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1. Introduction 

Rendering graphics is a mathematically intensive task that, if tackled solely by the CPU, could 
cause performance to slow down.  To offload this work from the CPU and onto hardware that 
has been optimized for the task, personal computers, workstations, and game consoles use a 
GPU.*  The GPU is a combination of a coprocessor and tightly coupled high-speed memory 
(GRAM) that is responsible for rasterizing images through a graphics pipeline.  The CPU is still 
required for other classes of work (e.g., solving the physics-based equations in a CFD simulation 
or a state-of-the-art video game). 

GPUs can be grouped into the following two classes: 

1. Low-end units that provide support for two-dimensional (2-D) applications (e.g., Microsoft 
Word, XTerm, and Telnet, surfing the web, and watching videos). 

2. High-end units equipped with Z-buffers and full hardware support for sophisticated three-
dimensional (3-D) applications.  Up until a few years ago, these were very pricey and 
usually were only found in midrange to high-end products from companies like SGI. 

As a result of advances in manufacturing technology and their widespread use in game consoles 
and PCs that have been optimized to play video games, the cost of high-end GPUs has declined 
dramatically.  The rest of this report will assume that these are the units being discussed. 

Historically, GPUs operated within a fixed-functionality pipeline, with limited capabilities for 
rendering.  Modern GPUs consist of fully programmable floating-point pipelines with notable 
computational power and memory bandwidth.  These architectural advances equip the GPU for 
more than just graphics.  GPUs are best suited for applications that are highly parallel, 
computationally intensive, and have highly regular memory-access patterns.   

Over the past few years, GPUs have surpassed CPUs in performance, in absolute terms and in 
relative speedup over time (i.e., at a rate greater than predicted for CPUs by Moore’s Law).  
Researchers and code developers are intrigued by the potential to use GPUs as an attached 
processor for the purpose of speeding up nongraphics algorithms.  GPUs have been leveraged 
into a number of nongraphical applications, including signal and image processing, 
bioinformatics, CFD, chemical dispersion, database operations, and mathematical libraries (e.g., 
BLAS).  

This report discusses the current uses of GPUs and their potential for use in general-purpose 
computing.  Section 2 describes the evolution of the architecture of the GPU as it lends itself to 
general-purpose computation.  Sections 3 and 4 discuss some limitations and issues that must be 

                                                 
*Note:  definitions for many of the terms used in this report can be found in the glossary section. 
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considered when harnessing the GPU’s power for nongraphics applications.  Some software and 
programming tools that have been helpful in the programming of GPUs are explored in sections 
5 and 6.  Section 7 outlines some applications that have proven to be well-suited for computation 
on the GPU.  Lastly, section 8 discusses performance results that various researchers have 
reported when using GPUs for nongraphics applications. 

2. GPU 

Driven by the economics of the game industry, GPUs have become an affordable and attractive 
platform for research techniques to increase the speed of general computation.  The performance 
of GPUs has increased yearly and is projected to continue at rates that surpass the performance 
growth rate of CPUs (figure 1).  Current GPUs have achieved significant gains in performance 
and memory bandwidth over CPUs.  Stanford University, in their protein-folding simulation 
project, has observed performance gains of up to 40× that of an Intel Pentium 4 CPU while using 
high-end ATI GPUs (1).  According to Fan et al. (2), the performance advantage of GPUs over 
CPUs can be attributed to the following: 

1. “A current GPU has as many as 16 pixel processors and 6 vertex processors that execute 
four-dimensional (4-D) vector* floating-point instructions in parallel.  

2. Pipeline constraint is enforced to ensure that data elements stream through the processors 
without stalls. 

3. Unlike the CPU, which has long been recognized to have a memory bottleneck for massive 
computation, the GPU uses fast on-board texture memory, which has one order of 
magnitude higher bandwidth.” 

In his survey, Owens gives credit for the GPUs’ better performance to the “highly data-parallel 
nature of graphics computations,” which “enables GPUs to use additional transistors more 
directly for computation, achieving higher arithmetic intensity with the same transistor count” 
(3).  Because of the performance disparity, the GPU has been established as an economical 
evolving research platform and its power is being used for general-purpose computation.  

With the GPU as a computing device dedicated to rendering graphics tasks, it is important to 
understand its architecture.  Early GPUs were the size of a large file cabinet.  Over the years, 
advances in technology have shrunk them to the point that GPUs and their associated chips will 
fit onto a small printed circuit card, and, in some cases, are found directly on a computer’s 
motherboard.  The GPU renders a graphics task through a pipeline (figure 2) consisting of a  

                                                 
*This 4-D vector refers to the RGBA texture data. 
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Figure 1.  The programmable floating-point performance of GPUs (measured 

on the multiply-add instruction counting two floating-point 
operations per MADD) (3). 

vertex processor, a rasterizer, a fragment processor, and a frame buffer.  In order to enhance the 
performance of the GPU, it is now common practice for the GPU to contain multiple vertex and 
fragment processors working in parallel.  The newest GPU architectures are merging the vertex 
and fragment processors into a single unified pool of processors, which leads to more optimal 
performance because of the increased capacity of the GPU to respond to the varying shading 
demands of an application.  The vertex processor assigns or modifies color and texture 
coordinates for each vertex and performs any necessary updates of a vertex’s positional data.  
The GPU stores pixel properties, such as texture, in the high-speed graphics memory, which uses 
a combination of multibanking, data streaming, specialized cache designs, and other techniques 
to provide superior levels of bandwidth and latency (4).  A nonprogrammable unit with fixed-
functionality within the pipeline then transforms the streams of vertices of a 3-D geometric scene 
description to a 2-D screen position (5).  The vertices are then grouped into geometric primitives 
(normally, triangles or quadrilaterals) and sent to the rasterizer, which generates a stream of 
fragments for each pixel covered by the primitive.  In the fragment processing stage, a battery of 
tests is conducted on each fragment to determine if it will affect the final image.  If all tests pass, 
the fragment is written to the frame buffer.  GPUs employ the paradigm of stream programming, 
which allows high-efficiency parallel programming without the complicated software 
engineering and design issues (6).  GPUs also have been labeled as vector processors operating 
within the SIMD programming model.  The basic architecture of GPUs has remained stagnant 
for the last 20 years; however, they have gained flexibility with increased programmability, with 
modern GPUs containing programmable vertex and fragment processors.   
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Figure 2.  The graphics hardware pipeline (3). 

