

IBM Secureway Cryptographic Products
IBM 4758 PCI Cryptographic Coprocessor

CP/Q Operating System
Application Programming Reference

Version 1 Driver 16

Twenty-eighth Edition, January 1998

This edition of the Application Programming Reference manual is for CP/Q Version 1 Driver 16 for Intel Processors.

Comments or queries concerning this document should be addressed to:

D. C. Toll
IBM Research Division, T. J. Watson Research Center
PO Box 704
Yorktown Heights
New York 10598, U.S.A.

E-mail: toll@watson.ibm.com
VNET id: TOLL at YKTVMV
ô (tie-line) 863 7019
ó (external, USA) 914 784 7019

FAX:
ô (tie-line) 863 6225
ó (external, USA) 914 784 6225

This manual was produced using IBM DCF/SCRIPT release 4.0, and Publishing Systems BookMaster release 4.

 Copyright International Business Machines Corporation 1989-1994, 1996-1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

SVC Handler Calls

Chapter 1. Section Notes . 1-1

Chapter 2. Suspend Operations . 2-1
CPIntWait (INT_WAIT) - Wait for Interrupt . 2-1
CPMuxWait (MUX_WAIT) - Wait on List of SVids 2-3
CPShortYield (DISP_RET2) - Return to Dispatcher 2-6
CPYield (DISP_RET) - Return to Dispatcher 2-7

Chapter 3. Synchronization Semaphore Operations 3-1
CPSemClear (SEM_CLEAR) - Clear a Semaphore 3-1
CPSemSet (SEM_SET) - Set a Semaphore 3-2
CPSemSetWait (SEM_SETWAIT) - Set a Semaphore and Wait for it to

Clear . 3-3
CPSemWait (SEM_WAIT) - Wait for a Semaphore to become Clear 3-5

Chapter 4. Inter-Task Messages . 4-1
CPCountMsg (COUNT_MESG) - Return Count of Messages in a Queue . . 4-1
CPPeekMsg (PEEK_MESG) - “Peek” a Message 4-2
CPRecvMsg (RECV_MESG) - Receive a Message 4-6
CPSendMsg (SEND_MESG) - Send a Message 4-11
CPSendRecvMsg (SEND_RECV) - Send a Message and Await a Reply . 4-15
CPSplitMsg (SPLIT_SEND) - Send a Message with a Split Message area 4-19
CPSplitRecv (SPLIT_RECV) - Receive a Message with a Split Buffer . . . 4-24

Chapter 5. Resource/Serialization Semaphore Operations 5-1
CPSemClaim (CLAIMSEM) - Claim a Semaphore 5-1
CPSemQuery (QRY_SEM) - Query the State of a Semaphore 5-3
CPSemRelease (REL_SEM) - Release a Semaphore 5-4

Chapter 6. Id Resolution and Translation . 6-1
CPCheckID (CHECK_ID) - Query and Check Access to an SVT Entry . . . 6-1
CPQueryID (QRY_ID) - Obtain SVid of Caller 6-3
CPResolveID (ID_NAME) - Obtain SVT Name Corresponding to an SVid . 6-4
CPResolveName (GET_ID) - Obtain SVid Corresponding to an SVT Name 6-5
CPSVid2TCB and CPTCB2SVid (TRAN_ID) - Task Id/SVid Translation . . 6-8

Chapter 7. Signal Operations . 7-1
CPSigInt (SIG_INTERRUPT) - Signal is/is not to Interrupt SVCs 7-1
CPSigMask (SIG_MASK) - Set or Query Signal Mask 7-3
CPSigReturn (SIG_RETURN) - Return from a Signal Handler 7-5
CPSigSend (SIG_SEND) - Send a Signal . 7-6
CPSigStack (SIG_STACK) - Set or Query Signal Stack 7-8
CPSigVec (SIG_VEC) - Set or Query Signal Handler 7-10

Chapter 8. Task Control Functions . 8-1
CPChgPriority (CHG_PRTY) - Change Dispatch priority of a Task 8-1

 Copyright IBM Corp. 1989-1994, 1996-1998 iii

CPCritEnter (CRIT_ENTER) - Enter Critical Code Section 8-3
CPCritLeave (CRIT_LEAVE) - Leave Critical Code Section 8-4
CPFaultTask (FALT_TASK) - Fault a Task 8-5
CPGoTask (GO_TASK) - Start a Task . 8-7
CPHaltTask (TASK_HALT) - Stop the Calling Task 8-9
CPPTrace (P_TRACE) - Debugging Facilities, Intel Only 8-10
CPSetPreempt (SET_PRE) - Set Task Preemption Status 8-20
CPStopTask (STOP_TASK) - Stop a Task 8-21
CPTaskRegs - Initialize Task Registers . 8-23

Chapter 9. Creation or Deletion of System Entities 9-1
CPSysCreateSLIH (CRT_SLIH) - Install a Second Level Interrupt Handler . 9-2
CPSysDeleteSLIH (DEL_SLIH) - Delete a Second Level Interrupt Handler . 9-5

Chapter 10. Timer Services . 10-1
CPBeep (BEEP_IT) - Sound the “Beeper” 10-1
CPGetTime (GET_TIME) - Get the Time and Date 10-2
CPSetDate (SET_DATE) - Set Current Date 10-4
CPSetTime (SET_TIME) - Set Current Time 10-5
CPSleep (SLEEP) - Suspend for a Specified Period of Time 10-6
CPTimerCancel (TIMER_CNCL) - Cancel a Timer Event 10-7
CPTimerSet (TIMER_SET) - Setup a Timer Event 10-8
CPTimerTick (TIMER_TICK) - Setup a Timer Event 10-12

Chapter 11. Miscellaneous SVCs . 11-1
CPCMOSRead (CMOS_READ) - Read CMOS Location 11-1
CPGetCDA (GET_SDA) - Obtain CDA/SDA Offset 11-2
CPReadUItem (READ_UITEM) - Read Contents of User-Defined SVT

Entry . 11-3
CPSVC - Intel . 11-4
CPSVCTrace (SVCTRACE) - SVC Handler Trace Facility - Intel 11-5
CPWriteUItem (WRITE_UITEM) - Write Contents of User-Defined SVT

Entry . 11-11

Memory Manager Calls

Chapter 12. Section Notes . 12-1

Chapter 13. Allocation Functions . 13-1
CPAllocBase . 13-1

Usage Notes . 13-1
Implementation Notes . 13-3
Return Codes . 13-3
Memory Manager Generated Faults . 13-4

CPAllocMem . 13-5
Usage Notes . 13-5
Implementation Notes . 13-8
Return Codes . 13-8
Memory Manager Generated Faults . 13-8

CPAllocRange . 13-9
Usage Notes . 13-9
Implementation Notes . 13-12
Return Codes . 13-12

iv Application Programming Reference

Memory Manager Generated Faults . 13-13

Chapter 14. Deallocation Functions . 14-1
CPFreeObj . 14-1

Usage Notes . 14-1
Implementation Notes . 14-1
Return Codes . 14-1
Memory Manager Generated Faults . 14-2

CPFreeRange . 14-3
Usage Notes . 14-3
Implementation Notes . 14-3
Return Codes . 14-3
Memory Manager Generated Faults . 14-3

Chapter 15. Shared Object Functions . 15-1
CPAlias . 15-1

Usage Notes . 15-1
Implementation Notes . 15-2
Return Codes . 15-3
Memory Manager Generated Faults . 15-4

CPGetMem . 15-5
Usage Notes . 15-5
Implementation Notes . 15-6
Return Codes . 15-6
Memory Manager Generated Faults . 15-7

CPGiveMem . 15-8
Usage Notes . 15-8
Implementation Notes . 15-9
Return Codes . 15-9
Memory Manager Generated Faults . 15-10

Chapter 16. Change Object Functions . 16-1
CPChangeAttr . 16-1

Usage Notes . 16-1
Implementation Notes . 16-2
Return Codes . 16-2
Memory Manager Generated Faults . 16-2

CPShrinkSize . 16-3
Usage Notes . 16-3
Implementation Notes . 16-3
Return Codes . 16-3
Memory Manager Generated Faults . 16-4

Chapter 17. Sparse Object Functions . 17-1
CPCommit . 17-1

Usage Notes . 17-1
Implementation Notes . 17-1
Return Codes . 17-2
Memory Manager Generated Faults . 17-2

CPDecommit . 17-3
Usage Notes . 17-3
Implementation Notes . 17-3
Return Codes . 17-3
Memory Manager Generated Faults . 17-4

 Contents v

Chapter 18. Memory Verification Functions 18-1
CPFreeVerify . 18-1

Usage Notes . 18-1
Implementation Notes . 18-1
Return Codes . 18-1
Memory Manager Generated Faults . 18-2

CPVerify . 18-3
Usage Notes . 18-3
Implementation Notes . 18-4
Return Codes . 18-4
Memory Manager Generated Faults . 18-4

Chapter 19. Memory Fixing Functions . 19-1
CPFix . 19-1

Usage Notes . 19-1
Implementation Notes . 19-4
Return Codes . 19-4
Memory Manager Generated Faults . 19-4

CPFixObj . 19-5
Usage Notes . 19-5
Implementation Notes . 19-7
Return Codes . 19-7
Memory Manager Generated Faults . 19-8

CPUnfix . 19-9
Usage Notes . 19-9
Implementation Notes . 19-9
Return Codes . 19-9
Memory Manager Generated Faults . 19-10

CPUnfixObj . 19-11
Usage Notes . 19-11
Implementation Notes . 19-11
Return Codes . 19-11
Memory Manager Generated Faults . 19-12

Chapter 20. Miscellaneous Functions . 20-1
CPAlterRange . 20-1

Usage Notes . 20-1
Implementation Notes . 20-1
Return Codes . 20-1
Memory Manager Generated Faults . 20-2

CPCreateRange . 20-3
Usage Notes . 20-3
Implementation Notes . 20-4
Return Codes . 20-4
Memory Manager Generated Faults . 20-5

CPForceNPPages . 20-6
Usage Notes . 20-6
Implementation Notes . 20-6
Return Codes . 20-6
Memory Manager Generated Faults . 20-7

CPGetVersion . 20-8
Usage Notes . 20-8
Implementation Notes . 20-8
Return Codes . 20-8

vi Application Programming Reference

Memory Manager Generated Faults . 20-8
CPNoSwap . 20-9

Usage Notes . 20-9
Implementation Notes . 20-9
Return Codes . 20-9
Memory Manager Generated Faults . 20-10

CPQueryOwn . 20-11
Usage Notes . 20-11
Implementation Notes . 20-13
Return Codes . 20-13
Memory Manager Generated Faults . 20-14

CPQueryObjectState . 20-15
Usage Notes . 20-15
Implementation Notes . 20-17
Return Codes . 20-17
Memory Manager Generated Faults . 20-17

CPRealAddr . 20-18
Usage Notes . 20-18
Implementation Notes . 20-18
Return Codes . 20-18
Memory Manager Generated Faults . 20-19

CPRemoveNPPages . 20-20
Usage Notes . 20-20
Implementation Notes . 20-20
Return Codes . 20-20
Memory Manager Generated Faults . 20-21

CPSwap . 20-22
Usage Notes . 20-22
Implementation Notes . 20-22
Return Codes . 20-22
Memory Manager Generated Faults . 20-23

Resource Manager Calls

Chapter 21. Section Notes . 21-1

Chapter 22. Query Process States . 22-1
CPQueryAuth . 22-2

Usage Notes . 22-2
Implementation Notes . 22-2
Return Codes . 22-2

CPQueryEffProc . 22-4
Usage Notes . 22-4
Implementation Notes . 22-4
Return Codes . 22-4

CPGetProcName . 22-5
Usage Notes . 22-5
Implementation Notes . 22-5
Return Codes . 22-5

CPGetProcID . 22-6
Usage Notes . 22-6
Implementation Notes . 22-6
Return Codes . 22-6

 Contents vii

CPQueryProc . 22-7
Usage Notes . 22-7
Output Buffer . 22-7
Implementation Notes . 22-8
Return Codes . 22-9

CPQueryProcRes . 22-10
Usage Notes . 22-10
Output Buffer . 22-10
Implementation Notes . 22-11
Return Codes . 22-11

CPQueryProcSVIDs . 22-13
Usage Notes . 22-13
Output Buffer . 22-14
Implementation Notes . 22-14
Return Codes . 22-14

Chapter 23. Set Process Functions . 23-1
CPGiveEffProc . 23-2

Usage Notes . 23-2
Implementation Notes . 23-2
Return Codes . 23-2

CPSetEffProc . 23-3
Usage Notes . 23-3
Implementation Notes . 23-3
Return Codes . 23-3

CPSetProcDfltLimit . 23-5
Usage Notes . 23-5
Implementation Notes . 23-5
Return Codes . 23-6

CPSetProcMaxLimit . 23-7
Usage Notes . 23-7
Implementation Notes . 23-8
Return Codes . 23-8

Chapter 24. Creating System Resources 24-1
Creator process and creator task . 24-1
Creation access checks . 24-1
Creating resource providers . 24-2
Resource limit checks . 24-2
Removable system objects . 24-2

CPCreateMsgQ . 24-3
Usage Notes . 24-3
Implementation Notes . 24-3
Return Codes . 24-3

CPCreateMsgQAcc . 24-5
Usage Notes . 24-5
Implementation Notes . 24-6
Return Codes . 24-6

CPCreateProc . 24-8
Usage Notes . 24-8
Implementation Notes . 24-9
Return codes . 24-9
Resource Manager Generated Faults 24-10
Resource guarantees and limits, new process creation 24-10

viii Application Programming Reference

CPCreateProcAcc . 24-12
Usage Notes . 24-13
Implementation Notes . 24-14
Return Codes . 24-14
Resource Manager Generated Faults 24-15
Resource guarantees and limits, new process creation 24-15

CPCreateSerSem . 24-16
Usage Notes . 24-16
Implementation Notes . 24-16
Return Codes . 24-16

CPCreateSerSemAcc . 24-18
Usage Notes . 24-18
Implementation Notes . 24-19
Return Codes . 24-19

CPCreateSyncSem . 24-21
Usage Notes . 24-21
Implementation Notes . 24-22
Return Codes . 24-22

CPCreateSyncSemAcc . 24-24
Usage Notes . 24-24
Implementation Notes . 24-25
Return Codes . 24-25

CPCreateTask . 24-27
Usage Notes . 24-27
Implementation Notes . 24-28
Return Codes . 24-28

CPCreateTaskAcc . 24-30
Usage Notes . 24-30
Implementation Notes . 24-31
Return Codes . 24-31

CPCreateTimerBlock . 24-33
Usage Notes . 24-33
Implementation Notes . 24-33
Return Codes . 24-33

CPCreateTimerBlockAcc . 24-35
Usage Notes . 24-35
Implementation Notes . 24-35
Return Codes . 24-35

CPCreateUItem . 24-37
Usage Notes . 24-37
Implementation Notes . 24-37
Return Codes . 24-37

CPCreateUItemAcc . 24-39
Usage Notes . 24-39
Implementation Notes . 24-40
Return Codes . 24-40

CPCreateUserInt . 24-42
Usage Notes . 24-42
Implementation Notes . 24-43
INTEL implementation . 24-43
Return Codes . 24-45

CPCreateUserIntAcc . 24-46
Usage Notes . 24-46
Implementation Notes . 24-47

 Contents ix

Return Codes . 24-47
CPFork . 24-49

Usage Notes . 24-49
Implementation Notes . 24-50
Return Codes . 24-50
Resource Manager Generated Faults 24-52

Chapter 25. Removing System Resources 25-1
CPDelete . 25-2

Usage Notes . 25-2
Implementation Notes . 25-2
Return Codes . 25-2

CPDeleteProc . 25-4
Usage Notes . 25-4
Implementation Notes . 25-5
Return Codes . 25-5

CPDeleteTimer . 25-7
Usage Notes . 25-7
Implementation Notes . 25-7
Return Codes . 25-7

CPDeleteUserInt . 25-9
Usage Notes . 25-9
Implementation Notes . 25-9
Return Codes . 25-9

Chapter 26. Resource Tracking . 26-1
CPTrkCancel . 26-2

Usage Notes . 26-2
Implementation Notes . 26-3
Return codes . 26-3

CPTrkCancelAll . 26-4
Usage Notes . 26-4
Implementation Notes . 26-4
Return codes . 26-4

CPTrkRequest . 26-6
Usage Notes . 26-6
Implementation Notes . 26-7
Return codes . 26-7

CPTrkRequestAll . 26-8
Usage Notes . 26-8
Implementation Notes . 26-9
Return codes . 26-9

Appendices and Glossary

Appendix A. CP/Q SVC Handler Summary A-1
SVC Functions . A-1
SVC Handler Return Codes . A-3
SVC Handler Task Fault Codes . A-5
SVC Handler Task Stopped Codes . A-6
Messages Generated by the SVC Handler . A-7

Appendix B. Memory Manager return codes B-1

x Application Programming Reference

Memory Manager user return codes . B-1
Page Fault Handler Fault Handling . B-2
Memory Manager internal error codes . B-3

Appendix C. Resource Manager return codes C-1
Resource Manager user return codes . C-1
Resource Manager fault codes . C-2
Resource Manager internal error codes . C-3

Glossary and Abbreviations . X-1

Index . X-5

 Figures

4-1. Message Header Structure . 4-3
4-2. Message Structures . 4-7
4-3. Message Structures . 4-12
4-4. Split Message Structures . 4-21
4-5. Split Message Structures . 4-25
8-1. Intel Debug Register Structures . 8-11
8-2. Intel Floating Point Registers Structure 8-12
8-3. Intel Registers Structure . 8-14
8-4. Intel Query Task State Structure . 8-17
8-5. Query Task CPU Usage Structure . 8-17
8-6. CPTaskRegs Code Example . 8-24

10-1. Get Time and Date Structures . 10-2
11-1. CPSVC Register Structure - Intel . 11-4
11-2. SVC Trace Query Structure - Intel . 11-7
22-1. Query Process - output buffer format 22-7
22-2. Query Process Resources - output buffer format 22-10
22-3. Query SVids Attached to a Process - output buffer 22-14
24-1. Stack Format for Near CALL Kernel Extension SVC 24-44
24-2. Stack Format for INT Kernel Extension SVC 24-45

 Contents xi

xii Application Programming Reference

SVC Handler Calls

 Copyright IBM Corp. 1989-1994, 1996-1998

Application Programming Reference

 Chapter 1. Section Notes

This part of this manual contains the definitive specification of each SVC Handler
Call; The C callable subroutines for the system calls are provided in the library
named CPQLIB, and the routine declarations for these, required when compiling
the calls to these routines, are contained in the header file CPQLIB.H.

Note: In the Intel implementation of CP/Q, each routine is declared as pascal ,
that is the “Pascal” calling convention is used. For reasons of clarity and
simplicity, this is not shown in the SVC Handler Call descriptions in this
manual. However, as long as the user includes CPQLIB.H for the
declarations, this is taken care of automatically, and the user's code will not
have portability problems when moving it between systems.

The Signal facilities are not available via routines in the CPQLIB library; these are
accessed via routines in the UNIXLIB library, with declarations in SYS\SIGNAL.H.

 Copyright IBM Corp. 1989-1994, 1996-1998 1-1

1-2 Application Programming Reference

 Chapter 2. Suspend Operations

CPIntWait (INT_WAIT) - Wait for Interrupt

 Function
This SVC enables the caller to await a hardware interrupt. It is restricted to code
with input/output (I/O) privilege, namely:

� For Intel, the calling code Current Privilege Level (CPL) must be ≤ the system
Input/Output Privilege Level (IOPL).

� For PowerPC, the calling task must be a supervisor mode task.

If this SVC specifies a time-out, and while the task is waiting for the interrupt a
signal arrives that causes a signal handler to be entered and this SVC is then
resumed after the return from the signal handler, the time-out is restarted from the
beginning. Currently, no attempt is made to restart the time-out for only the
remaining period.

 C Syntax
long int CPIntWait(unsigned long int SLIBid,

unsigned long int Timeout);

 Parameters
SLIBid The ID of the Second Level Interrupt Block (SLIB) returned when the

CRT_SLIH SVC was issued.

Timeout The time-out period. This may be one of the following values:

0 - SVCNOWAIT
Not valid for this SVC.

0xFFFFFFFF - SVCWAITFOREVER
Wait indefinitely until an interrupt occurs.

other Wait until an interrupt occurs, but only for the specified time (in
µsecs). If this time-out occurs, the SVC Handler returns to the
caller with return code QSVCtimedout.

 Return Codes
QSVCgood (0)

Operation completed successfully (an interrupt has occurred).

QSVCbadreq (0x8001001E)
The parameter Timeout is 0.

QSVCbadid (0x8001002D)
This can occur for one of the following reasons:

� The specified SLIB ID is not the offset of a SLIB.

� The specified SLIB ID is not that of a SLIH set up by the calling
task.

� This SLIB is not for an INT_WAIT type SLIH.

 Copyright IBM Corp. 1989-1994, 1996-1998 2-1

QSVCtimedout (0x8001000B)
The time-out occurred (no interrupt has been received).

QSVCinterrupt (0x80010024)
The SVC was interrupted by a signal (no I/O interrupt was received).

SVC Handler Generated Faults
QSVCinvalid (x80)

The calling code does not have I/O privilege.

2-2 Application Programming Reference

CPMuxWait (MUX_WAIT) - Wait on List of SVids

 Function
Warning - Optional Facility

There is a compile-time option to omit the MUX_WAIT facilities from the SVC
Handler, for example, to save space in memory constrained products.

If MUX_WAIT has been omitted, this SVC results in the calling task being
faulted.

This SVC suspends the caller, until one of up to eight events occurs. These events
are specified in a parameter list of SVids.

Each SVid in the list may take one of the following values:

� the value zero, which means the message queue of the calling task (the event
is a message present on the queue)

� the SVid of a message queue (the event is a message present on the queue)
� the SVid of a synchronization semaphore (the event is the semaphore being

clear)
� the SVid of a resource/serialization semaphore (the event is the semaphore

being free, whereupon it becomes claimed by the calling task)

A successful return that specifies the SVid of a message queue (this includes the
ID zero, which means the calling task's own message queue) indicates at least one
message is present on the queue. This does not guarantee that, when a
RECV_MESG or SPLIT_RECV SVC is subsequently issued, there is still a
message on the queue that can be received. No lock is applied to prevent another
task from retrieving the message first.

The use of this SVC might have performance effects on the entire system. Much of
the processing of a MUX_WAIT SVC runs with interrupts disabled, which implies
that it might not meet the interrupt latency requirements of the remainder of the
system.

If this SVC specifies a time-out, and while the task is waiting for an event a signal
arrives that causes a signal handler to be entered and this SVC is then resumed
after the return from the signal handler, the time-out will be restarted from the
beginning. Currently, no attempt is made to restart the time-out for only the
remaining period.

 C Syntax
long int CPMuxWait(unsigned long int \List,

unsigned long int \Event,
unsigned long int Timeout);

 Parameters
List Pointer to a buffer, which is a parameter list of 9 32-bit words. The first

word contains the count of the number of SVids that follow (in the range
1-8).

Note: The full 36-byte parameter list must be supplied, even when
fewer than eight SVids are specified.

 Chapter 2. Suspend Operations 2-3

Event A pointer to a location to contain the SVid of the event that occurred.

Timeout The time-out period. This may take one of the following values:

0 - SVCNOWAIT
No wait, immediate return to the caller (with return code
QSVCnoevent) if none of the message queues contains a
message, none of the resource semaphores is free, and none
of the synchronization semaphores is clear.

0xFFFFFFFF - SVCWAITFOREVER
Wait indefinitely until one of the specified events occurs.

other Wait until one of the specified events occurs, but only for the
specified time (in µsecs). If this time-out occurs, the SVC
Handler returns to the caller with return code QSVCtimedout.

 Return Parameters
*Event If the return code is QSVCgood, this location is set to the SVid of the

first item found in the list for which the event has occurred. A value of
zero indicates that a message is present on the caller's task message
queue.

If the return code is QSVCdeadSVid, this location is set to the SVid of
the SVT entry that is being or has been removed.

If the return code is other than QSVCgood or QSVCdeadSVid, this
location is indeterminate.

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCtimedout (0x8001000B)
The time-out has occurred.

QSVCnoevent (0x80010011)
None of the events has occurred (immediate return case only).

QSVCbadcnt (0x8001001B)
The count in bytes 0-3 of the parameter list is zero or > eight.

QSVCduplid (0x8001002C)
One or more of the SVids in the parameter list is duplicated.

QSVCdeadSVid (0x8001000C)
The SVT entry specified by the SVid in EDX is being or has been
removed from the system.

QSVCbadSVid (0x80010002)
The SVid in EDX is not zero and does not specify an SVT entry of an
acceptable type (for example, it is not a synchronization semaphore, a
resource semaphore, or a system message queue).

QSVCinterrupt (0x80010024)
The SVC has been interrupted by a signal (no event has occurred).

2-4 Application Programming Reference

SVC Handler Generated Faults
QSVCinvalid (0x80)

The MUX_WAIT facilities were omitted from the SVC Handler.

QSVCinvSVid (0x82)
The requestor is not permitted to access one or more of the specified
SVT entries.

QSVCparlist (0x81)
Parameter list is invalid, for example, the parameter list pointer does not
point into an allocated page.

 Chapter 2. Suspend Operations 2-5

CPShortYield (DISP_RET2) - Return to Dispatcher

 Function
This SVC voluntarily yields the processor and performs a dispatch operation,
without suspending the calling task. If there is another runnable task at the
dispatch priority of the caller, the system switches to running that task. In this
case, the caller is moved to immediately after the next task in the dispatch chain for
its dispatch priority. This is a “voluntary round robin.” If the caller is the only
runnable task at its priority, this is effectively a null SVC, and an immediate return
to the caller occurs.

This SVC is different from the DISP_RET SVC if there are more than 3
dispatchable tasks at a level. Generally, the DISP_RET2 SVC should be used by
only one task at a priority level, and the other tasks should use the DISP_RET
SVC. This means one of the tasks can let the other tasks (at a level) run one at a
time and then be restarted itself. If two tasks at a level both used the DISP_RET2
SVC, they would alternate use of the processor between them, and the other
dispatchable tasks at that level would never run.

 C Syntax
long int CPShortYield();

 Parameters
None

 Return Codes
QSVCgood (0)

Operation completed successfully.

SVC Handler Generated Faults
None

2-6 Application Programming Reference

CPYield (DISP_RET) - Return to Dispatcher

 Function
This SVC voluntarily yields the processor and performs a dispatch operation,
without suspending the calling task. If another runnable task is at the dispatch
priority of the caller, the system switches to run that task. In this case, the caller is
moved to the end of the dispatch chain for its dispatch priority. This is a “voluntary
round robin.” If the caller is the only runnable task at its priority, this is effectively a
null SVC, and an immediate return to the caller occurs.

 C Syntax
long int CPYield();

 Parameters
None

 Return Codes
QSVCgood (0)

Operation completed successfully.

SVC Handler Generated Faults
None

 Chapter 2. Suspend Operations 2-7

2-8 Application Programming Reference

Chapter 3. Synchronization Semaphore Operations

CPSemClear (SEM_CLEAR) - Clear a Semaphore

 Function
This SVC unconditionally clears a synchronization semaphore. This means that the
operation is performed even if the semaphore is already clear. Any tasks waiting
on this semaphore are restarted.

If the semaphore is already in the cleared state, no indication of this is given to the
caller. Furthermore, no indication is given as to the number of tasks (if any) that
were made dispatchable as a result of this system call.

 C Syntax
long int CPSemClear(unsigned long int SVid);

 Parameters
SVid The SVid of the synchronization semaphore to be cleared.

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadSVid (0x80010002)
Specified SVT entry is not valid, or it is not a synchronization
semaphore. This return code can also occur if the calling task is a
system task, but it is not permitted to access the specified SVT entry.

QSVCdeadSVid (0x8001000C)
The specified SVT entry is being removed from the system.

SVC Handler Generated Faults
QSVCinvSVid (0x82)

The caller is not a system task and is not permitted to access the
specified SVT entry.

 Copyright IBM Corp. 1989-1994, 1996-1998 3-1

CPSemSet (SEM_SET) - Set a Semaphore

 Function
This SVC sets a synchronization semaphore.

Note: In the case of a semaphore that is being used for the notification of
hardware interrupts, if a “pending clear” is present (that is, an interrupt occurred
while the semaphore was clear), the semaphore is cleared immediately by this
SVC.

 C Syntax
long int CPSemSet(unsigned long int SVid);

 Parameters
SVid The SVid of the synchronization semaphore to be set.

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadSVid (0x80010002)
Specified SVT entry is not valid, or it is not a synchronization
semaphore. This return code can also occur if the calling task is a
system task, but it is not permitted to access the specified SVT entry.

QSVCdeadSVid (0x8001000C)
The specified SVT entry is being removed from the system.

SVC Handler Generated Faults
QSVCinvSVid (0x82)

The caller is not a system task and is not permitted to access to the
specified SVT entry.

3-2 Application Programming Reference

CPSemSetWait (SEM_SETWAIT) - Set a Semaphore and Wait for it to
Clear

 Function
This SVC sets and then waits on a synchronization semaphore, in a single atomic
operation. This guarantees that the wait operation corresponds to this set
operation. If CPSemSet was used, followed by CPSemWait , many things can
potentially occur between them, including a CPSemClear for this semaphore.

Note: In the case of a semaphore used for the notification of hardware interrupts,
if a “pending clear” is present (that is, an interrupt occurred while the semaphore
was clear) then the semaphore is immediately cleared by this SVC. This results in
an immediate return to the caller.

If this SVC specifies a time-out, and while the task is waiting for the semaphore a
signal arrives that causes a signal handler to be entered and this SVC is then
resumed after the return from the signal handler, the time-out is restarted from the
beginning. Currently, no attempt is made to restart the time-out for only the
remaining period.

 C Syntax
long int CPSemSetWait(unsigned long int SVid,

unsigned long int Timeout);

 Parameters
SVid The SVid of the synchronization semaphore to set and then wait for.

Timeout The wait or no-wait option and time-out period. This accepts the
following values:

0 - SVCNOWAIT
No wait, an immediate return to the caller with return code
QSVCsembusy will occur, since this SVC sets the
semaphore.

0xFFFFFFFF - SVCWAITFOREVER
Wait indefinitely until the semaphore next clears.

Other Wait until the semaphore is next cleared, but only for the
specified time (in µsecs). If this time-out occurs, the SVC
Handler returns to the caller with return code QSVCtimedout.

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCsembusy (0x80010012)
The semaphore is set (immediate return case only).

Note: Because this SVC sets the semaphore, this return code is
always given in the case of an immediate return.

QSVCbadSVid (0x80010002)
Specified SVT entry is not valid, or it is not a synchronization
semaphore. This return code can also occur if the calling task is a
“system” task, but is not permitted to access to the specified SVT entry.

 Chapter 3. Synchronization Semaphore Operations 3-3

QSVCdeadSVid (0x8001000C)
The specified SVT entry is being or has been removed from the system.

QSVCtimedout (0x8001000B)
The time-out has occurred.

QSVCinterrupt (0x80010024)
This SVC was interrupted by a signal, and the semaphore may or may
not have been cleared.

SVC Handler Generated Faults
QSVCinvSVid (0x82)

The caller is not a “system” task, and it is not permitted to access to the
specified SVT entry.

3-4 Application Programming Reference

CPSemWait (SEM_WAIT) - Wait for a Semaphore to become Clear

 Function
This SVC suspends the calling task until the specified synchronization semaphore
is cleared. If the semaphore is already clear, an immediate return occurs.

If this SVC specifies a time-out, and while the task is waiting for the semaphore a
signal arrives that causes a signal handler to be entered and this SVC is then
resumed after the return from the signal handler, the time-out is restarted from the
beginning. Currently, no attempt is made to restart the time-out for only the
remaining period.

 C Syntax
long int CPSemWait(unsigned long int SVid,

unsigned long int Timeout);

 Parameters
SVid The SVid of the synchronization semaphore to wait on.

Timeout The wait/no-wait option and time-out period. This accepts the following
values:

0 - SVCNOWAIT
No wait, immediately returns to the caller with return code
QSVCsembusy if the semaphore is set, or return code
QSVCgood if the semaphore is clear.

0xFFFFFFFF - SVCWAITFOREVER
Wait indefinitely until the semaphore next clears.

Other Wait until the semaphore is next cleared, but only for the
specified time (in µsecs). If this time-out occurs, the SVC
Handler returns to the caller with return code QSVCtimedout.

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCsembusy (0x80010012)
The semaphore is set (immediate return case only).

QSVCbadSVid (0x80010002)
Specified SVT entry is not valid, or it is not a synchronization
semaphore. This return code can also occur if the calling task is a
“system” task, but it is not permitted to access to the specified SVT
entry.

QSVCdeadSVid (0x8001000C)
The specified SVT entry is being or has been removed from the system.

QSVCtimedout (0x8001000B)
The time-out has occurred.

QSVCinterrupt (0x80010024)
This SVC was interrupted by a signal, and the semaphore may or may
not have been cleared.

 Chapter 3. Synchronization Semaphore Operations 3-5

SVC Handler Generated Faults
QSVCinvSVid (0x82)

The caller is not a “system” task and is not permitted to access to the
specified SVT entry.

3-6 Application Programming Reference

 Chapter 4. Inter-Task Messages

CPCountMsg (COUNT_MESG) - Return Count of Messages in a Queue

 Function
This call returns the number of messages currently in a queue.

 C Syntax
long int CPCountMsg(unsigned long int SVid,

unsigned long int \Count);

 Parameters
SVid The SVid of the message queue to be queried; this may also be the

SVid of the caller or zero. If zero is specified, the message queue of
the calling task is used.

Count A pointer to a location to receive the returned message count.

 Return Parameters
*Count If the return code is QSVCgood, this location is set to the number of

messages in the queue.

Otherwise, this location is indeterminate.

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadSVid (0x80010002)
Specified SVT entry is not valid, or it is not a task or system message
queue. This return code can also occur if the calling task is a “system”
task, but it is not permitted to access to the specified SVT entry.

QSVCdeadSVid (0x8001000C)
The specified SVT entry is being or has been removed from the system.

SVC Handler Generated Faults
QSVCinvSVid (0x82)

The caller is not a “system” task, and it is not permitted to access to the
specified SVT entry.

 Copyright IBM Corp. 1989-1994, 1996-1998 4-1

CPPeekMsg (PEEK_MESG) - “Peek” a Message

 Function
This SVC examines an item on a message queue, without removing the item from
the queue. This SVC returns only the header of the message buffer. It does not
return the message data. Specifically, the data count returned in the message
header by this SVC is the actual value in the header of the message. Thus this
SVC can be used to determine the required buffer length necessary to receive a
particular message.

After peeking a message, if that message is to be received in a subsequent SVC,
use the “by message id” option in the RECV_MESG or SPLIT_RECV SVC and
quote the message ID returned by the PEEK_MESG SVC. This ensures that the
correct message is received.

This SVC by default returns data for the first message on the queue. However, by
specifying a non-zero Mode parameter and setting appropriate values in the
supplied message header, a certain specific message can be peeked, or only
messages from a specified task, or only messages with the specified type.

A successful peek does not guarantee that a subsequent receive is successful. For
example, the system does not lock the peeked message, which means that another
task may receive it after it has been peeked.

If this SVC specifies a time-out, and while the task is waiting for a message a
signal arrives that causes a signal handler to be entered and this SVC is then
resumed after the return from the signal handler, the time-out is restarted from the
beginning. Currently, no attempt is made to restart the time-out for only the
remaining period.

 C Syntax
long int CPPeekMsg(void \MsgBuf,

unsigned long int \Count,
unsigned long int Mode,
unsigned long int Timeout);

 Parameters
MsgBuf A pointer to a buffer to contain a message header (that is, a QMSGHDR

structure), as shown in Figure 4-1 on page 4-3.

Fields in this structure must be set up as follows:

Byte 0 - HdrVer
Must be set to the message header format (currently always
0).

bytes 4-7 - send_id
If Mode bit 5 is set, this field must be set to the SVid of the
required sending task. Otherwise, this field is ignored in the
call.

bytes 12-15 - msgq_id
Must be set to the SVid of the message queue to be
searched; this can also be the SVid of the caller or zero. If

4-2 Application Programming Reference

typedef struct qmsghdr
{

unsigned char HdrVer; /\ Header version \/

unsigned char msg_pri; /\ Message priority \/

unsigned short int rsrv1; /\ (reserved) \/

unsigned long int send_id; /\ Sender's task SVid \/

unsigned long int rsrv2; /\ (reserved) \/

unsigned long int msgq_id; /\ Message queue SVid (ð = self) \/

unsigned long int rsrv3; /\ (reserved) \/

unsigned long int msg_id; /\ Unique, system assigned Message ID \/

unsigned long int dw_count; /\ Data area length (not incl. header) \/

unsigned long int msg_type; /\ Message type (user defined field) \/

} QMSGHDR;

Figure 4-1. Message Header Structure

zero is specified, the message queue of the calling task is
used.

bytes 20-23 - msg_id
If Mode bit 7 is set, this field must be set to the message ID
of the message to be peeked. Otherwise, this field is ignored
in the call.

bytes 28-31 - msg_type
If Mode bit 6 is set, this field holds the desired message type.
Otherwise, this field is ignored in the call.

Other fields in the buffer are ignored by the SVC Handler.

Count A pointer to a location to receive the count of messages in the queue.

Mode An 8-bit bit significant field, as follows:

bit 7 - QSVCmsg_id (0x01)
If set, this SVC peeks only a message with the message ID
contained in the field msg_id (bytes 20-23) of the parameter
list. If this bit is set, bits 0-6 must be 0, and timeout must also
be 0.

bit 6 - QSVCmsg_type (0x02)
If set, this SVC peeks only a message with the message type
specified in the field msg_type (bytes 28-31) of the parameter
list.

If this bit is set, bit 5 can also be set. This further restricts the
selection to messages of the specified type from a particular
sender.

bit 5 - QSVCmsg_sender (0x04)
If set, this SVC peeks only a message sent by the task whose
SVid is specified in the field send_id (bytes 4-7) of the
parameter list.

If this bit is set, bit 6 can also be set. This further restricts the
selection to messages with a specific type from this sender.

If this field is zero, the system call peeks the first message on the
specified queue.

 Chapter 4. Inter-Task Messages 4-3

Timeout The wait/no-wait option and time-out period. This accepts the following
values:

Note: If Mode bit 7 is set, Timeout must be 0.

0 - SVCNOWAIT
No wait, immediate return to the caller (with return code
QSVCQempty) if a message is not available.

0xFFFFFFFF - SVCWAITFOREVER
Wait indefinitely until a message arrives on the queue.

other Wait until a message becomes available, but only for the
specified time (in µsecs). If this time-out occurs, the SVC
Handler returns to the caller with return code QSVCtimedout.

 Return Parameters
*Count If the return code is set to QSVCgood or QSVCdeadSVid, this location

is set to the count of messages currently in the queue, including the
message returned by this SVC.

Otherwise, this location is indeterminate.

message buffer
If the return code is QSVCgood, the fields of the message header buffer
are set as follows. Otherwise, the buffer is unchanged from the call.

byte 0 - HdrVer
Set to 0 (the message buffer format).

byte 1 - msg_pri
Set to the message priority.

bytes 2,3 Indeterminate.

bytes 4-7 - send_id
Set to the SVid of the message sender.

bytes 8-11
Indeterminate (these bytes actually contain whatever was in
bytes 4-7 of the sender's message buffer).

bytes 12-15 - msgq_id
The target SVid of this message. In the case of a message
from the caller's own message queue, this is the SVid of the
calling task.

bytes 16-19
Indeterminate (these bytes actually contain whatever was in
bytes 16-19 of the sender's message buffer).

bytes 20-23 - msg_id
The message ID assigned by the system when the message
was sent.

bytes 24-27 - dw_count
The count of double-words specifying the size of the buffer
required to receive this message, excluding the message
header. This is in the range 0-1024.

4-4 Application Programming Reference

bytes 28-31 - msg_type
The message type, as specified in bytes 28-31 of the
sender's message buffer.

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadSVid (0x80010002)
Specified SVT entry is not valid, or it is not a task or system message
queue. This return code can also occur if the calling task is a “system”
task, but it is not permitted to access to the specified SVT entry.

QSVCdeadSVid (0x8001000C)
The Specified SVT entry is being or has been removed from the system.

QSVCQempty (0x80010009)
Specified queue is empty, or a message with the specified ID, type, or
sender cannot be found on the queue.

QSVCbadreq (0x8001001E)
This can occur for the following reasons:

� Mode bit 7 is set, and bits 0-6 are not all unset.
� Mode bit 7 is set and Timeout ≠ 0.
� Mode bit 7 is unset, and bit 5, 6, or both are set, and bits 0-4 are

not all unset.
� The buffer header format type (byte 0) is not 0.

QSVCtimedout (0x8001000B)
The Time-out has occurred.

QSVCinterrupt (0x80010024)
This SVC was interrupted by a signal, and no data has been returned.

SVC Handler Generated Faults
QSVCparlist (0x81)

The parameter MsgBuf does not point to an allocated writeable page.

QSVCinvSVid (0x82)
The caller is not a “system” task and it is not permitted to access to the
specified SVT entry.

If the specified buffer is not accessible or within its segment limits, or if all or part of
the buffer cannot have physical pages allocated to it, the following faults can occur
for this SVC:

� General protection fault (Intel)
� Stack fault (Intel)
� Data storage interrupt (PowerPC)

 � Page fault

 Chapter 4. Inter-Task Messages 4-5

CPRecvMsg (RECV_MESG) - Receive a Message

 Function
This SVC obtains an item from a request queue. Receiving the message removes
it from the message queue.

The task issuing the RECV_MESG SVC must provide a buffer large enough to hold
the header plus n 32-bit words for the message data. The receiver's message
buffer should be aligned on a double-word boundary for maximum efficiency.

Note: If the program uses CP/Q C heap management routines to allocate the
buffer, double-word alignment is guaranteed.

If the size of the incoming message is larger than the supplied buffer (as specified
by the message header in the buffer), only that portion of the message that fits in
the caller's buffer is returned. The remaining data is lost. In this case, the return
code will be QSVCsmallbuff.

This SVC (by default) returns the first message on the queue. However, by
specifying a non-zero Mode parameter and setting appropriate values in the
supplied message header, the following messages can be received:

� A specific message
� Only messages from a specified task
� Only messages with the specified type
� Only messages from a specified task with a particular type

Each message is associated with a unique message ID, which is assigned by the
system when the message is sent. This ID is returned to the sender of a message,
and it is included in the message header sent to the receiver of the message. By
convention, when a task sends a message that is a reply to some message that
task received, the type field in the header of the reply message is set to the
message ID of the original (request) message. Thus, after sending a message, a
task might wait for the reply to that message by specifying “receive messages with
a particular type” and setting the type to the message ID of the sent message.

If this SVC specifies a time-out, and while the task is waiting for a message a
signal arrives that causes a signal handler to be entered and this SVC is then
resumed after the return from the signal handler, the time-out is restarted from the
beginning. Currently, no attempt is made to restart the time-out for only the
remaining period.

This call is a potentially blocking function call, which means if the queue is empty,
or it does not have a message with a matching message ID, type value, or sender
ID, the task can block within the SVC Handler until an acceptable message arrives.
There are two ways to avoid an indefinite blocking situation. First, the caller can
use the Timeout parameter as described above. The other method uses the
CPCountMsg function call. This call (described above) is non-blocking and returns
the number of messages in a particular queue.

A task can also examine messages using the CPPeekMsg call.

4-6 Application Programming Reference

typedef struct qmsghdr
{

unsigned char HdrVer; /\ Header version \/

unsigned char msg_pri; /\ Message priority \/

unsigned short int rsrv1; /\ (reserved) \/

unsigned long int send_id; /\ Sender's task SVid \/

unsigned long int rsrv2; /\ (reserved) \/

unsigned long int msgq_id; /\ Message queue SVid (ð = self) \/

unsigned long int rsrv3; /\ (reserved) \/

unsigned long int msg_id; /\ Unique, system assigned Message ID \/

unsigned long int dw_count; /\ Data area length (not incl. header) \/

unsigned long int msg_type; /\ Message type (user defined field) \/

} QMSGHDR;

typedef struct msg
{

 QMSGHDR h;
unsigned long int msg_data[1ð24]; /\ ð-1ð24 32_bit words of data \/

} MSG;

Figure 4-2. Message Structures

 C Syntax
long int CPRecvMsg(void \MsgBuf,

unsigned long int \Count,
unsigned long int Mode,
unsigned long int Timeout);

 Parameters
MsgBuf A pointer to a buffer to contain a message and header (that is, a MSG

structure), as shown in Figure 4-2.

Fields in this structure must be set up as follows:

byte 0 - h.HdrVer
Must be set to the message header format (currently always
0).

bytes 4-7 - h.send_id
If Mode bit 5 is set, this field must be set to the SVid of the
desired sending task. Otherwise, this field is ignored in the
call.

bytes 12-15 - h.msgq_id
Must be set to the SVid of the message queue to be
searched; this may also be the SVid of the caller or zero. If
zero is specified, the message queue of the calling task is
used.

bytes 20-23 - h.msg_id
If Mode bit 7 is set, this field must be set to the message ID
of the message to be peeked. Otherwise, this field is ignored
in the call.

bytes 24-27 - h.dw_count
The length in 32-bit words of the message data vector
msg_data in the supplied buffer. This count (and the

 Chapter 4. Inter-Task Messages 4-7

associated vector) should be large enough to receive the
maximum anticipated message size. A message is limited to
1024 32-bit words (not including the header).

bytes 28-31 - h.msg_type
If Mode bit 6 is set, this field holds the desired message type.
Otherwise, this field is ignored in the call.

Other fields in the MsgBuf structure are ignored by the SVC Handler.

Count A pointer to a location to receive the count of messages in the queue.

Mode An 8-bit bit significant field, as follows:

bit 7 - QSVCmsg_id (0x01)
If set, this SVC receives only a message with the message ID
contained in the field msg_id (bytes 20-23) of the parameter
list. If this bit is set, bits 0-6 must be 0, and timeout must also
be 0.

bit 6 - QSVCmsg_type (0x02)
If set, this SVC receives only a message with the message
type specified in the field msg_type (bytes 28-31) of the
parameter list.

If this bit is set, bit 5 can also be set. This further restricts the
selection to messages of the specified type from a particular
sender.

bit 5 - QSVCmsg_sender (0x04)
If set, this SVC receives only a message sent by the task
whose SVid is specified in the field send_id (bytes 4-7) of the
parameter list.

If this bit is set, bit 6 can also be set. This further restricts the
selection to messages with a specific type from this sender.

If this field is 0, the system call receives the first message on the
specified queue.

Timeout The wait/no-wait option and time-out period. This accepts the following
values: if Mode bit 7 is set, and Timeout must be zero.

0 - SVCNOWAIT
No wait, immediate return to the caller (with return code
QSVCQempty) if a message is not available.

0xFFFFFFFF - SVCWAITFOREVER
Wait indefinitely until a message arrives on the queue.

other Wait until a message becomes available, but wait only for the
specified time (in µsecs). If this time-out occurs, the SVC
Handler returns to the caller with return code QSVCtimedout.

 Return Parameters
*Count If the return code is set to QSVCgood or QSVCdeadSVid, this location

is set to the count of messages remaining in the queue after removing
this message.

Otherwise, this location is indeterminate.

4-8 Application Programming Reference

message buffer
If the return code is QSVCgood, the fields of the message header buffer
are set as follows.

Note: Otherwise, the buffer is unchanged from the call.

byte 0 - h.HdrVer
Set to 0 (the message buffer format).

byte 1 - h.msg_pri
Set to the message priority.

bytes 2,3 Indeterminate.

bytes 4-7 - h.send_id
Set to the SVid of the sender of the message.

bytes 8-11
Indeterminate (these bytes contain what was in bytes 4-7 of
the sender's message buffer).

bytes 12-15 - h.msgq_id
The target SVid of this message. In the case of a message
from the caller's message queue, this is the SVid of the
calling task.

bytes 16-19
Indeterminate (these bytes contain what was in bytes 16-19
of the sender's message buffer).

bytes 20-23 - h.msg_id
The ID of this message, as assigned by the system when
this message was sent.

bytes 24-27 - h.dw_count
The count of 32-bit words returned in bytes 32 onwards of
the buffer (that is, the vector msg_data). This is in the range
0-1024.

bytes 28-31 - h.msg_type
The message type, as specified in bytes 28-31 of the
sender's message buffer.

bytes 32 onwards - msg_data
Message data, the count is specified in h.dw_count (bytes
24-27).

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadSVid (0x80010002)
Specified SVT entry is not valid, or it is not a task or system message
queue. This return code can also occur if the calling task is a “system”
task, but it is not permitted to access to the specified SVT entry.

QSVCdeadSVid (0x8001000C)
The specified SVT entry is being or has been removed from the system.

QSVCQempty (0x80010009)
The specified queue is empty, or a message with the specified ID, type,
or sender cannot be found on the queue

 Chapter 4. Inter-Task Messages 4-9

QSVCbadreq (0x8001001E)
This can occur for the following reasons:

� Mode bit 7 is set, and bits 0-6 are not all unset.
� Mode bit 7 is set and Timeout ≠ 0.
� Mode bit 7 is unset, and bits 5 or 6 or both are set, and bits 0-4 are

not all unset.
� The buffer header format type (byte 0) is not 0.
� The data count is >1024 32-bit words.

QSVCsmallbuff (0x80010010)
A message has been returned, but the caller's buffer is too small to
receive all of the message data. The returned data count shows how
much data was returned. The remaining data has been lost.

QSVCtimedout (0x8001000B)
The time-out has occurred.

QSVCinterrupt (0x80010024)
This SVC was interrupted by a signal, and no data has been returned.

SVC Handler Generated Faults
QSVCparlist (0x81)

The parameter MsgBuf does not point to an allocated writeable page.

QSVCinvSVid (0x82)
The caller is not a “system” task and is not permitted to access to the
specified SVT entry.

If the specified buffer is not accessible or within its segment limits, or if all or part of
the buffer cannot have physical pages allocated to it, the following faults can occur:

� General protection fault (Intel)
� Stack fault (Intel)
� Data storage interrupt (PowerPC)

 � Page fault

4-10 Application Programming Reference

CPSendMsg (SEND_MESG) - Send a Message

 Function
This SVC sends a message to a message queue or another task.

An item for this message is added to the target queue, in a position that depends
on the priority of the new message relative to the priorities of messages already on
the queue. The new message is inserted in the queue after all messages on the
queue with higher (that is, numerically smaller) priority, and immediately after any
messages already on the queue with the same priority as the new message.

Note: The priority should be specified as 255 except in those circumstances when
higher priority messages really are required. This gives better performance
because the new message is then simply added to the end of the queue. This
eliminates searching the queue for the correct place to insert the new item.

In this case, the operation of the queue is FIFO (that is, the first message sent is
the first received).

The message header from this call is copied into an RQE (Request Queue
Element) on the target message queue. The message data is also copied into this
RQE if the data count is not greater than the maximum length of a short message,
which defaults to 7 32-bit words, but can be changed at system build time to be
any value in the range 6-16. If the data count is too great for a short message, the
data is copied to a system buffer within the Message Buffer Area (MBA). It is more
efficient to use short messages, because this eliminates the need to allocate an
MBA buffer when sending the message and free this buffer when the message is
received.

Upon return to the caller from this SVC, the caller's buffer has been copied and is
free for immediate re-use.

Each message is associated with a unique message ID, which is assigned by the
system when the message is sent. This ID is returned to the sender of a message,
and it is included in the message given to the receiver of the message. By
convention, when a task sends a message that is a reply to some message that
task received, the type field in the header of the reply message is set to the
message ID of the original (request) message. Thus, after sending a message, a
task might wait for the reply to that specific message by specifying “receive
messages with a particular type” and setting the type to the message ID of the sent
message.

Although this call is non-blocking, if there is a task of higher dispatch priority
currently waiting in a RECV_MESG on the destination message queue, and the
new message matches the requirements (type, sending task SVid, etcetera) of the
receiving task, then an immediate task change occurs to that task.

It is recommended that the sender's message buffer be aligned on a 32-bit word
boundary for maximum efficiency. If the program uses CP/Q C heap management
routines to allocate the buffers, this alignment is guaranteed.

 Chapter 4. Inter-Task Messages 4-11

typedef struct qmsghdr
{

unsigned char HdrVer; /\ Header version \/

unsigned char msg_pri; /\ Message priority \/

unsigned short int rsrv1; /\ (reserved) \/

unsigned long int send_id; /\ Sender's task SVid \/

unsigned long int rsrv2; /\ (reserved) \/

unsigned long int msgq_id; /\ Message queue SVid (ð = self) \/

unsigned long int rsrv3; /\ (reserved) \/

unsigned long int msg_id; /\ Unique, system assigned Message ID \/

unsigned long int dw_count; /\ Data area length (not incl. header) \/

unsigned long int msg_type; /\ Message type (user defined field) \/

} QMSGHDR;

typedef struct msg
{

 QMSGHDR h;
unsigned long int msg_data[1ð24]; /\ ð-1ð24 32_bit words of data \/

} MSG;

Figure 4-3. Message Structures

 C Syntax
long int CPSendMsg(void \MsgBuf);

 Parameters
MsgBuf A pointer to a buffer to contain a message and header (that is, a MSG

structure), as shown in Figure 4-3.

Fields in this structure must be set up as follows:

byte 0 - h.HdrVer
Set to the message header format (currently always 0).

byte 1 - h.msg_pri
The required message priority.

Priority Comments

0-31 Sending task must have TCBsyspriv privilege bit
set.

32-254 Available to all tasks.

255 Available to all tasks.

This is the recommended choice for most
messages. The system does not perform an
insertion scan of the destination queue, but instead
simply adds the message to the end of the queue.
This results in a performance savings proportional
to the current size of the destination queue.

bytes 2,3 Unused.

bytes 4-7 - h.send_id
Ignored by the SVC Handler. In the message seen by the
receiver, these bytes are over-written with the SVid of the
sender.

4-12 Application Programming Reference

bytes 8-11
Ignored by the SVC Handler. These bytes are passed
unaltered to the receiver of the message.

Note: To avoid future compatibility problems, these bytes
should be set to 0.

bytes 12-15 - h.msgq_id
In a call from a C program, this must be set to the SVid of
the message queue or task to receive this message.

At the assembler interface level, this field is ignored by the
SVC Handler; the destination of the message is passed to
the SVC Handler in a register (the C-callable stub routine
takes care of this).

In the message as seen by the receiver, these bytes are
over-written by the SVC Handler with the SVid of the target
message queue, as passed to the SVC Handler in the
register.

bytes 16-19
Ignored by the SVC Handler. These bytes are passed
unaltered to the receiver of the message.

To avoid future compatibility problems, these bytes should be
set to 0.

bytes 20-23 - h.msg_id
Ignored by the SVC Handler. As seen by the receiver, these
message bytes are over-written with the message ID as
assigned by the system when the message was sent.

bytes 24-27 - h.dw_count
The count in 32-bit words of the data in msg_data (bytes 32
onwards). This must be a value in the range 0-1024
(inclusive).

bytes 28-31 - h.msg_type
The message type, which is a value assigned by the sender.
This is passed unaltered to the receiver. These bytes are
not used or checked by the SVC Handler.

 Return Parameters
message buffer

If the return code is QSVCgood, the field h.msg_id (bytes 20-23) of the
message header is set to the ID of this message, as assigned by the
system when this message was sent. Otherwise, the buffer is
unchanged from the call.

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadSVid (0x80010002)
Specified SVT entry is not valid, or it is not a task or system message
queue. This return code can also occur if the calling task is a “system”
task, but it is not permitted to access the specified SVT entry.

 Chapter 4. Inter-Task Messages 4-13

QSVCdeadSVid (0x8001000C)
The specified SVT entry is being or has been removed from the system.

QSVCbadreq (0x8001001E)
This can occur for the following reasons:

� The buffer header format type (byte 0) is not 0.
� The data count is >1024 double-words.

QSVCnobuffer (0x8001000E)
Insufficient free space in the MBA to allocate a buffer for this request.

QSVCtoomanymsgs (0x80010039)
The calling task has sent too many messages that have not yet been
received (that is, more than the number in the NDA field
max_task_msg).

This error cannot occur if the code to perform message count checking
is omitted from the SVC Handler.

SVC Handler Generated Faults
QSVCinvalid (0x80)

The request priority is less than QSVCMINPRTY (= 32), and the calling
task does not have the TCBsyspriv bit set.

QSVCparlist (0x81)
The parameter MsgBuf does not point to an allocated writeable page.

QSVCinvSVid (0x82)
The caller is not a “system” task, and it is not permitted to access the
specified SVT entry.

QSVCmsgcount (0x85)
The calling task has sent too many messages that have not yet been
received (that is, more than the number in the NDA field
max_task_msg).

This fault cannot occur if the code to perform message count checking
is omitted from the SVC Handler.

Note: This fault is not generated in the current versions of CP/Q.
Instead, the sending task receives the return code
QSVCtoomanymsgs.

If the specified buffer is not accessible or within its segment limits, or if all or part of
the buffer cannot have physical pages allocated to it, the following faults can occur:

� General protection fault (Intel)
� Stack fault (Intel)
� Data storage interrupt (PowerPC)

 � Page fault

4-14 Application Programming Reference

CPSendRecvMsg (SEND_RECV) - Send a Message and Await a Reply

 Function
This call is used to send a message to a message queue or another task, and then
wait for a reply to that message. This SVC is equivalent to a SEND_MESG SVC,
using a send message buffer, to a task or message queue (not the calling task,
because a task cannot do a SEND_RECV to itself), followed by a RECV_MESG to
receive a message from the task's message queue, where the only message to be
received is one with a type (in bytes 28-31 of the message header) set to the
message ID of the sent message. If no such message is received, the calling task
waits indefinitely. This SVC should be used only when the caller is sure that the
destination task follows the convention of replying to received messages with a
message whose type is the ID of the received message.

Each message is associated with a unique message ID, which is assigned by the
system when the message is sent. This ID is returned to the sender of a message,
and it is included in the message given to the receiver of the message. By
convention, when a task sends a message that is a reply to some message that
task received, the type field in the header of the reply message is set to the
message ID of the original (request) message. Thus, after sending a message, a
task might wait for the reply to that specific message by specifying “receive
messages with a particular type” and setting the type to the message ID of the sent
message.

The specifications of the SEND_MESG and RECV_MESG SVCs should be also
examined; SEND_RECV is implemented as a SEND_MESG, immediately followed
by a RECV_MESG. The call for SEND_RECV is the same as SEND_MESG
except for the following:

� The SVid cannot be zero and cannot be the sender.

� There is a time-out parameter for the receive.

� There is a second message buffer for the receive.

� The message ID is not inserted into the header of the send message buffer.

The return from SEND_RECV is the same as the return from RECV_MESG, except
that extra error codes (from SEND_MESG) are possible. If an error is detected
during the SEND_MESG phase, no message is sent. However, if an error is not
detected until the RECV_MESG phase (for example, the receive buffer is not
checked until the start of the receive phase, after the message has been sent) the
message was sent, but the calling task does not wait for the reply.

It is possible for SendMsgBuf to have the same value as RecvMsgBuf (that is, the
send and receive buffers might be the same buffer). In this case, the maximum
length of the receive message data is the same as the length of the send message
data buffer.

If this SVC specifies a time-out, and while the task is waiting for a message a
signal arrives that causes a signal handler to be entered and this SVC is then
resumed after the return from the signal handler, the time-out is restarted from the
beginning. Currently, no attempt is made to restart the time-out for only the
remaining period.

 Chapter 4. Inter-Task Messages 4-15

It is recommended that the caller's message buffer be aligned on a 32-bit boundary
for maximum efficiency. If the program uses CP/Q C heap management routines to
allocate the buffers, this alignment is guaranteed.

 C Syntax
long int CPSendRecvMsg(void \SendMsgBuf,
 void \RecvMsgBuf,

unsigned long int \Count,
unsigned long int Timeout);

 Parameters
SendMsgBuf

A pointer to a buffer containing a message and header (that is, a MSG
structure) to be sent. The format and contents of this are the same as
for the buffer for a CPSendMsg (SEND_MESG) SVC, except the field
h.msgq_id cannot be 0, nor may it hold the SVid of the sender.

Count A pointer to a location to receive the count of messages in the queue.

Timeout The wait/no-wait option and time-out period. This accepts the following
values:

0 - SVCNOWAIT
No wait, immediate return to the caller (with return code
QSVCQempty) if the reply message is not immediately
available.

0xFFFFFFFF - SVCWAITFOREVER
Wait indefinitely until the reply message is becomes
available.

other Wait until the reply is available, but only for the specified time
(in µsecs). If this time-out occurs, the SVC Handler returns
to the caller with return code QSVCtimedout.

 Return Parameters
*Count If the return code is set to QSVCgood or QSVCdeadSVid, this location

is set to the count of messages remaining in the queue after receiving
the reply message.

Otherwise, this location is indeterminate.

SendMsgBuf
Unless this is the same buffer as RecvMsgBuf, this buffer is unchanged
from the call.

RecvMsgBuf
This buffer is set in the same way as a buffer for a RECV_MESG SVC.

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadSVid (0x80010002)
This return code can occur for the following reasons:

� The specified SVT entry is not valid, or it is not a task or system
message queue.

� The specified SVid is 0 or is that of the caller.

4-16 Application Programming Reference

� If the calling task is a system task, but it is not permitted to access
to the specified SVT entry.

QSVCdeadSVid (0x8001000C)
The specified SVT entry is being or has been removed from the system.

QSVCQempty (0x80010009)
The Timeout parameter was 0, and the reply message is not
immediately available.

QSVCbadreq (0x8001001E)
This can occur for the following reasons:

� The buffer header format type (byte 0) is not 0.
� The data count is >1024 double-words.

This applies to either buffer.

QSVCnobuffer (0x8001000E)
Insufficient free space in the MBA to allocate a buffer for this request.

QSVCsmallbuff (0x80010010)
A message has been returned, but the caller's buffer is too small to
receive all of the message data. The returned data count shows how
much data was returned. The remaing data is lost.

QSVCtimedout (0x8001000B)
The time-out has occurred.

QSVCinterrupt (0x80010024)
This SVC was interrupted by a signal, and no data has been returned.

QSVCtoomanymsgs (0x80010039)
The calling task has sent too many messages that have not yet been
received (that is, more than the number in the NDA field
max_task_msg).

This error cannot occur if the code to perform message count checking
is omitted from the SVC Handler.

SVC Handler Generated Faults
QSVCinvalid (0x80)

The request priority is < QSVCMINPRTY (= 32), and the calling task
does not have the TCBsyspriv bit set.

QSVCparlist (0x81)
The parameter MsgBuf does not point to an allocated writeable page.

QSVCinvSVid (0x82)
The caller is not a system task, and it is not permitted to access to the
specified SVT entry.

QSVCmsgcount (0x85)
The calling task has sent too many messages that have not yet been
received (that is, more than the number in the NDA field
max_task_msg).

This fault cannot occur if the code to perform message count checking
is omitted from the SVC Handler.

 Chapter 4. Inter-Task Messages 4-17

Note: This fault is not generated in the current versions of CP/Q.
Instead, the sending task receives the return code
QSVCtoomanymsgs.

