

IBM Secureway Cryptographic Products
IBM 4758 PCI Cryptographic Coprocessor

CP/Q Operating System Overview for
Original Equipment Manufacturers

First Edition, June 1998

This edition of the Design and Implementation Guide is for CP/Q Version 1 Driver 16.

Comments or queries concerning this document should be addressed to:

Security Solutions and Technology Department
IBM Corporation
8501 IBM Drive
Charlotte, North Carolina 28262-8563

 Copyright International Business Machines Corporation 1992-1994, 1996, 1997, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Preface . v

Introduction

Chapter 1. Introduction . 1-1
CP/Q Kernel . 1-1
Performance . 1-5

Chapter 2. CP/Q Program APIs and Documentation 2-1
Application Programming Interfaces . 2-1

Kernel services . 2-1
C Runtime library . 2-1

Interface Types . 2-1

Design and Implementation

Chapter 3. CP/Q System Structure . 3-1
Process/Task Structure . 3-1

Process/Task Organization . 3-1
System Resources . 3-3
Access Permissions . 3-3
Effective Process . 3-4
Considerations . 3-4

Supervisor/User Privilege . 3-5
Supervisor Table, SVid's, Id Translation . 3-6
Inter-task Communication . 3-6

Messages . 3-7
Shared Memory . 3-7
Semaphores . 3-7
User defined SVT entries . 3-8

External Interrupt Handling . 3-8
Shared Interrupt Levels . 3-10

Fault Handling Structure . 3-10
CP/Q Memory Model Overview . 3-12

Linear Memory Layout . 3-13
Memory sharing . 3-14
 Privilege levels . 3-15
CP/Q Memory Protection and Access Hierarchy 3-16
Memory Ownership . 3-16
Process Memory Limits . 3-16

Real Storage Allocation and Sparse Objects 3-16
CP/Q Memory Model Specifics . 3-17

Linear Memory Layout . 3-17
Memory sharing . 3-18

Warning . 3-21
Code Sharing/Loader . 3-21
Intel Privilege level terminology . 3-22

Supervisor Level vs IOPL . 3-23
CP/Q Memory Protection and Access Hierarchy 3-23

 Copyright IBM Corp. 1992-1994, 1996, 1997, 1998 iii

Memory Ownership . 3-24
Real storage management . 3-24

Real storage regions and categories . 3-24
Real storage types . 3-24

Memory object granularity and alignment 3-25

Chapter 4. RAS Considerations . 4-1
Process Separation . 4-1
Supervisor vs. User protection . 4-1
Privilege change . 4-2
Read-only code . 4-2
Resource recovery . 4-2
Resource limits . 4-3
Access protection for kernel objects . 4-3

Chapter 5. Dynamic, Modular System Considerations 5-1
Dynamic Subsystems . 5-1

Start-up Race Conditions . 5-1
Dependencies on Dynamic Subsystems . 5-2

Call vs. Inter-Task Interfaces . 5-4

Chapter 6. Fault Handlers . 6-1
Assigning Fault Handlers . 6-1

Halt and Fault Messages . 6-1
Fault Handler Hierarchy . 6-1
Percolation . 6-2

Supplied Fault Handlers . 6-2
SCC Manager . 6-2

Glossary and Abbreviations . X-1

Index . X-5

 Figures

3-1. A sample process hierarchy . 3-2
3-2. Flow diagram for SVC Handler FLIH 3-9
3-3. Flow Diagram for SVC Handler Fault Handling 3-11
3-4. Linear Memory Layout . 3-14
3-5. Linear Memory Layout . 3-19
3-6. Loader - Code Sharing . 3-22

iv CP/Q System Overview

 Preface

This book provides information on application design and implementation for the
CP/Q Operating System.

Chapter 1, “Introduction” on page 1-1 discusses the purpose and functional
characteristics of the operating system.

Chapter 2, “CP/Q Program APIs and Documentation” on page 2-1 contains
information on program interfaces for CP/Q and their documentation.

Chapter 3, “CP/Q System Structure” on page 3-1 describes the basic kernal
concepts and facilities of the CP/Q system.

Chapter 4, “RAS Considerations” on page 4-1 discusses the RAS features of
CP/Q.

Chapter 5, “Dynamic, Modular System Considerations” on page 5-1 talks about
considerations for programming applications and subsystems in the dynamic CP/Q
system.

Chapter 6, “Fault Handlers” on page 6-1 discusses the Fault Handler facilities in
CP/Q and how they handle failures.

 Copyright IBM Corp. 1992-1994, 1996, 1997, 1998 v

vi CP/Q System Overview

 Introduction

 Copyright IBM Corp. 1992-1994, 1996, 1997, 1998

CP/Q System Overview

 Chapter 1. Introduction

CP/Q is a high-performance 32-bit operating system developed by the IBM
Research Division. It was designed and implemented for use in embedded system
applications.

Examples of embedded systems are adapter cards, input/output (I/O) control units
and system control applications. Typical requirements for these systems are critical
I/O performance, high availability and robust recovery.

CP/Q directly addresses these requirements through optimized interrupt handling
paths, extensive fault notification facilities and an architecture for coordinating
resource recovery (both kernel implemented resources and application managed
resources).

In addition, CP/Q is highly modular. The kernel provides core operating system
functions, but has very few hardware requirements beyond a 32-bit central
processing unit (CPU) with virtual memory management support (CP/Q is a virtual
memory system, but does not implement demand paging to auxiliary storage; see
“Virtual and Real memory management” on page 1-3). In today's speech, CP/Q
can be considered a micro-kernel because it can act as the core of a more
elaborate system built up in layers around the core.

The system's modularity allows it to scale well from relatively small applications to
large, complex environments. Its modular design also allows CP/Q, when running
on a PC workstation, to provide a rich code development environment, including
such features as file systems, screen/keyboard support, TCP/IP (this is a port of the
Berkeley Networking Distribution from 4.3BSD, and uses the Sockets API), an
interactive command shell, and source-level debuggers. There is even a port of the
MIT X-Window R11.4 Server (currently implemented on the Intel version of CP/Q),
which allows X client programs on other systems to open windows on a system
running CP/Q. This is useful, for example, when doing edit/compile/link work on a
remote UNIX system.

When code development is complete, the extra subsystems are simply left out of
the final system. There is no recompile necessary: Because of the system's
modular design, all subsystems reside outside the kernel, and a system rebuild
takes just a few seconds to collect individual load modules into an IPL image.

Because of the kernel's minimal hardware requirements, it is highly portable across
32-bit virtual memory processors. Originally implemented on the Intel x86
processors it has also been ported to the PowerPC architecture. Apart from their
32-bit address size, these two architectures are very different. The successful
implementation of CP/Q on each is strong evidence of its portability.

 CP/Q Kernel
The CP/Q kernel provides basic operating system services to all parts of the
system. The processor is directly managed by the CP/Q kernel. The kernel
provides the following types of services:

 Copyright IBM Corp. 1992-1994, 1996, 1997, 1998 1-1

Process and Task management: In CP/Q terminology, a task is the dispatchable
unit of execution. Tasks are grouped into processes. Processes are the boundary
of resource ownership. Resource control and recovery are provided at the process
level.

One of the most important resources is memory, so an address space can be
equated with a process.

A high performance, preemptive dispatching mechanism is provided. It is interrupt
driven with no time slicing, although time slicing can be optionally compiled into the
kernel.

Tasks can share code and data with other tasks, either in the same process or in
other processes.

Inter-task Communication: CP/Q provides queued, asynchronous message
passing between tasks. Messages have a priority associated with them, and can
be received out of band by filtering a receive on such things as the sender's identity
or a user-defined message type field.

There are also two types of semaphores: synchronized and serialized. Combined
with the powerful memory management facilities of CP/Q, these allow efficient
implementation of cooperating tasks, while assuring a high level of integrity.

Device and Interrupt management: The only interrupt the kernel handles is the
timer-tick. All other interrupts pass through the kernel's First Level Interrupt
Handler (FLIH) code, but no further processing is performed beyond saving
required state and reenabling interrupts to allow other interrupt levels to continue (if
the hardware allows such processing)1. The FLIH code causes any Second Level
Interrupt Handlers (SLIHs) which have registered for the particular interrupt level to
be made dispatchable before the FLIH returns from the interrupt.

SLIHs are simply tasks running in the system which have I/O privilege and have
registered with the kernel to become a SLIH for a particular interrupt level. When
they register, they indicate which of three methods will be used to dispatch them:

� Sending a message to their task message queue
� Clearing a synchronization semaphore
� Completing a CPIntWait Supervisor Call (SVC) which the SLIH would have

issued to block until the interrupt arrived

Since SLIHs are just tasks in the system, and they don't run on the interrupt
context, all system services are available to them.

SLIHs can be added and removed from the system dynamically.

There are also facilities to install user-exits off the FLIH code for an interrupt level
when performance is extremely critical. This is compiled into the kernel, and runs
on the interrupt context so it is therefore more limited in what services are
available.

1 Clock and interrupt controller programming are the two areas that the kernel is inevitably hardware platform specific. This is
recognized, and it is understood that CP/Q will need to be customized slightly in this area for certain platforms.

1-2 CP/Q System Overview

The CP/Q kernel is fully reentrant, and as far as possible runs with interrupts
enabled to reduce interrupt latency.

The kernel does not architect a particular device driver model. It is felt that
customers understand their particular devices best, and there is no reason for the
operating system to dictate how devices should be presented in the system.

Timer: The timer tick rate is configurable at build time (assuming that is possible
in the hardware platform). This allows control over the granularity of timer services.
There are three types of timer services available:

 � SVC timeouts
 � CPSleep SVC
 � Asynchronous timers

Any potentially blocking SVC in the kernel provides an optional timeout value as
one of its parameters.

The CPSleep SVC allows a task to block for a specified period of time.

Asynchronous timers cause tasks to be notified when a time event occurs. Both
single-shot and repetitive timers are provided.

CP/Q also provides current date and time in user accessible memory locations that
are maintained by the kernel.

Virtual and Real memory management: CP/Q is a virtual memory system. This
should not be confused with a demand paging system which uses auxiliary disk
storage to over-commit real memory. While demand paging is possible with CP/Q,
and may be added as an option in the future, it is not appropriate for most
embedded applications because of the delays it introduces into system operation.

CP/Q makes use of virtual memory to achieve such things as address space
separation for increased reliability (by minimizing the possibility of random data
corruption, for example). Also, virtual memory eliminates such concerns as
garbage collection. Physical pages need not be contiguous in a virtual memory
range, so the Memory Manager can collect together any available physical pages
when allocating new memory objects. Recovery of memory is also facilitated: when
a process is removed from the system, the Memory Manager simply reclaims the
physical pages in its address space.

Performance is not negatively affected by having virtual memory active: today's
processors have very efficient virtual memory implementations which employ
caches and pipelining to great effect. There is also the additional consideration of
coding efficiencies that a virtual memory operating system allows, which can further
offset any cost there might be in hardware execution time. One example would be
the elimination of code to detect and recover from data corruption: address space
protection can protect the data. Also, code is always read-only when loaded in
CP/Q, so there is no possibility of its being corrupted. A real memory system
cannot provide these facilities, so additional code must be added to applications to
achieve the desired reliability (and in many cases, there is no possibility of reaching
the reliability provided by virtual memory).

 Chapter 1. Introduction 1-3

CP/Q has facilities for handling different types of physical memory, such as normal
RAM, ROM, cachable memory and I/O mapped memory (device memory), so it is
quite flexible in adapting to different hardware platforms.

It can also assist in dealing with Direct Memory Access (DMA) I/O. The system
can return physical addresses of memory objects, including lists of physical
memory blocks which comprise a single virtual object. It can also assist in
managing contiguous physical memory regions for I/O purposes.

The Memory Manager provides such services as memory allocation, freeing,
sharing and changing memory attributes (e.g., from read-only to read-write).
Memory can be allocated in three different virtual regions:

Private Only appears in the current process. There are facilities for sharing
memory between processes (aliasing), which can be used on Private
memory.

Common Designed to be shared among processes, but the sharing is under
application control. It is useful when there is a subset of processes that
must all use a particular memory object (to share data, for example), but
protection is desired from the remaining processes in the system.
Common memory can either share underlying physical storage, in which
case changes made by one process are visible in all other processes
with access to that object, or the memory can be copied (effectively, a
snapshot at the time that sharing is established with each new process).
Once a copied Common object is accessed by a new process, each
process is working on its own private copy of the memory.

Global Appears in all processes. Memory objects allocated in Global appear at
the same location in all processes, and share the underlying physical
storage.

Within an address space there is additional protection afforded by supervisor
versus user page access. Supervisor pages cannot be written over by user-level
tasks. Note that supervisor does not imply kernel: there can be supervisor
application tasks and user application tasks. Supervisor tasks are usually
associated with I/O privilege, and they also have additional privileges in terms of
operating system services.

Resource management: The CP/Q Resource Manager coordinates resource
allocation and recovery. The Resource Manager also monitors per-process
allocation limits on such things as memory and kernel-defined objects (e.g., the
number of subtasks a process can create). These limits are configurable, and can
be specified as new processes are created.

In some sense, operating systems can be defined by the resources they manage.
Since CP/Q is highly modular, and the kernel implements only core resources such
as memory, tasks and semaphores, there is a need to involve additional
components in kernel operation, particularly in the area of process creation and
removal. These additional components are called Resource Providers, and there is
an architecture in CP/Q for allowing Resource Providers to register with the
Resource Manager and become part of process creation and removal.

For example, in the case of process removal, the Resource Manager will send a
message to each Resource Provider indicating which process is being removed.
The Resource Provider can then do whatever is appropriate for the resources it

1-4 CP/Q System Overview

manages. In the case of the CP/Q File I/O Subsystem, all buffers can be flushed,
and open files closed. The Resource Provider then sends a message back to the
Resource Manager indicating the disposition of the process. When the Resource
Manager has heard from all Resource Providers, it can continue with process
removal, finally calling the Memory Manager to remove the address space.

Security and Integrity: CP/Q protects the system by providing mechanisms to
control the use of resources in the system. Limits can be placed on resource
utilization. Access to resources is controlled and only allowed when authorized.
Failures are detected and appropriate resources are recovered.

 Performance
The primary objective of CP/Q is high performance for basic kernel functions. We
provide here a sampling of performance numbers for some common base operating
system functions. The performance numbers are (rounded) measured results, not
theory.

These measurements were made on two different systems:

PS/2 Model 80-071 PS/2 Model 70-B21
16 MHz 80386 25 MHz 80486
1 wait state / memory access 0-2 wait states

no external 2nd level cache

Unless otherwise noted, times are measured from the call instruction which invokes
the service to the return instruction which completes the service. This does not
include time to set up registers or any high-level language overhead.

The following provides more detailed performance information.

Task switch: To perform a basic task switch takes about 15 µseconds on the
above 386 Model 80, and about 3.4 µseconds on the above 486 Model 70. This
time includes all kernel processing for a running task to give up control of the
processor, a task switch to occur, and the next task to be given control of the
processor.

