
Verifying Type and Configuration of an IBM 4758 Device
A White Paper

S.W. Smith

Secure Systems and Smart Cards

IBM T.J. Watson Research Center

February 8, 2000

1. Introduction

The IBM 4758 is a “programmable secure coprocessor.” This term embodies two somewhat orthogonal concepts:

� As a secure coprocessor, the device provides a haven for security and cryptographic operations, safe against
some specified level of physical attack.

� As the device is programmable, what these operations are (the software configuration) can be established in a
number of ways, to accommodate various customer scenarios.

If a customer installation depends on the security properties of a particular type of 4758 device with a particular
software configuration, it is critical that they verify that the black box inside their machine really is that type of device,
configured in that way.

The purpose of this white paper is to quickly summarize how to do this verification.

� What It Is. First, this paper presents the parameters describing what the device is. Section 2 presents the device
types for the 4758 family; Section 3 presents the principal parameters describing software configuration.

� How to Tell. Then, Section 4 presents the mechanisms for authenticated access to this data.

However, the question of when and where to perform this verification depends on the security architecture and threat
model of the actual deployed system. Section 5 presents some of these consideration.

Note: This white paper reflects the fact that, as of this writing, the Model 2 family of devices are only available as
prototypes (under special arrangements). When non-prototype devices become available, this white paper will be duly
revised.

2. Hardware

There are five basic production variations of the 4758:

� Model 1: the initial 1997 release, with physical security validated at FIPS 140-1 Level 4

� Model 13: the same basic coprocessor as Model 1, but with physical security validated at FIPS 140-1 Level 3

1



February 8, 2000 2

� Model 1 8V1152: the same basic coprocessor as Model 1, but with physical security weaker than Model 13
(released under special arrangement to an OEM customer)

� Model 2: our follow-on coprocessor (with faster crypto and CPU than Model 1), with physical security intended
to be validated at FIPS 140-1 Level 4

� Model 23: the same basic coprocessor as Model 2, but with physical security intended to be validated at
FIPS 140-1 Level 3

Model 2 and Model 23 devices will be available in both 5-volt and 3.3-volt versions.

Note that, as of this writing, Model 2 and Model 23 devices are only available as prototypes, under special arrangement.

The precise type of a particular 4758 device is indicated in its vital product data (VPD) data structure. Table 1
summarizes this correspondence. (Section 4 will present how to securely obtain this information.)

3. Software

The 4758 architecture partitions the in-card software into four layers, Layer 0 through Layer 3.

Layer 0 and Layer 1 contain Miniboot, the IBM-owned security bootstrap and configuration code. This code runs
when the card is booted, then goes away until the next device boot. The roles performed by these layers are the same
in each released device (although the specific versions of the code may vary). Layer 0 resides in ROM and cannot be
changed; Layer 1 resides in protected FLASH and can be updated via a signed command from IBM.

Layer 2 and Layer 3 contain the software that controls what the card does after bootstrap. (Layer 2 is generally intended
for supervisor-level operating system/system software code; Layer 3 is generally intended for user-level application
code.) In contrast to Miniboot, both the role and the owners of this code can change from card to card.

Note that our security architecture does not depend on supervisor-user separation between Layer 2 and Layer 3. Rather
than permitting multiple applications which might attack each other, we allow only one—which therefore, should it find
a way to breach the separation, can only attack itself. (Ongoing FIPS validation work examines our Layer 2 software
only in the context of a specific application program). It is our Miniboot security configuration software—which has
withstood FIPS 140-1 Level 4 formal scrutiny—that decides who controls the other segments and what code should
be loaded, and which authenticates the configuration of the card. No code that runs after Miniboot finishes can modify
Miniboot or access its private keys; hardware provides this protection: before completing its work, Miniboot advances
the hardware “ratchet” lock, which denies all access until the next device reboot causes Miniboot to run again. (Our
security architecture paper1 provides more details.)

Hence, the question of “what is this card’s software configuration” reduces to two pairs of questions:

� Who is the owner of Layer 2? Of Layer 3? (See Section 3.1 below.)

� What code has been installed in Layer 2 by its owner? In Layer 3 by its owner? (See Section 3.2 below.)

As Section 3.3 discusses, it is critical that one address both issues.

3.1. Layer Owners

To answer the first question, Layer 2 and Layer 3 each have a two-byte ownerID field. When the devices leave the
factory, these fields indicate that neither layer is owned.