If the specified buffer is not accessible or within its segment limits, or if some of the
buffer cannot have physical pages allocated to it, the following faults may occur:

� General protection fault (Intel)
� Stack fault (Intel)
� Data storage interrupt (PowerPC)

 � Page fault

4-18 Application Programming Reference

CPSplitMsg (SPLIT_SEND) - Send a Message with a Split Message area

 Function
This SVC sends a message to a message queue or another task, similar to the
CPSendMsg (SEND_MESG) SVC, except that the message header and message
data are not contiguous.

The message buffer supplied to this call consists of the header, plus up to four
count/pointer pairs which describe the message data areas to be transmitted. The
total data count that can be sent in a single message must be in the range 0-1024
32-bit data words. However, for this SVC it can be in up to four separate pieces.

Note: The full 64-byte parameter list must be supplied, even when the count of
used buffer pointers is less than four.

An item for this message is added to the target queue, in a position that depends
on the new message priority relative to the priorities of messages already on the
queue. The new message is inserted in the queue after all messages on the
queue with higher (that is, numerically smaller) priority, and immediately after any
messages already on the queue with the same priority as the new message.

Note: The priority should be specified as 255 except in those circumstances when
higher priority messages really are required. This gives better performance
because the new message is then simply added to the end of the queue. This
eliminates searching the queue for the correct place to insert the new item.

In this case, the operation of the queue is FIFO (that is, the first message sent is
the first received).

The message header from this call is copied into an RQE (Request Queue
Element) on the target message queue. The message data is also copied into this
RQE if the data count is not greater than the maximum length of a short message
(the maximum length of a short message defaults to 7 32-bit words, but can be
changed at system build time to be any value in the range 6-16). If the data count
is too great for a short message, the data is copied to a system buffer within the
Message Buffer Area (MBA). It is more efficient to use short messages, because
this eliminates the need to allocate an MBA buffer when sending the message and
free this buffer when the message is received. Upon return to the caller from this
SVC, the caller's buffer has been copied, and is free for immediate re-use.

Each message is associated with a unique message ID, which is assigned by the
system when the message is sent. This ID is returned to the sender of a message,
and it is included in the message given to the receiver of the message. By
convention, when a task sends a message that is a reply to some message that
task received, the type field in the header of the reply message is set to the
message ID of the original (request) message. Thus, after sending some message,
a task might wait for the reply to that specific message by specifying “receive
messages with a particular type,” and setting the type to the message ID of the
sent message.

Although this call is non-blocking, if there is a task of higher dispatch priority
currently waiting in a RECV_MESG on the destination message queue, and the
new message matches the requirements (type, sending task SVid, and so on) of
the receiving task, then an immediate task change occurs to that task.

 Chapter 4. Inter-Task Messages 4-19

It is recommended that the sender's message buffers be aligned on a 32-bit
boundary for maximum efficiency. If the program uses CP/Q C heap management
routines to allocate the buffers, this alignment is guaranteed.

 C Syntax
long int CPSplitMsg(void \MsgBuf);

 Parameters
MsgBuf A pointer to a buffer to contain a message and header (that is, a

SPLITMSG structure) as shown in Figure 4-4 on page 4-21.

Fields in this structure must be set up as follows:

byte 0 - h.HdrVer
Set to the message header format (currently always 0).

byte 1 - h.msg_pri
The required message priority,

The required message priority.

Priority Comments

0-31 Sending task must have TCBsyspriv privilege bit
set.

32-254 Available to all tasks.

255 Available to all tasks.

This is the recommended choice for most
messages. The system does not perform an
insertion scan of the destination queue, but instead
simply adds the message to the end of the queue.
This results in a performance savings proportional
to the current size of the destination queue.

bytes 2,3 Unused.

bytes 4-7 - h.send_id
Ignored by the SVC Handler. In the message seen by the
receiver, these bytes are over-written with the SVid of the
sender.

bytes 8-11
Ignored by the SVC Handler. These bytes are passed
unaltered to the receiver of the message.

To avoid future compatibility problems, these bytes should be
set to 0.

bytes 12-15 - h.msgq_id
In a call from a C program, this must be set to the SVid of
the message queue or task to receive this message.

At the assembler interface level, this field is ignored by the
SVC Handler; the destination of the message is passed to
the SVC Handler in a register (the C-callable stub routine
takes care of this).

In the message seen by the receiver, these bytes are
over-written by the SVC Handler with the SVid of the target

4-20 Application Programming Reference

typedef struct splitent
{

unsigned long int dw_count; /\ data count in 32-bit words \/

void \pdata; /\ pointer to separate data area \/

} SPLITENT;

typedef struct qmsghdr
{

unsigned char HdrVer; /\ Header version \/

unsigned char msg_pri; /\ Message priority \/

unsigned short int rsrv1; /\ (reserved) \/

unsigned long int send_id; /\ Sender's task SVid \/

unsigned long int rsrv2; /\ (reserved) \/

unsigned long int msgq_id; /\ Message queue SVid (ð = self) \/

unsigned long int rsrv3; /\ (reserved) \/

unsigned long int msg_id; /\ Unique, system assigned Message ID \/

unsigned long int dw_count; /\ Data area length (not incl. header) \/

unsigned long int msg_type; /\ Message type (user defined field) \/

} QMSGHDR;

typedef struct splitmsg
{

 QMSGHDR h;

 SPLITENT e[4];

} SPLITMSG;

Figure 4-4. Split Message Structures

message queue, as passed to the SVC Handler in the
register.

bytes 16-19
Ignored by the SVC Handler. These bytes are passed
unaltered to the receiver of the message.

To avoid future compatibility problems, these bytes should be
set to 0.

bytes 20-23 - h.msg_id
Ignored by the SVC Handler. In the message seen by the
receiver, this field is over-written with the message ID
assigned by the system when the message is sent.

bytes 24-27 - h.dw_count
The number of used count/pointer pairs in MsgBuf→e (bytes
32 onwards). This must be a value in the range 1-4
inclusive.

bytes 28-31 - h.msg_type
The message type, which is a value assigned by the sender.
This is passed unaltered to the receiver. These bytes are
not used or checked by the SVC Handler.

In addition, h.dw_count count/pointer pairs are used in the vector
MsgBuf→e, each of which describes a separate data area to be sent as
part of this message. Each of these entries has the following format:

 Chapter 4. Inter-Task Messages 4-21

bytes 0-3 - e.dw_count
The count in 32-bit words of the data in this data area. This
value must be in the range 0-1024 inclusive, but it is also
subject to the limit that the total count of all the used data
descriptors must not exceed 1024 32-bit words.

bytes 4-7 - e.pdata
A pointer to the data area.

 Return Parameters
message buffer

If the return code is QSVCgood, the field h.msg_id (bytes 20-23) of the
message header is set to the ID of this message, as assigned by the
system when this message was sent. Otherwise, the buffer is
unchanged from the call.

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadSVid (0x80010002)
Specified SVT entry is not valid, or it is not a task or system message
queue. This return code can also occur if the calling task is a system
task, but it is not permitted to access to the specified SVT entry.

QSVCdeadSVid (0x8001000C)
The specified SVT entry is being or has been removed from the system.

QSVCQempty (0x80010009)
Specified queue is empty, or a message with the specified ID, type, or
sender cannot be found on the queue

QSVCbadreq (0x8001001E)
This can occur for the following reasons:

� The buffer header format type (byte 0) is not 0.
� The total message data count is >1024 double-words.
� The number of count/pointer pairs is >4.

QSVCnobuffer (0x8001000E)
Insufficient free space in the MBA to allocate a buffer for this request.

QSVCtoomanymsgs (0x80010039)
The calling task has sent too many messages that have not yet been
received (that is, more than the number in the NDA field
max_task_msg).

This error cannot occur if the code to perform message count checking
is omitted from the SVC Handler.

SVC Handler Generated Faults
QSVCinvalid (0x80)

The request priority is < QSVCMINPRTY (= 32), and the calling task
does not have the TCBsyspriv bit set.

QSVCparlist (0x81)
The parameter MsgBuf does not point to an allocated writeable page.

4-22 Application Programming Reference

QSVCinvSVid (0x82)
The caller is not a system task, and it is not permitted to access to the
specified SVT entry.

QSVCmsgcount (0x85)
The calling task has sent too many messages that have not yet been
received (that is, more than the number in the NDA field
max_task_msg).

This fault cannot occur if the code to perform message count checking
is omitted from the SVC Handler.

Note: This fault is not generated in the current versions of CP/Q.
Instead, the sending task receives the return code
QSVCtoomanymsgs.

If the specified buffer is not accessible or within its segment limits, or if all or part of
the buffer cannot have physical pages allocated to it, the following faults can occur:

� General protection fault (Intel)
� Stack fault (Intel)
� Data storage interrupt (PowerPC)

 � Page fault

 Chapter 4. Inter-Task Messages 4-23

CPSplitRecv (SPLIT_RECV) - Receive a Message with a Split Buffer

 Function
This call obtains an item from a request queue. Receiving the message removes it
from the message queue. This SVC is very similar to CPRecvMsg (RECV_MESG),
except that the buffer to receive the message is divided into two parts, namely a
buffer for the message header, and a separate buffer to contain the message data.

The task issuing this call must provide a buffer large enough to receive the header
and another buffer message data. It is recommended that the receiver's buffers be
aligned on a 32-bit boundary for maximum efficiency. If the program uses CP/Q C
heap management routines to allocate the buffer, this alignment is guaranteed. If
the data count of the incoming message is larger than the supplied data buffer, only
that portion of the message that fits in the supplied buffer is returned. The
remaining data is lost. In this case, the return code is QSVCsmallbuff.

This SVC (by default) returns the first message on the queue. However, by
specifying a non-zero Mode parameter and setting appropriate values in the
supplied message header, a certain specific message can be received, or only
messages from a specified task, or only messages with the specified type.

Each message is associated with a unique message ID, which is assigned by the
system when the message is sent. This ID is returned to the sender of a message,
and it is included in the message given to the receiver of the message. By
convention, when a task sends a message that is a reply to some message that
task received, the type field in the header of the reply message is set to the
message ID of the original (request) message. Thus, after sending some message,
a task might wait for the reply to that specific message by specifying “receive
messages with a particular type” and setting the type to the message ID of the sent
message.

If this SVC specifies a time-out, and while the task is waiting for a message a
signal arrives that causes a signal handler to be entered and this SVC is then
resumed after the return from the signal handler, the time-out is restarted from the
beginning. Currently, no attempt is made to restart the time-out for only the
remaining period.

This call is a potentially blocking function call, which means that if the queue is
empty, or it does not have a message with a matching message ID, type value, or
sender ID, the task may block within the SVC Handler until a suitable message
arrives. There are two ways to avoid an indefinite blocking situation. First, the
caller can use the timeout parameter as described above. The other method is to
use the CPCountMsg function call. This call (described above) is non-blocking in
nature and returns the number of messages in a particular queue.

A task can also examine messages using the CPPeekMsg call.

 C Syntax
long int CPSplitRecv(void \MsgBuf,

unsigned long int \Count,
unsigned long int Mode,
unsigned long int Timeout);

4-24 Application Programming Reference

typedef struct splitent
{

unsigned long int dw_count; /\ data count in 32-bit words \/

void \pdata; /\ pointer to separate data area \/

} SPLITENT;

typedef struct qmsghdr
{

unsigned char HdrVer; /\ Header version \/

unsigned char msg_pri; /\ Message priority \/

unsigned short int rsrv1; /\ (reserved) \/

unsigned long int send_id; /\ Sender's task SVid \/

unsigned long int rsrv2; /\ (reserved) \/

unsigned long int msgq_id; /\ Message queue SVid (ð = self) \/

unsigned long int rsrv3; /\ (reserved) \/

unsigned long int msg_id; /\ Unique, system assigned Message ID \/

unsigned long int dw_count; /\ Data area length (not incl. header) \/

unsigned long int msg_type; /\ Message type (user defined field) \/

} QMSGHDR;

typedef struct splitmsg
{

 QMSGHDR h;

 SPLITENT e[4];

} SPLITMSG;

Figure 4-5. Split Message Structures

 Parameters
MsgBuf A pointer to a buffer to contain a message and header (that is, a

SPLITMSG structure) as shown in Figure 4-5.

Fields in this structure must be set up as follows:

byte 0 - h.HdrVer
Must be set to the message header format (currently always
0).

bytes 4-7 - h.send_id
If Mode bit 5 is set, this field must be set to the SVid of the
desired sending task. Otherwise, this field is ignored in the
call.

bytes 12-15 - h.msgq_id
Must be set to the SVid of the message queue to be
searched; this may also be the SVid of the caller or zero. If
zero is specified, the message queue of the calling task is
used.

bytes 20-23 - h.msg_id
If Mode bit 7 is set, this field must be set to the message ID
of the message to be peeked. Otherwise, this field is ignored
in the call.

bytes 24-27 - h.dw_count
The number of count/pointer pairs in the vector MsgBuf→e.
Currently, this must be set to 1.

 Chapter 4. Inter-Task Messages 4-25

bytes 28-31 - h.msg_type
If Mode bit 6 is set, this field holds the desired message type.
Otherwise, this field is ignored in the call.

bytes 32-35 - e[0].dw_count
The size of the buffer to receive the message data, in 32-bit
words.

bytes 36-39 - e[0].pdata
A pointer to the buffer to receive the message data.

Other fields in the MsgBuf structure are ignored by the SVC Handler.

Count A pointer to a location to receive the count of messages in the queue.

Mode An 8-bit bit significant field, as follows:

bit 7 - QSVCmsg_id (0x01)
If set, this SVC receives only a message with the message ID
contained in the field msg_id (bytes 20-23) of the parameter
list. If this bit is set, bits 0-6 must be 0, and timeout must also
be 0.

bit 6 - QSVCmsg_type (0x02)
If set, this SVC receives only a message with the message
type specified in the field msg_type (bytes 28-31) of the
parameter list.

If this bit is set, bit 5 can also be set. This further restricts the
selection to messages from a specific sender.

bit 5 - QSVCmsg_sender (0x04)
If set, this SVC peeks only a message sent by the task whose
SVid is specified in the field send_id (bytes 4-7) of the
parameter list.

If this bit is set, bit 6 can also be set. This further restricts the
selection to messages with a specific type.

If this field is 0, the system call receives the first message on the
specified queue.

Timeout The wait/no-wait option and time-out period. This accepts the following
values: if Mode bit 7 is set, only the value 0 is permitted for Timeout.

0 - SVCNOWAIT
No wait, immediate return to the caller (with return code
QSVCQempty) if there is no message available.

0xFFFFFFFF - SVCWAITFOREVER
Wait indefinitely until a message arrives.

other Wait until a message becomes available, but only for the
specified time (in µsecs). If this time-out occurs, the SVC
Handler returns to the caller with return code QSVCtimedout.

4-26 Application Programming Reference

 Return Parameters
*Count If the return code is set to QSVCgood or QSVCdeadSVid, this location

is set to the count of messages remaining in the queue after removing
this message.

Otherwise, this location is indeterminate.

message buffer
If the return code is QSVCgood, the fields of the message header buffer
are set as follows. Otherwise, the buffer is unchanged from the call.

byte 0 - h.HdrVer
Set to 0 (the message buffer format).

byte 1 - h.msg_pri
Set to the message priority.

bytes 2,3 Indeterminate.

bytes 4-7 - h.send_id
Set to the SVid of the sender of the message.

bytes 8-11
Indeterminate.

Note: These bytes contain whatever was in bytes 4-7 of the
sender's message buffer.

bytes 12-15 - h.msgq_id
The target SVid of this message. In the case of a message
from the caller's message queue, this is the SVid of the
calling task.

bytes 16-19
Indeterminate.

Note: These bytes actually contain whatever was in bytes
16-19 of the sender's message buffer.

bytes 20-23 - h.msg_id
The ID of this message, as assigned by the system when
this message was sent.

bytes 24-27 - h.dw_count
The number of count/pointer pairs in the vector MsgBuf→e.
This is set to 1 (it is unchanged from the call).

bytes 28-31 - h.msg_type
The type of this message, as specified in bytes 28-31 of the
sender's message buffer.

bytes 32-35 - e[0].dw_count
The count of 32-bit words received in the data buffer.

bytes 36-39 - e[0].pdata
A pointer to the buffer to receive the message data. This is
unchanged from the call.

 Chapter 4. Inter-Task Messages 4-27

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadSVid (0x80010002)
Specified SVT entry is not valid, or it is not a task or system message
queue. This return code can also occur if the calling task is a system
task, but it is not permitted to access to the specified SVT entry.

QSVCdeadSVid (0x8001000C)
The specified SVT entry is being or has been removed from the system.

QSVCQempty (0x80010009)
Specified queue is empty, or a message with the specified ID, type, or
sender cannot be found on the queue.

QSVCbadreq (0x8001001E)
This can occur for the following reasons:

� Mode bit 7 is set and AL bits 0-6 are not all unset.
� Mode bit 7 is set and Timeout ≠ 0.
� Mode bit 7 is unset and bit 5, 6, or both are set, and bits 0-4 are not

all unset.
� The buffer header format type (byte 0) is not 0.
� The number of count/pointer pairs is not one.
� The data count is >1024 double-words.

QSVCsmallbuff (0x80010010)
A message has been returned, but the caller's buffer is too small to
receive all of the message data. The returned data count shows how
much data was returned. The remaining data is lost.

QSVCtimedout (0x8001000B)
The time-out has occurred.

QSVCinterrupt (0x80010024)
This SVC was interrupted by a signal, and no data has been returned.

SVC Handler Generated Faults
QSVCparlist (0x81)

The parameter MsgBuf does not point to an allocated writeable page.

QSVCinvSVid (0x82)
The caller is not a system task, and it is not permitted to access to the
specified SVT entry.

If the specified buffer is not accessible or within its segment limits, or if all or part of
the buffer cannot have physical pages allocated to it, the following faults can occur:

� General protection fault (Intel)
� Stack fault (Intel)
� Data storage interrupt (PowerPC)

 � Page fault

4-28 Application Programming Reference

Chapter 5. Resource/Serialization Semaphore Operations

CPSemClaim (CLAIMSEM) - Claim a Semaphore

 Function
This call claims a resource serialization semaphore; it is used to guarantee serial
access to shared resources.

If the semaphore is free, it is claimed by the caller. Otherwise, the caller can wait
until it becomes available or receive an immediate error return.

If this SVC specifies a time-out, and while the task is waiting for the semaphore a
signal arrives that causes a signal handler to be entered and this SVC is then
resumed after the return from the signal handler, the time-out is restarted from the
beginning. Currently, no attempt is made to restart the time-out for only the
remaining period.

 C Syntax
long int CPSemClaim(unsigned long int SVid,

unsigned long int Timeout);

 Parameters
SVid The SVid of the semaphore to be claimed.

Timeout The wait/no-wait option and time-out period. This accepts the following
values:

0 - SVCNOWAIT
No wait, immediate return to the caller with return code
QSVCsembusy if the semaphore is set, or return code
QSVCgood if the semaphore is clear.

0xFFFFFFFF - SVCWAITFOREVER
Wait indefinitely until the semaphore next clears.

other Wait until the semaphore is next cleared, but only for the
specified time (in µsecs). If this time-out occurs, the SVC
Handler returns to the caller with return code QSVCtimedout.

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCsembusy (0x80010012)
The semaphore is already claimed, and it is not available (Timeout=0,
immediate return case, only).

QSVCbadSVid (0x80010002)
Specified SVT entry is not valid, or it is not a resource semaphore. This
return code can also occur if the calling task is a “system” task, but it is
not permitted to access to the specified SVT entry.

 Copyright IBM Corp. 1989-1994, 1996-1998 5-1

QSVCdeadSVid (0x8001000C)
The specified SVT entry is being or has been removed from the system.

This can occur if the semaphore is marked as “dying” when the call is
first issued, or if the semaphore is removed later, while the requesting
task is waiting on the task queue of the semaphore.

QSVCtimedout (0x8001000B)
The time-out has occurred.

QSVCinterrupt (0x80010024)
This SVC was interrupted by a signal, and the semaphore has not been
claimed by the caller.

SVC Handler Generated Faults
QSVCinvSVid (0x82)

The caller is not a “system” task, and it is not permitted to access to the
specified SVT entry.

5-2 Application Programming Reference

CPSemQuery (QRY_SEM) - Query the State of a Semaphore

 Function
This call obtains the status of a serialization semaphore. The SVid of the holder is
returned if the semaphore is claimed, and 0 if it is free.

 C Syntax
long int CPSemQuery(unsigned long int SVid,

unsigned long int \ClaimedBy);

 Parameters
SVid The SVid of the semaphore to be queried.

ClaimedBy A pointer to a location to receive the returned SVid.

 Return Parameters
*Claimedby If the return code is QSVCgood, this location is set to hold 0 (if the

semaphore is currently free) or the SVid of the task currently holding
the semaphore if it is claimed.

Otherwise, this location is indeterminate.

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadSVid (0x80010002)
The specified SVT entry is not valid, or it is not a resource semaphore.
This return code can also occur if the calling task is a system task, but it
is not permitted to access to the specified SVT entry.

QSVCdeadSVid (0x8001000C)
The specified SVT entry is being or has been removed from the system.

SVC Handler Generated Faults
QSVCinvSVid (0x82)

The caller is not a system task, and it is not permitted to access to the
specified SVT entry.

 Chapter 5. Resource/Serialization Semaphore Operations 5-3

CPSemRelease (REL_SEM) - Release a Semaphore

 Function
This call releases a previously claimed resource serialization semaphore. If there
are tasks queued waiting for this semaphore, the semaphore is given to the first
task on the queue.

If the queue for the semaphore is not empty, and the task that would be given the
semaphore is stopped, or it is “pending stopped” and the task is not in a critical
section, then the semaphore is not given to that task. The semaphore is given to
the next task on the queue (if any).

Note: No check is made that the semaphore is being released by the task that
claimed it.

For example, this means that task A could claim a semaphore, and then issue a
request to claim it again. The second claim causes task A to be suspended until
the semaphore becomes free. Task B could, on completion of some action,
release the semaphore. This causes task A’s second claim request to complete,
and task A then resumes execution.

This SVC is allowed, even if the semaphore is marked as “dying”. However, in this
situation, the semaphore is not given to the next task on the queue. It is assumed
that a task is attempting to clean up and remove the semaphore.

 C Syntax
long int CPSemRelease(unsigned long int SVid);

 Parameters
SVid The SVid of the semaphore to be released.

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadSVid (0x80010002)
The specified SVT entry is not valid, or itis not a resource semaphore.
This return code can also occur if the calling task is a system task, but it
is not permitted to access to the specified SVT entry.

QSVCnclaim (0x80010005)
The semaphore is already free.

SVC Handler Generated Faults
QSVCinvSVid (0x82)

The caller is not a system task, and it is not permitted to access to the
specified SVT entry.

5-4 Application Programming Reference

Chapter 6. Id Resolution and Translation

CPCheckID (CHECK_ID) - Query and Check Access to an SVT Entry

 Function
This call queries an SVid to obtain the type of system object specified by this SVT
entry and checks that the caller can successfully access the specified SVT entry. If
the caller can access the SVT entry, the return code is QSVCgood and the type of
the SVT entry (the SVT entry field SVTtype) is returned. If an error occurs while
attempting to access to this SVT entry (for example, the SVT entry is not valid,
unused, or the caller is not permitted access to the entry), an error return code is
given.

The calling task is never faulted by this call.

 C Syntax
long int CPCheckID(unsigned long int SVid,

unsigned long int \Type,
unsigned long int \ProcID);

 Parameters
SVid The SVid of the SVT entry to be queried.

Type A pointer to a location to receive the returned SVT entry type.

ProcID A pointer to a location to receive the returned process ID.

 Return Parameters
*Type If the return code is QSVCgood or QSVCnowrite, this location is set to

the type of the SVT entry. Otherwise, this location is unchanged.

The following values can be returned in this field:

0 Task
1 Resource/serialization semaphore
2 Synchronization semaphore
4 User-defined SVT item
6 Message queue

*ProcID If the return code is QSVCgood or QSVCnowrite, this location is set to
the ID of the process owning the specified SVT entry. Otherwise, this
location is unchanged.

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCnowrite (0x8001000F)
The SVT entry exists (and its SVid is being returned to the caller), and
the caller has read access but no write access to the SVT entry. For
example, the caller cannot send messages to this task or queue.

 Copyright IBM Corp. 1989-1994, 1996-1998 6-1

QSVCbadSVid (0x80010002)
This error code indicates one of the following:

� There is no SVT entry with this name.
� The specified SVid is not valid in some manner
� This SVT entry is in some way inaccessible to the requestor

– The SVT entry is marked as restricted to access from supervisor
mode code, and the caller is user mode.

– The SVT entry is marked as restricted to access from a process
other than that of the caller.

– The SVT entry is marked as restricted to access from a task
other than the caller.

QSVCdeadSVid (0x8001000C)
The specified SVT entry is being or has been removed from the system.

SVC Handler Generated Faults
None

6-2 Application Programming Reference

CPQueryID (QRY_ID) - Obtain SVid of Caller

 Function
This call returns various items of information about the caller's environment.

 C Syntax
long int CPQueryID(unsigned long int \SVid,

unsigned long int \TCBID,
unsigned long int \ProcID,
unsigned long int \EnvTabAddr);

 Parameters
SVid A pointer to a location to receive the caller's SVid

TCBID A pointer to a location to receive the caller's TCB ID

ProcID A pointer to a location to receive the caller's process ID

EnvTabAddr
A pointer to a location to receive the address offset of the caller's
parameter area (set to 0 if none)

 Return Parameters
*SVid Set to the caller's SVid

*TCBID Set to the caller's TCB ID

*ProcID Set to the caller's process ID

*EnvTabAddr
Set to the address offset of the caller's parameter area (0 if none)

 Return Codes
QSVCgood (0)

Operation completed successfully.

SVC Handler Generated Faults
none

 Chapter 6. Id Resolution and Translation 6-3

CPResolveID (ID_NAME) - Obtain SVT Name Corresponding to an SVid

 Function
This call returns the name of an SVT entry. If the SVid is not valid, an error return
code is given.

If the SVT entry is marked as being removed from the system, or if the SVT entry
is not marked as having a name, the error return code QSVCdeadSVid or
QSVCnoname is given, but the name field from the SVT entry is still returned. This
name can be non-null (even if the entry is not “named”). This can be determined
by setting the 8-byte buffer to all spaces before making the SVC and testing for
spaces afterwards.

 C Syntax
long int CPResolveID(unsigned long int SVid,
 char \NameAddr);

 Parameters
SVid The SVid of the SVT entry whose name is required.

Nameaddr
A pointer to an 8-byte buffer where the name is returned.

Note: This buffer must have write access.

 Return Parameters
*NameAddr

If the return code is QSVCgood or QSVCnoname, the buffer is
over-written with the name field of the SVT entry.

Otherwise, this buffer is unaltered.

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadSVid (0x80010002)
The specified SVid is not valid in some way.

QSVCnoname (0x80010032)
The specified SVid is not marked as “named” (but the name field is still
returned in the buffer).

QSVCdeadSVid (0x8001000C)
The specified SVT entry is being removed from the system, but the
name field is still returned in the buffer.

SVC Handler Generated Faults
QSVCparlist (0x81)

The parameter list is not valid. For example, the pointer does not refer
to an allocated page, or the page or pages specified by the parameter
are not writeable by the caller.

6-4 Application Programming Reference

CPResolveName (GET_ID) - Obtain SVid Corresponding to an SVT
Name

 Function
This call resolves an SVT name to an SVid. The SVT is scanned to locate the
name specified in the first parameter. Any SVT entries that are currently marked
as being removed from the system are ignored in this scan. Furthermore, if the
specified name exists in an SVT entry that is not marked as having a name, the
GET_ID SVC returns an error.

A complication can arise with the GET_ID SVC, particularly during system start-up,
whereby the SVT entry that the caller wants to access does not exist, even though
it is known that it will be created at some point during system initialization (this is
sometimes called a start-up “race” condition). To eliminate these start-up race
problems, the SVC Handler implements a queue associated with the GET_ID SVC,
whereby a task seeking the SVid of something has the option of waiting until the
required item is created. This “GET_ID” queue is a single system-wide queue. It is
scanned (assuming it contains something) every time an SVT entry is created and
checks if the new SVT entry satisfies a pending request. If the specified SVT entry
does not exist, the caller might receive an immediate error return or might be
placed on the system GET_ID queue and suspended until either the desired SVT
entry is created or until a specified time-out occurs.

The SVC Handler automatically claims and releases the system data area
semaphore during this SVC. This has the effect that the calling task can be
suspended by this SVC until this semaphore becomes free.

In general, if the specified SVT entry exists, the SVid, PCB ID, and SVT entry type
are returned even if an error occurs. If this information is not returned, the returned
SVid is explicitly set to 0.

If this SVC specifies a time-out, and while the task is waiting for the SVT entry to
be created a signal arrives that causes a signal handler to be entered and this SVC
is then resumed after the return from the signal handler, the time-out is restarted
from the beginning. Currently, no attempt is made to restart the time-out for only
the remaining period.

 C Syntax
long int CPResolveName(char \NameAddr,

unsigned long int \SVid,
unsigned long int \Type,
unsigned long int \ProcID,
unsigned long int Timeout);

 Parameters
NameAddr

A pointer to an 8-byte buffer containing the name to be resolved. If the
name is less than eight characters, it should be terminated by a space
or NUL character. The buffer can be read-only.

SVid A pointer to a location to receive the returned SVid.

Type A pointer to a location to receive the returned SVT entry type.

 Chapter 6. Id Resolution and Translation 6-5

ProcID A pointer to a location to receive the returned process ID.

Timeout The wait/no-wait option and time-out period. This accepts the following
values:

0 - SVCNOWAIT
No wait. If the required SVT entry does not exist, an
immediate return to the caller occurs (with return code
QSVCbadSVid).

0xFFFFFFFF - SVCWAITFOREVER
Wait indefinitely until the SVT entry is created.

other Wait until the SVT entry is created, but only for the specified
time (in µsecs). If this time-out occurs, the SVC Handler
returns to the caller with return code QSVCtimedout.

 Return Parameters
*SVid The returned SVid.

*Type This location is set to the type of the SVT entry.

The following values can be returned in this field:

0 Task
1 Resource/serialization semaphore
2 Synchronization semaphore
4 User-defined SVT item
6 Message queue

*ProcID This location is set to the ID of the process owning the specified SVT
entry.

Note: Generally, when an error occurs, the return information is given even
though there is an error return code. If the information is not being
returned, the returned SVid is explicitly set to 0.

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadname (0x8001000D)
The specified SVT name is not valid (for example, it is all spaces).

QSVCnowrite (0x8001000F)
The SVT entry exists (and its SVid is being returned to the caller), and
the caller has read access but no write access to the SVT entry. For
example, the caller cannot send messages to this task or queue.

QSVCbadSVid (0x80010002)
This error code indicates one of the following:

� The supplied SVT name cannot be found in the SVT.
� The SVT entry with this name is not marked as having a name.
� The caller does not have read access to this SVT entry

– The SVT entry is marked as restricted to supervisor mode, and
the caller is user mode.

– The SVT entry is marked as restricted to access from a process
other than that of the caller.

– the SVT entry is marked as restricted to access from a task
other than the caller.

6-6 Application Programming Reference

QSVCtimedout (0x8001000B)
The time-out has occurred.

QSVCinterrupt (0x80010024)
This SVC has been interrupted by a signal. No SVid or other
information has been returned (EDX is 0).

SVC Handler Generated Faults
QSVCparlist (0x81)

The parameter list is not valid. For example, the pointer does not
reference an allocated page.

 Chapter 6. Id Resolution and Translation 6-7

CPSVid2TCB and CPTCB2SVid (TRAN_ID) - Task Id/SVid Translation

 Function
This call translates the task ID (TCB offset) of a task into its SVid, or vice-versa.
This is required by tasks such as a command process which needs to print the
name of a stopped or faulted task.

The restrictions implied by the SVT entry access control bits being set do not apply
to this SVC.

 C Syntax
long int CPSVid2TCB(unsigned long int SVid,

unsigned long int \TCBID,
unsigned long int \ProcID);

long int CPTCB2SVid(unsigned long int TCBID,
unsigned long int \SVid,
unsigned long int \ProcID);

 Parameters
SVid The SVid of the task to be translated (CPSVid2TCB), or a pointer to a

location to receive the returned SVid (CPTCB2SVid)

TCBID A pointer to a location to receive the returned Task ID (CPSVid2TCB),
or the Task ID to be translated (CPTCB2SVid)

ProcID A pointer to a location to receive the returned process ID

 Return Parameters
*SVid Set to the SVid of the task

*TCBID Set to the Task ID of the task

*ProcID Set to the ID of the process owning the specified task

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadSVid (0x80010002)
Specified SVT entry is not valid, or is not a task, or the specified TCB
offset is not valid, or the specified task identifier refers to a TCB that is
not (or never has been) in use.

QSVCbadreq (0x8001001E)
The AL register (Intel) or R6 (POWER/PowerPC) is not 1 or 2.

SVC Handler Generated Faults
None

6-8 Application Programming Reference

 Chapter 7. Signal Operations

There are no “CPxxxx” C callable routines for these signal facilities in CPQLIB.
The routines for these calls are in UNIXLIB.LIB, with declarations in
SYS\SIGNAL.H.

See the SVC Handler manual for more details about signals and their
implementation in CP/Q.

CPSigInt (SIG_INTERRUPT) - Signal is/is not to Interrupt SVCs

 Function
This call enables and disables the interrupts of other SVCs by signals. Normally, if
a signal interrupts an SVC upon return from the signal handler, the suspended SVC
is resumed from the point of interruption. This system call (with a flag value of 1)
has the result that, on return from a handler for the specified signal, the current
SVC is interrupted (that is, terminated), and an immediate return to the calling task
occurs with the return code set to QSVCinterrupt.

This flag is also set or cleared by the SIG_VEC SVC.

This affects only those system calls that might suspend the task, such as
RECV_MESG or CLAIM_SEM. It does not affect non-blocking calls, such as
SEND_MESG.

 C Syntax
#include <sys\signal.h>

int siginterrupt(int sig,
 int flag);

 Parameters
sig The number of the signal to be set. This can be a number in the range

1-31 other than 5, 7, 10, 23, 25, 26 or 27. See the signal name table in
the section “CP/Q Signal Facilities” in the SVC Handler manual for a list
of the signal names and numbers.

flag This can be set to 0 to indicate that signals are not to interrupt
long-running SVCs (that is, those that might be interrupted by a signal).
When the return from the signal handler occurs, the task resumes the
SVC from the point of interruption. Resumption of SVCs is the default
behavior in CP/Q.

This parameter can also be set to 1. This means that a signal causes
the SVC to be interrupted. Upon return from the signal handler, the
SVC Handler returns immediately to the SVC caller with return code
QSVCinterrupt, and the SVC was not completed.

 Copyright IBM Corp. 1989-1994, 1996-1998 7-1

 Return Parameters
The only value returned by this routine is its return code. This is 0 for successful
completion, or -1 in case of error. In the case of an error, errno is set to indicate
the error.

EINVAL The specified signal number is not valid.

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadsignal (0x80010033)
The signal number is not valid.

QSVCbadreq (0x8001001E)
AL is not set to 0 or 1.

QSVCnfSCB (0x80010035)
The specified signal does not have an SCB allocated, and no free SCBs
are available.

SVC Handler Generated Faults
none

7-2 Application Programming Reference

CPSigMask (SIG_MASK) - Set or Query Signal Mask

 Function
This call sets or clears the bits of the signal mask or queries its current state.

This SVC does not set the mask bits for SIGKILL, SIGSTOP or SIGCONT signals.
Also, it does not set the bits for those signals not used in CP/Q, namely signals 0,
5, 7, 10, 23, 25, 26 and 27. See the signal name table in the section “CP/Q Signal
Facilities” in the SVC Handler manual for a list of the signal names and numbers.

This SVC returns the previous signal mask and the set of pending signals that are
currently blocked from delivery.

 C Syntax
#include <sys\signal.h>

int sigblock(int mask);

int sigpause(int mask);

int sigsetmask(int mask);

C Routine Descriptions
sigblock This call blocks signals by setting bits in the signal mask of the calling

task. The signals specified by mask are added to (that is ORed into)
the set of signals currently blocked from delivery. A signal is blocked if
the corresponding bit in mask is set to 1.

It is not possible to block SIGKILL, SIGSTOP or SIGCONT signals or
the signals that are unused in CP/Q.

sigpause This call atomically releases a set of blocked signals and waits for a
signal to arrive. mask is temporarily assigned to the current signal mask
for the calling task, and the task waits for an unmasked signal to arrive.
Upon return from the signal handler, the signal mask is restored to its
original value.

sigsetmask

This call sets the signal mask of the calling task to the supplied mask. If
the corresponding bit in mask is set to 1, a signal is blocked from
delivery.

It is not possible to block SIGKILL, SIGSTOP or SIGCONT signals or
the signals that are unused in CP/Q.

 Parameters
mask A signal mask. This is a bit significant value, with bits set according to

which signals the call applies to. The macro

sigmask(signal)

can be used to obtain the bit mask for a specific signal. See the signal
name table in the section “CP/Q Signal Facilities” in the SVC Handler
manual for a list of the signal names and numbers.

 Chapter 7. Signal Operations 7-3

 Return Parameters
The only values returned by these routines are their return codes. This is 0 for
successful completion or -1 in case of error. In the case of an error, errno is set to
indicate the error.

The routine sigpause, in the case of an otherwise successful call, returns the value
-1, with errno set to EINTR.

 Return Codes
QSVCgood (0)

Operation completed successfully.

If AL = 3, an unmasked signal was received.

QSVCbadreq (0x8001001E)
This can be for one of the following reasons:

� AL is not set to 0, 1, 2 or 3.
� AL=3 and the task is already in a signal handler.

SVC Handler Generated Faults
none

7-4 Application Programming Reference

CPSigReturn (SIG_RETURN) - Return from a Signal Handler

 Function
This call returns from a signal handler. This SVC may be used only when running
in a signal handler and does not return to the caller. Instead, the task's signal
mask, stack pointers, and instruction pointer are restored from the sigcontext
structure.

Normally, it is not necessary for a signal handler to include an explicit
SIG_RETURN SVC. All that is needed is for the signal handler routine to return,
whereupon an implicit SIG_RETURN is implemented. See the description of the
signal facilities in the SVC Handler manual for more information about writing a
signal handler in C.

 C Syntax
#include <sys\signal.h>

int sigreturn(struct sigcontext \scp);

 Parameters
scp A pointer to a sigstruct structure. Normally, the SVC handler generates

this structure when the signal handler was entered (modified, if
necessary).

This structure is defined in SYS\SIGNAL.H, thus:

struct sigcontext
{

unsigned long sc_onstack; /\ sigstack state to restore \/

unsigned long sc_mask; /\ signal mask to restore \/

unsigned long sc_ebp; /\ register of interrupted task \/

unsigned long sc_esp; /\ register of interrupted task \/

unsigned long sc_eip; /\ register of interrupted task \/

};

 Return Parameters
None. This call does not return.

 Return Codes
none

SVC Handler Generated Faults
none

 Chapter 7. Signal Operations 7-5

CPSigSend (SIG_SEND) - Send a Signal

 Function
This SVC sends a specified signal to a task. If a task other than the caller is
specified, then either the task issuing this SVC must have the TCBstoppriv privilege
bit set, or the target task must be either in the same process as the caller or in a
process that is a descendent of the caller's process.

 C Syntax
#include <sys\signal.h>

int kill(int SVid,
 int sig);

 Parameters
SVid The SVid of the task to receive the signal.

sig The signal to be sent. This can be a number in the range 1-31, other
than 5, 7, 10, 23, 25, 26 or 27. See the signal name table in the section
“CP/Q Signal Facilities” in the SVC Handler manual for a list of the
signal names and numbers.

This can also be 0. In the case of 0, validity of the operation is
checked, but no signal is sent.

 Return Parameters
The only value returned by this routine is its return code. This is 0 for successful
completion, or -1 in case of error In the case of an error, errno is set to indicate the
error.

EINVAL The specified signal number is not valid.

ESRCH The specified SVid is not valid, or it is not that of a task.

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadsignal (0x80010033)
The signal number is not valid.

QSVCbadSVid (0x80010002)
This error code signifies one of the following:

� The specified SVid is not valid in some way, for example, it is not a
task.

� This SVT entry is inaccessible to the requestor in one of the
following ways:

– The SVT entry is marked as restricted to access from supervisor
mode code, and the caller is user mode.

– The SVT entry is marked as restricted to access from a process
other than that of the caller.

– The SVT entry is marked as restricted to access from a task
other than the caller.

7-6 Application Programming Reference

QSVCunpriv (0x80010031)
Caller does not have the TCBstoppriv privilege bit set, and the specified
SVT entry is not in the same process as the caller nor in a process that
is a descendent of the caller's process.

QSVCdeadSVid (0x8001000C)
The specified SVT entry is being removed from the system.

QSVCnotinit (0x80010015)
This signal involves stopping or starting the target task, but the task has
not been initialized.

QSVCtaskstop (0x80010013)
This signal involves stopping the target task, but it is already stopped.

QSVCtaskgo (0x80010014)
This signal involves starting the target task, but it is already going.

SVC Handler Generated Faults
none

 Chapter 7. Signal Operations 7-7

CPSigStack (SIG_STACK) - Set or Query Signal Stack

 Function
This SVC sets up (that is, informs the SVC Handler of) a signal stack or query the
current signal stack. This allows users to specify an alternate stack to be used
when operating in a signal handler. When the action of a signal indicates that the
handler is to execute on the signal stack, when the signal arrives the system
switches the task to the specified stack if it is not already running on that stack.

When this SVC is to set a signal stack, the previous signal stack pointer (if any) is
over-written and lost.

There is no way to explicitly remove the signal stack once it has been set up.
However, the signal stack setting can be changed to the “normal” task stack, with
the specification that the task is currently running on this stack. This is equivalent
to removing the signal stack.

 C Syntax
#include <sys\signal.h>

int sigstack(struct sigstack \ss,
struct sigstack \oss);

 Parameters
ss A pointer to a sigstack structure, which specifies the new signal stack

to be used.

This pointer may be specified as 0, in which case the current signal
stack pointer and status (if any) is not changed.

oss A pointer to a sigstack structure, into which is placed the previous
signal stack pointer and status.

This pointer may be specified as 0, in which case the old stack
information is not returned.

The sigstack structure is defined in SYS\SIGNAL.H as follows:

struct sigstack
{

 caddr_t ss_sp;
 int ss_onstack;
};

where:

ss_sp A pointer to the signal handler stack (that is, the value to be used for the
ESP register).

ss_onstack
This can be set to 1 to indicate that the task is currently running on the
stack specified by the field ss_sp, or 0 otherwise.

Values other than 0 and 1 are not valid.

7-8 Application Programming Reference

 Return Parameters
return code

This is 0 for successful completion or -1 in case of error. In the case of
an error, errno is set to indicate the error.

EFAULT The address specified by ss, oss, or ss→ss_sp is not valid.

*oss If oss is non-zero, the signal stack state current in at the time of the call
is returned in this structure.

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadreq (0x8001001E)
ECX is not set to 0 or 1.

QSVCbadaddr (0x80010034)
The address supplied in the EDI register is not valid. For example, it
points to memory location that is not allocated or which is inaccessible
to the caller.

SVC Handler Generated Faults
none

 Chapter 7. Signal Operations 7-9

CPSigVec (SIG_VEC) - Set or Query Signal Handler

 Function
This SVC sets up the action or a signal handler or query the current action for a
signal. The previous signal handler or action (if any) is returned to the caller, and
then, if a new action is being specified, the old action or signal handler is
over-written and lost.

This SVC does not allow the caller to specify a signal that is not used in CP/Q,
namely signals 0, 5, 7, 10, 23, 25, 26 and 27. See the signal name table in the
section “CP/Q Signal Facilities” in the SVC Handler manual for a list of the signal
names and numbers. Furthermore, it is not permitted to specify that the SIGKILL,
SIGSTOP or SIGCONT signals be ignored, and it is also not permitted to specify a
signal handler for the SIGKILL or SIGSTOP signals.

An SCB is allocated for this signal if one is not already allocated. If the specified
action is to enter a signal handler, and the caller is a PL3 or user mode task, a
signal handler PL0 or kernel mode stack is allocated (if one is not already
allocated).

 C Syntax
#include <sys\signal.h>

int sigvec(int sig,
struct sigvec \vec,
struct sigvec \ovec);

 Parameters
sig The number of the signal to be set or queried. This may be a number in

the range 1-31, other than 5, 7, 10, 23, 25, 26 or 27.

vec A pointer to a sigvec structure that specifies the new signal handler or
action for this signal.

This pointer can be specified as 0, in which case the current signal
handler or action (if any) is not changed.

ovec A pointer to a sigvec structure, into which is copied the old signal
handler or action for this signal.

The sigvec structure is defined in SYS\SIGNAL.H as:

struct sigvec
{

 int (\sv_handler)();
 int sv_mask;
 int sv_flags;
};

7-10 Application Programming Reference

where:

sv_handler
This can be set to one of the following:

SIG_DFL (= 0)
The default action is to be taken for the specified signal. In this
case, the contents of the fields sv_mask and sv_flags are
ignored.

SIG_IGN (= 1)
The specified signal is ignored. In this case, the contents of the
fields sv_mask and sv_flags are ignored.

an address
This specifies the address of the signal handler to be called when
this signal is received.

sv_mask The signal mask to be used when executing in the signal handler (that
is, a mask of signals to be blocked while the signal handler is running).

This field is significant only if the field sv_handler specifies the address
of a signal handler.

sv_flags This is a bit significant field, specifying flags. The meaningful bits are
defined by the following constants:

SV_ONSTACK = 1
The signal handler is to run on the signal handler stack. If this
bit is unset (or there is no signal stack defined), the signal
handler runs on the task's current stack.

SV_INTERRUPT = 8
The signal handler is to interrupt a long running SVC (one that
specifies it can be interrupted by a signal). If this bit is unset,
the interrupted SVC is re-started on return from the signal
handler.

This field is significant only if the field sv_handler specifies the address
of a signal handler.

 Return Parameters
return code

This is 0 for successful completion or -1 in case of error. In the case of
0, errno is set to indicate the error.

EFAULT The address specified by vec, ovec, or vec→sv_handler is
not valid.

EINVAL This can be be for one of the following reasons:

� The signal number is not valid.

� This call specifies that the SIGKILL, SIGSTOP or
SIGCONT signal is to be ignored.

� This call specifies a signal handler for the SIGKILL or
SIGSTOP signal.

*ovec The old signal handler or action for this signal (current at the time of the
call) is returned to the user in this structure.

 Chapter 7. Signal Operations 7-11

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadaddr (0x80010034)
This can be caused by the following:

� The address supplied in the EDI register is not valid. For example,
it points to memory location that is not allocated or which is
inaccessible to the caller.

� The signal handler address in the parameter list is not valid.

QSVCbadsignal (0x80010033)
This can be caused by the following:

� The signal number is not valid.

� This SVC specifies that the SIGKILL, SIGSTOP or SIGCONT signal
is to be ignored.

� This SVC specifies a signal handler for the SIGKILL or SIGSTOP
signal.

QSVCnfSCB (0x80010035)
The specified signal does not have an SCB allocated, and there no free
SCBs are available.

QSVCnfPL0 (0x8001001D)
The specified signal is to have a signal handler, and the caller is a PL3
task, and there is no space available to create a PL0 stack for the signal
handler.

SVC Handler Generated Faults
none

7-12 Application Programming Reference

Chapter 8. Task Control Functions

CPChgPriority (CHG_PRTY) - Change Dispatch priority of a Task

 Function
This SVC changes the dispatch priority of a task, which can be the caller or some
other specified task. If a task other than the caller is specified, either the task
issuing this SVC must have the TCBstoppriv privilege bit set, or the target task
must be either in the same process as the caller or in a process that is a
descendent of the caller's process.

Note: Priority level 0 is reserved for the system error process. Therefore, the new
priority of the task must be one of the following:

� In the range 1 to 255 (inclusive)
� 1-31 if the SVC handler has been compiled with the option to restrict the

number of dispatch priorities to 32
� 1-7 if the SVC handler has been compiled with the option to restrict the number

of dispatch priorities to 8

The new priority is also checked to ensure that it is within the bounds specified for
the process containing the task.

If the task affected by this SVC is dispatchable, it is added to the end of the
dispatch chain of the new priority level unless it is also the current task (that is, the
caller). In that case, the task is placed at the front of the dispatch chain. This is
necessary to avoid violating the requirement that the current task always be the first
task in its dispatch chain.

The restrictions implied by the SVT entry access control bits being set do not apply
to this SVC.

 C Syntax
long int CPChgPriority(unsigned long int Svid,

unsigned long int Priority);

 Parameters
SVid The SVid of the task concerned. This field can be set to 0, which

implies the calling task.

Priority The new dispatch priority for the task. The restrictions on this value are
detailed above.

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadSVid (0x80010002)
Specified SVT entry is not valid, or it is not a task.

QSVCdeadSVid (0x8001000C)
The specified SVT entry is being removed from the system.

 Copyright IBM Corp. 1989-1994, 1996-1998 8-1

QSVCbadprty (0x80010006)
The specified new priority is not valid for the stated task.

SVC Handler Generated Faults
QSVCinvalid (0x80)

The calling task does not have the privilege required to issue this SVC
(possible only if SVid ≠ 0).

8-2 Application Programming Reference

CPCritEnter (CRIT_ENTER) - Enter Critical Code Section

 Function
This call informs the system that the calling task is entering a critical code section.
This prevents the system from stopping or removing the task until the
corresponding CRIT_LEAVE SVC is processed. This SVC is intended to be used
by privileged system extensions to prevent the task from being removed while the
task is manipulating resources of some form.

This SVC does not perform any form of serialization (it is probably necessary to
use a semaphore to enforce serialization), nor does it do anything to prevent the
task from being pre-empted by another task (for example, it does not disable
interrupts).

Note: This SVC is restricted to supervisor mode code.

The SVC Handler maintains a count of outstanding CRIT_ENTER SVCs for the
calling task in order that these SVCs can be nested. However, if this count
overflows, a system abend occurs.

Warning: If a fault occurs in a task that is in a critical section or a task that is in a
critical section terminates (that is, issues a TASK_HALT SVC), a system abend
results.

 C Syntax
long int CPCritEnter();

 Parameters
None

 Return Codes
QSVCgood (0)

Operation completed successfully.

SVC Handler Generated Faults
QSVCinvalid (0x80)

The calling code is not supervisor mode.

 Chapter 8. Task Control Functions 8-3

CPCritLeave (CRIT_LEAVE) - Leave Critical Code Section

 Function
This call informs the system that the calling task is leaving a critical code section.
This is the reverse of a CRIT_ENTER SVC, and causes the critical code section
count (maintained by the SVC Handler for the task) to be decremented. If the
count is decremented beyond zero (that is, after decrementing, it is 255), the
system crashes.

If, as a result of this call, the critical code section count becomes 0 and the task is
“pending stopped”, the task is stopped. In this case, no return from this SVC
occurs unless the task is subsequently restarted by a GO_TASK SVC from some
other task.

Note: This SVC is restricted to supervisor mode code.

 C Syntax
long int CPCritLeave();

 Parameters
None

 Return Codes
QSVCgood (0)

Operation completed successfully.

SVC Handler Generated Faults
QSVCinvalid (0x80)

The calling code is not supervisor mode.

8-4 Application Programming Reference

CPFaultTask (FALT_TASK) - Fault a Task

 Function
This call places a task in the stopped state, as if a fault has occurred in the task.
The following occurs:

� A normal fault report message is sent to the fault handler of the task.
� The specified error code is placed in the TCB field TCBerrcode.
� The TCB field TCBstop is set to QSVCsoftflt.
� The task stopped count is incremented.

The task issuing this SVC must have the TCBfaltpriv privilege bit set, unless the
specified SVid is 0 (that is, fault the calling task), or the target task is either in the
same process as the caller or in a process that is a descendent of the caller's
process.

This SVC is not permitted if the target task is in the “stopped, not initialized” state.

If the task is already stopped, the TCB fields TCBerrcode and TCBstop are
overwritten with the new values. The task stopped count is still incremented.

The restrictions implied by the SVT entry access control bits being set do not apply
to this SVC.

 C Syntax
long int CPFaultTask(unsigned long int SVid,

unsigned long int Errcode);

 Parameters
SVid The SVid of the task to be faulted. If this register is set to 0, the calling

task is faulted.

The error code for the task, to be placed in the TCB field TCBerrcode.

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadSVid (0x80010002)
Specified SVT entry is not valid, or it is not a task.

QSVCdeadSVid (0x8001000C)
The specified SVT entry is being removed from the system.

QSVCtaskstop (0x80010013)
The task was already stopped. The FALT_TASK SVC has completed
successfully.

QSVCnotinit (0x80010015)
The target task is in the “stopped, not initialized” state.

 Chapter 8. Task Control Functions 8-5

SVC Handler Generated Faults
QSVCinvalid (0x80)

The calling task does not have the privilege required to issue this SVC.

8-6 Application Programming Reference

CPGoTask (GO_TASK) - Start a Task

 Function
This call places a task in the going state, in order that it can be dispatched. The
specified task runs only if it is in the no-wait state. This SVC does not affect the
wait status. The stop code and error code for the task (the TCB fields TCBstop
and TCBerrcode) are not cleared by this SVC, but they are left holding their
previous contents. The contents of these fields are normally not significant unless
the task is stopped (that is, the bit TCBstpbit is set).

The task issuing this SVC must have the TCBstoppriv privilege bit set, or the target
task must be either in the same process as the caller or in a process that is a
descendent of the caller's process. This SVC can also be issued by the Resource
Manager, both as code called from a task and as the Resource Manager task.

This SVC is not allowed for a task that is in stopped state QSVCuninit (that is,
when the task has been created but the registers have not yet been set up). After
creating a task, it is necessary to set up the registers using a WRITE_REGS SVC
before the task can be run.

The task stop count (in the TCB field TCBstopcount) is decremented. The bit
TCBstpbit is unset only if the stop count is decremented to zero.

If the GO_TASK is issued while the task in question is pending stopped, rather than
stopped, the pending stop operation is cancelled, subject to the same rules as for
un-setting the stopped status bits.

Note: The restrictions implied by the SVT entry access control bits being set do
not apply to this SVC.

 C Syntax
long int CPGoTask(unsigned long int SVid);

 Parameters
SVid The SVid of the task to be started

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadSVid (0x80010002)
Specified SVT entry is not valid, or it is not a task.

QSVCdeadSVid (0x8001000C)
The specified SVT entry is being removed from the system.

QSVCtaskgo (0x80010014)
The task is not stopped or pending stopped

QSVCnotinit (0x80010015)
The task cannot be started because it has been created, but the
registers have not yet been set up.

 Chapter 8. Task Control Functions 8-7

SVC Handler Generated Faults
QSVCinvalid (0x80)

The calling task does not have the privilege required to issue this SVC.

8-8 Application Programming Reference

CPHaltTask (TASK_HALT) - Stop the Calling Task

 Function
This call is used by a task to indicate to the system that it is halting or terminating.
An error code field is provided so that a task may halt with a non-zero “return
code”. An error code of 0 is conventionally usually means task termination with no
error.

The following occurs:

� The error code is placed into the field TCBerrcode of the calling task’s TCB.
� The task stop reason (the TCB field TCBstop) is set to QSVCtaskhalt = 5 (that

is, task halted).
� An inform message is sent to the task’s fault handler.
� The calling task is stopped.
� The SVC Handler dispatches another task. This SVC always increments the

task stopped count (in the TCB field TCBstopcount).

Warning: If the calling task is within a critical code section when this SVC is
issued, the CP/Q system abends because this SVC is a variation on a task fault.

This call does not normally return to the calling task because the only possible SVC
Handler return code is QSVCgood. However, when the task is stopped, as far as
the SVC Handler is concerned, the task can be restarted by another task. If the
calling task is restarted, the call completes successfully, and the task continues
from that point.

 C Syntax
long int CPHaltTask(unsigned long int ErrCode);

 Parameters
ErrCode The error code for the task, to be placed in the TCB field TCBerrcode.

By convention, the value 0 means “no error”.

 Return Codes
QSVCgood (0)

Operation completed successfully.

SVC Handler Generated Faults
None

 Chapter 8. Task Control Functions 8-9

CPPTrace (P_TRACE) - Debugging Facilities, Intel Only

 Function
This call provides various facilities to aid program debugging. There are a number
of different options, specified by the Action parameter, as described below.

 Portability Note

The options and/or facilities provided by this SVC are platform specific; the
options available, and the nature and format of parameter areas and/or
information required or returned will change from one system architecture to the
next, as CP/Q is ported to different processors.

 C Syntax
long int CPPTrace(unsigned long int Action,

unsigned long int SVid,
 void \Addr);

 Parameters
Action a value that determines the specific action to be performed by this call,

as follows.

QSVC_set_parm = 1
set the program parameter address. Addr points to a location
holding the address of the parameter area for the task specified by
SVid (0 implies the calling task), to be set into the TCB field
TCBparmaddr.

Note: This parameter address points to an area within the task's
address space that contains:

� the relocation information

� the environment area pointer

� the full file name of the file that contained the load
module for this task

� the command line for this program

See the chapter "Technical Reference" of the C Run-time
Library Reference Manual for a description of the memory
layout of a loaded program, and a detailed description of
this area. There are also some details in the SLEEP/R
manual.

The task issuing this SVC must have the TCBstoppriv privilege bit
set, or the target task must be either in the same process as the
caller or in a process that is a descendent of the caller's process.

QSVC_get_parm = 2
obtain the program parameter area address for the task specified by
SVid, 0 implies the calling task. On return, *Addr will hold the
address of the parameter area for the task, as held in the TCB field
TCBparmaddr.

See the note for the function QSVC_set_parm above.

8-10 Application Programming Reference

typedef struct drblock
 {

unsigned long int drð;
unsigned long int dr1;
unsigned long int dr2;
unsigned long int dr3;
unsigned long int dr6;
unsigned long int dr7;

 } DRBLOCK;

Figure 8-1. Intel Debug Register Structures

QSVC_set_debug = 3
set the debug registers for the task specified by SVid. This task
must be marked as being tested by the caller. The task must be
stopped.

The specified debug register values apply only to the specified task;
the SVC handler sets and/or clears, as necessary, the debug
registers during task switches.

There is no provision for system wide debug register settings.

The parameter Addr points to a DRBLOCK structure, as shown in
Figure 8-1, containing the new values for the DRi registers of the
task. The value for DR6 is always ignored (it is present in the
buffer only for compatibility with sub-function Action=4). If any of
the values for DR0, DR1, DR2 and DR3 are zero, then the
corresponding bits in DR7 are forced to 0. If DR0, DR1, DR2 and
DR3 are all zero, then DR7 will be forced to 0. Further, the “local
enable,” “local exact” and “GD” bits of DR7 are also forced to 0 (so
as to avoid problems when going from the system to SLEEP/Q and
back again).

The addresses for DR0, DR1, DR2 and DR3 (if they are non-zero)
must be greater than or equal to the start of private class memory.
This is to avoid spurious debug register traps in NAP.

QSVC_get_debug = 4
obtain the debug registers of the task specified by SVid. The task
must be stopped.

The parameter Addr points to a DRBLOCK structure, as shown in
Figure 8-1, into which are placed the current values of the DRi
registers of the task.

QSVC_set_FPU = 5
set the floating point processor status of the task specified by SVid;
this may be 0 which signifies the caller. The task (if other than the
caller) must be stopped.

The parameter Addr points to a FPUBLOCK structure, as shown in
Figure 8-2 on page 8-12. This is a 108-byte buffer with the
following format; this is the same format as is produced by the Intel
387 or 486 instruction FSAVE.

The contents of this buffer should normally be obtained by using a
P_TRACE SVC with Action=6, or (for the calling task only) by using
a FSAVE instruction.

 Chapter 8. Task Control Functions 8-11

typedef struct fpublock
 {

unsigned short fpu_control; /\ the status/control area \/

unsigned short fpu_rsvd1;
unsigned short fpu_status;
unsigned short fpu_rsvd2;
unsigned short fpu_tagword;
unsigned short fpu_rsvd3;

 unsigned long fpu_ip;
unsigned short fpu_cs;
unsigned short fpu_opcode;

 unsigned long fpu_dataoffset;
unsigned short fpu_dataselector;
unsigned short fpu_rsvd4;
unsigned char fpu_stackð[1ð]; /\ the stack registers - each is 8ð bits \/

 unsigned char fpu_stack1[1ð];
 unsigned char fpu_stack2[1ð];
 unsigned char fpu_stack3[1ð];
 unsigned char fpu_stack4[1ð];
 unsigned char fpu_stack5[1ð];
 unsigned char fpu_stack6[1ð];
 unsigned char fpu_stack7[1ð];
 } FPUBLOCK;

Figure 8-2. Intel Floating Point Registers Structure

bytes 0,1 fpu_control
the FPU control register

bytes 2,3 - reserved

bytes 4,5 fpu_status
the FPU status register

bytes 6,7 - reserved

bytes 8,9 fpu_tagword
the FPU tag register

bytes 10,11 - reserved

bytes 12-15 fpu_ip
saved FPU instruction pointer (used when
examining a floating point error)

bytes 16,17 fpu_cs
saved FPU instruction segment selector (used
when examining a floating point error)

bytes 18,19 fpu_opcode
saved FPU instruction opcode (used when
examining a floating point error)

bytes 20-23 fpu_dataoffset
saved FPU operand offset (used when examining a
floating point error)

bytes 24,25 fpu_dataselect
saved FPU operand segment selector (used when
examining a floating point error)

bytes 26,27 - reserved

bytes 28-37 fpu_stack0
stack register 0

8-12 Application Programming Reference

bytes 38-47 fpu_stack1
stack register 1

bytes 48-57 fpu_stack2
stack register 2

bytes 58-67 fpu_stack3
stack register 3

bytes 68-77 fpu_stack4
stack register 4

bytes 78-87 fpu_stack5
stack register 5

bytes 88-97 fpu_stack6
stack register 6

bytes 98-107 fpu_stack7
stack register 7

If the target task has no FPU save area allocated, one will be
assigned by this call.

QSVC_get_FPU_alloc = 6
obtain the floating point processor status of the task specified by
SVid; this may be 0 which signifies the caller. The task (if other
than the caller) must be stopped.

The parameter Addr points to a FPUBLOCK structure, as shown in
Figure 8-2 on page 8-12, the same as for Action=5.

If the target task has no FPU save area allocated, one is assigned
by this SVC; in this case, the returned FPU status is as set by the
FINIT instruction.

QSVC_get_FPU = 7
obtain the floating point processor status for a task. This is the
same as Action=6 except if the target task has no current FPU
context (i.e. no FPU save area allocated), then this call is given
return code QSVCnoFPUregs, and no valid FPU registers are
returned.

An FPU save area is not allocated by this form of the P_TRACE
SVC.

QSVC_test_task = 8
test a task; SVid specifies the task that is to be controlled. The
caller is made the fault handler of the task (the caller's fault handler
count is incremented), and the task is marked as being debugged
by the caller. In particular, this prevents both the caller and the task
being debugged from being removed from the system. Further, the
lock count is incremented, and the “locked” bit is set, in the PCB for
the process containing the target task. This prevents “process
delete” operations on that process.