Inter-task communication: To send a short2 message to another task takes
about 65 µseconds on the above 386 Model 80, and about 16 µseconds on the
above 486 Model 70. To receive the message from the queue takes about 57
µseconds on the above 386 Model 80, and about 17 µseconds on the above 486
Model 70.

A common scenario is:

1. Task A sends a short message to task B
2. A task and process switch occurs, task B becomes active
3. Task B receives the message
4. Task B sends a short reply to task A
5. A task and process switch occurs, task A becomes active
6. Task A receives the reply

This complete scenario takes about 334 µseconds on the above 386 Model 80, and
about 82 µseconds on the above 486 Model 70. The timing for this last scenario

 Chapter 1. Introduction 1-5

assumes that the tasks are in different CP/Q processes3, and includes the time for
a CP/Q process change occurring with each task switch.

Serialization: In this scenario, a high priority task waits on a semaphore. The
system switches (task switch) to a lower priority task which clears the semaphore.
The system task switches back to the higher priority task which resumes execution.
The total scenario takes about 158 µseconds on the above 386 Model 80, and
about 45 µseconds on the above 486 Model 70.

Software Interrupt Latency: Software Interrupt Latency is defined here as the
time elapsed from the processor passing control to the first instruction in the first
level interrupt handler to the time at which the second level interrupt handler is
dispatched and begins executing user-supplied interrupt code. We do not have a
set of measured results for interrupt response. However, for a task that has issued
a CPIntWait SVC, the interrupt latency on the above 386 Model 80 is approximately
38 µseconds, and on the above 486 Model 70 it is approximately 15 µseconds.

The interrupt latency time can be further reduced by including a "user exit" routine
linked directly into the SVC Handler first level interrupt handler code. In this case,
the interrupt latency (from the first interrupt instruction to the "user exit" routine
inside the SVC Handler first level interrupt handler) on the above 386 Model 80 is
approximately 6 µseconds, and on the above 486 Model 70 it is approximately 2.5
µseconds.

2 These are 28 byte messages, sent asynchronously; the time includes queuing services.

3 CP/Q tasks run inside CP/Q processes, possibly many tasks within one process. The CP/Q process notion allows for allocation
and recovery of resources such as system control blocks, memory, and address spaces.

1-6 CP/Q System Overview

Chapter 2. CP/Q Program APIs and Documentation

This chapter contains information on the program interfaces available in the CP/Q
environment; these interfaces are called Application Programming Interfaces, or
APIs.

Application Programming Interfaces
This section describes the APIs provided with CP/Q.

 Kernel services
CP/Q provides high-level language callable functions to access all kernel services.
These services include base supervisor functions (suspend, synchronization and
serialization, inter-task messaging, resource naming and identification, task control,
interrupt handler management, timer and some miscellaneous services), memory
management functions, and resource management functions. Some of these
functions require authorization.

These interfaces are documented in the manual CP/Q Application Programming
Reference.

C Runtime library
CP/Q provides a set of ANSI “C” functions. These are the “C” functions that are
documented in almost any book on “C” programming:. They include memory
allocation and manipulation functions, file system functions, low-level input output
functions, print functions, program control functions, scan functions, string functions,
translate functions, data type functions, and miscellaneous functions.

The C library routines provided with CP/Q are documented in the manual CP/Q C
Runtime Library.

The CP/Q++ interface details appear in IBM 4758 PCI Cryptographic Coprocessor
Custom Software Interface Reference.

 Interface Types
CP/Q provides a wide variety of programming interfaces to services supplied by the
kernel and system extensions. CP/Q can provide different levels of interfaces to
the same functional area.

Lower-level interfaces are often message-based interfaces. A higher-level “C”
interface is also available for the same set of functions.

Interfaces to functions and services in CP/Q come in two different styles, call and
message.

Call interfaces use the standard program call or function invocation paradigm. This
is a synchronous interface in which the calling program passes parameters to a
called function or service. The called program usually sets a return code and
optionally returns or alters passed arguments.

 Copyright IBM Corp. 1992-1994, 1996, 1997, 1998 2-1

Message interfaces use the CP/Q “send message” kernel function to transmit
information to the desired server (task or queue). The message is queued to the
service that performs the function. This provides for asynchronous invocation of a
service. The server receives the message from the queue, performs the requested
function and sends a reply message to indicate the results. These interfaces are
documented by describing the contents of these messages.

The minimal possible CP/Q system contains only the system kernel. The kernel
provides a set of programming interfaces. All other interfaces in the system are
optional and can be used only if the modules providing the corresponding services
are configured in the system when it is built.

2-2 CP/Q System Overview

Design and Implementation

 Copyright IBM Corp. 1992-1994, 1996, 1997, 1998

CP/Q System Overview

Chapter 3. CP/Q System Structure

CP/Q provides a basic kernel which implements the basic structure and
programming model of the system. On top of this basic kernel, subsystems can be
added, either by selecting ones provided with the CP/Q system and/or by user
written ones. The notion of a kernel in CP/Q is much “leaner” than what many
systems consider to be their kernel. For example, a file system or loader are both
subsystems outside the CP/Q kernel.

The CP/Q kernel does define the basic programming model of the system. It
defines the basic things like processes, tasks, the memory model, interrupt and
fault handling, and inter-process/inter-task communication facilities. The remainder
of this chapter contains sections describing the basic kernel concepts and facilities
followed by a section on the subsystems provided with the CP/Q system.

 Process/Task Structure
The purpose of this section is to provide information concerning the CP/Q process
and task structure. Before continuing, some basic CP/Q concepts are presented:

Process A CP/Q process is a system entity that can acquire system resources.
Such system resources include memory, tasks, semaphores, message
queues, timers, and kernel extensions. Each process has associated
with it an address space. Resource accounting is generally performed
at the process level. Processes are arranged in a tree structured
hierarchy, with the special process "SYSTEM" at the top of the tree.
Apart from the process "SYSTEM", each process in the system also
"belongs" to the process immediately higher in the tree (its "parent").
The process is the resource allocation, tracking, and recovery boundary.

Task A CP/Q task is the basic unit of runnable code within the system. A
task is a single thread of execution that can be separately dispatched.
The CP/Q system kernel keeps details of each task in an associated
Task Control Block (TCB) and a Supervisor Table entry (SVT). There
can be more then one task in a CP/Q process. The number of tasks
that a process can own at one time is determined by the resource limits
for that process.

 Process/Task Organization
Processes are organized hierarchically (tree-structured); the hierarchical structure is
defined by application programs and reflects the independence of sub-modules
within the application for resource acquisition and recovery purposes. Each
process can be named or unnamed; and both types of processes are accessible to
other processes in the system.

The processes in a CP/Q system define the user's view of the system, just as files
define the user's view of his stored data. The Resource Manager provides the
interfaces required to manipulate processes and resources allocated to them.

An overview of the principal functions provided by the Resource Manager is
presented in the following subsections.

 Copyright IBM Corp. 1992-1994, 1996, 1997, 1998 3-1

Assume that the processes that are defined in a sample CP/Q system are arranged
as follows:

 ┌──────────────┐

 │System Process├──┐

 └──────────────┘ │

 │

 │

 6

┌────────┐ ┌────────┐ ┌────────┐ ┌────────┐ ┌────────┐ ┌────────┐

 │ SFH │%──┤ TIMER │%──┤ SHELL │%─┤ LOADER │%─┤RECOVERY│%─┤ SS │

└────────┘ └────────┘ └────────┘ └────────┘ └────────┘ └────────┘

 & & &

 │ └──────┐ │

 │ 6 6

 ┌─────┴──┐ ┌────────┐ ┌────────┐

│ XX │%──┤ YY │ │ TT │

 └────────┘ └────────┘ └────────┘

 & &

 │ └─────┐

 │ 6

 ┌────┴───┐ ┌────────┐

│ X1 │%─┤ X2 │

 └────────┘ └────────┘

Figure 3-1. A sample process hierarchy

In Figure 3-1, a box represents a process. Boxes labelled with double capital
letters are “named.” (Thus, the named processes are XX, YY, SS and TT). The
system process, containing the CP/Q Resource Manager and Memory Manager
kernel tasks, points to the youngest process (SS) at the top level of the hierarchy.
Sibling processes at each level are linked as shown by the horizontal arrows. Each
process has a link to its older sibling. Vertical arrows connecting the boxes in the
figure show parent/child relationships. For example, processes X1 and X2 are child
processes of process XX. Process XX is the parent process for processes X1 and
X2. Each process has a link to its parent process and a link to its youngest child
process. In this discussion, “young” and “old” denote chronological order of
creation.

In the sample illustration (Figure 3-1), assume that a command shell task runs in
the SHELL process, a loader task runs in the LOADER process, that processes XX,
YY and TT are all removable, and that SS is not removable. The SHELL process
can “see” both named and unnamed processes in the system. Any request to
remove SS is denied, because it is defined to be non-removable. The process TT
can be removed. Process XX cannot be removed until its child processes X1 and
X2 have been removed. If, however, a task fault occurs in SS, a fault report is sent
to the fault handler for SS, who in this case (not shown in the figure) is the System
Fault Handler (SFH). The action of the SFH issued with the default CP/Q system is
to wait for a fault message. Once that message is received by the SFH, the SFH
crashes the system. The default issued SFH can be replaced if so desired.

Each process has a base dispatch priority that is computed (at creation time) by
adding a non-negative number to the base priority number of the parent process1.
There exists an inverse relationship between the numerical value of the base

1 The system process in the above figure has a base dispatch priority of 0. The priority number 0 is reserved for the system fault
handler.

3-2 CP/Q System Overview

priority of a process and the dispatchability of tasks within that process. The higher
the base priority number of a process, the less favored the dispatchability of tasks
in that process relative to tasks of other processes. The dispatchability of any task
within a process can be adjusted provided it does not exceed (or numerically be
less than) the base dispatch priority computed above.

A task is a system resource owned by a process. Each process can have zero or
more tasks. The number of tasks that a process can own at one time is
determined by the resource limits for that process.

A task can reference a process directly (through its process ID) or indirectly (as the
process which owns a certain resource). So it is not generally necessary to know
the process ID.

 System Resources
System resources, such as processes, tasks, message queues and semaphores
can be marked “removable” or non-removable at creation time. “Removable”
system resources can be dynamically created and removed by issuing requests to
the Resource Manager. System resources marked “non-removable” are those
whose removal causes error, such as the SYSTEM process, and cannot be
removed for the lifetime of the running CP/Q system. If an attempt is made to
create a non-removable system resource within a removable process, the created
system resource is created removable.

 Access Permissions
Some system resources, such as tasks and semaphores, have access permissions
based upon task, process, or privilege level. Such access restrictions can be
specified upon creation of the system resource.

A task can query information about any system resource within the running system,
named or unnamed.

A task can create system resources by calling one of the Resource Manager
system resource creation functions listed in the “Creating System Resources”
chapter of the CP/Q Application Programming Reference manual. Memory is a
special system resource handled by the Memory Manager. See the “Memory
Manager Calls” chapter of the CP/Q Application Programming Reference manual
for details of system calls for creating and manipulating memory.

Note: The memory creation function malloc() is not a Memory Manager system
call, but a C Runtime Library call. malloc() may call the Memory Manager to
request more memory.

The default operation of the Resource Manager system resource creation functions
is to create the system resource as owned by the caller's process - the caller being
the caller of the system resource creation function. If a new process is being
created, by default it is created as a child of the caller's process.

The system resource creation functions do have options to allow the newly created
system resource to be owned by another process in the process hierarchy rather
than the caller's process. However, the Resource Manager does place restrictions
on the scope where a new system resource can be created within the process
hierarchy from a task's point of view.

 Chapter 3. CP/Q System Structure 3-3

A task can only create system resources in a process if at least one of the following
is true:

� The process that is to own the system resource is the same as, or a
descendant of, the caller's process.

� The process that is to own the system resource is the effective process of the
caller.

 Effective Process
Each CP/Q task has the concept of an effective process. Generally, the effective
process for a task is the process owning the task. However, under special
circumstances it can become necessary for a task to perform an operation on a
different process than its own process. A task that has the privilege to change its
effective process might act on other processes besides its own.

For example, a loader process, responsible for installing load modules into memory,
has a need to change its effective process in order to carry out its function. For
example, the loader receives a request from task A in process A to load a program
into process B. The loader first validates that task A has permission to affect
process B. If this validation was successful, then the loader task changes its
effective process to process B in order to create code and data memory objects
within process B. Process B is charged for these allocated memory objects. The
loader then makes aliases to the created code and data memory objects in process
B in order to insert the load module code and data sections into these created
memory objects. After the loader task has finished processing the load request for
process A, the loader task sets its effective process back to the loader process (the
process owning the loader task) and wait for the next loader request.

The ability of a task to change its effective process is useful when creating memory
aliases in other processes and also to create system resources in other parts of the
process hierarchy. The effective process is charged for the system resources
created on its behalf.

A task is required have “set effective process privilege” in order to have the ability
to change its effective process. Effective process privilege can be specified at task
creation time, provided the caller of the create task function has also set effective
process privilege. Set effective process privilege can also be granted to a task by
another task that already has this privilege.

 Considerations
Because there can be more than one task in a process, some thought has to be
given by system designers on how to organize their specific process/task hierarchy.
One extreme is to have a single task in each process. The advantage is address
space isolation, tasks cannot readily affect other tasks because each is in a
different address space. Data is protected from potential corruption by tasks
outside the current process. This can greatly reduce the scope of damage that a
corrupt task can cause. A disadvantage of this scheme is that tasks cannot share
memory without using specific features of the CP/Q Memory Manager Tasks within
this setup use global memory or call the Memory Manager to alias or share
memory between processes.

Another extreme is to have all user tasks attached to the same process. The
advantage is that all data is available to every task because all tasks are in the

3-4 CP/Q System Overview

same address space. The disadvantage is that a corrupt task can very well affect
other tasks and cause them to be corrupted. The system designer is required to
balance what is appropriate for their environment. See Chapter 4, “RAS
Considerations” on page 4-1 for further discussion on this topic.

Another tradeoff involves privilege level, supervisor or user. System resources
attached to a process, such as semaphores, tasks, and message queues that are
marked for supervisor privilege only cannot be accessed by a user mode task
within the same process. Supervisor privilege tasks can access both user and
supervisor mode objects within their process.

Depending on the processor architecture running CP/Q, there can exist a
performance tradeoff in terms of task switch time. "Task switch time" is defined in
this context as the time actually required to change tasks once the decision to
switch tasks has been made by the kernel. See “Call vs. Inter-Task Interfaces” on
page 5-4 for further discussion on this topic.

There is a performance tradeoff on the Intel x86 architecture for a task switch with
or without a process switch. A task switch with a process switch takes markedly
longer than that for no process switch. A small part of this difference is due to
executing a few extra instruction within the SVC Handler task switch code.
However, most of the diffference is due to the side effects of the processor purging
its page translation Translate Lookaside Buffer (TLB) when changing the address
space on a process switch.