If an entity (either within IBM or external) wishes to issue Layer 2 code for 4758 devices, they generate a public-
key/private-key keypair, and (upon suitable arrangement) receive the following from IBM.

1Smith, Weingart. “Building a High-Performance, Programmable Secure Coprocessor.” Computer Networks (Special Issue on Computer Network
Security). 31: 831-860. April 1999.



February 8, 2000 3

� a Layer 2 ownerID (unique among all Layer 2 owners), assigned by IBM;

� the appropriate Miniboot command (signed by IBM) to grant ownership of an unowned Layer 2 to that entity;

� the appropriate certificate (signed by IBM) to enable that entity to issue their own Miniboot commands to change
Layer 2, using their own keypair. However, these Miniboot commands are accepted only by devices whose
Layer 2 is owned by that entity.

If an entity (either within IBM or external) wishes to issue Layer 3 code for 4758 devices, they first need to pick a
parent: a Layer 2 owner whose code they will build on. They then generate a public-key/private-key keypair, and
(upon suitable arrangement) receive the following from the Layer 2 parent they have chosen:

� a Layer 3 ownerID (unique among all Layer 3 owners depending on that Layer 2 parent), assigned by the Layer 2
parent;

� the appropriate Miniboot command (signed by that Layer 2 parent) to grant ownership of an unowned Layer 3
(in a card whose Layer 2 is owned by that parent) to that entity;

� the appropriate certificate (signed by that Layer 2 parent) to enable that entity to issue their own Miniboot
commands to change Layer 3, using their own keypair. However, these Miniboot commands are accepted only
by devices whose Layer 3 is owned by that entity. and whose Layer 2 is owned by their parent.

Table 2 summarizes some principal ownerID values currently assigned. (Again, Section 4 will present how to securely
obtain this information.)

3.2. Layer Contents

To answer the second question (about what code has been installed), Layer 2 and Layer 3 each have a number of fields
describing their contents:

� an 80-byte image name field

� a 16-bit image revision field

� a 20-byte image hash field.

The image name and image revision fields are chosen by the Layer owner. In contrast, the image hash field is the exact
hash of the image itself.

Table 3 summarizes the principal Layer 2 image names. Table 4 summarizes the principal Layer 3 image names.
(Again, Section 4 will present how to securely obtain this information.)

3.3. Importance of Verifying Both Owner and Contents

To describe the configuration of a typical desktop computer, one usually just lists the names of the installed programs.
However, this intuitive procedure is insufficient for a programmable secure coprocessor like the IBM 4758; for secure
operation, it is important to verify both the ownerID as well as the image name. This is for several reasons.

� Different owners may have different image replacement policies.

For example, standard IBM CP/Q++ has been issued both under our production Layer 2 ownerID as well as our
developer’s toolkit ID. However, the developer’s toolkit ID also permits state-preserving swapping between the
standard CP/Q++ and one equipped with a kernel-level debugger. This is desirable behavior for a development
environment but dangerous for many production environments; the Layer 2 ownerID distinguishes between the
two.



February 8, 2000 4

� In theory, different owners may use the same name for different images.

Recall that the Layer N owner chooses the image name for Layer N—and assigns the ownerIDs for its
Layer N + 1 owners.

4. How to Tell

Section 4.1 and Section 4.2 present the basic mechanisms by which Miniboot communicates authenticated configu-
ration information to outside entities. Section 4.3 presents how the standard host-side utility uses these mechanisms.
Section 4.4 presents some new ways to access this data in Model 2 devices.

4.1. Certification of Device Keys

Within each untampered 4758 device, the Miniboot 1 security software maintains a certified keypair. Tamper events
(or failures that render Miniboot 1 unrunnable) cause the private key (of this keypair) to be zeroized. Thus, if a message
is signed with the private key matching a properly certified public key, then one can be assured that this message came
from Miniboot 1 within an untampered 4758 device.

The certificate chain that establishes the authenticity of this keypair also provides further information on the type of
device and the release history of Miniboot 1 within that device. In particular, IBM maintains an overall 4758 root
keypair, and, for each class of 4758 (e.g., each entry in Table 1), a class root keypair. (The root public key will be
available on the 4758 web site.)

At the final stage of manufacture, each IBM 4758 device is initialized:

� Miniboot 1 within the device generates a public-private keypair, and retains the private key within tamper-
protected memory.