Further, the task to be debugged is stopped. If the task was
running, the task “stopped type” is set to 1 and the “stopper” SVid is
set to that of the task issuing the P_TRACE SVC. If the task was
already stopped, then the stop count is incremented. Note,
however, that if the task was in the "stopped, not-initialized" state,

 Chapter 8. Task Control Functions 8-13

the stop count is not incremented, since when in this state a
GO_TASK SVC cannot be issued to set it back to 1.

The task issuing this SVC must have the TCBstoppriv privilege bit
set, or the target task must be either in the same process as the
caller or in a process that is a descendent of the caller's process.

The parameter Addr is not used for this call.

QSVC_end_test = 9
end testing a task; SVid specifies the task that is to be released.
This task must be marked as being tested by the caller. The
dispatch state of the task is not changed by this SVC; in particular,
the task is not started if it is stopped. The lock count is
decremented (and the lock bit unset if the count becomes 0) in the
PCB for the process containing the target task.

This form of this call is allowed when the task is marked as “being
removed from the system.”

The parameter Addr is not used for this call.

typedef struct regblock
 {

unsigned long int espð;
unsigned long int cr3;
unsigned long int DebugTrap;
unsigned long int edi;
unsigned long int esi;
unsigned long int ebp;
unsigned long int edx;
unsigned long int ecx;
unsigned long int ebx;
unsigned long int eax;
unsigned long int Eflags;
unsigned long int eip;
unsigned long int cs;
unsigned long int esp;

 } REGBLOCK;

Figure 8-3. Intel Registers Structure

QSVC_read_regs = 10
read the registers of a task. The task concerned must be stopped.

The parameter Addr points to a REGBLOCK structure, as shown in
Figure 8-3.

The restrictions implied by the SVT entry access control bits do not
apply to this call.

The task issuing this call must have the TCBstoppriv privilege bit
set, or the target task must either be in the caller's process or in a
process that is a descendent of the caller's process.

QSVC_write_regs = 11
write the registers of a task. The task concerned must be stopped.
This call is to set up the registers of the task as seen by that task
after exit from the SVC Handler, not the registers for the task as
used when running within the SVC Handler.

The parameter Addr points to a REGBLOCK structure, as shown in
Figure 8-3. The fields in the parameter list for CS, ESP0 and CR3
are always ignored. Further, for a PL0 task that is not being

8-14 Application Programming Reference

initialized, the ESP value is also ignored (because for such a task,
ESP will currently point to the base of an SVC Handler stack frame
- changing ESP would imply moving the SVC Handler stack frame
to some other location).

If the task is marked as “stopped, not initialized”, that is the task
has been created but the registers have not yet been set up, then
this SVC performs the following:

� CS and SS are set appropriately according as to whether task
is a PL0 or PL3 task (the TCB field TCBprivbits has the bit
TCBPL0task set for a PL0 task, unset for PL3).

� ESP0 is set to match the allocated PL0 stack for a PL3 task, or
to ESP if it is a PL0 task.

� CR3 is set to the value for the process containing the task.
� an SVC Handler stack frame is set up within the PL0 stack

(which is the task supplied stack for a PL0 task), as if the task
had been suspended within the SVC Handler.

� the saved task registers within this stack frame are set to the
values supplied in this SVC, apart from the flags register, which
is set to have the normal system I/O Privilege level (IOPL) and
interrupts enabled.

� the saved registers within the TCB (i.e. ESP and EBP) are set
to point to this SVC Handler stack frame.

� the task is marked as “stopped, not started,” so that a
subsequent GO_TASK SVC can start execution of the task.
Execution will actually start within the dispatcher task change
code within the SVC Handler, but the generated SVC Handler
stack frame is set up such that control immediately returns to
the task at the EIP value specified in this WRITE_REGS SVC.

If the target task entered the SVC Handler by means of a near call
SVC (from PL0), and the supplied register values have the “single
step” bit set in Eflags, then the stack frame is forced to look like a
INT entry, so that the single step can be implemented (so it single
steps the task code, rather than the SVC Handler exit code!).

The restrictions implied by the SVT entry access control bits do not
apply to this SVC. The task issuing this SVC must have the
TCBstoppriv privilege bit set, or the target task must be either in the
same process as the caller or in a process that is a descendent of
the caller's process.

This SVC performs the following checks on the supplied register
values:

� the “nested task”, VM and “alignment check” bits of the Eflags
register are forced to 0.

� if the TCB field TCBprivbits has the bit TCBPL0task unset then
interrupts are forced to enabled.

� for the first WRITE_REGS for a task (i.e. when "initializing" the
task), the CR3 value (from the PCB) is checked to ensure that it
is non-zero.

� the pages referenced by EIP and ESP must exist. Further, the
page referenced by ESP must be writeable.

 Chapter 8. Task Control Functions 8-15

� for a supervisor mode task, the page referenced by EBP (held
in the TCB, or ESP in the parameter list for task initialization)
must exist and be writeable.

� for a user mode task, (the TCB field TCBprivbits has the bit
TCBPL0task unset) then EIP and ESP must point to user mode
pages.

Note: See the function CPTaskRegs for an architecture
independent method of initializing the registers for a task.

QSVC_qry_state = 14
query the dispatch state of the task SVid (0 implies the calling task).
This facility was implemented originally as an aid to testing the SVC
Handler, but may be of use to certain special systems tasks, such
as debugging or monitoring tasks.

The parameter Addr points to a QTBLOCK structure, as shown in
Figure 8-4 on page 8-17. On return from this call, the fields are set
as follows:

byte 0 - wait
the task wait status (i.e. the types of events awaited by
this task). This is a copy of the TCB field TCBwait.

byte 1 - status
the task dispatch status. This is a copy of the TCB field
TCBstatus.

byte 2 - stop
the task stop reason. This is a copy of the TCB field
TCBstop.

byte 3 - priv
the task's privilege bits. This is a copy of the TCB field
TCBprivbits.

byte 4 - priority
the task's dispatch priority. This is a copy of the TCB
field TCBpriority.

byte 5 - critcnt
the task's critical section count. This is a copy of the
TCB field TCBcritcnt.

byte 6 - prempt
the task's pre-emption status. This is a copy of the TCB
field TCBpreempt.

byte 7 - muxcnt
the task's MUX_WAIT count. This is a copy of the TCB
field TCBmuxcnt.

bytes 8-11 - stopcnt
the task's stop count. This is a copy of the TCB field
TCstopcount.

bytes 12-15 - procprio
the base dispatch priority of the process containing the
task. This is a copy of the PCB field pcb_priority.

8-16 Application Programming Reference

typedef struct qtblock
 {

unsigned char wait; /\ Wait event types \/

 unsigned char status; /\ Dispatch status \/

 unsigned char stop; /\ Stop reason \/

 unsigned char priv; /\ Privilege bits \/

 unsigned char priority; /\ Task priority \/

unsigned char critcnt; /\ Critical code nesting count \/

unsigned char prempt; /\ pre-emption flag state \/

 unsigned char muxcnt; /\ MUX_WAIT count \/

unsigned long int stopcnt; /\ Task stopped count \/

unsigned long int procpri; /\ Process base priority \/

unsigned long int faltcnt; /\ fault handler count \/

unsigned long int falter; /\ fault handler TCB pointer \/

unsigned long int errcode; /\ Stop or fault error code \/

unsigned long int errinfo; /\ Not used for Intel \/

 } QTBLOCK;

Figure 8-4. Intel Query Task State Structure

bytes 16-19 - faltcnt
the count of tasks for which this task is the fault handler.
This is a copy of the TCB field TCBfaltcnt.

bytes 20-23 - falter
the (TCB pointer of) the fault handler of this task. This is
a copy of the TCB field TCBfalter.

bytes 24-27 - errcode
the task's error or return code. This is a copy of the
TCB field TCBerrcode.

bytes 28-31 - errinfo
supplementary error information for the task. Currently
this is unused for Intel systems.

A query task call returns an instantaneous snapshot of the task
dispatch status, but it must be remembered that the dispatch status
of a task can change very frequently. The values returned for the
TCB fields TCBstop and TCBerrcode will be the values set in those
locations when the task was last stopped - non-zero values returned
for these locations do not imply that the task is currently stopped. A
task is stopped if and only if the bit TCBstpbit is set in the byte
TCBstatus.

The restrictions implied by the SVT entry access control bits do not
apply to this call.

typedef struct cpublock
 {

unsigned long int CPU_high; /\ m.s. 32 bits of value \/

unsigned long int CPU_low; /\ l.s. 16 or 32 bits of value \/

 } CPUBLOCK;

Figure 8-5. Query Task CPU Usage Structure

QSVC_get_CPU = 15
get the CPU usage of a task. The parameter SVid must specify a
task, or be set to 0, which implies the calling task, or may be set to
0xFFFFFFFF, in which case the system idle time is returned.

 Chapter 8. Task Control Functions 8-17

If CPU time measurement facilities are not available (e.g. the
support for it is omitted from the SVC Handler), this call will return
the value 0.

The parameter Addr points to a CPUBLOCK structure, as shown in
Figure 8-5 on page 8-17. The format of the returned value is
processor specific. On an Intel system, the field CPU_high holds
the most significant 32 bits of the value, and indicates complete
seconds of time; the field CPU_low holds the least significant 16
bits of the time, and is a fraction of a second in the range 0-65535
(65536 would be a complete second).

SVid the SVid of the target task for the call, but see under the specifications
of each value for Action for more information.

Addr the nature of this parameter depends on the action to be performed; see
under the specifications of each value for Action for more information.

This parameter is not used for Action=8 and 9.

 Return Parameters
*Addr this is overwritten for calls with Action=2, as described above.

The buffer specified by this parameter is filled with data for calls with
Action=4, 6, 7 and 15, as described above.

 Return Codes
QSVCgood (0)

operation completed successfully.

QSVCbadreq (0x8001001E)
Action is not a valid code as listed above.

This return code may also occur if one of the values for DR0, DR1, DR2
and/or DR3 is not zero and is less than the start of the “private” memory
address range (Action=3 only).

QSVCbadSVid (0x80010002)
the specified SVT entry is not a task.

QSVCdeadSVid (0x8001000C)
the specified SVT entry is being removed from the system (not
Action=9).

QSVCdebug2 (0x8001002F)
the specified task is already being debugged (Action=8).

QSVCnodebug (0x80010030)
the specified task cannot be debugged (Action=8), or is not being
debugged by the caller (Action=3 or Action=9).

QSVCunpriv (0x80010031)
the caller has insufficient privilege to perform this operation (Action=1 or
Action=8).

QSVCtaskstop (0x80010013)
(Action=8 only) - the operation was completed successfully, but the task
was already stopped. The task stopped count has been incremented;
this implies that the task “stopped count” is now > 1.

8-18 Application Programming Reference

QSVCtaskgo (0x80010014)
(Action=3, 4, 5 or 6) - the task is not stopped.

QSVCnoFPU (0x80010020)
(Action=5, 6 or 7) - there is no FPU available (this includes no FPU
save area in the system and/or no FPU support code in the SVC
Handler).

QSVCnoFPUregs (0x80010023)
(Action=7) - the task has no FPU context to return, and has no FPU
save area allocated.

QSVCnf387area (0x80010017)
(Action=5, 6) - there is no free FPU save area space to allocate an FPU
save area for the target task.

QSVCwrongproc (0x80010039)
the processor type is incorrect (Action=5, 6, 7, 10 or 11).

SVC Handler Generated Faults
QSVCparlist (0x81)

parameter list is invalid, for example the parameter Addr does not point
into an allocated page.

 Chapter 8. Task Control Functions 8-19

CPSetPreempt (SET_PRE) - Set Task Preemption Status

 Function
This call sets or clears the “task preemptable” flag in the caller's TCB. The
standard SVC Handler takes no other action for this SVC and also makes no use of
this flag. See the section “Task Dispatch Organization”in the SVC Handler manual
for more information about this subject.

The time slicer that is provided as an option with the Intel version of CP/Q takes
note of the preemption flag and alters its behavior accordingly. See the section
“Time Slicing”in the SVC Handler manual for more information.

The task issuing this SVC must have the TCBsyspriv privilege bit set or be a
supervisor mode task.

 C Syntax
long int CPSetPreempt(unsigned long int Preempt);

 Parameters
Preempt The value placed in the task preempt status flag. This can accept the

values QSVCpreempt or QSVCpreprio.

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadprmpt (0x80010007)
Requested preemption status is not valid (that is, not QSVCpreempt or
QSVCpreprio).

SVC Handler Generated Faults
QSVCinvalid (0x80)

The calling task does not have the privilege required to issue this SVC.

8-20 Application Programming Reference

CPStopTask (STOP_TASK) - Stop a Task

 Function
This call places a task in the stopped state, in order that it is not dispatched. This
is achieved by setting the bit TCBstpbit in the TCB field TCBstatus.

The task issuing this SVC must have the TCBstoppriv privilege bit set, or the target
task must be either in the same process as the caller or in a process that is a
descendent of the caller's process. This SVC can also be issued by the Resource
Manager, both as code called from a task and as the Resource Manager task.

This SVC is not permitted if the target task is in the “stopped, not initialized” state.

If the specified task is currently within a critical code section, the task is placed in
the “pending stopped” state. This means that the task is not stopped immediately,
but instead will be stopped when it exits from the critical code section. In this case,
the STOP_TASK SVC receives a QSVCincrit error return code. A message with
the bytes 12-15 of the data area set to QSVCinfstop is sent to the caller when
critical code count of the target task becomes zero, and the task is finally stopped.

If the task is already “pending” stopped, this SVC gives return code
QSVCpendstop, the task stopped count is not incremented, and the caller is not
notified when the task is placed into the stopped state. Otherwise, this SVC always
increments the task stopped count in the TCB field TCBstopcount, except when the
task is not previously marked as “stopped” or “pending stopped”, and this SVC
marks the task as “pending stopped”. In this case, the stop count is incremented
when the task changes from “pending stopped” to “stopped”. This implies that this
SVC increases the task stopped count even when an error return code indicates
that the task was already stopped.

The TCB field TCBstop is set to QSVCstopped, and the field TCBerrcode is set to
the error code passed in the ECX register with the request, unless the task is
already stopped or pending stopped.

The restrictions implied by the SVT entry access control bits being set do not apply
to this SVC.

 C Syntax
long int CPStopTask(unsigned long int SVid,

unsigned long int ErrCode);

 Parameters
SVid The SVid of the task to be stopped

ErrCode The error code for the task to be placed in the TCB field TCBerrcode.

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadSVid (0x80010002)
Specified SVT entry is not valid, or it is not a task.

QSVCdeadSVid (0x8001000C)
The specified SVT entry is being removed from the system.

 Chapter 8. Task Control Functions 8-21

QSVCtaskstop (0x80010013)
The task is already stopped. However, the task stopped count has still
been incremented.

QSVCpendstop (0x80010037)
The task is already “pending” stopped. The task stopped count has not
been incremented. The caller is not notified when the task is placed into
the stopped state.

QSVCincrit (0x8001001A)
The task has been placed in the “pending stopped” (or “pending process
stopped”) state, rather than stopped, because it has a non-zero critical
code section count.

QSVCnotinit (0x80010015)
The target task is in the “stopped, not initialized” state.

SVC Handler Generated Faults
QSVCinvalid (0x80)

The calling task does not have the privilege required to issue this SVC.

8-22 Application Programming Reference

CPTaskRegs - Initialize Task Registers

 Function
This call is intended to provide an architecture-independent method of setting the
registers for a task, and is available as an alternative to the CPWriteRegs SVC.
The task concerned must be stopped. This call sets up the registers of the task as
seen by that task after exit from the SVC Handler, not the registers for the task as
used when it is dispatched within the SVC Handler.

The restrictions implied by the SVT entry access control bits do not apply to this
call. The task issuing this call must have the TCBstoppriv privilege bit set, or the
target task must either be in the caller's process or in a descendent process.

This call performs the following checks on the supplied register values:

� If the target task is user level, the code and stack must be in user mode pages.

Figure 8-6 on page 8-24 illustrates a C program that makes use of the
CPTaskRegs call. This program compiles and runs successfully on all
architectures for which CP/Q is currently implemented.

 C Syntax
long int CPTaskRegs(unsigned long int SVid,

unsigned long int Entrypoint,
unsigned long int StackPointer,
unsigned long int rsvd);

 Parameters
SVid The SVid of the task whose registers are to be set.

EntryPoint
The address of the (code) entrypoint for the task, that is the address of
the code or function that is to be executed by the task (see the coding
example below).

StackPointer
The address to be used as the stack pointer for the task. This is the
byte immediately above the top of an empty stack (since the stack
grows downward).

Note: The stack pointer should be double-word aligned, so it is good
practice to make the stack an integral number of double-words in length.

rsvd Currently unused (0 is a good value here).

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadSVid (0x80010002)
Specified SVT entry is not valid, or it is not a task.

QSVCdeadSVid (0x8001000C)
The specified SVT entry is being removed from the system.

QSVCtaskgo (0x80010014)
The task is not stopped.

 Chapter 8. Task Control Functions 8-23

QSVCbadregs (0x80010018)
The supplied registers are in some way unacceptable (see the above list
of checks on the register values).

QSVCbadstack (0x80010022)
The page or pages containing the stack of a supervisor mode task do
not exist or are in some way inaccessible.

SVC Handler Generated Faults
QSVCinvalid (0x80)

The calling task does not have the privilege required to issue this SVC.

QSVCparlist (0x81)
Parameter list is not valid (for example, it does not point into an
allocated page).

 /\\\

 \ \

\ Sample program to demonstrate the CPTaskRegs call. We create a \

\ second task, write its registers using CPTaskRegs, and then start \

 \ the task. \

 \ \

\ This program will compile and run under both INTEL and PowerPC \

 \ architectures. \

 \ \

 \\\/

#include <stdio.h> /\ C library include files \/

 #include <string.h>

 #include <stdlib.h>

 #include <stduser.h>

#include <cpqlib.h> /\ CP/Q system declarations \/

/\ macros \/

#define MSGSIZ 1ð24 /\ 1ð24 32-bit entries \/

#define STKSIZ (8\(1ð24)) /\ 8K stack \/

 /\ global variables \/

 MSG msg; /\ message buffer \/

 /\\\

 \ \

\ This function will become a separate task. The CPTaskRegs call \

\ will set up the registers for this separate task. \

\ All this task does is wait for a message, then terminate. \

 \ \

 \\\/

 void function(void)

 {

unsigned long int msgcount; /\ message count \/

 int retval; /\ return value \/

Figure 8-6 (Part 1 of 3). CPTaskRegs Code Example

8-24 Application Programming Reference

/\ setup message header. \/

msg.h.HdrVer = ð; /\ header version \/

msg.h.msgq_id = ð; /\ caller's msg q \/

msg.h.dw_count = MSGSIZ; /\ message buffer size \/

/\ wait for a message from anybody \/

retval = CPRecvMsg(&msg, &msgcount, ð, SVCWAITFOREVER);

/\ After we return from CPRecvMsg, we terminate voluntarily and

our return value is the return value from CPRecvMsg.

This task shall not return from CPHaltTask. \/

CPHaltTask(retval); /\ terminate \/

 }

 /\\\

 \ \

\ main function. We create a new task, allocate memory from the \

\ Memory Manager to be used as a stack for the created task, and \

\ then call CPTaskRegs to set up the registers for the task. \

 \ \

 \\\/

 int main(void)

 {

 int retval; /\ return value \/

 unsigned char \stackmem; /\ stack memory \/

unsigned char \stackptr; /\ stack ptr for created task \/

UINT32 svid; /\ svid of create task \/

/\ Create a task by calling the Resource Manager \/

retval = CPCreateTask("FTASK", /\ task name \/

 ð, /\ use defaults \/

 ð, /\ use defaults \/

 ð, /\ use defaults \/

 ð, /\ use defaults \/

 ð, /\ use defaults \/

 ð, /\ use defaults \/

&svid); /\ returned task svid \/

if (retval != QRMgood) /\ check return code \/

 {

printf("CPCreateTask returned ðx%ð8x\n",retval);

 paws(retval);

 exit(retval);

 }

/\ next, allocate memory to be used as the stack for the created

task. We call the Memory Manager to obtain memory. Note that

STKSIZ should double-word aligned. \/

retval = CPAllocMem(QMprivate|QMnew_current|QMuser|QMwrite,

 STKSIZ,

 &stackmem);

Figure 8-6 (Part 2 of 3). CPTaskRegs Code Example

 Chapter 8. Task Control Functions 8-25

if (retval != QMsuccess)

 {

/\ the allocate failed - clean up \/

printf("CPAllocMem returned ðx%ð8x\n",retval);

 paws(retval);

CPDelete(svid, ð); /\ remove the task \/

 exit(retval);

 }

/\ Initialize stack frame memory to a value we can recognize when

using a debugger. This makes the stack more readily

identifiable when examining the program's memory \/

 memset(stackmem,ðxFF,STKSIZ);

/\ the stack pointer is set up for an empty stack. Should be

 double-word aligned. \/

stackptr = stackmem + STKSIZ;

/\ Set up the registers of the created task \/

retval = CPTaskRegs((unsigned long int)svid,

(unsigned long int)&function,

(unsigned long int)stackptr,

 ð);

if (retval != QSVCgood)

 {

/\ writing the registers failed - clean up \/

printf("CPTaskRegs returned ðx%ð8x\n",retval);

 CPFreeObj(QMold_current,stackmem); /\ free memory \/

CPDelete(svid, ð); /\ remove the task \/

 paws(retval);

 exit(retval);

 }

/\ start the task we have created \/

retval = CPGoTask(svid); /\ start task \/

if (retval != QSVCgood) /\ check return code \/

 {

printf("CPGoTask returned ðx%ð8x\n",retval);

 paws(retval);

 CPFreeObj(QMold_current,stackmem); /\ free memory \/

CPDelete(svid, ð); /\ remove the task \/

 exit(retval);

 }

/\ tell the world we have succeeded \/

 printf("success!\n");

 return(EXIT_SUCCESS);

 }

Figure 8-6 (Part 3 of 3). CPTaskRegs Code Example

8-26 Application Programming Reference

Chapter 9. Creation or Deletion of System Entities

 Copyright IBM Corp. 1989-1994, 1996-1998 9-1

CPSysCreateSLIH (CRT_SLIH) - Install a Second Level Interrupt
Handler

 Function
This call installs a second level interrupt handler for a hardware interrupt level.
This SVC can be issued only by a suitably privileged task. On a PowerPC system,
the caller must be a supervisor mode task. On an Intel system, the code making
this request must have I/O privilege, that is the calling code CPL must be ≤ the
system IOPL.

The specified system entity is queued to be notified of interrupts from this interrupt
level. When an interrupt is received, each SLIH for this interrupt level is notified by
sending an IH_ATTN message to a task or tasks or message queues, by the
clearing of a synchronization semaphore, or by restarting tasks that are waiting
within an INT_WAIT SVC. If other SLIHs are set up for this interrupt level, this
SVC creates an additional SLIH for this level. All the SLIHs for this interrupt level
are notified whenever an interrupt occurs. Creating a SLIH is independent of the
presence or absence of a user exit call from the FLIH. If one or more SLIHs are
created for a hardware interrupt for which there is a user-exit routine called from
the FLIH, the SLIHs are notified after the user exit routine has been called. Only
one of the exit routine or these SLIHs should clear the interrupt and issue the
End-of-Interrupt (EOI) command to the interrupt controllers for each occurrence of
the interrupt, or unpredictable results can occur.

When installing the SLIH, if no previous SLIHs exist for that level, the SVC Handler
un-masks the interrupt level as follows: (if one or more SLIHs already exist for this
level, the interrupt is already unmasked, and may be active - in this case, the mask
must not be altered).

� The SVC Handler clears the corresponding bit in the IMR and the bit for the
cascade if the interrupt level is on the second 8259.

Certain interrupt levels may not be available, and cannot be specified, as follows:

� Interrupt level 2 (the cascade on the first interrupt controller for the second
interrupt controller) is always unavailable.

� Either level 8 (the real-time clock) or level 0 (the 8254 timer), depending on the
compile time options for the SVC Handler and the system build options used,
will be used for the system clock and is hence is unavailable.

� If the real-time clock is used for the system timer and the CPU time
measurement facility is enabled, both levels 0 and 8 are unavailable.

� If the processor is a 386 and floating point support is enabled, interrupt level 13
is unavailable.

This does not apply to a 486 or Pentium processor because internal error
reporting (hardware fault 16) is used for floating point errors.

 C Syntax
long int CPSysCreateSLIH(unsigned long int SVid,

unsigned long int IntLevel,
unsigned long int \SLIBid);

9-2 Application Programming Reference

 Parameters
SVid The SVid of the task, message queue, or semaphore by which the

interrupts are to be notified. If this specifies a message queue or task,
notification is by IH_ATTN message. If this is a synchronization
semaphore, this semaphore is cleared each time an interrupt occurs.

This parameter can be 0, which implies the notification is by means of a
message to the caller.

Alternatively, this parameter can be set to 0xFFFFFFFF, which implies
the calling task is the SLIH, and it waitsfor interrupt notification using
INT_WAIT SVCs.

If the user exit UCslibscan is defined (see the section “User Code
Exits” in the appendices to the SVC Handler manual), then the value in
this parameter can also be 0xFFFFxxxx, where xxxx are any 4 hex
digits the caller assigns (except FFFF, because 0xFFFFFFFF implies
an INT_WAIT type SLIH). This value has the effect that the normal
SVC Handler SLIH notification does not occur, but calls the user exit
routine instead.

Intlevel The interrupt level this SLIH is to serve in the range 0-n, where n is the
minimum of the number of ICBs in the system (specified at system build
time) and the number of hardware interrupt handlers (FLIHs) in the SVC
Handler (a compile time option). The default value for n on both a PS/2
and on an RS/6000 is 15. On a PS/2, interrupt levels 2 and 8 (or level
0, if the system build option NOCMOS was used) might not be used.

SLIBid A pointer to a 32-bit word into which is placed the ID of the new SLIH.

 Return Parameters
*SLIBid If the return code is QSVCgood, this is set to hold the ID of the second

level interrupt block (SLIB) for this task. This is actually the offset of the
SLIB within the SDA segment.

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCSLIH2 (0x8001002E)
The specified SVid is already being notified of interrupts on this level.

QSVCnfSLIB (0x8001001F)
No free second level interrupt blocks (SLIBs).

QSVCbadSVid (0x80010002)
The SVid in EDX does not specify a task, message queue, or
synchronization semaphore.

QSVCbadint (0x80010019)
The Specified interrupt level is not valid.

 Chapter 9. Creation or Deletion of System Entities 9-3

SVC Handler Generated Faults
QSVCinvalid (0x80)

The calling code does not have the privilege necessary to issue this
SVC.

QSVCinvSVid (0x82)
The caller is not permitted to access the specified SVT entry.

9-4 Application Programming Reference

CPSysDeleteSLIH (DEL_SLIH) - Delete a Second Level Interrupt
Handler

 Function
This call removes a Second Level Interrupt Handler (SLIH) set up by the calling
task. This SVC can be issued only by a suitably privileged task; on a PowerPC
system, the caller must be a supervisor mode task. On an Intel system, the code
making this request must have I/O privilege, that is the calling code CPL must be ≤
the system IOPL.

A SLIH may be deleted only by the task that set it up. This SVC removes
references to this SLIH from the chains of second level interrupt blocks (SLIBs) for
the appropriate interrupt level. Removing a SLIH has no effect on the presence or
absence of a user exit routine in the SVC handler FLIH. If a user exit routine is
present, even if the last SLIH is removed, the user exit routine continues to be
called on subsequent interrupts.

If the deleted SLIH is the last for that interrupt level, the SVC Handler takes the
following action:

� If that interrupt is currently “in service,” that is, the corresponding bit is set in
the In Service Register in the 8259 interrupt controller, the appropriate specific
EOI command is issued.

� The interrupt level is masked off in the IMR.

If a task is deleted from the system, all SLIH's created by that task are also
removed (that is, the appropriate implicit DEL_SLIH SVCs are executed).

 C Syntax
long int CPSysDeleteSLIH(unsigned long int SLIBid);

 Parameters
SLIBid Holds the ID of the SLIB for this SLIH. This ID is the offset of the SLIB

within the SDA segment and was returned by the SVC Handler in the
reply to the CRT_SLIH SVC that set up the interrupt handler.

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadid (0x8001002D)
The specified SLIB id is not the offset of a SLIB, or this SLIH was not
set up by the calling task.

SVC Handler Generated Faults
QSVCinvalid (0x80)

The calling code does not have the privilege necessary to issue this
SVC.

 Chapter 9. Creation or Deletion of System Entities 9-5

9-6 Application Programming Reference

 Chapter 10. Timer Services

CPBeep (BEEP_IT) - Sound the “Beeper”

 Function
This call sounds the system speaker.

Note: A (SLEEP) system build option is available to disable the beeper code, and
an SVC Handler compile time option to is available to omit the beeper code. If
either of these options is exercised, BEEP_IT SVCs always receive the return code
QSVCnotavail.

 C Syntax
long int CPBeep(unsigned long int Period,

unsigned long int Frequency);

 Parameters
Period The duration of the beep in micro-seconds in the range 1,000-8,000,000.

A value of 150,000 sounds a short beep; 1,000,000 sounds a 1 second
beep.

Frequency
The frequency in Hertz in the range 20-20,000.

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadreq (0x8001001E)
The requested time is <1,000 or >8,000,000, or the specified frequency
is <20 or >20,000.

QSVCbadCMOS (0x80010008)
The CMOS real-time clock does not appear to be operating.

This return code is possible only on an Intel system, and then only if the
system was built such that the CMOS clock is turned on, and the CMOS
support code has been included in the SVC Handler.

QSVCnotavail (0x80010021)
This facility is not available (bit 5 is set in the NDA field SVCbits, or the
beeper support code has been omitted from the SVC Handler by a
compile time option).

SVC Handler Generated Faults
None

 Copyright IBM Corp. 1989-1994, 1996-1998 10-1

CPGetTime (GET_TIME) - Get the Time and Date

 Function
This call obtains the time and date information held within the CDA.

The CDA is readable by user tasks, and a program can read the time and/or date
fields directly. This is acceptable if only one value is being obtained. However, if
the program attempts to read the time and date together, and presumably expects
to get a consistent set of values, it is possible for the system to receive a timer
interrupt while the task is reading the data. This can result in inconsistent or
garbled data. A supervisor mode task could protect against this by disabling I/O
interrupts; however, a user mode task cannot do this. Thus, any code that can be
used within a user mode task should use this SVC to obtain a copy of the timer
fields from the CDA.

 C Syntax
long int CPGetTime(void \DataBuf);

 Parameters

typedef struct time_block
{

unsigned long int time_ticksperday; /\ timer ticks per day \/

unsigned long int time_totalticks; /\ time in ticks since midnight \/

unsigned char time_thehundredths; /\ hundredths of second \/

unsigned char time_thesecond; /\ seconds part of the time \/

unsigned char time_theminute; /\ minutes part of the time \/

unsigned char time_thehour; /\ hours part of the time \/

unsigned short time_theyear; /\ year part of the date \/

unsigned char time_themonth; /\ month part of the date \/

unsigned char time_theday; /\ day part of the date \/

unsigned short time_thetick; /\ ticks within current second \/

unsigned short time_tickhertz; /\ clock frequency in Hertz \/

unsigned short time_daynumber; /\ day number within the year \/

unsigned char time_theweekday; /\ day of the week (Sunday = ð) \/

unsigned char time_tickrate; /\ number defining clock tick rate \/

} TIME_BLOCK;

Figure 10-1. Get Time and Date Structures

DataBuf A pointer to a writeable buffer to receive the time data, that is, a
TIME_BLOCK structure, as shown in Figure 10-1.

 Return Parameters
*DataBuf If the return code is QSVCgood, this buffer was overwritten with the

contents of the CDA time and date fields.

 Return Codes
QSVCgood (0)

Operation completed successfully.

10-2 Application Programming Reference

SVC Handler Generated Faults
QSVCparlist (0x81)

The parameter list or its address is not valid. For example, DataBuf
does not point to an allocated and writeable page.

A general protection fault, stack fault, or page fault can also occur for this SVC, if
the specified buffer is not accessible, or if all or part of the buffer cannot have
physical pages allocated to it.

 Chapter 10. Timer Services 10-3

CPSetDate (SET_DATE) - Set Current Date

 Function
This call sets the current date, and the day of the week is calculated from the
specified date.

On an Intel system, if the hardware contains a CMOS Real Time Clock, and the
CMOS support code is included in the SVC Handler, the date is also set in the
CMOS real time clock.

On an Intel system, there is a compile-time option within the SVC Handler for this
SVC to be restricted to supervisor mode callers.

 C Syntax
long int CPSetDate(unsigned long int Date,

unsigned long int Month,
unsigned long int Year);

 Parameters
Date The day of the month (in the range 1-31).

Month The month (in the range 1-12, where January is 1 and December is 12)

Year The year (in the range 1980-2099)

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadreq (0x8001001E)
One or more of the new date fields is not valid.

QSVCbadCMOS (0x80010008)
The CMOS real-time clock does not seem to be operating.

This return code is possible only on an Intel system, and then only if the
system was built such that the CMOS clock is turned on, and the CMOS
support code has been included in the SVC Handler.

SVC Handler Generated Faults
QSVCinvalid (x80)

if the SVC Handler was compiled with the option to restrict this SVC to
supervisor mode callers, then a user mode caller is faulted with this
error code.

10-4 Application Programming Reference

CPSetTime (SET_TIME) - Set Current Time

 Function
This call sets the current time. The hours, minutes, and seconds are set to the
specified values, and the current fraction of a second is set to 0. This prevents
inconsistencies between the time as the number of ticks since midnight and the
time expressed as hours, minutes, seconds, and ticks.

On an Intel system, if the hardware contains a CMOS Real Time Clock, and the
CMOS support code is included in the SVC Handler, the time is also set in the
CMOS real time clock.

On an Intel system, there is a compile-time option within the SVC Handler for this
SVC to be restricted to supervisor mode callers.

Note: Be careful when using this SVC to change the time when the current time is
near midnight. Thus, if at 23:55 this SVC is used to set the time to 00:05, then this
is equivalent to putting the clock back by 23 hours 50 minutes. This is not treated
as putting the clock forward 10 minutes.

 C Syntax
long int CPSetTime(unsigned long int Hour,

unsigned long int Minute,
unsigned long int Second);

 Parameters
Hour The hour (in the range 0-23)

Minute The minutes (in the range 0-59)

Second The seconds (in the range 0-59)

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadreq (0x8001001E)
One or more of the new time fields is not valid.

QSVCbadCMOS (0x80010008)
The CMOS real-time clock does not seem to be operating.

This return code is possible only on an Intel system, and then only if the
system was built such that the CMOS clock is turned on, and the CMOS
support code has been included in the SVC Handler.

SVC Handler Generated Faults
QSVCinvalid (x80)

if the SVC Handler was compiled with the option to restrict this SVC to
supervisor mode callers, then a user mode caller is faulted with this
error code.

 Chapter 10. Timer Services 10-5

CPSleep (SLEEP) - Suspend for a Specified Period of Time

 Function
This call suspends the caller for the specified period of time.

If while the task is waiting for the specified period, a signal arrives that causes a
signal handler to be entered and this SVC is then resumed after the return from the
signal handler, the “sleep” is restarted from the point of interruption, that is, it waits
for only the remaining period.

 C Syntax
long int CPSleep(unsigned long int Period,

unsigned long int Unit);

 Parameters
Period The time to wait. If this time is in seconds, it is limited to 86400

seconds (that is, one day).

If this time is 0, this SVC is treated as a DISP_RET SVC. See section
“CPYield (DISP_RET) - Return to Dispatcher” on page 2-7 for more
information.

Unit If set to 0, the time is in micro-seconds. If set to 1, the time is in
seconds.

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadreq (0x8001001E)
This can occur for one of the following reasons:

� Unit has a value other than 0 or 1.
� Unit is set to 1 and Period is greater than 86400 seconds (one day).

QSVCbadCMOS (0x80010008)
The CMOS real-time clock does not seem to be operating.

This return code is possible only on an Intel system, and then only if the
system was built such that the CMOS clock is turned on, and the CMOS
support code was included in the SVC Handler by the appropriate
compile-time options.

QSVCinterrupt (0x80010024)
This SVC was interrupted by a signal, and the task might not have
waited for the full period.

SVC Handler Generated Faults
None

10-6 Application Programming Reference

CPTimerCancel (TIMER_CNCL) - Cancel a Timer Event

 Function
This call cancels an outstanding timer event that was set up by a TIMER_SET
SVC.

Note: Only timers allocated by ALLOC_TIMER SVCs can be used for
TIMER_CNCL SVCs. Specifically, every task has a timer block allocated by the
system, that is used only for time-outs with other SVCs and for SLEEP SVCs. This
timer block cannot be specified in a TIMER_CNCL SVC.

 C Syntax
long int CPTimerCancel(unsigned long int TimerID);

 Parameters
TimerID The timer ID (handle) for this event, as returned by the ALLOC_TIMER

SVC that allocated this timer.

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadid (0x8001002D)
The specified timer ID is not valid, for example it is not a valid timer ID,
or it is not the ID of a timer block allocated to the calling task by an
ALLOC_TIMER SVC.

QSVCbadtimer (0x8001002B)
The specified timer is not active, for example it might have already
occurred.

SVC Handler Generated Faults
none

 Chapter 10. Timer Services 10-7

CPTimerSet (TIMER_SET) - Setup a Timer Event

 Function
This call sets up a timer event to occur at some point in the future. It uses a timer
block previously allocated to the calling task by means of a CPCreateTimerBlock
(ALLOC_TIMER) SVC. If the specified timer is already active when this SVC is
issued, the timer is reset without comment as specified by the new SVC. This is as
if an implied CPTimerCancel (TIMER_CNCL) SVC were issued first.

Note: Only timers allocated by ALLOC_TIMER SVCs can be used for
TIMER_SET SVCs. Specifically, every task has a timer block allocated by the
system, that is used only for time-outs on other SVCs and SLEEP SVCs. This
timer block cannot be specified in a TIMER_SET SVC.

The timer event can be repetitive, recurring at specified intervals, or can be a
once-only event. In the latter case, the requested period should be set to 0. If the
event is not repetitive, it is automatically cancelled when the event occurs. A
repetitive event continues until explicitly cancelled by the caller.

See the section “Timer Queue Structures” in the SVC Handler manual for more
information about the queueing of timer requests.

When the timer event occurs, either a synchronization semaphore is cleared, or a
message is sent to a task or message queue. The format of messages sent as a
result of timer events is specified in the section “Timer Messages” in the SVC
Handler manual. If a message is sent to notify the occurrence of a timer event, a
bit is set in the timer control block to indicate that there is a pending but not yet
received timer notification. This bit is cleared when the timer message is received.
In the case of a repetitive event, no further messages are sent by the SVC Handler
for this timer until the pending message has been received. This prevents a timer
from generating messages which are not being received, because this could result
in a system abend due to running out of RQEs. This has at least one known side
effect. If a task that has a repetitive timer every few seconds, and that task is
being debugged with a task level debugger, it is highly likely that timer events will
be missed as a result of the task being stopped for periods by the debugger. For
example, this might occur when the user is examining the registers or data of the
program being debugged.

The TIMER_TICK SVC is a simplified (and faster) variant of this SVC. See the
section “CPTimerTick (TIMER_TICK) - Setup a Timer Event” on page 10-12 for
more information.

Timer Request Modes:
Timer events requested by this call can be in one of the following modes:

Mode 0 - Relative
This mode is used to request a timer event at a time in the future, expressed
relative to the current time. That is, the current time is added to the requested
time to give the time at which the first event is to occur. If the resultant time is
greater than or equal to one day, one day is subtracted from the time, and the
event occurs at the resultant time after midnight. The requested time must be
less than or equal to one day, or the request is rejected.

10-8 Application Programming Reference

The event occurs at the specified time, calculated as described above. If a
non-zero period is specified, subsequent events are generated, each occurring at
a time interval specified by the period after the previous event.

Mode 1 - Absolute Today
This mode is used to request a timer event to occur at an absolute time of the
current day. If the requested time has already passed, that is, the current time is
greater than or equal to the requested time, the request is regarded as late, and
a timer event is sent immediately (actually on the next timer tick). The requested
time must be less than one day, or the SVC returns an error. A request for an
event to occur at midnight should specify a time of zero.

Assuming the request is not late, the event occurs at the specified time. If a
non-zero period is specified, subsequent events are generated, each occurring at
a time interval specified by the period after the previous event. Late repetitive
requests are handled specially. For example, if a timer event is to occur at time
1000 and with a period of 500, but is requested at time 2700, then one event is
generated immediately, and subsequent events are generated at times 3000,
3500, 4000, and so on until the timer request is cancelled. No timer events are
generated for the lost times 1500, 2000, and 2500. This mode can be used to
specify timer events of the form “every hour on the hour starting at the stated
hour”.

Mode 2 - Absolute Forwards
This mode is used to request a timer event at an absolute time in the future.

For a non-repetitive request (period = 0), if the requested time has already
passed, that is the current time of day is greater than or equal to the requested
time, the request is regarded as being early for the following day. The requested
time must be less than one day, or the SVC returns an error. A request for an
event to occur at midnight should specify a time of zero.

When the timer event is to be repetitive (period ≠ 0), if the the requested time is
earlier than the current time of day, the event occurs at the specified time.
Subsequent events are generated, each occurring at a time interval specified by
the period after the previous event. The handling of late repetitive requests is
different from mode 1, in that no event is returned immediately. For example, if a
timer event is to occur at time 1000 and with a period of 500, but is requested at
time 2700, then events are generated at times 3000, 3500, 4000, and so on, until
the timer request is cancelled. No timer events are generated for the start time
of 1000, or for the lost times 1500, 2000, and 2500. This mode can be used to
specify timer events of the form “every hour on the hour starting at the next
hour”.

 C Syntax
long int CPTimerSet(unsigned long int Time,

unsigned long int Period,
unsigned long int Unit,
unsigned long int Mode,
unsigned long int SVid,
unsigned long int TimerID,
unsigned long int Token);

 Chapter 10. Timer Services 10-9

 Parameters
Time The time of the first event. If the time is specified in seconds, this value

is limited to one day (86399 seconds, because midnight is time 0).

Period The period for repetition of the event. This can be zero, in which case
the event occurs only once and is automatically cancelled. Alternatively,
if this is non-zero, this specifies the time between successive events
after the first. If the time is specified in seconds, this value is limited to
one day (86400 seconds).

Unit If set to 0, the time and period are in µseconds. If set to 1, the time and
period are in seconds.

Mode This is bit significant, thus:

bits 0-28 (0xFFFFFFF8)
Unused, must be 0.

bit 29 (0x00000004)
If set, the timer event message is to be sent at priority 255
instead of QSVCtimerprty (= 24).

bits 30,31 (0x00000003)
The mode of the timer event (described above). This may take
the value 0, 1 or 2.

SVid The SVid of the task or message queue to receive a message, or
synchronization semaphore to be cleared, when this event occurs. This
register can be set to 0, which implies that a message is sent to the
message queue of the calling task.

If the user exit UCtimoccur is defined (see the section “User Code
Exits” in the appendices to the SVC Handler manual), then the value of
this parameter can also be 0xFFFFxxxx, where xxxx are any 4 hex
digits the caller wants. This value has the effect that the normal SVC
Handler timer notification does not occur, but the user exit routine is
called instead.

TimerID The ID of the timer block to use. This is the ID (handle) returned by a
CreateTimerBlock (ALLOC_TIMER) call.

Token An identifier specified by the user. It can accept any value in the range
0-0xFFFFFFFF. This is returned in the message when the timer event
occurs. This identifier has no use if the timer notification is by a
semaphore, or by calling the user exit routine (although the user exit
routine can use it if needed).

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadreq (0x8001001E)
One of the parameters is invalid, for example:

� The specified time or period is not valid (that is, greater than one
day).

� Bits 0-28 of Mode are not all 0.

� SVid ≠ 0 (the user exit UCtimoccur is not defined).

10-10 Application Programming Reference

� SVid ≠ 0 and SVid ≠ 0xFFFFxxxx. (the user exit UCtimoccur is
defined).

QSVCbadCMOS (0x80010008)
The CMOS real-time clock does not seem to be operating.

This return code is possible only on an Intel system, and then only if the
system was built such that the CMOS clock is turned on, and the CMOS
support code has been included in the SVC Handler.

QSVCbadid (0x8001002D)
The specified timer ID is not valid or is not the ID of a timer block
allocated to the calling task by an ALLOC_TIMER SVC.

QSVCbadSVid (0x80010002)
The specified SVid is not that of a task, message queue, or
synchronization semaphore.

SVC Handler Generated Faults
QSVCinvSVid (0x82)

The requestor cannot access the specified SVT entry.

 Chapter 10. Timer Services 10-11

CPTimerTick (TIMER_TICK) - Setup a Timer Event

 Function
This call sets up a timer event to occur at some point in the future. It uses a timer
block previously allocated to the calling task by means of an ALLOC_TIMER SVC.
If the specified timer is already active when this SVC is issued, the timer is simply
reset without comment as specified by the new SVC. This is as if an implied
TIMER_CNCL SVC were issued first.

Note: Only timers allocated by CPCreateTimerBlock (ALLOC_TIMER) SVCs can
be used for TIMER_TICK SVCs. Specifically, every task has a timer block
allocated by the system, which is used only for time-outs on other SVCs and
SLEEP SVCs. This timer block cannot be specified in a TIMER_TICK SVC.

See the section “Timer Queue Structures” in the SVC Handler manual for more
information about queueing timer requests.

This call is a simplified (and faster) variant of CPTimerSet (TIMER_SET). The
differences are:

� The event is a “single shot” only, that is, it cannot be repetitive.

� The only method of event notification is by a message to the calling task. The
semaphore or other message queue cannot be used.

� The time period is specified in ticks.

� There is no choice of event mode. The event is always relative to the current
time of day, that is, mode 0 of the TIMER_SET SVC.

When the timer event occurs, a message is sent to the calling task. The format of
messages sent as a result of timer events is specified in the section “Timer
Messages” in the SVC Handler manual.

 C Syntax
long int CPTimerTick(unsigned long int Time,

unsigned long int Notify,
unsigned long int TimerID,
unsigned long int Token);

 Parameters
Time The time of the event, specified in ticks from the current time. This

value is limited to one day, which is 11059199 ticks at the default tick
rate of 128 Hertz, since midnight is time 0.

Notify This parameter must normally be set to 0, which implies that the
notification of the timer event will be by a message sent to the message
queue of the calling task.

If the user exit UCtimoccur is defined (see the section “User Code
Exits” in the appendices to the SVC Handler manual), then the value of
this parameter may alternatively be 0xFFFFxxxx, where xxxx are any 4
hex digits chosen by the caller. This value has the effect that a
message is not sent, but the user exit routine is called instead. The
value xxxx can used by the user exit routine for any desired purpose,
since the user exit routine has direct access to the timer control block
for this timer event.

10-12 Application Programming Reference

TimerID The ID of the timer block to use. This is the ID (handle) returned by a
CreateTimerBlock (ALLOC_TIMER) call.

Token An identifier specified by the user. It can accept any value in the range
0-0xFFFFFFFF. This is returned in the message when the timer event
occurs. This identifier has no use if the timer notification is by a
semaphore or by calling the user exit routine (although the user exit
routine can use it).

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadreq (0x8001001E)
This is for one of the following reasons:

� The specified time is not valid (greater than one day).

� Notify ≠ 0 (the user exit UCtimoccur is not defined).

� Notify ≠ 0 and EDX ≠ 0xFFFFxxxx. (the user exit UCtimoccur is
defined).

QSVCbadCMOS (0x80010008)
The CMOS real-time clock does not seem to be operating.

This return code is possible only on an Intel system, and then only if the
system was built such that the CMOS clock is turned on, and the CMOS
support code has been included in the SVC Handler.

QSVCbadid (0x8001002D)
The specified timer ID is not valid or is not the ID of a timer block
allocated to the calling task by an ALLOC_TIMER SVC.

SVC Handler Generated Faults
None

 Chapter 10. Timer Services 10-13

10-14 Application Programming Reference

 Chapter 11. Miscellaneous SVCs

CPCMOSRead (CMOS_READ) - Read CMOS Location

 Function
This call returns the value held in a location of the CMOS read-only memory.
Reading CMOS register 12 (0x0C) is not permitted, because doing so can interfere
with the operation of the timer or clock.

Note: A SLEEP system build option can disable the CMOS read code. Also, an
SVC Handler compile-time option can omit the CMOS support code. If either of
these options are exercised, CMOS_READ SVCs always receive the return code
QSVCnotavail.

 C Syntax
long int CPCMOSRead(unsigned long int Address,

unsigned long int \Contents);

 Parameters
Address The CMOS address to be read, in the range 0-63 (the value 12 is not

permitted).

Contents A pointer to a 32-bit location to receive the contents of the CMOS byte.

 Return Parameters
*Contents The contents of the specified byte of CMOS memory.

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadreq (0x8001001E)
The the specified CMOS address is not valid or out of range.

QSVCbadCMOS (0x80010008)
The CMOS real-time clock does not seem to be operating.

QSVCnotavail (0x80010021)
This facility is not available (bit 6 is set in the NDA field SVCbits, or the
CMOS support code has been omitted from the SVC Handler by a
compile-time option).

SVC Handler Generated Faults
None

 Copyright IBM Corp. 1989-1994, 1996-1998 11-1

CPGetCDA (GET_SDA) - Obtain CDA/SDA Offset

 Function
This call returns the virtual address of the user mode read-only alias to the first
page of the CDA on Intel or the virtual address of the SDA on PowerPC systems.

 C Syntax
long int CPGetCDA(unsigned long int \Address);

 Parameters
Address A pointer to a 32-bit location to receive the returned address.

 Return Parameters
*Address Overwritten with the address to access the CDA.

 Return Codes
QSVCgood (0)

Operation completed successfully

SVC Handler Generated Faults
None

11-2 Application Programming Reference

CPReadUItem (READ_UITEM) - Read Contents of User-Defined SVT
Entry

 Function
This call obtains the data held in a user-defined SVT entry.

 C Syntax
long int CPReadUItem(unsigned long int SVid,
 void \DataBuf);

 Parameters
SVid SVid of the SVT entry to be read.

DataBuf A pointer to a 24-byte writeable buffer to receive the contents of the
SVT entry.

 Return Parameters
*DataBuf If the return code is QSVCgood, this buffer is overwritten with the

contents of the SVT entry.

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadSVid (0x80010002)
Specified SVT entry is not valid, or it is not a user-defined SVT entry.
This return code can also occur if the calling task is a system task, but it
is not permitted to access to the specified SVT entry.

QSVCdeadSVid (0x8001000C)
The specified SVT entry is dying or is in a process that is being
removed from the system.

SVC Handler Generated Faults
QSVCparlist (0x81)

Parameter list or its address is not valid, for example DataBuf does not
point to an allocated and writeable page.

QSVCinvSVid (0x82)
The caller is not a system task, and it is not permitted to access to the
specified SVT entry.

If the specified buffer is not accessible, or if all or part of the buffer cannot have
physical pages allocated to it, the following faults can occur:

� A general protection fault
 � Stack fault
 � Page fault

 Chapter 11. Miscellaneous SVCs 11-3

CPSVC - Intel

 Function
This call provides a general interface to the SVC handler from a C program. Any
SVC may be issued by setting up the register structure correctly.

Note: This is not a special SVC.

 C Syntax
long int CPSVC(void \SVCRegAddr);

 Parameters
SVCRegAddr

A pointer to a SVCREG structure, as follows. The locations in this
structure should be set as required for the desired SVC.

typedef struct svcreg
 {

unsigned long int eax;
unsigned long int ebx;
unsigned long int ecx;
unsigned long int edx;
unsigned long int esi;
unsigned long int edi;

 } SVCREG;

Figure 11-1. CPSVC Register Structure - Intel

 Return Parameters
*SVCRegAddr

The fields of this structure are set to contain the registers as returned by
the SVC Handler.

 Return Codes
See the specification for the SVC being issued.

SVC Handler Generated Faults
See the specification for the SVC being issued.

11-4 Application Programming Reference

CPSVCTrace (SVCTRACE) - SVC Handler Trace Facility - Intel

 Function
This call enables, disables or queries the state of SVC Handler tracing, to insert a
“user” entry into the trace buffer, and also to obtain the trace information. Various
classes of tracing may be enabled separately. An attempt to turn on tracing when
there is no SVC Handler trace buffer results in an error return code.

See the section “SVC Handler Trace Facility” in the SVC Handler manual for further
information.

Warning by the Programmer General: Enabling SVC Handler tracing can
seriously degrade the performance of some or all the features of the SVC
Handler. However, if some classes are enabled, there is no overhead
(apart from testing the bit) for other trace classes.

 C Syntax
long int CPSVCTrace(unsigned long int Action,

unsigned long int Flags,
unsigned long int Incount,

 void \BufAddr,
unsigned long int SVid,
unsigned long int \OutCount);

 Parameters
Action The desired action or option, as follows:

QSVCTtron = 0
Enable tracing. This is done selectively, as specified by the bits of
the Flags parameter. There is a restriction that only one of bits 23,
29 and 31 may be set concurrently.

Any bits set in Flags are ORed into the current trace enable mask
(held in the field svhtrbits of the NDA); that is, events previously
enabled and whose enable bit is not set here are not disabled by
this SVC.

If, when this SVC is issued, the tracing enable mask currently has
bits 1-31 unset then the trace buffer pointers are reset to the
beginning of the trace buffer, that is the buffer is “cleared.” Any
previous trace buffer contents, including “user” trace entries, are
lost.

If Flags bit 31 is set (SVCs are to be traced), then InCount may be
set to 0, in which case all SVC functions are traced; alternatively,
InCount may be set to a byte count n, and BufAddr then points to a
buffer of length n bytes. In this latter case, each of the bytes in the
buffer specifies an SVC function code, and only those SVC
functions listed in this vector are traced. Thus it is possible, for
example, to trace just the send and receive message SVCs. If,
when this SVC is issued, the SVC tracing bit was already set, then
the SVC function codes specified here are in addition to any
previously specified - the others are not cleared. However, if the
SVC trace bit was previously unset, on completion of this SVC only
the SVC functions specified in this call are to be traced - the others
are not traced.

 Chapter 11. Miscellaneous SVCs 11-5

If Flags bit 29 is set (hardware interrupts are to be traced), then
InCount may be set to 0, in which case all interrupt levels are
traced; alternatively, InCount may be set to a byte count n, and
BufAddr then points to a buffer of length n bytes. In this latter case,
each of the bytes in the buffer specifies an interrupt level (in the
range 0-31), and only those interrupt levels specified in this vector
are traced. If, when this SVC is issued, the interrupt tracing bit was
already set, then the interrupt levels specified here are in addition to
any previously specified - the others are not cleared. However, if
the interrupt trace bit was previously unset, on completion of this
SVC only the interrupt levels specified in this call are to be traced -
the others are not traced.

If Flags bit 23 is set (extension SVCs are to be traced), then
InCount may be set to 0, in which case all external SVC functions
are traced; alternatively, InCount may be set to a byte count n, and
BufAddr then points to a buffer of length n bytes. In this latter case,
each of the bytes in the buffer specifies an extension SVC function
code, and only those functions specified in this vector are traced.
If, when this SVC is issued, the extension SVC tracing bit was
already set, then the function codes specified here are in addition to
any previously specified - the others are not cleared. However, if
the extension SVC trace bit was previously unset, on completion of
this SVC only the extension SVC functions specified in this call are
to be traced - the others are not traced.

Unless Flags bit 23, 29 or 31 is set and InCount is non-zero, there
is no buffer for this form of the SVCTRACE SVC - the BufAddr
parameter is not used.

QSVCTtroff = 1
Disable tracing. This is done selectively, as specified by the bits of
the Flags parameter. The state (enabled/disabled) remains
unchanged for those types of trace event for which the bit is not set
in Flags.

There is no buffer for this form of the SVCTRACE SVC - the
BufAddr parameter is not used.

QSVCTutrace = 2
User trace. InCount is a double word count, in the range
1-QSVCmaxusertrace (=16) of trace data pointed to by BufAddr. A
user trace item is created, containing the specified trace data.

This receives the return code QSVCtraceoff and the data is not
saved if user tracing is turned off, that is svhtrbits bit 24 is unset.

This receives the return code QSVCtracefull and the data is not
saved if svhtrbits bit 0 is set and the new trace item does not fit in
the trace buffer.

QSVCTqstate = 3
Query trace state. BufAddr points to a SVHTRACE_QRY structure,
into which is placed the following information.

11-6 Application Programming Reference

typedef struct svhtrace_qry
 {

unsigned long trqry_bits; /\ trace enable bits \/

unsigned long trqry_size; /\ trace buffer size \/

unsigned long trqry_start; /\ trace buffer start \/

unsigned long trqry_free; /\ trace buffer free area start \/

unsigned long trqry_funcbits[8]; /\ SVC trace function bits \/

 } SVHTRACE_QRY;

Figure 11-2. SVC Trace Query Structure - Intel

bytes 0-3 trqry_bits
Current trace enable bit mask (the NDA field svhtrbits).

bytes 4-7 trqry_size
Size (in bytes) of the trace buffer.

bytes 8-11 trqry_start
Offset from the start of the trace buffer of the start of the data
in the buffer.

bytes 12-15 trqry_free
Offset from the start of the trace buffer of the start of the free
area in the trace buffer (i.e. a pointer to the byte immediately
after the last data byte in the trace buffer).

bytes 16-47 trqry_funcbits
SVC function trace bits. This is a vector of 256 bits, one bit
per possible SVC function. Bit i is set if SVCs with function
code i are to be traced. The contents of this vector are
meaningful if and only if bit 31 is set in the SVC Handler
trace enable bit mask returned in bytes 0-3 of the buffer.
This bit vector is in the order required by the Intel “bit test”
instructions; that is, when viewed as a sequence of bits, the
bits are in the order 7-0, 15-8, 23-16, ..., 255-248.

QSVCTqdata = 4
Query trace state, and obtain the trace data. BufAddr points to a
buffer which consists of a SVHTRACE_QRY structure (see above),
followed by sufficient space to receive the contents of the trace
buffer. If the parameter list buffer is not large enough, the calling
task's data may be overwritten, or the calling task may fail with a
general protection fault. An SVCTRACE SVC with Action=3 may be
used to determine the necessary buffer size; in the current version
of CP/Q, the maximum buffer size required is 384K+48 bytes.

The data returned is as for Action=3, plus the entire current trace
buffer contents, regardless of whether the buffer contents are
meaningful or useful or not.

QSVCTqcount = 5
Get SVC counts. BufAddr points to a buffer of length InCount
double words to receive a copy of the SVC count vector. The first
InCount entries of the count vector are placed in the buffer. On
return, OutCount holds the number of entries returned - this is
smaller than the value in the call if the supplied InCount value is
larger than the size of the SVC count vector in the NDA (currently
256 double words).

 Chapter 11. Miscellaneous SVCs 11-7

The returned count vector is simply a sequence of double words.
Element i in this vector is the count of SVCs with function code i.
Thus element 0 is the count of DISP_RET SVCs. Certain SVC
function codes are not used, for example function 4; for such
unused SVC codes, the corresponding entry in the count vector is
always returned as 0.

QSVCTptsvon = 6
Per-task tracing of SVCs (both “built-in” SVCs and installable
extension SVCs) is to apply to the task whose SVid is in SVid.

Tracing occurs only if either or both bits 23 and 31 of the NDA field
SVCtrbits have been set.

QSVCTptsvoff = 7
Per-task tracing of SVCs (both “built-in” SVCs and installable
extension SVCs) is not to apply to the task whose SVid is in SVid.

If SVid is set to 0, per-task tracing is turned off for all tasks.

QSVCTptexiton = 8
Per-task tracing of SVC Handler exits (from both “built-in” SVCs and
installable extension SVCs) is to apply to the task whose SVid is in
SVid.

Tracing occurs only if either or both bits 22 and 30 of the NDA field
SVCtrbits have been set.

QSVCTptexitoff = 9
Per-task tracing of SVC Handler exits (from both “built-in” SVCs and
installable extension SVCs) is not to apply to the task whose SVid
is in SVid.

If SVid is set to 0, per-task tracing is turned off for all tasks.

Flags A bit significant field, used for Action = 0 and 1, to specify which trace
actions are to occur or are to be stopped, as follows. The
corresponding bits are set (Action=0) or unset (Action=1) in the NDA
field SVCtrbits, as appropriate.

bit 0 - QSVCTnowrap (0x80000000)
If set, SVC Handler tracing will cease (bits 22-31 will be set to 0)
when the trace buffer becomes full (i.e. it will not wrap around and
over-write the old data in the buffer) for Action = 0.

For Action = 1, the “stop trace on buffer full” facility is turned off.

bit 1 - QSVCTsvc_pt (0x40000000)
If set, the tracing of SVC Handler exits is to be on a per-task basis
(Action = 0) or for every task (Action = 1).

bit 2 - QSVCTexit_pt (0x20000000)
If set, the tracing of SVCs is to be on a per-task basis (Action = 0)
or for every task (Action = 1).

bits 3-21 (0x1FFFFC00)
Unused, should be 0.

bit 22 - QSVCTextexit (0x00000200)
If set, returns from installable extension SVCs are to be traced
(Action = 0) or not traced (Action = 1).

11-8 Application Programming Reference

bit 23 - QSVCTextsvc (0x00000100)
If set, installable extension SVCs are to be traced (Action = 0) or
not traced (Action = 1). For Action = 0, the tracing of each external
SVC function can be controlled independently, according to the
value supplied in InCount and the buffer pointed to by BufAddr (see
above).

bit 24 - QSVCTdouser (0x00000080)
If set, “user trace” SVCs (SVCTRACE with AL = 2) is to be
implemented (Action = 0) or not implemented (Action = 1).

bit 25 - QSVCTtimestmp (0x00000040)
If set, time stamps (the start of each new second of time) are to be
traced (Action = 0) or not traced (Action = 1).

bit 26 - QSVCTtskchg (0x00000020)
If set, task changes are to be traced (Action = 0) or not traced
(Action = 1).

bit 27 - QSVCTtskflt (0x00000010)
If set, task faults are to be traced (Action = 0) or not traced (Action
= 1).

bit 28 - QSVCTuiint (0x00000008)
INT instructions specifying an un-initialized IDT entry are to be
traced (Action = 0) or not traced (Action = 1).

bit 29 - QSVCThwint (0x00000004)
If set, hardware interrupts (apart from those for the timer) are to be
traced (Action = 0) or not traced (Action = 1). For Action = 0, the
tracing of each interrupt level can be controlled independently,
according to the value supplied in InCount and the buffer pointed to
by BufAddr (see above).

bit 30 - QSVCTsvcexit (0x00000002)
If set, SVC Handler exits from “built-in” SVCs (i.e. those within the
SVC Handler, Memory Manager and Resource Manager) to the
calling task are to be traced (Action = 0) or not traced (Action = 1).

bit 31 - QSVCTsvc (0x00000001)
If set, “built-in” SVCs (i.e. those within the SVC Handler, Memory
Manager and Resource Manager) are to be traced (Action = 0) or
not traced (Action = 1). For Action = 0, the tracing of each SVC
function can be controlled independently, according to the value
supplied in InCount and the buffer pointed to by BufAddr (see
above).

InCount Byte count or buffer size for Action = 0, 2, 3, 4 and 5.

BufAddr Pointer to a data buffer for Action = 0, 2, 3, 4 and 5.

SVid The SVid for per-task tracing for Action = 6, 7, 8 and 9.