 Supervisor/User Privilege
Virtually all modern processors, including the Intel x86 architecture, have at least
two “modes” or “privilege levels.” These are referred to here as supervisor mode
and user mode. Supervisor mode is reserved for such things as the operating
system kernel, and “trusted” code that, for example, does input-output to hardware
devices. User mode is used for “application” tasks. Supervisor mode programs
and facilities are protected (by the processor) from corruption or use by user mode
programs.

Some systems use supervisor mode for the system kernel, and user mode for
everything else. CP/Q also uses supervisor mode for the kernel (which is defined
to be the sum of the SVC Handler, the Memory Manager and the Resource
Manager), but in addition supports both supervisor and user mode tasks in the
system. Supervisor mode is used for tasks such as device drivers, which do I/O, or
tasks which load or control other tasks in the system. User mode is used for
everything else.

The Intel x86 architecture has defined four different privilege levels or “rings.” CP/Q
uses ring 0 (the most privileged) as supervisor mode, and ring 3 (the least
privileged) as user mode; CP/Q does not support the use of privilege levels 1 and
2.

 Chapter 3. CP/Q System Structure 3-5

Supervisor Table, SVid's, Id Translation
Elements of the CP/Q system are defined by entries in the Supervisor Table,
henceforward referred to as the SVT. Such an element is specified in an SVC by
its Supervisor Identifier or SVid, which consists of the index in the SVT of the entry
for that system element and an “incarnation number.” If an SVT entry is deleted,
and is then re-assigned to a new system element, the incarnation number is
increased, so that the SVid of the same SVT entry has changed.

The index is held in the least significant 16 bits of a 32-bit value, and the
incarnation number is held in the most significant 16 bits. The value 0xFFFF is
never used for the incarnation number, because the value 0xFFFFxxxx is used in
SVid fields for special purposes.

In general, SVT entries that are accessible to other elements of the system have
names. Because a CP/Q system is completely configurable, and is built according
to the specifications of the system designer, it is in general impossible to predict the
SVid's of system elements. Therefore the SVC Handler provides a service of
translating system element names to SVids.

There is a complication that can arise with the GET_ID SVC, particularly during
system start-up, whereby the SVT entry that some task wishes to access does not
exist, even though it is known that it is created at some point during system
initialization (this is sometimes called a start-up “race” condition). Hence, the SVC
Handler implements a queue associated with the GET_ID SVC, whereby a task
seeking the SVid of something has the option of waiting until the required item is
created. This GET_ID queue is a single system-wide queue; it is scanned
(assuming it contains something) every time an SVT entry is created, to see if the
new SVT entry satisfies a pending request. The GET_ID queue uses the normal
wait queue pointers within the TCB (these are described below); it ignores the
queue index fields required for the implementation of MUX_WAIT SVCs.

Access to a system entity (as defined by an SVT entry) can be restricted. In
particular, access can be restricted to supervisor mode code, or to the system
elements within the “process” to which the SVT entry belongs. For example, the
SVT contains a semaphore, used by the SVC Handler to control access to the
SVT. This semaphore is restricted to supervisor mode code. An attempt to access
this semaphore by user mode code results in a software detected fault in the
corresponding task.

 Inter-task Communication
The CP/Q tasks, with the assistance of the SVC Handler, can communicate with
one another through the following ways:

� Messages to task and/or system message queues
 � Shared memory
 � Semaphores
� User defined SVT objects

3-6 CP/Q System Overview

 Messages
Messages can be used both for passing data between tasks and for
synchronization, simultaneously if required (note that semaphores can also be used
for synchronization). Messages are sent by SEND_MESG and SPLIT_SEND
SVCs. Messages are received by RECV_MESG and SPLIT_RECV SVCs.
Messages are uni-directional; the system has no architected notion of a “reply” to
message. If the target of a message is to reply, it merely sends another message
back, but in general this is independent of the sent message.

Every message sent has a message id allocated by the system as it is sent (both
the sender and receiver of the message know this id). Also, each message can
have a “type” allocated by its sender. Using these two facilities enables us to
define a convention whereby two cooperating tasks can communicate
synchronously, that is the sender of a message (which is some request, for
example) can wait for the reply to his request. This is achieved by the receiver of
the first (request) message setting the “type” field of the second (reply) message to
the id of the request message. The sender of the request can then do a
RECV_MESG which specifies to wait for a message with the “type” set to the id of
the request message.

There is a special SVC, namely SEND_RECV, which does both the send and the
receive in a single SVC. For the cases where a reply is expected to a request (and
there are many of them), using SEND_RECV in place of SEND_MESG followed by
RECV_MESG saves one SVC Handler return to the caller plus one entry to the
SVC Handler. This can markedly improve system performance.

Each message requires a system block called a Request Queue Element (RQE).
The number of these is limited; this means that if a task goes into a loop sending
messages that are not being received, then after a short while the system runs out
of available RQEs, leading to system failure. There is a facility available to check
on the number of messages sent by each task that have not been received, and
fault the task if this number exceeds a system limit.

 Shared Memory
Shared memory can be used for a variety of purposes, including assisting in
inter-task communication. One method of obtaining permanent shared memory is,
when the task or tasks concerned are added to the system, to place them within
the same process, with the result that they have the same address space.
Alternatively, explicit requests can be made to the Memory Manager. See the
Memory Manager manual for more details.

Program code can be shared between multiple copies of the program by loading it
into “common” or “global” class memory. See the Memory Manager manual and
the loader manual for more details.

 Semaphores
Semaphores come in two “flavors”:

� Resource semaphores, also called serialization semaphores, are used to
enforce serial access to some system resource, or simply to serialize the action
of multiple tasks. Tasks claim the semaphore, but only one task is allowed to
hold the semaphore at once; the others are queued (in chronological order),
and suspended until the semaphore becomes available. When the task holding

 Chapter 3. CP/Q System Structure 3-7

the semaphore has completed its activity, it releases the semaphore; the
semaphore is then given to the next waiting task, which is restarted - the other
waiting tasks continue to await their turn.

� Synchronization semaphores are used to notify tasks of some event. Any
interested task sets the semaphore, and wait till it is cleared. When the
semaphore is cleared, all tasks waiting for that semaphore are restarted.

User defined SVT entries
User defined SVT entries consist of an SVT entry with a name supplied by its
creator, and 24 bytes of data that can be written and/or read by any task that has
access to the SVT entry. This provides a means for a task to set up some data
that can be found by other tasks by specifying the name of the SVT entry in a call
to the CPResolveName function.

External Interrupt Handling
Hardware interrupts, except for those the timer (“decrementer” on POWER
architecture) handles specially within the SVC Handler, are routed to a first level
interrupt handler (FLIH) within the SVC Handler. The FLIH notifies every task that
has been nominated to be a second level interrupt handler (SLIH) for that interrupt
level, in the manner expected by that task (this can be by a message, by clearing a
semaphore, or by terminating an INT_WAIT). The destination tasks can be of
higher dispatch priority than the interrupted task, so that a task change then takes
place.

The flow diagram for such an interrupt handler is shown in Figure 3-2 on page 3-9.
The interrupt handler is running as the interrupted task up to the point at which the
switch to the selected task occurs. When the interrupted task is next scheduled to
run, the change to that task brings control to the “recover registers” near the end of
the SVC Handler FLIH; the SVC Handler then returns control to the original task at
the point at which it was interrupted.

The second level interrupt handler runs as an ordinary task (but possibly with a
high dispatch priority), and is entered by being resumed at its current instruction,
rather than being entered at the beginning through an interrupt or jump instruction.
It receives the interrupt as a message, or by the clearing of a semaphore, or by
issuing INT_WAIT SVCs. This approach makes for a simple design for the system
kernel. It also makes for simple design of interrupt handlers - they are just
“ordinary” tasks, issuing “normal” SVCs. When an interrupt occurs, the save and
restore of the current context (i.e. registers) is handled automatically by the system
- the interrupt handler does not have to save the registers of another task, or worry
about changing stacks, for example.

There is an additional facility whereby a “user exit” routine can be called from within
an SVC Handler FLIH. Such a user exit routine is coded by the user, and the SVC
handler is recompiled with the appropriate items included in the configuration file -
see the SVC Handler manual for further details. The routine is then included into
the SVC Handler module at link edit time. The user exit routine is called from
within the scan of the SLIB chain for that interrupt, as shown in Figure 3-2.

An SVC Handler FLIH does not normally interrogate any I/O ports, attempt to
dismiss interrupts, or issue I/O commands to devices (such as “end of interrupt” to
the interrupt controller. Actions of this nature are left to the interrupt handler tasks

3-8 CP/Q System Overview

 FLIH

SVC Handler entered because

of external interrupt

(interrupts are disabled)

 │

 6

 save registers

 │

 6

set up pointer to the ICB

for this interrupt level

 │

 6

set up pointer to first SLIB

for this interrupt

 │

 ┌──────────────5│

│ 6 yes

│ is pointer at end of chain ────────────────────────────────────┐

 │ │ │

 │ │ no 6 no

│ 6 yes is task change ──────┐

 │ SVid=FFFFxxxx?──────────────────┐ flag set? |

 │ │ │ │ │

 │ │ no │ │yes │

 │ 6 no 6 6 │

│ SVid in this SLIB ────┐ call user exit clear task change flag │

│ is valid? │ routine │ │

 │ │ │ (compile time │ │

│ │ yes │ option) 6 │

│ 6 │ │ change to the new task │

│ notify the SLIH of │ │ │ │

 │ the interrupt │ │ │ │

 │ │ │ │ │%────────────┘

 │ │%────────────┘%──────────┘ 6

 │ 6 recover registers

│ set pointer to next return to interrupted code

│ SLIB in chain

 │ │

 │ │

 └───────────────┘

Figure 3-2. Flow diagram for SVC Handler FLIH

(or the user exit routine). The SVC Handler FLIH's sole responsibility for a given
interrupt is to post and start the nominated interrupt handler tasks. One obvious
exception to this is the system timer, which is handled entirely by the SVC Handler.
The only other exception to this rule arises when a hardware interrupt occurs from
an interrupt level for which there is no SLIH, and for which either there is no
compiled-in user exit routine, or the exit routine did not handle the interrupt. In this
case, the SVC Handler sets the appropriate bit in the External Interrupt Mask
Register (EIM) of the interrupt controller, and issue the necessary End of Interrupt
(EOI) commands. This has two effects. First, no more interrupts arise from that
level, and second, interrupts continue from lower priority interrupt levels.

 Chapter 3. CP/Q System Structure 3-9

Shared Interrupt Levels
The SVC handler allows for multiple SLIHs for a hardware interrupt level, either
with or without a user exit routine called from the FLIH. That is, there are facilities
to share a hardware interrupt level between more than one device driver task.
When a hardware interrupt level is shared, it is up to the different device driver
tasks to each decide if this interrupt is really from the device serviced by that
device driver; if not, it can simply ignore the interrupt. The device driver that
decides it is it's interrupt, after taking any necessary or appropriate action, issues
the appropriate “End of Interrupt” command to the interrupt controller. Be aware
that this can produce problems at run time. There are at least two particular cases:

� If there is one or more SLIHs for a level (either with or without a user exit
routine), but none of them recognizes the interrupt as its own, and
consequently does not clear it or issue the appropriate EOI commands to the
interrupt controller, then no more interrupts are received from that level, or from
lower priority interrupt levels.

Currently, the SVC Handler does not recognise this problem.

� If there is a user exit routine and no SLIH for a level, and if an interrupt occurs
which is not handled by the user exit routine, then the interrupt is masked by
the SVC Handler, which results in the exit routine not receiving any further
interrupts.

The SVC Handler might easily detect this problem (currently it does not), but
because there is no architected method of clearing an interrupt from a device
because every device is different, the SVC Handler cannot readily correct this
problem.

Fault Handling Structure
Almost all modern processors detect program or system faults (interrupts). These
can in general be classified into two categories:

 � System faults

These are faults that indicate there is something wrong with the operating
system, or there is a hardware problem.

On Intel systems, these are:

– Non-Maskable Interrupt (NMI), interrupt 2
– Double exception, interrupt 8
– Invalid task sate segment, interrupt 10

 � Program faults

These are faults specific to the current running task or program. This category
includes such items as page faults, protection faults, floating point unit not
available, and so on.

Certain other program events, notably the task terminating, are handled in
exactly the same way as the task faulting.

The issued CP/Q system does not handle system faults, they result in a system
abend if they occur. Note that NMI on Intel systems, is used by the system
debugger probe NAP to provide the facility of returning to the SLEEP debugger
when the system is running.

3-10 CP/Q System Overview

Interrupt 14 (Intel)

enter SVC handler

 │

 6

 save registers

set up stack frame

 │

 Other Faults no 6

┌────────is it a page fault?

SVC handler entered through " │

a trap gate │ │yes

 │ │ 6

6 │ call Memory Manager

save registers │ page fault routine

set up stack frame │ │

 │%────────────────┘ no 6

│%────────────────────────was fault cleared?

 6 │

trace fault if │yes

tracing is enabled 6

│ remove stack frame

 6 recover registers

set fault code into TCB return to task by RFI

 disable interrupts

 │

 │

 6 yes

is task in a "critical section"?─────────5system abend

 │

 │ no

 6 no

does task have a fault handler?─────────5system abend

 │

 │ yes

 6

generate message to fault handler

post fault handler task

 │

 6

mark current task as "stopped"

remove task from dispatch chain

 │

 6 no

is "taskchange" set?─────────────5perform dispatch scan

 │ │

 │ yes 6

 6 change task

 change task

Figure 3-3. Flow Diagram for SVC Handler Fault Handling

The SVC handler contains code to receive notification of all program faults from the
processor, and handles them in the following way (see figure Figure 3-3 on
page 3-11):

� The task concerned is faulted, that is it is stopped, and information is put into
the associated Task Control Block (TCB) to indicate why the task was stopped.

� A message is sent to the fault handler of the failing task, as specified by a field
in the TCB.

 Chapter 3. CP/Q System Structure 3-11

Apart from this, the SVC Handler takes no action whatsoever on program faults.
Each task has defined a fault handler. As far as the SVC Handler is concerned,
the fault handler is simply a task which is notified if the task in question has faulted
or terminated. For example, tasks that are loaded by the Command Shell issued
with CP/Q have the Shell as the fault handler. It is also possible for a debugger
task to take some other task under test; then the debugger is made the fault
handler of the task being tested. It is left to the fault handler task to decide what to
do about the faulted task; thus, if the shell is told that a task it loaded has
terminated, the shell might well decide to remove that task from the system. A
debugger, on the other hand, probably inserts break-points into the task it is testing,
and then it is notified (as a form of program fault) when the task hits one of them.
The action that follows this event is dependent on the commands given by the user
to the debugger.

The SVC Handler assumes, if the faulted task is subsequently restarted, that some
external agency (possibly the fault handler task) has taken whatever action is
necessary to remove the cause of the fault, and the SVC Handler simply returns to
the interrupted task. The worst that can happen (if the fault has not been repaired)
is that the task immediately faults again.