� IBM certifies the public key with the class root keypair for that device class.

The certificate that IBM creates for the device includes the device type; however, we use a separate class root for each
class in order to provide a second barrier to a customer accidentally mistaking an untampered device of one class for
one of another.

When Miniboot 1 in a device atomically updates itself (in response to a correctly signed update command), it generates
a new keypair for its successor, and certifies the new public key with its current private key. (This provides some
protections should a defective Miniboot 1 be accidentally issued.)

Thus, within each untampered device, Miniboot 1 has a keypair, and chain of one or more certificates supporting that
keypair, going back to the IBM class root, and then to the IBM root.

4.2. The Basic Mechanisms

Miniboot provides some basic mechanisms to provide secure statements of the identity and configuration of a 4758
device.

Each time the 4758 boots, host-side software can issue zero or more queries to Miniboot 1. (Note that 4758 device
goes through bootstrap every time it comes up, and also upon explicit host request.)

One of these queries is the Certlist Query, which will return the certificate chain supporting the current Miniboot
keypair in that device. (This certificate chain also indicates what type of 4758 device this is—Table 1.)

Another one of these queries is the Signed Health Query. As part of this query, the caller provides a nonce of its own
choosing.

Miniboot 1 in the device will respond with a signed data structure, which includes:



February 8, 2000 5

� the nonce provided by the caller, so the caller can be assured the response is fresh;

� the VPD, so the caller can determine device type (Table 1)

� whether Layer 2 and Layer 3 are owned and have reliable contents

� the Layer 2 OwnerID and Layer 3 OwnerID, so the caller can determine who controls the software configuration
(Table 2)

� if Layer 2 is owned and reliable, the name of the image it contains (Table 3)

� if Layer 3 is owned and reliable, the name of the image it contains (Table 4)

By verifying this signature against the public key for Miniboot in that device, and verifying the certificate chain taking
that public key back to the IBM root, the caller can be assured that this device really is an untampered member of the
4758 family—and that the information in the data structure can be believed.

4.3. Using CLU

The validate command of the IBM-supplied Coprocessor Load Utility (CLU) uses these Miniboot query mechanisms
to verify and display device identity and configuration.

Users need to specify a validation file, which contains a certificate for the class root public key for that device class.
(The validation files for standard production classes are shipped along with the CLU program.) CLU will validate this
certificate against the overall IBM 4758 root public key, which is hard-coded into CLU. Sufficiently paranoid users
should take steps to ensure the integrity of the CLU executable.

The new CSU CAV tool performs a similar function.

4.4. Using Outbound Authentication

The Miniboot queries of Section 4.2 provide secure statements about device type and configuration only during device
bootstrap. (Again, note that 4758 device goes through bootstrap every time it comes up, and also upon explicit host
request.) However, scenarios exist where it would be useful for the Layer 3 application while running to be able to
securely establish, to an external entity, the identity of that application, and the type and configuration of its underlying
platform.

To address this need, Miniboot1 and CP/Q++ for the Model 2 family of devices will provide an outbound authentication
API to Layer 3, by which Layer 3 can have keypairs generated for its on-device use. These keypairs will be certified
by a trust chain that goes down to Miniboot 1 on that device, and then back to the IBM class root, then back to the
IBM Root. This trust chain will fully specify the relevant parameters—VPD, layer ownerIDs, image names—in an
authenticated way.

Many classic security problems—including the authenticating device configuration—are characterized by the chal-
lenge: how to achieve authenticated communication with an entity in an environment with various hostile trust
properties. Numerous cryptographic protocols exist that solve these problems—once the entity has a keypair certified
to its identity. By giving an on-card application access to keypairs bound to that on-card application, in a particular
software configuration on a particular device, this API enables the software designer to make full use of these protocols.

� For one example, an application could, when it is initialized, have a query-signing keypair created. Then, at any
point during execution, the application could itself sign health queries about its status, and return this signed
data along with the certificate chain.

This frees the designer from worrying about attacks between device boot and application execution.

� For another example, perhaps the device’s host HU is untrusted, but another remote machine HT is trusted.
The application could have a signing keypair created, and then use this signing keypair to establish a shared



February 8, 2000 6

symmetric key with code at HT . With appropriate design, HT and the on-card application could then use this
key to establish a secure communication channel—protecting this interaction from software attacks onHU , and
attacks on the network between HU and HT .

