can be set such that a
message is removed from the messageboard when an agent
reads it, when an agent fulfills the request to cooperate or
when some given time interval has passed.

B. Newscast Model

The newscast computing model is a fully distributed infor-
mation propagation protocol for large-scale peer-to-peer com-
puting [11], [10]. Theoretical and empirical investigations have
shown that the newscast computing engine is fault tolerant
and extremely scalable. These properties manifest themselves
in the unharmful impact of adding and deleting agents to and
from the population. Adding agents to the population only
requires knowing the name of an arbitrary agent and for the
removal no action is necessary. In the model, different types of
applications can be supported like multicasting, resource shar-
ing, monitoring and controlling large systems, computational
intelligence, distributed datamining, and the modeling of social
phenomena. The application of newscast in VUSCAPE is an
example of the latter.

The main idea of newscast is that each agent maintains
a cache of c > 0 information items received from other
agents, together with the the names (IDs and addresses) of
the senders of these items. These senders are the “friends”
of the agent. An agent can only communicate to a friend, a
communication act amounts to sending over his entire cache,
including the information times and their sender ID’s. As the
cache size is limited, at fixed time intervals, the agent updates
the information in its cache by making a selection of c of
them, thereby also updating its list of “friends”. As such, in the

1In previously reported work, we called this type of communication broad-
casting. We hereby acknowledge the anonymous reviewer who pointed out
that we truly use multicasting (messages reaching a subset of the population)
instead of broadcasting (messages reaching everyone in the population).
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Fig. 2. The agent control loop in VUSCAPE.

VUSCAPE implementation of newscast, friendship only comes
from this mechanism and is thus not influenced by aspects such
as kinship of having cooperated in the past. The cache entries
define a communication graph, which is constantly changing
with time. This graph has a very low diameter and is very
close to a random graph with out-degree c.

VI. IMPLEMENTATION

The VUSCAPE world evolves with discrete time steps,
called cycles. In one such an execution cycle, the world
(including agents) is updated. More precisely, the stages as
shown in figure 2 take place in chronological order within a
single execution cycle.

1) An agent gathers information about the presence of sugar by listening
(to other agents along the axes) and looking (at the directly surrounding
locations along the axes and the current location). Upon completion
of this stage, the agent has an array of locations and amounts of sugar
on these locations.

2) Based on this array, the agent picks out the location with most sugar
and moves to this location. In case there are multiple locations with
the most amount of sugar, the agent chooses randomly.

3) Having arrived at the sugar, this sugar is harvested in case the
amount is under the cooperation threshold. If the amount is above the
cooperation threshold, the agent cooperates immediately if there are
more agents at the location. Otherwise, it tells (with some probability)
the other agents along the same axes that it needs help.

4) If possible, the agent reproduces and generates offspring.

In VUSCAPE it is possible to monitor a variety of variables
that describe the system behaviour. In Table I we briefly
enumerate the predefined monitors here. Generally, monitors
refer either to variables within the agent or within the world.

An agent consists of and possesses some particular features
that determine the make-up of a particular agent. From the
traditional SUGARSCAPE model [8], we took the basic agent
features which make up an agent. These features include



Type Name Denotes Domain
Agent age age of the agent [0:100]
Agent talkPref (p) whether agent talks [0:1]
Agent listenPref (q) whether agent listens [0:1]
Agent sugarAmount sugar contained by an agent [0:∞]
World inNeedOfHelp percentage of agents on [0:1]

location where
sugar > coopThresh

World cooperating percentage of agents that [0:1]
cooperates

World exploreCell percentage of agents that [0:1]
moved to a new cell

World hasEaten amount of food that [0:4]
agent has eaten

World numberOfAgents number of agents [0:∞]
World numberOfBirths number of just born agents [0:∞]
World numberOfDeaths number of just died agents [0:∞]

TABLE I

AN OVERVIEW OF VUSCAPE MONITORS.

metabolism, gender, child bearing, death, vision, allow sex
and replacement. We extended these features by including
a cooperation threshold, reproduction threshold and initial
amount of sugar.

Each agent has at its disposal a maximum amount of sugar
that it can harvest on its own. As mentioned previously,
this amount is called the cooperation threshold. If an agent
is at a location at which the amount of sugar is over this
threshold, it needs other agents to harvest the sugar. If there
are more agents at such a location, these agents harvest the
sugar together and the sugar is evenly distributed over these
agents. In the empirical investigations described below, the
cooperation threshold is the same for all agents.

After reproduction, agents are not able to have sex for a
period of time, called the sex recovery period. This period is
measured in number of elapsed execution cycles.