The SVC Handler does contain code to handle all page faults, and simply fault the
task when they occur. However, this page fault handler in the SVC handler is not
normally used. Instead, a routine in the Memory Manager is called which handles
page faults. The Memory Manager examines the fault, and can allocate a physical
memory page if possible (that is, implement dynamic page allocation), in which
case the task is restarted, or it can reply to the SVC Handler that the task is to be
faulted.

CP/Q Memory Model Overview
The purpose of this section is to cover the basic memory model as implemented in
all versions of CP/Q. The information in this section provides the necessary
information for typical application programming. A following section covers the
memory model in more detail, including Intel version specific aspects of memory
management. Systems design and I/O programming requires consulting the
section specific to the Intel version.

The Memory Management component is responsible for managing the different
virtual address spaces as well as the physical address space (to include ROM,
device memory, normal RAM memory, and not-in-use address space).

The basic operations which are performed by the memory management component
are:

� Memory (object) allocation and de-allocation

� Change memory object attributes

� Sharing memory objects

� Fix/free memory for I/O

� Recover all memory resources from terminating process

All memory objects in CP/Q are in multiples of a page (4096 bytes) and are aligned
on page boundaries. Requests for sizes of less than a entire page or that are not
page multiples make inefficient use of real storage. Do not confuse the services

3-12 CP/Q System Overview

provided by the CP/Q Memory Manager with functions, like the C library functions
malloc() and free(), which manage memory contained within one or more memory
objects.

Linear Memory Layout
The total address range that is available to a program, at any given instant, is 4
gigabytes (32-bit addresses). The virtual memory mechanism provides a mapping
between these addresses and real storage addresses. This mechanism provides a
vehicle to implement a a virtual address space for each process. Having a
separate address space for each process provides isolation and protection between
processes in CP/Q. The use of the virtual memory mechanism of the processor
does not imply demand paging. CP/Q implements virtual memory but does not do
demand paging, in other words, paging to disk, and so on.

Each address space in CP/Q is made up of three different classes of memory. The
general layout of the classes is shown in Figure 3-4 on page 3-14. The classes
are made up as follows:

Global Objects in this class appear in all address spaces and have the same
attributes in all address spaces. This provides a simple system wide
method of memory sharing between processes. Typical objects in this
class include: the CP/Q kernel, the System Data Area (SDA), and
system kernel extensions and device drivers.

Note: In some implementations the kernel and SDA might not be
visible.

Common Objects in this class can appear in multiple address spaces, and can
have different attributes in different address spaces. The user has
control over which processes can access common objects and what
type of access they are allowed. This enables a more selective memory
sharing mechanism than simple global memory sharing. Depending on
version, common objects might or might not be located at the same
offset in each address space where they appear. There are two modes
in which common class objects manifest themselves in an address
space:

1. Shared Mode - for each address space in which the object exists,
reference is made to the same underlying physical pages. Each
address space in which the object exists, shares a single copy of
physical storage. The individual address spaces can have different
access attributes for the object (for example, Read/Only versus
Read/Write).

2. Copy Mode - In copy mode, a unique copy of the actual underlying
data is made for each address space in which the object exists.

Shared mode common objects behave in a manner quite similar to
System V shared memory.

Private Objects in this class appear only in a single address space. Aliases can
be created which maps private objects into another address space, but
in this case the object appears at a different offset in each address
space. Typical objects in this class include: stack, heap, and private
copies of code and data.

 Chapter 3. CP/Q System Structure 3-13

Classes

┌── ─ ────────┐

 │ Kernel │

├── ─ ────────┤

│ System Data Area │

└── ─ ────────┘

Global

┌── ─ ────────┐

│ Global Code and Data │

└── ─ ────────┘

┌───────┬───────┬───────┬───────┬───────┬───────┬ ─ ┬───────┐

│ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ │

├───────┼───────┼───────┼───────┼───────┼───────┼ ─ ┼───────┤

│ │ │ D │ │ │ D │ │ D │

│ │ │ (U/R) │ │ │ (U/R) │ │ (U/W) │

├───────┼───────┼───────┼───────┼───────┼───────┼ ─ ┼───────┤

│ C │ C │ │ C │ C │ │ │ │

│ (U/W) │ (U/R) │ │ (U/W) │ (U/W) │ │ │ │

Common └───────┴───────┴───────┴───────┴───────┴───────┴ ─ ┴───────┘

┌───────┬───────┬───────┬───────┬───────┬───────┬ ─ ┬───────┐

│ │ │ │ │ │ │ │ │

├───────┼───────┼───────┼───────┼───────┼───────┼ ─ ┼───────┤

│ B │ │ │ │ B │ │ │ │

│ (S/W) │ │ │ │ (S/R) │ │ │ │

├───────┼───────┼───────┼───────┼───────┼───────┼ ─ ┼───────┤

│ A │ │ A │ │ │ │ │ │

│ (U/R) │ │ (U/W) │ │ │ │ │ │

└───────┴───────┴───────┴───────┴───────┴───────┴ ─ ┴───────┘

┌───────┬───────┬───────┬───────┬───────┬───────┬ ─ ┬───────┐

│ │ │ │ │ │ │ │ │

│ │ │ │ │ ├───────┤ │ │

│ │ │ │ ├───────┤ PC6 │ │ │

Private ├───────┤ │ │ │ PB5 │ (S/R) │ │ │

│ ├───────┤ │ │ (S/W) ├───────┤ │ │

│ PB1 │ │ │ ├───────┤ │ │ │

│ (S/R) │ ├───────┤ │ │ │ │ │

├───────┤ PA2 │ │ │ ├───────┤ │ │

│ PA1 │ (U/W) │ PA3 │ │ │ PA6 │ │ │

│ (U/W) │ │ (U/W) │ │ │ (U/W) │ │ │

└───────┴───────┴───────┴───────┴───────┴───────┴ ─ ┴───────┘

Address 1 2 3 4 5 6 ... N

 Space

Note: U=user, S=supervisor and R=read only, W=writeable,

Figure 3-4. Linear Memory Layout

The basic unit of memory is the page (4096 bytes). This is the unit with which the
hardware virtual memory mechanism operates. It is also the basic unit on which
protection is implemented.

 Memory sharing
There are three levels of memory sharing provided by CP/Q's memory manager.

1. Global objects - These objects are located in the global class and appear
uniformly in all address spaces. Such objects are typically permanent with
respect to an IPL.

2. Shared objects - These objects are located in the common class. When
created, the object is only visible in the address space in which it is created.

3-14 CP/Q System Overview

Making an object visible in any other particular address space is done through
one of two styles of sharing:

a. Give - The creating process gives the object to another process through a
QMgivemem system call, which causes the object to appear in the target
process.

b. Get - A process requests access to an object through a QMgetmem call,
which causes the object to appear in the process.

When a common class object is created it is specified to be shareable by either
the give or get method. Secondly, the mode of the object is defined. These
affect how the underlying storage is managed.

Shared mode All users of a shared mode object view the same underlying
memory. This mode is a peer sharing approach. The underlying
memory remains until the last user departs. It is not necessary for
the creating process to remain. In the give style, however, no new
appearances of an object are possible once the creating process
has deleted the object. In contrast, with get mode, new users can
get access to an object as long as it exists in any address space.
The views in different process' address spaces need not be the
same, but the attributes of a view cannot be less restrictive than the
original attributes.

Copy mode In copy mode, a unique copy of the underlying memory is made
for each address space in which it exists. This is not a peer style
arrangement in that there is the notion of the original object, a copy
of which one is obtaining. Once the creator has deleted the object,
new copies cannot be obtained by either the give or the get
mechanism. However, those users who have already obtained a
copy, can retain it even after the original is gone. Note that the
copy of the original is made at the time the copy is requested. This
means that different users, in general, obtain different data in their
copy if the creator has updated the data because creation.

3. Aliases - This is a capability to provide access to an object (or part of an
object) located in another address space. The aliased area does not appear at
the same offsets in the two address spaces. These aliases are created by a
QMalias call and are intended for such functions as:

� Access to I/O buffers for file subsystems or device drivers.
� Debuggers or other system tools.

Such sharing is typically transitory and between a single pair of address
spaces.

 Privilege levels
The CP/Q system implements two levels of privilege, supervisor and user.
Supervisor privilege is referred to as being more privileged than user level. When
making a Memory Manager function call, the privilege level of the caller is
determined by the privilege level of the code making the actual Memory Manager
call.

 Chapter 3. CP/Q System Structure 3-15

CP/Q Memory Protection and Access Hierarchy
CP/Q uses the protection facilities of the processor architecture to provide
protection. Each CP/Q memory object has access attributes defined when they are
created. In order to maintain system integrity, a number of memory management
calls have restrictions about relaxing access to a memory object. The four possible
levels of accessibility of a memory object are listed below in order from most
restrictive to least restrictive.

 1. Supervisor/Read

 2. Supervisor/Write

 3. User/Read

 4. User/Write

Depending on the version and specific processor, not all levels of accessibility
might be distinguishable/operable. At a minimum however, user level code cannot
alter any supervisor object, nor can user code alter a read/only object.

 Memory Ownership
The resource ownership boundary in CP/Q is the process. When a memory object
is created, it's ownership is recorded in a specific process. This is the effective
process of the caller of the memory management call creating the object. Under
normal circumstances the effective process is the actual process of the caller. It is
possible to change effective process by using a Resource Manager function if
required. However, this is not normally the case in application code. Once an
object is created in an address space, it is visible to all tasks within that address
space, subject of course, to the protection mechanisms discussed above. Removal
of an object and certain other operations are restricted to the objects owner.

Process Memory Limits
CP/Q has per process and system wide limits which it manages on certain
resources. Virtual memory is one such resource and the Memory Manager ensures
that a process' virtual memory usage conforms to these limits.

Real Storage Allocation and Sparse Objects
When a memory object is created, one has two options with respect to the
assignment of real storage page frames to the object.

1. Assignment at allocation - when this option is requested page frames are
assigned for the entire object when it is allocated. This has the advantage of
synchronously ensuring, at the time of allocation, that sufficient real storage is
available to satisfy the request. It has the disadvantage that real storage is
consumed immediately and without regard to whether it is actually used or not.
Use this method, however, for critical items which cannot tolerate page faults,
and, on non-demand paged systems, for critical items which cannot tolerate the
risk of being faulted asynchronously, due to the Memory Manager being unable
to provide a page frame during page fault processing.

Implementers Note: Assignment on allocation is available as an option on all
memory manager allocation calls. It can also be forced as the standard
behavior by a compile time switch in the Memory Manager.

2. Assignment on use - when this option is requested no real storage is assigned
to the object when it is allocated. When a page within the object is referenced

3-16 CP/Q System Overview

for the first time, a page fault occurs and the Memory Manager assigns at that
time a page frame. This has the advantage that no real storage is used until/if
the page is actually needed. This has the effect of reducing the overall
demand for real storage. It has the disadvantage of a possible asynchronous
fault that can occur in a non-demand paged system if the Memory Manager did
not have a free page to clear the page fault.

Sparse objects do not follow either of the normal methods, described above, for the
assignment of page frames. When a sparse object is created no page frames are
assigned. In addition, the pages are marked in such a way that the Memory
Manager does not assign page frames when a page fault occurs. Instead, the
Memory Manager considers a page fault to be a fault and the task is faulted. The
only way that page frames are assigned are by explicit calls to the memory
manager to commit page frames to an area within a sparse object. A Memory
Manager call is also provided to decommit pages from a sparse segment. Sparse
objects are intended for things like system data structures where room can be
provided for dynamic growth of the data structures, but only in response to explicit
requests. This has the advantage of allowing offsets to be compiled in, or tables
built directly without the possible performance implications of resorting to linked lists
to manage dynamic growth of performance critical system data structures.

CP/Q Memory Model Specifics

Linear Memory Layout
The total linear address range that is available at any given instant is 4 gigabytes.
The paging mechanism provides a mapping between linear addresses and real
storage addresses. This mechanism uses a Page Directory (PD) and one or more
Page Tables (PT) to provide the translation between linear addresses and real
addresses. The processor's Control Register 3 (CR3) points to the Page Directory.
By changing the PD, by changing the contents of CR3, a new linear address
mapping can be made operative. Each mapping, or Page Directory, constitutes an
address space or virtual address space. A separate address space is provided for
each process in CP/Q.

Each address space in CP/Q is made up of three different classes of memory. In
turn, each class can be made up of one or more ranges of linear addresses. Each
class (and range within class) is aligned on four Mb boundary. The layout of the
classes is shown in Figure 3-5 on page 3-19. The classes are made up as
follows:

Global Objects in this class appear in all addresses spaces and have the same
attributes in all address spaces. These objects are mapped with a
single set of page tables, and each address space's page directory
points to these page tables. Typical objects in this class include: IPL
ROM; the CP/Q kernel; the System Data Area (SDA); a 1:1 linear to real
mapping for the page manager; and system kernel extensions and
device drivers.

Common Objects in this class can appear in multiple address spaces, and can
have different attributes in different address spaces. However, the
object appears at the same offset in any address space in which it
appears. In other words, common class objects always appear at the
same linear address range in each address space in which it appears.

 Chapter 3. CP/Q System Structure 3-17

Each address space has it's own page tables for this class, and there
are two modes in which common class objects manifest themselves in
an address space:

1. Shared Mode - for each address space in which the object exists,
the address space's page tables point to the same physical pages.
Each address space in which the object exists share a single copy
of storage. The individual page tables define the attribute of the
address space's access to the object.

2. Copy Mode - In copy mode, the linear address range is shared, but
a unique copy of the actual underlying data is made for each
address space in which the object exists. In addition, in copy mode,
there are two possible mechanisms for implementing the copy
function: immediate copy, and copy on write. These are discussed
further in the next section.

Typical objects in this class include programs, code and data. By
creating shared mode code objects and copy mode data objects for a
program, it is possible to share programs across multiple address
spaces with unique data objects in each process. In this architecture
this is the only class in which programs which have instance data, the
normal situation, can be shared.

Private Objects in this class only appear in a single address space. Address
spaces have their own page tables for this class. Page aliases can be
created which map private objects into another address space, but in
this case the object appears at a different offset in each address space.
Typical objects in this class include: stack, heap, and private copies of
code and data.

The Global class has a range of at least 128K located at 4G to accommodate the
power on/reset ROM addressing. All other ranges are configurable to allow the
system to be tailored to particular hardware configurations. In the actual
implementation the V=R mapping range starts at linear offset 0.

The basic unit of memory is the page (4096 bytes). This is the unit with which the
hardware, page directory and page tables, operate. It is also the basic unit on
which protection is implemented. A page can be user or supervisor and can have
read only or read/write access.

 Memory sharing
There are three levels of memory sharing provided by CP/Q's memory manager.

� Global objects - These objects are located in the global class and appear
uniformly in all address spaces. Such objects are generally permanent with
respect to an IPL.