OutCount A pointer to a 32-bit location to receive the returned count for Action =
5.

 Chapter 11. Miscellaneous SVCs 11-9

 Return Parameters
*BufAddr The buffer is overwritten for calls with Action = 3, 4 and 5, as described

above. The buffer is preserved for calls with Action = 0 and 2. This
parameter is unused for calls with Action =1 and Action =6-9.

*OutCount
The returned count for calls with Action =5. This parameter is otherwise
unchanged.

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCnotrace (0x80010016)
There is no SVC Handler trace area in the system.

QSVCtracefull (0x80010025)
The trace area is full - a user trace request (AL=2) has not been
implemented.

QSVCtraceoff (0x80010026)
User tracing is turned off - the user trace request (AL=2) has not been
implemented.

QSVCbadreq (0x8001001E)
This can be for one of the following reasons:

� Action not in the range 0-9.
� Action=0, and more than one of bits 23, 29 and 31 is set

concurrently in the parameter Flags.
� Action=0, and bits 3-21 of Flags are not all zero.

QSVCbadSVid (0x80010002)
The specified SVid is invalid in some manner (Action =6-9 only).

QSVCbadint (0x80010019)
When Action=0 and Flags bit 29 is set, one or more of the interrupt
levels specified in the buffer is invalid. In this case, the trace bit is not
set for any hardware interrupt level.

QSVCdeadSVid (0x8001000C)
The specified SVid is being deleted from the system (Action =6-9 only).

SVC Handler Generated Faults
QSVCparlist (0x81)

Parameter list or its address is invalid, for example the parameter
BufAddr does not point to an allocated page.

11-10 Application Programming Reference

CPWriteUItem (WRITE_UITEM) - Write Contents of User-Defined SVT
Entry

 Function
This call changes the data held in a user-defined SVT entry.

 C Syntax
long int CPWriteUItem(unsigned long int SVid,
 void \DataBuf);

 Parameters
SVid SVid of the SVT entry to be read.

DataBuf A pointer to a 24-byte readable buffer containing the new contents for
the SVT entry.

 Return Codes
QSVCgood (0)

Operation completed successfully.

QSVCbadSVid (0x80010002)
Specified SVT entry is not valid, or is not a user-defined SVT entry.
This return code can also occur if the calling task is a system task, but it
is not permitted to access to the specified SVT entry.

QSVCdeadSVid (0x8001000C)
The specified SVT entry is dying or is in a process that is being
removed from the system.

SVC Handler Generated Faults
None

QSVCparlist (0x81)
Parameter list or its address is not valid. For example DataBuf does not
point to an allocated page.

QSVCinvSVid (0x82)
The caller is not a system task, and it is not permitted to access to the
specified SVT entry.

If the specified buffer is not accessible, or if all or part of the buffer cannot have
physical pages allocated to it, the following faults can occur:

� A general protection
 � Stack
 � Page fault

 Chapter 11. Miscellaneous SVCs 11-11

11-12 Application Programming Reference

Memory Manager Calls

 Copyright IBM Corp. 1989-1994, 1996-1998

Application Programming Reference

 Chapter 12. Section Notes

All routines in this section require that cpqlib.h be included in the calling program.

All structures and typedefs which appear in this section are defined in cpqlib.h and
in files thereby automatically included. In particular, definitions for the bits in the
Type parameter can be found in the file memconst.h.

Note: The Memory Manager may enable interrupts while processing a call.
Applications which disable interrupts should take this into consideration.

 Copyright IBM Corp. 1989-1994, 1996-1998 12-1

12-2 Application Programming Reference

 Chapter 13. Allocation Functions

 CPAllocBase

Syntax -

long int CPAllocBase(Type,Size,&Offset,Real_Address)

unsigned long int Type;

unsigned long int Size;

 void \Offset;

unsigned long int Real_Address;

Type This value contains information about the attributes of the memory object being

created.

Size This is the number of bytes required. The number of bytes requested is rounded up

to a multiple of the page size. The maximum size object that can be allocated is

2GB-1.

Offset Variable in which the offset of the object created is returned. Also, if

QMthis_off is set in the Type field, then this is the requested offset where the
memory object should be created.

Real_Address

This is the required 32-bit physical address, and must be aligned at a page

boundary.

 Usage Notes
This function is used to obtain storage which begins at a particular real address
and is intended to support user-managed real memory or system memory mapped
devices. The function is reserved to callers with I/O privilege. The new object is
always designated nonswappable and long-term fixed. The requested real storage
must begin at an address that is on a page boundary, and the size is rounded up to
a multiple of the page size. Allocation is made from free adapter memory.

Note: This function and CPAllocRange are the only functions that access adapter
memory.

CP/Q uses the concept of regions of real storage. There are two types of regions:

� General purpose storage is memory that is used to satisfy general memory
allocations. It is not available for allocation through this call.

� Adapter storage is memory that is defined as some special type of storage
such as adapter memory. It is not available for general allocation, but it is
reserved for allocation through this call.

Because the object is obtained from free adapter memory, there is the implication
that it is some special type of storage. The object is given a fix count of 1. The
fixing of the underlying pages is considered to be a long-term fix.

 Copyright IBM Corp. 1989-1994, 1996-1998 13-1

It is possible to request that a specific offset be assigned to an object, and it is
intended only for those cases where this capability is truly required. An example
might be special purpose memory which is accessed and viewed by other hardware
components which do not implement virtual memory and therefore, some
performance advantage might be gained by a specified offset. Indiscriminate use
of this function can cause unnecessary page tables/system control blocks to be
created, thereby wasting real memory.

The Type parameter defines the following for a memory object:

� Object class of global, common, or private
� Specific offset required
� Address space (caller's effective address space or current address space)
� Privilege level, either user or supervisor
� Access, either read/write or read only

The Class of the memory object is defined as follows:

QMglobal
This indicates a Global class object.

QMprivate
This indicates a Private class object.

QMcommon
This indicates a Common class object.

The following apply only to Common objects:

� Privilege Level Limit

QMshare_supvr
This is used to indicate the limit of access to be allowed to
other processes. Specifically, it allows Supervisor access.

QMshare_user
This is used to indicate the limit of access to be allowed to
other processes. Specifically, it allows User access.

� Read/Write Access Limit

QMshare_read
It is used to indicate the limit of access to be allowed to
other processes. Specifically, it allows read-only access.

QMshare_write
It is used to indicate the limit of access to be allowed to
other processes. Specifically, it allows read/write access.

 � Give/Get Access

QMgive This indicates the access mechanism for Common class
objects from the CPGiveMem call.

QMget This indicates the access mechanism for Common class
objects from the CPGetMem call.

 � Copy Mode

QMcopy It is used to indicate copy mode for the object.
QMcopy_on_write

This is valid only on creation of a copy mode common
object. This indicates that the copy is to be performed by

13-2 Application Programming Reference

copy on write. Immediate copy is performed if this is not
explicitly requested.

Specific Offset is defined as follows:

QMthis_off
This is used if a specific offset is being requested for the object being
created.

Address space is defined as follows:

QMnew_eff
This is used to indicate that the new object is to be created in the
address space of the caller's effective address space.

QMnew_current
This is used to indicate that the new object is to be created in the current
address space.

Privilege level is defined as follows:

QMuser This is used to indicate user privilege level is requested.

QMsupervisor
This is used to indicate supervisor privilege level is requested.

Access is defined as follows:

QMwrite This is used to indicate read/write access is requested,

QMread This is used to indicate read-only access is requested.

 Implementation Notes
By the very nature of this function, the real storage pages assigned to map the
requested object are contiguous pages in real storage. This function and
CPAllocRange are the only functions that provides contiguous real pages.

This call creates a memory object and returns an Offset. The object is accessed or
referenced by this Offset, not by the Real_Address. The only exception is for
adapter memory in ranges created with the mapped option and being accessed by
supervisor level code in systems whose DRMM (Direct Real Memory Map) starts at
offset 0.

DMA or bus master I/O cannot be performed directly into Common Class,
Copy-on-Write objects. A page alias must be made first.

 Return Codes
The Memory Manager provides a return code on all calls. Except for a success
return code (QMsuccess), which has a value of 0, all Memory Manager return
codes have the form 0x8002xxxx . The following are possible return codes for this
call along with their low order 16 bits:

QMsuccess Request was successful, offset returned.

QMbad_offset-(0x0001) The caller requested a specific offset, but that offset was
not available, not large enough, or not of the class
requested.

QMbad_type-(0x0002) Type field error - caller's privilege insufficient.

 Chapter 13. Allocation Functions 13-3

QMbad_size-(0x0004) A size of zero or greater than 2GB-1 was specified.

QMbad_addr-(0x0005) Address error - the address is not aligned on a page
boundary.

QMbad_range-(0x0008) The real address requested is not within a valid range of
adapter memory.

QMno_block-(0x0010) No free linear address block exists of sufficient size to
map the requested real addresses.

QMno_page-(0x0012) The real storage at the requested base address required
new page tables to map it into linear address space, and
no page frames were available to create the page tables.

QMreal_alloc-(0x0016) The real address requested has been previously
allocated and is unavailable.

QMproc_limit-(0x0018) The allocation size would exceed the process's limits.

QMprocess_dead-(0x0022)
The process, in whose address space the new object
was to be created, is in the final stages of the Memory
Manager's process removal. No new requests to create
memory objects can be honored. This should not
normally occur, particularly if the Resource Manager
resource provider facilities have been used.

QMrestricted_function-(0x0030)
Caller does not have the required privilege level.

QMbusy_fork-(0x0035) The process, in whose address space the new object
was to be created, is performing a fork operation. The
request cannot be accommodated at this time.

Memory Manager Generated Faults
It is possible that the memory manager will detect internal or system errors during
the processing of this call. If this occurs, an internal error code is either returned to
the caller, or is transmitted to the caller's fault handler as a result of the Memory
Manager issuing a CPFaultTask call. In addition, certain fault conditions relating to
memory objects may be detected asynchronously by the page fault handler and
reported to the task's fault handler. See SPL Volume 4: Memory Manager for a
description of the error codes that can occur.

13-4 Application Programming Reference

 CPAllocMem

Syntax -

long int CPAllocMem(Type,Size,&Offset)

unsigned long int Type;

unsigned long int Size;

 void \Offset;

Type This value contains information about the attributes of the memory object being

created.

Size This is the number of bytes required. The number of bytes requested is rounded up

to a multiple of the page size. The maximum size object that can be allocated is

2GB-1.

Offset A variable in which the offset of the object created is returned. Also, if

QMthis_off is set in the Type field, then this is the requested offset where the
memory object should be created.

 Usage Notes
This function is used to create a memory object. This function obtains storage from
“free storage”, that is, from free linear address space in the class of memory
specified by the caller. As required, the memory manager maps this storage to real
memory. If assignment at allocation was requested, page frames are immediately
assigned to the entire object. Otherwise, page frames are assigned by the page
fault handler when and if the page is actually used. In either case the page frames
are taken from the list of free general purpose page frames.

In the case of sparse objects, no page frames are assigned at allocation, nor are
frames assigned on page faults. Not present page faults are treated as errors and
the task is faulted. Page frames can only be assigned to sparse objects by explicit
requests to commit pages of real memory to the object. Sparse objects are
normally intended for use by the system or system extensions.

When allocating Common class objects, the object is created only in the address
space of the caller (as indicated in the Type field). Access to this object in another
address space requires additional Memory Manager calls. The conditions under
which access may be obtained are specified in the allocate call. The caller can
specify a limit for access attributes for common objects. If specified, this limit must
not be less restrictive than that requested by the caller. If not specified, it defaults
to user/writeable. The caller must also specify the mode of a common object
(shared or copy) and how access is to be obtained (give or get).

The caller must be at supervisor level to create a supervisor object.

It is possible to request that a specific offset be assigned to an object. This
requires IOPL and is intended only for those cases where this capability is truly
required. Indiscriminate use of this function can cause unnecessary page tables to
be created, thereby wasting real memory.

The object obtained belongs to the caller's effective process.

 Chapter 13. Allocation Functions 13-5

The Type parameter defines the following for a memory object:

� Object class (global, common, or private)
� Type of physical memory (default, type 1, type 2, or type 3)
� Specific offset required
� Page frame assignment (at allocation or on page faults when pages are

accessed)
� Address space (caller's effective address space or current address space)
� Sparse object, either yes or no
� Fix state, either create object with initial fix or not
� Privilege level, either user or supervisor
� Access, either read/write or read only

The Class of the memory object is defined as follows:

QMglobal
This indicates a Global class object.

QMprivate
This indicates a Private class object.

QMcommon
This indicates a Common class object.

The following apply only to Common objects:

� Privilege Level Limit

QMshare_supvr
This is used to indicate the limit of access to be allowed to
other processes. Specifically, it allows Supervisor access.

QMshare_user
This is used to indicate the limit of access to be allowed to
other processes. Specifically, it allows User access.

� Read/Write Access Limit

QMshare_read
This is used to indicate the limit of access to be allowed to
other processes. Specifically, it allows read only access.

QMshare_write
This is used to indicate the limit of access to be allowed to
other processes. Specifically, it allows read/write access.

 � Give/Get Access

QMgive This indicates the access mechanism for Common class
objects using the CPGiveMem call.

QMget This indicates the access mechanism for Common class
objects using the CPGetMem call.

 � Copy Mode

QMcopy This is used to indicate copy mode for the object.
QMcopy_on_write

This is valid only on creation of a copy mode common
object. This indicates that the copy is to be performed by
copy on write. Immediate copy is performed if this is not
explicitly requested.

13-6 Application Programming Reference

These masks indicate the type of physical memory to use when making storage
page assignments to this object as follows:

QMtype_default
A request for the default memory type. That is, use memory type 1 if
available. Otherwise memory type 2 or 3 is used (in that order).

QMtype1, QMtype2 or QMtype3
A request for a specific memory type. That is, use only the memory type
that is specified.

Specific Offset is defined as follows:

QMthis_off
This is used if a specific offset is being requested for the object being
created. Use of this requires that the caller have I/O privilege.

Page frames are assigned as follows:

QMassign_alloc
This is used to indicate that real storage frames are to be assigned at
allocation time. If this mask is not used, page frames are assigned only
when and if the storage is touched and a page fault occurs.

Address space is defined as follows:

QMnew_eff
This is used to indicate that the new object is to be created in the
address space of the caller's effective address space.

QMnew_current
This is used to indicate that the new object is to be created in the current
address space.

Sparse object is defined as follows:

QMsparse
This is used if the object is sparse. Use of this requires that the caller
have I/O privilege.

Fix status is defined as follows:

QMfixed This is used request that the object be fixed at allocation. Use of this
requires that the caller have I/O privilege.

Privilege level is defined as follows:

QMuser This is used to indicate user privilege level is requested.

QMsupervisor
This is used to indicate supervisor privilege level is requested.

Access is defined as follows:

QMwrite This is used to indicate read/write access is requested.

QMread This is used to indicate read-only access is requested.

 Chapter 13. Allocation Functions 13-7

 Implementation Notes
None

 Return Codes
The Memory Manager provides a return code on all calls. Except for a success
return code (QMsuccess), which has a value of 0, all Memory Manager return
codes have the form 0x8002xxxx . The possible return codes for this call, along
with their low order 16 bits, are listed below.

QMsuccess Request was successful, offset returned.

QMbad_offset-(0x0001) The caller requested a specific offset, but that offset was
not available, not large enough, or not of the class
requested.

QMbad_type-(0x0002) Type field error - the caller's privilege was insufficient for
the attributes or function requested.

QMbad_size-(0x0004) A size of zero or greater than 2GB-1 was specified.

QMno_block-(0x0010) Sufficient free virtual storage does not exist to satisfy the
request.

QMno_page-(0x0012) Assignment of page frames was requested
(QMassign_alloc), or additional page tables were
required to map the memory allocated, and insufficient
free page frames were available to satisfy the request.

QMproc_limit-(0x0018) Allocation size would exceed process's limits.

QMprocess_dead-(0x0022)
The process, in whose address space the new object
was to be created, is in the final stages of the Memory
Manager's process removal. No new requests to create
memory objects can be honored. This should not
normally occur, particularly if the Resource Manager
resource provider facilities have been used.

QMbusy_fork-(0x0035) The process, in whose address space the new object
was to be created, is performing a fork operation. The
request cannot be accommodated at this time.

Memory Manager Generated Faults
It is possible that the memory manager will detect internal or system errors during
the processing of this call. If this occurs, an internal error code is either returned to
the caller, or is transmitted to the caller's fault handler as a result of the Memory
Manager issuing a CPFaultTask call. In addition, certain fault conditions relating to
memory objects may be detected asynchronously by the page fault handler and
reported to the task's fault handler. See SPL Volume 4: Memory Manager for a
description of the error codes that can occur.

13-8 Application Programming Reference

 CPAllocRange

Syntax -

long int CPAllocRange(Type,Size,&Offset,&Real_Address)

unsigned long int Type;

unsigned long int Size;

 void \Offset;

unsigned long int Real_Address;

Type This value contains information about the attributes of the memory object being

created.

Size This is the number of bytes required. The number of bytes requested is rounded up

to a multiple of the page size. The maximum size object that can be allocated is

2GB-1.

Offset Variable in which the offset of the object created is returned. Also, if

QMthis_off is set in the Type field, then this is the requested offset where the
memory object should be created.

Real_Address

This is the real address where the call starts a search for the requested

contiguous block of storage. This real address must be aligned at a page

boundary. The address can be the start of a range of adapter memory, or somewhere

within a range of adapter memory. In either case the search looks at ascending

real addresses for a contiguous block of Size bytes, until one is found or the end

of the range is reached. If the function is successful, upon return this variable

contains the real address of the start of the storage block used to create the

memory object.

 Usage Notes
This function is used to obtain storage within a particular range of adapter memory,
and thus within a particular range of real addresses. It is intended to provide
support for I/O devices requiring contiguous real storage areas larger than 4K bytes
for DMA. The function is reserved to callers with I/O privilege. The new object is
always designated non-swappable and fixed. The Real_Address provided as an
input to the call must be an address within an existing range of adapter memory
and must be on a page boundary. The Size is rounded up to a multiple of the
page size. The memory range is examined starting at the specified Real_Address
to determine if a set of contiguous pages exists within the range of the requested
size. The object created must be within a single range. The first available block of
storage found, if any, is used, and the Real_Address of the start of the block is
returned along with the Offset (virtual address) of the created object. Allocation is
made from free adapter memory. The resulting object must be accessed using it's
Offset(virtual address).

Note: This is one of only two functions that accesses adapter memory.

CP/Q uses the concept of regions of real storage. There are two types of regions:

� General purpose storage is memory that is used to satisfy general memory
allocations. It is not available for allocation through this call.

 Chapter 13. Allocation Functions 13-9

� Adapter storage is memory that is defined as some special type of storage. It
is not available for general allocation, but it is reserved for allocation through
this call and through the call CPAllocBase.

Because the object is obtained from free adapter memory, there is the implication
that it is some special type of storage. The object is given a fix count of 1. The
fixing of the underlying pages is considered to be a long-term fix. Furthermore, as
adapter memory often has special characteristics and is generally used by device
drivers or similar code, a specific real address range can only be directly allocated
to one memory at a time. This means once a real address area has been allocated
by this call, subsequent calls for this range or an overlapping range fail. This
enables the device driver to retain full control over this memory. The device driver
can allow access to the underlying memory through standard CP/Q Memory
Manager calls such as CPAlias, CPGiveMem, and CPGetMem, if the object created
by this call was in the common class.

It is possible to request that a specific Offset be assigned to an object, and it is
intended only for those cases where this capability is truly required. An example
might be special purpose memory which is accessed and viewed by other hardware
components which do not implement virtual memory and, therefore, some
performance advantage might be gained by a specified Offset. Indiscriminate use
of this function can cause unnecessary page tables/control blocks to be created,
thereby wasting real memory.

Special Case:
When QMany_real is set, this call behaves in a somewhat different manner than
has just been described. In this case, the real address specified is not restricted to
adapter memory. It can also refer to general purpose memory. It is allocated as
long as the block of memory is entirely free and is within a single defined range of
memory. Only the specific block beginning with the specified real address is
examined. This case does not search blocks at ascending real addresses as in the
normal case.

The Type parameter defines the following for a memory object:

� Object class of global, common, or private
� Specific offset required
� Address space (caller's effective address space or current address space)
� Privilege level, either user or supervisor
� Access, either read/write or read only

The Class of the memory object is defined as follows:

QMglobal
This indicates a Global class object.

QMprivate
This indicates a Private class object.

QMcommon
This indicates a Common class object.

The following apply only to Common objects:

� Privilege Level Limit

13-10 Application Programming Reference

QMshare_supvr
This is used to indicate the limit of access to be allowed to
other processes. Specifically, it allows Supervisor access.

QMshare_user
This is used to indicate the limit of access to be allowed to
other processes. Specifically, it allows User access.

� Read/Write Access Limit

QMshare_read
This is used to indicate the limit of access to be allowed to
other processes. Specifically, it allows read only access.

QMshare_write
This is used to indicate the limit of access to be allowed to
other processes. Specifically, it allows read/write access.

 � Give/Get Access

QMgive This indicates the access mechanism for Common class
objects through the CPGiveMem call.

QMget This indicates the access mechanism for Common class
objects through the CPGetMem call.

 � Copy Mode

QMcopy It is used to indicate copy mode for the object.
QMcopy_on_write

This is valid only on creation of a copy mode common
object. This indicates that the copy is to be performed by
copy on write. Immediate copy is performed if this is not
explicitly requested.

Specific Offset is defined as follows:

QMthis_off
This is used if a specific offset is being requested for the object being
created. Use of this requires that the caller have I/O privilege.

Address space is defined as follows:

QMnew_eff
This is used to indicate that the new object is to be created in the
address space of the caller's effective address space.

QMnew_current
This is used to indicate that the new object is to be created in the current
address space.

Privilege level is defined as follows:

QMuser This is used to indicate user privilege level is requested.

QMsupervisor
This is used to indicate supervisor privilege level is requested.

Access is defined as follows:

QMwrite This is used to indicate read/write access is requested,

QMread This is used to indicate read-only access is requested.

 Chapter 13. Allocation Functions 13-11

 Implementation Notes
By the very nature of this function, the real storage pages assigned to map the
requested object are contiguous pages in real storage. This function and the
CPAllocBase function are the only ones that provides contiguous real pages.

This call creates a memory object and returns an Offset. The object is accessed or
referenced by this Offset, not by the Real_Address. The only exception is for
adapter memory in ranges created with the mapped option and being accessed by
supervisor level code in systems whose DRMM (Direct Real Memory Map) starts at
offset 0.

DMA or bus master I/O cannot be performed directly into Common Class,
Copy-on-Write objects. A page alias must be made first.

 Return Codes
The Memory Manager provides a return code on all calls. Except for a success
return code (QMsuccess), which has a value of 0, all Memory Manager return
codes have the form 0x8002xxxx . The possible return codes for this call, along
with their low order 16 bits, are listed below.

QMsuccess Request was successful, Offset and Real_Address
returned.

QMbad_offset-(0x0001) The caller requested a specific offset, but that offset was
not available or not of the class requested.

QMbad_type-(0x0002) Type field error - the caller's privilege is insufficient for
the attributes or function requested.

QMbad_size-(0x0004) A size of zero or greater than 2GB-1 was specified.

QMbad_addr-(0x0005) Address error. The address is not aligned on a page
boundary.

QMbad_range-(0x0008) The real address requested is not within a valid range of
adapter memory.

QMno_block-(0x0010) No free linear address block exists of sufficient size to
map the requested real addresses, or a specific offset
was requested and, while requested offset was available,
there was not a block large enough for the size of the
request.

QMno_page-(0x0012) The real storage at the requested base address required
new page tables to map it into linear address space, and
no page frames were available to create the page tables.

QMreal_alloc-(0x0016) All the possible areas within the specified area of the
range have previously been allocated and are
unavailable.

QMproc_limit-(0x0018) The allocation size would exceed process's limits.

QMprocess_dead-(0x0022)
The process, in whose address space the new object
was to be created, is in the final stages of the Memory
Manager's process removal. No new requests to create
memory objects can be honored. This should not
normally occur, particularly if the Resource Manager
resource provider facilities have been used.

13-12 Application Programming Reference

QMrestricted_function-(0x0030)
Caller does not have I/O privilege.

QMbusy_fork-(0x0035) The process, in whose address space the new object
was to be created, is performing a fork operation. The
request cannot be accommodated at this time.

Memory Manager Generated Faults
It is possible that the memory manager will detect internal or system errors during
the processing of this call. If this occurs, an internal error code is either returned to
the caller, or is transmitted to the caller's fault handler as a result of the Memory
Manager issuing a CPFaultTask call. In addition, certain fault conditions relating to
memory objects may be detected asynchronously by the page fault handler and
reported to the task's fault handler. See SPL Volume 4: Memory Manager for a
description of the error codes that can occur.

 Chapter 13. Allocation Functions 13-13

13-14 Application Programming Reference

 Chapter 14. Deallocation Functions

 CPFreeObj

Syntax -

long int CPFreeObj(Type,Offset)

unsigned long int Type;

 void \Offset;

Type This value determines the address space of the incoming object.

Offset Offset of the object to be deleted.

 Usage Notes
This function removes a memory object (or “pseudo object” in the case of an alias).
The object must be owned in the caller's effective address space. If common
shared mode, underlying storage is released if this is last user. If copy mode,
storage is released.

Objects allocated from adapter memory have an implied fix count of 1 when
allocated. These can be deleted with a fix count of 1. There is no need to unfix
the implied fix.

The Type parameter is used to define the incoming object's address space, as
follows:

QMold_eff
This is used to indicate that the incoming object is defined in the address
space of the caller's effective address space.

QMold_current
This is used to indicate that the incoming object is defined in the caller's
address space.

 Implementation Notes
None

 Return Codes
The Memory Manager provides a return code on all calls. Except for a success
return code (QMsuccess), which has a value of 0, all Memory Manager return
codes have the form 0x8002xxxx . The possible return codes for this call, along
with their low order 16 bits, are listed below.

QMsuccess Request was successful, object deleted.

QMbad_offset-(0x0001) Specified offset is not that of a valid memory object.

QMbad_type-(0x0002) Type field error - the caller is trying to delete supervisor
level object without supervisor privilege.

 Copyright IBM Corp. 1989-1994, 1996-1998 14-1

QMnot_owned-(0x0013) Specified object is not owned by caller's effective
process.

QMobj_fixed-(0x001A) Specified object had non-zero fix count.

QMobj_accessed-(0x001B)
Specified object had non-zero verify count or outstanding
aliases.

QMwrap_count-(0x0021) The call could not be processed because the memory
lock is at its maximum, that is, there are 255 tasks
currently executing within Memory Manager code
referring to this object.

QMbusy_fork-(0x0035) The process in which the object to be removed exists is
performing a fork operation. The request cannot be
accommodated at this time.

Memory Manager Generated Faults
It is possible that the memory manager will detect internal or system errors during
the processing of this call. If this occurs, an internal error code is either returned to
the caller, or is transmitted to the caller's fault handler as a result of the Memory
Manager issuing a CPFaultTask call. In addition, certain fault conditions relating to
memory objects may be detected asynchronously by the page fault handler and
reported to the task's fault handler. See SPL Volume 4: Memory Manager for a
description of the error codes that can occur.

14-2 Application Programming Reference

 CPFreeRange

Syntax -

long int CPFreeRange(Type,Real_Address)

unsigned long int Type;

unsigned long int Real_Address;

Type This value defines the type of memory and its attributes. It should currently be

set to zero.

Real_Address

The address in real memory of the first byte of the range to be freed.

 Usage Notes
This function is used to free an existing range of adapter memory. The entire
range of adapter memory must be unused at the time of the call, that is, there can
be no allocated memory objects within the range. The real address must be that of
the beginning of an existing range of adapter memory.

This function is only available to code having I/O privilege.

 Implementation Notes
None

 Return Codes
The Memory Manager provides a return code on all calls. Except for a success
return code (QMsuccess), which has a value of 0, all Memory Manager return
codes have the form 0x8002xxxx . The possible return codes for this call, along
with their low order 16 bits, are listed below.

QMsuccess Request was successful, and the range has been freed.

QMbad_addr-(0x0005) The real memory address was not page aligned.

QMbad_range-(0x0008) The real memory address is not that of an existing range
of adapter memory, or the range was not adapter
memory.

QMreal_alloc-(0x0016) The range was not entirely free (allocated objects exist
in range).

QMrestricted_function-(0x0030)
Caller does not have the required privilege level.

Memory Manager Generated Faults
It is possible that the memory manager will detect internal or system errors during
the processing of this call. If this occurs, an internal error code is either returned to
the caller, or is transmitted to the caller's fault handler as a result of the Memory
Manager issuing a CPFaultTask call. In addition, certain fault conditions relating to
memory objects may be detected asynchronously by the page fault handler and
reported to the task's fault handler. See SPL Volume 4: Memory Manager for a
description of the error codes that can occur.

 Chapter 14. Deallocation Functions 14-3

14-4 Application Programming Reference

Chapter 15. Shared Object Functions

 CPAlias

Syntax -

long int CPAlias(Type,Old_Offset,&New_Offset,Size)

unsigned long int Type;

 void \Old_Offset;

 void \New_Offset;

unsigned long int Size;

Type This value contains information defining the object being aliased and about the

attributes the memory object being created.

Old_Offset

If QMalias_all of the Type parameter is used, this is the offset of the object to
which an alias is to be made. If QMalias_part is used, this is the area within an
object to which an alias is to be made.

New_Offset

Variable in which to return the offset of the alias created.

Size Used only if QMalias_part of the Type parameter is specified. Indicates the size

of the area within an object to which an alias is to be made. The span of

Old_Offset to (Old_Offset + (Size - 1)) must be entirely within a single memory

object.

 Usage Notes
This function can be used to make a temporary alias to a memory object (or part of
a memory object) in another address space. The alias created is at a different
offset from the original object.

The alias is owned by the caller's effective process.

The caller must be at supervisor level to make an alias to a supervisor object. If
the access through the alias is less restrictive than the underlying object, then the
underlying object must be owned by the caller's effective process. If the underlying
object is also an alias then the original underlying object is checked to establish
ownership.

If an alias is made to a common class copy_on_write object, then a physical copy
of the underlying pages is made during this call.

 Copyright IBM Corp. 1989-1994, 1996-1998 15-1

 Restriction

Aliases cannot be made to sparse memory objects that contain uncommitted
pages within the area being aliased. If you make an alias to an object
containing a force-not-present page, that alias is not updated to reflect any
changes in the force-not-present state of any pages, changes such as the
removal of any existing force-not-present pages, or the creation of new ones.
Creation of new pages is effectively prevented, because aliasing forces page
assignment, and thus precludes any new force-not-present pages.

The Type parameter defines the following:

QMalias_all
This is used if an alias is to be made to the entire memory object.

QMalias_part
This is used if an alias applies only to a part of the object.

QMglobal
This indicates the class of the alias (new object) is Global.

QMprivate
This indicates the class of the alias (new object) is Private.

QMold_eff
This indicates that the incoming object is to be defined in the address
space of the caller's effective address space.

QMold_current
This indicates that the incoming object is to be defined in the caller's
current address space.

QMnew_eff
This indicates that the new object is to be created in the caller's effective
address space.

QMnew_current
This indicates that the new object is to be created in the current address
space.

QMuser This indicates user privilege level is requested.

QMsupervisor
This indicates supervisor privilege level is requested.

QMwrite This indicates read/write access is requested.

QMread This is used to indicate read-only access is requested.

 Implementation Notes
The unit of storage allocation is the page. Aliases can only be created in units of
whole pages. This has no side effect if an entire object is aliased, because the
object is page aligned and is an integral number of pages. However, if only part of
an object is aliased, then more than the requested memory area is physically
aliased. This means the entire page containing the starting offset of the target area
and the entire page containing the last byte are physically aliased by page table
manipulation. The offset returned for the alias is the offset of the first byte of the
desired area. As long as the program limits its access to the memory defined by
offset and size, there are no undesired side effects. Conversely, the program has

15-2 Application Programming Reference

access to other memory adjacent to the desired area, and if ill-behaved, this can
cause unexpected side effects.

 Return Codes
The Memory Manager provides a return code on all calls. Except for a success
return code (QMsuccess), which has a value of 0, all Memory Manager return
codes have the form 0x8002xxxx . The possible return codes for this call, along
with their low order 16 bits, are listed below.

QMsuccess Request was successful, and the alias was created.

QMbad_offset-(0x0001) Specified offset is not that of a valid memory object or
the offset is not within a valid object.

QMbad_type-(0x0002) Type field error - the new object has less restrictive
access than original object, or the caller does not have
appropriate privilege for the access level requested.

QMbad_size-(0x0004) The size specified for an alias of part of an object
extends beyond the end of the object, or it has a value
of zero.

QMno_block-(0x0010) Sufficient free virtual storage does not exist to satisfy the
request.

QMno_page-(0x0012) Real storage had to be assigned while making the alias,
or additional page tables were required to map the alias,
and there were insufficient free page frames available to
satisfy the request.

QMnot_owned-(0x0013) The call attempts to make a less restrictive alias, and the
underlying object is not owned by the caller's effective
process. If the underlying object is also an alias, the
original object is subjected to an ownership test.

QMproc_limit-(0x0018) The allocation size would exceed the process's limits.

QMwrap_count-(0x0021) One or more physical pages underlying the area being
aliased has more than the system limit (255) of aliases
and (if common) shared accesses to it, or if the memory
lock is at its maximum, that is, there are 255 tasks
currently executing within Memory Manager code
referring to this object.

QMprocess_dead-(0x0022)
The process, in whose address space the new object
was to be created, is in the final stages of the Memory
Manager's process removal. No new requests to create
memory objects can be honored. This should not
normally occur, particularly if the Resource Manager
resource provider facilities have been used.

QMalias_sparse-(0x0032)
Attempting to make an alias to an area within a sparse
memory object that contains uncommitted pages.

QMalias_FNP-(0x0034) Attempting to make an alias to an area containing a
Forced Not Present page.

 Chapter 15. Shared Object Functions 15-3

QMbusy_fork-(0x0035) The process containing the incoming object or the
process in which the alias is to be created is performing
a fork operation. The request cannot be accommodated
at this time.

Memory Manager Generated Faults
It is possible that the memory manager will detect internal or system errors during
the processing of this call. If this occurs, an internal error code is either returned to
the caller, or is transmitted to the caller's fault handler as a result of the Memory
Manager issuing a CPFaultTask call. In addition, certain fault conditions relating to
memory objects may be detected asynchronously by the page fault handler and
reported to the task's fault handler. See SPL Volume 4: Memory Manager for a
description of the error codes that can occur.

15-4 Application Programming Reference

 CPGetMem

Syntax -

long int CPGetMem(Type,Offset_in)

unsigned long int Type;

 void \Offset_in;

Type This value contains information about the attributes of the memory object being

created.

Offset_in Offset of the object being retrieved.

 Usage Notes
This function causes access to a common object to be created in a process. The
object must have been previously created as common with get option. Object is
created in the address space of the caller's effective process. The object appears
in the caller's address space at the same offset as the creating process, that is, at
Offset_in.

If the object was created in shared mode, then the caller receives shared access to
the original memory object. If the object was created in copy mode, the caller
receives access to a unique copy of the original object. The contents of the copy
are as of the time of the call, not at the time it was created. Access attributes of
the new object can be different from those of the original object, but they cannot be
less restrictive than the limits defined for the original object. If the access
requested is less restrictive than the limits set when the object was created, the
access attributes are coerced to the limit specified at creation. In this case, the call
completes successfully, but the access is the more restrictive one.

The caller must be at supervisor level to get access to a supervisor object.

If the object has already been obtained by a previous CPGetMem call, the
subsequent call is processed. The object is already accessible in the address
space, but the usage count is incremented. This means that the object is not be
removed from the address space until as many CPFreeObj calls have been made
as CPGetMem calls. If tasks use this capability, it is possible to write programs,
with respect to sharing memory, that can run in the same or separate processes.
In this case, the Memory Manager manages the usage and removal of the object.
If there are more than one task in a process and they do not use this approach and
only obtain the object once, they must communicate among themselves and ensure
that the object is not removed until all the tasks using the object are finished. If
multiple requests are made within a single address space, checks are made to
ensure that subsequent calls do not cause more restrictive access than that which
already exists.

The Type parameter defines the following:

 Chapter 15. Shared Object Functions 15-5

QMtype_default
A request for the default memory type, that is, use memory type 1 if
available. Otherwise, memory types 2 or 3 are used (in that order). This
is only meaningful on copy mode objects.

QMtype1, QMtype2 or QMtype3
A request for a specific memory type, that is, use only the memory type
that is specified. This is only meaningful on copy mode objects.

QMnew_eff
This is used to indicate that the new object is to be created in the caller's
effective address space.

QMnew_current
This is used to indicate that the new object is to be created in the current
address space.

QMuser This is used to indicate user privilege level is requested.

QMsupervisor
This is used to indicate supervisor privilege level is requested.

QMwrite This is used to indicate read/write access is requested.

QMread This is used to indicate read-only access is requested.

 Implementation Notes
None

 Return Codes
The Memory Manager provides a return code on all calls. Except for a success
return code (QMsuccess), which has a value of 0, all Memory Manager return
codes have the form 0x8002xxxx . The possible return codes for this call, along
with their low order 16 bits, are listed below.

QMsuccess Request was successful, object access created.

QMbad_offset-(0x0001) Specified offset is not that of a valid memory object.
This could occur with a shared mode object if all
previous users had deleted the object; therefore, it no
longer exists. It could also occur with a copy mode
object if the object's creator has been removed or has
deleted the original object.

QMbad_type-(0x0002) Type field error. The new object has less restrictive
access than original object, or the caller does not have
proper privilege for access level requested.

QMbad_handle-(0x000A) The handle provided was not a valid handle.

QMno_page-(0x0012) A physical copy was either requested or required, and
there were insufficient free page frames available to
satisfy the request, or additional page tables were
required to map the object into the process.

QMproc_limit-(0x0018) The allocation size would exceed the process's limits.

QMwrap_count-(0x0021) The call could not be processed because the memory
lock is at its maximum; that is, there are 255 tasks
currently executing within Memory Manager code
referring to this object.

15-6 Application Programming Reference

QMprocess_dead-(0x0022)
The process, in whose address space the new object
was to be created, is in the final stages of the Memory
Manager's process removal. No new requests to create
memory objects can be honored. This should not
normally occur, particularly if the Resource Manager
resource provider facilities have been used.

QMbusy_fork-(0x0035) The receiving process is performing a fork operation.
The request cannot be accommodated at this time.

Memory Manager Generated Faults
It is possible that the memory manager will detect internal or system errors during
the processing of this call. If this occurs, an internal error code is either returned to
the caller, or is transmitted to the caller's fault handler as a result of the Memory
Manager issuing a CPFaultTask call. In addition, certain fault conditions relating to
memory objects may be detected asynchronously by the page fault handler and
reported to the task's fault handler. See SPL Volume 4: Memory Manager for a
description of the error codes that can occur.

 Chapter 15. Shared Object Functions 15-7

 CPGiveMem

Syntax -

long int CPGiveMem(Type,Offset,ProcID)

unsigned long int Type;

 void \Offset_in;

unsigned int ProcID;

Type This value contains information about the attributes of the memory object being

created.

Offset_in Offset of the retrieved object.

ProcID Process ID of the process to which common access is being given.

 Usage Notes
This function causes common access to an object in the address space of another
process to be established. Object must have been previously created as common
with give option. Caller's effective process must be that of the object's owner.
Caller does not need effective process of target process, nor does it need set
effective process privilege. The target process is specified explicitly. The object
appears in the caller's address space at the same offset as the creating process
(that is, at Offset_in).

If the object was created in shared mode, then the target process receives shared
access to the original memory object. If the object was created in copy mode, the
target process receives access to a unique copy of the original object. The
contents of the copy are as of the time of the call, not the time the original object
was created. Access attributes of the new object can be different from those of the
original object, but cannot be less restrictive than the limits defined for the original
object. If the access requested is less restrictive than the limits set when the object
was created, the access attributes are coerced to the limit specified at creation. In
this case, the call completes successfully, but the access is the more restrictive
one.

The caller must be at supervisor level to give access to a supervisor object.

If the object has already given to a process by a previous CPGiveMem call, the
subsequent call is processed. The object is already accessible in the address
space, but the usage count is incremented. This means that the object is not
removed from the address space until as many CPFreeObj calls have been made
as CPGiveMem calls (within the same address space). If tasks use this capability,
it is possible to write programs, with respect to sharing memory that can run in the
same or separate processes. In this case, the Memory Manager manages the
usage and removal of the object. If there are more than one task in a process and
they do not use this approach and only obtain the object once, then they must
communicate among themselves and ensure that the object is not removed until all
the tasks using the object are finished. If multiple requests are made within a
single address space, checks are made to ensure that subsequent calls do not
cause more restrictive access than that which already exists.

15-8 Application Programming Reference

The Type parameter defines the following:

QMtype_default
A request for the default memory type, that is, use memory type 1 if
available. Otherwise memory types 2 or 3 are used (in that order). This
is only meaningful on copy mode objects.

QMtype1, QMtype2 or QMtype3
A request for a specific memory type (that is, use only the memory type
that is specified). This is only meaningful on copy mode objects.

QMuser This is used to indicate user privilege level is requested.

QMsupervisor
This is used to indicate supervisor privilege level is requested.

QMwrite This is used to indicate read/write access is requested.

QMread This is used to indicate read-only access is requested.

 Implementation Notes
None

 Return Codes
The Memory Manager provides a return code on all calls. Except for a success
return code (QMsuccess), which has a value of 0, all Memory Manager return
codes have the form 0x8002xxxx . The possible return codes for this call, along
with their low order 16 bits, are listed below.

QMsuccess Request was successful, object access created in
requested address space.

QMbad_offset-(0x0001) Specified offset is not that of a valid memory object.
This can occur if the original object has been removed,
even if others are still sharing it or using a copy of it.

QMbad_type-(0x0002) Type field error. The new object has less restrictive
access than limits allowed on original object when
created, or the caller does not have proper privilege for
access level requested.

QMbad_PID-(0x0003) Process ID is not that of a valid process.

QMbad_handle-(0x000A) The handle provided was not a valid handle.

QMno_page-(0x0012) A physical copy was either requested or required, and
there were insufficient free page frames available to
satisfy the request, or additional page tables were
required to map the object into the process.

QMnot_owned-(0x0013) Caller's effective process not the same process owning
original object.

QMproc_limit-(0x0018) The allocation size would exceed the process's limits.

QMwrap_count-(0x0021) The call could not be processed because the memory
lock is at its maximum; that is, there are 255 tasks
currently executing within Memory Manager code
referring to this object.

 Chapter 15. Shared Object Functions 15-9

QMprocess_dead-(0x0022)
The process, in whose address space the new object
was to be created, is in the final stages of the Memory
Manager's process removal. No new requests to create
memory objects can be honored. This should not
normally occur, particularly if the Resource Manager
resource provider facilities have been used.

QMbusy_fork-(0x0035) The target process is performing a fork operation. The
request cannot be accommodated at this time.

Memory Manager Generated Faults
It is possible that the memory manager will detect internal or system errors during
the processing of this call. If this occurs, an internal error code is either returned to
the caller, or is transmitted to the caller's fault handler as a result of the Memory
Manager issuing a CPFaultTask call. In addition, certain fault conditions relating to
memory objects may be detected asynchronously by the page fault handler and
reported to the task's fault handler. See SPL Volume 4: Memory Manager for a
description of the error codes that can occur.

15-10 Application Programming Reference

Chapter 16. Change Object Functions

 CPChangeAttr

Syntax -

long int CPChangeAttr(Type,Offset)

unsigned long int Type;

 void \Offset;

Type This value contains information about the attributes of the memory object being

changed.

Offset Offset of the object whose attributes are to be changed.

 Usage Notes
This function alters the attributes of a memory object. Changes which increase
access, that is which are less restrictive (such as changing from supervisor to
user), can only be made if the object is owned by the caller's effective process, or
(in the case of global object or shared mode common object) if the object is one
created by the caller's effective process. If the object is an alias, then the original
underlying object is checked for ownership. Furthermore, changes which reduce
access (such as changing from writeable to read-only) can only be made if the fix
count, verify counts, and memory lock are all zero. The implied fix for adapter
memory obtained from a CPAllocBase or CPAllocRange call does not prevent the
changing of attributes.

The caller must have supervisor privilege to access a supervisor object.

The Type parameter defines the following:

QMold_eff
This is used to indicate that the incoming object is to be defined in the
address space of the caller's effective address space.

QMold_current
This is used to indicate that the incoming object is to be defined in the
caller's current address space.

QMuser This is used to indicate user privilege level is requested.

QMsupervisor
This is used to indicate supervisor privilege level is requested.

QMwrite This is used to indicate read/write access is requested.

QMread This is used to indicate read-only access is requested.

 Copyright IBM Corp. 1989-1994, 1996-1998 16-1

 Implementation Notes
For shared mode objects, the type parameters QMuser and QMsupervisor are
only used for access validation purposes. It is not possible to have a shared
common object with user level access in one address space and supervisor level
access in another due to the &PPCPWRA.. If after validation access is granted,
the access matches that of the original object.

 Return Codes
The Memory Manager provides a return code on all calls. Except for a success
return code (QMsuccess), which has a value of 0, all Memory Manager return
codes have the form 0x8002xxxx . The possible return codes for this call, along
with their low order 16 bits, are listed below.

QMsuccess Request was successful, object's attributes have been
altered.

QMbad_offset-(0x0001) Specified offset is not that of a valid memory object.

QMbad_type-(0x0002) Type field error. The new object has less restrictive
access than original object and object not owned by
caller, or the caller has insufficient privilege to access
object.

QMnot_owned-(0x0013) Object is not owned by the caller's effective process.

QMobj_fixed-(0x001A) Specified object had nonzero fix count.

QMobj_accessed-(0x001B)
Object has outstanding verifies or memory locks
(attributes not changed).

QMwrap_count-(0x0021) The call could not be processed because the memory
lock is at its maximum; that is, there are 255 tasks
currently executing within Memory Manager code
referring to this object.

QMbusy_fork-(0x0035) The process, in which the referenced object exists, is
performing a fork operation. The request cannot be
accommodated at this time.

Memory Manager Generated Faults
It is possible that the memory manager will detect internal or system errors during
the processing of this call. If this occurs, an internal error code is either returned to
the caller, or is transmitted to the caller's fault handler as a result of the Memory
Manager issuing a CPFaultTask call. In addition, certain fault conditions relating to
memory objects may be detected asynchronously by the page fault handler and
reported to the task's fault handler. See SPL Volume 4: Memory Manager for a
description of the error codes that can occur.

16-2 Application Programming Reference

 CPShrinkSize

Syntax -

long int CPShrinkSize(Type,Offset,Size)

unsigned long int Type;

 void \Offset;

unsigned long int Size;

Type This value contains information about the memory object being referenced.

Offset The offset of the memory object whose size is to be reduced.

Size The object's new size (in bytes). This is rounded up to a multiple of the page

size.

 Usage Notes
This function can be used to shrink the size of a memory object.

The caller must be at supervisor level to access a supervisor object. The object
must be owned in the caller's effective process.

The Type parameter defines the following:

QMold_eff
This is used to indicate that the incoming object is to be defined in the
address space of the caller's effective address space.

QMold_current
This is used to indicate that the incoming object is to be defined in the
caller's current address space.

 Implementation Notes
None

 Return Codes
The Memory Manager provides a return code on all calls. Except for a success
return code (QMsuccess), which has a value of 0, all Memory Manager return
codes have the form 0x8002xxxx . The possible return codes for this call, along
with their low order 16 bits, are listed below.

QMsuccess Request was successful, and the size changed.

QMbad_offset-(0x0001) Specified offset is not that of a valid memory object.

QMbad_type-(0x0002) Type field error. The caller does not have proper
privilege to access the object.

QMbad_size-(0x0004) The size specified was greater than the current object
size, or a size of zero was specified.

QMnot_owned-(0x0013) Object is not owned by the caller's effective process.

QMobj_fixed-(0x001A) Specified object had nonzero fix count.

 Chapter 16. Change Object Functions 16-3

QMobj_accessed-(0x001B)
Specified object had nonzero verify count or outstanding
aliases, and the size was not changed.

QMbusy_fork-(0x0035) The process, in which the referenced object exists, is
doing a fork operation. The request cannot be
accommodated at this time.

Memory Manager Generated Faults
It is possible that the memory manager will detect internal or system errors during
the processing of this call. If this occurs, an internal error code is either returned to
the caller, or is transmitted to the caller's fault handler as a result of the Memory
Manager issuing a CPFaultTask call. In addition, certain fault conditions relating to
memory objects may be detected asynchronously by the page fault handler and
reported to the task's fault handler. See SPL Volume 4: Memory Manager for a
description of the error codes that can occur.

16-4 Application Programming Reference

Chapter 17. Sparse Object Functions

 CPCommit

Syntax -

long int CPCommit(Type,Offset,Size,OffsetPage)

unsigned long int Type;

 void \Offset;

unsigned long int Size;

 void \OffsetPage;

Type This value contains information about the attributes of the memory object being

referenced.

Offset Offset of the sparse object in which pages are to be committed.

Size Number of bytes to be committed at offset specified by OffsetPage. This must be a

page size (4K) multiple.

OffsetPage

Offset of the page (must be within object defined by Offset) where the pages are

to be committed.

 Usage Notes
This function commits one or more real storage pages within a sparse object.
Offset is the address of the beginning of the sparse object and identifies the object.
OffsetPage is the address of a page that is part of the object, and it identifies the
first page to be committed. If Size is 4096, one page is committed. If Size is
12288, three pages are committed, providing that all three pages are within the
sparse object.

The Type parameter defines the following:

QMold_eff
This is used to indicate that the incoming object is to be defined in the
address space of the caller's effective address space.

QMold_current
This is used to indicate that the incoming object is to be defined in the
caller's current address space.

 Implementation Notes
None

 Copyright IBM Corp. 1989-1994, 1996-1998 17-1

 Return Codes
The Memory Manager provides a return code on all calls. Except for a success
return code (QMsuccess), which has a value of 0, all Memory Manager return
codes have the form 0x8002xxxx . The possible return codes for this call, along
with their low order 16 bits, are listed below.

QMsuccess Request was successful, a page or pages have been
committed.

QMbad_offset-(0x0001) Specified offset is not that of a valid memory object.

QMbad_type-(0x0002) Type field error. The object is not sparse, or the caller
does not have privilege level required to access object.

QMbad_size-(0x0004) Specified size extends outside of specified memory
object or was zero.

QMbad_location-(0x0005)
Specified page offset is not within specified memory
object, or it is not on a page boundary.

QMno_page-(0x0012) A real storage page frame of the desired type was not
available for assignment to satisfy the request.

QMwrap_count-(0x0021) The call could not be processed because the memory
lock is at its maximum; that is, there are 255 tasks
currently executing within Memory Manager code
referring to this object.

QMprocess_dead-(0x0022)
The process, in whose address space the object was
defined, is in the final stages of the Memory Manager's
process removal. No new requests to modify memory
objects can be honored. This should not normally occur,
particularly if the Resource Manager resource provider
facilities have been used.

QMuser_commit_error-(0x002C)
Specified address range includes previously committed
pages.

QMbusy_fork-(0x0035) The process, in which the sparse object exists, is
performing a fork operation. The request cannot be
accommodated at this time.

QMcommit_FNP-(0x0037)
The page or pages being committed contain a Force Not
Present page.

Memory Manager Generated Faults
It is possible that the memory manager will detect internal or system errors during
the processing of this call. If this occurs, an internal error code is either returned to
the caller, or is transmitted to the caller's fault handler as a result of the Memory
Manager issuing a CPFaultTask call. In addition, certain fault conditions relating to
memory objects may be detected asynchronously by the page fault handler and
reported to the task's fault handler. See SPL Volume 4: Memory Manager for a
description of the error codes that can occur.

17-2 Application Programming Reference

 CPDecommit

Syntax -

long int CPDecommit(Type,Offset,Size,OffsetPage)

unsigned long int Type;

 void \Offset;

unsigned long int Size;

 void \OffsetPage;

Type This value contains information about the attributes of the memory object being

referenced.

Offset Offset of the sparse object in which pages are to be decommitted.

Size Number of bytes to be decommitted at offset specified by OffsetPage. This must be

an integral number pages, that is a multiple of 4K bytes.

OffsetPage

Offset of the page (must be within object defined by Offset) where the page or

pages are to be decommitted.

 Usage Notes
This function decommits one or more real storage pages within a sparse object.
Offset is the address of the beginning of the sparse object and identifies the object.
OffsetPage is the address of a page that is part of the object and identifies the first
page to be decommitted. If Size is 4096, one page is decommitted. If Size is
12288, three pages are decommitted, providing that all three pages are within the
sparse object.

The Type parameter defines the following:

QMold_eff
This is used to indicate that the incoming object is to be defined in the
address space of the caller's effective address space.

QMold_current
This is used to indicate that the incoming object is to be defined in the
caller's current address space.

 Implementation Notes
None

 Return Codes
The Memory Manager provides a return code on all calls. Except for a success
return code (QMsuccess), which has a value of 0, all Memory Manager return
codes have the form 0x8002xxxx . The possible return codes for this call, along
with their low order 16 bits, are listed below.

QMsuccess Request was successful, a page or pages have been
decommitted.

QMbad_offset-(0x0001) Specified offset is not that of a valid memory object.

 Chapter 17. Sparse Object Functions 17-3

QMbad_type-(0x0002) Type field error. The object is not sparse, or the caller
does not have privilege level required to access object.

QMbad_location-(0x0005)
Specified page offset is not within specified memory
object or not on a page boundary.

QMbad_size-(0x0004) Specified size extends outside of specified memory
object or was zero.

QMwrap_count-(0x0021) The call could not be processed because the memory
lock is at its maximum; that is, there are 255 tasks
currently executing within Memory Manager code
referring to this object.

QMprocess_dead-(0x0022)
The process, in whose address space the object was
defined, is in the final stages of the Memory Manager's
process removal. No new requests to modify memory
objects can be honored. This should not normally occur,
particularly if the Resource Manager resource provider
facilities have been used.

QMuser_commit_error-(0x002C)
Specified address range contains a page or pages not
previously committed.

QMbusy_fork-(0x0035) The process, in which the sparse object exists, is
performing a fork operation. The request cannot be
accommodated at this time.

Memory Manager Generated Faults
It is possible that the memory manager will detect internal or system errors during
the processing of this call. If this occurs, an internal error code is either returned to
the caller, or is transmitted to the caller's fault handler as a result of the Memory
Manager issuing a CPFaultTask call. In addition, certain fault conditions relating to
memory objects may be detected asynchronously by the page fault handler and
reported to the task's fault handler. See SPL Volume 4: Memory Manager for a
description of the error codes that can occur.

17-4 Application Programming Reference

Chapter 18. Memory Verification Functions

 CPFreeVerify

Syntax -

long int CPFreeVerify(Type,Offset)

unsigned long int Type;

 void \Offset;

Type This value determines the address space of the incoming object.

Offset Offset of the object or the start of an area within an object to have a verify

released.

 Usage Notes
This function is used to reverse the effect of a previous call to CPVerify. The
function can be used from either privilege level. A verify count is maintained for
supervisor level. The counter is decremented for supervisor level callers. It is
treated as an information only call for user level callers.

It is strongly recommended that the CPFreeVerify call be made from the same
piece of code that made the CPVerify call. If the object has been marked “remove
as soon as possible” and the conditions for removal are now satisfied, a message
is sent to the memory task to complete the removal.

The Type parameter is used to define the incoming object's address space, as
follows:

QMold_eff
This is used to indicate that the incoming object is to be defined in the
address space of the caller's effective address space.

QMold_current
This is used to indicate that the incoming object is to be defined in the
caller's current address space.

 Implementation Notes
None

 Return Codes
The Memory Manager provides a return code on all calls. Except for a success
return code (QMsuccess), which has a value of 0, all Memory Manager return
codes have the form 0x8002xxxx . The possible return codes for this call, along
with their low order 16 bits, are listed below.

QMsuccess Request was successful and verify count has been
decremented.

 Copyright IBM Corp. 1989-1994, 1996-1998 18-1

QMaccess_info-(0x001D) Requestor does not have supervisor privilege. Verify
count has not been decremented.

QMbad_offset-(0x0001) Specified offset is not within a valid memory object.

QMbad_type-(0x0002) Type field error. The caller is trying to verify supervisor
level object without supervisor privilege.

QMuser_verify_error-(0x002A)
Verify counter was zero at the time of call from
supervisor level caller. This indicates one of four
possibilities:

� A CPFreeVerify without a matching prior CPVerify
� CPVerify and CPFreeVerify calls made at differing

privilege levels
� A bad offset (not the one verified)
� An incorrect address space

QMwrap_count-(0x0021) The call could not be processed because the memory
lock is at its maximum; that is, there are 255 tasks
currently executing within Memory Manager code
referring to this object.

Memory Manager Generated Faults
It is possible that the memory manager will detect internal or system errors during
the processing of this call. If this occurs, an internal error code is either returned to
the caller, or is transmitted to the caller's fault handler as a result of the Memory
Manager issuing a CPFaultTask call. In addition, certain fault conditions relating to
memory objects may be detected asynchronously by the page fault handler and
reported to the task's fault handler. See SPL Volume 4: Memory Manager for a
description of the error codes that can occur.

18-2 Application Programming Reference

 CPVerify

Syntax -

long int CPVerify(Type,Offset,Size)

unsigned long int Type;

 void \Offset;

unsigned long int Size;

Type This value determines the address space of the incoming object and whether read or

read/write access is to be checked.

Offset Offset of the object or the start of an area within an object to be verified.

Size This determines the size in bytes. The area from Offset to (Offset + (Size - 1))

is verified and must occur within a single memory object.

 Usage Notes
This function is used to verify that the caller has read or read/write access to a
defined portion of a memory object. This call can be used to verify an entire object
or a portion of an object. If it refers to a part of an object, it must be wholly
contained in a single object. The function can be used from either privilege level.
A verify count in the range 0 through 255 is reserved for supervisor level. The
counter is incremented for supervisor level callers.

As a result of this call, the verify count the incoming object is incremented only if
the caller has supervisor privilege. Requests which would alter the size or
character of a object are then disallowed, thus guaranteeing the requested access
until the verify count is decremented. The decrement should be performed by the
same piece of code that issued the increment, so that the correct verify count is
updated. Callers with user privilege should regard this as information-only as to the
current status of the object at the time of the call.

The Type parameter is used to define the incoming object's address space and
whether read or read/write access is to be verified. The Type field of the incoming
object is used to define the privilege level at which the read or read/write access is
to be checked.

The Type parameter defines the following:

QMold_eff
This is used to indicate that the incoming object is to be defined in the
address space of the caller's effective address space.

QMold_current
This is used to indicate that the incoming object is to be defined in the
caller's current address space.

QMuser This indicates the privilege level to be used in testing callers access to
the area being verified. This is used to indicate user privilege level, and
it should be set to privilege of process triggering this request.

 Chapter 18. Memory Verification Functions 18-3

QMsupervisor
This indicates the privilege level to be used in testing callers access to
the area being verified. This is used to indicate supervisor privilege level,
and it should be set to privilege of process triggering this request.

QMwrite This is used to indicate read/write access should be verified.

QMread This is used to indicate read-only access should be verified.

 Implementation Notes
None

 Return Codes
The Memory Manager provides a return code on all calls. Except for a success
return code (QMsuccess), which has a value of 0, all Memory Manager return
codes have the form 0x8002xxxx . The possible return codes for this call, along
with their low order 16 bits, are listed below.

QMsuccess Request was successful, and the caller has required
access and verify count has been incremented.

QMbad_offset-(0x0001) Specified offset is not within a valid memory object.

QMbad_type-(0x0002) Type field error. The caller is trying to verify supervisor
level object without supervisor privilege.

QMbad_size-(0x0004) Specified size not contained entirely within a single
memory object or was zero.

QMno_access-(0x0011) Access verification requested, and the caller does not
have requested access.

QMaccess_info-(0x001D) Requestor has required access but does not have
supervisor privilege. Verify count has not been
incremented.

QMwrap_count-(0x0021) The verify count is at its maximum, or the call could not
be processed because the memory lock is at its
maximum; that is, there are 255 tasks currently
executing within Memory Manager code referring to this
object.

Memory Manager Generated Faults
It is possible that the memory manager will detect internal or system errors during
the processing of this call. If this occurs, an internal error code is either returned to
the caller, or is transmitted to the caller's fault handler as a result of the Memory
Manager issuing a CPFaultTask call. In addition, certain fault conditions relating to
memory objects may be detected asynchronously by the page fault handler and
reported to the task's fault handler. See SPL Volume 4: Memory Manager for a
description of the error codes that can occur.

18-4 Application Programming Reference

Chapter 19. Memory Fixing Functions

 CPFix

Syntax -

long int CPFix(Type,Offset,Size,Fix_List,&Fix_Handle)

unsigned long int Type;

 void \Offset;

unsigned long int Size;

 void \Fix_List;

unsigned long int Fix_Handle;

Type This value determines the address space of the incoming object and whether read or

read/write access is to be checked.

Offset Offset of the start of the area to be fixed. It must be within a valid memory

object.

Size Size of the area to be fixed. The entire area to be fixed must occur within a

single valid memory object.

Fix_List The caller must have write access to sufficient storage at this address to store

the maximum size list possible for the area the caller wants fixed. The size in

double words of the list can be computed from the following formula using integer

arithmetic:

N = 1 + 2 \ (2 + (Size / 4ð96))

where Size is the size of the portion of the object to be fixed.

Fix_Handle

Value returned by this call to function CPFix, which is later specified in the

corresponding call to function CPUnfix to release this fix.

 Usage Notes
This function is used to fix a defined portion of a object in real storage. Optionally,
it can verify that the caller has read or read/write access to that portion of the
object. The caller must have I/O privilege. Furthermore, it is recommended that
the privilege level of the incoming objects's as specified in the Type parameter be
adjusted by the caller to reflect the privilege of the code which triggered the
request.

As a result of this call, the caller's access is verified if requested, and the fix count
for the incoming object is incremented, and the real addresses of the specified
portion of the object are returned. Other requests which would alter the size or
character of an object or change its physical address are then disallowed. This
guarantees that the requested access and physical address remain valid until the
fix count is decremented.

Because the pages underlying the area to be fixed are not contiguous, a list of real
storage addresses is returned. The caller must ensure that adequate space is
provided to contain the largest possible list of addresses for the request.

 Copyright IBM Corp. 1989-1994, 1996-1998 19-1

Each fix request must be unfixed by a matching request for each portion of the
object that was fixed. It is not possible to make a series of fix requests for
adjacent/overlapping storage areas and to remove the fix with a single unfix
request. A fix handle is returned for each call, and defines a “pseudo object” which
is used to manage the fix. This handle must be specified in the call that releases
the fix. A maximum of 255 fix requests can be outstanding, at any one time,
against a particular object.

The Type parameter is used to define the incoming object's address space and
whether read or read/write access is being queried.

If the object was previously allocated such that real storage page frames are only
assigned on use of the object (which is the default), then real storage page frames
are assigned as necessary to ensure that all of the specified range is allocated, and
these pages are then fixed.

This call can be viewed as having two distinct parts. The first is optional and
verifies that the caller has access. In this part, the offset and size are used to
determine if the caller has access to the area within the object as defined by Offset
and Size. The second part fixes only the area defined by Offset and Size. A
separate call is available to fix an entire object.