GPGPU 

The increased flexibility of GPUs has created a new area of research that explores their 
performance for general-purpose computation.  This area of research entitled general-purpose 
computation on GPUs, or GPGPU, is a highly evolving one because of GPU’s cost effectiveness 
and computational power (7).  Historically, the graphics pipeline described earlier was a “fixed 
function pipeline, where the limited number of operations available at each stage of the graphics 
pipeline was hard-wired for specific tasks” (3).  Evolution has allowed a more flexible 
programmable pipeline, to emerge with efforts concentrating primarily on the vertex and 
fragment stages.  The light and transformation operations on vertices that were present in the 
vertex stage of the earlier design of the graphics pipeline have been replaced by a user-defined 
vertex program; moreover, the fixed fragment operations that took place in the fragment stage 
have been replaced with a user-defined fragment program.  “A programmer can now implement 
custom transformation, lighting, or texturing algorithms by writing programs called shaders” (8).  
Owens’ survey highlights the “vital step for enabling general-purpose computation” on GPUs as 
being “the introduction of fully programmable hardware and an assembly language for 
specifying programs to run on each vertex or fragment” (3).  GPUs now include fully 
programmable processing units with support for 32-bit floating-point precision.  Each generation 
of GPUs is expanding on its already favorable qualities as the next generations from NVIDIA 
and ATI (the major players in this part of the market) are expected to support 64-bit floating-
point precision (9, 10).  The speed, increasing precision, and rapidly expanding programmability 
of GPUs continue to promote them as a platform for general-purpose computation.  
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3. Limitations 

Although the expanding capabilities of modern GPUs make them a compelling platform for 
general-purpose computation, limitations and difficulties exist and must be considered.  GPUs 
are highly specialized devices and were designed to make images of 3-D scenes; the evolution 
and tuning of these devices have mainly been to optimize the highly parallel tasks of computer 
graphics.  Although various applications have been enabled by this performance tuning, many 
applications are outside the narrow focus and are not well-suited for computation on a GPU.  The 
lack of integers, logical operations, and fixed-point arithmetic renders the GPU ineligible for 
many computationally intensive tasks.  Furthermore, “the lack of double precision hampers or 
prevents GPUs from being applicable to many very large-scale computational science problems” 
(3).  In addition to their limited applicability, GPUs are not trivial to program; they require the 
programmer to consider an application that is normally nongraphics in graphics terms, which 
requires the programmer to be knowledgeable of the design, evolution, and limitations of the 
underlying GPU architecture.  However, by hiding many of their architectural features, the 
vendors of GPUs have made it almost impossible to predict on an a priori basis what the 
potential performance of a specific algorithm on a specific GPU should be.  This architectural 
black box makes it difficult to identify the correct chip for the job and determine when it is time 
to stop tuning the code and move to a new project.  A multidisciplinary effort by developers in 
computer graphics and the field of interest is usually required to program efficiently.  Since the 
GPU is designed to process images for the screen, “it may handle as many pixels as the 
maximum resolution of the image it can process”, which translates to “the largest size for a 
dimension of a data stream is 2,048 floating-point elements” (11).  This limitation, as well as the 
number of input parameters that can be passed to a GPU function being limited to eight, affects 
the GPUs’ relevance to large-scale scientific problems.  Transferring results back to main 
memory has proven to take a considerable amount of time on GPUs, although this limitation has 
been significantly alleviated by the higher bandwidth offered with PCI-Express ports. 

 

4. The Curse of Memory 

Most HPC applications require large amounts of memory (several gigabytes to many terabytes) 
and multiple fast processors (frequently with a combined peak speed exceeding gigaflops, with 
the largest systems having peak speeds that exceed 10 teraflops).  It is instructive to look at how 
such systems are programmed.  There are three main approaches to parallelizing applications on 
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the distributed memory parallel architectures used in most of today’s HPC systems: 

1. Pseudo shared memory, also called globally addressable distributed memory, such as UPC, 
CAF, Global Arrays (used in NWCHEM), and the SCALAPACK library.∗  This approach 
assumes that the application requires a large amount of memory and, therefore, spreads the 
data across multiple nodes.  However, it treats the data as though they were in multiple 
gigantic arrays that span nodes.  In most cases, this will result in fine-grained 
communication.  Although some systems have a system interconnection that can support 
such a communication pattern with an acceptable level of performance, these 
interconnections tend to be more expensive and, therefore, are not commonly found.  As a 
result, this programming paradigm is used less frequently than the third approach. 

2. Replicating a significant portion of the data on each of the nodes is required for some 
applications in chemistry, ray tracing, applications using databases, etc.  Although this 
allows one to achieve high levels of speedup through parallelization, it limits the maximum 
problem size to what will fit in the memory on a single node.  As such, this approach is 
only used when it is not possible to use the third approach. 

3. Domain decomposition allows one to break large grids into a large number of smaller grids 
(normally called subdomains).  Each of these subdomains is then worked on by a separate 
processor.  This allows one to efficiently work on very large problem sizes, since the 
communication occurs primarily at the end of each time step (coarse-grained 
communication) and the amount of data being transferred is proportional to the surface area 
of each subdomain (12).  For the remainder of this section, it will be assumed that this is 
the programming paradigm being used. 

Even with domain decomposition, it is desirable to minimize the amount of communication.  
Ideally, the amount of communication should be kept to a size and structure that allow it to be 
fully overlapped with computation.  This implies that, as the delivered performance (on a per-
processor basis) increases, the amount of work assigned to each processor should also increase.  
In particular, if using a GPU as an attached processor will improve the overall per-processor 
performance of an application (ignoring communications costs) by a factor of 10 or more, then it 
is reasonable to assume that the amount of work assigned to each processor will consume most 
of the available memory.  In fact, one might even want to increase the amount of memory each 
node is equipped with.  Currently, most clusters are equipped with at least 512 MB of main 
memory per processor (1 GB on a dual-processor node). 