� Shared objects - These objects are located in the common class. When
created their range of linear offsets are reserved in all address spaces. This
reservation of offsets does not make the object visible in any other address
space beside the creator's. Making an object visible in a particular address
space is done through one of two styles of sharing:

1. Give - The creating process gives the object to another process through a
QMgivemem call, which causes the object to appear at the reserved offsets
in the target process.

3-18 CP/Q System Overview

Classes Address

┌── ─ ────────┐ 4G

 │ ROM (128Kb) │

├── ─ ────────┤

 │ Kernel │

├── ─ ────────┤

Global │ Global Code and Data │

├───────────────────────────┬──────────────────── ─ ────────┤

 │ 6 │

 │ │

├── ─ ────────┤

│ System Data Area │

└── ─ ────────┤ 4G-64Mb

 │ & │

├───────┬───────┬───────┬───┴───┬───────┬───────┬ ─ ┬───────┤

│ │ │ D │ │ │ D │ │ D │

│ │ │ (U/R) │ │ │ (U/R) │ │ (U/W) │

 ├───────┼───────┼───────┼───────┼───────┼───────┼───┼───────┤

│ C │ C │ │ C │ C │ │ │ │

│ (U/W) │ (U/R) │ │ (U/W) │ (U/W) │ │ │ │

Common ├───────┼───────┼───────┼───────┼───────┼───────┼ ─ ┼───────┤

│ B │ │ │ │ B │ │ │ │

│ (S/W) │ │ │ │ (S/R) │ │ │ │

├───────┼───────┼───────┼───────┼───────┼───────┼ ─ ┼───────┤

│ A │ │ A │ │ │ │ │ │

│ (U/R) │ │ (U/W) │ │ │ │ │ │

├───────┴───────┴───────┴───────┴───────┴───────┴ ─ ┴───────┤ 1G

 │ & │

 │ │ │

│ ── ─ ┴ ─ ── │

 │ ┌───────┐ │

│ ┌───────┤ PC6 │ │

Private ├───────┐ │ PB5 │ (S/R) │ │

│ ├───────┐ │ (S/W) ├───────┤ │

│ PB1 │ │ ├───────┤ │ │

│ (S/R) │ ├───────┐ │ │ │ │

├───────┤ PA2 │ │ │ ├───────┤ │

│ PA1 │ (U/W) │ PA3 │ │ │ PA6 │ │

│ (U/W) │ │ (U/W) │ │ │ (U/W) │ │

├───────┴───────┴───────┴───────┴───────┴───────┴ ─ ────────┤ 64Mb

│ V = R Mapping │

└── ─ ────────┘ ð

Address 1 2 3 4 5 6 ... N

 Space

(Note: U=user, S=supervisor and R=read only, W=writeable, and so on)

Figure 3-5. Linear Memory Layout

2. Get - A process requests access to an object through QMgetmem call,
which causes the object to appear at the reserved offsets in the process.

When a common class object is created, it is specified to be shareable by
either the give or get method. Secondly, the mode of the object is defined.
These affect how the underlying storage is managed.

Shared mode All users of a shared mode object view the same underlying
memory. This mode is a peer sharing approach. The underlying
memory remains until the last user departs. It is not necessary for
the creating process to remain. In the give style, however, no new
appearances of an object are possible once the creating process
has deleted the object. In contrast, with get mode, new users can
get access to an object as long as it exists in any address space.
The views in different process' address spaces need not be the

 Chapter 3. CP/Q System Structure 3-19

same, but the attributes of a view cannot be less restrictive than the
original attributes.

Copy mode In copy mode, a unique copy of the underlying memory is made
for each address space in which it exists. This is not a peer style
arrangement in that there is the notion of the original object - a copy
of which one is obtaining. Once the creator has deleted the object,
new copies cannot be obtained by either the give or the get
mechanism. However, those users who have already obtained a
copy, can retain it even after the original is gone. The address range
does not become free until all users have deleted the object. Note
that the copy of the original is made at the time the copy is
requested. This means that different users, in general, obtain
different data in their copy if the creator has updated the data since
creation.

� Page Aliasing - This is a capability to provide access to an object (or part of an
object) located in another address space. The aliased pages do not appear at
the same offsets in the two address spaces. These aliases are created by a
QMalias call and are intended for functions such as the following:

– Access to I/O buffers for file subsystems or device drivers.
– Safe send messaging of large messages.
– Debuggers or other system tools.

Such sharing is typically transitory and between a single pair of address
spaces.

Copy on Write (COW) - there are a several ways in which to implement copy
mode objects. The copy on write technique offers some attractive features. This
has no direct underlying Intel processor architectural feature corresponding to this
attribute. When a common class object is created in an address space by a get or
give function with the copy mode, the page table entries for the object in the new
process are set up with the read only attribute, but the object is noted as being
copy on write. The original process' page tables are also changed to read only. As
long as all the processes access the object through reads, they continue to share
the same real storage page frames as the original object. If a process writes into
the object, a page fault occurs. The page fault handler recognizes that this is a
copy on write page frame, and create a unique copy of that page frame and enter it
in the page table of the process that did the write.

Note: The processor features needed to support Copy-on-Write are not available
on the 80386 processor. When running on an 80386, physical copying is always
performed. Note that DMA I/O into a page frame does not use the Page Tables
and therefore compromises COW. Therefore, DMA I/O cannot be performed directly
into Common Copy-on-Write objects. Make a page alias which forces a physical
copy to be made.

The net result is that each process has it's own logical copy of the object, but only
has a unique physical copy where the actual contents of a page frame have been
modified. This is very useful for creating independent data objects for use by code
across processes. The data objects appear at the same offset as required by the
single shared copy of the code object, but each data object has it's own copy of the
data object. If the data object has a large amount of constants, text, and so on, or
much of it is not typically used, then substantial savings in real storage are
possible. It is also possible to use copy mode with common code objects to create

3-20 CP/Q System Overview

a unique copy of a piece of shared code so that a debugger can insert breakpoints
that only stops a single thread of execution of that shared code.

 Warning
Copy-on-Write mode copy objects cannot be used for PL0 stacks as this causes
double faults.

 Code Sharing/Loader
A specific use of memory sharing is in the loading and management of programs.
With the memory management facilities described in this volume it is possible to
write a loader which enables programs to be shared among processes using only a
single copy of the code (and a single copy of any read only data pages). A linear
memory layout to support such a loader is shown in Figure 3-6 on page 3-22.

The loader runs as a separate process. When requested to load a shared program
module, it creates a common memory object, in it's own address space using
Memory Manager calls, for the code and data objects of the module. It reads the
objects in from the program module and fix up any relocatable offsets in the objects
to reflect the offsets where the code and data are loaded. It then gives shared
mode read only access to the code object to requesting process, and copy mode
write access to the data object. Copy on write is an attractive method of producing
the copies of data objects, particularly if they contain a large amount of constants.
It then creates in the address space of the requestor any stack and/or heap called
for by the module. The loader can then perform the other processing required to
complete the loading operation for that process. The loader retains it's copy of the
code and data objects as well as other module information, so that it can create
additional copies in other address spaces. Note that, for debugging of shared code
objects, it might be appropriate to create copy mode code objects so that the
debugger can insert breakpoints into the process code instance being debugged.

If a process requires a second copy of a program module to be loaded and
executed in the same address space, as a separate task, it is necessary to load a
second copy of the code and data objects into the private class for that process. It
is not possible, in any completely general way, to have a single code object refer to
two different data objects in the same address space, as the offsets of items in the
data objects are contained in the code object. It is possible, however, to create with
some care and forethought, programs in which there is either no data object or the
data object is read only. Such programs use automatic variables on the stack, or
dynamically allocated memory from either the heap or Memory Manager calls for all
instance data. Alternately, by programming convention the read/write data object
within the data module can contain only shared global data for the tasks
implemented by the module with all truly instanced data being automatic/dynamic.
Finally, the loader can also load a purely private copy of a program module into a
process' private memory. Ensure that the linker and/or language processors have
the capability to flag data objects as being read only or shared, so that the loader
can recognize whether the module can be shared by tasks within a process or
whether it has to load a completely separate copy.

The CP/Q Memory Manager facilities have been designed to enable a loader to
offer the facilities described above. These facilities also enable a dynamic link
capability to be implemented.

 Chapter 3. CP/Q System Structure 3-21

Classes

┌── ─ ────────┐

 │ ROM │

├── ─ ────────┤

 │ Kernel │

├── ─ ────────┤

Global │ System Data Area │

├── ─ ────────┤

│ Global Code and Data │

└── ─ ────────┘

┌── ─ ────────┐

│ V = R Mapping │

└── ─ ────────┘

┌───────┬───────┬───────┬───────┬───────┬───────┬ ─ ┬───────┐

│ │ │ │ │ │ │ │ │

├───────┼───────┼───────┼───────┼───────┼───────┼ ─ ┼───────┼

│ B data│ │ B data│ B data│ │ │ │ │

│ U/R │ │ U/W │ U/W │ │ │ │ │

│ orig.│ │ copy │ copy │ │ │ │ │

├───────┼───────┼───────┼───────┼───────┼───────┼ ─ ┼───────┼

│ B code│ │ B code│ B code│ │ │ │ │

Common │ U/R │ │ U/R │ U/R │ │ │ │ │

│ │ │ │ │ │ │ │ │

├───────┼───────┼───────┼───────┼───────┼───────┼ ─ ┼───────┼

│ A data│ A data│ │ A data│ A data│ │ │ │

│ U/R │ U/W │ │ U/W │ U/W │ │ │ │

│ orig.│ copy │ │ copy │ copy │ │ │ │

├───────┼───────┼───────┼───────┼───────┼───────┼ ─ ┼───────┤

│ A code│ A code│ │ A code│ A code│ │ │ │

│ U/R │ U/R │ │ U/R │ U/R │ │ │ │

│ │ │ │ │ │ │ │ │

└───────┴───────┴───────┴───────┴───────┴───────┴ ─ ┴───────┘

┌───────┬───────┬───────┬───────┬───────┬───────┬ ─ ┬───────┐

│ │ │ │ │A1 heap│ │ │ │

│ │ │ │ │ U/W │ │ │ │

│ │ │ ├───────┼───────┤ │ │ │

│ │ │ │A heap │A1stack│ │ │ │

│ │ │ │ U/W │ U/W │ │ │ │

│ │ │ ├───────┼───────┤ │ │ │

│ │ │ │A stack│A1 data│ │ │ │

Private ├───────┤ ├───────┤ U/W │ U/W │ │ │ │

│Loader │ │ ├───────┼───────┼───────┤ │ │

│ heap ├───────┤ │ │A1 code│C stack│ │ │

│ │ │ │ │ U/R │ U/W │ │ │

│ stack │ │B heap │B heap ├───────┼───────┤ │ │

│ │A heap │ U/W │ U/W │A heap │C data │ │ │

│ data │ U/W ├───────┼───────┤ U/W │ U/W │ │ │

│ ├───────┤ │ ├───────┼───────┤ │ │

│ code │A stack│B stack│B stack│A stack│C code │ │ │

│ │ U/W │ U/W │ U/W │ U/W │ U/R │ │ │

└───────┴───────┴───────┴───────┴───────┴───────┴ ─ ┴───────┘

Address Loader 2 3 4 5 6 ... N

 Space Process

(Note: U=user, S=supervisor and R=read only, W=writeable,

Figure 3-6. Loader - Code Sharing

Intel Privilege level terminology
The Intel architecture defines four privilege levels in protect mode operation of the
iAPX 80386 processor. These privilege levels are encoded as a two bit field in a
number of internal processor registers as well as in Intel defined memory
descriptors. The highest, most privileged level is defined as the numeric value of 0.
The lowest, least privileged level is defined as the numeric value of 3. Secondly,

3-22 CP/Q System Overview

the paging mechanism of the Intel processors has a second privilege mechanism at
the page level. At the page level, a page can be a user page or a supervisor page.
Programs executing with a CPL of 3 (PL3 selector in CS) are running at user level
and can only access user pages. Programs at all other privilege levels can access
both supervisor and user pages. This terminology can lead to some confusion.
This manual has adopted the following conventions for describing privilege level:

� Where possible the descriptive privilege level terminology of user and
supervisor is used.

� Qualitative references to privilege level like; “Requires more privilege” refer to
higher privilege levels which correspond to lower numeric values.

� Quantitative references to privilege level that refer to specific instances of
privilege level information like the IOPL, DPL, CPL or RPL fields refers to the
numeric value of the privilege level. Therefore, statements like “CPL are
required to be less than or equal to IOPL” refer to the numeric values, in this
case implying that CPL is required to have the same or greater privilege level
than IOPL.

Supervisor Level vs IOPL
The CP/Q Memory Manager, as written, does not assume that IOPL is necessarily
set to PL0, supervisor level. Therefore, some memory manager calls have
supervisor level as a prerequisite, while others have IOPL. The standard system
does, in fact, have IOPL set to PL0.

CP/Q Memory Protection and Access Hierarchy
CP/Q use the page level protection facilities of the Intel architecture to provide
protection. The access attributes of a CP/Q memory object is defined in terms of
the Intel architecture. In order to maintain system integrity, a number of memory
management calls have restrictions about relaxing access to a memory object. The
four possible levels of accessibility of a memory object are listed below in order
from most restrictive to least restrictive.

 1. Supervisor/Read2

 2. Supervisor/Write

 3. User/Read

 4. User/Write

An executing program has a protection level defined, either supervisor or user. The
level is defined as the current CPL, privilege levels 0-2 are defined as supervisor,
and privilege level 3 as user. A supervisor level program can access both user and
supervisor memory objects. A user level program can only access user level
objects. In either case the type of access is further limited by the setting of the
R/W bits3.

2 Not available when running on a 80386, as the the 80386 chip does not implement read-only/read-write protection at supervisor
level. All memory is writable at supervisor level. This also means that Copy-on-Write cannot be implemented on the 80386,
physical copies are done automatically.

3 Only at user level on 80386.

 Chapter 3. CP/Q System Structure 3-23

 Memory Ownership
The resource ownership boundary in CP/Q is the process. When a

Real storage management

Real storage regions and categories
The total real address space is divided into regions which fall into three possible
categories. The categories are:

� General purpose storage - physical memory which can be used to provide real
memory to back normal requests for memory objects. It consists of any one or
more general purpose physical memory regions which have defined to Memory
Manager. One or more initial regions of general purpose storage are defined
during the system build and IPL process. Additional regions can be defined by
Memory Manager calls and, as parameters to the memory task. At any given
moment each page frame in a general purpose region of storage is either on
the freelist (a list of pages available to satisfy normal allocation requests) or is
actually allocated to provide backing store to one or more memory objects.
Current Implementation Assumption: All general purpose storage is
assumed to be cachable and, is required to be located below 64MB in the
physical address space.
Standard Memory Configuration: When using the standard system on a PS/2
two regions of general purpose storage are defined through the system
build/IPL process. The system is built with a 2Mb region of memory beginning
at 1Mb. The size of this region can be specified through the SLEEP SYSPARM
MEMsize parameter. The IPL process, whether through a SLEEP go command
or an IPL through IPLCP386, defines an additional region from the top of
SLEEP/IPLCP386 to 636Kb (640 - the 4k extended BIOS data area).