The Type parameter defines the following:

QMreverse_fixlist
This is used to indicate that the alternate form of the fix list is requested.

QMold_eff
This is used to indicate that the incoming object is to be defined in the
address space of the caller's effective address space.

QMold_current
This is used to indicate that the incoming object is to be defined in the
caller's current address space.

QMlong_fix
This is used to indicate a long term fix on CPFix calls.

QMshort_fix
This is used to indicate a short term fix on CPFix calls.

QMverify_fix
This is used to indicate that a verify or free verify operation is to be
performed in conjunction with a CPFix or CPUnfix call.

QMuser This is used to determine privilege level to be used in testing callers
access to the area being fixed. This indicates user level and should be
set to the privilege of process triggering this request.

QMsupervisor
This is used to determine the privilege level to be used in testing callers
access to the area being fixed. This indicates supervisor level and
should be set to the privilege of process triggering this request.

QMwrite Valid if verification is requested and determines type of access to be
verified. This indicates write access.

QMread Valid if verification is requested and determines type of access to be
verified. This indicates read-only access.

19-2 Application Programming Reference

Upon return, the Fix_Handle to be used on any subsequent Unfix call has been
provided, and the real storage addresses of the fixed area are placed in the fix list
pointed to by Fix_List. There are two forms of the address list. The standard
format of the address list is:

 ┌─────────────────────────────┐

 │ Fix_List │

 └─────────────┬───────────────┘

 6

 ┌─────────────────────────────┐

 │ Length 1 │

 ├─────────────────────────────┤

│ Real Address 1 │

 ├─────────────────────────────┤

 . .

 . .

 ├─────────────────────────────┤

 │ Length M │

 ├─────────────────────────────┤

│ Real Address M │

 ├─────────────────────────────┤

│ ððððððððh │

 └─────────────────────────────┘

The alternate format of the address list is as follows:

 ┌─────────────────────────────┐

 │ Fix_List │

 └─────────────┬───────────────┘

 6

 ┌─────────────────────────────┐

 │ Count │

 ├─────────────────────────────┤

│ Real Address 1 │

 ├─────────────────────────────┤

 │ Length 1 │

 ├─────────────────────────────┤

 . .

 . .

 ├─────────────────────────────┤

│ Real Address M │

 ├─────────────────────────────┤

 │ Length M │

 └─────────────────────────────┘

Real Address 1 is the real address of the byte defined by Offset (in the address
space determined from the Type parameter). Length 1 is the number of bytes
beginning at Real Address 1. The list continues until the number of bytes
specified in Size has been reached. For example, Size =
Length 1 + ... + Length M. In the standard format, the address list is terminated
by a length of 00000000h. In the alternate format, the list begins with a count of
the number of pairs of address and length that are utilized in the list.

Note: The number of entries in the address list (M) does not necessarily equal the
maximum possible size of the list (N). The actual number of entries used depends
on the alignment of the linear addresses underlying the area and the contiguity of
the real addresses of the page frames underlying the area.

 Chapter 19. Memory Fixing Functions 19-3

 Implementation Notes
If the area to be fixed contains copy on write memory, a unique copy is created at
the time the CPFix call is processed. This ensures that when a subsequent I/O is
performed all the pages are in memory and fixed.

 Return Codes
The Memory Manager provides a return code on all calls. Except for a success
return code (QMsuccess), which has a value of 0, all Memory Manager return
codes have the form 0x8002xxxx . The possible return codes for this call, along
with their low order 16 bits, are listed below.

QMsuccess Request was successful, access verified if requested,
and area fixed.

QMbad_offset-(0x0001) Specified offset is not within a valid memory object.

QMbad_type-(0x0002) Type field error. The caller is trying to fix supervisor
level object without supervisor privilege.

QMbad_size-(0x0004) Specified size is not contained entirely within a single
memory object, or the size was specified as zero.

QMbad_fixlist-(0x0009) Caller did not have access to a fixlist of sufficient size.

QMno_access-(0x0011) Access verification requested and caller does not have
requested access.

QMno_page-(0x0012) A real storage page frame of the desired type was not
available for assignment to satisfy the request.

QMwrap_count-(0x0021) The maximum number of fixes is already outstanding
against this object, or a verify was requested, and the
maximum number of verifies is already outstanding, or
the memory lock is at its maximum; that is, there are 255
tasks currently executing within Memory Manager code
referring to this object.

QMfix_sparse-(0x0028) The area being fixed, within a sparse object, was not
entirely committed.

QMrestricted_function-(0x0030)
Caller did not have I/O privilege.

QMfix_FNP-(0x0032) The area being fixed contains a Force Not Present page.

QMbusy_fork-(0x0035) The process, in which the area to be fixed exists, is
performing a fork operation. The request cannot be
accommodated at this time.

Memory Manager Generated Faults
It is possible that the memory manager will detect internal or system errors during
the processing of this call. If this occurs, an internal error code is either returned to
the caller, or is transmitted to the caller's fault handler as a result of the Memory
Manager issuing a CPFaultTask call. In addition, certain fault conditions relating to
memory objects may be detected asynchronously by the page fault handler and
reported to the task's fault handler. See SPL Volume 4: Memory Manager for a
description of the error codes that can occur.

19-4 Application Programming Reference

 CPFixObj

Syntax -

long int CPFixObj(Type,Offset,Fix_List)

unsigned long int Type;

 void \Offset;

 void \Fix_List;

Type This value determines the address space of the incoming object and whether read or

read/write access is to be checked.

Offset Offset of the object to be fixed.

Fix_List The caller must have write access to sufficient storage at this address to store

the maximum size list possible for the area the caller wants fixed. The size in

double words of the list can be computed from the following formula using integer

arithmetic:

N = 1 + 2 \ (2 + (Size / 4ð96))

where Size is the size of the portion of the object to be fixed.

 Usage Notes
This function is used to fix an entire memory object in real storage. Optionally, it
can verify that the caller has read or read/write access to that object. The caller
must have I/O privilege. Furthermore, it is recommended that the privilege level of
the incoming object's as specified in the Type parameter be adjusted by the caller
to reflect the privilege of the code which triggered the request.

As a result of this call, the caller's access is verified if requested, and the fix count
for the incoming object is incremented and the real addresses of the object are
returned. Other requests which would alter the size or character of an object, or
change its physical address, are then disallowed. This guarantees that the
requested access and physical address remain valid until the fix count is
decremented.

As the pages underlying the area to be fixed are not contiguous, a list of real
storage addresses is returned. The caller must ensure that adequate space is
provided to contain the largest possible list of addresses for the request.

Each fix request must be unfixed by a matching request for object that was fixed.
A maximum of 255 fix requests can be outstanding at any one time against a
particular object.

If the object was previously allocated such that real storage page frames are only
assigned on use of the object (the default), then real storage page frames are
assigned and fixed as necessary.

This call can be viewed as having two distinct parts. The first (optional) verifies
that the caller has access. The second part fixes the object. A separate call is
available to fix part of an object.

 Chapter 19. Memory Fixing Functions 19-5

The Type parameter is used to define the incoming object's address space and
whether read or read/write access is being verified, as follows:

QMreverse_fixlist
This is used to indicate that the alternate form of the fix list is requested.

QMold_eff
This is used to indicate that the incoming object is to be defined in the
address space of the caller's effective address space.

QMold_current
This is used to indicate that the incoming object is to be defined in the
caller's current address space.

QMlong_fix
This is used to indicate a long term fix on CPFixObj calls.

QMshort_fix
This is used to indicate a short term fix on CPFixObj calls.

QMverify_fix
This is used to indicate that a verify or free verify operation is to be
performed in conjunction with a CPFixObj or CPUnfixObj call.

QMuser This is used to determine privilege level to be used in testing callers
access to the area being fixed. This indicates user level and should be
set to the privilege of process triggering this request.

QMsupervisor
This is used to determine privilege level to be used in testing callers
access to the area being fixed. This indicates supervisor level and
should be set to the privilege of process triggering this request.

QMwrite Valid if verification is requested and determines type of access to be
verified. This indicates write access.

QMread Valid if verification is requested and determines type of access to be
verified. This indicates read-only access.

On return the real storage addresses of the fixed area are placed in the fix list
pointed to by Fix_List. There are two forms of the address list. The standard
format of the address list is:

 ┌─────────────────────────────┐

 │ Fix_List │

 └─────────────┬───────────────┘

 6

 ┌─────────────────────────────┐

 │ Length 1 │

 ├─────────────────────────────┤

│ Real Address 1 │

 ├─────────────────────────────┤

 . .

 . .

 ├─────────────────────────────┤

 │ Length M │

 ├─────────────────────────────┤

│ Real Address M │

 ├─────────────────────────────┤

│ ððððððððh │

 └─────────────────────────────┘

19-6 Application Programming Reference

The alternate format of the address list is as follows:

 ┌─────────────────────────────┐

 │ Fix_List │

 └─────────────┬───────────────┘

 6

 ┌─────────────────────────────┐

 │ Count │

 ├─────────────────────────────┤

│ Real Address 1 │

 ├─────────────────────────────┤

 │ Length 1 │

 ├─────────────────────────────┤

 . .

 . .

 ├─────────────────────────────┤

│ Real Address M │

 ├─────────────────────────────┤

 │ Length M │

 └─────────────────────────────┘

Note: The length fields in the fix list are unnecessary, because objects are page
multiples on page boundaries. Therefore, the lengths are 4K. This format is used
for compatibility with the format of the fix list for the other function CPFix.

Real Address 1 is the real address of the byte defined by Offset (in the address
space determined from the Type parameter). Length 1 is the number of bytes
beginning at Real Address 1. The list continues until the number of bytes
specified in Size has been reached. This means Size =
Length 1 + ... + Length M. In the standard format, the address list is terminated
by a length of 00000000h. In the alternate format, the list begins with a count of
the number of pairs of address and length that are utilized in the list.

Note: The number of entries in the address list (M) does not necessarily equal the
maximum possible size of the list (N). The actual number of entries used depends
on the alignment of the linear addresses underlying the area and on the contiguity
of the real addresses of the page frames underlying the area.

 Implementation Notes
If the object to be fixed contains copy-on-write memory, a unique copy is created at
the time the CPFix call is processed. This is to ensure that when subsequent I/O is
performed all the pages are in memory and fixed.

 Return Codes
The Memory Manager provides a return code on all calls. Except for a success
return code (QMsuccess), which has a value of 0, all Memory Manager return
codes have the form 0x8002xxxx . The possible return codes for this call, along
with their low order 16 bits, are listed below.

QMsuccess Request was successful, access verified if requested,
and the object is fixed.

QMbad_offset-(0x0001) Specified offset is not that of a valid memory object.

QMbad_type-(0x0002) Type field error. The caller is trying to fix supervisor
level object without supervisor privilege.

QMbad_fixlist-(0x0009) Caller did not have access to a fixlist of sufficient size.

 Chapter 19. Memory Fixing Functions 19-7

QMno_access-(0x0011) Access verification requested, and the caller does not
have requested access.

QMno_page-(0x0012) A real storage page frame of the desired type was not
available for assignment to satisfy the request.

QMwrap_count-(0x0021) The maximum number of fixes is already outstanding
against this object, or a verify was requested, and the
maximum number of verifies is already outstanding, or
the call could not be processed because the memory
lock is at its maximum; that is, there are 255 tasks
currently executing within Memory Manager code
referring to this object.

QMfix_sparse-(0x0028) A sparse object being fixed was not entirely committed.

QMrestricted_function-(0x0030)
Caller does not have the privilege level required for this
request.

QMfix_FNP-(0x0032) The area being fixed contains a Force Not Present page.

QMbusy_fork-(0x0035) The process, in which the object to be fixed exists, is
performing a fork operation. The request cannot be
accommodated at this time.

Memory Manager Generated Faults
It is possible that the memory manager will detect internal or system errors during
the processing of this call. If this occurs, an internal error code is either returned to
the caller, or is transmitted to the caller's fault handler as a result of the Memory
Manager issuing a CPFaultTask call. In addition, certain fault conditions relating to
memory objects may be detected asynchronously by the page fault handler and
reported to the task's fault handler. See SPL Volume 4: Memory Manager for a
description of the error codes that can occur.

19-8 Application Programming Reference

 CPUnfix

Syntax -

long int CPUnfix(Type,Fix_Handle)

unsigned long int Type;

unsigned long int Fix_Handle;

Type This value determines the address space of the incoming object and whether the

verify count is also to be decremented.

Fix_Handle

The Fix_Handle that was returned by a previous call to CPFix,which represent the

defined portion of a memory object whose fix is now to be released.

 Usage Notes
This function is used to release a fix on the real storage page frames underlying a
defined portion of a memory object. This means it reverses the effect of a previous
call to CPFix. The caller requires I/O privilege.

Each CPUnfix request must match a previous call to CPFix, and it must use the
value of Fix_Handle that was returned by that call to CPFix. As a result of this call,
the fix count for the incoming object is decremented. Optionally, the verify count of
the object might also be decremented by this call.

The Type parameter is used to define the incoming object's address space and
whether the verify count is to be decremented, as follows:

QMold_eff
This is used to indicate that the incoming object is to be defined in the
address space of the caller's effective address space.

QMold_current
This is used to indicate that the incoming object is to be defined in the
caller's current address space.

QMverify_fix
This is used to indicate that a free verify operation is to be performed in
conjunction with the CPUnfix call.

 Implementation Notes
None

 Return Codes
The Memory Manager provides a return code on all calls. Except for a success
return code (QMsuccess), which has a value of 0, all Memory Manager return
codes have the form 0x8002xxxx . The possible return codes for this call, along
with their low order 16 bits, are listed below.

QMsuccess Request was successful, fix released.

 Chapter 19. Memory Fixing Functions 19-9

QMbad_offset-(0x0001) The specified fix_handle was interpreted as an offset to
an entire memory object and was found to be either an
invalid memory object or a memory object not previously
fixed. The caller should specify a fix_handle that was
returned by a previous call to CPFix.

QMbad_type-(0x0002) Type field error. The caller is trying to unfix supervisor
level object without supervisor privilege.

QMbad_fixhandle-(0x000A)
The specified fix_handle is not that of a valid memory
object, or it did not refer to an area within an object that
was previously fixed.

QMwrap_count-(0x0021) The call could not be processed because the memory
lock is at its maximum; that is, there are 255 tasks
currently executing within Memory Manager code
referring to this object.

QMunfixNP-(0x0027) A not present page was found during unfixing. This
could indicate unmatched fix/unfix requests.

QMuser_fix_error-(0x0029)
Fix count was zero when this request was received.
This indicates an unfix without a matching prior fix or
incorrect address space. It is possible that the error was
caused by an unfix done by another task, not necessarily
of higher priority than the caller. This is an application
error.

QMuser_verify_error-(0x002A)
Verify count was zero when this request was received.
This indicates a free verify without a matching prior
verify, or incorrect address space. It is possible that the
error was caused by a free verify done by another task,
not necessarily of higher priority than the caller. This is
an application error. This can only occur if QMverify_fix
was specified in the Type field.

QMrestricted_function-(0x0030)
Caller does not have the privilege level required for this
request.

QMbusy_fork-(0x0035) The process, in which the area to be unfixed exists, is
performing a fork operation. The request cannot be
accommodated at this time.

Memory Manager Generated Faults
It is possible that the memory manager will detect internal or system errors during
the processing of this call. If this occurs, an internal error code is either returned to
the caller, or is transmitted to the caller's fault handler as a result of the Memory
Manager issuing a CPFaultTask call. In addition, certain fault conditions relating to
memory objects may be detected asynchronously by the page fault handler and
reported to the task's fault handler. See SPL Volume 4: Memory Manager for a
description of the error codes that can occur.

19-10 Application Programming Reference

 CPUnfixObj

Syntax -

long int CPUnfixObj(Type,Offset)

unsigned long int Type;

 void \Offset;

Type This value determines the address space of the incoming object and whether the

verify count is also to be decremented.

Offset Offset of the entire memory object whose fix is to be released.

 Usage Notes
This function is used to release a fix on the real storage page frames underlying an
entire memory object. This means it reverses the effect of a previous call to
CPFixObj. The caller requires I/O privilege.

Each CPUnfixObj request must match a previous call to CPFixObj and must use
the value of Offset that was used in that call to CPFixObj. As a result of this call,
the fix count for the incoming object is decremented. Optionally, the verify count of
the object may also be decremented by this call.

The Type parameter is used to define the incoming object's address space and
whether the verify count is to be decremented, as follows:

QMold_eff
This is used to indicate that the incoming object is to be defined in the
address space of the caller's effective address space.

QMold_current
This is used to indicate that the incoming object is to be defined in the
caller's current address space.

QMverify_fix
This is used to indicate that a free verify operation is to be performed in
conjunction with the CPUnfixObj call.

 Implementation Notes
None

 Return Codes
The Memory Manager provides a return code on all calls. Except for a success
return code (QMsuccess), which has a value of 0, all Memory Manager return
codes have the form 0x8002xxxx . The possible return codes for this call, along
with their low order 16 bits, are listed below.

QMsuccess Request was successful, fix released.

QMbad_offset-(0x0001) Specified offset is not that of a valid memory object, or it
did not refer to an object that was previously fixed.

 Chapter 19. Memory Fixing Functions 19-11

QMbad_type-(0x0002) Type field error. The caller is trying to unfix supervisor
level object without supervisor privilege.

QMbad_fixhandle-(0x000A)
The specified offset was found to be a fix_handle
representing a portion of a memory object and was
found to refer either to an invalid memory object or to an
area within an object that was not previously fixed. The
caller should specify an offset that was used in a
previous call to CPFixObj.

QMwrap_count-(0x0021) The call could not be processed because the memory
lock is at its maximum; that is, there are 255 tasks
currently executing within Memory Manager code
referring to this object.

QMunfixNP-(0x0027) A not present page was found during unfixing. This
could indicate unmatched fix/unfix requests.

QMuser_fix_error-(0x0029)
Fix count was zero when this request was received.
This indicates an unfix without a matching prior fix or
incorrect address space. It is possible that the error was
caused by an unfix done by another task, not necessarily
of higher priority than the caller. This is an application
error.

QMuser_verify_error-(0x002A)
Verify count was zero when this request was received.
This indicates a free verify without a matching prior verify
or incorrect address space. It is possible that the error
was caused by a free verify done by another task, not
necessarily of higher priority than the caller. This is an
application error. This can only occur if QMverify_fix
was specified in the Type field.

QMrestricted_function-(0x0030)
Caller does not have the privilege level required for this
request.

QMbusy_fork-(0x0035) The process, in which the object to be unfixed exists, is
performing a fork operation. The request cannot be
accommodated at this time.

Memory Manager Generated Faults
It is possible that the memory manager will detect internal or system errors during
the processing of this call. If this occurs, an internal error code is either returned to
the caller, or is transmitted to the caller's fault handler as a result of the Memory
Manager issuing a CPFaultTask call. In addition, certain fault conditions relating to
memory objects may be detected asynchronously by the page fault handler and
reported to the task's fault handler. See SPL Volume 4: Memory Manager for a
description of the error codes that can occur.

19-12 Application Programming Reference

 Chapter 20. Miscellaneous Functions

 CPAlterRange

Syntax -

long int CPAlterRange(Type,Real_Address)

unsigned long int Type;

unsigned long int Real_Address;

Type This value defines the type of memory and its attributes.

Real_Address

The address in real memory of the first byte of the range to be altered.

 Usage Notes
This function is used to alter the character of a range of existing real memory. The
existing range must be adapter memory; it is changed to general purpose memory.
The reverse alteration is not possible. The entire range of adapter memory must
be free at the time of the call. The real memory type must be specified, and
applies to all the page frames in the range. The real address must be that of the
beginning of an existing range of adapter memory. The range is marked cachable.

In order for the alteration to succeed, the range must be within the first 64 MB
(physical address).

This function is only available to code having I/O privilege. General purpose
memory is assumed to be entirely present and functional, and it is put in immediate
service by the Memory Manager. Conversely, the adapter memory need not all be
present.

The Type parameter defines the following:

QMtype1, QMtype2 or QMtype3
A request for a specific memory type, that is, use only the memory type
that is specified. This must be specified.

 Implementation Notes
None

 Return Codes
The Memory Manager provides a return code on all calls. Except for a success
return code (QMsuccess), which has a value of 0, all Memory Manager return
codes have the form 0x8002xxxx . The possible return codes for this call, along
with their low order 16 bits, are listed below.

QMsuccess Request was successful.

QMbad_type-(0x0002) The real memory type was not specified.

 Copyright IBM Corp. 1989-1994, 1996-1998 20-1

QMbad_addr-(0x0005) The real address was not page aligned.

QMbad_range-(0x0008) The real address is not that of an existing range of
adapter memory, or the range specified extends beyond
the first 64 MB.

QMno_page-(0x0012) A new page table was required to map this memory and
no free page frame exists to provide this page table.

QMreal_alloc-(0x0016) The range was not entirely free.

QMrestricted_function-(0x0030)
Caller does not have I/O privilege.

Memory Manager Generated Faults
It is possible that the memory manager will detect internal or system errors during
the processing of this call. If this occurs, an internal error code is either returned to
the caller, or is transmitted to the caller's fault handler as a result of the Memory
Manager issuing a CPFaultTask call. In addition, certain fault conditions relating to
memory objects may be detected asynchronously by the page fault handler and
reported to the task's fault handler. See SPL Volume 4: Memory Manager for a
description of the error codes that can occur.

20-2 Application Programming Reference

 CPCreateRange

Syntax -

long int CPCreateRange(Type,Size,Real_Address)

unsigned long int Type;

unsigned long int Size;

unsigned long int Real_Address;

Type This value defines the type of memory and its attributes.

Size This is the number of bytes in the range.

Real_Address

The address in real memory of the first byte of the range being defined.

 Usage Notes
This function is used to create a new range of available real memory. If the
memory is general purpose memory, it is made available to satisfy normal
allocation requests. The explicit real memory type must be specified for general
purpose memory. Because the default real memory type is type 1, normally you
would specify type 1 on the create range request. Instead, if the memory is
adapter memory, it is reserved and used only to satisfy CPAllocBase and
CPAllocRange calls. The starting real address must be on a page boundary and
the size a page multiple.

The cachability of the range may also be specified. It should be noted that these
attributes apply to all the page frames in the range. General purpose memory must
be located at physical (real) addresses below 64 MB. However, it does not need to
be contiguous as there could be several ranges all below 64MB.

This function is only available to code having I/O privilege.

The Type parameter defines the following:

QMtype1, QMtype2 or QMtype3
A request for a specific memory type, that is, use only the memory type
that is specified.

QMmap_adapter
Indicates range is adapter memory with mapped option.

QMcache_mem
Indicates range is cacheable memory.

QMnoncache_mem
Marks memory as noncacheable.

QMadapter_mem
Indicates range is adapter memory; otherwise, it is treated as general
purpose storage and added to the pool of free page frames.

QMadapter_mem
Indicates range is adapter memory; otherwise, it is treated as general
purpose storage and added to the pool of free page frames.

 Chapter 20. Miscellaneous Functions 20-3

 Implementation Notes
All general purpose storage is assumed by the code to be cacheable. Only adapter
memory requests monitor the cacheability attribute. This could be changed, but
doing so would add path length to all allocation calls and, currently, there does not
appear to any justification for this.

There are two categories of adapter memory. Normal adapter memory can be
located anywhere in the physical address space. It is not mapped in the kernel's
DRMM (Direct Real Memory Map), and when allocations are made through the
CPAllocBase of CPAllocRange call, it must be accessed by the offset returned by
that call. Conversely, mapped adapter memory is like general purpose memory
and must be located in the first 64MB of physical address space. It is mapped in
the kernel's DRMM, and when allocations are made through the CPAllocBase call,
it can be accessed by the offset returned by that call, but it also can be accessed
directly by supervisor level code using the underlying real addresses. This direct
access is limited to supervisor code and is inherently more risky than access via
the returned offset. Furthermore, this only works with systems in which the DRMM
is located at offset 0, which is not guaranteed. General purpose memory is
assumed to be entirely present and functional and is put in immediate service by
the Memory Manager. Conversely, adapter memory need not all be present. The
Memory Manager does not examine adapter memory in any way, but it assumes
that any one requesting the memory by specific real address does understand the
nature of the underlying memory.

 Return Codes
The Memory Manager provides a return code on all calls. Except for a success
return code (QMsuccess), which has a value of 0, all Memory Manager return
codes have the form 0x8002xxxx . The possible return codes for this call, along
with their low order 16 bits, are listed below.

QMsuccess Request was successful.

QMbad_type-(0x0002) The range is general purpose memory and the explicit
real memory type was not specified.

QMbad_size-(0x0004) The size requested was zero or was not page aligned.

QMbad_addr-(0x0005) The real address range specified for general purpose
memory was greater than 64MB.

QMbad_range-(0x0008) The real address range specified conflicts with an
existing range of real memory.

QMno_page-(0x0012) A new page table was required to map this memory and
no free page frame exists to provide this page table.

QMno_range-(0x0014) No free range available in system range map table to
accommodate this request.

QMno_PFD-(0x0015) No free PFDs available in system to define real storage
specified in this request.

QMrestricted_function-(0x0030)
Caller does not have I/O privilege.

20-4 Application Programming Reference

Memory Manager Generated Faults
It is possible that the memory manager will detect internal or system errors during
the processing of this call. If this occurs, an internal error code is either returned to
the caller, or is transmitted to the caller's fault handler as a result of the Memory
Manager issuing a CPFaultTask call. In addition, certain fault conditions relating to
memory objects may be detected asynchronously by the page fault handler and
reported to the task's fault handler. See SPL Volume 4: Memory Manager for a
description of the error codes that can occur.

 Chapter 20. Miscellaneous Functions 20-5

 CPForceNPPages

Syntax -

long int CPForceNPPages(Type,Offset)

unsigned long int Type;

 void \Offset;

Type This value contains information about the attributes of the memory object being

referenced.

Offset Offset of the page (must be within a valid memory object) to be marked

force-not-present.

 Usage Notes
This function forces a page within an object to be marked force-not-present. As a
result of this action, a page frame is not assigned as a result of a page fault caused
by accessing this page. Instead, this is treated as an error, and the task is faulted.
This is useful, for example, to force a failure on stack overrun to achieve isolation
of data within an address space.

The Type parameter defines the following:

QMold_eff
This is used to indicate that the incoming object is to be defined in the
address space of the caller's effective address space.

QMold_current
This is used to indicate that the incoming object is to be defined in the
caller's current address space.

 Implementation Notes
In systems built with a memory manager which was compiled with the forced
assignment option, this call is effectively a “No-Op”.

 Return Codes
The Memory Manager provides a return code on all calls. Except for a success
return code (QMsuccess), which has a value of 0, all Memory Manager return
codes have the form 0x8002xxxx . The possible return codes for this call, along
with their low order 16 bits, are listed below.

QMsuccess Request was successful, page marked.

QMbad_offset-(0x0001) Specified offset is not within a valid memory object, or
the page frame referenced is a present page. Page not
marked not present.

QMbad_type-(0x0002) Type field error, user level caller referencing supervisor
object.

QMwrap_count-(0x0021) The call could not be processed because the memory
lock is at its maximum; that is, there are 255 tasks
currently executing within Memory Manager code
referring to this object.

20-6 Application Programming Reference

QMprocess_dead-(0x0022)
The process, in whose address space the object was
defined, is in the final stages of the Memory Manager's
process removal. No new requests to modify memory
objects can be honored. This should not normally occur,
particularly if the Resource Manager resource provider
facilities have been used.

QMbusy_fork-(0x0035) The process, in which the referenced object exists, is
performing a fork operation. The request cannot be
accommodated at this time.

Memory Manager Generated Faults
It is possible that the memory manager will detect internal or system errors during
the processing of this call. If this occurs, an internal error code is either returned to
the caller, or is transmitted to the caller's fault handler as a result of the Memory
Manager issuing a CPFaultTask call. In addition, certain fault conditions relating to
memory objects may be detected asynchronously by the page fault handler and
reported to the task's fault handler. See SPL Volume 4: Memory Manager for a
description of the error codes that can occur.

 Chapter 20. Miscellaneous Functions 20-7

 CPGetVersion

Syntax -

long int CPGetVersion(&Version,&Release)

unsigned long int Version;

unsigned long int Release;

Version Variable in which to return the version number.

Release Variable in which to return the release number.

 Usage Notes
This function returns the version number and release number of the Memory
Manager.

 Implementation Notes
None

 Return Codes
The Memory Manager provides a return code on all calls. Except for a success
return code (QMsuccess), which has a value of 0, all Memory Manager return
codes have the form 0x8002xxxx . The possible return codes for this call, along
with their low order 16 bits, are listed below.

QMsuccess Request was successful, requested information was
returned.

Memory Manager Generated Faults
It is possible that the memory manager will detect internal or system errors during
the processing of this call. If this occurs, an internal error code is either returned to
the caller, or is transmitted to the caller's fault handler as a result of the Memory
Manager issuing a CPFaultTask call. In addition, certain fault conditions relating to
memory objects may be detected asynchronously by the page fault handler and
reported to the task's fault handler. See SPL Volume 4: Memory Manager for a
description of the error codes that can occur.

20-8 Application Programming Reference

 CPNoSwap

Syntax -

long int CPNoSwap(Type,Offset)

unsigned long int Type;

 void \Offset;

Type This value determines the address space of the incoming object.

Offset Offset of the object to be made non-swappable.

 Usage Notes
This function marks an object non-swappable.

The Type parameter is used to define the incoming object's address space, as
follows:

QMold_eff
This is used to indicate that the incoming object is to be defined in the
address space of the caller's effective address space.

QMold_current
This is used to indicate that the incoming object is to be defined in the
caller's current address space.

 Implementation Notes
This is a non-functional stub at this time. Currently, no plans exist to provide any
swapping or “page turning” mechanism in CP/Q. The stub is provided to allow
code which might be sensitive to any future swapping mechanism to make
provision for it.

 Return Codes
The Memory Manager provides a return code on all calls. Except for a success
return code (QMsuccess), which has a value of 0, all Memory Manager return
codes have the form 0x8002xxxx . The possible return codes for this call, along
with their low order 16 bits, are listed below.

QMsuccess Request was successful, object now non-swappable.

QMbad_offset-(0x0001) Specified offset is not that of a valid memory object.

QMbad_type-(0x0002) Type field error. The caller is trying to mark supervisor
level object without supervisor privilege.

QMwrap_count-(0x0021) The call could not be processed because the memory
lock is at its maximum; that is, there are 255 tasks
currently executing within Memory Manager code
referring to this object.

 Chapter 20. Miscellaneous Functions 20-9

Memory Manager Generated Faults
It is possible that the memory manager will detect internal or system errors during
the processing of this call. If this occurs, an internal error code is either returned to
the caller, or is transmitted to the caller's fault handler as a result of the Memory
Manager issuing a CPFaultTask call. In addition, certain fault conditions relating to
memory objects may be detected asynchronously by the page fault handler and
reported to the task's fault handler. See SPL Volume 4: Memory Manager for a
description of the error codes that can occur.

20-10 Application Programming Reference

 CPQueryOwn

Syntax -

long int CPQueryOwn(Offset_In,&Size,&ObjProcID,&ObjType,&Offset_Out)

 void \Offset_In;

unsigned long int Size;

unsigned long int ObjProcID;

unsigned long int ObjType;

 void \Offset_Out;

Offset_In The caller specifies this either as the offset of the memory object being

referenced, or as an offset within the memory object. The memory object being

referenced must be defined in the caller's effective process.

Size This input determines the size, in bytes, to check. The area from Offset_In to

(Offset_In + (Size - 1)) is verified and must be within a single memory object.

Upon successful return, this variable contains the size (from Offset_In) of the

underlying physical block of storage.

ObjProcID Variable in which to return the Process ID of the object's owner.

ObjType Variable in which to return type information about the object.

Offset_Out

Variable in which to return the offset of (the beginning of) the memory object.

 Usage Notes
This function requests the owner of the memory object defined by Offset_In or
containing Offset_In, and provides additional status information about the object.

This call returns the offset of the beginning of the memory object in the variable
Offset_out.

The call returns the size of the block of storage in the parameter Size. The size
returned is the number of bytes from Offset_In to the end of the physically allocated
block, that is the lesser of the size to the end of the block, the Size given on the
call, or the size to the end of the object.

Upon return, the ObjType parameter contains information about the memory object.
It consists of a number of bit and bit fields of information. The bit fields must be
isolated by the appropriate masks before they are tested against a value. It is
defined as follows:

The class of the object can be isolated with QMclass_bits and is defined as:

QMglobal This indicates a Global class object.

QMprivate This indicates a Private class object.

QMalias This indicates object is an alias.

QMcommon
This indicates a Common class object.

The following additional bits apply only to Common objects:

 Chapter 20. Miscellaneous Functions 20-11

� Privilege Level Limit

QMshare_supvr
This is set to indicate the limit of access to be
allowed to other processes is supervisor access. If
clear, then limit of access is user access, that is,
QMshare_user was specified when the object was
created.

� Read/Write Access Limit

QMshare_read
This is set to indicate the limit of access to be
allowed to other processes is read only access. If
clear, then limit of access is read/write access, that
is, QMshare_write was specified when the object
was created.

 � Give/Get Access

QMget This is set to indicate the access mechanism for
Common class objects is through the CPGetMem
call. If clear, then it indicates the access mechanism
for Common class objects through the CPGiveMem
call, that is, QMgive was specified when the object
was created.

 � Copy/Share Mode

QMcopy This is set to indicate copy mode for the object. If
clear, then share mode is to be used, that is,
QMshare was specified when the object was
created.

QM_COW This indicates that the copy is to be performed by
copy on write. Immediate copy is performed if this is
not specified.

The real memory type can be isolated with QMtype_mask and is defined as:

QMtype_default
A request for the default memory type, that is, use memory type 1 if
available; otherwise memory types 2 or 3 are used in that order.

QMtype1, QMtype2 or QMtype3
A request for a specific memory type, that is, use only the memory
type that is specified.

The fix count can be isolated with QMfix_count and contains the number of
outstanding fix requests on this object shifted left 8 bits. This means FixCount =
(ObjType & QMfix_count)>>8.

The following individual bits indicate further object status:

QMsparse This indicates if the object is sparse.

QMoriginal This bit is set if this object is an “original” object. This means it is set
when an object is initially created by an allocate call, and it is clear on
objects obtained by a give, get, or alias call.

QMshared This bit is set if this object is sharing physical access (by alias or
shared mode give or get) and is not the original.

20-12 Application Programming Reference

QMpage_allocated
Set if page frame is allocated at Offset_In, clear if frame is not
present.

QMpendfree
Set if this object has been marked to be freed as soon as possible.
This can occur during process termination.

QMadapter_mem
This indicates that the object maps to I/O (adapter) memory.

QMuser This is used to indicate user privilege level.

QMsupervisor
This is used to indicate supervisor privilege level.

QMwrite This is used to indicate read/write access.

QMread This is used to indicate read-only access.

 Implementation Notes
The real storage state of the referenced memory is returned by this call and is
determined by the following steps. First, the page underlying the linear address
specified by Offset_In is examined to determine if a real storage page frame or
backing store has been allocated to it. The status of that frame is returned in
ObjType by setting QMpage_allocated if a frame is allocated, or if a frame is not
allocated, when it is clear. Second, any additional page frames underlying the
linear address range up to (Offset_In + (Size - 1)) are examined sequentially until
the first occurrence of one of the following conditions:

� A page is found whose allocation status differs from the first page examined
� The page containing the linear address (Offset_In + (Size - 1)) is reached
� The page containing the end of the object is reached

The call returns the size of the block of storage in Size. The size is the number of
bytes from Offset_in to the end of the block, that is, the lesser of the size to the
end of the block, the size given on the call, or the size to the end of the object.

 Return Codes
The Memory Manager provides a return code on all calls. Except for a success
return code (QMsuccess), which has a value of 0, all Memory Manager return
codes have the form 0x8002xxxx . The possible return codes for this call, along
with their low order 16 bits, are listed below.

QMsuccess Request was successful, requested information was
returned.

QMbad_offset-(0x0001) Offset_In not that of a valid memory object.

QMbad_type-(0x0002) Caller does not have proper privilege to access the
object.

QMbad_size-(0x0004) Offset_In was that of a valid memory object, but size
extends beyond end of object.

QMwrap_count-(0x0021) The call could not be processed because the memory
lock is at its maximum; that is, there are 255 tasks
currently executing within Memory Manager code
referring to this object.

 Chapter 20. Miscellaneous Functions 20-13

Memory Manager Generated Faults
It is possible that the memory manager will detect internal or system errors during
the processing of this call. If this occurs, an internal error code is either returned to
the caller, or is transmitted to the caller's fault handler as a result of the Memory
Manager issuing a CPFaultTask call. In addition, certain fault conditions relating to
memory objects may be detected asynchronously by the page fault handler and
reported to the task's fault handler. See SPL Volume 4: Memory Manager for a
description of the error codes that can occur.

20-14 Application Programming Reference

 CPQueryObjectState

Syntax -

long int CPQueryObjectState(Offset_In,&Size,&ObjProcID,&ObjType,&Offset_Out)

 void \Offset_In;

unsigned long int Size;

unsigned long int ObjProcID;

unsigned long int ObjType;

 void \Offset_Out;

Offset_In The caller specifies this either as the offset of the memory object being

referenced, or as an offset within the memory object. The memory object being

referenced must be defined in the caller's effective process.

Size This input determines the size, in bytes, to check. The area from Offset_In to

(Offset_In + (Size - 1)) will be verified and must be within a single memory

object. Upon successful return, this variable contains the size of the entire

memory object starting at Offset_Out.

ObjProcID Variable in which to return the Process ID of the object's owner.

ObjType Variable in which to return type information about the object.

Offset_Out

Variable in which to return the offset of (the beginning of) the memory object.

 Usage Notes
This function requests the base offset and size of the memory object defined by or
containing Offset_In, and it provides additional status information about the object.

This function is similar to the function CPQueryOwn, except that the returned Size
for CPQueryObjectState is the size of the entire object, and the real storage state
of the referenced memory is not returned.

This call returns in Offset_Out the offset of the beginning of the memory object.

The call returns in the parameter Size the size of the entire object. This is the
number of bytes from Offset_Out, the beginning of the memory object, to the end of
the memory object.

Upon return, the ObjType parameter contains information about the memory object.
It consists of a number of bit and bit fields of information. The bit fields must be
isolated by the appropriate masks before they are tested against a value. It is
defined as follows:

The class of the object can be isolated with QMclass_bits and is defined as:

QMglobal This indicates a Global class object.

QMprivate This indicates a Private class object.

QMalias This indicates object is an alias.

 Chapter 20. Miscellaneous Functions 20-15

QMcommon
This indicates a Common class object.

The following additional bits apply only to Common objects:

� Privilege Level Limit

QMshare_supvr
This is set indicate the limit of access to be allowed
to other processes is supervisor access. If clear,
then limit of access is user access, that is,
QMshare_user was specified when the object was
created.

� Read/Write Access Limit

QMshare_read
This is set to indicate the limit of access to be
allowed to other processes is read only access. If
clear, then limit of access is read/write access, that
is, QMshare_write was specified when the object
was created.

 � Give/Get Access

QMget This is set to indicate the access mechanism for
Common class objects is via the CPGetMem call. If
clear, then it indicates the access mechanism for
Common class objects through the CPGiveMem call,
that is QMgive was specified when the object was
created.

 � Copy/Share Mode

QMcopy This is set to indicate copy mode for the object. If
clear, then share mode is to be used, that is,
QMshare was specified when the object was
created.

QM_COW This indicates that the copy is to be performed by
copy on write. Immediate copy is performed if this is
not specified.

The real memory type can be isolated with QMtype_mask and is defined as:

QMtype_default
A request for the default memory type, that is, use memory type 1 if
available; otherwise memory types 2 or 3 are used in that order.

QMtype1, QMtype2 or QMtype3
A request for a specific memory type, that is, use only the memory
type that is specified.

The fix count can be isolated with QMfix_count and contains the number of
outstanding fix requests on this object shifted left 8 bits. This means FixCount =
(ObjType & QMfix_count)>>8.

The following individual bits indicate further object status:

QMsparse This indicates if the object is sparse.

20-16 Application Programming Reference

QMoriginal This bit is set if this object is an “original” object. This means it is set
when an object is initially created by an allocate call, and it is clear on
objects obtained by a give, get, or alias call.

QMshared This bit is set if this object is sharing physical access (via alias or
shared mode give or get) and is not the original.

QMpendfree
Set if this object has been marked to be freed as soon as possible.
This can occur during process termination.

QMadapter_mem
This indicates that the object maps to I/O (adapter) memory.

QMuser This is used to indicate user privilege level.

QMsupervisor
This is used to indicate supervisor privilege level.

QMwrite This is used to indicate read/write access.

QMread This is used to indicate read-only access.

 Implementation Notes
None

 Return Codes
The Memory Manager provides a return code on all calls. Except for a success
return code (QMsuccess), which has a value of 0, all Memory Manager return
codes have the form 0x8002xxxx . The possible return codes for this call, along
with their low order 16 bits, are listed below.

QMsuccess Request was successful, requested information was
returned.

QMbad_offset-(0x0001) Offset_In not that of a valid memory object.

QMbad_type-(0x0002) Caller does not have proper privilege to access the
object.

QMbad_size-(0x0004) Offset_In was that of a valid memory object, but size
extends beyond end of object.

QMwrap_count-(0x0021) The call could not be processed because the memory
lock is at its maximum; that is, there are 255 tasks
currently executing within Memory Manager code
referring to this object.

Memory Manager Generated Faults
It is possible that the memory manager will detect internal or system errors during
the processing of this call. If this occurs, an internal error code is either returned to
the caller, or is transmitted to the caller's fault handler as a result of the Memory
Manager issuing a CPFaultTask call. In addition, certain fault conditions relating to
memory objects may be detected asynchronously by the page fault handler and
reported to the task's fault handler. See SPL Volume 4: Memory Manager for a
description of the error codes that can occur.

 Chapter 20. Miscellaneous Functions 20-17

 CPRealAddr

Syntax -

long int CPRealAddr(Type,Offset,&Real_Address)

unsigned long int Type;

 void \Offset;

 void \Real_Address;

Type This value determines the address space of the incoming object.

Offset Offset of the memory object whose real address is requested, or an offset within

the memory object.

Real_Address

Variable in which is returned the real storage address of the object associated

with Offset, if there is real storage assigned to that Offset.

 Usage Notes
This function returns the Real_Address associated with the Offset provided on input
to the call, if there is real storage assigned to that Offset. This call requires I/O
privilege. This call has limited value as it does not fix the page, nor does it assign
a page frame if the page is currently marked not present. Thus, there is no
assurance that the page frame remains assigned, that is, the object could be
deleted successfully in spite of this call.

The Type parameter is used to define the incoming object's address space, as
follows:

QMold_eff
This is used to indicate that the incoming object is defined in the address
space of the caller's effective address space.

QMold_current
This is used to indicate that the incoming object is defined in the caller's
address space.

 Implementation Notes
None

 Return Codes
The Memory Manager provides a return code on all calls. Except for a success
return code (QMsuccess), which has a value of 0, all Memory Manager return
codes have the form 0x8002xxxx . The possible return codes for this call, along
with their low order 16 bits, are listed below.

QMsuccess Request was successful, Real_Address returned.

QMbad_offset-(0x0001) Specified Offset is not within a valid memory object.

QMno_page-(0x0012) There is no real storage page frame assigned at this
Offset.

20-18 Application Programming Reference

QMwrap_count-(0x0021) The call could not be processed because the memory
lock is at its maximum; that is, there are 255 tasks
currently executing within Memory Manager code
referring to this object.

QMrestricted_function-(0x0030)
The caller does not have I/O privilege.

Memory Manager Generated Faults
It is possible that the memory manager will detect internal or system errors during
the processing of this call. If this occurs, an internal error code is either returned to
the caller, or is transmitted to the caller's fault handler as a result of the Memory
Manager issuing a CPFaultTask call. In addition, certain fault conditions relating to
memory objects may be detected asynchronously by the page fault handler and
reported to the task's fault handler. See SPL Volume 4: Memory Manager for a
description of the error codes that can occur.

 Chapter 20. Miscellaneous Functions 20-19

 CPRemoveNPPages

Syntax -

long int CPRemoveNPPages(Type,Offset)

unsigned long int Type;

 void \Offset;

Type This value contains information about the attributes of the memory object being

referenced.

Offset Offset of the page (must be within a valid memory object) to be have

force-not-present state removed.

 Usage Notes
This function reverses the effect of a previous call to CPForceNPPages. It
removes the force-not-present state from a page frame, thus allowing a page frame
to be assigned on a subsequent page fault.

The Type parameter defines the following:

QMold_eff
This is used to indicate that the incoming object is defined in the address
space of the caller's effective address space.

QMold_current
This is used to indicate that the incoming object is defined in the caller's
address space.

 Implementation Notes
In systems built with a memory manager which was compiled with the forced
assignment option, this call is effectively a “No-Op”.

 Return Codes
The Memory Manager provides a return code on all calls. Except for a success
return code (QMsuccess), which has a value of 0, all Memory Manager return
codes have the form 0x8002xxxx . The possible return codes for this call, along
with their low order 16 bits, are listed below.

QMsuccess Request was successful, page no longer
force-not-present.

QMbad_offset-(0x0001) Specified offset is not within a valid memory object, or
page frame referenced is a present page, or page frame
not marked force-not-present.

QMbad_type-(0x0002) Type field error, user level caller referencing supervisor
level object.

QMwrap_count-(0x0021) The call could not be processed because the memory
lock is at its maximum; that is, there are 255 tasks
currently executing within Memory Manager code
referring to this object.

20-20 Application Programming Reference

QMprocess_dead-(0x0022)
The process, in whose address space the object was
defined, is in the final stages of the Memory Manager's
process removal. No new requests to modify memory
objects can be honored. This should not normally occur,
particularly if the Resource Manager resource provider
facilities have been used.

QMbusy_fork-(0x0035) The process, in which the referenced object exists, is
performing a fork operation. The request cannot be
accommodated at this time.

Memory Manager Generated Faults
It is possible that the memory manager will detect internal or system errors during
the processing of this call. If this occurs, an internal error code is either returned to
the caller, or is transmitted to the caller's fault handler as a result of the Memory
Manager issuing a CPFaultTask call. In addition, certain fault conditions relating to
memory objects may be detected asynchronously by the page fault handler and
reported to the task's fault handler. See SPL Volume 4: Memory Manager for a
description of the error codes that can occur.

 Chapter 20. Miscellaneous Functions 20-21

 CPSwap

Syntax -

long int CPSwap(Type,Offset)

unsigned long int Type;

 void \Offset;

Type This value determines the address space of the incoming object.

Offset Offset of the object to be made swappable.

 Usage Notes
This function marks an object swappable. This means it reverses the effect of a
previous call to CPNoSwap.

The Type parameter is used to define the incoming object's address space, as
follows:

QMold_eff
This is used to indicate that the incoming object is defined in the address
space of the caller's effective address space.

QMold_current
This is used to indicate that the incoming object is defined in the caller's
address space.

 Implementation Notes
This is a non-functional stub at this time. Currently, no plans exist to provide any
swapping mechanism in CP/Q. The stub is provided to allow code which might be
sensitive to any future swapping mechanism to make provision for it.

 Return Codes
The Memory Manager provides a return code on all calls. Except for a success
return code (QMsuccess), which has a value of 0, all Memory Manager return
codes have the form 0x8002xxxx . The possible return codes for this call, along
with their low order 16 bits, are listed below.

QMsuccess Request was successful, object now swappable.

QMbad_offset-(0x0001) Specified offset is not that of a valid memory object.

QMbad_type-(0x0002) Type field error. The caller is trying to mark supervisor
level object without supervisor privilege.

QMwrap_count-(0x0021) The call could not be processed because the memory
lock is at its maximum; that is, there are 255 tasks
currently executing within Memory Manager code
referring to this object.

20-22 Application Programming Reference

Memory Manager Generated Faults
It is possible that the memory manager will detect internal or system errors during
the processing of this call. If this occurs, an internal error code is either returned to
the caller, or is transmitted to the caller's fault handler as a result of the Memory
Manager issuing a CPFaultTask call. In addition, certain fault conditions relating to
memory objects may be detected asynchronously by the page fault handler and
reported to the task's fault handler. See SPL Volume 4: Memory Manager for a
description of the error codes that can occur.

 Chapter 20. Miscellaneous Functions 20-23

20-24 Application Programming Reference

Resource Manager Calls

 Copyright IBM Corp. 1989-1994, 1996-1998

Application Programming Reference

 Chapter 21. Section Notes

Each of the following descriptions lists the Resource Manager generated faults for
the call. These faults are presented to the fault handler for the task, which was
assigned when the task was created. Please refer to SPL Volume 3: SVC Handler
and System Data Area for more information about faults and fault handlers.

All routines in this section require that cpqlib.h be included in the calling program.

All structures and typedefs which appear in this section are defined in cpqlib.h.

Note: The Resource Manager may enable interrupts while processing a request.
Applications which disable interrupts should take this into consideration.

The Resource Manager claims the SDA semaphore immediately after performing
initial validity checks and setup for creation, deletion and tracking functions. Once
the Resource Manager function has been performed, the SDA semaphore is
released. This may cause the calling task to be suspended until the semaphore
becomes available.

 Copyright IBM Corp. 1989-1994, 1996-1998 21-1

21-2 Application Programming Reference

Chapter 22. Query Process States

The functions described in this chapter allow a task to query the state of other
processes. These functions are:

� CPQueryAuth - This function informs a caller if a task has the authority to act
on a process.

� CPQueryEffProc - This function returns the effective process of a task.

� CPGetProcName - This function is used to obtain the name and ID of a
process. The target process can be identified directly by its ID or indirectly as
the process that owns a system resource.

� CPGetProcID - This function is used to obtain the ID of a process given its
eight-character name.

� CPQueryProc - This function returns the state and type attributes of a process,
the name of the youngest child process (if any), and the name of the next older
sibling process (if any). The latter two items allow a process to traverse the
process hierarchy if required.

� CPQueryProcRes - This function returns the current minimum, maximum and
in-use values for system resources held by the specified process.

� CPQueryProcSVIDs - This function returns the list of SVids that are attached
to a process.

Function prototypes are listed in cpqlib.h. Structure definitions for applicable query
functions are listed in cpqlib.h, and constant definition macros are defined in the file
qrm_cnst.h.

 Copyright IBM Corp. 1989-1994, 1996-1998 22-1

 CPQueryAuth

Syntax -

#include "cpqlib.h"

long int CPQueryAuth(TaskID,ProcID)

unsigned long int TaskID;

unsigned long int ProcID;

TaskID - SVid of task that is being checked for authorization

 to ProcID.

ProcID - process ID which task is querying authorization to.

 Usage Notes
This function informs the caller if a task has the authority to act on a process, and it
is available to any requestor (independent of the relationship of the requestor to the
process being queried).

The purpose of this function is to allow a task or a third party (such as a server) to
validate a client request made to another process before continuing.

A task has the authority to act on behalf of a process if at least one of the following
conditions is true:

� The proposed process to be acted on is a descendant of the caller.

� The task has “set-effective-process” privilege (the TCBffenvpriv in the TCB
must be set).

This call always returns QRMgood if the caller has set-effective-process privilege,
unless the caller is not in the “SYSTEM” process and is attempting to act on the
“SYSTEM” process.

The only returned information is a return code specifying whether it is legal or not
for the task to act on the process.

Note: This function does not give or take away authorization to the task, but it
verifies if the task can act on the process.

 Implementation Notes
None

 Return Codes
The Resource Manager provides a return code on all calls. A success return code
QRMgood has the value 0; all other Resource Manager return codes are of the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood The task specified by the task ID has authorization to act
on the process specified by the process ID.

QRMbadproc-(0x000E) Invalid process specification in ProcID.

22-2 Application Programming Reference

QRMbadsvt-(0x000F) Invalid task SVid specification in TaskID.

QRMillegal-(0x0019) The task specified by the task ID does not have
authorization to act on the process specified by the
process ID. A request to alter the state of the process
using the task as the effective process is rejected.

 Chapter 22. Query Process States 22-3

 CPQueryEffProc

Syntax -

#include "cpqlib.h"

#include "qrm_cnst.h"

long int CPQueryEffProc(ID,EffProc)

unsigned long int ID;

unsigned long int \EffProc;

ID - SVid of task to query.

EffProc - variable in which the effective process ID

 is returned.

 Usage Notes
This function is used to obtain the effective process of a task.

Note: A task does not need set-effective-process privilege to execute this call.

If the ID parameter is set to QRMproctask, then the effective process field of the
caller is returned.

This Resource Manager call does not assign set-effective-process privilege or
change a task's effective process. Instead, this Resource Manager call only returns
the effective process of a task.

Upon successful completion of the call, EffProc contains the effective process ID.

 Implementation Notes
None

 Return Codes
The Resource Manager provides a return code on all calls. A success return code
QRMgood has the value 0; all other Resource Manager return codes are of the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed.

QRMbadsvt-(0x000F) Not a valid SVid in variable ID, or ID is not the SVid of a
task.

Note: A task obtains the privilege to change effective process, for purposes of
attaching various resources to other processes, in three ways:

� The system builder specified to SLEEP that the TCBffenvpriv value is set in the
PRIV field of the TASK command.

� The task was created by another task that has this privilege.
� A task with this privilege requests that the privilege also be assigned to another

(already defined) task.

22-4 Application Programming Reference

 CPGetProcName

Syntax -

#include "cpqlib.h"

#include "qrm_cnst.h"

long int CPGetProcName(ID,Mode,ProcID,NameBuf)

unsigned long int ID;

unsigned long int Mode;

unsigned long int \ProcID;

 char \NameBuf;

ID - Process ID or SVid (depends on Mode).

Mode - Used to determine process to be queried (see below).

ProcID - Variable in which the process ID is

 returned.

NameBuf - Near pointer to an 8 character name buffer

used to return the name.

 Usage Notes
This function is used to obtain the name of a specified process. The target process
can be specified directly (through its process ID), or indirectly as the process to
which a system object belongs (through the SVid of the object). The process ID is
also returned in ProcID upon successful completion of the call.

The Mode parameter determines the process to be queried. Mode values include:

QRMproctask Use process of caller
QRMprocefftask Use effective process of caller
QRMprocsvcid Use process to which the SVT entry specified in ID belongs
QRMprocid Use process whose process ID is in ID

 Implementation Notes
None

 Return Codes
The Resource Manager provides a return code on all calls. A success return code
QRMgood has the value 0; all other Resource Manager return codes are of the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed.

QRMbadproc-(0x000E) Invalid process ID specified.

QRMnowacc-(0x0029) The caller does not have write access to the offset
pointed to by Namebuf.

 Chapter 22. Query Process States 22-5

 CPGetProcID

Syntax -

#include "cpqlib.h"

long int CPGetProcID(Name,ProcID)

 char \Name;

unsigned long int \ProcID;

Name - Near pointer to 8 character name. If the

name is less than 8 characters, and string

functions are used to fill it in, be sure

that characters after the terminating null

are either blank or null out to the 8

character field length.

ProcID - Variable in which the process ID is

 returned.

 Usage Notes
This function is used to obtain a process ID from a process name, regardless of
whether it is named or unnamed. The Resource Manager puts the incoming name
into normalized format (internally) before beginning the search, but it does not alter
the name pointed to by Name. The function fails if there is no named or unnamed
process whose name matches.

 Implementation Notes
None

 Return Codes
The Resource Manager provides a return code on all calls. A success return code
QRMgood has the value 0; all other Resource Manager return codes are of the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed.

QRMbadname-(0x000D) Name field contains illegal characters, or no process
exists with this name.

22-6 Application Programming Reference

 CPQueryProc

Syntax -

#include "cpqlib.h"

#include "qrm_cnst.h"

long int CPQueryProc(ID,Mode,QPBAddr)

unsigned long int ID;

unsigned long int Mode;

 void \QPBAddr;

ID - Process ID or SVid (depends on Mode).

Mode - Used to determine process to be queried (see below).

QPBAddr - Near pointer to output buffer.

 Usage Notes
This function is used to obtain the current characteristics of the designated process
or processes. The process IDs of the youngest child and next older sibling (if any)
are also returned. To get the current characteristics of the other processes and
sub-processes, it is necessary for the caller to traverse the tree and call this
function for each process it finds in the tree.

The Mode parameter determines the process to be queried. Mode values include:

QRMproctask Use process of caller
QRMprocefftask Use effective process of caller
QRMprocsvcid Use process to which the SVT entry specified in ID belongs
QRMprocid Use process whose process ID is in ID

 Output Buffer
The parameter QPBAddr points to the output buffer whose structure is defined in
cpqlib.h as QPBLOCK. Constant definition macros are defined in the Resource
Manager user header file qrm_cnst.h.

Query Process Return Block Format -

typedef struct qpblock {

unsigned short int PCBcount; /\ PCBs in use \/

unsigned short int PCBtotal; /\ Total PCBs in system \/

unsigned long int ProcID; /\ Process ID \/

unsigned long int ParentID; /\ Process ID of parent \/

unsigned char Type; /\ Process type flags: \/

unsigned char State; /\ Current process state: \/

unsigned char PrioBase; /\ Priority base value \/

unsigned char rsvd1; /\ Reserved (should be ð) \/

unsigned long int SiblingID; /\ Process ID of the next \/

 /\ older sibling \/

unsigned long int ChildID; /\ Process ID of youngest child \/

unsigned long Reserved; /\ reserved field \/

char ProcName[8]; /\ Process name \/

 } QPBLOCK;

Figure 22-1. Query Process - output buffer format

 Chapter 22. Query Process States 22-7

PCBcount Number of PCBs currently in use

PCBtotal Total number of PCBs in the system

ProcID This is the process ID of the process whose characteristics
are being returned in this record.

ParentID This is the process ID of the parent process, or else is the
process ID of the closest ancestor (grandparent,
great-grandparent, and so on) that is within the scope of the
query (that is, either the base process or some sub-process
of the base). If no such process exists, this field is zeroed.
In particular, this field is always zero in the first record.

Type Process type flags; valid values are :

QRMqryrmvpend Process removal is pending for this
process.

QRMqryrp Process is a resource provider.
QRMqryrmvable Process is removable.
QRMqrynamed Process is named.

State Current state of this process; valid values are:

QRMnorm “Normal” status.
QRMproc Process creation underway for this

creator process.
QRMfork Process is being forked.
QRMcrea Process is currently being created.
QRMexec Program exec is currently underway in

this process.
QRMremove Process is being removed.
QRMfail Process (or parent) has faulted and

termination is in progress.

PrioBase Base priority of this process.

rsvd1 Reserved, this should be 0.

SiblingID Process ID of next older sibling. Returned in order that the
caller can continue with a preorder search of the tree.

ChildID Process ID of the youngest child of the process being
queried. Returned in order that the caller can continue with a
preorder search of the tree.

rsvd2 Reserved, this should be 0.

ProcName Process name (eight characters in length).

Note: The data returned represents the state at the time the function is called; the
information usually changes over time.

 Implementation Notes
None

22-8 Application Programming Reference

 Return Codes
The Resource Manager provides a return code on all calls. A success return code
QRMgood has the value 0; all other Resource Manager return codes are of the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed.

QRMbadproc-(0x000E) Invalid process specification in input registers.

QRMbadlength-(0x0015) Output buffer length is not valid (length given is too small
for information to be returned).

QRMnowacc-(0x0029) The caller does not have write access to the offset
pointed to by QPBAddr.

The Resource Manager calls the Memory Manager in order to complete this
function. A return code other than QMsuccess from the Memory Manager is
returned to the caller. Memory Manager return codes are in the form 0x8002xxxx .
The possible Memory Manager return codes for this call, along with their low order
16 bits, are listed below.

QMbad_offset-(0x0001) Parameter list is invalid, for example QPBAddr does not
point into a valid memory object.

Note: It is the intent that the information returned by this function be sufficient to
allow a dynamically specified user interface program, running at outer privilege
level, to correctly intercept user requests to modify processes without having
access to system or Resource Manager data.

The process name is returned, whether or not the process is named.

 Chapter 22. Query Process States 22-9

 CPQueryProcRes

Syntax -

#include "cpqlib.h"

long int CPQueryProcRes(ID,Mode,QPRBAddr)

unsigned long int ID;

unsigned long int Mode;

 void \QPRBAddr;

ID - Process ID or SVid (depends on Mode).

Mode - Used to determine process to be queried (see below).

QPRBAddr - Near pointer to output buffer.

 Usage Notes
This function is used to obtain the current system resources and limits of the
designated process. Information is returned for named and unnamed processes.

The Mode parameter determines the process to be queried. Mode values include:

QRMproctask Use process of caller.
QRMprocefftask Use effective process of caller.
QRMprocsvcid Use process to which the SVT entry specified in ID belongs.
QRMprocid Use process whose process ID is in ID.

 Output Buffer
The parameter QPRBAddr points to the output buffer whose structure is defined in
cpqlib.h as QPRESBLOCK.

Query Process Resources Return Block Format -

typedef struct qpresblock {

unsigned long int ProcID; /\ Process ID \/

unsigned short int SVTMin; /\ Minimum SVT entries reserved \/

unsigned short int SVTMax; /\ Maximum SVT entries allowed \/

unsigned short int SVTInUse; /\ Current SVT usage \/

unsigned short int TCBMin; /\ Minimum TCB entries reserved \/

unsigned short int TCBMax; /\ Maximum TCB entries allowed \/

unsigned short int TCBInUse; /\ Current TCB usage \/

unsigned short int PCBMin; /\ Minimum PCB entries reserved \/

unsigned short int PCBMax; /\ Maximum PCB entries allowed \/

unsigned short int PCBInUse; /\ Current PCB usage \/

unsigned short int TimerMin; /\ Minimum Timer blk. entries reserved \/

unsigned short int TimerMax; /\ Maximum Timer blk. entries allowed \/

unsigned short int TimerInUse; /\ Current Timer blk. usage \/

unsigned long int MEMMax; /\ Maximum Memory allowed \/

unsigned long int MEMInUse; /\ Current Virtual Memory usage \/

 } QPRESBLOCK;

Figure 22-2. Query Process Resources - output buffer format

Procid ID of the process whose system resource limits are being
returned.

SVTMin Number of SVT entries required by this process.

22-10 Application Programming Reference

SVTMax Maximum number of SVT entries that can be acquired by this
process.

SVTInUse Number of SVT entries that are in use by this process.

TCBMin Number of TCB blocks required by this process.

TCBMax Maximum number of TCBs that can be acquired by this
process.

TCBInUse Number of TCBs (tasks) that are in use by this process.

PCBMin Number of PCB blocks required by this process.

PCBMax Maximum number of PCBs that can be acquired by this
process.

PCBInUse Number of PCBs (processes) that are in use by this process.

TimerMin Number of timer blocks required by this process.

TimerMax Maximum number of timer blocks that can be acquired by
this process.

TimerInUse Number of timer blocks that are in use by this process.

MEMMax Maximum amount (in bytes) of free storage that can be
allocated to this process.

MEMInUse Current virtual storage (in bytes) used by this process. If
MEMMax for a process equals QRMnomemmax as defined
in the header file QRM_CNST.H, then MEMInUse always
equals zero for that process because the CP/Q Memory
Manager has no need to track memory usage for that
process.

Note: The data returned represents the state at the time the function was called.
The usage counts usually change over time, but the maximum and minimum limits
never change.