As far back as 1995, the term “memory wall” was coined to describe the observation that the 
speed of the CPU was increasing faster than the speed of main memory (13).  As a result, the 
delivered performance of today’s microprocessors is highly dependent upon an application’s 

                                                 
∗Additional information on these can be found at http://upc.gwu.edu, http://www.co-array.org, 

http://www.emsl.gov/docs/nwchem /nwchem.html, and http://www.netlib.org/scalapack, respectively. 
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ability to “live” out of cache.  In other words, unless there is a significant amount of data reuse in 
one or more levels of cache, there simply is an insufficient amount of memory bandwidth to keep 
the processor busy.  Even with a reasonable level of data reuse, the memory latency associated 
with a cache miss missing all the way back to main memory would normally be considered 
excessive (hundreds of possibly even a few thousand, CPU cycles).  This problem is normally 
addressed through some combination of stream buffers, nonblocking cache misses (allowing 
multiple misses to overlap their latencies), and/or pre-fetching (14). 

If the memory wall is a problem for the CPU, then one can imagine the potential for it to be an 
even bigger problem when one is talking about any attached processor, with which one hopes to 
significantly accelerate the performance of an application.  The good news is that most GPUs, 
and all high-end GPUs, are equipped with a significant amount of dedicated graphics memory 
(also sometimes referred to as video memory or GRAM).  Additionally, this graphics memory is 
organized into multiple banks (4).  As such, it supports multiple memory accesses per cycle, 
while the tight coupling between the GPU and the graphics memory keeps the latency low.  The 
effective latency is reduced even further when the GPU streams data into and out of the graphics 
memory.  All of this is reminiscent of vector processors, except there are no vector registers. 

Now for the bad news:  high-end GPUs are routinely equipped with 128 or 256 MB of graphics 
memory (older, less expensive, and/or GPUs meant for use in portable devices will usually have 
significantly less graphics memory, e.g., 16–64 MB).  The problem is that since this is 
significantly smaller (by at least a factor of 2) than the size of per-processor main memory (when 
one is using GPUs for nongraphics applications), one must anticipate the need to stream data 
between main memory and the graphics memory.  This data will move through the PCI-Express 
bus or one of the older buses that are totally inadequate for this task (e.g., AGP, PCI, or PCI-X).  
Although the PCI-Express bus provides significantly better bidirectional bandwidth and latency 
than its predecessors, it is still in no way capable of supplying the voracious appetite of a state-
of-the-art GPU for data. 

This demonstrates the importance of implementing the algorithm in a manner that supports a 
high level of data reuse in terms of the graphics memory.  If the algorithm uses functions such as 
matrix multiply and fast Fourier transform (FFT), this should not be difficult.  However, when 
one is using level 1 BLAS functions such as dot product, there is little or no potential for data 
reuse within a single call.  In general, such a function would be considered poorly suited for use 
on a GPU.  However, it is sometimes possible to group successive or concurrent calls to such 
functions in a manner that produces the necessary level of data reuse.  Therefore, although this 
does not preclude the use of GPUs and other attached processors, it can represent a significant 
obstacle to the successful use of these devices for nongraphics applications.  Clearly, one of the 
simplest solutions is to buy the GPUs with the largest amount of graphics memory possible.  
Some GPUs can be purchased with 512 MB of graphics memory, and at least one device 
supports more than 1 GB of graphics memory (9, 10). 
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Anticipating the Speedup 

What kind of speedup might one reasonably expect to see when using GPUs in a cluster 
computer?  In this discussion, we make the following assumptions: 

• A high end GPU is being used. 

• The algorithm lends itself to the GPU and parallelization using MPI on the cluster. 

• Implementing the GPU will maximize the amount of work allocated to each processor, 
possibly requiring the cluster to be equipped with additional memory per processor. 

• The system interconnect used by MPI (e.g., Myrinet, Infiniband, or Quadrix) cannot easily 
be enhanced for clusters equipped with attached processors, such as a GPU. 

• The CPU-only implementation and the GPU-augmented implementation represent best 
efforts. 

For a specified problem, this means that in order to keep the time spent on communication in 
balance with the computation and therefore maintain the potential to fully overlap the two, one 
will be restricted to using fewer GPU-equipped nodes than were used with the conventional 
cluster solution.  In other words, the predicted speedup would be SG/SC × NG/NC where:  

• SG is the speed of the application on a per-processor basis when run on the GPU,  

• SC  is the speed of the application on a per-processor basis when run on the CPU,  

• NG is the number of nodes used when using the GPU (for a fixed total problem size), and  

• NC is the number of nodes used when using just the CPUs (for a fixed total problem size).   

The subscripts G and C represent the GPU- and the CPU-only-based solutions, S is the speed per 
processor in some appropriate unit (e.g., GFLOPS or time steps per hour), and N are the number 
of GPUs or CPUs being used.  As we have been explaining, NG < NC, and one might hope that SG 
would be a factor of 10 or more times greater than SC.  Therefore, it would be reasonable to 
assume that the overall speedup will be at least a factor of 2 smaller than the per-node speedup.  
In reality, for programs that are highly successful at taking advantage of an attached processor, 
such as a GPU, one should investigate the options for improving the performance of the system 
interconnect (e.g., using a newer interconnect from the same vendor, a faster interconnect from a 
different vendor, or multiple rails of the same interconnect).  

5. Software 

According to Owens, “successful programming for any development platform requires at least 
three basic components: a high-level language for code development, a debugging environment, 
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and profiling tools” (3).  Because high-level GPU programming languages are designed with 
graphics as a central theme, the languages are often referred to as shading languages.  As this 
nomenclature suggests, these languages compile a shader program into a vertex shader and a 
fragment shader to produce the image described by the shader program.  Cg, HLSL, OpenGL are 
all such shading languages that allow the programmer to write GPU programs in a more familiar 
C-like programming environment.  Sh is a shading language that offers a C++-like programming 
environment.  All of these languages remain close to the specialized nature of GPUs and contain 
graphics-specific constructs, i.e., vertices, fragments, and textures.  ASHLI operates one level 
higher than the aforementioned shading languages and reads as input shaders written in HLSL or 
OpenGL and “automatically compiles and partitions the input shaders to run on a programmable 
GPU” (3).   