� Adapter storage - memory which is not intended for general use. Typically,
such things as I/O adapter memory or other forms of memory mapped I/O.
Adapter storage is not available to satisfy normal memory allocation requests. It
can only be used to satisfy requests for specific physical addresses - that is
through function 97, QMallocbase. The system includes a memory object to
access the 386KB from 640k-1MB. The offset of this object is contained in the
first page of the CDA and can be obtained through a GET_CDA call to the SVC
Handler. Additional regions can be defined by Memory Manager calls. Adapter
storage is normally defined as non-cachable. There is a predefined 128Kb
adapter range and object located a physical address and offset 0xFFFE0000
for ROM.

� Free real address space - physical address space which is not defined as
general purpose or adapter storage. Additional ranges of general purpose
storage or Adapter storage can be defined from free real address space
through Memory Manager calls.

Real storage types
The CP/Q memory manager also supports multiple real memory types. Memory
types are not to be confused with the categories of real memory - adapter and
general purpose discussed above. Memory types apply strictly to general purpose
memory. By real memory types, one normally thinks in terms of different types
having different speeds like DRAM vs SRAM. &thing, however, does not apply any
interpretation to the memory types. CP/Q supports 3 types of real memory denoted
as 1,2, and 3. There is also a default type (0) which in fact is type 1, but the

3-24 CP/Q System Overview

distinction becomes clear shortly. The system is built in the default memory type.
Memory of other types is only introduced into the system at run time through the
CPCreateRange call. When creating a new memory object that can be backed by
real general purpose memory that is the calls CPAllocMem, CPGetMem(copy
mode), and CPGiveMem(copy mode), a real memory type can be requested. If a
specific type (1,2,3) is requested then ONLY that type is used to provide real
storage page frames - whether at allocation time or through page fault. If the
default type is specified, then type 1 memory is used if available, but if none is
available, types 2 and 3 are used, in that order, to satisfy the request.

Memory object granularity and alignment
All memory objects in CP/Q are in multiples of a page (4096 bytes) and are aligned
on page boundaries. This is dictated by the Intel processor architecture when using
a flat model. Perform management of memory at a smaller level of granularity
(such as a heap) through library, subsystem or application code.

 Chapter 3. CP/Q System Structure 3-25

3-26 CP/Q System Overview

 Chapter 4. RAS Considerations

Reliability, Accessibility, Seviceability (RAS) is a very key point in today's systems.
Our own quality goals, and the need to be very competitive, make it extremely
important to have reliable, robust end products that achieve continuous availability
in the face of various types of failures. This is not a simple goal. Keep it in mind
throughout the entire product development cycle.

While features such as hot-pluggable hardware and redundant components leap to
mind when considering high RAS designs, many people tend to ignore the negative
or positive effect operating system choice can have on the overall product. All
attention is focused on performance and size which, while extremely important,
make up only two thirds of the formula.

This chapter discusses some of the RAS features of CP/Q with the goal of raising
people's awareness about how to take advantage of these features in improving the
RAS of their end products.

 Process Separation
One of the key features of CP/Q is virtual memory support. Many of the RAS
features inherent in the system are implemented through the virtual memory
system. Process separation refers to the protection afforded through multiple
virtual address spaces, or processes.

Processes allow data to be protected from potential corruption by tasks outside the
current process. This can greatly reduce the scope of damage that a corrupt task
can cause.

Also, because processes are the boundary of resource ownership in CP/Q, and
because cleanup is performed on a process basis, process separation can help
manage the removal and replacement of failing components.

Supervisor vs. User protection
Each virtual page in an address space is marked as either a supervisor page or a
user page. In addition, each task in the system is marked either supervisor or user
privilege. Supervisor privilege is usually associated with I/O privilege, in addition to
some additional privileges on certain SVCs.

While a supervisor task can read and write user level pages, a user task can not
alter supervisor pages. This means that, even within a single address space, an
additional level of protection is available.

Supervisor privilege is usually given to "trusted" code because supervisor privilege
tasks can potentially cause a great deal more damage than user privilege tasks.
"Trusted" simply means that the code is well tested and the source is known. You
would not normally allow supervisor privilege to be given to any new piece of code,
regardless of its source.

 Copyright IBM Corp. 1992-1994, 1996, 1997, 1998 4-1

 Privilege change
Because a good design normally results in a mixture of user and supervisor
privilege tasks, and because it is often the case that important functions are
provided by supervisor code, there has to be a means for user privilege tasks to
request services from supervisor code.

When the supervisor code is being executed by a separate task, then inter-task
communication facilities can be used, such as messages or semaphores. The
privilege change is handled by the kernel as part of the task change, and the
supervisor code is completely protected because the action of the user task is
completely passive: it has caused the supervisor task to wake from some blocking
operation (for example, receiving a message), and has perhaps made some data
available to it.

When the supervisor code is designed to be called directly by the user task, then
something is required to occur which allows the user task to change to a supervisor
task (at least, temporarily). The CP/Q kernel interfaces are an example of this type
of interface. The kernel is written to be reentrant, and for performance reasons it is
desirable to provide a call interface rather than a message interface. The privilege
change is effected through the Supervisor Call (SVC) mechanism.

What is key here is that the SVC mechanism provides a controlled interface to
supervisor code: only a limited set of execution points are exposed, and the entire
privilege transition and return is handled by trusted kernel code.

In addition to kernel calls, the system also allows users to add supervisor routines
that can be accessed through the SVC mechanism. These can either be statically
linked into the kernel, using a reserved range of function numbers, or they can be
dynamically added to the system through the CPCreateUserDefinedSVC call.

 Read-only code
Most of the code in the system is in read-only pages. This is true regardless of
whether the code was loaded from the IPL image, or dynamically loaded at some
later time. The normal default is for read-only code and read/write data.

By having read-only code, there is no possibility of code being corrupted by a task
in error. This means that no additional code is required to detect damaged code,
and that tasks that go wild and try to damage code are immediately caught and
identified through a page fault. This is something that can not be achieved in a real
memory only operating system.

 Resource recovery
All resources in CP/Q are associated with a particular process. Processes are the
boundary of ownership and of recovery. When a process is to be removed, either
because of normal or abnormal termination, all resources associated with that
process are recovered. This includes all kernel objects (for example, semaphores),
all memory (with some specific exceptions), and any additional resources being
managed by Resource Provider subsystems, This last category is open-ended and
could potentially be anything.

4-2 CP/Q System Overview

In a continuously available system, processes are bound to be created and
removed. Complete resource recovery becomes key to allowing the system to run
indefinitely, because over time incomplete recovery could result in exhaustion of
resources, and hence, failure of the system.

 Resource limits
The kernel has certain resources that are tracked for each active task and process.
These include such items as the total number of Task Control Blocks (TCBs) in use
for a process, or the total amount of memory allocated. The limits on these
resources are configurable, and the system can detect when these limits are
exceeded. There are both global default limits, and individual per-process limits
that can be set when a process is created.

By proper tuning of these limits, runaway allocations can be caught and recovered
from.

Access protection for kernel objects
The CP/Q kernel is placed in supervisor pages, so user privilege tasks can not
access it. In addition, on the POWER implementation, the entire kernel code and
data space is placed in a separate segment which is left inaccessible unless an
SVC has been made to the kernel, at which point the kernel segment is made
visible for the duration of the SVC. This affords an additional level of protection for
the kernel for added reliability.

 Chapter 4. RAS Considerations 4-3

4-4 CP/Q System Overview

Chapter 5. Dynamic, Modular System Considerations

CP/Q was designed to be a highly modular system. The kernel provides base
operating system services; all additional services, such as file I/O, screen/keyboard
management, and so on, are added as subsystems outside the kernel. They are
packaged in separate load modules and can be installed or left out of the system at
the user's option.

This level of modularity allows CP/Q to be highly customized for any application,
without the need to modify kernel code. It also means that the programming
environment is more dynamic than in other systems, and that applications and
subsystems alike are required to be coded appropriately.

 Dynamic Subsystems
The term subsystem refers to a collection of code that provides a set of related
functions, and which is normally considered to be part of the operating system.
This is true regardless of whether the subsystem is built into the kernel or is started
dynamically.

In a typical CP/Q installation, the File I/O and Session Manager components are
considered subsystems, as is the Loader and the Sockets Server (TCP/IP support).
Each of these is packaged as separate load modules (in some cases more than
one load module), and none of them are built into the kernel.

Start-up Race Conditions
One type of problem that can occur in CP/Q which is not an issue for other, more
static systems is start-up race conditions. This happens when there are
interdependencies between subsystems. For example, the CP/Q Shell requires the
File I/O subsystem when it starts, because it processes its initial command file.
There is a race condition which requires the File I/O subsystem to be up a running
before the Shell requests its services.

To handle this situation, CP/Q provides a queued, name resolution SVC called
CPResolveName. The File I/O subsystem has a well-known name assigned to it
called QFROUTER. Before the Shell can make a request to the File I/O
subsystem, the name QFROUTER is resolved. The CPResolveName SVC blocks
the Shell's task until the name is created.

This means the Shell does not continue until the File I/O subsystem is available.
When CPResolveName does complete, it returns the SVid of the File I/O
subsystem, which is needed to send it messages.

The File I/O subsystem is an example of a message-based interface. Simply by
having the task created, the necessary message queue is present and requests
can begin to arrive. A call-based interface needs a little more attention when
handling start-up race conditions: for one thing, there is no task associated with
called code; the caller's task is used to execute the function. Also, there is typically

 Copyright IBM Corp. 1992-1994, 1996, 1997, 1998 5-1

some initialization phase that is required before the code can be called: perhaps
some data areas need to be initialized, or some devices need to be programmed.

Even if a separate task is used just to perform the initialization, it is not the creation
of the task which is required to be completed, it is the completion of the
initialization. Therefore, resolving the name of an initialization task does not
achieve the desired result: queue on something else. A good candidate might be a
semaphore that is part of the interface, or some other object whose name can be
resolved, but which can be created last in the initialization phase.

If nothing else is obvious, a User Item can be created. User Items are just kernel
objects for storing some small amount of data, perhaps a couple of pointers. This
often works out well with called code that is dynamically placed in the system
because there needs to be some way of making the addresses of the called
routines know to applications. User Items are perfect for advertising entry points,
global data locations, and so on through a well-know name. An application
resolves the name of the User Item, and when the CPResolveName completed, the
application knows that the interface was available. It then retrieves the entry
points, and so on from the User Item and begin making calls.

Dependencies on Dynamic Subsystems
Having handled the case of start-up race conditions between subsystems, address
the more difficult problem of subsystems which are dynamically stopped and
possibly re-started. Using the CP/Q Shell as an example again, we'll examine its
dependency on the Console subsystem. The Console is used as a write-only
screen for tasks that normally do not have a screen associated with them (for
example, error messages from the File I/O subsystem).

The Shell sends messages to the Console during normal execution, to print out
information about faults, and so on. If the Console were to crash, or be explicitly
removed, the SVid that the Shell is sending messages to is no longer be valid.
This causes the next CPSend SVC to fail with a return code indicating a bad SVid.

At this point, the Shell can do a number of different things, depending on the exact
nature of its dependency on the Console. As it turns out, the Shell does not have a
very hard dependency, and can run without the Console installed at all. So it can
choose to just let the failed CPSend pass, and mark that the SVid is no longer
valid.

Another alternative is to see if the Console has restarted by again resolving the
name as it did earlier to handle any race conditions. Because the Shell does not
have a hard dependency on the Console, it doesn't want to block on the
CPResolveName if the Console is not present. Therefore the Shell specifies a
timeout of zero on the CPResolveName SVC, and the SVC returns immediately
whether the Console was present or not: a return code indicates if the name was
resolved or not.

Alternatively, if the Shell had a hard dependency on the Console, it can issue a
blocking CPResolveName, and block until the Console reappeared.

The Console is a message-based interface, like the File I/O subsystem, so queuing
on the task name (and hence, the task message queue) is sufficient to reestablish
a binding. However, as with start-up race conditions, called code presents a more
difficult problem.

5-2 CP/Q System Overview

Short of removing the memory the code resides in, thereby causing a page fault on
the next call, there is no passive way to learn that called code has become stale
(perhaps replaced by a newer version somewhere else in memory). Even though a
User Item which describes the called code might have been updated to point to
new code, causing all new bindings to use the new code, previously bound
instances continue to call the old code, unless they do something to actively check
for the possibility that the code has changed.

From a performance perspective, the worst case is to re-resolve the User Item
each time a call is about to be made, and even that permits the possibility of a
window during which the old code can be replaced, so it might even be necessary
to introduce a semaphore for serialization. This is not a practical example, but it
does illustrate a couple of the problems that can arise.

Because performance dictates that it isn't practical for the caller to confirm the
validity of the entry point before each call, the alternative is to have the caller be
told when the interface is changing. This is what occurs with a message-based
interface when the target SVid becomes invalid.

However, callers are anonymous in a call-based interface unless they make their
identity known. A mechanism can be provided by the subsystem whereby the
caller can explicitly register as a user of the interface, and provide enough
identification (perhaps nothing more than the caller's SVid) to allow the subsystem
to send notification when the interface is changing. This notification might consist
of the subsystem initialization task recognizing that it is not the first instance of the
subsystem, and retrieving a list of registered callers from a global memory area that
the subsystem manages. The subsystem's well-known User Item can achieve both
of these items: by its presence, it indicates the subsystem was already installed,
and it can store the address of a global area that new invocations can access.

Another possibility to consider is the case where a subsystem does not start at all.
For example, it is perfectly acceptable to have a CP/Q system configured with the
Shell, but without the Console.

Because the Shell only has a soft dependency on the Console, everything runs just
fine, but the Console is simply absent. To achieve this, the Shell is required not to
block when resolving the name of the Console.

An example of a hard dependency is the Loader's requirement for the File I/O
subsystem. The Loader can not function without the File I/O interface installed in
the system. Therefore, the Loader is required not to block when resolving the File
I/O subsystem's name. If the File I/O subsystem never gets installed, the Loader
never become active.

The problem with this example is that the Loader has been created, and therefore
can be receiving requests on its message queue. To handle those requests, the
Loader might instead not block on the name resolution, or block with a timeout, and
then check its queue for pending requests. It can then reject the pending requests
with a return code indicating the File I/O subsystem was not present. This prevents
the queue from growing too large, thereby using up system resources.

The issues of dynamic subsystems can become complex, particularly when dealing
with called code. This section tried to explain the problem and present some
solutions to a few simple cases, but primarily, this section was intended to make

 Chapter 5. Dynamic, Modular System Considerations 5-3

the reader aware of the issue and point out why it is to be dealt with thoroughly in
the design of any code.

Call vs. Inter-Task Interfaces
The decision of whether to implement a direct called interface or an inter-task
interface is a complex one, and many trade-offs need to be resolved before
deciding. Because performance is always desirable, and often critical, it is a good
starting point. Note that it is faster to make a direct call to a piece of code than to
send a message or use some other type of inter-task communication. That will
never change.