 Implementation Notes
None

 Return Codes
The Resource Manager provides a return code on all calls. A success return code
QRMgood has the value 0; all other Resource Manager return codes are of the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed.

QRMbadproc-(0x000E) Invalid process specification in input registers.

QRMnowacc-(0x0029) The caller does not have write access to the offset
pointed to by QPRBAddr.

The Resource Manager calls the Memory Manager in order to complete this
function. A return code other than QMsuccess from the Memory Manager is
returned to the caller. Memory Manager return codes are in the form 0x8002xxxx .
The possible Memory Manager return codes for this call, along with their low order
16 bits, are listed below.

 Chapter 22. Query Process States 22-11

QMbad_offset-(0x0001) Parameter list is invalid, for example QPRBAddr does
not point into a valid memory object.

22-12 Application Programming Reference

 CPQueryProcSVIDs

Syntax -

#include "cpqlib.h"

#include "qrm_cnst.h"

long int CPQueryProcSVIDs(ID,Mode,QPSBAddr,QPSBLen)

unsigned long int ID;

unsigned long int Mode;

 void \QPSBAddr;

unsigned long int QPSBLen;

ID - Process ID or SVid (depends on Mode).

Mode - Used to determine process to be queried

and SVids to be returned (see below).

QPSBAddr - Near pointer to output buffer.

QPSBLen - Length of buffer in bytes (4 bytes minimum).

 Usage Notes
This function is used to obtain a list of the SVids that belong to the designated
process, and is available to any requestor (independent of the relationship of the
requestor process to the process being queried). Information is returned for named
and unnamed processes.

The Mode parameter determines:

� The process to be queried.

� The types of SVids to return.

Mode values to determine the process to be queried include:

QRMproctask Use process of caller.
QRMprocefftask Use effective process of caller.
QRMprocsvcid Use process to which the SVT entry specified in ID belongs.
QRMprocid Use process whose process ID is in ID.

Mode values to determine the types of SVids to return include:

QRMqrytask Return SVids of tasks.
QRMqrysersem Return SVids of serialization semaphores.
QRMqrysynsem Return SVids of synchronization semaphores.
QRMqryuitem Return SVids of user items.
QRMqrymsgq Return SVids of message queues.

Any or all Mode options to return SVids can be set to indicate the SVids to be
returned. If none of the Mode options are set for returning SVids, then all SVids
attached to the process queried are returned.

The returned information is written to the caller-supplied buffer area; it consists of
an 4-byte header followed by as many SVids as will fit and are attached to the

 Chapter 22. Query Process States 22-13

process. The number of items is computed by the Resource Manager from the
size of the buffer (specified by the caller).

 Output Buffer
The parameter QPSBAddr points to the output buffer whose structure is defined in
cpqlib.h as QPSVIDBLOCK. Constant definition macros are defined in the
Resource Manager user header file qrm_cnst.h.

Query Process SVIDs Return Block Format -

typedef struct qpsvidblock {

unsigned short int SVidCnt; /\ Number of SVids attached \/

unsigned short int SVidRtn; /\ Number of SVids returned \/

unsigned long int SVid[1]; /\ First element of SVID array

 } QPSVIDBLOCK;

Figure 22-3. Query SVids Attached to a Process - output buffer

SVidCnt Total number of SVT entries attached to the process
indicated

SVidRtn Number of SVids written into this buffer

SVid(*) An array of SVids; the number of valid items written on return
with a good return code is given in the field SVidRtn.

 Implementation Notes
None

 Return Codes
The Resource Manager provides a return code on all calls. A success return code
QRMgood has the value 0; all other Resource Manager return codes are of the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed.

QRMbadproc-(0x000E) Invalid process specification in input registers.

QRMbadlength-(0x0015) Output buffer length is not valid (length given is too small
for header information to be returned.)

QRMnowacc-(0x0029) The caller does not have write access to the offset
pointed to by QPSBAddr.

The Resource Manager calls the Memory Manager in order to complete this
function. A return code other than QMsuccess from the Memory Manager is
returned to the caller. Memory Manager return codes are in the form 0x8002xxxx .
The possible Memory Manager return codes for this call, along with their low order
16 bits, are listed below.

QMbad_offset-(0x0001) Parameter list is not valid, for example QPSBAddr does
not point into a valid memory object.

22-14 Application Programming Reference

Chapter 23. Set Process Functions

The functions described in this chapter allow a task to change the process resource
defaults or to manipulate the effective process of a task. These functions are:

� CPGiveEffProc - Grant a specified task the privilege to change its effective
process.

� CPSetEffProc - Manipulate the effective process field of the caller.

� CPSetProcDfltLimit - Change the values of the process default limits for
PCBs, TCBs, Timers, SVTs, or memory storage.

� CPSetProcMaxLimit - Change the values of the process maximum limits for
PCBs, TCBs, Timers, SVTs, or memory storage.

Function prototypes are listed in cpqlib.h. Applicable constant definition macros are
defined in the file qrm_cnst.h.

 Copyright IBM Corp. 1989-1994, 1996-1998 23-1

 CPGiveEffProc

Syntax -

#include "cpqlib.h"

long int CPGiveEffProc(SVid)

unsigned long int SVid;

SVid - SVid of the recipient task.

 Usage Notes
This call is used to grant a specified task the privilege to change its own effective
process. The recipient task can change or restore the TCBeffproc field (for
example, to acquire memory in a different address space).

This call only completes successfully if the caller has set-effective-process privilege
(the TCBffenvpriv value in the TCB must be set).

 Implementation Notes
None.

 Return Codes
The Resource Manager provides a return code on all calls. A success return code
(QRMgood) has the value of 0; all other Resource Manager return codes are in the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed.

QRMbadsvt-(0x000F) Not a valid SVid in SVid or SVid is not the SVid of a
task.

QRMillegal-(0x0019) Caller does not have the privilege required for this
function (that is, does not have set-effective-process
privilege).

Note: A task obtains the privilege to change effective process, for attaching
various resources to other processes, in three ways:

� The system builder specified to SLEEP that the TCBffenvpriv value is set in the
PRIV field of the TASK command.

� A task which has this privilege creates a new task with this privilege.
� A task which has this privilege requests that the privilege also be assigned to

another (already defined) task.

23-2 Application Programming Reference

 CPSetEffProc

Syntax -

#include "cpqlib.h"

#include "qrm_cnst.h"

long int CPSetEffProc(ID,Mode)

unsigned long int ID;

unsigned long int Mode;

ID - Process ID or SVid (depends on Mode).

Mode - Used to determine effective process (see below).

 Usage Notes
This call is used to manipulate the effective process field of the caller. The caller
can change or restore his TCBeffproc field (for example, in order to acquire
memory in a different address space).

The Mode parameter determines the effective process. Mode values include:

QRMproctask Use process of caller.
QRMprocefftask Use effective process of caller. This is effectively a null

operation.
QRMprocsvcid Use process to which the SVT entry specified in ID belongs.
QRMprocid Use process whose process ID is in ID.

This call is always completed if the caller has set-effective-process privilege (the
TCBffenvpriv value in the TCB must be set), unless the caller is not in the
“SYSTEM” process and is attempting to change effective process to “SYSTEM.”
Furthermore, even if the caller does not have the privilege in general, requests are
honored if the proposed effective process is the caller's, or some descendant of the
caller.

 Implementation Notes
None.

 Return Codes
The Resource Manager provides a return code on all calls. A success return code
(QRMgood) has a value of 0; all other Resource Manager return codes are in the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed.

QRMbadproc-(0x000E) Invalid process specification.

QRMbadsvt-(0x000F) Not a valid SVid in SVid, or SVid is not the SVid of a
task.

QRMillegal-(0x0019) Caller does not have the privilege required for this
function (for example, does not have
set-effective-process privilege), or caller is attempting to

 Chapter 23. Set Process Functions 23-3

change effective process to “SYSTEM” and is not in the
“SYSTEM” process.

Note: A task obtains the privilege to change effective process, for attaching
various resources to other processes, in three ways:

� The system builder specified to SLEEP that the TCBffenvpriv value is set in the
PRIV field of the TASK command.

� A task which has this privilege creates a new task with this privilege.
� A task which has this privilege requests that the privilege also be assigned to

another (already defined) task.

23-4 Application Programming Reference

 CPSetProcDfltLimit

Syntax -

#include "cpqlib.h"

long int CPSetProcDfltLimit(ProcDefault,DefaultNum)

unsigned long int ProcDefault;

unsigned long int DefaultNumber;

ProcDefault - process default to set (see below).

DefaultNum - The new process default limit number.

 Usage Notes
This call is used to change the process default limits that are stored in the System
Data Area. The caller must have “SYSTEM” privilege (TCBsyspriv value in the
TCB set) for this call to be successful.

The ProcDefault parameter determines the process default to set. Values include:

QRMsetPCBdflt
Set the process default limit for PCBs. The process default limit for
PCBs must be less than or equal to the process maximum limit for
PCBs.

QRMsetSVTdflt
Set the process default limit for SVTs. The process default limit for
SVTs must be less than or equal to the process maximum limit for
SVTs.

QRMsetTCBdflt
Set the process default limit for TCBs. The process default limit for
TCBs must be less than or equal to the process maximum limit for
TCBs.

QRMsetTimerdflt
Set the process default limit for timer blocks. The process default limit
for timer blocks must be less than or equal to the process maximum
limit for timer blocks.

QRMsetMEMdflt
Set the process default limit for memory storage. The process default
limit for memory storage must be less than or equal to the process
maximum limit for memory storage.

 Implementation Notes
None.

 Chapter 23. Set Process Functions 23-5

 Return Codes
The Resource Manager provides a return code on all calls. A success return code
(QRMgood) has a value of 0; all other Resource Manager return codes are in the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed.

QRMillegal-(0x0019) Caller does not have the privilege required for this
function (that is, does not have “SYSTEM” privilege)

QRMbadopt-(0x001A) The value of the proposed process default passed to the
Resource Manager is not valid. For example, the
proposed process default is larger than the current
process maximum limit for the specified resource.

23-6 Application Programming Reference

 CPSetProcMaxLimit

Syntax -

#include "cpqlib.h"

long int CPSetProcMaxLimit(ProcDefault,DefaultNum)

unsigned long int ProcDefault;

unsigned long int DefaultNumber;

ProcDefault - process maximum to set (see below).

DefaultNum - The new process maximum limit number.

 Usage Notes
This call is used to change the process maximum limits that are stored in the
System Data Area. The caller must have “SYSTEM” privilege (TCBsyspriv value in
the TCB set) for this call to be successful.

The process maximum limit defines the limit on the amount of a resource that can
be specified by a process creation request. The process maximum limit must be
equal to or greater than the corresponding process default limit for that resource.

The ProcDefault parameter determines the process maximum to set. Values
include:

QRMsetPCBmax
Set the process maximum limit for PCBs. A process maximum limit of
QRMnomax means that no maximum limit is enforced.

QRMsetSVTmax
Set the process maximum limit for SVTs. A process maximum limit of
QRMnomax means that no maximum limit is enforced.

QRMsetTCBmax
Set the process maximim limit for TCBs. A process maximum limit of
QRMnomax means that no maximum limit is enforced.

QRMsetTimermax
Set the process maximum limit for Timer blocks. A process maximum
limit of QRMnomax means that no maximum limit is enforced.

QRMsetMEMmax
Set the process maximum limit for memory storage. A process
maximum limit of QRMnomemmax means that no maximum limit is
enforced.

 Chapter 23. Set Process Functions 23-7

 Implementation Notes
None

 Return Codes
The Resource Manager provides a return code on all calls. A success return code
(QRMgood) has a value of 0; all other Resource Manager return codes are in the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed.

QRMillegal-(0x0019) Caller does not have the privilege required for this
function (that is, does not have “SYSTEM” privilege)

QRMbadopt-(0x001A) The value of the proposed process maximum limit
passed to the Resource Manager is not valid. For
example, the proposed maximum limit passed to the
Resource Manager is smaller than the current process
default limit for that resource.

23-8 Application Programming Reference

Chapter 24. Creating System Resources

The functions described in this chapter allow the creation of system-defined
resources. The functions are:

� CPCreateMsgQ - Create a message queue.

� CPCreateMsgQAcc - Create a message queue with access options.

� CPCreateProc - Create a process.

� CPCreateProcAcc - Create a process with access options.

� CPFork - Fork a process.

� CPCreateSerSem - Create a serialization sempahore.

� CPCreateSerSemAcc - Create a serialization sempahore with access options.

� CPCreateSyncSem - Create a synchronization semaphore.

� CPCreateSyncSemAcc - Create a synchronization semaphore with access
options.

� CPCreateTask - Create a task.

� CPCreateTaskAcc - Create a task with access options.

� CPCreateTimerBlock - Create a timer block.

� CPCreateTimerBlockAcc - Create a timer block with access options.

� CPCreateUItem - Create a user-defined SVT item.

� CPCreateUItemAcc - Create a user-defined SVT item with access options.

� CPCreateUserInt - Create (Install) a user-defined interrupt routine.

� CPCreateUserIntAcc - Create (Install) a user-defined interrupt routine with
access options.

Objects are created by calling the appropriate Resource Manager create function,
with an appropriate parameter list. Usually, the information required is either
resource management information or else is used to define the access rights to
SVids enforced by the SVC Handler.

Creator process and creator task
The “creator process” (defined in the parameter list) is the process to which the
new object is to be attached. If a new process is being created, it is a child of the
creator process.

The “creator task” is the caller of the create function.

Creation access checks
The task calling the create function must be related to the creator process in one of
the following ways:

� The creator process is the same as, or is a descendant of, the caller's process.

� The creator process is the effective process of the caller.

If none of these conditions are met, the function cannot be completed and
QRMillegal is returned to the caller.

 Copyright IBM Corp. 1989-1994, 1996-1998 24-1

Creating resource providers
A creator process must be a resource provider in order to have a child process be
created as a resource provider. See the chapter titled "Resource Tracking" for
more information on resource providers.

Resource limit checks
The resource limits enforced by the Resource Manager relate to the minimum,
maximum, and in use PCB fields for TCBs, SVTs, PCBs, timer blocks, and storage.

The TCB, SVT,PCB and timer resource limit values are:

min The number of entries required by the process. This number is used only
at the time of process creation to preallocate the resources to the new
process.

max The absolute limit to the number of entries a process can acquire.
inuse Number of entries currently in use by this process.

Note: TCBs and SVTs are counted separately. For example, if three TCBs must
be reserved, the number of SVTs reserved should be three plus the number of
non-task SVTs required.

Create functions fail if the inuse count is equal to the max count for the creator
process, or if the min count for the object to be created cannot be preallocated by
the system.

The system crashes if a resource cannot be allocated when min < inuse, because
the Resource Manager could not create a resource for the caller that was
preallocated.

Removable system objects
Any object that is created can be designated removable, whether or not the
process to which it is attached is removable.

Function prototypes are listed in cpqlib.h. Structure definitions for applicable
creation functions are listed in qrm_crea.h. Constant definition macros are defined
in the file qrm_cnst.h.

24-2 Application Programming Reference

 CPCreateMsgQ

Syntax -

#include "cpqlib.h"

long int CPCreateMsgQ(Name,RdAccess,WrAccess,SVid)

 char Name[8];

unsigned long int RdAccess;

unsigned long int WrAccess;

unsigned long int \SVid;

Name - near pointer to 8 character name.

RdAccess - ð means no access restrictions enforced.

ProcID means only that process has read access.

WrAccess - ð means no access restrictions enforced.

ProcID means only that process has write access.

SVid - variable in which the message queue's SVid is returned.

 Usage Notes
This function creates a message queue attached to the specified process. The
creator process must be a descendant of that of the caller, or the caller's effective
process. Once created, manipulation of elements in the queue can only be
accomplished through the SVC Handler.

 Implementation Notes
None.

 Return Codes
The Resource Manager provides a return code on all calls. A success return code
(QRMgood) has a value of 0; all other Resource Manager return codes are in the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed.

QRMnosvt-(0x0002) No free SVTs.

QRMsvtmax-(0x0008) Creator process has maximum SVT allocation.

QRMbadname-(0x000D) Duplicate name, the name contains invalid characters, or
the object is named but the name is all blank.

QRMbadproc-(0x000E) Not a valid creator process.

QRMbadsvt-(0x000F) Not a valid SVid specified, or SVid is not the SVid of a
task.

QRMprocremv-(0x0012) The caller's effective process is being removed, request
was denied.

QRMbadprocacc-(0x0016)
Accessing process is not valid.

 Chapter 24. Creating System Resources 24-3

QRMillegal-(0x0019) Caller cannot attach objects to the designated process.

QRMforcedremv-(0x0023)
Function completed successfully, but resource created
was forced to be removable.

QRMprocfork-(0x002C) The caller's effective process is performing a process
fork operation. Request was denied, try again later.

QRMprocexec-(0x002D) The caller's effective process is preforming a program
exec operation. Request was denied, try again later.

QRMprocproc-(0x002E) The caller's effective process is performing a process
create operation. Request was denied, try again later.

QRMproccreat-(0x002F) The caller's effective process is itself being created.
Request was denied, try again later.

The Resource Manager calls the Memory Manager in order to complete this
function. A return code other than QMsuccess from the Memory Manager is
returned to the caller. Memory Manager return codes are in the form 0x8002xxxx .
The possible Memory Manager return codes for this call, along with their low order
16 bits, are listed below.

QMbad_offset-(0x0001) Parameter list is not valid.

The Resource Manager calls the SVC Handler in order to complete this function. A
return code other than QSVCgood from the SVC Handler is returned to the caller.
SVC Handler return codes are in the form 0x8001xxxx . The possible SVC Handler
return codes for this call, along with their low order 16 bits, are listed below.

QSVCduplnam-(0x0001) Non-null name specified, which is not unique.

24-4 Application Programming Reference

 CPCreateMsgQAcc

Syntax -

#include "cpqlib.h"

long int CPCreateMsgQAcc(ID,Mode,Name,RdAccess,WrAccess,SVid)

unsigned long int ID;

unsigned long int Mode;

 char Name[8];

unsigned long int RdAccess;

unsigned long int WrAccess;

unsigned long int \SVid;

 ID - process ID to which the message queue will belong

(depends on Mode).

Mode - determines creator process and access restrictions

 (see below).

Name - near pointer to 8 character name.

RdAccess - ð means no read access restrictions enforced.

If either flags QRMcrtprocrd or QRMcrttaskrd are set in

the Mode field, then possible values for this field

are an SVid or process ID to which read access is to be

 restricted.

WrAccess - ð means no write access restrictions enforced.

If either flags QRMcrtprocwr or QRMcrttaskwr are set in

the Mode field, then possible values for this field

are an SVid or process ID to which read access is to be

 restricted.

SVid - variable in which the message queue's SVid is returned.

 Usage Notes
This function creates a message queue, attached to the creator process specified
by the ID value and the Mode parameter. The CPCreateMsgQAcc function differs
slightly from the CPCreateMsgQ function in that more options are exposed to the
caller, particularly, options dealing with ownership and access of the message
queue. The caller must have privilege to attach objects to the creator process, that
is, that caller can act on its own process, its own effective process, or any
descendant of the caller.

The Mode parameter determines:

� The creator process that owns the message queue
� The access restrictions for the message queue

Mode values to determine the creator process include:

QRMproctask Use process of caller
QRMprocefftask Use effective process of caller
QRMprocsvcid Use process to which the SVT entry specified in ID belongs
QRMprocid Use process whose process ID is in ID

 Chapter 24. Creating System Resources 24-5

Mode values to determine the access restrictions upon the message queue include:

QRMcrtnamed Create message queue as named.
QRMcrtremv Create message queue as removable.
QRMcrtsuperrd Set if read access to message queue is restricted to

supervisor mode code.
QRMcrtprocrd Set if read access to message queue is restricted to the

process whose process ID is in RdAccess.
QRMcrttaskrd Set if read access to message queue is restricted to the task

whose SVid is in RdAccess.
QRMcrtsuperwr Set if write access to message queue is restricted to

supervisor mode code.
QRMcrtprocwr Set if write access to message queue is restricted to the

process whose process ID is in WrAccess.
QRMcrttaskwr Set if write access to message queue is restricted to the task

whose SVid is in WrAccess.

Message queues can be named or unnamed and can have access restrictions
based on process or privilege level.

If the message queue is to be created as non-removable, the creator process to
which the message queue is to be attached must also be non-removable.

The address space in which the message queue resides is maintained by the SVC
Handler. Once created, manipulation of elements in the queue can only be
accomplished through the SVC Handler.

 Implementation Notes
None.

 Return Codes
The Resource Manager provides a return code on all calls. A success return code
(QRMgood) has a value of 0; all other Resource Manager return codes are in the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed.

QRMnosvt-(0x0002) No free SVTs.

QRMsvtmax-(0x0008) Creator process has maximum SVT allocation.

QRMbadname-(0x000D) Duplicate name, the name contains invalid characters, or
the object is named but the name is all blank.

QRMbadproc-(0x000E) Not a valid creator process.

QRMbadsvt-(0x000F) Not a valid SVid specified, or SVid is not the SVid of a
task.

QRMprocremv-(0x0012) The caller's effective process is being removed.
Request was denied.

QRMbadprocacc-(0x0016)
Accessing process is not valid

QRMillegal-(0x0019) Caller cannot attach objects to the designated process.

24-6 Application Programming Reference

QRMforcedremv-(0x0023)
Function completed successfully, but resource created
was forced to be removable.

QRMprocfork-(0x002C) The caller's effective process is performing a process
fork operation. Request was denied, try again later.

QRMprocexec-(0x002D) The caller's effective process is performing a program
exec operation. Request was denied, try again later.

QRMprocproc-(0x002E) The caller's effective process is performing a process
create operation. Request was denied, try again later.

QRMproccreat-(0x002F) The caller's effective process is itself being created.
Request was denied, try again later.

The Resource Manager calls the Memory Manager in order to complete this
function. A return code other than QMsuccess from the Memory Manager is
returned to the caller. Memory Manager return codes are in the form 0x8002xxxx .
The possible Memory Manager return codes for this call, along with their low order
16 bits, are listed below.

QMbad_offset-(0x0001) Parameter list is not valid.

The Resource Manager calls the SVC Handler in order to complete this function. A
return code other than QSVCgood from the SVC Handler is returned to the caller.
SVC Handler return codes are in the form 0x8001xxxx . The possible SVC Handler
return codes for this call, along with their low order 16 bits, are listed below.

QSVCduplnam-(0x0001) Non-null name specified which is not unique.

 Chapter 24. Creating System Resources 24-7

 CPCreateProc

Syntax -

#include "cpqlib.h"

long int CPCreateProc(Name,Priobase,ProcOpts,

 minpcb,minsvt,mintcb,mintimer,

 maxpcb,maxsvt,maxtcb,maxtimer,maxmem,ProcID);

 char Name[8];

unsigned long int Priobase;

unsigned long int ProcOpts;

unsigned long int minpcb;

unsigned long int minsvt;

unsigned long int mintcb;

unsigned long int mintimer;

unsigned long int maxpcb;

unsigned long int maxsvt;

unsigned long int maxtcb;

unsigned long int maxtimer;

unsigned long int maxmem;

unsigned long int \ProcID;

Name - Near pointer to an (up to) 8-character name for the process.

Priobase - Task dispatch priority offset. This is a numeric value which,

when added to the base priority of the caller's effective process,

represents the most favored task dispatch priority allowed to tasks

in the new process being created.

ProcOpts - Process option field.

- QRMcrtrp: if set, new process is a resource provider.

minpcb - Number of PCB entries preallocated to process.

minsvt - Number of SVT entries preallocated to process.

mintcb - Number of TCB entries preallocated to process.

mintimer - Number of Timer entries preallocated to process.

maxpcb - Maximum number of PCB entries allowed to process.

maxsvt - Maximum number of SVT entries allowed to process.

maxtcb - Maximum number of TCB entries allowed to process.

maxtimer - Maximum number of Timer entries allowed to process.

maxmem - Maximum amount of memory (in bytes) allowed to process.

ProcID - Variable which, on return, contains the process ID of the new process.

 Usage Notes
This function is used to create only a new process. No initial task is created. The
new process is created as a child of the caller's effective process, with the same
base priority. If the Priobase field specified on the call has a nonzero value, and
the tasks in the newly created process have a less favored priority. The new
process is created as removable. The QRMcrtrp value can be set in ProcOpts only
if the caller's effective process is also a resource provider.

The values minpcb, minsvt, mintcb, and mintimer specify the minimum number of
PCB, SVT, TCB, and timer entries required by this new process. The system

24-8 Application Programming Reference

attempts to preallocate the minimum number of entries to the new process. If one
of these fields is specified zero on the call, then no corresponding entry for that
field is preallocated.

The values maxpcb, maxsvt, maxtcb, and maxtimer specify the maximum number
of PCB, SVT, TCB, and timer entries allowed to this process. When any of these
fields is specified zero (QRMdfltlimit) on the call, the corresponding process default
limit for that field is used. When any of these fields is specified as -1 on the call,
the corresponding current process maximum limit for that field is used. If the
caller's task has SYSTEM privilege, the caller can specify -2 for any of these fields,
which means that no limit is enforced upon that field in the new process.

The value maxmem specifies the maximum memory allowed to the newly created
process (in bytes). To get the process default memory limit, specify a maxmem
value of zero (QRMmemdfltlimit) on this call. To get the current process maximum
memory limit, specify a maxmem value of -1 on this call. If the caller's task has
SYSTEM privilege, the caller can specify a maxmem value of -2 on this call, which
means that no limit is enforced when creating memory in the new process.

If the resource limits for PCBs, SVTs, TCBs or Timer blocks are exceeded, or if the
system pool of control blocks is exhausted, the function fails.

For an explanation of resource provider processing during process creation, see
SPL Volume 5: Resource Manager, "Resource Manager Tracking Notification
Messages" chapter.

 Implementation Notes
This create function differs from others, in that the created object is not necessarily
usable without further processing. No initial tasks are created within the created
PCB using this call. The caller must create tasks within the newly created PCB by
calling the Resource Manager CPCreateTask function.

 Return codes
The Resource Manager provides a return code on all calls. A success return code
(QRMgood) has a value of 0; all other Resource Manager return codes are in the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed.

QRMnopcb-(0x0001) Number of free PCBs is insufficient.

QRMnosvt-(0x0002) Number of free SVTs is insufficient.

QRMnotcb-(0x0003) Number of free TCBs is insufficient.

QRMnotimer-(0x0004) Number of timer blocks is insufficient.

QRMpcbmax-(0x0007) Creator process has maximum PCB allocation.

QRMsvtmax-(0x0008) Creator process has maximum SVT allocation.

QRMtcbmax-(0x0009) Creator process has maximum TCB allocation.

QRMbadname-(0x000D) Duplicate name, the name contains invalid characters, or
the object is named but the name is all blank.

QRMbadproc-(0x000E) Creator process is not valid.

 Chapter 24. Creating System Resources 24-9

QRMinvalid-(0x0010) A process creation was attempted whereby the newly
created process was to be a resource provider.
However, the creator process is not a resource provider.

QRMprocremv-(0x0012) The caller's effective process is being removed.
Request was denied.

QRMillegal-(0x0019) Caller does not have the privilege to create tasks from
the designated creator process.

QRMforcedremv-(0x0023)
Function completed successfully, but resource created
was forced to be removable.

QRMprocfork-(0x002C) The caller's effective process is performing a process
fork operation. Request was denied, try again later.

QRMprocexec-(0x002D) The caller's effective process is performing a program
exec operation. Request was denied, try again later.

QRMprocproc-(0x002E) The caller's effective process is performing a process
create operation. Request was denied, try again later.

QRMproccreat-(0x002F) The caller's effective process is itself being created.
Request was denied, try again later.

The Resource Manager calls the Memory Manager in order to complete this
function. A return code other than QMsuccess from the Memory Manager is
returned to the caller. Memory Manager return codes are in the form 0x8002xxxx .
The possible Memory Manager return codes for this call, along with their low order
16 bits, are listed below.

QMbad_offset-(0x0001) Parameter list is not valid.

QMno_page-(0x0012) Insufficient real storage is available to create the
required page directory and page tables for the new
process.

Resource Manager Generated Faults
It is possible that the Resource Manager faults the caller during processing of this
call. If this occurs, the return code is transmitted to the caller's fault handler as a
result of the Resource Manager issuing a CPFaultTask call. The cause or causes
of the fault are listed below along with the error codes.

QRMxnopriv-(0x0081) The caller attempted to create a process with unlimited
resources, and did not have “SYSTEM” privilege.

Resource guarantees and limits, new process creation
SVTs, TCBs, PCBs and Timer Blocks

The minimum and maximum values for SVTs, TCBs, PCBs and Timer blocks when
a new process is created are calculated from the parameter list and the system
defaults. To describe the algorithm used, know these terms:

rqmax Requested maximum for new process
rqmin Requested minimum for new process
pdlmax Process default limit
pmlmax Process maximum limit

24-10 Application Programming Reference

smlmax System maximum limit
sysavail Number of items available from the system pool

If rqmax is 0, use pdlmax instead.

If rqmax is -1 , then rqmax = pmlmax.

If rqmax is -2 , then rqmax = "unlimited".

If rqmax ≤ rqmin, then rqmax = rqmin.

Then, verify that the following conditions exist:

sysavail ≥ rqmin
pmlmax ≥ rqmax

If these relations are satisfied, the creation can proceed.

Memory Resources

The minimum and maximum limits for free storage requirements are handled as
described under the memory-related fields in the parameter list. Although the
Resource Manager controls the minimum, in use, and maximum PCB fields, the
Memory Manager controls the in use and system available values, which vary over
time. The Resource Manager reads these values to test for the conditions
described with interrupts disabled.

 Chapter 24. Creating System Resources 24-11

 CPCreateProcAcc

Syntax -

#include "cpqlib.h"

long int CPCreateProcAcc(ID,Mode,Name,Priobase,ProcOpts,

 minpcb,minsvt,mintcb,mintimer,

 maxpcb,maxsvt,maxtcb,maxtimer,maxmem,ProcID);

unsigned long int ID;

unsigned long int Mode;

 char Name[8];

unsigned long int Priobase;

unsigned long int ProcOpts;

unsigned long int minpcb;

unsigned long int minsvt;

unsigned long int mintcb;

unsigned long int mintimer;

unsigned long int maxpcb;

unsigned long int maxsvt;

unsigned long int maxtcb;

unsigned long int maxtimer;

unsigned long int maxmem;

unsigned long int \ProcID;

 ID - Process ID to which the newly created process will

belong (depends on Mode).

Mode - determines creator process and process characteristics.

Name - Near pointer to an (up to) 8-character name for the process.

Priobase - Task dispatch priority offset. This is a numeric value which,

when added to the base priority of the caller's effective process,

represents the most favored task dispatch priority allowed to tasks

in the new process being created.

ProcOpts - Process option flags

- QRMcrtrp - new process is a resource provider.

minpcb - Number of PCB entries preallocated to process.

minsvt - Number of SVT entries preallocated to process.

mintcb - Number of TCB entries preallocated to process.

mintimer - Number of Timer entries preallocated to process.

maxpcb - Maximum number of PCB entries allowed to process.

maxsvt - Maximum number of SVT entries allowed to process.

maxtcb - Maximum number of TCB entries allowed to process.

maxtimer - Maximum number of Timer entries allowed to process.

maxmem - Maximum amount of memory (in bytes) allowed to process.

ProcID - Variable which, on return, contains the process ID of the new process.

24-12 Application Programming Reference

 Usage Notes
This function is used to create only a new process. No initial task is created. The
new process is created as a child of the creator process, specified by the ID value
and the Mode parameter with the same base priority. The CPCreateProcAcc
function differs slightly from the CPCreateProc function in that more options are
exposed to the caller, particularly, options dealing with ownership and
characteristics of the new process. The caller must have privilege to attach objects
to the creator process, that is, that caller can act on his own process, his own
effective process, or any descendant of the caller.

The Mode parameter determines:

� The creator process that owns the newly created child process
� The process options for the created child process

Mode values to determine the creator process include:

QRMproctask Use process of caller
QRMprocefftask Use effective process of caller
QRMprocsvcid Use process to which the SVT entry specified in ID belongs
QRMprocid Use process whose process ID is in ID

Mode values to determine the access restrictions upon the created process include:

QRMcrtnamed Create child process as named
QRMcrtremv Create child process as removable

If the Priobase field specified on the call has a nonzero value, the tasks in the
newly created process have a less favored priority. The new process can be
created removable or non-removable. If the creator process is removable, the
newly created process is created removable independent of setinng this flag. The
resource provider flag QRMcrtrp can be set in ProcOpts only if the creator process
is also a resource provider.

The values minpcb, minsvt, mintcb, and mintimer specify the minimum number of
PCB, SVT, TCB, and timer entries required by this new process. The system
attempts to preallocate the minimum number of entries to the new process. If one
of these fields is specified zero on the call, then no corresponding entry for that
field is preallocated.

The values maxpcb, maxsvt, maxtcb, and maxtimer specify the maximum number
of PCB, SVT, TCB, and timer entries allowed to this process. When any field is
specified as zero (QRMdfltlimit) on the call, the corresponding process default limit
for that field is used. When any field is specified as -1 on the call, the
corresponding current process maximum limit for that field is used. If the caller's
task has SYSTEM privilege, the caller may specify -2 for any of these fields, which
means that no limit is enforced upon that field in the new process.

The value maxmem specifies the maximum memory allowed to the newly created
process (in bytes). To get the process default memory limit, specify a maxmem
value of zero (QRMmemdfltlimit) on this call. To get the current process maximum
memory limit, specify a maxmem value of -1 on this call. If the caller's task has
SYSTEM privilege, the caller can specify a maxmem value of -2 on this call, which
means that no limit is enforced when creating memory in the new process.

 Chapter 24. Creating System Resources 24-13

If the resource limits for PCBs, SVTs, TCBs or Timer blocks are exceeded, or if the
system pool of control blocks is exhausted, the function fails.

The function fails if the memory required is not available.

 Implementation Notes
None.

 Return Codes
The Resource Manager provides a return code on all calls. A success return code
(QRMgood) has a value of 0; all other Resource Manager return codes are in the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed

QRMnopcb-(0x0001) Number of free PCBs is insufficient

QRMnosvt-(0x0002) Number of free SVTs is insufficient

QRMnotcb-(0x0003) Number of free TCBs is insufficient

QRMnotimer-(0x0004) Number of timer blocks is insufficient

QRMpcbmax-(0x0007) Creator process has maximum PCB allocation

QRMsvtmax-(0x0008) Creator process has maximum SVT allocation

QRMtcbmax-(0x0009) Creator process has maximum TCB allocation

QRMbadname-(0x000D) Duplicate name, the name contains invalid characters, or
the object is named but the name is all blank.

QRMbadproc-(0x000E) Creator process is not valid.

QRMinvalid-(0x0010) A process creation was attempted whereby the newly
created process was to be a resource provider.
However, the creator process is not a resource provider.

QRMprocremv-(0x0012) The caller's effective process is being removed.
Request was denied.

QRMillegal-(0x0019) Caller does not have the privilege to create tasks from
the designated creator process.

QRMforcedremv-(0x0023)
Function completed successfully, but resource created
was forced to be removable.

QRMprocfork-(0x002C) The caller's effective process is performing a process
fork operation. Request was denied, try again later.

QRMprocexec-(0x002D) The caller's effective process is performing a program
exec operation. Request was denied, try again later.

QRMprocproc-(0x002E) The caller's effective process is performing a process
create operation. Request was denied, try again later.

QRMproccreat-(0x002F) The caller's effective process is itself being created.
Request was denied, try again later.

The Resource Manager calls the Memory Manager in order to complete this
function. A return code other than QMsuccess from the Memory Manager is

24-14 Application Programming Reference

returned to the caller. Memory Manager return codes are in the form 0x8002xxxx .
The possible Memory Manager return codes for this call, along with their low order
16 bits, are listed below.

QMbad_offset-(0x0001) Parameter list is not valid.

QMno_page-(0x0012) Insufficient real storage available to create the required
page directory and page tables for the new process.

Resource Manager Generated Faults
It is possible that the Resource Manager can fault the caller during processing of
this call. If this occurs, the return code is transmitted to the caller's fault handler as
a result of the Resource Manager issuing a CPFaultTask call. The cause or
causes of the fault are listed below along with the error codes.

QRMxnopriv-(0x0081) The caller attempted to create a process with unlimited
resources, and did not have “SYSTEM” privilege.

Resource guarantees and limits, new process creation
SVTs, TCBs, PCBs and Timer Blocks

The minimum and maximum values for SVTs, TCBs, PCBs and Timer blocks when
a new process is created are calculated from the parameter list and the system
defaults. To describe the algorithm used, use these terms:

rqmax Requested maximum for new process
rqmin Requested minimum for new process
pdlmax Process default limit
pmlmax Process maximum limit
smlmax System maximum limit
sysavail Number of items available from the system pool

If rqmax is 0, use pdlmax instead.

If rqmax is -1 , then rqmax = pmlmax.

If rqmax is -2 , then rqmax = "unlimited".

If rqmax ≤ rqmin, then rqmax = rqmin.

Then, verify that the following conditions exist:

sysavail ≥ rqmin
pmlmax ≥ rqmax

If these relations are satisfied, the creation can proceed.

Memory Resources

The minimum and maximum limits for free storage requirements are handled as
described under the memory-related fields in the parameter list. Although the
Resource Manager controls the minimum, in use, and maximum PCB fields, the
Memory Manager controls the in use and system available values, which vary over
time. The Resource Manager reads these values to test for the conditions
described with interrupts disabled.

 Chapter 24. Creating System Resources 24-15

 CPCreateSerSem

Syntax -

#include "cpqlib.h"

long int CPCreateSerSem(Name,Access,ClaimID,SVid)

 char Name[8];

unsigned long int Access;

unsigned long int ClaimID;

unsigned long int \SVid;

Name - Near pointer to 8 character name.

Access - ð means no access restrictions enforced.

ProcID means only that process has access.

ClaimID - ð means create as not claimed (that is, free).

Task SVid means create as claimed by that task.

SVid - Variable in which the serialization semaphore's

SVid is returned.

 Usage Notes
This function creates a semaphore for serializing access to common data or other
resources. This type of semaphore is called a serialization semaphore. The
serialization semaphore is attached to the caller's effective process.

The serialization semaphore can exist in one of two states: “claimed” by a task, or “
not claimed” (that is, free). The following CP/Q system calls can manipulate and
query the state of a serialization semaphore:

 � CPSemClaim
 � CPSemQuery
 � CPSemRelease

Function descriptions for the above CP/Q system calls can be found in the
"Resource/Serialization Semaphore Operations" chapter of Application
Programming Library Volume 1: Application Programming Reference.

The semaphore can be created “pre-claimed” by a task by providing the task's SVid
in the ClaimID argument. If the ClaimID field is zero, the serialization semaphore is
created “not claimed.”

 Implementation Notes
None.

 Return Codes
The Resource Manager provides a return code on all calls. A success return code
(QRMgood) has a value of 0; all other Resource Manager return codes are in the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed.

24-16 Application Programming Reference

QRMnosvt-(0x0002) No free SVTs in system pool.

QRMsvtmax-(0x0008) Creator process has maximum SVT allocation.

QRMbadname-(0x000D) Duplicate name, the name contains invalid characters, or
the object is named but the name is all blank.

QRMbadproc-(0x000E) Creator process not valid.

QRMbadsvt-(0x000F) SVid specified is not valid, or SVid is not the SVid of a
task.

QRMprocremv-(0x0012) The caller's effective process is being removed.
Request was denied.

QRMbadprocacc-(0x0016)
Accessing process is not valid.

QRMillegal-(0x0019) Caller cannot create objects in the specified process, or
caller does not have the authority to establish the
designated task as a semaphore owner.

QRMforcedremv-(0x0023)
Function completed successfully, but resource created
was forced to be removable.

QRMprocfork-(0x002C) The caller's effective process is performing a process
fork operation. Request was denied, try again later.

QRMprocexec-(0x002D) The caller's effective process is performing a program
exec operation. Request was denied, try again later.

QRMprocproc-(0x002E) The caller's effective process is performing a process
create operation. Request was denied, try again later.

QRMproccreat-(0x002F) The caller's effective process is itself being created.
Request was denied, try again later.

The Resource Manager calls the Memory Manager in order to complete this
function. A return code other than QMsuccess from the Memory Manager is
returned to the caller. Memory Manager return codes are in the form 0x8002xxxx .
The possible Memory Manager return codes for this call, along with their low order
16 bits, are listed below.

QMbad_offset-(0x0001) Parameter list is not valid.

The Resource Manager calls the SVC Handler in order to complete this function. A
return code other than QSVCgood from the SVC Handler is returned to the caller.
SVC Handler return codes are in the form 0x8001xxxx . The possible SVC Handler
return codes for this call, along with their low order 16 bits, are listed below.

QSVCduplnam-(0x0001) SVC Handler detected duplicate SVT name.

QSVCdeadSVid-(0x000C)
the ClaimID field in the parameter list is non-zero and
specifies the SVid of a task that is being removed from
the system.

 Chapter 24. Creating System Resources 24-17

 CPCreateSerSemAcc

Syntax -

#include "cpqlib.h"

long int CPCreateSerSemAcc(ID,Mode,Name,Access,ClaimID,SVid)

unsigned long int ID;

unsigned long int Mode;

 char Name[8];

unsigned long int Access;

unsigned long int ClaimID;

unsigned long int \SVid;

 ID - Process ID to which the serialization semaphore will

belong (depends on Mode).

Mode - Determines creator process, access restrictions

and initial semaphore state (see below).

Name - Near pointer to 8 character name.

Access - ð means no access restrictions enforced.

If either flags QRMcrtprocrd or QRMcrttaskrd are set in

the Mode field, then possible values for this field

are an SVid or process ID to which access is to be

 restricted.

ClaimID - Has meaning only if QRMcrtclaimed is set in Mode value.

ð means create as claimed by the caller.

Task SVid means create as claimed by that task.

SVid - Variable in which the serialization semaphore's

SVid is returned.

 Usage Notes
This function creates a semaphore for serializing access to common data or other
resources, attached to the creator process specified by the ID value and the Mode
parameter. This type of semaphore is called a serialization semaphore. The
CPCreateSerSemAcc function differs slightly from the CPCreateSerSem function
in that more options are exposed to the caller, particularly, options dealing with
ownership and access of the semaphore. The caller must have privilege to attach
objects to the creator process, that is, that caller can act on its own process, its
own effective process, or any descendant of the caller.

The Mode parameter determines:

� The creator process that owns the semaphore
� The access restrictions for the semaphore

Mode values to determine the creator process include:

QRMproctask Use process of caller
QRMprocefftask Use effective process of caller
QRMprocsvcid Use process to which the SVT entry specified in ID belongs
QRMprocid Use process whose process ID is in ID

24-18 Application Programming Reference

Mode values to determine the access restrictions upon the semaphore include:

QRMcrtnamed Create semaphore as named.
QRMcrtremv Create semaphore as removable.
QRMcrtsuperrd Set if access to semaphore is restricted to supervisor mode

code.
QRMcrtprocrd Set if access to semaphore is restricted to the process

whose process ID is in Access.
QRMcrttaskrd Set if read access to semaphore is restricted to the task

whose SVid is in Access.
QRMcrtclaimed Create semaphore claimed by the task SVid provided in the

ClaimID argument. If ClaimID is zero when this flag is set,
the semaphore is created claimed by the calling task.

QRMcrtnotclaimed Create semaphore “not claimed” (free).

If neither QRMcrtclaimed nor QRMnotclaimed is specified in the Mode parameter at
the time of the call, the serialization semaphore is created “not claimed.”

The serialization semaphore can exist in one of two states: “claimed” by a task, or
“not claimed” (that is, free). The following CP/Q system calls can manipulate and
query the state of a serialization semaphore:

 � CPSemClaim
 � CPSemQuery
 � CPSemRelease

Function descriptions for the above CP/Q system calls can be found in the
"Resource/Serialization Semaphore Operations" chapter of Application
Programming Library Volume 1: Application Programming Reference.

The serialization semaphore can be created “pre-claimed” by a task by providing
the task's SVid in the ClaimID argument. If the ClaimID field is zero, the
serialization semaphore is created “not claimed.”

Serialization semaphores can be named or unnamed and can have access
restrictions based on process or privilege level.

If the serialization semaphore is to be created as non-removable, the creator
process to which the serialization semaphore is to be attached must also be
non-removable.

 Implementation Notes
None.

 Return Codes
The Resource Manager provides a return code on all calls. A success return code
(QRMgood) has a value of 0; all other Resource Manager return codes are in the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed.

QRMnosvt-(0x0002) No free SVTs in system pool.

QRMsvtmax-(0x0008) Creator process has maximum SVT allocation.

 Chapter 24. Creating System Resources 24-19

QRMbadname-(0x000D) Duplicate name, the name contains invalid characters, or
the object is named but the name is all blank.

QRMbadproc-(0x000E) Creator process is not valid.

QRMbadsvt-(0x000F) SVid specified is not valid, or SVid is not the SVid of a
task.

QRMprocremv-(0x0012) The caller's effective process is being removed.
Request was denied.

QRMbadprocacc-(0x0016)
Accessing process is not valid.

QRMillegal-(0x0019) Caller cannot create objects in the specified process, or
caller does not have the authority to establish the
designated task as a semaphore owner.

QRMforcedremv-(0x0023)
Function completed successfully, but resource created
was forced to be removable.

QRMprocfork-(0x002C) The caller's effective process is performing a process
fork operation. Request was denied, try again later.

QRMprocexec-(0x002D) The caller's effective process is performing a program
exec operation. Request was denied, try again later.

QRMprocproc-(0x002E) The caller's effective process is performing a process
create operation. Request was denied, try again later.

QRMproccreat-(0x002F) The caller's effective process is itself being created.
Request was denied, try again later.

The Resource Manager calls the Memory Manager in order to complete this
function. A return code other than QMsuccess from the Memory Manager is
returned to the caller. Memory Manager return codes are in the form 0x8002xxxx .
The possible Memory Manager return codes for this call, along with their low order
16 bits, are listed below.

QMbad_offset-(0x0001) Parameter list is not valid.

The Resource Manager calls the SVC Handler in order to complete this function. A
return code other than QSVCgood from the SVC Handler is returned to the caller.
SVC Handler return codes are in the form 0x8001xxxx . The possible SVC Handler
return codes for this call, along with their low order 16 bits, are listed below.

QSVCduplnam-(0x0001) SVC Handler detected duplicate SVT name.

QSVCdeadSVid-(0x000C)
the ClaimID field in the parameter list is non-zero and
specifies the SVid of a task that is being removed from
the system.

24-20 Application Programming Reference

 CPCreateSyncSem

Syntax -

#include "cpqlib.h"

long int CPCreateSyncSem(Name,Access,State,SVid)

 Name[8];

unsigned long int Access;

unisgned long int State;

unsigned long int \SVid;

Name - near pointer to 8 character name.

Access - ð means no access restrictions enforced.

ProcID means only that process has access.

State - state of the semaphore upon creation.

ð means create as set.

�ð means create as cleared by the calling task.

SVid - variable in which the synchronization semaphore's

SVid is returned.

 Usage Notes
This function creates a semaphore for synchronizing an event. This type of
semaphore is called a synchronization semaphore. The synchronization
semaphore is attached to the caller's effective process.

Synchronization semaphores allow tasks to wait for a single event to occur. Once
this event has occurred, all the tasks waiting on the semaphore are made
dispatchable.

The synchronization semaphore can exist in one of two states: “set” (that is, not
clear) by a task, or “clear.” The following CP/Q system calls can manipulate the
state of a synchronization semaphore:

 � CPSemClear
 � CPSemSet
 � CPSemSetWait
 � CPSemWait

Function descriptions for the above CP/Q system calls can be found in the
"Synchronization Semaphore Operations" chapter of Application Programming
Library Volume 1: Application Programming Reference.

The semaphore can be created “pre-cleared by the caller” by setting the State field
to a non-zero value. A zero value in the State field requests the synchronization
semaphore be created “set” upon creation.

 Chapter 24. Creating System Resources 24-21

 Implementation Notes
None.

 Return Codes
The Resource Manager provides a return code on all calls. A success return code
(QRMgood) has a value of 0; all other Resource Manager return codes are in the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed.

QRMnosvt-(0x0002) No free SVTs in system pool.

QRMsvtmax-(0x0008) Creator process has maximum SVT allocation.

QRMbadname-(0x000D) Duplicate name, the name contains invalid characters, or
the object is named but the name is all blank.

QRMbadproc-(0x000E) Creator process is not valid.

QRMbadsvt-(0x000F) SVid in parameter list is not valid, or SVid is not the
SVid of a task.

QRMprocremv-(0x0012) The caller's effective process is being removed.
Request was denied.

QRMbadprocacc-(0x0016)
Accessing process is not valid.

QRMillegal-(0x0019) Caller cannot create objects in the specified process, or
caller does not have the authority to establish the
designated task as a semaphore owner.

QRMforcedremv-(0x0023)
Function completed successfully, but resource created
was forced to be removable.

QRMprocfork-(0x002C) The caller's effective process is performing a process
fork operation. Request was denied, try again later.

QRMprocexec-(0x002D) The caller's effective process is performing a program
exec operation. Request was denied, try again later.

QRMprocproc-(0x002E) The caller's effective process is performing a process
create operation. Request was denied, try again later.

QRMproccreat-(0x002F) The caller's effective process is itself being created.
Request was denied, try again later.

The Resource Manager calls the Memory Manager in order to complete this
function. A return code other than QMsuccess from the Memory Manager is
returned to the caller. Memory Manager return codes are in the form 0x8002xxxx .
The possible Memory Manager return codes for this call, along with their low order
16 bits, are listed below.

QMbad_offset-(0x0001) Parameter list is not valid.

The Resource Manager calls the SVC Handler in order to complete this function. A
return code other than QSVCgood from the SVC Handler is returned to the caller.

24-22 Application Programming Reference

SVC Handler return codes are in the form 0x8001xxxx . The possible SVC Handler
return codes for this call, along with their low order 16 bits, are listed below.

QSVCduplnam-(0x0001) SVC Handler detected duplicate SVT name.

 Chapter 24. Creating System Resources 24-23

 CPCreateSyncSemAcc

Syntax -

#include "cpqlib.h"

long int CPCreateSyncSemAcc(ID,Mode,Name,Access,SVid)

unsigned long int ID;

unsigned long int Mode;

 Name[8];

unsigned long int Access;

unsigned long int \SVid;

 ID - Process ID to which the synchronization semaphore will

belong (depends on Mode).

Mode - Determines creator process and access restrictions

 (see below).

Name - Near pointer to 8 character name.

Access - ð means no access restrictions enforced.

ProcID means only that process has access.

SVid - Variable in which the synchronization semaphore's

SVid is returned.

 Usage Notes
This function creates a semaphore for synchronizing an event, attached to the
creator process specified by the ID value and the Mode parameter. This type of
semaphore is called a synchronization semaphore. The CPCreateSyncSemAcc
function differs slightly from the CPCreateSyncSem function in that more options
are exposed to the caller, particularly, options dealing with ownership and access of
the synchronization semaphore. The caller of this function must have privilege to
attach objects to the creator process, that is, that caller can act on his own process,
his own effective process, or any descendant of the caller. The Mode parameter
determines:

� The creator process that owns the semaphore.
� The access restrictions for the semaphore.

Mode values to determine the creator process include:

QRMproctask Use process of caller
QRMprocefftask Use effective process of caller
QRMprocsvcid Use process to which the SVT entry specified in ID belongs
QRMprocid Use process whose process ID is in ID

Mode values to determine the access restrictions upon the semaphore include:

QRMcrtnamed Create semaphore as named.
QRMcrtremv Create semaphore as removable.
QRMcrtsuperrd Set if access to semaphore is restricted to supervisor mode

code.
QRMcrtprocrd Set if access to semaphore is restricted to the process

whose process ID is in Access.

24-24 Application Programming Reference

QRMcrttaskrd Set if read access to semaphore is restricted to the task
whose SVid is in Access.

QRMcrtset Create synchronization semaphore as set.
QRMcrtclear Create synchorization semaphore as cleared by the calling

task.

Synchronization semaphores allow tasks to wait for a single event to occur. Once
this event has occurred all the tasks waiting on the semaphore are made
dispatchable.

The synchronization semaphore can exist in one of two states: “set” (that is, not
clear) by a task, or “clear.” The following CP/Q system calls can manipulate the
state of a synchronization semaphore:

 � CPSemClear
 � CPSemSet
 � CPSemSetWait
 � CPSemWait

Function descriptions for the above CP/Q system calls can be found in the
"Synchronization Semaphore Operations" chapter of Application Programming
Library Volume 1: Application Programming Reference.

The semaphore can be created (pre-cleared by the caller) by setting the
QRMcrtclear flag in the Mode field. The semaphore can be created “set” (that is,
not clear) by setting the QRMcrtset flag in the Mode field. If neither QRMcrtclear
nor QRMcrtset is specified at the time of the call, the synchronization semaphore is
created as “cleared” by the calling task.

Synchronization semaphores can be named or unnamed and can have access
restrictions based on process or privilege level.

If the synchronization semaphore is to be created as non-removable, the creator
process to which the semaphore is to be attached must also be non-removable.

 Implementation Notes
None.

 Return Codes
The Resource Manager provides a return code on all calls. A success return code
(QRMgood) has a value of 0; all other Resource Manager return codes are in the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed.

QRMnosvt-(0x0002) No free SVTs in system pool.

QRMsvtmax-(0x0008) Creator process has maximum SVT allocation.

QRMbadname-(0x000D) Duplicate name, the name contains invalid characters, or
the object is named but the name is all blank.

QRMbadproc-(0x000E) Creator process is not valid.

QRMbadsvt-(0x000F) SVid in parameter list is not valid, or SVid is not the
SVid of a task.

 Chapter 24. Creating System Resources 24-25

QRMprocremv-(0x0012) The caller's effective process is being removed.
Request was denied.

QRMbadprocacc-(0x0016)
Accessing process is not valid.

QRMillegal-(0x0019) Caller cannot create objects in the specified process, or
caller does not have the authority to establish the
designated task as a semaphore owner.

QRMforcedremv-(0x0023)
Function completed successfully, but resource created
was forced to be removable.

QRMprocfork-(0x002C) The caller's effective process is performing a process
fork operation. Request was denied, try again later.

QRMprocexec-(0x002D) The caller's effective process is performing a program
exec operation. Request was denied, try again later.

QRMprocproc-(0x002E) The caller's effective process is performing a process
create operation. Request was denied, try again later.

QRMproccreat-(0x002F) The caller's effective process is itself being created.
Request was denied, try again later.

The Resource Manager calls the Memory Manager in order to complete this
function. A return code other than QMsuccess from the Memory Manager is
returned to the caller. Memory Manager return codes are in the form 0x8002xxxx .
The possible Memory Manager return codes for this call, along with their low order
16 bits, are listed below.

QMbad_offset-(0x0001) Parameter list is not valid.

The Resource Manager calls the SVC Handler in order to complete this function. A
return code other than QSVCgood from the SVC Handler is returned to the caller.
SVC Handler return codes are in the form 0x8001xxxx . The possible SVC Handler
return codes for this call, along with their low order 16 bits, are listed below.

QSVCduplnam-(0x0001) SVC Handler detected duplicate SVT name.

24-26 Application Programming Reference

 CPCreateTask

Syntax -

#include "cpqlib.h"

long int CPCreateTask(Name,RdAccess,WrAccess,Priv,

 FaultID,Priority,Preempt,SVid);

 char Name[8];

unsigned long int RdAccess;

unsigned long int WrAccess;

unsigned long int Priv;

unsigned long int FaultID;

unsigned long int Priority;

unsigned long int Preempt;

unsigned long int \SVid;

Name - near pointer to 8 character name.

RdAccess - ð means no access restrictions enforced.

ProcID means only that process has read access to the message queue.

WrAccess - ð means no access restrictions enforced.

ProcID means only that process has write access to the message queue.

Priv - Privilege field for the created task (see below).

FaultID - ð means use the fault handler of the caller's effective process.

Task SVid means use that task as the fault handler.

Priority - Offset to be added to the base priority.

Preempt - ð means preemptable.

1 means non-preemptable within priority level.

SVid - Variable in which the task's SVid is returned.

 Usage Notes
This function is used to add a new task to the caller's effective process. The
dispatch status of the new task is always “stopped, not initialized”; CPPTrace ,
Action = QSVC_write_regs, must be used to set up the task's registers and then
CPGoTask must be used to begin execution.

Note: One way to read a program file into a new task is to use the CP/Q Loader
function LDLoadMod , in which case the task registers are setup by the CP/Q
Loader. The CP/Q Loader must be built into the system in order to use the
LDLoadMod call.

The Priv parameter specifies the privilege or privileges to be given to the created
task. The caller of this function must have at least the same set of task privileges
as specified in this call. This means a task cannot be created with more privilege
than the creator task. Priv values include:

QRMtsksupv Created task is to be a supervisor task.
QRMtsksystem Created task is to have “system” privilege.
QRMtskeffprc Created task is allowed to change its effective process.
QRMtskfault Created task is allowed to issue CPFaultTask calls.
QRMtskstopgo Created task is allowed to issue CPGoTask and

CPStopTask calls.

 Chapter 24. Creating System Resources 24-27

If the resource limits for TCBs, SVTs or Timer blocks are exceeded, or if the
system pool of control blocks is exhausted, the function fails.

For explanation concerning resource provider processing during task creation, see
SPL Volume 5: Resource Manager, "Resource Manager Tracking Notification
Messages" chapter.

 Implementation Notes
This create function differs from others in that the created object is not necessarily
usable without further processing. If the returned SVid is nonzero, the caller has
obtained a TCB.

The task cannot be run until the registers have been set up by calling the SVC
Handler.

 Return Codes
The Resource Manager provides a return code on all calls. A success return code
(QRMgood) has a value of 0; all other Resource Manager return codes are in the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed.

QRMnotimer-(0x0004) No timer blocks available for task creation.

QRMsvtmax-(0x0008) Creator process has maximum SVT allocation.

QRMtcbmax-(0x0009) Creator process has maximum TCB allocation.

QRMbadname-(0x000D) Duplicate name, the name contains invalid characters, or
the object is named but the name is all blank.

QRMbadproc-(0x000E) Creator process is not valid.

QRMbadsvt-(0x000F) SVid in parameter list is not valid, or SVid is not the
SVid of a task.

QRMprocremv-(0x0012) The caller's effective process is being removed.
Request was denied.

QRMbadprocacc-(0x0016)
Accessing process is not valid.

QRMillegal-(0x0019) Caller does not have the privilege to create tasks from
the designated creator process.

QRMbadopt-(0x001A) Tasks do not have sufficient privilege (stop, fault) or min,
max, privilege is not valid, priority, or preempt.

QRMforcedremv-(0x0023)
Function completed successfully, but resource created
was forced to be removable.

QRMnosupvstk-(0x002A) No supervisor mode stack available for task creation.

QRMprocfork-(0x002C) The caller's effective process is performing a process
fork operation. Request was denied, try again later.

QRMprocexec-(0x002D) The caller's effective process is performing a program
exec operation. Request was denied, try again later.

24-28 Application Programming Reference

QRMprocproc-(0x002E) The caller's effective process is performing a process
create operation. Request was denied, try again later.

QRMproccreat-(0x002F) The caller's effective process is itself being created.
Request was denied, try again later.

The Resource Manager calls the Memory Manager in order to complete this
function. A return code other than QMsuccess from the Memory Manager is
returned to the caller. Memory Manager return codes are in the form 0x8002xxxx .
The possible Memory Manager return codes for this call, along with their low order
16 bits, are listed below.

QMbad_offset-(0x0001) Parameter list is not valid.

The Resource Manager calls the SVC Handler in order to complete this function. A
return code other than QSVCgood from the SVC Handler is returned to the caller.
SVC Handler return codes are in the form 0x8001xxxx . The possible SVC Handler
return codes for this call, along with their low order 16 bits, are listed below.

QSVCduplnam-(0x0001) SVC Handler detected duplicate SVT name.

 Chapter 24. Creating System Resources 24-29

 CPCreateTaskAcc

Syntax -

#include "cpqlib.h"

long int CPCreateTaskAcc(ID,Mode,Name,RdAccess,WrAccess,

 Priv,FaultID,Priority,Preempt,SVid);

unsigned long int ID;

unsigned long int Mode;

 char Name[8];

unsigned long int RdAccess;

unsigned long int WrAccess;

unsigned long int Priv;

unsigned long int FaultID;

unsigned long int Priority;

unsigned long int Preempt;

unsigned long int \SVid;

 ID - process ID to which the newly created task will belong (see Mode).

Mode - determines creator process and access restrictions

 (see below).

Name - near pointer to 8 character name.

RdAccess - ð means no access restrictions enforced.

ProcID means only that process has read access to the message queue.

WrAccess - ð means no access restrictions enforced.

ProcID means only that process has write access to the message queue.

Priv - Privilege flags, see below.

FaultID - ð means use the fault handler of the caller's effective process.

Task SVid means use that task as the fault handler.

Priority - Offset to be added to the base priority.

Preempt - QRMpreempt means preemptable.

QRMnopreempt means non-preemptable within priority level.

SVid - Variable in which the task's SVid is returned.

 Usage Notes
This function is used to add a new task to the creator process specified by the ID
value and the Mode parameter. The CPCreateTaskAcc function differs slightly
from the CPCreateTask function in that more options are exposed to the caller,
particularly, options dealing with ownership and access of the created task. The
caller must have privilege to attach objects to the creator process, that is, that caller
can act on his own process, his own effective process, or any descendant of the
caller.

The Mode parameter determines:

� The creator process that owns the created task
� The access restrictions for the created task

Mode values to determine the creator process include:

QRMproctask Use process of caller.
QRMprocefftask Use effective process of caller.
QRMprocsvcid Use process to which the SVT entry specified in ID belongs.

24-30 Application Programming Reference

QRMprocid Use process whose process ID is in ID.

Mode values to determine the access restrictions upon the task include:

QRMcrtnamed Create task as named.
QRMcrtremv Create task as removable.
QRMcrtsuperrd Set if read access to task is restricted to supervisor mode

code.
QRMcrtprocrd Set if read access to task is restricted to the process whose

process ID is in RdAccess.
QRMcrttaskrd Set if read access to task is restricted to the task whose SVid

is in RdAccess.
QRMcrtsuperwr Set if write access to task is restricted to supervisor mode

code.
QRMcrtprocwr Set if write access to task is restricted to the process whose

process ID is in WrAccess.
QRMcrttaskwr Set if write access to task is restricted to the task whose

SVid is in WrAccess.

The dispatch status of the new task is always “stopped, not initialized”; CPPTrace ,
Action = QSVC_write_regs, must be used to set up the task's registers and then
CPGoTask must be used to begin execution.

Note: One way to read a program file into a new task is to use the CP/Q Loader
function LDLoadMod , in which case the task registers are setup by the CP/Q
Loader. The CP/Q Loader must be built into the system in order to use the
LDLoadMod call.

The Priv value is defined as follows:

QRMtsksupv Created task is to be a supervisor task.
QRMtsksystem Created task is to have “system” privilege.
QRMtskeffprc Created task is allowed to change its effective process.
QRMtskfault Created task is allowed to issue CPFaultTask calls.
QRMtskstopgo Created task is allowed to issue CPGoTask and

CPStopTask calls.