Currently, the two major standards for the GPU interface are OpenGL and DirectX.  These 
standards were designed to program graphics operations; thus, it is not trivial to use them for 
nongraphical applications.  Because GPU programming requires a programmer to view their 
GPGPU application in terms of geometric primitives, languages and libraries have been 
developed to provide GPGPU functionality while relieving the programmer of the GPU-specific 
details.  BrookGPU is a programming language extension to the ANSI C standard that can use 
the GPU as a compilation target.  BrookGPU affords the programmer advantages such as code 
reuse, as code can execute on the CPU or the GPU using the OpenGL or DirectX interfaces, and 
an indirection layer relieves the user of having to know whether the code is executing on an 
NVIDIA or an ATI chip (15).  Scout is a GPU programming language designed for scientific 
visualization that “allows runtime mapping of mathematical operations over data sets for 
visualization” (16).  Accelerator and Computer Graphics in Scientific programming (CGiS) have 
similar aims at simplifying GPU programming through high-level data-parallel implementations.  
The Glift template library simplifies GPU data structure design and separates GPU algorithms 
from data structures so that interfacing with CPU-based parallel data structures is possible.  
Several attributes of each of these programming tools are contained table 1.  Significant efforts 
have been made to ameliorate the demanding task of GPU programming so that GPGPU 
developers can utilize the computational power of the GPU at a higher level of programming.  
Appendices A–G highlight examples of nongraphical paradigms implemented in several of the 
aforementioned programming languages. 

A related issue is the limited amount of memory a GPU has for holding the shader program.  
This limitation is similar to a program running on the microprocessor.  If the inner loop fits into 
the level 1 instruction cache, then it has a chance of running efficiently.  However, with a GPU, 
if the shader program does not fit into the GPU’s program memory, the shader program will not 
run at all.  It is important to remember that the size of this memory is driven by the needs of 
graphics applications.   
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Debugging on GPUs was fairly limited until the recent surge of tools, yet the need for effective 
tools was much greater.  The most commonly used debugging tool for programs running on a 
CPU, the print statement/printf function, has no counterpart on the GPU.  It was established that 
because GPUs are now being used for general-purpose computing, a GPU debugger should be 
similar in capabilities to a CPU debugger.  Variable watches, program break points, and single-
step execution were deemed important features.  Along with these standard features for CPU 
debuggers, an effective GPU debugger should include some other features, because of the 
interactive aspect of GPU programming.  “The ideal GPGPU debugger would automate printf-
style (the values of interest are printed to the screen) debugging, including programmable scale 
and bias for values outside the display, while also retaining the true data value at each point if it 
is needed” (3).  Several tools have been developed for GPU debugging; however, nearly all are 
missing one or more of the aforementioned important features.  gDEBugger and GLIntercept are 
tools for debugging OpenGL programs, the Microsoft shader debugger provides the functionality 
of runtime variable watches and breakpoints for shaders, and the Shadesmith fragment program 
debugger was the first debugger to implement the printf-style paradigm.  Although there is still 
work to be done in the area of debugger development, the tools that currently exist have proven 
sufficient to validate vertex and fragment programs.  As the GPGPU field emerges, the 
debugging tools will be challenged to become more robust. 
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Table 1.  GPU programming tools. 

Tool Cost Support Developer Platform(s) Advantages Applications 
Accelerator 

(17) 
Free Open source Microsoft 

Research 
Platform-independent High-level data parallel 

programming model in a 
library accessible to most 
programming languages 

GPGPU programming; 
translates data-parallel 
operations on the fly to 
GPU pixel shaders 

ASHLI 
(18) 

Free Open source ATI Technologies HLSL, OpenGL shading 
language code, or a subset 
of Renderman as input and 
compiles the shader to run 
on GPU 

Provides a framework for 
mapping arbitrary 
complex shaders onto 
graphics shading hardware 

Digital content creation; 
bridging the gap between 
low level shading 
constructs and shading 
description of programmer 

Brahma 
(19) 

Free Open source Brahma NET 2.0 Eliminates the need for 
learning a shading 
language but gives same 
speed and performance; 
internally handles most of 
GPU programming 

High-level graphical and 
general purpose GPU 
programming 

Brook GPU 
(15) 

Free Open source Stanford 
University’s 

graphics group 

DirectX (requires newer 
cards—ATI 9700 & 
above, NVIDIA 5200 and 
above); OpenGL 
(Windows & Linux)—
better supports NVIDIA 
cards 

Useful tool for GPGPU 
programmers; utilizes 
stream programming 
model for easy 
parallelization 

General-purpose GPU 
programming; stream 
programming 

Cg 
(20) 

Free Open source NVIDIA Windows, Linux, Mac, 
OpenGL and DirectX as 
APIs 

Cg compiler can optimize 
code and do lower level 
tasks; familiar C-like 
programming language 

Interactive effects into 3-D 
applications; shader 
programs 

CGiS 
(21) 

Free Open source 
(upon completion 
of compiler frame 

work) 

Saarland 
University 

Compiler Design 
Lab 

Platform-independent Raises GPU abstraction 
level 

Scientific programming 

CUDA 
(22) 

— Beta release NVIDIA OpenGL and Microsoft 
DirectX drivers from 
NVIDIA 

Uses C to create programs 
called threads; CUDA 
technology processes 
thousands of threads 
simultaneously enabling a 
higher capacity of 
information flow 

Data-intensive 
applications; physics 
computation (giving 
gamers great performance 
and visual effects) 
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Table 1.  GPU programming tools (continued). 

Tool Cost Support Developer Platform(s) Advantages Applications 
Glift template 
(23) library 

Free Open source Scientists from 
UC-Davis, 
Stanford, and 
University of 
Utah 

Integrates with C++, Cg, 
and OpenGL development 
environment 

Simplifies algorithmic 
development;  
code reuse; 
interchangeable  
data structures 

Defining complex, 
random-access GPU data 
structures 

HLSL 
(24) 

Free Open source Microsoft Windows Very similar to Cg; can 
use for vertex and 
fragment shading 

High-level GPU vertex 
and fragment shader 
programming 

Open GL 
shading 
language 

(25) 

Free Open source 3Dlabs Platform-independent Enables direct compilation 
of C-like programs to 
graphics hardware 
machine code 

High-level shader 
programming; real-time 
cinematic quality graphics 

Peak stream 
(26) 

License required 
(limited time no-
cost evaluation 

program) 

Commercially 
available 

Peakstream Inc. OS: Linux 4.0 
GPU: ATI R580-based 
graphics card 

Cuts development time by 
up to 90% due to easy to 
learn API; integrates with 
existing developer tools 
(i.e. GCC, GDB, and Intel 
compilers) 

Standard arithmetic and 
geometry; 1-D and 2-D 
stream arrays; matrix 
solver; single and double 
precision 

Rapid mind 
(27) 