With that base assumption stated, we can begin to examine some of the other
issues and trade-offs that, in some cases, lead to the conclusion that a called
interface might be used, and in other case lead to the conclusion that an inter-task
interface (whether it be messages, semaphores or some other mechanism) is the
right solution despite its apparent performance penalty.

As just discussed above, dynamic binding and re-binding of an interface, and the
related problem of cleanly removing an interface, are more difficult with called
interfaces than with inter-task interfaces. Therefore, called interfaces are more
appropriate for static situations. For example, the CP/Q kernel is primarily
call-based because we want the highest level of performance, and the kernel is
static: it will not be replaced during the execution of the system.

In contrast, the various subsystems supplied with CP/Q, which tend to be less
performance critical than the kernel, are message-based. This allows them to be
dynamically stopped and started (unless some other restriction prevents that), and
to be replaced. With today's continuous availability requirements, that is a primary
goal when designing subsystems.

Concurrency is another major factor in the decision between called interfaces and
inter-task interfaces. When designing a component, pay careful attention to finding
areas that benefit from concurrent execution. For example, let's assume that a
component performs two functions: A and B, in that order. If it is the case that
each function requires that the previous function be complete before it can
commence, then there is really no advantage to assigning separate tasks to each
function as there is no concurrency to take advantage of: the tasks execute serially.
In this case, a called interface could be used, and a single task can execute the
calls serially.

However, let's assume that function B can begin execution anytime after function A
reaches a particular point (B's dependency on A is on some intermediate action,
not on the completion of A). In this case, assigning B to a separate task might
allow it to begin execution before A completes (e.g., A blocks, or A causes B to
become dispatchable by clearing a semaphore, and B is of a higher dispatch
priority so it preempts A). This can allow B to execute while A is blocked, or allow
B to execute as soon as A completes its critical actions, and the rest of A can
complete later. Instead of both A and B being held up by A blocking, B is able to
execute because it has its own task.

Another scenario might be that A can begin processing the next request in its
queue before B has completed the current request. In this case, the concurrency in
achieved by allowing more than one request to be in process at the same time,

5-4 CP/Q System Overview

even if the individual functions A and B might need to operate serially for each
individual request.

Whether an interface is synchronous or asynchronous is another characteristic.
Called interfaces are inherently blocking, whereas inter-task interfaces can be
either. Message interfaces, in particular, are typically non-blocking: sending a
message queues a request to another task, but the sending task does not need to
wait for the reply synchronously (some systems have synchronous send/receive
primatives). In CP/Q, if a synchronous send/receive operation is desired, one can
follow the convention of having the destination task send the message ID in the
type field of the reply. The origin task can then receive by type, using the original
message ID as the type value (the message ID was returned to the sender by the
original CPSend SVC).

Having an asynchronous interface is again related to finding the concurrency in a
particular application. Perhaps the requestor is of higher priority than the service,
and can be allowed to continue after queuing a request for the service. Then there
is a real advantage to having an asynchronous interface with two tasks.

Asynchronous interfaces can be designed using called code, but it usually involves
call-back routines, which can expose the service's task to unknown, or possibly
missing code (if the call-back routines are removed from memory before the service
completes).

Finally, if an interface needs to be serialized among a number of tasks, the queued
nature of either message-based or serialization semaphore controlled interfaces
handle that naturally. Called interfaces normally need to incorporate serialization
and locking mechanisms to avoid reentrancy problems.

 Chapter 5. Dynamic, Modular System Considerations 5-5

5-6 CP/Q System Overview

 Chapter 6. Fault Handlers

The Fault Handler facilities in CP/Q allow applications to handle serious or
unexpected failures. Both hardware and software faults are detected. Hardware
faults include such failures as divide-by-zero. Software faults are generated by the
operating system in response to such errors as insufficient privilege when
accessing system services.

Fault Handlers are another tool for achieving 100% availability. There will always
be error conditions, so a truly reliable system must anticipate and handle the
unexpected.

Assigning Fault Handlers
Every task in a running CP/Q system has a Fault Handler assigned to it.
Assignment is done at task creation time, by passing the Supervisor ID (SVid) of
the intended Fault Handler task as a parameter to the CPCreateTask SVC.
Passing a value of zero causes the new task to inherit the Fault Handler of the
parent task (the task calling the CPCreateTask SVC).

Other than their fault handling responsibilities, there is nothing special about Fault
Handler tasks: they are normal CP/Q tasks. They even have Fault Handlers of
their own assigned.

Halt and Fault Messages
When a task faults, the kernel sends a message to the task's Fault Handler. The
format of these messages is described in APL Volume 1: Application Programming
Reference. The primary action of a Fault Handler is to receive these messages
from its task message queue using the CPReceive SVC. It can then examine the
message to determine the exact condition.

There are actually two types of messages that are sent to Fault Handlers: the
kernel also sends Halt messages, which notify of task completion (in contrast to
task failure). Note that task completion does not necessarily imply success: a Halt
message can contain a non-zero return code. The return code is set by a
parameter to the CPHaltTask SVC. Typically the CPHaltTask SVC is issued by the
C Runtime Library as a result of calling exit() or returning from main().

Fault Handler Hierarchy
There is a loose hierarchy of Fault Handlers in a running CP/Q system, starting
with a System Fault Handler at the top of the hierarchy. The System Fault Handler
should be global in scope, designed to handle failures from any part of the running
system (there is a further discussion of System Fault Handlers below). Next might
be less broadly defined Fault Handlers which each cover a subset of the running
system. Any LEEDS application is a good example of this, as it covers only the
tasks created by itself.

Finally, there might be application-specific Fault Handlers which are concerned only
with the application of which they are a part.

 Copyright IBM Corp. 1992-1994, 1996, 1997, 1998 6-1

CP/Q does not enforce any strict hierarchy of Fault Handler tasks: one task can act
as the Fault Handler for any number of tasks in the system, at any number of
different points in the task hierarchy tree. Each Fault Handler is an independent
entity, with no kernel imposed relationship to any other Fault Handler in the system.

However, because of the hierarchy of scope that often occurs in a typical set of
Fault Handlers (as described above), design a system such that there is a logical
hierarchy of Fault Handlers. The lowest level, application-specific Fault Handlers
might only handle a few specific faults that the application might be able to recover
from, and all other faults would be handled by upper-level Fault Handlers. To
achieve this behavior, it is necessary to percolate the fault up.

 Percolation
Since the kernel does not enforce any relationship between Fault Handlers, the
system designer must enforce the relationship. In order for an upper-level Fault
Handler to process a fault, the lower-level Fault Handler needs to forward the fault
message (that is, percolate it up).

This implies that the lower-level Fault Handler needs to know the identity of the
next highest Fault Handler in the hierarchy (that is, the SVid of that Fault Handler
task). There are many methods to pass such information. One example might be
to send the lower-level Fault Handler a message with with SVid. If it is the next
highest Fault Handler sending the message, then no data would be necessary: the
SVid of the sender is always inserted in the header of a CP/Q message.

One additional note: when a halt or fault message arrives from the kernel, the
sender field of the message header is set to x'FFFFFFFF' . However, when
percolating fault messages, the sender field will be set to the SVid of the sending
task, in this case the lower-level Fault Handler. This means the higher-level Fault
Handlers should not check the sender identity, unless they are prepared to receive
messages from other than the kernel. If security is a concern, the higher-level
Fault Handlers can be made aware of the specific Fault Handlers below them, and
verify that any halt or fault messages arrive either from the kernel, or from the
proper lower-level Fault Handlers.

Supplied Fault Handlers
CP/Q is shipped with a System Fault Handler which takes actions that follow the
host/coprocessor interaction rules. These include writing error codes to the
mailboxes. The details appear in IBM 4758 PCI Cryptographic Coprocessor
Custom Software Interface Reference.

 SCC Manager
The SCC Manager is a special task included in the CP/Q system for the
Cryptographic Coproccessor, which is responsible for loading programs (tasks) from
flash memory during system start-up, and is the fault handler for these tasks.
When notified of the termination of one of these tasks, the SCC manager arranges
for its removal from the system.

6-2 CP/Q System Overview

Glossary and Abbreviations

A
ASCIIZ. An ASCIIZ string consists of a sequence of
ASCII characters, terminated by a NUL character
(0x00).

B
BIOS. Basic Input/Output System. This is the device
driver and interrupt handler code provided with an IBM
compatible PC, in a ROM or EEPROM on the system
board and certain device adapter boards. BIOS
includes code to test the system on power on, to
provide interrupt handlers for standard devices, and to
IPL an operating system.

C
Common . Common Memory Objects. This is a “class”
of memory object defined by the Memory Manager,
which can be shared by different processes in a
controlled manner. If a common memory object is
visible in two (or more) different processes, it has the
same linear address offset in each of the processes.

See also Global and Private.

COW. Copy On Write. This is a mechanism whereby
programs running in different address spaces may
share a data area, but have private copies of any parts
(for example, pages) that are written to. This is
achieved by placing read-only page references to the
data in each address space; when the program
attempts to write to a location, a page fault occurs. The
page fault handler recognizes this situation, and creates
a private writable copy of just the affected data page,
leaving the other pages as read-only access to the
shared data.

Safe and reliable operation of copy on write requires the
supervisor mode read-only page protection facility that
is present in 486 and later processors, but omitted from
a 386. For this reason, CP/Q does not provide the
COW facility when the system is running on a 386 (if
COW mode is requested, it is implemented as copy
mode, that is a physical copy is made).

CPL. Current Privilege Level. The Intel x86
processors have the concept of privilege levels. There
are 4, numbered from 0 (most privileged) to 3 (least
privileged). If a program is running at, say, privilege
level 2, it is allowed to access items specified as being
at privilege level 2 or 3, but not those at privilege level 0
or 1. The privilege level associated with the code

currently running is called the CPL, and is defined by
the two low order bits of the CS register.

The Intel specification denotes CPL 3 as “user” mode,
and CPL 0-2 as “supervisor” mode. CP/Q supports only
CPL 3 (for “user” programs) and CPL 0, for the system
kernel, device drivers and certain other privileged
modules.

creator process . The creator process, defined in the
Resource Manager creation parameter lists, is the
process to which the newly created object is to be
attached. If a new process is being created, it is a child
of the creator process.

creator task . The creator task is the caller of the
create function.

D
Descriptor . The Intel processors provide memory
protection facilities at the memory segment level. Each
physical segment has an associated descriptor, which
defines the segment type, access, base address and
size. Other descriptors identify control blocks defined
by the Intel x86 architecture, which determine the action
taken by the processor when interrupts occur (both
hardware and as a result of INT instructions), or provide
and control access to code modules within a system.
Descriptors are held in tables, namely the GDT, the
LDT and the IDT. Consult a specification of the Intel
processors for further information.

DMA. Direct Memory Access. This is the name given
to the access to system memory by an I/O controller, as
requested by the controller. This is used by I/O
controllers, for example disk controllers, to read and/or
write directly from or to system memory without
requiring any intervention by the main processor; this
drastically reduces the system overhead of I/O, and can
produce equally dramatic increases in I/O performance.

DPL. Descriptor Privilege Level. The Intel x86
processors have the concept of privilege levels. There
are 4, numbered from 0 (most privileged) to 3 (least
privileged). If a program is running at, say, current
privilege level 2, it is allowed to access items specified
as being at privilege level 2 or 3, but not those at
privilege level 0 or 1. Associated with any descriptor is
a value, called the DPL, which specifies the maximum
privilege level for code that may access the item (such
as a segment) defined by that descriptor.

DRMM. Direct Real Memory Map. The linear address
range 0-nK (where nK is the size of the physical
memory of the machine) is reserved, and is available in

 Copyright IBM Corp. 1992-1994, 1996, 1997, 1998 X-1

all address spaces in supervisor mode as a 1-to-1
mapping of linear address to real memory, that is virtual
= real.

The probe for the system debugger (NAP) uses the
DRMM (it runs in virtual = real address space).

F
FLIH. First Level Interrupt Handler. A code module
that is entered by the processor when a hardware
interrupt occurs. In a CP/Q system, this term is used
more particularly for the FLIHs within the SVC Handler,
that generate interrupt notifications for second level
interrupt handlers (SLIHs). There can be only one FLIH
for any particular hardware interrupt level.

G
GDT. Global Descriptor Table. A table of descriptors,
architected by Intel as part of the specification of the
x86 processors. There is only one active GDT in a
system, which is set up during initial system load, and
cannot be easily changed once the system is running.
This table is used to define the memory segments or
code modules accessible to all tasks in the system.
Consult a specification of the Intel processors for further
information.

Global . Global Memory Objects. This is a “class” of
memory object defined by the Memory Manager.
Global memory objects are visible in all processes, at
the same linear address offset in each process.

See also Common and Private.

I
ICB. Interrupt Control Block. A type of control block
used by the CP/Q system kernel, to control the use of
hardware interrupt levels. The format is defined in the
SVC Handler manual.

IDT. Interrupt Descriptor Table. A table of descriptors,
architected by Intel as part of the specification of the
x86 processors. This table is used to determine the
action taken by the processor when hardware interrupts
occur, or INT instructions are executed. Consult a
specification of the Intel processors for further
information.

Interrupt Handler . A term for the code or task that is
executed when an external interrupt is recognized, upon
processor detected fault, or as a result of the software
INT instruction.

The particular interrupt handler for a given interrupt is
defined by a descriptor in the IDT.

IOPL. Input/Output Privilege Level. The minimum (that
is, numerically largest) processor privilege level at which
I/O may be performed. The use of instructions to
perform I/O to devices is restricted by the x86
processors to code for which CPL ≤ IOPL. This means
that many programs running in the system simply are
not permitted to perform I/O. The IOPL is held in two
bits within the FLAGS register, but only privileged code
can successfully alter the IOPL. In CP/Q systems,
IOPL is set to 0. Instructions that are considered I/O
type instructions include the IN and OUT instructions as
well as the ability to change the setting of the Interrupt
Enable bit in the flags register.

K
Kernel . The CP/Q Kernel is the SVC Handler, Memory
Manager and Resource Manager together with their
associated data areas (the System Data Area).

L
LDT. Local Descriptor Table. A table of descriptors,
architected by Intel as part of the specification of the
x86 processor. There may be more than one LDT in a
system; each task may have no LDT, its own private
LDT, or may share an LDT with a number of tasks.
This table is used to define the memory segments or
code modules local to those tasks that have this table
as their LDT. Items in an LDT are not accessible to
tasks having a different LDT, unless special provision is
made by to create a segment alias. Consult a
specification of the Intel processors for further
information.

CP/Q does not use LDTs, nor does it support their use.

N
NAP. The probe program required to enable the
system level debugger SLEEP to load and debug a
remote CP/Q system.

NDA. Nucleus Data Area. This is the fixed area at the
start of the System Data Area that holds various items
of information, such as the time and date, pointer to the
current task, the system GDT, the system TSS, and so
on, and also holds the pointers and chain headers for
the other control blocks held in other parts of the
System Data Area.