As agents realistically need energy (here: sugar) to repro-
duce, VUSCAPE offers the possibility to set the amount of
sugar needed for mating by setting the reproduction threshold.
If the amount of sugar contained in an agent is over this
threshold, then (in prevailing circumstances) this agent is able
to reproduce. The offspring of two parents receives half of
the amount of sugar from each parent at birth. Whereas in
SUGARSCAPE, the reproduction threshold (called endowment
in SUGARSCAPE) is implemented as being the same value as
the initial amount of sugar an agent received, the VUSCAPE

implementation enables one to set this parameter indepen-
dently of the initial amount of sugar.

VII. EXPERIMENTS

This Section presents two experimental sessions. The first
one investigates the extensions of VUSCAPE compared to
SUGARSCAPE as we presented above. The second session
investigates the evolution of communication under strict co-
operation requirements.

For the “extensions” session, we conducted seven series of

experiment Agent
numberOfRuns 10 maxSugarHarvest 100.0

Scape singleStep false
height 50 initAgeZero exp
width 50 minVision 1
runLength 1000 maxVision 6
reseedSugar exp minSugarMetabolism 1
initialPopulation 400 maxSugarMetabolism 4
sugarSeed.uniqueCell false minDeathAge 60
sugarDistributionUnif 1 maxDeathAge 100
sugarGrowBackRate 1.0 sexRecoveryPeriod exp
sugarRichness 1.0 minReproductionSugar 50
sugarDistributionType exp maxReproductionSugar 100
maxSugarSize 4 minInitialSugar 50

Cell maxInitialSugar 100
allowMultipleAgents exp preferNearestCell exp

TABLE II

AN OVERVIEW OF THE VUSCAPE PARAMETERS USED IN THE EXTENSIONS

EXPERIMENTS. PARAMETERS INDICATED WITH EXP ARE VARIED

THROUGHOUT THE EXPERIMENTS.

experiments2, each one varying another extension. This session
functions as to compare the effectiveness of each extension on
the artificial society. For this reason, we have experimented
with all other parameters ceteris paribus – leaving all the
other parameters to the default value that they have in the
traditional SUGARSCAPE. Because we investigate the effects
of cooperation and communication in the second session, the
artificial society research in this session does not include
cooperative and/or communicative agents.

For the “communication” session, we conducted two series
of experiments, each consisting of 10 independent runs: one
experiment with centralised (multicast) communication and
another with decentralised (newscast) communication3. In both
experiments, the cooperation threshold is 1. The lifetime of the
world is 2,000 iterations. The height and width of the world
are both 50. The initial population contains 1,000 agents. All
sugar is redistributed every iteration. Talk and listen features
are inherited from the parent with the most sugar. The mutation
sigma is 0.1. For further details of the independent variables
in our experiment, we redirect the reader to [7]. Also, for
reasons of space, we have not included all obtained graphs,
and redirect the interested reader to [5] and [7] for the omitted
graphs.

Agents need to eat sugar in order to survive. Also, they
are incapable to consume large quantities of sugar on their
own. As such, agents need to work together to live their
maximum age. Immediate consequences of this “imposition”
include the impossibility of agents staying at regrowing sugar
seeds and individually consuming the regrown sugar, as this
amount will eventually exceed the maximum capacity they can
eat on their own. Also, the world is too harsh for agents to

2In addition to the six presented extensions, we investigated the effects of
fixing the values for vision and metabolism.

3We also conducted an experiment without communication. The outcome of
this experiment was that agents did not adapt and survive. Neither was balance
reached in population size, for the population peaked in the beginning and
then went extinct.
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Fig. 3. Session extensions – explorative behaviour. Development of the
population size (above) and explorativeness (below).

survive solely on the basis of amounts of sugar they can eat
individually. Living without cooperation in this world means
that a maximum age can be achieved, but life is necessarily
without reproduction since an agent cannot accumulate enough
sugar to reproduce. For two (or more) agents to successfully
cooperate, they have to be on the same location and the amount
of sugar at that location must exceed the maximum amount an
agent can eat individually. Cooperation means that the agents
together consume the sugar at the location. After cooperation,
the amount of sugar is divided equally among the agents.

A final remark on our concept of cooperation must be
made. The benefit of cooperation for an agent is twofold.
On the one hand, agents profit from consuming resources that
they otherwise could not have consumed. On the other hand,
deciding to travel to the location with most sugar is somewhat
self-deceptive towards agents. This is because large resources
must be shared, while the agent decides to travel there on the
basis of the whole resource instead of a part. It cannot be well
predicted what behaviour emerges and whether the beneficial
or disadvantageous force of cooperation is stronger. Despite
these counteracting forces, our empirical results demonstrate
that still cooperation emerges.