Free Beta release RapidMind Inc. RapidMind development 
platform 

Allows developer to use 
standard C++ 
programming to easily 
create high-performance 
and massively parallel 
applications that run on 
the GPU 

BLAS dense linear algebra 
operations; Fast Fourier 
Transform 

 
 

Scout 
(16) 

Free Open source Los Alamos 
National 
Laboratory 

Platform-independent Allows user to process 
multivariate data, express 
derived data, and define 
mappings to final image in 
a familiar environment 

Scientific visualization; 
hardware acceleration 

Sh 
(28) 

Free Open source Michael 
McCool- 
University of 
Waterloo 
Computer 
Graphics Lab 

For hardware acceleration, 
requires ATI Radeon 
9600s and up 

Portable; object-oriented 
programming; familiar 
syntax (built on top of 
C++) 

High-level GPU 
programming 

 



 13

6. GPU Programming Model 

While programming on the CPU requires a sequential programming model, the GPU achieves its 
superior performance through data parallelism, which employs the stream programming model.  
The stream programming model structures programs in a manner that affords high efficiency in 
computation and communication (29).  It exploits the parallelism of the application by 
structuring the data into streams and performing computation on the streams with kernels.  
BrookGPU offers a stream programming system for GPUs (3).  It implements stream 
programming concepts with streams as variables and kernels and reductions as functions that 
operate on streams; it automatically maps kernels and streams into fragment programs and 
texture memory.  

Because typical scenes have more fragments than vertices, the highest volume of arithmetic 
computation is done in the fragment processing stage.  A GPGPU program is structured as 
follows (3): 

1. Initially, the programmer defines the data-parallel portions of the application and segments 
the application into independent parallel sections.  Each of these sections can be considered 
a kernel and is implemented as a fragment program.  The input and output of each kernel 
program is one or more data arrays, which are stored in textures in GPU memory.  The data 
in these textures are considered as streams, and a kernel is invoked in parallel on each 
stream element. 

2. By passing vertices to the GPU of geometric primitives (typically quadrilaterals) orientated 
parallel to the image plane and sized to match the desired size of the output array, the range 
of computation is defined, thus invoking a kernel. 

3. The rasterizer generates a fragment for every pixel location in the primitive. 

4. Each of the generated fragments is then processed by the active kernel fragment program.  
The fragment program can read from arbitrary global memory locations but can only write 
to memory locations corresponding to the fragment’s location in the frame buffer.   

5. The output of the fragment program is a value (or vector of values) per fragment.  This 
output may be stored as a texture and used for the next pass through the pipeline or it may 
be the final result of the application. 
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7. GPGPU Applications 

The performance advantages of GPUs have been explored within various applications, including 
physical based simulations, signal and image processing, geometric computing, and databases 
and data mining.  The increased demand and deployment of GPUs in the last several years has 
resulted in increasing experimental research with graphics hardware.  Several groups have used 
the GPU to successfully implement physically based simulations.  The Center for High 
Performance Computing at Stony Brook University developed a parallel flow simulation using 
the Lattice-Boltzmann model (LBM) on a GPU cluster and simulated the dispersion of air-borne 
contaminants in the Times Square area of New York City.  The numerical method employed by 
the LBM is highly parallelizable, which lends it well to computation on the GPU; moreover, the 
specification of boundary shapes is not governed by strict conditions.  In order to implement this 
model, the LBM operations (e.g., streaming, collision, and boundary conditions) are formulated 
into fragment programs to be executed by the fragment processor during the rendering process.  
The fragment program fetches current state information from the appropriate textures (arrays), 
computes the LBM equations to evaluate the new states, and then passes the results to a pixel 
buffer.  After the fragment pass is completed, the results are copied back to textures for use in the 
next step.  This group was able to produce results using 30 GPU nodes that were 4.6× faster than 
the same implementation of a 480 × 400 × 80 LBM on a CPU cluster that contained 64 Pentium 
Xeon 2.4-GHz processors and 2.5-GB memory (2).  The demanding applications of signal and 
image processing benefit from the high computational rates of the GPU.  Image segmentation 
has been a prominent research area within these applications and GPGPU segmentation 
approaches have provided speedups of more than 10× by coupling the fast computation of the 
GPU to an interactive volume renderer.  Database and data mining algorithms are known to be 
highly computation and memory intensive, which makes them attractive candidates for GPU 
computation.  The high memory bandwidth has accelerated the performance of many essential 
database queries—Govindaraju et al. (30) compared the performance of SQL queries on an 
NVIDIA GeForce 6800 against a 2.8-GHz Intel Xeon processor, and these comparisons indicate 
as much as an order of magnitude improvement for the GPU over a SIMD-optimized CPU 
implementation.  As GPUs evolve and become better equipped for general-purpose computation, 
the success of their use within applications continues to rely on the developer’s understanding of 
the circumstances under which the GPU is likely to outperform the CPU.  Goodnight notes that 
“efficient GPGPU applications almost always take advantage of the vector processing and 
memory access capabilities of the GPU” (8).   
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8. Results 

Table 2 summarizes the results discussed in section 7 of this report and several other examples of 
code that were ported to GPUs.  Unfortunately, there do not appear to be many examples of 
applications being run on GPU-equipped clusters.  In table 2, we have attempted to provide 
opportunities to make the following types of comparisons: 

• The same problem run on a CPU or cluster of CPUs vs. on a GPU or GPU-equipped 
clusters 

• Performance results obtained when using different languages 

• Performance as a function of problem size 

It is interesting to note that, frequently, the delivered performance on a GPU can be heavily 
influenced by the problem size.  In general, the larger the problem, the better the performance.  
In many cases, for smaller problem sizes, using the GPU can actually result in a slower run.  
Additionally, it should be pointed out that the optimal algorithm for the GPU is frequently not 
the algorithm of choice for the CPU.  One final note to point out is that we have made no attempt 
to compare the performance of competing GPUs. 

 

9. Conclusion 

As general-purpose computation on graphics hardware continues to grow as a research area, the 
research community is continually being challenged to think about non-graphics problems from a 
graphics perspective and attempt to effectively design algorithms that are well suited for graphics 
architecture.  Simultaneously, GPU vendors are expected to increase programmability and 
generality of future generations of GPUs without sacrificing the specialized architecture and 
heightened performance that have compelled its surge into the non-graphics research arena.  As 
the field of GPGPU computing matures, researchers are hopeful that the GPU continues to be a 
sturdy platform for enhanced computation and performance. 
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Table 2.  Application performance CPU-based vs. GPU-accelerated implementations. 