Tasks can be named or unnamed, and can have access restrictions based on
process or privilege level.

If the task is to be created as non-removable, the creator process to which the task
is to be attached must also be non-removable.

If the resource limits for TCBs, SVTs or Timer blocks are exceeded, or if the
system pool of control blocks is exhausted, the function fails.

 Implementation Notes
None.

 Return Codes
The Resource Manager provides a return code on all calls. A success return code
(QRMgood) has a value of 0; all other Resource Manager return codes are in the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed.

 Chapter 24. Creating System Resources 24-31

QRMnotimer-(0x0004) No timer blocks available for task creation.

QRMsvtmax-(0x0008) Creator process has maximum SVT allocation.

QRMtcbmax-(0x0009) Creator process has maximum TCB allocation.

QRMbadname-(0x000D) Duplicate name, the name contains invalid characters, or
the object is named but the name is all blank.

QRMbadproc-(0x000E) Creator process is not valid.

QRMbadsvt-(0x000F) SVid in parameter list is not valid, or SVid is not the
SVid of a task.

QRMprocremv-(0x0012) The caller's effective process is being removed.
Request was denied.

QRMbadprocacc-(0x0016)
Accessing process is not valid.

QRMillegal-(0x0019) Caller does not have the privilege to create tasks from
the designated creator process.

QRMbadopt-(0x001A) Tasks do not have sufficient privilege (stop, fault) or min,
max, privilege is not valid, priority, or preempt.

QRMforcedremv-(0x0023)
Function completed successfully, but resource created
was forced to be removable.

QRMnosupvstk-(0x002A) No supervisor mode stack available for task creation.

QRMprocfork-(0x002C) The caller's effective process is performing a process
fork operation. Request was denied, try again later.

QRMprocexec-(0x002D) The caller's effective process is performing a program
exec operation. Request was denied, try again later.

QRMprocproc-(0x002E) The caller's effective process is performing a process
create operation. Request was denied, try again later.

QRMproccreat-(0x002F) The caller's effective process is itself being created.
Request was denied, try again later.

The Resource Manager calls the Memory Manager in order to complete this
function. A return code other than QMsuccess from the Memory Manager is
returned to the caller. Memory Manager return codes are in the form 0x8002xxxx .
The possible Memory Manager return codes for this call, along with their low order
16 bits, are listed below.

QMbad_offset-(0x0001) Parameter list is not valid.

The Resource Manager calls the SVC Handler in order to complete this function. A
return code other than QSVCgood from the SVC Handler is returned to the caller.
SVC Handler return codes are in the form 0x8001xxxx . The possible SVC Handler
return codes for this call, along with their low order 16 bits, are listed below.

QSVCduplnam-(0x0001) SVC Handler detected duplicate SVT name.

24-32 Application Programming Reference

 CPCreateTimerBlock

Syntax -

#include "cpqlib.h"

long int CPCreateTimerBlock(TimerID)

unsigned long int \TimerID;

TimerID - variable in which the Timer ID is returned.

 Usage Notes
This function creates a timer block for the calling task, which is used for
CPTimerSet and CPTimerCancel calls.

The process owning the calling task will be charged for the timer block resource.

 Implementation Notes
None.

 Return Codes
The Resource Manager provides a return code on all calls. A success return code
(QRMgood) has a value of 0; all other Resource Manager return codes are in the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed.

QRMnotimer-(0x0004) No free timer blocks.

QRMtimermax-(0x000A) The process owning the calling task has maximum timer
block allocation.

QRMprocremv-(0x0012) The caller's effective process is being removed.
Request was denied.

QRMprocfork-(0x002C) The caller's effective process is performing a process
fork operation. Request was denied, try again later.

QRMprocexec-(0x002D) The caller's effective process is performing a program
exec operation. Request was denied, try again later.

QRMprocproc-(0x002E) The caller's effective process is performing a process
create operation. Request was denied, try again later.

QRMproccreat-(0x002F) The caller's effective process is itself being created.
Request was denied, try again later.

The Resource Manager calls the Memory Manager in order to complete this
function. A return code other than QMsuccess from the Memory Manager is
returned to the caller. Memory Manager return codes are in the form 0x8002xxxx .

 Chapter 24. Creating System Resources 24-33

The possible Memory Manager return codes for this call, along with their low order
16 bits, are listed below.

QMbad_offset-(0x0001) Parameter list is not valid.

The Resource Manager calls the SVC Handler in order to complete this function. A
return code other than QSVCgood from the SVC Handler is returned to the caller.
SVC Handler return codes are in the form 0x8001xxxx . The possible SVC Handler
return codes for this call, along with their low order 16 bits, are listed below.

QSVCnotimers-(0x0028) No free timer blocks available.

24-34 Application Programming Reference

 CPCreateTimerBlockAcc

Syntax -

#include "cpqlib.h"

long int CPCreateTimerBlockAcc(SVid,Mode,TimerID)

unsigned long int SVid;

unsigned long int Mode;

unsigned long int \TimerID;

SVid - SVid of the task to which the timer block will

belong (depends on Mode).

Mode - determines creator task (see below).

TimerID - variable in which the Timer ID is returned.

 Usage Notes
This function creates a timer block for the calling task, which is used for
CPTimerSet and CPTimerCancel calls. The timer block is attached to the creator
task specified by the SVid value and the Mode parameter. The
CPCreateTimerBlockAcc function differs slightly from the CPCreateTimerBlock
function in that more options are exposed to the caller, particularly, options dealing
with ownership of the timer block. The caller must have privilege to attach objects
to the creator process, that is, that caller can act on his own process, his own
effective process, or any descendant of the caller.

The Mode parameter determines:

� The creator task that owns the timer block.

Mode values to determine the creator task include:

QRMproctask Use task of caller.
QRMprocsvcid Use task to which the SVT entry specified in ID belongs.

The process owning the creator task is charged for the timer block resource.

 Implementation Notes
None.

 Return Codes
The Resource Manager provides a return code on all calls. A success return code
(QRMgood) has a value of 0; all other Resource Manager return codes are in the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed.

QRMnotimer-(0x0004) No free timer blocks.

 Chapter 24. Creating System Resources 24-35

QRMtimermax-(0x000A) The process owning the calling task has maximum timer
block allocation.

QRMprocremv-(0x0012) The caller's effective process is being removed.
Request was denied.

QRMprocfork-(0x002C) The caller's effective process is performing a process
fork operation. Request was denied, try again later.

QRMprocexec-(0x002D) The caller's effective process is performing a program
exec operation. Request was denied, try again later.

QRMprocproc-(0x002E) The caller's effective process is performing a process
create operation. Request was denied, try again later.

QRMproccreat-(0x002F) The caller's effective process is itself being created.
Request was denied, try again later.

The Resource Manager calls the Memory Manager in order to complete this
function. A return code other than QMsuccess from the Memory Manager is
returned to the caller. Memory Manager return codes are in the form 0x8002xxxx .
The possible Memory Manager return codes for this call, along with their low order
16 bits, are listed below.

QMbad_offset-(0x0001) Parameter list is not valid.

The Resource Manager calls the SVC Handler in order to complete this function. A
return code other than QSVCgood from the SVC Handler is returned to the caller.
SVC Handler return codes are in the form 0x8001xxxx . The possible SVC Handler
return codes for this call, along with their low order 16 bits, are listed below.

QSVCnotimers-(0x0028) No free timer blocks available.

24-36 Application Programming Reference

 CPCreateUItem

Syntax -

#include "cpqlib.h"

long int CPCreateUItem(Name,RdAccess,WrAccess,SVid);

 char Name[8];

unsigned long int RdAccess;

unsigned long int WrAccess;

unsigned long int \SVid;

Name - near pointer to 8 character name.

RdAccess - ð means no access restrictions enforced.

ProcID means only that process has read access.

WrAccess - ð means no access restrictions enforced.

ProcID means only that process has write access.

SVid - variable in which the user item's SVid is returned.

 Usage Notes
This function creates a user-defined SVT item, attached to the caller's effective
process.

 Implementation Notes
None.

 Return Codes
The Resource Manager provides a return code on all calls. A success return code
(QRMgood) has a value of 0; all other Resource Manager return codes are in the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed.

QRMnosvt-(0x0002) No free SVTs.

QRMsvtmax-(0x0008) Caller's effective process has maximum SVT allocation.

QRMbadname-(0x000D) Duplicate name, the name contains invalid characters, or
the object is named but the name is all blank.

QRMprocremv-(0x0012) The caller's effective process is being removed.
Request was denied.

QRMforcedremv-(0x0023)
Function completed successfully, but resource created
was forced to be removable.

QRMprocfork-(0x002C) The caller's effective process is performing a process
fork operation. Request was denied, try again later.

QRMprocexec-(0x002D) The caller's effective process is performing a program
exec operation. Request was denied, try again later.

 Chapter 24. Creating System Resources 24-37

QRMprocproc-(0x002E) The caller's effective process is performing a process
create operation. Request was denied, try again later.

QRMproccreat-(0x002F) The caller's effective process is itself being created.
Request was denied, try again later.

The Resource Manager calls the Memory Manager in order to complete this
function. A return code other than QMsuccess from the Memory Manager is
returned to the caller. Memory Manager return codes are in the form 0x8002xxxx .
The possible Memory Manager return codes for this call, along with their low order
16 bits, are listed below.

QMbad_offset-(0x0001) Parameter list is not valid.

The Resource Manager calls the SVC Handler in order to complete this function. A
return code other than QSVCgood from the SVC Handler is returned to the caller.
SVC Handler return codes are in the form 0x8001xxxx . The possible SVC Handler
return codes for this call, along with their low order 16 bits, are listed below.

QSVCduplnam-(0x0001) Non-null name specified which is not unique.

24-38 Application Programming Reference

 CPCreateUItemAcc

Syntax -

#include "cpqlib.h"

long int CPCreateUItemAcc(ID,Mode,Name,RdAccess,WrAccess,SVid);

unsigned long int ID;

unsigned long int Mode;

 char Name[8];

unsigned long int RdAccess;

unsigned long int WrAccess;

unsigned long int \SVid;

 ID - process ID to which the user-defined SVT item

will belong (depends on Mode).

Mode - determines creator process and access restrictions

 (see below).

Name - near pointer to 8 character name.

RdAccess - ð means no access restrictions enforced.

ProcID means only that process has read access.

WrAccess - ð means no access restrictions enforced.

ProcID means only that process has write access.

SVid - variable in which the user item's SVid is returned.

 Usage Notes
This function creates a user-defined SVT item, attached to the creator process
specified by the ID value and the Mode parameter. The CPCreateUItemAcc
function differs slightly from the CPCreateUItem function in that more options are
exposed to the caller, particularly, options dealing with ownership and access of the
user-defined SVT item. The caller must have privilege to attach objects to the
creator process, that is, that caller can act on his own process, his own effective
process, or any descendant of the caller.

The Mode parameter determines:

� The creator process that owns the SVT item
� The access restrictions for the SVT item

Mode values to determine the creator process include:

QRMproctask Use process of caller.
QRMprocefftask Use effective process of caller.
QRMprocsvcid Use process to which the SVT entry specified in ID belongs.
QRMprocid Use process whose process ID is in ID.

Mode values to determine the access restrictions upon the SVT item include:

QRMcrtnamed Create SVT item as named.
QRMcrtremv Create SVT item as removable.
QRMcrtsuperrd Set if read access to SVT item is restricted to supervisor

mode code.

 Chapter 24. Creating System Resources 24-39

QRMcrtprocrd Set if read access to SVT item is restricted to the process
whose process ID is in RdAccess.

QRMcrttaskrd Set if read access to SVT item is restricted to the task whose
SVid is in RdAccess.

QRMcrtsuperwr Set if write access to SVT item is restricted to supervisor
mode code.

QRMcrtprocwr Set if write access to SVT item is restricted to the process
whose process ID is in WrAccess.

QRMcrttaskwr Set if write access to SVT item is restricted to the task whose
SVid is in WrAccess.

User-defined SVT items can be named or unnamed and can have access
restrictions based on process or privilege level.

If the SVT item is to be created as non-removable, the creator process to which the
SVT item is to be attached must also be non-removable.

Calls to read from and write to the user-defined SVT item are provided by the SVC
Handler.

 Implementation Notes
None.

 Return Codes
The Resource Manager provides a return code on all calls. A success return code
(QRMgood) has a value of 0; all other Resource Manager return codes are in the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed.

QRMnosvt-(0x0002) No free SVTs.

QRMsvtmax-(0x0008) Caller's effective process has maximum SVT allocation.

QRMbadname-(0x000D) Duplicate name, the name contains invalid characters, or
the object is named but the name is all blank.

QRMprocremv-(0x0012) The caller's effective process is being removed.
Request was denied.

QRMforcedremv-(0x0023)
Function completed successfully, but resource created
was forced to be removable.

QRMprocfork-(0x002C) The caller's effective process is performing a process
fork operation. Request was denied, try again later.

QRMprocexec-(0x002D) The caller's effective process is performing a program
exec operation. Request was denied, try again later.

QRMprocproc-(0x002E) The caller's effective process is performing a process
create operation. Request was denied, try again later.

QRMproccreat-(0x002F) The caller's effective process is itself being created.
Request was denied, try again later.

The Resource Manager calls the Memory Manager in order to complete this
function. A return code other than QMsuccess from the Memory Manager is

24-40 Application Programming Reference

returned to the caller. Memory Manager return codes are in the form 0x8002xxxx .
The possible Memory Manager return codes for this call, along with their low order
16 bits, are listed below.

QMbad_offset-(0x0001) Parameter list is not valid.

The Resource Manager calls the SVC Handler in order to complete this function. A
return code other than QSVCgood from the SVC Handler is returned to the caller.
SVC Handler return codes are in the form 0x8001xxxx . The possible SVC Handler
return codes for this call, along with their low order 16 bits, are listed below.

QSVCduplnam-(0x0001) Non-null name specified which is not unique.

 Chapter 24. Creating System Resources 24-41

 CPCreateUserInt

Syntax -

#include "cpqlib.h"

long int CPCreateUserInt(Offset,Func)

 void \Offset;

unsigned long int \Func;

Offset - The address of the function routine in global memory

that is to be the kernel extension.

Func - The specification for the function code to be used

for this user-defined kernel extension routine.

The variable Func may be specified in one of two

ways when calling CPCreateUserInt:

Func = ð on the call requests that the Resource Manager

assign the function code to be used, and

returns the assigned function code in the

 variable Func.

Func � ð on the call means that the caller is specifying

the desired function code to be used.

The value must be in the range QRMukernstart

to QRMukernend (constants contained within

include file QRM_CNST.H).

 Usage Notes
This function installs a user-defined installable kernel extension routine, attached to
the caller's effective process. The system extension routine is accessible via INT
7Bh assembler instruction, using the assigned function code as returned by this
call.

Specifying Func = 0 (asking the Resource Manager to assign the function code) is
the preferred usage when calling CPCreateUserInt , for reasons of flexibility.
However, if the other method is used, wherein the caller specifies the desired
function code, the caller should start requesting numbers from the top of the
function code range (specified by the macro QRMukernend defined within the
include file QRM_CNST.H) in order to avoid conflicts with function code numbers
already assigned by the Resource Manager.

The function routine provided to the call may be a C or assembler function routine.
Information about the stack structure passed into the function is provided under
“Implementation Notes” on page 24-43.

The rules for a user defined interrupt routine are as follows:

� It must have a register interface (unless carefully coded to extract parameters
off the stack).

� The function code to enter the interrupt 7Bh must be in AH.

� The return code must be passed back in EAX.

24-42 Application Programming Reference

The value of Offset must be the address of a function located in the global memory
class, meaning that the system extension code to be installed must be created in
global memory so that all tasks have access to the system extension.

If a task calls an user-defined SVC function code that is not valid, the caller is
faulted.

 Implementation Notes
The user-defined installable kernel extension is intended to allow users to extend
the capability of the kernel with their own customized SVC functions. A
user-defined kernel extension (also called a user-defined SVC) has access to the
kernel data areas and system control blocks because it is installed as another
kernel service. A user-defined SVC can be dynamically installed by calling either
the Resource Manager CPCreateUserInt() or CPCreateUserIntAcc() functions.
Conversely, a existing user-defined SVC can be removed be calling the Resource
Manager CPDeleteUserInt() function. A user-defined SVC can also be dynamically
removed if the creator process owning the user-defined SVC is removed by a call
to the Resource Manager CPDeleteProc() function.

Details about the function code range, stack layout, and return code sequence for
user-defined installable kernel extensions are implementation defined as described
below:

 INTEL implementation
User-defined installable kernel extensions have a register interface with the function
code in AH. The SVCs to these extensions are made by using an INT X'7B'
instruction, a different numbered interrupt than is used by the SVC Handler,
Memory Manager, and Resource Manager (which use INT X'7A') so that there
exists a completely separate set of function codes. There is also a near CALL
entry point available for kernel extension SVCs.

Near CALL Kernel Extension SVCs: The near CALL takes the caller to the SVC
Handler entry code. This pushes onto the stack all the registers, and then CALLs
according to the function code in the AH register. This implies that the code for the
SVC need not worry about saving any of the registers.

Thus when the routine for the kernel extension is entered, the stack is as shown in
Figure 24-1 on page 24-44:

It is assumed that every routine that implements a kernel extension SVC, called by
the above sequence, is written as a function (presumably in C), which returns a
value (the return code) in the EAX register. When each of these routines returns
(to the SVC Handler), the registers saved on the stack are restored, with the
exception of the saved EAX value which is discarded. The SVC Handler then
returns to the caller.

INT 7B Kernel Extension SVCs: The INT instruction causes the flags, EIP and
CS registers to be placed on the stack. As for SVC Handler entry by an INT
X'7A', the return from the SVC Handler is in this case by an IRETD instruction.
Hence, the code for the INT entry pushes the address of an IRETD instruction onto
the stack, and then drops through to the code for the near CALL (the IRETD for
INT X'7A' is also used for INT X'7B'). Having pushed the address of the IRETD,
the INT SVC proceeds exactly as for the near CALL. The near RET instruction (to

 Chapter 24. Creating System Resources 24-43

 │ │

 ├─────────────────────┤

│ SVC call link │

 ├─────────────────────┤

│ flags │

 ├─────────────────────┤

│ EAX │

 ├─────────────────────┤

│ EBX │

 ├─────────────────────┤

│ ECX │

 ├─────────────────────┤

│ EDX │

 ├─────────────────────┤

│ EBP │

 ├─────────────────────┤

│ ESI │

 ├─────────────────────┤

│ EDI │

 ├─────────────────────┤

│function routine link│

 ESP──5├─────────────────────┤

 │ │

Figure 24-1. Stack Format for Near CALL Kernel Extension SVC

return to the caller for a near CALL SVC) jumps to the IRETD instruction, which in
turn returns to the caller.

Thus for an INT kernel extension SVC, when the routine to implement it is entered,
the stack is as shown in Figure 24-2 on page 24-45: The “old SS” and “old ESP”
fields are present if and only if a privilege level transition occurred when the SVC
was executed.

Warning:

1. The INT 7B function handler cannot change items in this stack frame above the
first set of flags up from the bottom, that is the EIP, CS, flags, old ESP and old
SS fields.

2. The INT 7B function handler cannot make nested or recursive SVCs, or there is
a possibility of overrunning the end of the PL0 stack of a PL3 task.

Again, it is assumed that every routine to implement a kernel extension SVC,
called by the above sequence, is written as a function (presumably in C), that
returns a value (the return code) in the EAX register.

In certain cases, the kernel extension code for the SVC function needs to know the
type of SVC entry (INT 7B or Near CALL), possibly for validation purposes by
privilege level. This can be readily determined by looking at the stack frame. If the
near CALL link on the stack is not the address of the IRETD instruction (this
address is saved in the NDA, so the kernel extension code can determine what it
is), then the SVC entry was by near CALL, and the caller is in supervisor mode.
Otherwise, the SVC was by an INT instruction; in this case, the EIP and CS fields
are present on the stack. If the least significant 2 bits of the CS field are both 1,
then the caller is user mode (and the old SS and old ESP fields are also present);
otherwise the caller is supervisor mode.

This information is also covered in the Systems Programming Library Volume 3:
SVC Handler manual in the "CP/Q Kernel Supervisor Calls" chapter.

24-44 Application Programming Reference

 │ │

 ├─────────────────────┤

 │ old SS │

 ├─────────────────────┤

 │ old ESP │

 ├─────────────────────┤

│ flags │

 ├─────────────────────┤

 │ CS │

 ├─────────────────────┤

│ EIP │

 ├─────────────────────┤

│ address of IRETD │

 ├─────────────────────┤

│ flags │

 ├─────────────────────┤

│ EAX │

 ├─────────────────────┤

│ EBX │

 ├─────────────────────┤

│ ECX │

 ├─────────────────────┤

│ EDX │

 ├─────────────────────┤

│ EBP │

 ├─────────────────────┤

│ ESI │

 ├─────────────────────┤

│ EDI │

 ├─────────────────────┤

│function routine link│

 ESP──5├─────────────────────┤

 │ │

Figure 24-2. Stack Format for INT Kernel Extension SVC

 Return Codes
The Resource Manager provides a return code on all calls. A success return code
(QRMgood) has a value of 0; all other Resource Manager return codes are in the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed.

QRMprocremv-(0x0012) The caller's effective process is being removed.
Request was denied.

QRMbadopt-(0x001A) The function code specified was not within the range of
allowable function codes.

QRMnofunc-(0x0024) No more function codes available.

QRMnotglobal-(0x0025) The value of Offset was not located in global memory.

QRMdupfunc-(0x0028) Function code specified in call is already in use by
another function.

QRMprocfork-(0x002C) The caller's effective process is performing a process
fork operation. Request was denied, try again later.

QRMprocexec-(0x002D) The caller's effective process is performing a program
exec operation. Request was denied, try again later.

QRMprocproc-(0x002E) The caller's effective process is performing a process
create operation. Request was denied, try again later.

QRMproccreat-(0x002F) The caller's effective process is itself being created.
Request was denied, try again later.

 Chapter 24. Creating System Resources 24-45

 CPCreateUserIntAcc

Syntax -

#include "cpqlib.h"

long int CPCreateUserIntAcc(ID,Mode,Offset,Func)

unsigned long int ID;

unsigned long int Mode;

 void \Offset;

unsigned long int \Func;

 ID - Process ID to which the kernel extension will belong

(depends on Mode).

Mode - Determines creator process (see below).

Offset - The address of the function routine in global memory

that is to be the kernel extension.

Func - The specification for the function code to be used

for this user-defined kernel extension routine.

The variable Func may be specified in one of two

ways when calling CPCreateUserIntAcc:

Func = ð on the call requests that the Resource Manager

assign the function code to be used, and

returns the assigned function code in the

 variable Func.

Func � ð on the call means that the caller is specifying

the desired function code to be used.

The value must be in the range

QRMukernstart to QRMukernend (constants

contained within include file QRM_CNST.H).

 Usage Notes
This function installs a user-defined installable kernel extension routine, attached to
the creator process specified by the ID value and the Mode parameter. The
CPCreateUserIntAcc function differs slightly from the CPCreateUserInt function in
that more options are exposed to the caller, particularly, options dealing with
ownership of the kernel extension. The caller must have privilege to attach objects
to the creator process, that is, that caller can act on his own process, his own
effective process, or any descendant of the caller.

The Mode parameter determines:

� The creator process that owns the kernel extension.

Mode values to determine the creator process include:

QRMproctask Use process of caller.
QRMprocefftask Use effective process of caller.
QRMprocsvcid Use process to which the SVT entry specified in ID belongs.
QRMprocid Use process whose process ID is in ID.

24-46 Application Programming Reference

The user interrupt routine is accessible via INT 7Bh assembler instruction, using the
assigned function code as returned by this call.

Specifying Func = 0 (asking the Resource Manager to assign the function code) is
the preferred usage when calling CPCreateUserInt , for reasons of flexibility.
However, if the other method is used, wherein the caller specifies the desired
function code, the caller should start requesting numbers from the top of the
function code range (specified by the macro QRMukernend defined within the
include file QRM_CNST.H) in order to avoid conflicts with function code numbers
already assigned by the Resource Manager.

The function routine provided to the call may be a C or assembler function routine.
Information about the stack structure passed into the function is provided under
“Implementation Notes” on page 24-43.

The rules for a user defined interrupt routine are as follows:

� It must have a register interface (unless carefully coded to extract parameters
off the stack).

� The function code to enter the interrupt 7Bh must be in AH.

� The return code must be passed back in EAX.

The value of Offset must be the address of a function located in the global memory
class, meaning that the system extension code to be installed must be created in
global memory so that all tasks have access to the system extension.

If a task calls an user-defined SVC function code that is not valid, the caller is
faulted.

 Implementation Notes
See “Implementation Notes” on page 24-43 for implementation information on
user-installable kernel extensions.

 Return Codes
The Resource Manager provides a return code on all calls. A success return code
(QRMgood) has a value of 0; all other Resource Manager return codes are in the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed.

QRMprocremv-(0x0012) The caller's effective process is being removed.
Request was denied.

QRMbadopt-(0x001A) The function code specified was not within the range of
allowable function codes.

QRMnofunc-(0x0024) No more function codes available.

QRMnotglobal-(0x0025) The value of Offset was not located in global memory.

QRMdupfunc-(0x0028) Function code specified in call is already in use by
another function.

QRMprocfork-(0x002C) The caller's effective process is performing a process
fork operation. Request was denied, try again later.

 Chapter 24. Creating System Resources 24-47

QRMprocexec-(0x002D) The caller's effective process is performing a program
exec operation. Request was denied, try again later.

QRMprocproc-(0x002E) The caller's effective process is performing a process
create operation. Request was denied, try again later.

QRMproccreat-(0x002F) The caller's effective process is itself being created.
Request was denied, try again later.

24-48 Application Programming Reference

 CPFork

Syntax -

#include "cpqlib.h"

long int CPFork(SVid)

unsigned long int \SVid;

SVid - variable in which the created task's SVid is returned.

 Usage Notes
The CPFork system call creates a new process which is essentially a clone of the
caller's process. In the case of a process with multiple tasks, only the task issuing
the fork process call is cloned.

The new process created is a child of the process issuing the fork process call.
Effective process settings are ignored.

Upon successful completion, both the calling task return from the CPFork call with
a zero return code, and the SVid parameter set to the SVid of the created child
task. The created child task returns with the return code QRMforkchild. The return
code from CPFork distinguishes the caller from the created task.

The created child process inherits the following attribute from it's parent process:

� Address Space - the child gets the entire address space of the parent.
However, a few points that must be noted:

1. Ownership - All objects in the child process are owned by the child process
regardless of the objects ownership in the parent process.

2. Aliases - The memory object gets duplicated, but it is no longer an alias.
This means it is marked an original object and is not linked on any alias
chain. A physical copy is made.

3. fixed objects - These are duplicated, but the object is not fixed in the child
process. A physical copy must be made, as COW cannot be used, since
we cannot detect if I/O changes the original instance of the object. Note:
fixed objects are a potential problem as the real addresses of the original
object are known as a result of the fix call. These are no longer valid for
the child' copy.

4. Common Objects - Shared objects continue to be shared. This means the
child process is added to the pool of players sharing the object. Copy
objects are copied as per the method specified when they were created.

5. Copy on Write - COW is used wherever possible to perform the copying
even for private objects.

A number of the points above are required in order to enable the child process
to terminate and be removed. It also enables the program exec function to
remove unneeded memory objects.

� Environment - Child task inherits a copy of the caller's environment variables,
heap, signal mask, signal stack state, and session ID.

 Chapter 24. Creating System Resources 24-49

� File descriptors - Child inherits a copy of the parent's open file descriptors, but
they share a common file pointer for each file. This includes any session
manager ones (assuming the CP/Q File System and CP/Q Session Manager
are present in the system).

� Current Directory (assuming the CP/Q File System is present in the system).

� Root Directory - For current drive (assuming the CP/Q File System is present in
the system).

 Implementation Notes
A process and task are created for use by the clone. Upon entry to the CPFork
call, the Resource Manager stops all tasks in the same process as the calling task
so that tasks in the caller's process cannot alter memory while fork processing is
going on. The process being forked has its PCB status field set to “process
undergoing fork”

The Resource Manager creates the child process, setting the process status field of
the created child process to “process is being created” The Resource Manager then
calls the Memory Manager to create a new address space for the PCB. Upon
successful completion, the Resource Manager creates a task in the created
process and then call the Memory Manager once again to copy the contents of the
caller's address space into the address space of the newly created process.

If no errors have occurred up to this point, the Resource Manager task commences
asynchronous processing by resource providers who have registered for
Notifications of Fork for the calling process. The RM task sends messages to
resource providers to allow them to duplicate/share/inherit things as needed.

If all RPs complete successfully, RM will write the registers for the created task and
then start the created child task. The PCB status fields of both the process
containing the calling task and created process are set to “normal” The Resource
Manager task sends out one-way notifications of process birth and task birth for the
created process to SVids that have been registered for Notifications of Process
Birth for the creator process and Notifications of Task Birth for the created child
process.

If any resource provider fails, then process termination messages is sent for the
created child process to all resource providers so they can “un-do” the fork; the
Memory Manager would then be notified to remove the process' address space,
and the Resource Manager would remove the created child task and process. The
process status field of the process containing the calling task would be restored to
“normal”

For explanation concerning resource provider processing during process fork, see
SPL Volume 5: Resource Manager, "Resource Manager Tracking Notification
Messages" chapter.

 Return Codes
The Resource Manager provides a return code on all calls. A success return code
(QRMgood) has a value of 0; all other Resource Manager return codes are in the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed.

24-50 Application Programming Reference

QRMnopcb-(0x0001) Number of free PCBs is insufficient.

QRMnosvt-(0x0002) Number of free SVTs is insufficient.

QRMnotcb-(0x0003) Number of free TCBs is insufficient.

QRMnotimer-(0x0004) Number of timer blocks is insufficient.

QRMpcbmax-(0x0007) Creator process has maximum PCB allocation.

QRMsvtmax-(0x0008) Creator process has maximum SVT allocation.

QRMtcbmax-(0x0009) Creator process has maximum TCB allocation.

QRMforkchild-(0x000B) Child task returning from CPFork call. This return code
differentiates the parent task from the child task upon
return from CPFork .

QRMbadname-(0x000D) Duplicate name, the name contains invalid characters, or
the object is named but the name is all blank.

QRMbadproc-(0x000E) Creator process is not valid, or process is being
removed.

QRMinvalid-(0x0010) A process creation was attempted whereby the newly
created process was to be a resource provider.
However, the creator process is not a resource provider.

QRMprocremv-(0x0012) Request was denied, creator process is being removed.

QRMillegal-(0x0019) Caller does not have the privilege to create tasks from
the designated creator process.

QRMnosupvstk-(0x002A) No supervisor (PL0) mode stack available for task
creation.

QRMprocfork-(0x002C) Request was denied, creator process is already
undergoing process fork. Try again later.

QRMprocexec-(0x002D) Request was denied, creator process is undergoing
program exec. Try again later.

QRMprocproc-(0x002E) Request was denied, creator process is undergoing
process creation. Try again later.

QRMproccreat-(0x002F) Request was denied, process is being created. Try
again later.

The Resource Manager calls the Memory Manager in order to complete this
function. A return code other than QMsuccess from the Memory Manager is
returned to the caller. Memory Manager return codes are in the form 0x8002xxxx .
The possible Memory Manager return codes for this call, along with their low order
16 bits, are listed below.

QMno_page-(0x0012) Insufficient real storage available to create the required
page directory and page tables for the new process.

QMwrap_count-(0x0021) A common memory object is being replicated and there
are already 255 process sharing this object.

 Chapter 24. Creating System Resources 24-51

Resource Manager Generated Faults
It is possible that the Resource Manager can fault the caller during processing of
this call. If this occurs, the return code is transmitted to the caller's fault handler as
a result of the Resource Manager issuing a CPFaultTask call. The cause or
causes of the fault are listed below along with the error codes.

QRMxnopriv-(0x0081) The caller with no limit on one of more resource
maximums attempted to fork his process and did not
have “SYSTEM” privilege.

24-52 Application Programming Reference

Chapter 25. Removing System Resources

The functions described in this chapter allow the removal of system-defined
resources. The functions are:

� CPDelete - removes a system object (task, semaphore, queue, and so on)

� CPDeleteProc - removes a process

� CPDeleteTimer - removes a timer block

� CPDeleteUserInt - removes a user-installable kernel extension

When performing calls asynchronously,the Resource Manager inserts the unique ID
of the message requesting the removal into the message type field of the reply
message. This allows the requestor to identify the reply message if the requestor
is processing removals asynchronously.

Function prototypes are listed in cpqlib.h. Constant definition macros are defined in
the file qrm_cnst.h.

 Copyright IBM Corp. 1989-1994, 1996-1998 25-1

 CPDelete

Syntax -

#include "cpqlib.h"

long int CPDelete(SVid,msg_idAddr)

unsigned long int SVid;

unsigned long int \msg_idAddr;

SVid - SVid of the object to delete.

msg_idAddr - ð means do the function synchronously.

Nonzero means do the function asynchronously,

and specifies the address of a variable in which

a msg_id is returned. See discussion below.

 Usage Notes
This function is used to delete system objects such as tasks, message queues,
semaphores, and user-defined SVT items. The SVT entries for these items must
have the “removable” value set otherwise this request fails. Also, the process to
which the object being removed belongs must be the caller's process or effective
process or a descendant of the caller's process. There are other restrictions based
on what type of object is being removed.

The second argument to the function specifies whether the function is to be
performed synchronously or asynchronously. When zero is specified as the second
argument, the function does not return to the caller until it receives a response from
the Resource Manager. When an address is specified as the second argument,
the function returns immediately to the caller, without waiting for a response from
the Resource Manager. For this asynchronous operation, the caller should then
use the returned msg_id value in conjunction with a CPRecvMsg call to handle the
eventual response from the Resource Manager.

 Implementation Notes
When performing this call asynchronously, the Resource Manager inserts the
unique ID of the message sent to the Resource Manager into the message type
field of the reply message sent to the requestor. This allows the requestor to
identify the reply message if the requestor is processing replies asynchronously.

 Return Codes
The Resource Manager provides a return code on all calls. A success return code
QRMgood has the value 0; all other Resource Manager return codes are of the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below. 16 bits, are listed below.

QRMgood Function completed.

QRMbadsvt-(0x000F) The SVid in the parameter list is not valid.

QRMtwice-(0x0011) A request to delete the object has already been received
and is pending.

25-2 Application Programming Reference

QRMprocremv-(0x0012) The process containing the object is being removed.
Request was denied.

QRMbadlength-(0x0015) Parameter list too short.

QRMillegal-(0x0019) The requestor does not have the authority to remove this
object.

QRMbusy-(0x001E) The object to be removed is a task which is a faulter or
is being debugged.

QRMprocfork-(0x002C) The process containing the object is performing a
process fork operation. Request was denied, try again
later.

QRMprocexec-(0x002D) The process containing the object is performing a
program exec operation. Request was denied, try again
later.

QRMprocproc-(0x002E) The process containing the object is performing a
process create operation. Request was denied, try
again later.

QRMproccreat-(0x002F) The process containing the object is itself being created.
Request was denied, try again later.

 Chapter 25. Removing System Resources 25-3

 CPDeleteProc

Syntax -

#include "cpqlib.h"

long int CPDeleteProc(ProcID,Flags,msg_idAddr)

unsigned long int ProcID;

unsigned long int Flags;

unsigned long int \msg_idAddr;

ProcID - Determines the process to be deleted,

depending on the value in the Flags

 field.

Flags - Flags field (see below).

msg_idAddr - ð means do the function synchronously.

Nonzero means do the function asynchronously,

and specifies the address of a variable in which

a msg_id is returned. See discussion below.

 Usage Notes
This function is used to delete a process from the system. It causes recovery
processing to be initiated in the Resource Manager. The ProcID parameter
indicates the process to remove depending on the value in the Flags parameter.

The Flags parameter determines:

� The process to be removed
� Process removal options

One or more of the Flags options might be set. Constant definition macros for
Flags are defined in the include file qrm_cnst.h. The Flags field is defined as
follows:

Process removal options:

QRMdel_pending Set if process removal is to be pending. If the Resource
Manager cannot remove the process right away for some
reason (most likely, if there currently exist children
processes), then the process is marked as “pending process
removal” and QRMpending is returned to the caller by setting
this option. At the point when all child processes have been
removed, then process removal can continue. A second
return code is not issued to the caller when the process
pending removal is eventually removed. If this option is not
set, the Resource Manager returns an error to the caller if
the process to be removed has child processes.

The process to remove:

QRMproctask Use process of caller
QRMprocefftask Use effective process of caller
QRMprocsvcid Use process to which the SVT entry specified in ID belongs.

25-4 Application Programming Reference

QRMprocid Use process whose process ID is in ID

The third argument to the function specifies whether the function is to be performed
synchronously or asynchronously. When zero is specified as the second argument,
the function does not return to the caller until it receives a response from the
Resource Manager. When an address is specified as the second argument, the
function returns immediately to the caller, without waiting for a response from the
Resource Manager. For this asynchronous operation, the caller should then use
the returned msg_id value in conjunction with a CPRecvMsg call to handle the
eventual response from the Resource Manager.

See SPL Volume 5: Resource Manager Tracking Notification Messages for a
detailed description of the processing performed during recovery and how to
register to be notified when a process is being removed.

 Implementation Notes
When performing this call asynchronously, the Resource Manager inserts the
unique ID of the message sent to the Resource Manager into the message type
field of the reply message sent to the requestor. This allows the requestor to
identify the reply message if the requestor is processing replies asynchronously.

 Return Codes
The Resource Manager provides a return code on all calls. A success return code
QRMgood has the value 0; all other Resource Manager return codes are of the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed.

QRMbadproc-(0x000E) Specified processis not valid.

QRMinvalid-(0x0010) The process is not removable. For example, the
QRMdel_pending bit was not set, and the target
process to be removed had child processes.

QRMprocremv-(0x0012) A request to remove the process has already been
received and is pending.

QRMillegal-(0x0019) The requestor does not have the authority to remove this
process.

QRMfailure-(0x001C) A resource provider did not affirm removal of the
process.

QRMnomsg-(0x0021) Internal messaging failure, and no RQE was available for
a tracking notification or message to a pending queue.

QRMprocfork-(0x002C) :287
The process to be deleted is performing a process fork
operation. Request was denied, try again later.

QRMprocexec-(0x002D) The process to be deleted is performing a program exec
operation. Request was denied, try again later.

QRMprocproc-(0x002E) The process to be deleted is performing a process
create operation. Request was denied, try again later.

QRMproccreat-(0x002F) The process to be deleted is itself being created.
Request was denied, try again later.

 Chapter 25. Removing System Resources 25-5

QRMpending-(0x0030) The process has been marked “removal pending”. The
process is removed by the Resource Manager (when it
is safe to do so).

25-6 Application Programming Reference

 CPDeleteTimer

Syntax -

long int CPDeleteTimer(TimerID,msg_idAddr)

unsigned long int TimerID;

unsigned long int \msg_idAddr;

TimerID - Timer ID of the timer block to delete.

msg_idAddr - ð means do the function synchronously.

Nonzero means do the function asynchronously,

and specifies the address of a variable in which

a msg_id is returned. See discussion below.

 Usage Notes
This function is used to delete a timer block from the current task. The process
that owns the task has its “timer in use” field decremented by one.

This function need not to be used in order to remove all allocated timer blocks from
a task that is being removed. The Application Library function CPDelete deletes all
allocated timer blocks when deleting a task.

The second argument to the function specifies whether the function is to be
performed synchronously or asynchronously. When zero is specified as the second
argument, the function does not return to the caller until it receives a response from
the Resource Manager. When an address is specified as the second argument,
the function returns immediately to the caller without waiting for a response from
the Resource Manager. For this asynchronous operation, the caller should then
use the returned msg_id value in conjunction with a CPRecvMsg call to handle the
eventual response from the Resource Manager.

 Implementation Notes
When performing this call asynchronously, the Resource Manager inserts the
unique ID of the message sent to the Resource Manager into the message type
field of the reply message sent to the requestor. This allows the requestor to
identify the reply message if the requestor is processing replies asynchronously.

 Return Codes
The Resource Manager provides a return code on all calls. A success return code
QRMgood has the value 0; all other Resource Manager return codes are of the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed.

QRMtwice-(0x0011) A request to delete the object has already been received
and is pending.

QRMprocremv-(0x0012) The process containing the timer block is being
removed. Request was denied.

QRMbadlength-(0x0015) Parameter list too short.

 Chapter 25. Removing System Resources 25-7

QRMnomsg-(0x0021) Internal messaging failure, no RQE was available for a
tracking notification or message to a pending queue.

QRMbadtimer-(0x0026) The TimerID specified is not valid or does not belong to
the current task.

QRMprocfork-(0x002C) The process containing the timer block is performing a
process fork operation. Request was denied, try again
later.

QRMprocexec-(0x002D) The process containing the timer block is performing a
program exec operation. Request was denied, try again
later.

QRMprocproc-(0x002E) The process containing the timer block is performing a
process create operation. Request was denied, try
again later.

QRMproccreat-(0x002F) The process containing the timer block is itself being
created. Request was denied, try again later.

25-8 Application Programming Reference

 CPDeleteUserInt

Syntax -

long int CPDeleteUserInt(Func,msg_idAddr)

unsigned long int Func;

unsigned long int \msg_idAddr;

Func - Function code of the user defined interrupt

routine to delete.

msg_idAddr - ð means do the function synchronously.

Nonzero means do the function asynchronously,

and specifies the address of a variable in which

a msg_id is returned. See discussion below.

 Usage Notes
This function removes a user-defined interrupt routine (also called user-defined
SVC) that was created by a call to CPCreateUserInt() or CPCreateUserIntAcc().
The user-defined interrupt routine being removed must be in the caller's process or
effective process, or be a descendant of the caller's process.

The parameter Func specifies the user-defined SVC function code to remove. After
this function code is removed, any tasks making calls to the user-defined SVC with
this function code are faulted.

The second argument to the function specifies whether the function is to be
performed synchronously or asynchronously. When zero is specified as the second
argument, the function does not return to the caller until it receives a response from
the Resource Manager. When an address is specified as the second argument,
the function returns immediately to the caller, without waiting for a response from
the Resource Manager. For this asynchronous operation, the caller should then
use the returned msg_id value in conjunction with a CPRecvMsg call to handle the
eventual response from the Resource Manager.

 Implementation Notes
When performing this call asynchronously, the Resource Manager inserts the
unique ID of the message sent to the Resource Manager into the message type
field of the reply message sent to the requestor. This allows the requestor to
identify the reply message if the requestor is processing replies asynchronously.

 Return Codes
The Resource Manager provides a return code on all calls. A success return code
QRMgood has the value 0; all other Resource Manager return codes are of the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed.

QRMprocremv-(0x0012) The process containing the user-defined interrupt routine
is being removed. Request was denied.

QRMbadlength-(0x0015) Parameter list too short.

 Chapter 25. Removing System Resources 25-9

QRMillegal-(0x0019) The requestor does not have the authority to remove this
object.

QRMnomsg-(0x0021) Internal messaging failure, no RQE was available for a
tracking notification or message to a pending queue.

QRMbadukern-(0x0027) Specified function code is not valid.

QRMprocfork-(0x002C) The process containing the user-defined interrupt routine
is performing a process fork operation. Request was
denied, try again later.

QRMprocexec-(0x002D) The process containing the user-defined interrupt routine
is performing a program exec operation. Request was
denied, try again later.

QRMprocproc-(0x002E) The process containing the user-defined interrupt routine
is performing a process create operation. Request was
denied, try again later.

QRMproccreat-(0x002F) The process containing the user-defined interrupt routine
is itself being created. Request was denied, try again
later.

25-10 Application Programming Reference

 Chapter 26. Resource Tracking

The functions described in this chapter allow the caller to register interest in
processes and to receive notification from the Resource Manager when particular
events occur within a process. Such events include:

 � Process birth
 � Process creation
 � Process fork
 � Process removal
 � Process death
 � Program exec
 � Task birth

These functions include:

� CPTrkCancel - This function cancels a tracking request previously made by
calling CPTrkTrkRequest .

� CPTrkCancelAll - This function cancels a tracking request previously made by
calling CPTrkTrkRequestAll .

� CPTrkRequest - This function requests notification when a particular event or
set of events occur within a particular process.

� CPTrkRequestAll - This function requests notification when a particular event
or set of events occur within any process in the system.

Function prototypes are listed in cpqlib.h. Structure definitions for applicable query
functions are listed in qrm_trk.h. Constant definition macros are defined in the file
qrm_cnst.h.

These functions are generally used by special processes called “resource
providers,” which supply a service to client processes and need to know when a
client disappears in order that they can clean up. The entire procedure is termed
“resource tracking.”

 Copyright IBM Corp. 1989-1994, 1996-1998 26-1

 CPTrkCancel

Syntax -

#include "cpqlib.h"

#include "qrm_cnst.h"

long int CPTrkCancel(ID,SVid,Flags)

unsigned long int ID;

unsigned long int SVid;

unsigned long int Flags;

ID - ID of the process being tracked via a call to

 CPTrkRequest.

SVid - ID of the task or message queue (previously specified on a call

to CPTrkRequest) which was to receive the notification.

Flags - Flags field (see below)

 Usage Notes
This function is used to undo one or more previous CPTrkRequest calls, for the
event types selected. This function cancels a request for notification (to the
specified task or message queue SVid), when a particular event or set of events
occurs within the specified process.

The Flags field defines which event type or types to cancel tracking for.

One or more of the Flags options might be set. Constant definition macros for
Flags are defined in the include file qrm_cnst.h. The Flags field is defined as
follows:

Which event type or types to cancel tracking for:

QRMtrkprocrmv Cancel notification of process removal of process ProcID.
QRMtrkprocdeath Cancel notification of process death of process ProcID.
QRMtrkproccreat Cancel notification of process creation of process ProcID.
QRMtrkprocbirth Cancel notification of process birth of process ProcID.
QRMtrkprocfork Cancel notification of process fork of process ProcID.
QRMtrktaskbirth Cancel notification of task birth in process ProcID.
QRMtrkexec Cancel notification of program exec in process ProcID.
QRMtrkcanall Cancel all notification types for all processes that were being

tracked by calls to CPTrkRequest that specified this particular
SVid.

Note: ProcID is ignored when this option is set.

The cancellation is for a particular ProcID and SVid pair, unless QRMtrkcanall is set
within the Flags parameter. QRMtrkcanall specifies cancellation not only for all
event types, but also for all previous calls to CPTrkRequest that used SVid.

Note: Requests for notification by process are discarded by the Resource
Manager as part of process removal, so that this function should only be used to
notify the Resource Manager that the caller is no longer interested in an existing
process or processes.

26-2 Application Programming Reference

 Implementation Notes
None.

 Return codes
The Resource Manager provides a return code on all calls. A success return code
QRMgood has the value 0; all other Resource Manager return codes are of the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed

QRMbadproc-(0x000E) Specified ProcID is not valid or ProcID is the caller's
process

QRMbadsvt-(0x000F) Specified SVid is not valid or SVid is not in the caller's
process

QRMnotfound-(0x0017) Previous request not found

 Chapter 26. Resource Tracking 26-3

 CPTrkCancelAll

Syntax -

#include "cpqlib.h"

#include "qrm_cnst.h"

long int CPTrkCancelAll(SVid,Flags)

unsigned long int SVid;

unsigned long int Flags;

SVid - ID of the task or message queue (previously specified on a call

to CPTrkRequestAll) which was to receive the notification.

Flags - Flags field (see below)

 Usage Notes
This function is used to undo all or a part of a previous CPTrkRequestAll call that
specified the same SVid. This function cancels a request for notification (to the
specified task or message queue SVid), when a particular event or set of events
occurs within any process in the system.

The Flags field defines which event type or types to cancel tracking for. One or
more of the Flags options can be set. Constant definition macros for Flags are
defined in the include file qrm_cnst.h. The Flags field is defined as follows:

QRMtrkprocrmv Cancel notification of process removals to SVid.
QRMtrkprocdeath Cancel notification of process deaths to SVid.
QRMtrkproccreat Cancel notification of process creations to SVid.
QRMtrkprocbirth Cancel notification of process births to SVid.
QRMtrkprocfork Cancel notification of process forks to SVid.
QRMtrktaskbirth Cancel notification of task births to SVid.
QRMtrkexec Cancel notification of program execs to SVid.
QRMtrkcanall Cancel all notification types for all processes that were being

tracked by calls to CPTrkRequestAll that specified this
particular SVid.

If QRMtrkcanallis set, it expands the cancellation to include all the event types,
effectively cancelling all of the effects of corresponding previous calls to
CPTrkCancelAll that used SVid.

 Implementation Notes
None.

 Return codes
The Resource Manager provides a return code on all calls. A success return code
QRMgood has the value 0; all other Resource Manager return codes are of the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed.

26-4 Application Programming Reference

QRMbadsvt-(0x000F) Specified SVid not valid, or SVid is not in the caller's
process.

QRMnotfound-(0x0017) Previous request not found.

 Chapter 26. Resource Tracking 26-5

 CPTrkRequest

Syntax -

#include "cpqlib.h"

#include "qrm_cnst.h"

long int CPTrkRequest(ID,SVid,Data1,Data2,Flags)

unsigned long int ID;

unsigned long int SVid;

unsigned long int Data1;

unsigned long int Data2;

unsigned long int Flags;

ID - ID of the process being tracked.

SVid - ID of the task or message queue which

is to receive the notification.

Data1 - User data word; returned in process tracking

 notification message.

Data2 - User data word; returned in process tracking

 notification message.

Flags - Flags field (see below)

 Usage Notes
This function requests that the specified SVid (a task or message queue) be sent a
message by the Resource Manager when a particular event occurs for a specified
process, ProcID. Such events include process birth, process creation, process fork,
process removal, process death, program exec, or task birth.

The Flags field defines which event type or types to track.

One or more of the Flags options can be set. Constant definition macros for Flags
are defined in the include file qrm_cnst.h. The Flags field is defined as follows:

Which event type or types to track:

QRMtrkprocrmv Request notification of process removal of process ProcID.
QRMtrkprocdeath Request notification of process death of process ProcID.
QRMtrkproccreat Request notification of process creation of process ProcID.
QRMtrkprocbirth Request notification of process birth of process ProcID.
QRMtrkprocfork Request notification of process fork of process ProcID.
QRMtrktaskbirth Request notification of task birth in process ProcID.
QRMtrkexec Request notification of program exec in process ProcID.

The calling process must have resource provider privilege in order to issue
requests for notification of the following events called two-way notifications:

 � Process removal
 � Process creation
 � Process fork
 � Program exec

26-6 Application Programming Reference

Also, for these two-way event notifications, the calling process must reply to any
notification message that it receives before the event in progress can continue.
The process being tracked cannot be the caller's process when requesting two-way
notifications.

The remaining system events (task birth, process birth, and process death) are
one-way notifications that do not require resource provider privilege and should not
be replied to. The process being tracked can be the caller's process when
requesting one-way notifications only.

If a previous request has been received for the same process/SVid combination,
the new request replaces the old.

 Implementation Notes
None.

 Return codes
The Resource Manager provides a return code on all calls. A success return code
QRMgood has the value 0; all other Resource Manager return codes are of the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed.

QRMbadproc-(0x000E) Specified ProcID is not valid, or a two-way notification
was requested for the caller's process.

QRMbadsvt-(0x000F) Specified SVid not valid, or SVid is not in the caller's
process.

QRMinvalid-(0x0010) Notification requested, but caller's process is not a
resource provider.

QRMnonrb-(0x001F) No free NRBs.

QRMglobalnrb-(0x0022) A global request for the same SVid (to be notified)
already exists.

 Chapter 26. Resource Tracking 26-7

 CPTrkRequestAll

Syntax -

#include "cpqlib.h"

#include "qrm_cnst.h"

long int CPTrkRequestAll (unsigned long int SVid,

unsigned long int Data1,

unsigned long int Data2,

unsigned long int Flags)

SVid - ID of the task or message queue which

is to receive the notification.

Data1 - User data word; returned in process tracking

 notification message.

Data2 - User data word; returned in process tracking

 notification message.

Flags - Flags field (see below)

 Usage Notes
This function requests that the specified SVid (either a task or message queue) be
sent a message by the Resource Manager when a particular event occurs for any
process in the system. Such events include program:

 � Exec
 � Process birth
 � Process creation
 � Process fork
 � Process removal
 � Process death
 � Task birth

The Flags field defines which event type or types to track. One or more of the
Flags options can be set. Constant definition macros for Flags are defined in the
include file qrm_cnst.h. The Flags field is defined as follows:

QRMtrkprocrmv Request notification of all process removals.
QRMtrkprocdeath Request notification of all process deaths.
QRMtrkproccreat Request notification of all process creations.
QRMtrkprocbirth Request notification of all process births.
QRMtrkprocfork Request notification of all process forks.
QRMtrktaskbirth Request notification of all task births.
QRMtrkexec Request notification of all program execs.

The calling process must have resource provider privilege in order to issue
requests for notification of the following events called two-way notifications:

 � Process removal
 � Process creation
 � Process fork
 � Program exec

26-8 Application Programming Reference

Also, for these two-way event notifications, the calling process must reply to any
notification message that it receives before the event in progress can continue.
The process being tracked cannot be the caller's process when requesting two-way
notifications.

The remaining system events (task birth, process birth, and process death) are
called one-way notifications that do not require resource provider privilege and
should not be replied to. The process being tracked can be the caller's process
when requesting one-way notifications only.

If a previous request has been received for the same SVid, the new request
replaces the old.

 Implementation Notes
None.

 Return codes
The Resource Manager provides a return code on all calls. A success return code
QRMgood has the value 0; all other Resource Manager return codes are of the
form 0x8003xxxx . The possible Resource Manager return codes for this call, along
with their low order 16 bits, are listed below.

QRMgood Function completed.

QRMbadsvt-(0x000F) Specified SVid is not valid or SVid is not in the caller's
process.

QRMinvalid-(0x0010) Notification requested, but caller's process is not a
resource provider.

QRMnonrb-(0x001F) No free NRBs.

 Chapter 26. Resource Tracking 26-9

26-10 Application Programming Reference

Appendices and Glossary

 Copyright IBM Corp. 1989-1994, 1996-1998

Application Programming Reference

Appendix A. CP/Q SVC Handler Summary

 SVC Functions
The following table is a list of all SVC Handler requests. In this table, “SVC” is the
symbolic name of the SVC; “constant name” is the name of the program constant
that defines the value to be placed in the AH register for that request. Programs
should never code in the value of these constants (they should use the names),
since it is quite possible that these values may be changed.

Each request is described in detail in the previous sections of this manual.

Table A-1 (Page 1 of 3). SVC Handler Function Codes

SVC name Routine name Constant
name

Description

SVC_SVC CPSVC - - Issue any SVC Handler SVC (not needed
on POWER architecture, not an SVC)

DISP_RET CPYield QSVCDSPRT 0 Yield processor (return to dispatcher), do
not suspend

DISP_RET2 CPShortYield QSVCDSPRT2 1 Yield processor (return to dispatcher), do
not suspend

INT_WAIT CPIntWait QSVCIWAIT 2 Wait for a hardware interrupt
MUX_WAIT CPMuxWait QSVCMUXWT 3 Wait on a list of semaphores/queues
- - - 4 Not used
SEM_WAIT CPSemWait QSVCSEMWT 5 Wait for a synchronization semaphore to

clear
SEM_CLEAR CPSemClear QSVCSEMCLR 6 Clear a synchronization semaphore
SEM_SET CPSemSet QSVCSEMSET 7 Set a synchronization semaphore
SEM_SETWAIT CPSemSetWait QSVCSEMSTWT 8 Set a synchronization semaphore, wait for

it to clear
- - - 9 Not used
SEND_MESG CPSendMsg QSVCSEND 10 Send a message to another task or to a

queue
SPLIT_SEND CPSplitMsg QSVCSPLIT 11 Send a message with a “split” buffer area

to another task or to a queue
RECV_MESG CPRecvMsg QSVCRECV 12 Receive a message from a queue
SPLIT_RECV CPSplitRecv QSVCRCVSPLT 13 Receive a message from a queue, using a

“split” buffer.
PEEK_MESG CPPeekMsg QSVCPEEK 14 “peek” a message from a queue without

receiving it
COUNT_MESG CPCountMsg QSVCCNTMSG 15 Obtain the count of outstanding messages

on a queue
SEND_RECV CPSendRecvMsg QSVCSENDRCV 16 Send a message and await a reply.
- - - 17 Not used
CLAIM_SEM CPSemClaim QSVCCLAIM 18 Claim a semaphore
REL_SEM CPSemRelease QSVCRLSEM 19 Free (release) a semaphore
QRY_SEM CPSemQuery QSVCQSEM 20 Query a semaphore
- - - 21 Not used
GET_ID CPResolveName QSVCGETID 22 Gets the SVid corresponding to an SVT

item name.
ID_NAME CPResolveID QSVCIDNAME 23 Obtain the SVT name corresponding to an

SVid
QRY_ID CPQueryID QSVCQRYID 24 Obtain the caller’s SVid and process ID.

 Copyright IBM Corp. 1989-1994, 1996-1998 A-1

Table A-1 (Page 2 of 3). SVC Handler Function Codes

SVC name Routine name Constant
name

Description

TRAN_ID CPSVid2TCB
CPTCB2SVid

QSVCTRANID 25 Translate TCB id into SVid and process ID.

CHECK_ID CPCheckID QSVCCHKID 26 Verify caller has access to an SVid.
- - - 27 Not used
- - - 28 Not used
- - - 29 Not used
GO_TASK CPGoTask QSVCSTART 30 Mark a task as started, that is the task is

no longer “stopped”
STOP_TASK CPStopTask QSVCSTOP 31 Mark a task as stopped
FALT_TASK CPFaultTask QSVCFAULT 32 Fault a task, that is stop it and set a task

error code
TASK_HALT CPHaltTask QSVCHALT 33 Task halt, with optional error code
- - - 34 Not used
- - - 35 Not used
SET_PRE CPSetPreempt QSVCPREMPT 36 Set a task preemptable flag
CRIT_ENTER CPCritEnter QSVCCRITENT 37 Enter a critical code section
CRIT_LEAVE CPCritLeave QSVCCRITLEV 38 Leave a critical code section
CHG_PRTY CPChgPriority QSVCCHPRTY 39 Change the priority of a task
- - - 40 Not used
- - - 41 Not used
P_TRACE CPPTrace QSVCPTRACE 42 Debugging facilities
- CPTaskRegs - - Architecture independent routine to initialize

the registers of a task.
WRITE_SDA CPWriteSDA QSVCWRITENDA 43 Write user extension areas of the SDA
CRT_TASK CPSysCreateThread QSVCCRTASK 44 Create a task (Resource Manager only)
CRT_RES_SEM CPSysCreate-

SerSem
QSVCCRRSEM 45 Create a resource semaphore (Resource

Manager only)
CRT_SYNC_SEM CPSysCreate-

SyncSem
QSVCCRSSEM 46 Create a synchronization semaphore

(Resource Manager only)
CRT_MESGQ CPSysCreateMsgQ QSVCCRMSGQ 47 Create a message queue (Resource

Manager only)
CRT_UITEM CPSysCreateUItem QSVCCRUITEM 48 Create a user SVT item (Resource

Manager only)
DEL_ENT CPSysDeleteEnt QSVCREMOV 49 Delete an SVT entry from the system
CRT_SLIH CPSysCreateSLIH QSVCCRSLIH 50 Set up a second level interrupt handler for

hardware interrupts
DEL_SLIH CPSysDeleteSLIH QSVCDELSLIH 51 Remove a second level interrupt handler

for hardware interrupts
- - - 52 Not used
GET_TIME CPGetTime QSVCGETTIME 53 Get time, date, and so on.
SET_TIME CPSetTime QSVCSETTIME 54 Set current time
ADJUST_TIME - QSVCADJTIME 55 Adjust the time of day (forwards or

backwards).
SET_DATE CPSetDate QSVCSETDATE 56 Set current date
SLEEP CPSleep QSVCSLEEP 57 Wait for specified time period
BEEP_IT CPBeep QSVCBEEP 58 Sound the beeper (Intel only)
TIMER_SET CPTimerSet QSVCSETEVNT 59 Set up a timer event
TIMER_TICK CPTimerTick QSVCTIKEVNT 60 Set up a timer event, time is in ticks.
TIMER_CNCL CPTimerCancel QSVCCNCLTIM 61 Cancel a timer event
ALLOC_TIMER CPSysCreateTimer QSVCALLCTIM 62 Allocate a timer
REL_TIMER CPSysDeleteTimer QSVCRELTIM 63 Release a timer
- - - 64 Not used
- - - 65 Not used
GET_SDA CPGetCDA QSVCGETSDA 66 Get address offset of the CDA alias page
SVCTRACE CPSVCTrace QSVCTRACE 67 Set or query SVC Handler trace flag

A-2 Application Programming Reference

Table A-1 (Page 3 of 3). SVC Handler Function Codes

SVC name Routine name Constant
name

Description

CMOS_READ CPCMOSRead QSVCRCMOS 68 Read CMOS locations
READ_UITEM CPReadUitem QSVCRUITEM 69 Read contents of a user item SVT entry
WRITE_UITEM CPWriteUitem QSVCWUITEM 70 Write contents of a user item SVT entry
RM_FUNC CPSysResMgrFunc QSVCRMFUNC 71 Special functions for the Resource

Manager
- - - 72 Not used
SIG_INTERRUPT CPSigInt QSVCSIGINT 73 Signals are or are not to interrupt SVCs
SIG_MASK CPSigMask QSVCSIGMASK 74 Set, unset, or query the signal mask
SIG_RETURN CPSigReturn QSVCSIGRET 75 Return from a signal handler
SIG_SEND CPSigSend QSVCSIGSEND 76 Send a signal
SIG_STACK CPSigStack QSVCSIGSTK 77 Set up a signal stack
SIG_VEC CPSigVec QSVCSIGVEC 78 Control the action to be taken for a

specified signal
- - - 79 Not used

SVC Handler Return Codes
This table summarizes the possible return codes generated by the SVC Handler.
The values in this table are in hexadecimal. A more complete description of the
possible return codes for each SVC is given in the specification of that SVC.