Our scenario is as follows. An agent encounters a sugar
pile that exceeds his msh value, so he needs help from
another agent. He has an ability to communicate (talk) this
need to other agents, by sending a message across the axes
of the scape. This message is a signal containing a grid
location and a sugar amount. Talking will be initiated with a
certain preference (probability): If an agent is at grid location
(x, y) and failed to harvest sugar because sugar > msh

it will emit a message in the format 〈(x, y), sugar〉 with
probability preftalk. Agents on that axis can receive (listen)
the 〈(x, y), sugar〉 tuple and use this information in their
vision/movement decision procedure. This listening is also
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Fig. 4. Session extensions – Vision and Metabolism. Development of the
population size (above) and explorativeness (below).

done with a certain preference: With a probability preflisten,
an agent collects messages from the axes of the scape. This
gained information will be used in the Move rule.

If the sugar amount on this distant cell is greater than in
the immediate vicinity of the agent, it will move directly (i.e.
“jump”) to that cell, where he can share the local sugar pile
with the original sender of the help-call through cooperation.

A. From SugarScape to VUScape

A selection4 of the obtained results for the extensions
experiment session is shown in Figures 3 to 9. In accordance
with the methodology, we measured the change in population
size, explorativeness, vision, metabolism, age and birth rate
for the presented extensions, i.e., explorative behaviour, in-
creased gridpoint inhabitance, randomised sugar distribution,
randomised age initialisation and recovery period.

Explorative behaviour – It can be observed that the explo-
rativeness is higher in the experiments where agents randomly
exploration than in the experimental series where they do not.
Another observation is that with randomly exploring agents,
the population size is slightly larger. This may meaning that
individuals that have a more explorative nature can establish
a more successful population: one may contemplate that their
increased mobility enables the agents to have more contact,
resulting in more offspring. A third thing to report is the
connection between the dramatic population fall in the first 100
iterations and the simultaneous drop in the average metabolism
rate. This would suggest that a high metabolism value (i.e.
higher than 1) is such a disadvantage that they immediately
die.

Constant vision and metabolism – We investigated the
effects of fixing the values of vision and metabolism (both

4For a full overview, please see [5]. The reader can find the graphs in
readable format on http://www.cs.vu.nl/ci/eci/cec04/.
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Fig. 5. Session extensions – Randomised sugar distribution. Development
of the population size (above) and vision (below).
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Fig. 6. Session extensions – Increased grid-point inhabitance. Development
of the population size (above) and explorativeness (below).

to 1) instead of making them evolvable. Figure 4 shows that
a reduced vision range (in fixed-values experiment) does not
pose great problems with creating a viable society. However,
it does have an impact on the population size and the stability
of a population. The vision limitation has a direct negative
influence on the mobility of an agent.

Randomised sugar distribution – We draw two conclu-
sions. First, comparing the vision graphs in Figure 5, it is clear
that a high vision range gives a greater advantage in case of a
random sugar distribution. The reason for this is that an agent
always has to look for new sugar resources. Second, though
the population sizes differ, in both cases the society reaches
some kind of equilibrium, resulting in a more or less stable
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Fig. 7. Session extensions – Randomised age initialisation. At iteration 0
(above) and iteration 2000 (below).
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Fig. 8. Session extensions – Sugar redistribution. Development of population
(above) and explorativeness (below).

population plot. This may mean that a SUGARSCAPE society
is not dependent upon its sugar topology, which is important
when we want to draw general conclusions.

Increased grid-point inhabitance – Allowing multiple
agents on a cell results in larger populations. This means that
the population development in the previous experiments was
not only determined by the sugar availability of the environ-
ment, but also by spatial limitations. When we drop those
limitations the agents have more candidate locations to “flow”
to, even when the region is crowded. This offers possibilities
for much more smooth population dynamics compared to the
blocking situations that can occur with the single-agent cells.
This smooth mobility may very well be the main cause for the
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Fig. 9. Session extensions – Recovery period. Development of birth rate
(above) and age distribution at iteration 2000 (below).

rise in explorativeness. No longer hampered by neighboring
agents who effectively block an individual’s move-possibilities
the agents can now move through in their search for new
sugar. The blocking situations were an artifact of the two-
dimensional torus grid: They were not induced by agent or
sugar behaviour, but were an inevitable result of the “single-
agent cell” methodological choice. The multi-agent cells are
meant to alleviate the scape of this effect and thus measure
agent/sugar interaction more purely.

Randomised age initialisation – We see in figure 7 that the
zero age initialisation leads to stormy population drifts at the
start. The random age initialisation method seems to inhibit
this rough behaviour and approximate better the following
steady phase. Though the age initialisation highly influences
the society at the start, after circa 150 time steps both methods
produce an average age of 19. After that point there seems
to be little difference between the two experimental sessions.
This is confirmed by the age distribution bar plots at iteration
2000. As the distributions are totally different at the start,
iteration 100 the distribution shapes are very much alike – The
zero age variant has significantly more youngsters (< 20), but
the randomised population contains relatively more 60+’ers.
At the end of the run (and even well before that) the effects
of the initialisation method have diminished totally.