CPU Performance GPU Performance 
Benchmark 
/Application 

 
Type 

 

Clock 
Rate 

(GHz) 

No. of 
Processors 

 

Measured 
Performance 

 
Type 

 

Clock 
Rate 

(MHz) 

No. of 
Processors 

 

Measured 
Performance 

 
Speedup 

 
Reference 

 
Language 

 
SQL queries (multi- 
attribute query 360-K 
records) 

Intel  
Xeon 2.8 1 8 ms 

NVIDIA 
GeForce 

6800 
450 1 4 ms 2 (30) OpenGL 

SQL queries (multi- 
attribute query 1-M 
records) 

Intel  
Xeon 

2.8 1 18 ms NVIDIA 
GeForce 

6800 
450 

1 12 ms 1.5 (30) OpenGL 

SQL queries (semi-
linear queries 360-K 
records) 

Intel  
Xeon 

2.8 1 15 ms NVIDIA 
GeForce 

6800 
450 

1 2 ms 7.5 (30) OpenGL 

SQL queries (semi-
linear queries 1-M 
records) 

Intel  
Xeon 

2.8 1 40 ms NVIDIA 
GeForce 

6800 
450 

1 5 ms 8 (30) OpenGL 

LBM 

Pentium 
Xeon 

2.4 64 1.44 second 
step 

NVIDIA 
GeForce 
FX 5800 

Ultra 

500 

30 0.312 second
/step 

4.6 (2) Cg 

SGEMM (single 
precision matrix 
multiply) 

— — — — — — — 94 
GFlops 

— (31) Peak-
stream 

SGEMM (single 
precision matrix 
multiply) 

— — — — — — — 32 
GFlops 

— (31) Rapid-
mind 

SGEMM (single 
precision matrix 
multiply) 

— — — — — — — 15 
GFlops 

— (31) Brook 

SGEMM (single 
precision matrix 
multiply) 

— — — — — — — 7 
GFlops — (31) Accelerator 

16-bit data std:  sort 
(256 × 256 field size) 

Pentium 
4 3 1 82.5 full 

sorts/s — — — —  (29) — 

16-bit data std:  sort 
(512 × 512 field size) 

Pentium 
4 3 1 20.6 full 

sorts/s — — — — — (29) — 

16-bit data std:  sort 
(1024 × 1024  
field size) 

Pentium 
4 3 1 4.7 full  

sorts/s — — — — — (29) — 
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Table 2.  Application performance CPU-based vs. GPU-accelerated implementations (continued). 

CPU Performance GPU Performance 
Benchmark 
/Application 

 
Type 

 

Clock 
Rate 

(GHz) 

No. of 
Processors 

 

Measured 
Performance 

 
Type 

 

Clock 
Rate 

(MHz) 

No. of 
Processors 

 

Measured 
Performance 

 
Speedup 

 
Reference 

 
Language 

 
Bitonic merge sort 
(16-bit float data) 
(256 × 256 field size) 

— — — — 
NVIDIA 
GeForce 

6800 Ultra 
425 1 90.07 full 

sorts/s 1.09 (29) GLSL 

Bitonic merge sort 
(16-bit float data) 
(512 × 512 field size) 

— — — — 
NVIDIA 
GeForce 

6800 Ultra 
425 1 18.3 full 

sorts/s 0.89 (29) GLSL 

Bitonic merge Sort 
(16-bit float data) 
(1024 × 1024 field 
size) 

— — — — 
NVIDIA 
GeForce 

6800 Ultra 
425 1 3.6 full sorts/s 0.77 (29) GLSL 

2-D complex FFT 
(256 × 256) 

AMD 
Opteron 2.6  1 2.8  

GFLOPS 
NVIDIA 

7900 GTX — 1 1.5 GFLOPS 0.54 (32) Rapid 
mind 

2-D complex FFT 
(1024 × 1024) 

AMD 
Opteron 2.6  1 2.5 

 GFLOPS 
NVIDIA 

7900 GTX — 1 7 GFLOPS 2.8 (32) Rapid 
mind 

Option pricing  
(Black-Scholes 64-K 
options) 

AMD 
Opteron 2.6  1 9-m  

options/s 
NVIDIA 

7900 GTX — 1 20-m 
options/s 2.2 (32) Rapid 

mind 

Options pricing 
(Black-Scholes 1-M 
options) 

AMD 
Opteron 2.6  1 9-m  

options/s 
NVIDIA 

7900 GTX — 1 200-m 
options/s 22.2 (32) Rapid 

mind 

SAXPY Pentium 
4 3  1 — NVIDIA 

7800 GTX — 1 — 8.4 (33) Brook 

Segment Pentium 
4 3 1 — NVIDIA 

7800 GTX — 1 — 4.0 (33) Brook 

SGEMV Pentium 
4 3 1 — NVIDIA 

7800 GTX — 1 — 3.3 (33) Brook 

FFT Pentium 
4 3 1 — NVIDIA 

7800 GTX — 1 — 2.0 (33) Brook 

Ray Pentium 
4 3 1 — NVIDIA 

7800 GTX — 1 — 2.6 (33) Brook 
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Appendix A.  Code Examples for BrookGPU 
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kernel  void mul (float a<>, float b<>, 
                    out float result<>) { 
   result = a*b; 
} 
 
reduce void sum (float a<<>, 
                   reduce float result<>) { 
   result += a; 
} 
 
float matrix <20,10>; 
float vector <1, 10>; 
float tempmv <20,20>; 
float result <20, 1>; 
 
mul (matrix,vector,tempmv); 
sum (tempmv,result);  
 

Figure A-1.  Matrix vector multiply implemented in BrookGPU.1 

 
 

 
kernel void k(float s<>, float3 f, float a[10][10], out float o<>); 
 
  float a<100>; 
  float b<100>; 
  float c<10,10>; 
 
  streamRead(a, data1); 
  streamRead(b, data2); 
  streamRead(c, data3); 
 
  // Call kernel "k" 
  k(a, 3.2f, c, b); 
 
  streamWrite(b, result); 

 

Figure A-2.  BrookGPU kernel definition.2 

                                                 
1Buck, I.  High Level Languages for GPUs.  http://www.gpgpu.org/vis2005/PDFs/gpgpu/viscourse05.pdf (slides 158-–159) 