Table A-2 (Page 1 of 3). SVC Handler Return Codes

Return Code Value Description

QSVCgood 0 Request completed, no error
QSVCduplnam 80010001 A non-null SVT name is specified which is not unique
QSVCbadSVid 80010002 Specified SVid is invalid or or inaccessible to the caller. Possible

reasons include:

� It is not of the correct type
� The specified SVid cannot be found in the SVT
� The specified name is the name of an SVT entry that cannot be

accessed by the requestor
� If the calling task is a “system” task, the specified SVT entry is

protected such that the caller cannot access it
QSVCnfSVT 80010003 No free SVT entries
QSVCnfTCB 80010004 No free TCBs
QSVCnclaim 80010005 Semaphore is not claimed
QSVCbadprty 80010006 Requested task priority is invalid
QSVCbadprmpt 80010007 Requested task pre-emption status is not valid
QSVCbadCMOS 80010008 The CMOS real-time clock is apparently not working
QSVCQempty 80010009 The specified queue is empty
QSVCbadRQE 8001000A The specified RQE cannot be found on the specified queue
QSVCtimedout 8001000B The time-out has occurred
QSVCdeadSVid 8001000C The specified SVT entry is being or has been removed from the

system. This can be because either the specific SVT entry or the
owning process is being deleted

QSVCbadname 8001000D The supplied SVT name is not valid, for example, it contains
characters that are not valid or is a null name when an SVT entry is
specified as having a name

QSVCnobuffer 8001000E Insufficient free space in the message buffer area

 Appendix A. CP/Q SVC Handler Summary A-3

Table A-2 (Page 2 of 3). SVC Handler Return Codes

Return Code Value Description

QSVCnowrite 8001000F The SVT entry exists and is valid, and the caller has “read” access but
no “write” access to it

QSVCsmallbuff 80010010 A message has been received, but the caller's buffer was too small,
and some of the message is lost

QSVCnoevent 80010011 None of the events specified in a MUX_WAIT SVC has occurred
QSVCsembusy 80010012 Semaphore cannot be claimed since it is already claimed
QSVCtaskstop 80010013 Task is already stopped
QSVCtaskgo 80010014 Task is already running
QSVCnotinit 80010015 Task cannot be started because the registers have not yet been set

up
QSVCnotrace 80010016 SVC Handler tracing cannot be turned on since there is no trace

buffer
QSVCnf387area 80010017 No free space in the 387 save area
QSVCbadregs 80010018 The register values supplied for a WRITE_REGS SVC are

unacceptable in some manner
QSVCbadint 80010019 The specified interrupt level is not valid or is already taken
QSVCincrit 8001001A The task has been placed in the “pending stopped” state instead of

“stopped” because its critical code section count is non-zero
QSVCbadcnt 8001001B The specified count or length is not valid
QSVCnoroom 8001001C The buffer supplied in an SVC is not large enough for the data to be

returned or no space to allocate SVC Handler data area
QSVCnfPL0 8001001D No free PL0 stacks
QSVCbadreq 8001001E SVC option or parameter is not valid
QSVCnfSLIB 8001001F No free SLIBs
QSVCnoFPU 80010020 There is no floating point processor available
QSVCnotavail 80010021 The requested facility is not available (for example, the system has no

real-time clock or no “beeper”)
QSVCbadstack 80010022 Possible reasons include:

� The page or pages containing the stack of a PL0 task do not exist
� The page or pages containing the stack of a PL0 task are not

writeable
� The page or pages containing the stack of a PL0 task are not

supervisor mode pages.
� The page or pages containing the stack do not exist, are not

writeable, or are supervisor mode for a user mode task.
QSVCnoFPUregs 80010023 There are no valid FPU registers for this task
QSVCinterrupt 80010024 This SVC was interrupted by a signal and has not been completed
QSVCtracefull 80010025 The trace buffer is full
QSVCtraceoff 80010026 “User trace” not implemented, tracing turned off
QSVCcrit255 80010027 Critical code section count is 255
QSVCnotimers 80010028 No free timer blocks available
QSVCnotdead 80010029 this SVT entry cannot be removed from the system because it is

either not marked as removable, or it is not marked as “dying”
QSVCbusySVT 8001002A This SVT entry cannot be removed from the system because it is still

busy in some manner
QSVCbadtimer 8001002B The specified timer is not active (TIMER_CNCL)
QSVCduplid 8001002C An SVid is duplicated in the parameter list of a MUX_WAIT SVC
QSVCbadid 8001002D Possible reasons include:

� Specified SLIB ID is not the offset of a SLIB
� This SLIH was not set up by the caller
� This is not a valid timer block id
� This is not the ID of a timer block allocated to the calling task by

an ALLOC_TIMER SVC
QSVCSLIH2 8001002E The specified SVid is already being used for notification of interrupts

at this interrupt level (CRT_SLIH SVC)

A-4 Application Programming Reference

Table A-2 (Page 3 of 3). SVC Handler Return Codes

Return Code Value Description

QSVCdebug2 8001002F The specified task is already being debugged (P_TRACE function 8).
QSVCnodebug 80010030 The specified task cannot be debugged (P_TRACE function 8), or the

specified task is not being debugged by the caller (P_TRACE function
9).

QSVCunpriv 80010031 The caller has insufficient privilege to perform this operation
QSVCnoname 80010032 SVT entry is not marked as “named”
QSVCbadsignal 80010033 Signal number is not valid
QSVCbadaddr 80010034 Specified address is not valid, that is,the location does not exist or is

not accessible to the calling task
QSVCnfSCB 80010035 There are no free SCBs
QSVCallspaces 80010036 the supplied SVT name is all spaces (not used on Intel systems)
QSVCpendstop 80010037 The specified task is already in the “pending stopped” state.
QSVCregsnf 80010038 No suitable stack frame, containing saved task registers, can be found

(READ_REGS, WRITE_REGS SVCs, POWER/PowerPC only)
QSVCtoomanymsgs 80010039 This task is has sent too many messages that have not yet been

received.

SVC Handler Task Fault Codes
This table summarizes the possible task fault error codes generated by the SVC
Handler for software detected program faults. These values are in the TCB field
TCBerrcode when the task stop code (in the TCB field TCBstop) is set to
QSVCsofterr. The values are in hexadecimal. A more complete description of the
possible faults for each SVC is given in the specification of that SVC.

Table A-3. SVC Handler Generated Task Fault Codes

Fault Code Value Description

QSVCinvalid 80 This might be due to one of the following :

� Invalid SVC function code.
� The calling task does not have the privilege required to make this SVC.
� The calling code is insufficiently privileged.
� This SVC is part of a facility that has been omitted from the SVC Handler by

a compile time option.
QSVCparlist 81 A parameter list for an SVC, used by the SVC Handler, is not valid in some

manner, for example it is outside the segment limits or has insufficient access.
QSVCinvSVid 82 A request has been made to, or a request has been made quoting, an SVid to

which the requestor has no access.
QSVCunitint 83 This task has executed an INT instruction that uses an un-initialized interrupt

entry.
QSVCno387 84 This task has executed a floating point instruction when there is no floating point

processor available.
QSVCmsgcount 85 This task sent too many messages that have not yet been received.

Note: This fault is not generated in the current versions of CP/Q. Instead, the
sending task receives the return code QSVCtoomanymsgs.

QSVCnotimpl FF An SVC has been made that is currently not implemented.

 Appendix A. CP/Q SVC Handler Summary A-5

SVC Handler Task Stopped Codes
This table summarizes the task stopped codes, as held in the TCB field TCBstop.
These values are returned to a task making a QRY_DISP SVC.

Table A-4. Task Stopped Codes

Code Name Value Description

QSVCnostart 0 The task is in the stopped state as a result of having been created but never
started.

QSVCstopped 1 The task is stopped as a result of a STOPTASK SVC from another task.
QSVCsigterm 2 This task has been terminated as the result of a signal being received. The

signal number is in the TCB field TCBerrcode; these are shown in the signal
name table in the section “CP/Q Signal Facilities” in the SVC Handler manual.

QSVCsofterr 3 The task is stopped as a result of an error detected by the SVC Handler. The
reason for the error is indicated by the value in the TCB field TCBerrcode; these
are detailed in the section “SVC Handler Task Fault Codes” on page A-5 and
also in Table A-3 on page A-5.

QSVCsoftflt 4 The task is stopped as a result of a fault report from another task. The TCB field
TCBerrcode holds the error code, which was supplied by the task that issued the
FALTTASK SVC.

QSVCtaskhalt 5 The task has halted. The TCB field TCBerrcode holds the error or return code
which was supplied by the task in the TASKHALT SVC.

QSVCpageerr 0x4x The task is stopped by the SVC Handler as a result of a fault detected by the
page fault handler. The fault type is specified by the (hex) digit x and is as
specified by the page fault handler; the error codes are defined in the Memory
Manager manual. The TCB field TCBerrcode holds the page fault linear
address.

QSVCharderr 0x8x The task is stopped by the SVC Handler as a result of a processor detected
fault; the fault type is specified by the (hex) digit x, as listed below. The TCB
field TCBerrcode holds the error code returned by the processor, or 0 for those
faults that do not have an error code.

The following values are all the faults that are theoretically possible on an Intel
processor; in practice, some of them will never occur.

0x80 Divide error
0x81 Single step interrupt, or data trap
0x82 NMI
0x83 Break-point interrupt (INT 3 instruction)
0x84 Overflow interrupt (INTO instruction)
0x85 Array bound error (BOUND instruction)
0x86 Opcode not valid
0x87 Processor extension not available
0x88 Double exception
0x89 Processor extension segment overrun
0x8A Task state segment not valid
0x8B Segment not present
0x8C Stack segment overrun
0x8D General protection exception
0x8E Page fault
0x90 Floating point error
0x91 Alignment error

Note: Normally page faults (error code 0x8E) are reported as a message with
stop code QSVCpageerr = 0x4x.

A-6 Application Programming Reference

Messages Generated by the SVC Handler
Messages generated by the SVC handler have the sender SVid field set to
0xFFFFFFFF, and the message type set to the value in the first data DWORD of
the message (as described below). They are all “short” messages; the reason for
sending the message is specified by a message code in the first double word of
data. The contents of the next 2-4 double words varies, depending on the
message code in the first data double word, as follows:

QINFnucleus = 2
This is an information message from the SVC Handler, and it can be for
one of the following reasons held in the second double word:

QSVCfreeSVT = 20
This is a message to the Resource Manager in response to a
DEL_ENT SVC that was rejected because the SVT entry in
question was “busy” in some manner. This message signifies
that the “busy” has been cleared, and the DEL_ENT should be
re-tried (it is not guaranteed that the SVT is no longer busy - it
may need to be re-tried several times).

The third data double word contains the SVid of the SVT entry
concerned.

QSVCexterminate = 21
This is a message to the Resource Manager when a signal has
been issued which results in the target task being terminated.
This message is a request for the Resource Manager to terminate
the task. Note that when this message is sent, the task referred
to is already stopped.

The third data double word contains the SVid of the SVT entry of
the task concerned, and the fourth double word holds the signal
number.

QSVCweneedRQEs = 22
This is a message to the Resource Manager, sent when the
system is running short of RQEs. The Resource Manager should
request that more be created.

QSVCinfstop = 32
The SVC Handler generates a message of this type when a task
is stopped in response to a STOPTASK SVC if the task was
placed in the “pending stopped” state because it had a non-zero
critical code section count. The message is sent to the issuer of
the STOPTASK SVC.

QINFerror = 3
This is a message to indicate that a task has halted, or has (or has been)
faulted. Whenever a task faults or stops for any reason other than a
STOPTASK SVC (for example a fault is detected by the processor or by
the SVC Handler software), the SVC Handler generates a message to the
fault handler of the task.

The second data double word contains the SVid of the task concerned.
The third data word contains the type or nature of the task halt or fault, as
follows. In general, each of these has an associated return or error code,
which is in the fourth data word of the message.

 Appendix A. CP/Q SVC Handler Summary A-7

QSVCsigterm = 2
The task has been stopped by the SVC Handler because of a
signal has been sent to the task. The signal number, which will
be one of the values shown in The signal name table in the
section “CP/Q Signal Facilities” in the SVC Handler manual is in
bytes 12-15 of the message, and also in The TCB field
TCBerrcode.

QSVCsofterr = 3
The task has been stopped by the SVC Handler because of an
error detected by the SVC Handler software. The error type,
which in this case is as defined in the section “SVC Handler
Detected Faults” in the SVC Handler manual, is in the fourth data
double word of the message, and also in the TCB field
TCBerrcode.

QSVCsoftflt = 4
The task has been stopped by the SVC Handler as the result of a
fault report from another task. The fourth data double word of
this message and the TCB field TCBerrcode, hold the error code,
which was supplied by the task that issued the FALTTASK SVC.

QSVCtaskhalt = 5
The task has halted. The fourth data double word of this
message and the TCB field TCBerrcode, hold the error code,
which was supplied by the task in the TASKHALT SVC.

QSVCpageerr = 0x4 x
The task has been stopped by the SVC Handler because of a
fault detected by the page fault handler; the error codes are
defined in the Memory Manager manual. In this case, the return
code in the TCB field TCBerrcode, holds the page fault linear
address.

See the section “Task Fault/Halt Messages” in the SVC Handler
manual for details of the meaning of the possible values.

QSVCharderr = 0x8 x
The task has been stopped by the SVC Handler because of a
fault detected by the processor. The fault type (that is, the
interrupt number by which the fault was reported) is n-0x80,
where n is the value in these bytes of the message and the TCB
field TCBstop. The fourth data double word of this message, and
the TCB field TCBerrcode, hold the error code reported by the
processor, if any, or 0 for those faults that have no error code.

See the section “Task Fault/Halt Messages” in the SVC Handler
manual for details of the meaning of the possible values.

QINFIHattn = 4
A hardware interrupt has occurred on a hardware level for which the
receiver of the message is a Second Level Interrupt Handler (SLIH). The
second data double word contains the hardware interrupt level (in the
range 0-15 on a PS/2), and the third contains the ID of the SLIB for this
SLIH, as returned by the SVC handler in the reply to the CRT_SLIH SVC
that set up the SLIH.

A-8 Application Programming Reference

QINFtimer = 5
The occurrence of a timer event is being notified by a message. The
second double word contains the ID of the timer control block for the event
that has occurred, and the third contains the current time in ticks since
midnight. The fourth word holds the user identifier specified when the
timer was set.

QINFpageflt = 8
This message type is generated only if the Memory Manager page fault
handler is not installed, and is to notify a page fault in a task. The second
data double word contains the SVid of the task concerned, the third data
double word contains 0x8E (i.e. hardware error type 14), the fourth double
word contains the error code reported by the processor, and the fifth data
word contains the page fault linear address, as reported by the processor
in the CR2 register.

 Appendix A. CP/Q SVC Handler Summary A-9

A-10 Application Programming Reference

Appendix B. Memory Manager return codes

Memory Manager user return codes
If a request to the memory manager is successfully completed, the memory
manager returns a return code of QMsuccess(0x00000000). All other results return
a return code in the form 0x8002nnnn, where the hi-order 8002 indicates a Memory
Manager return code, and the low order 16 bits indicate the cause of the error. If
an error is detected, one of the following return codes may be returned:

QMsuccess-(0x0000) The call was completed successfully.
QMbad_offset-(0x0001) The offset passed is not that of a valid memory

object.
QMbad_type-(0x0002) Error in type field. The Caller did not have sufficient

privilege for request, bits combinations set were not
valid, reserved bits set, or required bits not supplied.

QMbad_PID-(0x0003) Process ID provided is not valid.
QMbad_size-(0x0004) Size provided was not valid - 0 or greater than

2GB-1, or size not contained in a single memory
object.

QMbad_addr-(0x0005) Address and/or length not on page boundary or real
memory range beyond 64MB (CPCreateRange call).

QMbad_location-(0x0006) Location provided was not valid, not within specified
object.

QMbad_sparse-(0x0007) Object not sparse.
QMbad_range-(0x0008) Range in use.
QMbad_fixlist-(0x0009) Caller does not have write access to fixlist.
QMbad_fixhandle-(0x000A) Fixhandle provided is not a valid fixhandle.
QMno_block-(0x0010) A block of free linear address space of sufficient

size is not available in the class requested.
QMno_access-(0x0011) User does not have requested access to object.
QMno_page-(0x0012) No free real storage page frame of the desired type

available.
QMnot_owned-(0x0013) Caller does not own referenced object.
QMno_range-(0x0014) Attempting to create new range (number of ranges

already at maximum).
QMno_PFD-(0x0015) Attempting to create new range; insufficient PFDs

available.
QMreal_alloc-(0x0016) Storage requested by specific real address already

in use.
QMproc_limit-(0x0018) Some process memory limit would have been

exceeded by request. object's fix or swap count at
maximum.

QMsys_limit-(0x0019) Some system limit would have been exceeded by
request such as available free linear address space
or object's fix or swap count at maximum.

QMobj_fixed-(0x001A) Object's fix count was not zero on call requiring a
zero fix count.

QMobj_accessed-(0x001B) Object's verify count or memory lock count was not
zero on call requiring a zero count.

QMaccess_info-(0x001D) Requester has access to object, information return.
QMnot_implemented-(0x0020) Function requested has not been implemented.

 Copyright IBM Corp. 1989-1994, 1996-1998 B-1

QMwrap_count-(0x0021) Memory lock, fix, share, or verify count at it's
maximum value, call cannot be processed.

QMprocess_dead-(0x0022) A function was requested that creates a new
memory object while the process in which the object
was to be created is in the final stage of process
removal. Such requests cannot be honored.

QMunfixNP-(0x0027) Attempting to un-fix object, but page found marked
not present.

QMfix_sparse-(0x0028) Attempting to fix area within a sparse object that is
not committed.

QMuser_fix_error-(0x0029) Attempting to un-fix object, but object not fixed.
QMuser_verify_error-(0x002A) Attempting to free verify but object has no verify

count
QMuser_swap_error-(0x002B) Attempting to release no-swap, but object not

marked non-swappable.
QMuser_commit_error-(0x002C) Attempting to commit page already committed or

decommit page not previously committed.
QMrestricted_function-(0x0030) This function requires IOPL and/or Supervisor

privilege, and the caller did not have the requisite
privilege.

QMinvalid_function-(0x0031) The requested function or subfunction does not
exist.

QMfix_FNP-(0x0032) Attempting to fix area which contain a Force Not
Present page.

QMalias_sparse-(0x0033) Attempting to alias an area within a sparse object
that is not committed.

QMalias_FNP-(0x0034) Attempting to alias an area that contains a force not
present page.

QMbusy_fork-(0x0035) The request referred to a process which was in the
process of doing a fork, and the request could not
be honored at this time. The request can be tried
again later.

QMcommit_FNP-(0x0037) Attempting to commit a page marked Force Not
Present.

A more complete description of each error code that a call might return can be
found in the detailed description for the call, as well as a more precise definition of
the error condition in the context of that particular call.

In addition, internal errors might be detected inside by the Memory manager.
These return codes are covered in “Memory Manager internal error codes” on
page B-3.

Page Fault Handler Fault Handling
In a system such as CP/Q, certain faults (due to user error) are detected by the
page fault handler. In CP/Q, the page fault handler, when detecting such an error
signal to the SVC handler by a non-zero return code that a fault occurred. The
nature of the fault is in the TCBstop code and the offset of the memory reference
causing the error is in the TCBerrcode. The stop codes are as follows::

Page protection fault-(0x40) The task was trying to reference the offset contained
in the TCBerrcode and either did not have the necessary privilege or
access to the underlying page.

B-2 Application Programming Reference

Not allocated fault-(0x41) The task was trying to reference the offset contained in
the TCBerrcode but no memory object exists at that offset.

Sparse fault-(0x42) The task was trying to reference the offset contained in the
TCBerrcode, which is within a sparse memory object, but, the specific
offset refers to a page which had not been previously committed.

Forced Not Present fault-(0x43) The task was trying to reference the offset
contained in the TCBerrcode but the underlying page frame had been
marked Force Not Present.

No real pages-(0x44) There were no free page frames available to satisfy this
page fault. TCBerrcode contains QMno_page.

Internal Error-(0x4F) The page fault handler detected an internal error.
TCBerrcode contains an error code. These are described in “Memory
Manager internal error codes.”

Memory Manager internal error codes
During the processing of a Memory Manager request, internal error conditions may
be detected. Depending on the nature of the error, several events could occur.
The return code is passed back to the requestor, if it is judged that the fault is likely
isolated that particular request. Callers receiving an internal error type of return
code should terminate as gracefully and quickly as possible. If the damage is
severe, but potentially limited to a single task then that task is terminated with the
return code via a CPFaultTask call. Catastrophic errors may necessitate
terminating the system. An error code is used to indicate the specific internal
failure found. All such error codes have the form 0x8002fnnn, where the ‘f’
indicates an internal error and the ‘nnn’ indicates the exact cause of the failure.
The possible codes are listed below:

Memory manager internal error codes - internal errors detected in the Virtual
Memory Manager.

QMnoPCB-(0xf001) There was no PCB pointer (in the TCB) for the
creation of an object. This is a system error.

QMnoOCB-(0xf002) There were no free OCBs available to satisfy this
request. This is a system error.

QMlock_zero-(0xf004) Memory manager's internal lock was zero on exiting
a call that set the lock. This is a system error.

QMnoPFD-(0xf005) There were no free PFDs available to satisfy this
request. This is a system error.

QMbad_rel_chain-(0xf020) OCB related chain corrupted.
QMbad_alias_chain-(0xf021) OCB alias chain corrupted.
QMbadOCBtype-(0xf022) OCB type bits inconsistent.
QMbadOCBchain-(0xf023) OCB class chain corrupted.

Memory manager initialization internal error codes - internal errors detected
during the initialization of the Memory Manager.

QMinit_small-(0xf040) IPLed system's real memory smaller than MEMSize
at system build time (in the TCB) for the creation of
an object. This is probably a user error. System
should be rebuilt with smaller MEMSize, or more
memory is needed on IPLed machine, or IPL code
or machine is defective.

QMinit_high-(0xf041) Create range call for high memory failed. This is a
system or IPL code error.

 Appendix B. Memory Manager return codes B-3

QMinit_low-(0xf042) Create range call for low memory failed. This is a
system or IPL code error.

QMinit_rom-(0xf043) Offset range for 128KB ROM unavailable. This is a
system or IPL code error.

QMinit_pfdmap-(0xf044) Could not get pfd mapping space. This is a system
or IPL code error.

Page Manager error codes - internal errors detected in the Page Manager.

QMPsparse_present-(0xf101) Found sparse page present on allocation.
QMPalloc_present-(0xf102) Found page present on initial allocation.
QMbadPTErealaddr-(0xf030) Could not find PFD for a PTE real address.
QMbadPFDfixcount-(0xf031) Mismatch between PFD and OCB fix count.
QMbadPTErealaddr-(0xf030) Could not find PFD for a PTE real address (Intel

only).
QMbadPFDfixcount-(0xf031) Mismatch between PFD and OCB fix count (Intel

only).

Page Fault Handler error codes - internal errors detected in the Page Fault
Handler. These errors occur asynchronously, that is, not related directly to a
memory manager call, and they cause the current task to be faulted by the SVC
Handler stopping the task.

Note: Faulting a single task might not resolve the problem, or the faulted task may
not be the direct cause of the problem. This may quickly bring the system down.
This is thought preferable to immediately crashing the entire system, as removing
one or more tasks might allow recovery. If it is determined that an error is
absolutely fatal, then the system is terminated directly.

The TCB code is 0x4F, and the TCBerrcode indicates the particular fault internal
error code as follows&colon,

QMnoPCB-(0xf001) There was no PCB that matched the CR3 value (page
directory address).

QMbad_rel_chain-(0xf020) related OCB chain is corrupted.
QMbadPTErealaddr-(0xf030) Could not find the PFD for a PTE real address.

B-4 Application Programming Reference

Appendix C. Resource Manager return codes

Resource Manager user return codes
If a request to the Resource Manager is successfully completed, the Resource
Manager returns a return code of QRMgood(0x00000000). All other results return
a return code in the form 0x8003nnnn, where the hi-order 8003 indicates a
Resource Manager return code, and the low order 16 bits indicate the cause of the
error. If an error is detected one of the following return codes might be returned:

QRMgood-(0x0000) The call was completed successfully
QRMnopcb-(0x0001) No free Process Control Blocks (PCBs) in the

system.
QRMnosvt-(0x0002) No free Supervisor Table Entries (SVTs) in the

system.
QRMnotcb-(0x0003) No free Task Control Blocks (TCBs) in the system.
QRMnotimer-(0x0004) No free Timer control blocks in the system.
QRMpcbmax-(0x0007) Process has maximum PCB allocation.
QRMsvtmax-(0x0008) Process has maximum SVT allocation.
QRMtcbmax-(0x0009) Process has maximum TCB allocation.
QRMtimermax-(0x000A) Process has maximum Timer block allocation.
QRMforkchild-(0x000B) Created child task returning from fork process call.
QRMbadname-(0x000D) Specified name is a duplicate or not valid.
QRMbadproc-(0x000E) Specified process is not valid.
QRMbadsvt-(0x000F) Specified SVid is not valid or is not the SVid of a

task.
QRMinvalid-(0x0010) Process does not support this request, or process is

not a resource provider.
QRMtwice-(0x0011) Deletion already pending for this process.
QRMprocremv-(0x0012) Request denied, process removal is in progress for

the target process.
QRMnoloader-(0x0013) The Resource Manager could not resolve the task

name "QLOADER" in searching for the CP/Q Loader
task.

QRMprocabort-(0x0014) Process has failed.
QRMbadlength-(0x0015) Parameter or buffer length given on input to the call

is not valid.
QRMbadprocacc-(0x0016) Accessing process is not valid.
QRMnotfound-(0x0017) Notification request not found.
QRMprocnoname-(0x0018) Process is not named.
QRMillegal-(0x0019) Process inaccessible to requestor.
QRMbadopt-(0x001A) Incorrect or incompatible options.
QRMinv_func-(0x001B) Function is not valid.
QRMfailure-(0x001C) A resource provider returned failure for the process

removal. The process is not be removed.
QRMbusy-(0x001E) Task is faulter or is being debugged.
QRMnonrb-(0x001F) No free Notification Request Blocks (NRBs) in the

system.
QRMnomsg-(0x0021) Resource Manager internal messaging failure.
QRMglobalnrb-(0x0022) A global tracking request for the same SVid (to be

notified) already exists.

 Copyright IBM Corp. 1989-1994, 1996-1998 C-1

QRMforcedremv-(0x0023) Function completed successfully, but resource
created was forced to be removable.

QRMnofunc-(0x0024) No kernel extension function codes are currently
available in the system.

QRMnotglobal-(0x0025) The entry offset to the user-defined kernel extension
is not located in global memory.

QRMbadtimer-(0x0026) Specified timer block is not valid.
QRMbadukern-(0x0027) Specified function code specified when creating a

user-defined kernel extension is not valid.
QRMdupfunc-(0x0028) The function code specified is already in by another

task.
QRMnowacc-(0x0029) The Memory Manager has informed the Resource

Manager that write access to the output buffer
specified is not allowed.

QRMnosupvstk-(0x002A) There are no supervisor stacks available in the
system.

QRMprclocked-(0x002B) Request denied, the target process is locked (most
likely under test) and cannot be removed at this
moment. Try again later.

QRMprocfork-(0x002C) Request was denied. The target process is
currently undergoing a process fork operation. Try
again later.

QRMprocexec-(0x002D) Request denied. The target process is currently
undergoing a process exec operation. Try again
later.

QRMprocproc-(0x002E) Request denied. The target process is currently
undergoing a process creation operation. Try again
later.

QRMproccreat-(0x002F) Request was denied. The target process is
currently being created. Try again later.

QRMpending-(0x0030) Request accepted; however, the target process
could not be removed immediately because of the
existence of child processes. Process removal for
the target process is pending and will be removed
after all child processes are removed.

QRMinvalidfunc Function code number is not valid.
QRMnotimp-(0x00FF) Request not implemeted.

A more complete description of each error code that a call may return can be found
in the detailed description for the call, as well as a more precise definition of the
error condition in the context of that particular call.

In addition, internal errors might be detected inside by the Resource Manager.
These return codes are described in “Resource Manager internal error codes” on
page C-3.

Resource Manager fault codes
Fault codes are generated by the Resource Manager for software detected program
faults. These values are in the TCB field TCBerrcode when the task stop code (in
the TCB field TCBstop) is set to QSVCsofterr All such error codes have the form
0x8003008n, where the ‘8’ indicates a task fault and the ‘n’ indicates the exact
cause of the failure. The possible codes are listed below:

C-2 Application Programming Reference

QRMgenlerr-(0x0080) Fatal error, no cause.
QRMxnopriv-(0x0081) The caller attempted to create a process with

unlimited resources and did not have “SYSTEM”
privilege.

Resource Manager internal error codes
During Resource Manager initialization or during the processing of a Resource
Manager request, internal error conditions may be detected. These catastrophic
errors can necessitate terminating the system. An error code indicates the specific
internal failure found. All such error codes have the form 0x800300Cn, where the
‘C’ indicates an internal error and the ‘n’ indicates the exact cause of the failure.
The possible codes are listed below:

Resource Manager initialization internal error codes - internal errors detected
during the initialization of the Resource Manager.

QRMiniterr2-(0x00C2) There were too few Process Control Blocks (PCBs)
built into the system.

QRMiniterr3-(0x00C3) There were too few Supervisor Task Entries (SVTs)
built into the system.

QRMiniterr4-(0x00C4) There were too few Timer blocks built into the
system.

QRMiniterr5-(0x00C5) There were too few Task Control Blocks (TCBs)
built into the system.

Resource Manager internal error codes - internal errors detected in the Resource
Manager.

QRMiniterr1-(0x00C1) The SVC Handler returned an error when the
Resource Manager attempted to claim or release
the SDA semaphore.

QRMiniterr6-(0x00C6) Unrecognized message from SVC Handler to
Resource Manager.

QRMiniterr10-(0x00CA) The Resource Manager has detected an invalid or
corrupt process chain.

QRMiniterr11-(0x00CB) The Resource Manager could not allocate a
preallocated resource.

QRMiniterr12-(0x00CC) The Resource Manager has detected that the
RMDA Kernel Extension Control Block has been
corrupted.

QRMiniterr13-(0x00CD) The Resource Manager received an unexpected
return code from the SVC Handler when deleting
SVT entries.

 Appendix C. Resource Manager return codes C-3

C-4 Application Programming Reference

Glossary and Abbreviations

A
ASCIIZ. An ASCIIZ string consists of a sequence of
ASCII characters, terminated by a NUL character
(0x00).

B
BIOS. Basic Input/Output System. This is the device
driver and interrupt handler code provided with an IBM
compatible PC, in a ROM or EEPROM on the system
board and certain device adapter boards. BIOS
includes code to test the system on power on, to
provide interrupt handlers for standard devices, and to
IPL an operating system.

C
Common . Common Memory Objects. This is a “class”
of memory object defined by the Memory Manager,
which can be shared by different processes in a
controlled manner. If a common memory object is
visible in two (or more) different processes, it has the
same linear address offset in each of the processes.

See also Global and Private.

COW. Copy On Write. This is a mechanism whereby
programs running in different address spaces may
share a data area, but have private copies of any parts
(for example, pages) that are written to. This is
achieved by placing read-only page references to the
data in each address space; when the program
attempts to write to a location, a page fault occurs. The
page fault handler recognizes this situation, and creates
a private writable copy of just the affected data page,
leaving the other pages as read-only access to the
shared data.

Safe and reliable operation of copy on write requires the
supervisor mode read-only page protection facility that
is present in 486 and later processors, but omitted from
a 386. For this reason, CP/Q does not provide the
COW facility when the system is running on a 386 (if
COW mode is requested, it is implemented as copy
mode, that is a physical copy is made).

CPL. Current Privilege Level. The Intel x86
processors have the concept of privilege levels. There
are 4, numbered from 0 (most privileged) to 3 (least
privileged). If a program is running at, say, privilege
level 2, it is allowed to access items specified as being
at privilege level 2 or 3, but not those at privilege level 0
or 1. The privilege level associated with the code

currently running is called the CPL, and is defined by
the two low order bits of the CS register.

The Intel specification denotes CPL 3 as “user” mode,
and CPL 0-2 as “supervisor” mode. CP/Q supports only
CPL 3 (for “user” programs) and CPL 0, for the system
kernel, device drivers and certain other privileged
modules.

creator process . The creator process, defined in the
Resource Manager creation parameter lists, is the
process to which the newly created object is to be
attached. If a new process is being created, it is a child
of the creator process.

creator task . The creator task is the caller of the
create function.

D
Descriptor . The Intel processors provide memory
protection facilities at the memory segment level. Each
physical segment has an associated descriptor, which
defines the segment type, access, base address and
size. Other descriptors identify control blocks defined
by the Intel x86 architecture, which determine the action
taken by the processor when interrupts occur (both
hardware and as a result of INT instructions), or provide
and control access to code modules within a system.
Descriptors are held in tables, namely the GDT, the
LDT and the IDT. Consult a specification of the Intel
processors for further information.

DMA. Direct Memory Access. This is the name given
to the access to system memory by an I/O controller, as
requested by the controller. This is used by I/O
controllers, for example disk controllers, to read and/or
write directly from or to system memory without
requiring any intervention by the main processor; this
drastically reduces the system overhead of I/O, and can
produce equally dramatic increases in I/O performance.

DPL. Descriptor Privilege Level. The Intel x86
processors have the concept of privilege levels. There
are 4, numbered from 0 (most privileged) to 3 (least
privileged). If a program is running at, say, current
privilege level 2, it is allowed to access items specified
as being at privilege level 2 or 3, but not those at
privilege level 0 or 1. Associated with any descriptor is
a value, called the DPL, which specifies the maximum
privilege level for code that may access the item (such
as a segment) defined by that descriptor.

DRMM. Direct Real Memory Map. The linear address
range 0-nK (where nK is the size of the physical
memory of the machine) is reserved, and is available in

 Copyright IBM Corp. 1989-1994, 1996-1998 X-1

all address spaces in supervisor mode as a 1-to-1
mapping of linear address to real memory, that is virtual
= real.

The probe for the system debugger (NAP) uses the
DRMM (it runs in virtual = real address space).

F
FLIH. First Level Interrupt Handler. A code module
that is entered by the processor when a hardware
interrupt occurs. In a CP/Q system, this term is used
more particularly for the FLIHs within the SVC Handler,
that generate interrupt notifications for second level
interrupt handlers (SLIHs). There can be only one FLIH
for any particular hardware interrupt level.

G
GDT. Global Descriptor Table. A table of descriptors,
architected by Intel as part of the specification of the
x86 processors. There is only one active GDT in a
system, which is set up during initial system load, and
cannot be easily changed once the system is running.
This table is used to define the memory segments or
code modules accessible to all tasks in the system.
Consult a specification of the Intel processors for further
information.

Global . Global Memory Objects. This is a “class” of
memory object defined by the Memory Manager.
Global memory objects are visible in all processes, at
the same linear address offset in each process.

See also Common and Private.

I
ICB. Interrupt Control Block. A type of control block
used by the CP/Q system kernel, to control the use of
hardware interrupt levels. The format is defined in the
SVC Handler manual.

IDT. Interrupt Descriptor Table. A table of descriptors,
architected by Intel as part of the specification of the
x86 processors. This table is used to determine the
action taken by the processor when hardware interrupts
occur, or INT instructions are executed. Consult a
specification of the Intel processors for further
information.

Interrupt Handler . A term for the code or task that is
executed when an external interrupt is recognized, upon
processor detected fault, or as a result of the software
INT instruction.

The particular interrupt handler for a given interrupt is
defined by a descriptor in the IDT.

IOPL. Input/Output Privilege Level. The minimum (that
is, numerically largest) processor privilege level at which
I/O may be performed. The use of instructions to
perform I/O to devices is restricted by the x86
processors to code for which CPL ≤ IOPL. This means
that many programs running in the system simply are
not permitted to perform I/O. The IOPL is held in two
bits within the FLAGS register, but only privileged code
can successfully alter the IOPL. In CP/Q systems,
IOPL is set to 0. Instructions that are considered I/O
type instructions include the IN and OUT instructions as
well as the ability to change the setting of the Interrupt
Enable bit in the flags register.

K
Kernel . The CP/Q Kernel is the SVC Handler, Memory
Manager and Resource Manager together with their
associated data areas (the System Data Area).

L
LDT. Local Descriptor Table. A table of descriptors,
architected by Intel as part of the specification of the
x86 processor. There may be more than one LDT in a
system; each task may have no LDT, its own private
LDT, or may share an LDT with a number of tasks.
This table is used to define the memory segments or
code modules local to those tasks that have this table
as their LDT. Items in an LDT are not accessible to
tasks having a different LDT, unless special provision is
made by to create a segment alias. Consult a
specification of the Intel processors for further
information.

CP/Q does not use LDTs, nor does it support their use.

N
NAP. The probe program required to enable the
system level debugger SLEEP to load and debug a
remote CP/Q system.

NDA. Nucleus Data Area. This is the fixed area at the
start of the System Data Area that holds various items
of information, such as the time and date, pointer to the
current task, the system GDT, the system TSS, and so
on, and also holds the pointers and chain headers for
the other control blocks held in other parts of the
System Data Area.

NMI. Non-Maskable Interrupt. Almost all processors
provide facilities for the processor to be interrupted by
external events, such as I/O operations completing.
Such external interrupts can be disabled (or masked) by
software running on the processor; for example it is
common practice, while handling one interrupt, to
prevent other interrupts from occurring.

X-2 Application Programming Reference

The Intel x86 processors also have a special interrupt
which is completely independent of the above
mentioned external interrupt mechanism (it is raised by
asserting a signal on a special pin of the processor),
and which cannot be disabled within the processor.
This is called a Non-Maskable Interrupt. An NMI can
occur at any time, including while handling an I/O
interrupt with interrupts disabled.

The NMI is used in IBM compatible systems for
reporting memory parity failures. It can also be used by
a debugger to cause an entry to the debugger
whenever an NMI is raised (by use of an external push
button switch). On some IBM PCs, NMI can be
masked, through special I/O logic on the system board
that is external to the processor.

O
OCB. Object Control Block. A type of control block
used by the Memory Manager to record information
about every memory “object” in the system.

P
PCB. Process Control Block. A type of control block
used by the CP/Q Resource Manager to hold
information relevant to a particular process. The format
is defined in the Resource Manager manual.

PFD. Page Frame Descriptor. A type of control block
used by the Memory Manager to maintain a chain of
every allocatable page of physical memory in the
system.

Private . Private Memory Objects. This is a “class” of
memory object defined by the Memory Manager.
Private memory objects are private to the address
space of the process that owns them, that is, such
objects are not visible in other processes.

See also Common and Global.

process . In CP/Q, a process is something that can
acquire system resources, such as memory. Everything
in the system (that is, all memory, tasks, SVT entries,
and so on) belongs to some process. Each process is
associated with an address space; conversely, all tasks
within a given process share the same address space.
Accounting is in general performed at the process level.
Processes are arranged in a tree structured hierarchy,
with the special process SYSTEM at the top of the tree.
Apart from process SYSTEM, each process in the
system also “belongs” to the process immediately
higher in the tree (its “parent”).

A process is not a code module that can be run on the
processor; the process probably contains one or more
tasks which can be dispatched. The code of these
tasks is also not part of the process; however, the

memory occupied by that code is assigned to the
process.

R
Resource Provider . A resource provider (RP) is any
system extension or sub-system, such as a screen
manager or file system, which provides a service (or
“resource”) to client processes. Providing a service
may involve the acquisition of memory or other system
resources either directly by the RP or on behalf of the
client (using the notion of effective process). The
resource tracking interface to the Resource Manager
allows the RP to respond to the removal of clients by
recovering resources allocated to such clients or
otherwise adjusting its internal state.

RPL. Requested Privilege Level. The Intel x86
processors have the concept of privilege levels. There
are 4, numbered from 0 (most privileged) to 3 (least
privileged). If a program is running at, say, privilege
level 2, it is allowed to access items specified as being
at privilege level 2 or 3, but not those at privilege level 0
or 1. Access to descriptors is performed by having
appropriate selectors in segment registers; the privilege
level associated with the attempted access is specified
by the two low order bits of the segment registers, and
is called the RPL.

RQE. Request Queue Element. A type of control
block used by the CP/Q system kernel to form message
(or request) queues. The format is defined in the SVC
Handler manual.

S
SCB. Signal Control Block. A type of control block
used by the SVC Handler to record the requested
action for specific signals for a task.

SDA. System Data Area. This an area of memory that
holds the control blocks, pointers and control variables
used by the system kernel code to control the running
of the CP/Q system. The SDA consists of a fixed
header or anchor area, called the Nucleus Data Area or
NDA, and other areas containing control blocks.

The format of the NDA is predefined, and is known at
compile time. The areas containing the control blocks
may be of variable size (initially set at system build
time, but possibly changed when the system is running),
and is at offsets that are set at system build time - that
is, they are unknown when the system kernel code is
compiled. The NDA contains pointers to the other
variable areas, and also such items as the pointers to
the start of the free block chains.

SLIB . Second Level Interrupt Block. A type of control
block used by the CP/Q system kernel for forming lists

 Glossary and Abbreviations X-3

of second level interrupt handlers. The format is
defined in the SVC Handler manual.

SLIH. Second Level Interrupt Handler. A code module
(currently a task in a CP/Q system) that is entered as a
result of some action taken by a first level interrupt
handler (FLIH). There may be more than one SLIH
corresponding to a given hardware interrupt level.

SLEEP/R. System Loader and Error Environment
Process/Remote A special program designed and
written specifically to build and test CP/Q systems. It
uses a probe program, called NAP, to remotely debug a
system. This program has its own manual, to which the
reader is referred for further information.

SVC. SuperVisor Call. This is the mechanism
whereby a task requests services of the “system” or of
other elements in the system, or performs services for
other elements in the system. In a CP/Q system on an
Intel processor, an SVC is made by an INT 0x7A
instruction (for a privilege level 3 program), or an
indirect call for privilege level 0 programs. In a CP/Q
system on a RIOS processor, an SVC is made by an
SVC instruction.

The CP/Q code module that is entered when an SVC is
made is called the SVC Handler.

SVid . The SVid of a CP/Q entity is the name used to
specify this entity to the SVC Handler. It consists of an
SVT index (that is, the number of the SVT entry within
the SVT) and an incarnation number.

SVT. SuperVisor Table. An array of elements,
representing system objects known to the supervisor
and containing sundry information concerning object
type (task, semaphore, other), access permission, and
various pointers to associated control blocks and
queues.

T
Task . In CP/Q, a dispatchable program or code
module is termed a task . The system kernel keeps
details of each task in an associated Task Control Block
and SVT entry.

The Intel processors have architected into them the
notion of a task. The processor provides protection
between tasks, and also provides facilities to swap
tasks, both voluntarily by jump or call instructions, and
involuntarily, on interrupts for example. The CP/Q
system uses the protection mechanisms, but for
performance reasons does not perform hardware task
switches, except in special cases such as system
abends, or other traps to SLEEP/R.

TCB. Task Control Block. A type of control block used
by the CP/Q system kernel, to hold all the information
relevant to a particular task. The format is defined in
the SVC Handler manual.

TSS. Task State Segment. A type of processor control
segment architected by Intel in the design of the x86
processors. In particular, it includes the register save
area for a task.

In a CP/Q system, there is one TSS used by all tasks
(the task change is performed by software within this
TSS), and there are certain other TSS's set up by
SLEEP which are used when starting CP/Q and also
when the system traps back to the debugger.

X
XPT. Auxiliary Page Tables. Are used by the Memory
Manager to manage virtual memory. For each active
segment that has any virtual memory allocate, there is a
pointer to an XPT Directory block.

X-4 Application Programming Reference

 Index

A
Allocation Functions

CPAllocBase 13-1
CPAllocMem 13-5
CPAllocRange 13-9

C
Change Object Functions

CPChangeAttr 16-1
CPShrinkSize 16-3

CPAllocBase 13-1
CPAllocMem 13-5
CPAllocRange 13-9
CPAlterRange 20-1
CPChangeAttr 16-1
CPCommit 17-1
CPCreateMsgQ 24-3
CPCreateMsgQAcc 24-5
CPCreateProc 24-8
CPCreateProcAcc 24-12
CPCreateRange 20-3
CPCreateSerSem 24-16
CPCreateSerSemAcc 24-18
CPCreateSyncSem 24-21
CPCreateSyncSemAcc 24-24
CPCreateTask 24-27
CPCreateTaskAcc 24-30
CPCreateTimerBlock 24-33
CPCreateTimerBlockAcc 24-35
CPCreateUItem 24-37
CPCreateUItemAcc 24-39
CPCreateUserInt 24-42
CPCreateUserIntAcc 24-46
CPDecommit 17-3
CPDelete 25-2
CPDeleteProc 25-4
CPDeleteTimer 25-7
CPDeleteUserInt 25-9
CPFix 19-1
CPFixObj 19-5
CPForceNPPages 20-6
CPFork 24-49
CPFreeObj 14-1
CPFreeRange 14-3, 15-1
CPFreeVerify 18-1
CPGetMem 15-5
CPGetProcID 22-6
CPGetProcName 22-5
CPGetVersion 20-8

CPGiveEffProc 23-2
CPGiveMem 15-8
CPNoSwap 20-9
CPQueryAuth 22-2
CPQueryEffProc 22-4
CPQueryObjectState 20-15
CPQueryOwn 20-11
CPQueryProc 22-7
CPQueryProcRes 22-10
CPQueryProcSVIDs 22-13
CPRealAddr 20-18
CPRemoveNPPages 20-20
CPSetEffProc 23-3
CPSetProcDfltLimit 23-5
CPSetProcMaxLimit 23-7
CPShrinkSize 16-3
CPSwap 20-22
CPTrkCancel 26-2
CPTrkCancelAll 26-4
CPTrkRequest 26-6
CPTrkRequestAll 26-8
CPUnfix 19-9
CPUnfixObj 19-11
CPVerify 18-3
Creating system resources

CPCreateMsgQ 24-3
CPCreateMsgQAcc 24-5
CPCreateProc 24-8
CPCreateProcAcc 24-12
CPCreateSerSem 24-16
CPCreateSerSemAcc 24-18
CPCreateSyncSem 24-21
CPCreateSyncSemAcc 24-24
CPCreateTask 24-27
CPCreateTaskAcc 24-30
CPCreateTimerBlock 24-33
CPCreateTimerBlockAcc 24-35
CPCreateUItem 24-37
CPCreateUItemAcc 24-39
CPCreateUserInt 24-42
CPCreateUserIntAcc 24-46
CPFork 24-49

D
date 10-2
Deallocation Functions

CPFreeObj 14-1
CPFreeRange 14-3

 Copyright IBM Corp. 1989-1994, 1996-1998 X-5

F
Functions

Set Process 23-1

G
GET_ID queue 6-5
Glossary X-1

I
Interrupts 9-2, 9-5

FLIH 9-2, 9-5
SLIH 9-2, 9-5
User exits 9-2, 9-5

M
Memory Fixing Functions

CPFix 19-1
CPFixObj 19-5
CPUnfix 19-9
CPUnfixObj 19-11

Memory Manager Calls
CPAllocBase 13-1
CPAllocMem 13-5
CPAllocRange 13-9
CPAlterRange 20-1
CPChangeAttr 16-1
CPCommit 17-1
CPCreateRange 20-3
CPDecommit 17-3
CPFix 19-1
CPFixObj 19-5
CPForceNPPages 20-6
CPFreeObj 14-1
CPFreeRange 14-3, 15-1
CPFreeVerify 18-1
CPGetMem 15-5
CPGetVersion 20-8
CPGiveMem 15-8
CPNoSwap 20-9
CPQueryObjectState 20-15
CPQueryOwn 20-11
CPRealAddr 20-18
CPRemoveNPPages 20-20
CPShrinkSize 16-3
CPSwap 20-22
CPUnfix 19-9
CPUnfixObj 19-11
CPVerify 18-3

Memory Manager return codes B-1
Memory Verification Functions

CPFreeVerify 18-1
CPVerify 18-3

Miscellaneous Functions
CPAlterRange 20-1
CPCreateRange 20-3
CPForceNPPages 20-6
CPGetVersion 20-8
CPNoSwap 20-9
CPQueryObjectState 20-15
CPQueryOwn 20-11
CPRealAddr 20-18
CPRemoveNPPages 20-20
CPSwap 20-22

O
Obtaining Real Addresses

CPFix 19-1
CPFixObj 19-5
CPRealAddr 20-18

Q
Query Process States

CPGetProcID 22-6
CPGetProcName 22-5
CPQueryAuth 22-2
CPQueryEffProc 22-4
CPQueryProc 22-7
CPQueryProcRes 22-10
CPQueryProcSVIDs 22-13

R
Removing system resources

CPDelete 25-2
CPDeleteProc 25-4
CPDeleteTimer 25-7
CPDeleteUserInt 25-9

Resource manager
fault codes C-2
internal error codes C-3
return codes C-1

Resource Tracking
CPTrkCancel 26-2
CPTrkCancelAll 26-4
CPTrkRequest 26-6
CPTrkRequestAll 26-8

Return Codes - Memory Manager B-1
return codes, resource manager C-1

S
Set Process Functions

CPGiveEffProc 23-2
CPSetEffProc 23-3
CPSetProcDfltLimit 23-5
CPSetProcMaxLimit 23-7

X-6 Application Programming Reference

Shared Object Functions
CPFreeRange 15-1
CPGetMem 15-5
CPGiveMem 15-8

Sparse Object Functions
CPCommit 17-1
CPDecommit 17-3

SVC A-1
date 10-2
function summary A-1
read/write FPU registers 8-10
return codes A-3
specific functions

BEEP_IT 10-1
CHECK_ID 6-1
CHG_PRTY 8-1
CLAIMSEM 5-1
CMOS_READ 11-1
COUNT_MESG 4-1
CRIT_ENTER 8-3
CRIT_LEAVE 8-4
CRT_SLIH 9-2
DEL_SLIH 9-5
DISP_RET 2-7, 10-6
DISP_RET2 2-6
FALT_TASK 8-5
GET_ID 6-5
GET_SDA 11-2
GET_TIME 10-2
GO_TASK 8-7
ID_NAME 6-4
INT_WAIT 2-1
MUX_WAIT 2-3
P_TRACE (Intel) 8-10
PEEK_MESG 4-2
QRY_ID 6-3
QRY_SEM 5-3
READ_UITEM 11-3, 11-11
RECV_MESG 4-6
REL_SEM 5-4
SEM_CLEAR 3-1
SEM_SET 3-2
SEM_SETWAIT 3-3
SEM_WAIT 3-5
SEND_MESG 4-11
SEND_RECV 4-15
SET_DATE 10-4
SET_PRE 8-20
SET_TIME 10-5
SIG_INTERRUPT 7-1
SIG_MASK 7-3
SIG_RETURN 7-5
SIG_SEND 7-6
SIG_STACK 7-8
SIG_VEC 7-10
SLEEP 10-6
SPLIT_RECV 4-24

SVC (continued)
specific functions (continued)

SPLIT_SEND 4-19
STOP_TASK 8-21
SVCTRACE 11-5
TASK_HALT 8-9
TIMER_CNCL 10-7
TIMER_SET 10-8
TIMER_TICK 10-12
TRAN_ID 6-8

summary list A-1
time and date 10-2

SVC Counts 11-7
SVC handler task fault codes A-5
System Calls

specific functions
CPBeep 10-1
CPCheckID 6-1
CPChgPriority 8-1
CPCMOSRead 11-1
CPCountMsg 4-1
CPCritEnter 8-3
CPCritLeave 8-4
CPFaultTask 8-5
CPGetCDA 11-2
CPGetTime 10-2
CPGoTask 8-7
CPHaltTask 8-9
CPIntWait 2-1
CPMuxWait 2-3
CPPeekMsg 4-2
CPPTrace (Intel) 8-10
CPQueryID 6-3
CPReadUItem 11-3, 11-11
CPRecvMsg 4-6
CPResolveID 6-4
CPResolveName 6-5
CPSemClaim 5-1
CPSemClear 3-1
CPSemQuery 5-3
CPSemRelease 5-4
CPSemSet 3-2
CPSemSetWait 3-3
CPSemWait 3-5
CPSendMsg 4-11
CPSendRecvMsg 4-15
CPSetPreempt 8-20
CPSetTime 10-5
CPShortYield 2-6
CPSleep 10-6
CPSplitMsg 4-19
CPSplitRecvMsg 4-24
CPStopTask 8-21
CPSVC 11-4
CPSVCTrace 11-5
CPSVid2TCB 6-8
CPSysCreateSLIH 9-2

 Index X-7

System Calls (continued)
specific functions (continued)

CPSysDeleteSLIH 9-5
CPTaskRegs 8-23
CPTCB2SVid 6-8
CPTimerCancel 10-7
CPTimerSet 10-8
CPTimerTick 10-12
CPYield 2-7, 10-4, 10-6
kill 7-6
sigblock 7-3
siginterrupt 7-1
sigpause 7-3
sigreturn 7-5
sigsetmask 7-3
sigstack 7-8
sigvec 7-10

T
task fault codes A-5
time and date 10-2

U
User-defined installable kernel extensions

INTEL 24-43

X-8 Application Programming Reference

/XRL/1

Artwork Definitions

id File Page References

TXTQ CPQSET
 i

LERS Definitions

id File Page References

SAMEPG LSLAPL1 SCRIPT
i 2-1, 3-1, 4-1, 5-1, 6-1, 7-1, 8-1, 10-1, 11-1

NEWPG LSLAPL1 SCRIPT
i 2-2, 2-6, 2-7, 3-1, 3-3, 3-5, 4-1, 4-6, 4-11, 4-15, 4-19,

4-24, 5-2, 5-4, 6-2, 6-4, 6-5, 6-8, 7-2, 7-5, 7-6, 7-8, 7-10,
8-2, 8-4, 8-5, 8-7, 8-9, 8-10, 8-20, 8-21, 8-23, 9-1, 9-5,
10-1, 10-4, 10-5, 10-6, 10-7, 10-8, 10-12, 11-1, 11-3,
11-4, 11-5, 11-11

Table Definitions

id File Page References

SUM1 RSLSUMS
 A-1 A-1, A-1
SUM2 RSLSUMS
 A-1 A-1
RET1 RSLSUMS
 A-3 A-3, A-3
RET2 RSLSUMS
 A-3 A-3
FLT1 RSLSUMS
 A-5 A-5, A-5
FLT2 RSLSUMS
 A-5 A-5
STP1 RSLSUMS
 A-6 A-6, A-6
STP2 RSLSUMS
 A-6 A-6

Figures

id File Page References

PMFIG RSLSVC3
 4-3 4-1
 4-2
RMFIG RSLSVC3
 4-7 4-2
 4-7
SMFIG RSLSVC3
 4-12 4-3
 4-12
SSFIG RSLSVC3
 4-21 4-4
 4-20
SRFIG RSLSVC3
 4-25 4-5
 4-25
DRFIG RSLPTRCE
 8-11 8-1
 8-11, 8-11
IFPRFIG RSLPTRCE
 8-12 8-2
 8-11, 8-13
IREGFIG RSLPTRCE
 8-14 8-3
 8-14, 8-14
IQTFIG RSLPTRCE
 8-17 8-4
 8-16

/XRL/2

CPUIFIG RSLPTRCE
 8-17 8-5
 8-18
REGCOD RSLSVC7
 8-24 8-6
 8-23
TBLOCK RSLSVC10
 10-2 10-1
 10-2
QOUTBUF NSLRMQRY
 22-7 22-1
QRESBUF NSLRMQRY
 22-10 22-2
QPSBUF NSLRMQRY
 22-14 22-3
STKCAL NSLRMUIN
 24-44 24-1
 24-43
STKINT NSLRMUIN
 24-45 24-2
 24-44

Headings

id File Page References

SVHNOTE LSLAPL1 SCRIPT
1-1 Chapter 1, Section Notes

DISPRET RSLSVC1
2-7 CPYield (DISP_RET) - Return to Dispatcher

 10-6
RCVMSG RSLSVC3

4-6 CPRecvMsg (RECV_MESG) - Receive a Message
TIMTIK RSLSVC10

10-12 CPTimerTick (TIMER_TICK) - Setup a Timer Event
 10-8
FUNCSTR RSLPMM

13-1 Chapter 13, Allocation Functions
FUNCEND RSLPMM

20-1 Chapter 20, Miscellaneous Functions
CRACC NSLRMCRE

24-1 Creation access checks
ECPROC NSLRMCRE
 24-8 CPCreateProc
ECTASK NSLRMCRE
 24-27 CPCreateTask
CREUIN NSLRMCRE
 24-43 Implementation Notes

24-42, 24-47, 24-47
FKPROC NSLRMCRE
 24-49 CPFork
TRKREQ NSLRMTRK
 26-6 CPTrkRequest
TRKREQA NSLRMTRK
 26-8 CPTrkRequestAll
SVCFUNC RSLSUMS
 A-1 SVC Functions
SVCFALT RSLSUMS

A-5 SVC Handler Task Fault Codes
 A-6
RETSS RSLMRETC

B-1 Appendix B, Memory Manager return codes
PFER RSLMRETC

B-2 Page Fault Handler Fault Handling
OOPS RSLMRETC

B-3 Memory Manager internal error codes
 B-2, B-3
RMOOPS NSLRMRET

C-3 Resource Manager internal error codes
 C-2

/XRL/3

Index Entries

id File Page References

SVCC1 RSLSVC1
 2-1 (1) System Calls
 (2) specific functions

2-3, 2-6, 2-7, 3-1, 3-2, 3-3, 3-5, 4-1, 4-2, 4-6, 4-11, 4-15,
4-19, 4-24, 5-1, 5-3, 5-4, 6-1, 6-3, 6-4, 6-5, 6-8, 6-8, 7-1,
7-3, 7-3, 7-3, 7-5, 7-6, 7-8, 7-10, 8-1, 8-3, 8-4, 8-5, 8-7,
8-9, 8-10, 8-20, 8-21, 8-23, 9-2, 9-5, 10-1, 10-2, 10-4,
10-5, 10-6, 10-6, 10-7, 10-8, 10-12, 11-1, 11-2, 11-3,
11-4, 11-5, 11-11

SVCI1 RSLSVC1
 2-1 (1) SVC
 (2) specific functions

2-3, 2-6, 2-7, 3-1, 3-2, 3-3, 3-5, 4-1, 4-2, 4-6, 4-11, 4-15,
4-19, 4-24, 5-1, 5-3, 5-4, 6-1, 6-3, 6-4, 6-5, 6-8, 7-1, 7-3,
7-5, 7-6, 7-8, 7-10, 8-1, 8-3, 8-4, 8-5, 8-7, 8-9, 8-10, 8-20,
8-21, 9-2, 9-5, 10-1, 10-2, 10-4, 10-5, 10-6, 10-6, 10-7,
10-8, 10-12, 11-1, 11-2, 11-3, 11-5, 11-11

ALLOCF RSLPMM
 13-1 (1) Allocation Functions
 (2) CPAllocBase
 13-5, 13-9
MCALLS RSLPMM

13-1 (1) Memory Manager Calls
 (2) CPAllocBase

13-5, 13-9, 14-1, 14-3, 15-1, 15-5, 15-8, 16-1, 16-3, 17-1,
17-3, 18-1, 18-3, 19-1, 19-5, 19-9, 19-11, 20-1, 20-3,
20-6, 20-8, 20-9, 20-11, 20-15, 20-18, 20-20, 20-22

DEALOC RSLPMM
 14-1 (1) Deallocation Functions
 14-1, 14-3
SHAREF RSLPMM

15-1 (1) Shared Object Functions
15-1, 15-5, 15-8

CHANGEF RSLPMM
16-1 (1) Change Object Functions

 16-1, 16-3
SPARSEF RSLPMM

17-1 (1) Sparse Object Functions
 17-1, 17-3
VERF RSLPMM

18-1 (1) Memory Verification Functions
 18-1, 18-3
FIXF RSLPMM

19-1 (1) Memory Fixing Functions
19-1, 19-5, 19-9, 19-11

GETREAL RSLPMM
19-1 (1) Obtaining Real Addresses

19-1, 19-5, 20-18
MISCF RSLPMM
 20-1 (1) Miscellaneous Functions

20-1, 20-3, 20-6, 20-8, 20-9, 20-11, 20-15, 20-18, 20-20,
20-22

Revisions

id File Page References

A1ED27 NSLREVS
 i 27th Edition
A1ED28 NSLREVS
 i 28th Edition
S3V23 NSLREVS
 i
MMED13 NSLREVS
 i
RMED13 NSLREVS
 i
FS21 NSLREVS
 i
SMED6 NSLREVS
 i
LDED19 NSLREVS
 i
RMED12 ?

/XRL/4

 ? ?
25-4, 25-4, 25-4, 25-5

Tables

id File Page References

SVHFC RSLSUMS
 A-5 A-3
 A-6

Processing Options

Runtime values:
Document fileid ... LSLAPL1 SCRIPT
Document type ... USERDOC
Document style ... IBMXAGD
Profile ... EDFPRF40
Service Level .. 0032
SCRIPT/VS Release .. 4.0.0
Date .. 98.06.17
Time .. 14:33:59
Device ... PSA
Number of Passes .. 3
Index ... YES
SYSVAR G ... INLINE
SYSVAR X ... YES

Formatting values used:
Annotation .. NO
Cross reference listing ... YES
Cross reference head prefix only ... NO
Dialog ... LABEL
Duplex .. YES
DVCF conditions file ... (none)
DVCF value 1 ... (none)
DVCF value 2 ... (none)
DVCF value 3 ... (none)
DVCF value 4 ... (none)
DVCF value 5 ... (none)
DVCF value 6 ... (none)
DVCF value 7 ... (none)
DVCF value 8 ... (none)
DVCF value 9 ... (none)
Explode ... NO
Figure list on new page .. NO
Figure/table number separation ... YES
Folio-by-chapter .. YES
Head 0 body text .. (none)
Head 1 body text .. Chapter
Head 1 appendix text ... Appendix
Hyphenation ... NO
Justification ... NO
Language .. ENGL
Keyboard .. 395
Layout ... OFF
Leader dots .. YES
Master index ... (none)
Partial TOC (maximum level) ... 4
Partial TOC (new page after) ... INLINE
Print example id's ... NO
Print cross reference page numbers .. YES
Process value ... (none)
Punctuation move characters,
Read cross-reference file ... (none)
Running heading/footing rule ... NONE
Show index entries ... NO
Table of Contents (maximum level) ... 4
Table list on new page ... YES
Title page (draft) alignment .. RIGHT
Write cross-reference file ... (none)

/XRL/5

Imbed Trace

Page 0 CPQSET
Page 0 NSLREVS
Page 2-1 RSLSVC1
Page 3-1 RSLSVC2
Page 4-1 RSLSVC3
Page 5-1 RSLSVC4
Page 6-1 RSLSVC5
Page 7-1 RSLSVC6
Page 8-1 RSLSVC7
Page 8-9 RSLPTRCE
Page 9-1 RSLSVC8
Page 9-4 RSLSVC9
Page 10-1 RSLSVC10
Page 11-1 RSLSVC11
Page 11-4 RSLSTRCE
Page 12-1 RSLPMM
Page 13-4 RSLMFALT
Page 13-8 RSLMFALT
Page 13-13 RSLMFALT
Page 14-2 RSLMFALT
Page 14-3 RSLMFALT
Page 15-4 RSLMFALT
Page 15-7 RSLMFALT
Page 15-10 RSLMFALT
Page 16-2 RSLMFALT
Page 16-4 RSLMFALT
Page 17-2 RSLMFALT
Page 17-4 RSLMFALT
Page 18-2 RSLMFALT
Page 18-4 RSLMFALT
Page 19-4 RSLMFALT
Page 19-8 RSLMFALT
Page 19-10 RSLMFALT
Page 19-12 RSLMFALT
Page 20-2 RSLMFALT
Page 20-5 RSLMFALT
Page 20-7 RSLMFALT
Page 20-8 RSLMFALT
Page 20-10 RSLMFALT
Page 20-14 RSLMFALT
Page 20-17 RSLMFALT
Page 20-19 RSLMFALT
Page 20-21 RSLMFALT
Page 20-23 RSLMFALT
Page 21-1 NSLRMQRY
Page 22-14 NSLRMSET
Page 23-8 NSLRMCRE
Page 24-43 NSLRMUIN
Page 24-52 NSLRMREM
Page 25-10 NSLRMTRK
Page A-1 RSLSUMS
Page A-9 RSLMRETC
Page B-4 NSLRMRET
Page C-4 RSLGLOSS