Sugar Redistribution – The goal of the sugar redistribution
was to make the population more mobile by “hiding” the
sugar again once an agent has found and harvested it. We can
observe that this is indeed the case: the average explorativeness
of the agents has increased considerably. This reseeding was
meant to make life harder for the agents. It is remarkable
in that respect that the population size is not affected by
this major methodological change. Apparently the agents are
strong enough to adapt to the new environment.

Recovery Period – We can first of all observe that the
population size in influenced by our birth control mechanism.
A sex recovery period of 5 iterations produces a population
drop of 11%. We have found in earlier research that this
parameter can be used to tune the population size and also that
long recovery periods (like e.g. 10) lead to quick extinction.
This birth control parameter proves to be a very powerful tool
and clearly deserves further investigation. Secondly, our results
show that in the no-recovery-period experimental series we
measured an average birth rate of 0.07, while the recovery
period of 5 was responsible for a birth rate of only 0.03.
And because the birth rate in a stable society is equal to
the death rate this is good news for all agents. Finally, the
age distributions show that the populations are more evenly
structured regarding to age. It clearly indicates that the average
age is higher when there is a sex recovery period.

B. Cooperation and Communication

For the experimental session on cooperation and communi-
cation, a selection of the obtained results is shown in Figures
10 and 11.

The most important trend that we observe in our empirical
findings is that populations using newscast communication
die out, while the multicast populations do not: newscast
communication is less effective in the VUSCAPE world than
multicast, i.e., it does not provide sufficient information that
is helpful for the agents. Instead, the newscast communication
allows, unintentionally, the propagation of timed out messages.
In the case of these ’lies’, agents listen to messages, move
to the heard location, and find the food already eaten. The
listening success rate (food is still there on arrival) is about
57% of the cases; for multicast communication, around 91%
of the cases the agents listen to a message, move to the listened
location, and successfully eat food. We hypothesise that the
lies emerge with newscast communication because of the very
structure and characteristics of the protocol: it cannot prevent
spreading of outdated information. Because of this outdating,
agents may ”jump” to an announced location where the sugar
was consumed by a earlier listener.

Another surprising outcome is that although the cases of
nothing heard is much bigger in the newscast approach and
the nothing saw cases is quite the same, the total number of
uninformed movements is smaller in the newscast approach. A
possible explanation comes from the exploratory behaviour in
the newscast that is also lower. The low exploratory behaviour
and a low percentage of uninformed movements, even if
there is no rich information about food that should make
a movement informed, makes it reasonable to believe that
agents are not moving much in the newscast. The number of
movements is much smaller with newscast than with multicast,
which justifies the outcome.

VIII. CONCLUSION

This paper has presented an investigation on the effects of
communication and cooperation in an artificial society. We
have reported on two experimental sessions that we conducted
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Fig. 10. Session communication – Development of population (above) and
in need of help (below).

in an artificial society. In the first session, we have experi-
mentally investigated the differences between VUSCAPE and
SUGARSCAPE. The most important changes are the multi-
agent cells (allowing more than 1 agent on a grid location),
the random sugar distribution (as opposed to the classical
2 hill landscape) and random age initialisation (agents are
all initialised with age 0 in SUGARSCAPE). The VUSCAPE

agents have more mobile behaviour because they are able
to randomly explore the environment. In the second session,
we have investigated the effects of adding cooperation and
communication to our artificial society. This session aimed at
indicating the effects of centralised and decentralised com-
munication methods in an artificial society. For this purpose,
we conducted a series of experiments researching the use of
centralised (multicast) and decentralised (newscast) communi-
cation, where the communication capabilities of the agents are
genetic features that undergo variation and selection.

Our empirical results demonstrate that communication (i.e.,
individual preferences to talk and to listen) does emerge
by evolution, cf. Fig. 11. Furthermore, in the given setup
populations using newscast communication die out, while
populations using multicast communication do not, cf. Fig. 10.
Our experimental findings show that the newscast communi-
cation allows, unintentionally, the propagation of timed out
messages. This leads up to the newscast protocol being less
effective than the multicast protocol in the researched society.
This society has been a relatively small world that is fully
connected, which is not in the niche of the newscast protocol.
In a follow-up study we intend to research communication
protocols in different environmental settings and on a different
population scale. For other future work, we propose research
on the advantage for agents of being in each other’s list of
friends, where the update mechanism of this list favours to
keep those who have sent useful information. Additionally, we
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contemplate to endow agents with life-time and social learning
capabilities, i.e., agents can learn during their lifetimes and
from each other.
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