(accessed 30 March 2007). 
2BrookGPU.  http://graphics.stanford.edu/projects/brookgpu/ (accessed 30 March 2007). 
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Appendix B.  Code Programming Example for Cg 
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for  (int j = 1 ; j  <  height – 1 ;  ++j) 
{ 
   for (int i = 1; i < width – 1; ++i) 
   { 

 

     // get velocity at this cell 
     Vec2f v = grid(x, y); 
 
     // trace backwards along velocity field 
     float x = (i – (v.x * timestep / dx)); 
     float y = (j – (v.y * timestep / dy)); 
 
     grid (x, y) = grid.bilerp (x, y); 

 
void advect (float2         uv     : WPOS, 
        out  float4         xNew   : COLOR, 
 
    uniform  float          dt, // timestep 
    uniform  float          dx, // grid scale 
    uniform  samplerRECT    u,  // velocity 
    uniform  samplerRECT    x,  // state 
{ 
  //  trace backwards along velocity field 
  Float2 pos = ub – dt * f2texRECT (u, uv) / dx; 
 
  xNew = f4texRECTbilerp (x, pos); 
} 

    } 
} 

 

C++ Cg 

Figure B-1.  Transforming a section of code for performing an Advect from C++ to Cg.1 

 
Note:  For those who are not familiar with the Black-Scholes model, it is the most frequently used method for estimating what 

the price of an option should be.  To the extent that the actual price of an option varies from the estimated price, one 
might want to either buy or sell the option. 

 
 

                                                 
1Luebke, D.  Introduction to GPGPU Programming.  http://www.gpgpu.org/sc2006/slides/01.luebke.Introduction.pdf (slide 35) (accessed 30 March 2007). 
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float BlackScholesCall (float S, float X, float T, float r, float v) { 
  float d1 = (log(S/X) + (r + V * V * .5f) * T) / (v * sqrt(T)); 
  float d2 = d1 – v * sqrt(T); 
  return S * CND(d1) – X * exp(-r * T) * CND(d2); 
}  
 

Figure B-2.  Implementing the Black-Scholes model in Cg.2 

 
 

 
float CND(float X) 
{ 
   float L= abs(X); 
   // Set up float4 so that K.x = K, K.y = K^2, K.z = K^3, K.w = K^4 
   float4 K; 
   K.x = 1.0 / (.0 + 0.2316419 * L); 
   K.y = K.x * K.x; 
   K.zw = K.xy * K.yy; 
 
   // compute K, K^2, K^3, and K^4 terms, reordered for efficient 
   // vectorization.  Above, we precomputed the K powers, here we’ll 
   // multiply each one by its corresponding scale and sum up the 
   // terms efficiently with the dot() routine. 
   // 
   // dot (float4(a, b, c, d), float4(e, f, g, h)) efficiently computes 
   // the inner product a*e + b*f + c*g +d*h, making much better 
   // use of the 4-way vector floating-point hardware than a 
   // straightforward implementation would. 
   float w = dot(float4 (0.31938153f, -0.356563782f, 
                         1.781477937f, -1.821255978f), K); 
   // and add in the K^5 term on its own 
   w += 1.330274429f * K.w * K.x; 
   w *= rsqrt(2.f * PI) * exp(-L * L * .5f);  // rsqrt() == 1/sqrt() 
 
   if (X > 0) 
      w = 1.0 – w; 
   return w; 
}  
 

Figure B-3.  Implementing the cumulative normal distribution function. 

                                                 
2Kolb, C.; Pharr, M.  Options Pricing on the GPU.  In GPU Gems 2; Pharr, M., Ed.; Addison-Wesley:  Boston, MA, 2005; 

722–724. 
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Appendix C.  Code Programming Example for GLSL 
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uniform sampler2D  PackedData; 
 
// contents of the texcoord data 
#define OwnPos gl_TexCoord[0].xy 
#define SearchDir gl_TexCoord[0].z 
#define CompOp gl_TexCoord[0].w 
#define Distance gl_TexCoord[1].x 
#define Stride gl_TexCoord[1].y 
#define Height gl_TexCoord[1].z 
#define HalfStrideMHalf gl_TexCoord[1].w 
 
void main(void) 
{ 
  // get self 
  vec4 self = texture2D (PackedData, OwnPos); 
 
  // restore sign of search direction and assemble vector to partner 
  vec2 adr = vec2( (SearchDir < 0.0) ? –Distance : Distance , 0.0); 
 
  // get the partner 
  vec4 partner = texture2D(PackedData, OwnPos + adr); 
 
  // switch ascending/descending sort for every other row 
  // by modifying comparison flag 
  float compare = CompOp * -(mod(floor(gl_TexCoord[0].y * Height), 
                                 Stride) – HalfStrideMHalf); 
 
  // x and y are the keys of the two items 
  //  multiply with comparison flag 
  vec4 keys = compare * vec4( self.x, self.y, partner.x, partner.y); 
 
  // compare the keys and store accordingly 
  // z and w are the indices 
  //  just copy them accordingly 
  vec4 result; 
  result.xz = (keys.x < keys.z) ? self.xz : partner.xz; 
  result.yw = (keys.y < keys.w) ? self.yw : partner.yw; 
 
  // do pass 0 
  compare *= adr.x; 
  gl_FragColor = 
      (result.x * compare < result.y * compare) ? result : result.yxwz; 
}   
 

Figure C-1.  GLSL Fragment program implementing the combined passes 1 and 0 for row-wise sorting of the 
bitonic merge sort.1 

 
 
                                                 

1Kipfer, P.; Westermann, R.  Improved GPU Sorting.  In GPU Gems 2; Pharr, M., Ed.; Addison-Wesley:  Boston, MA, 2005; 
744. 
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Appendix D.  Code Programming Example for PeakStream 
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#include <peakstream.h> 
 
#define NSET 1000000                   //  number of monte carlo trials 
 
Arrayf32 Pi = compute_pi();            //  get the answer as a 1x1 array 
float_pi = Pi.read_scalar();           //  convert answer to a simple float 
printf(“Value of Pi = %f\n”, pi); 
 
Arrayf32 
Compute_pi (void) 
{ 
    RNGf32 G(SP_RNG_DEFAULT, 271828);  // create an RNG 
    Arrayf32 X = rng_uniform_make(G, NSET, 1, 0.0, 1.0); 
    Arrayf32 Y = rng_uniform_make(G, NSET, 1, 0.0, 1.0); 
    Arrayf32 distance_from_zero = sqrt (x * X + Y * Y); 
    Arrayf32 inside_circle = (distance_from_zero <= 1.0f) ; 
    Return 4.0f * sum(inside_circle) / NSET ; 
} 
 

Figure D-1.  Computing PI with PeakStream.1

                                                 
1Papakipos, M.  Stream Programming on the PeakStream Platform.  http://www.gpgpu.org/sc2006/workshop 

/Presentations/PeakStream_SC06.pdf (slide 15) (accessed 30 March 2007). 