NMI. Non-Maskable Interrupt. Almost all processors
provide facilities for the processor to be interrupted by
external events, such as I/O operations completing.
Such external interrupts can be disabled (or masked) by
software running on the processor; for example it is
common practice, while handling one interrupt, to
prevent other interrupts from occurring.

X-2 CP/Q System Overview

The Intel x86 processors also have a special interrupt
which is completely independent of the above
mentioned external interrupt mechanism (it is raised by
asserting a signal on a special pin of the processor),
and which cannot be disabled within the processor.
This is called a Non-Maskable Interrupt. An NMI can
occur at any time, including while handling an I/O
interrupt with interrupts disabled.

The NMI is used in IBM compatible systems for
reporting memory parity failures. It can also be used by
a debugger to cause an entry to the debugger
whenever an NMI is raised (by use of an external push
button switch). On some IBM PCs, NMI can be
masked, through special I/O logic on the system board
that is external to the processor.

O
OCB. Object Control Block. A type of control block
used by the Memory Manager to record information
about every memory “object” in the system.

P
PCB. Process Control Block. A type of control block
used by the CP/Q Resource Manager to hold
information relevant to a particular process. The format
is defined in the Resource Manager manual.

PFD. Page Frame Descriptor. A type of control block
used by the Memory Manager to maintain a chain of
every allocatable page of physical memory in the
system.

Private . Private Memory Objects. This is a “class” of
memory object defined by the Memory Manager.
Private memory objects are private to the address
space of the process that owns them, that is, such
objects are not visible in other processes.

See also Common and Global.

process . In CP/Q, a process is something that can
acquire system resources, such as memory. Everything
in the system (that is, all memory, tasks, SVT entries,
and so on) belongs to some process. Each process is
associated with an address space; conversely, all tasks
within a given process share the same address space.
Accounting is in general performed at the process level.
Processes are arranged in a tree structured hierarchy,
with the special process SYSTEM at the top of the tree.
Apart from process SYSTEM, each process in the
system also “belongs” to the process immediately
higher in the tree (its “parent”).

A process is not a code module that can be run on the
processor; the process probably contains one or more
tasks which can be dispatched. The code of these
tasks is also not part of the process; however, the

memory occupied by that code is assigned to the
process.

R
Resource Provider . A resource provider (RP) is any
system extension or sub-system, such as a screen
manager or file system, which provides a service (or
“resource”) to client processes. Providing a service
may involve the acquisition of memory or other system
resources either directly by the RP or on behalf of the
client (using the notion of effective process). The
resource tracking interface to the Resource Manager
allows the RP to respond to the removal of clients by
recovering resources allocated to such clients or
otherwise adjusting its internal state.

RPL. Requested Privilege Level. The Intel x86
processors have the concept of privilege levels. There
are 4, numbered from 0 (most privileged) to 3 (least
privileged). If a program is running at, say, privilege
level 2, it is allowed to access items specified as being
at privilege level 2 or 3, but not those at privilege level 0
or 1. Access to descriptors is performed by having
appropriate selectors in segment registers; the privilege
level associated with the attempted access is specified
by the two low order bits of the segment registers, and
is called the RPL.

RQE. Request Queue Element. A type of control
block used by the CP/Q system kernel to form message
(or request) queues. The format is defined in the SVC
Handler manual.

S
SCB. Signal Control Block. A type of control block
used by the SVC Handler to record the requested
action for specific signals for a task.

SDA. System Data Area. This an area of memory that
holds the control blocks, pointers and control variables
used by the system kernel code to control the running
of the CP/Q system. The SDA consists of a fixed
header or anchor area, called the Nucleus Data Area or
NDA, and other areas containing control blocks.

The format of the NDA is predefined, and is known at
compile time. The areas containing the control blocks
may be of variable size (initially set at system build
time, but possibly changed when the system is running),
and is at offsets that are set at system build time - that
is, they are unknown when the system kernel code is
compiled. The NDA contains pointers to the other
variable areas, and also such items as the pointers to
the start of the free block chains.

SLIB . Second Level Interrupt Block. A type of control
block used by the CP/Q system kernel for forming lists

 Glossary and Abbreviations X-3

of second level interrupt handlers. The format is
defined in the SVC Handler manual.

SLIH. Second Level Interrupt Handler. A code module
(currently a task in a CP/Q system) that is entered as a
result of some action taken by a first level interrupt
handler (FLIH). There may be more than one SLIH
corresponding to a given hardware interrupt level.

SLEEP/R. System Loader and Error Environment
Process/Remote A special program designed and
written specifically to build and test CP/Q systems. It
uses a probe program, called NAP, to remotely debug a
system. This program has its own manual, to which the
reader is referred for further information.

SVC. SuperVisor Call. This is the mechanism
whereby a task requests services of the “system” or of
other elements in the system, or performs services for
other elements in the system. In a CP/Q system on an
Intel processor, an SVC is made by an INT 0x7A
instruction (for a privilege level 3 program), or an
indirect call for privilege level 0 programs. In a CP/Q
system on a RIOS processor, an SVC is made by an
SVC instruction.

The CP/Q code module that is entered when an SVC is
made is called the SVC Handler.

SVid . The SVid of a CP/Q entity is the name used to
specify this entity to the SVC Handler. It consists of an
SVT index (that is, the number of the SVT entry within
the SVT) and an incarnation number.

SVT. SuperVisor Table. An array of elements,
representing system objects known to the supervisor
and containing sundry information concerning object
type (task, semaphore, other), access permission, and
various pointers to associated control blocks and
queues.

T
Task . In CP/Q, a dispatchable program or code
module is termed a task . The system kernel keeps
details of each task in an associated Task Control Block
and SVT entry.

The Intel processors have architected into them the
notion of a task. The processor provides protection
between tasks, and also provides facilities to swap
tasks, both voluntarily by jump or call instructions, and
involuntarily, on interrupts for example. The CP/Q
system uses the protection mechanisms, but for
performance reasons does not perform hardware task
switches, except in special cases such as system
abends, or other traps to SLEEP/R.

TCB. Task Control Block. A type of control block used
by the CP/Q system kernel, to hold all the information
relevant to a particular task. The format is defined in
the SVC Handler manual.

TSS. Task State Segment. A type of processor control
segment architected by Intel in the design of the x86
processors. In particular, it includes the register save
area for a task.

In a CP/Q system, there is one TSS used by all tasks
(the task change is performed by software within this
TSS), and there are certain other TSS's set up by
SLEEP which are used when starting CP/Q and also
when the system traps back to the debugger.

X
XPT. Auxiliary Page Tables. Are used by the Memory
Manager to manage virtual memory. For each active
segment that has any virtual memory allocate, there is a
pointer to an XPT Directory block.

X-4 CP/Q System Overview

 Index

A
Application Programming Interfaces 2-1

C Runtime library 2-1
Kernel services 2-1

C
CP/Q

Application Programming Interfaces 2-1
C runtime library 2-1
kernel services 2-1

defined 1-1
documentation 2-1
dynamic system considerations
fault handlers 6-1
Kernel 1-1
memory model overview 3-12
memory model(INTEL) 3-17
performance 1-5
process/task structure 3-1
program APIs 2-1
RAS considerations 4-1
system resources 3-3
system structure 3-1, 3-3

D
Device management 1-2
Dynamic and Modular System Considerations 5-1

call vs. inter-task interfaces 5-4
dependencies on dynamic subsystems 5-2
dynamic subsystems 5-1
start-up race conditions 5-1

E
embedded systems 1-1

F
Fault Handlers 6-1

Assigning Fault Handlers 6-1
Supplied Fault Handlers 6-2

Fault Handling Structure 3-10
FLIH 1-2

G
Glossary X-1

I
Integrity 1-5
Inter-task Communication 1-2, 1-5, 3-6

messages 3-7
semaphores 3-7
shared memory 3-7
User defined SVT entries 3-8

Interrupt Handling 3-8
external 3-8
shared levels 3-10

Interrupt management 1-2, 3-8

M
management

device 1-2
interrupt 1-2, 3-8
process 1-2, 3-1
real memory 1-3
resource 1-4
task 1-2, 3-1
virtual memory 1-3

Memory Manager 3-12
Memory Model (INTEL) 3-17

access hierarchy 3-23
code sharing/loader 3-21
general purpose storage - 3-24
linear memory layout 3-17
memory object granularity and alignment 3-25
memory protection 3-23
memory sharing 3-18
privilege level terminology 3-22
real storage management 3-24
supervisor vs. IOPL 3-23

Memory Model Overview 3-12
access hierarchy
linear memory layout 3-13
memory ownership 3-16
memory protection
memory sharing 3-14
priviledge levels 3-15
process memory limits 3-16
real storage allocation 3-16

Memory Ownership 3-16
Memory sharing 3-14

P
process management 1-2
Process Memory Limits 3-16
Process/Task Structure

access permissions 3-3

 Copyright IBM Corp. 1992-1994, 1996, 1997, 1998 X-5

Process/Task Structure (continued)
considerations 3-4
effective process 3-4
process defined 3-1
process/task organization 3-1
system resources 3-3
task defined 3-1

Programming 2-1

R
RAS considerations 4-1

access protection for kernel objects 4-3
privilege change 4-2
process separation 4-1
read-only code 4-2
resource limits 4-3
resource recovery 4-2
supervisor vs. user protection 4-1

Real memory management 1-3
Real Storage Allocation 3-16
Resource management 1-4

S
Security 1-5
Semaphores

resources 3-7
serialization 3-7
synchronization 3-8

Serialization 1-6
Shared Memory 3-14
SLIH 1-2
Software Interrupt Latency 1-6
Sparse Objects 3-16
Supervisor Table 3-6
Supervisor/User Privilege 3-5
SVC Handler 3-6
System Structure 3-1

external interrupt handling 3-8
fault handling structure 3-10
inter-task communication 3-6
memory model overview 3-12
memory model specifics(Intel) 3-17
Process/task structure 3-1
supervisor table 3-6
supervisor/user privilege 3-5

T
task management 1-2
Task switch 1-5
Timer Services

Asynchronous timers 1-3
CPSleep SVC 1-3
SVC timeouts 1-3

U
User defined SVT entries 3-8

V
Virtual memory management 1-3
virtual regions

Common 1-4
Global 1-4
Private 1-4

X-6 CP/Q System Overview

/XRL/1

Artwork Definitions

id File Page References

TXTQ CPQSET
 i

Figures

id File Page References

PROC1 NSLRMOVR
 3-2 3-1
 3-2, 3-2
SVCFL2 RSLDTCOM
 3-9 3-2
 3-8, 3-8
SVCFL3 RSLDTCOM
 3-11 3-3
 3-11
GLIN RSLMMGEN
 3-14 3-4
 3-13
LINMEM NSLMODEL
 3-19 3-5
 3-17
LOADMEM NSLMODEL
 3-22 3-6
 3-21

Headings

id File Page References

INTRO RSLBINTR
1-1 Chapter 1, Introduction

 v
MM RSLBINTR

1-3 Virtual and Real memory management
 1-1
PROG LSLDPROG

2-1 Chapter 2, CP/Q Program APIs and Documentation
 v
CPQSS RSLDMOD

3-1 Chapter 3, CP/Q System Structure
 v
MODGEN RSLMMGEN

3-12 CP/Q Memory Model Overview
GACCH RSLMMGEN

3-16 CP/Q Memory Protection and Access Hierarchy
MMOD NSLMODEL

3-17 CP/Q Memory Model Specifics
IPRIV NSLMODEL

3-22 Intel Privilege level terminology
ACCH NSLMODEL

3-23 CP/Q Memory Protection and Access Hierarchy
MOWN NSLMODEL
 3-24 Memory Ownership
RAS RSLDRAS

4-1 Chapter 4, RAS Considerations
 v, 3-5
DYNSYS RSLDDYN

5-1 Chapter 5, Dynamic, Modular System Considerations
 v
INTF RSLDDYN

5-4 Call vs. Inter-Task Interfaces
 3-5
FHCHAP RSLDFLT

6-1 Chapter 6, Fault Handlers
 v

/XRL/2

Index Entries

id File Page References

ADA01H LSLDPROG
 2-1 (1) CP/Q

(2) Application Programming Interfaces
ADA060A RSLDDYN
 5-1 (1) CP/Q

(2) dynamic system considerations

Footnotes

id File Page References

FLIH RSLBINTR
 1-2 1
 1-2
SHORT RSLBINTR
 1-6 2
 1-5
CPQPROC RSLBINTR
 1-6 3
 1-6
FN1 NSLRMOVR
 3-2 1
 3-2
FNORD NSLMODEL
 3-23 2
 3-23
FNORD1 NSLMODEL
 3-23 3
 3-23

Spots

id File Page References

RPLYMSG RSLDTCOM
 3-7 Messages

Processing Options

Runtime values:
Document fileid ... LSLDESGD SCRIPT
Document type ... USERDOC
Document style ... IBMXAGD
Profile ... EDFPRF40
Service Level .. 0032
SCRIPT/VS Release .. 4.0.0
Date .. 98.06.17
Time .. 14:01:16
Device ... PSA
Number of Passes .. 3
Index ... YES
SYSVAR G ... INLINE
SYSVAR X ... YES

Formatting values used:
Annotation .. NO
Cross reference listing ... YES
Cross reference head prefix only ... NO
Dialog ... LABEL
Duplex .. YES
DVCF conditions file ... (none)
DVCF value 1 ... (none)
DVCF value 2 ... (none)
DVCF value 3 ... (none)
DVCF value 4 ... (none)
DVCF value 5 ... (none)

/XRL/3

DVCF value 6 ... (none)
DVCF value 7 ... (none)
DVCF value 8 ... (none)
DVCF value 9 ... (none)
Explode ... NO
Figure list on new page .. NO
Figure/table number separation ... YES
Folio-by-chapter .. YES
Head 0 body text .. (none)
Head 1 body text .. Chapter
Head 1 appendix text ... Appendix
Hyphenation ... NO
Justification ... NO
Language .. ENGL
Keyboard .. 395
Layout ... OFF
Leader dots .. YES
Master index ... (none)
Partial TOC (maximum level) ... 4
Partial TOC (new page after) ... INLINE
Print example id's ... NO
Print cross reference page numbers .. YES
Process value ... (none)
Punctuation move characters,
Read cross-reference file ... (none)
Running heading/footing rule ... NONE
Show index entries ... NO
Table of Contents (maximum level) ... 4
Table list on new page ... YES
Title page (draft) alignment .. RIGHT
Write cross-reference file ... (none)

Imbed Trace

Page 0 CPQSET
Page 1 RSLBINTR
Page 1-6 LSLDPROG
Page 2-3 RSLDMOD
Page 3-1 NSLRMOVR
Page 3-5 RSLDTCOM
Page 3-12 RSLMMGEN
Page 3-17 NSLMODEL
Page 3-25 RSLDRAS
Page 4-3 RSLDDYN
Page 5-4 RSLDINTF
Page 5-5 RSLDFLT
Page 6-2 RSLGLOSS