In particular, this frees the designer from worrying about attacks between verifications.

� An application designer could even extend the above example to establish secure sessions between a program on
one device, and a program on another device—despite potential compromise of the intervening channel. (The
OA API even provides an on-card program with its device class public key—so it can authenticate peers.)

(More information on this new API will be available in forthcoming software manuals from IBM.)

5. When and Where to Verify

The IBM 4758 was intended to be a platform upon which software designers could build secure coprocessing and
cryptographic applications. The verification techniques discussed in this white paper are hooks which the designer
can use—along with other techniques in his or her arsenal, such as host-side integrity checking, intrusion detection,
independent audit, and procedural controls—to secure his or her application. However, how a designer should use
these hooks depends on the overall security architecture. What threats does this design need to address? Which
elements—machines, code, networks, personnel—of the system are trusted?

For example, a designer might want to consider questions such as the following:

� Can an adversary substitute a fake card in the middle of the night?

� Can an adversary modify the host software, so that it directs some or all host-card communications to some
entity other than the genuine card still in the system?

� Can an adversary modify the software that verifies the device configuration?

� Can an adversary take control of the host machine after the host machine has booted?

� Can an adversary attack the network between a trusted host and the host with the device?

If two different designers answer these questions differently, then the appropriate security countermeasures will also
differ.

To be most effective, this security tool—like any other security tool—should be used only in the context of a well-
thought-out overall strategy, directed against a well-defined set of threats.

Acknowledgments

The author gratefully acknowledges helpful advice from Todd Arnold, George Dolan, Joan Dyer, Jonathan Edwards,
Dave Evans, Richard Moore, Elaine Palmer, and Ron Perez.



February 8, 2000 7

Family Model FIPS 140-1
Physical Security

VPD “Description field”

Model 1 Model 1 Level 4 “IBM 4758-001 PCI Cryptographic Coprocessor”
family Model 13 Level 3 “IBM Crypto Coprocessor FIPS140-1 LVL 3 HDW”

8V1152 N/A “IBM 4758-001 RPQ8V1152,NO TAMPER DETECTION”

Model 2 Model 2 Level 4 5V “IBM4758-002 5V Prototype No Tamper Detect”
family (intended) 3.3V “IBM4758-002 3.3V Prototype No Tamper Detect”
prototypes Model 23 Level 3 5V “IBM4758-023 5V Prototype Not Secure ROM”

(intended) 3.3V “IBM4758-023 3.3V Prototype Not Secure ROM”

Table 1 Device descriptions for the 4758 production family. Note that, at this writing,
Model 2-family devices are only available as prototypes under special arrangement. Some early

Model 13 devices misspell “Crypto” in their description fields.

Layer 2 OwnerID Layer 3 OwnerID What this Means

00: UNOWNED (any value) Layers 2 and 3 are unowned
(any value) 00: UNOWNED Layer 3 is unowned
02: IBM CCA Standard Product 02: IBM CCA Standard Product Standard CCA configuration

(various UDX, OEM values) Customized CCA configuration
03: Development 06: Development Standard Developer’s Toolkit configuration
01: IBM Research (any value) Research OS
22: IBM Research (any value) Research OS
243: IBM Custom Products 14: PKCS-11 PKCS-11 configuration

(other values) other IBM/OEM custom configurations

Table 2 Principal OwnerIDs for the 4758 Family. Note that all values are decimal!

Layer 2 OwnerID Layer 2 Image Name What it Means

02: IBM CCA “CCA <release> SEGMENT-2 <date, flags>” Standard IBM CP/Q++ OS/System Software
03: Development “CCA <release> SEGMENT-2 <date, flags>” Standard IBM CP/Q++ OS/System Software

“CP/Q++ <release> with Probe <date, flags>” Special IBM CP/Q++ with Debugger Probe
02: IBM Custom “CCA <release> SEGMENT-2 <date, flags>” Standard IBM CP/Q++ OS/System Software

Table 3 Principal Layer 2 image names

Layer 2 OwnerID Layer 3 OwnerID Layer 3 Image Name What it Means

02: IBM CCA 02: IBM CCA “CCA <release> SEGMENT-3 <date, flags>” Standard IBM
CCA Application

03: Development 06: Development “<filename> <len> <timestamp> (Druid <version>)” Toolkit-loaded
Development
Code

Table 4 Principal Layer 3 image names