 

 31

Appendix E.  Code Programming Example for Scout 
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float:shapeof(temp) new_temp: //time step result goes here … 
// Data parallel computation of the diffusion… 
compute with(shapeof(temp)) { 
 // Don’t compute over boundary conditions … 
 where (mask > 0) { 
  float temp_x; 
  temp_x =(alpha/(dx*dx))*(temp[i+1][j]-2*temp[i][j]+ 
                temp[i-1][j]); 
  temp_y =(alpha/(dy*dy))*(temp[i][j+1]-2*temp[i][j]+ 
                temp[i][j-1]; 
  new_temp = dt * (temp_x + temp_y) + temp[i][j]; 
 } else { 
  new_temp = temp; // boundary conditions stay constant… 
 } 
} 
// New temperatures need to become our initial conditions for 
// the next pass. 
temp = new_temp; 
 

Figure E-1.  Heat diffusion implemented in Scout.1 

 
 

                                                 
1McCormick, P.  Scout:  Case Studies.  http://www.gpgpu.org/vis2005/PDFs/gpgpu/viscourse05.pdf (slide 490)  

(accessed 30 March 2007). 
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Appendix F.  Code Programming Example for CGiS 
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PROGRAM viswave; 
INTERFACE 
extern inout float LAST<_,_> : texture (1) A; // _ is a size wildcard. 
extern in float CURRENT<_,_> : texture (2) A; // Flipped on each step. 
extern in float RINDEX, DAMP, WID, HEI; // Pass as program parameters. 
intern float X<_,_> : texture (4) R; // These two streams shall reside 
intern float Y<_,_> : texture (4) G; // 
in the same texture (id=4). 
extern in float3 TEXTURE<_,_>: texture (3) RGB; // Use RGB components 
extern out float3 IMAGE<_,_> : texture (5) RGB; // for visualization. 
CODE 
... // Declare kernels called from this section and from CONTROL. 
CONTROL 
// Single step wave propagation: 
forall (float last in LAST; float current in CURRENT){ 
propagate (last, current, indexX(last), indexY(last), DAMP, WID, HEI); 
} 
// Compute refractions in X- and Y-dimension: 
forall (float x in X; float y in Y; float height in LAST){ 
refractionX (RINDEX, x, height, indexX(height), WID); 
refractionY (RINDEX, y, height, indexY(height), HEI); 
} 
// Compute refracted image: 
forall (float3 pixel in IMAGE; float height in LAST; 
float x in X; float y in Y){ 
render (TEXTURE, pixel, height, x, y); 
} 
// Display image on screen: 
show(IMAGE); 

 

Figure F-1.  Part of a CGiS program for calculating refractions.1 

 
 

                                                 
1Lucas, P.; Fritz, N.; Wilhelm, R.  The Development of the Data-Parallel GPU Programming Language CGiS.  Proceedings 

of ICCS (2006), Reading, UK, 28–31 May 2006; 3994, 200–203. 
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Appendix G.  Code Programming Example for Accelerator 
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using Microsoft.Research.DataParallelArrays; 
 
static float[,] Blur(float[,] array, float[] kernel) 
{ 
     float[,] result; 
     DFPA parallelArray = new DFPA(array); 
      
     FPA resultX  = new FPA(Of, parallelArray.Shape); 
     for (int i=0; i<kernel.Length; i++) { 
        int[] shiftDir = new int[] {0,i}; 
        resultX += PA.Shift(parallelArray, shiftDir) * kernel[i]; 
     } 
 
     FPA resultY = new FPA(Of, parallelArray.Shape); 
     for (int i=0; i<kernel.Length; i+=) { 
        int[] shiftDir = new int[] {i,0}; 
        resultY += PA.Shift(resultX, shiftDir) * kernel[i]; 
     } 
 
     PA.ToArray(resultY, out result); 
     parallelArray.Dispose(); 
     return result; 
} 
 

Figure G-1.  A 2-D convolution implementation using C# version of Accelerator.1 

 
 

                                                 
1Tarditi, D.; Puri, S.; Oglesby, J.  Accelerator:  Using Data Parallelism to Program GPUs for General-Purpose Uses.  

Proceedings of the 12th International Conference on Architectural Support for Programming Languages and Operating Systems, 
San Jose, CA, 21–25 October 2006. 
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Glossary 

AGP A bus designed by Intel specifically for connecting graphics 
processors to the CPU and main memory.  Unfortunately, its 
characteristics make it poorly suited for the needs of general-
purpose programming using GPUs. 

ASHLI Advanced shading language – one of several languages designed to 
facilitate the programming of GPUs. 

ANSI C The C standard as adopted by the American National Standards 
Institute.  Supersedes the informal standard version of C known as 
Kernighan and Ritchie C. 

ATI The name of one of the two main companies that manufacture GPUs 
(recently acquired by Advanced Micro Devices, AMD). 

BLAS A commonly used library of linear algebra subroutines that run on a 
single processor, although parallelized implementations have been 
created under such names as PBLAS and SCALAPACK. 

BrookGPU One of several languages designed to facilitate programming GPUs. 

CAF Co-array Fortran – an example of a language that conforms to the 
PGAS programming model. 

CFD Computational fluid dynamics 

CG C for graphics – one of several languages designed to facilitate 
programming GPUs. 

CGiS Computer Graphics in Scientific programming 

CPU Central processing unit 

FFT Fast Fourier transform 

GPGPU General-purpose computation on GPUs 

GPU Graphics processing unit 

GRAM Graphics RAM – a high-speed memory optimized for the 
requirements of processing graphical data. 
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HLSL High-level shading language – one of several languages designed to 
facilitate programming GPUs. 

HPC High-performance computing 

MADD Multiply-add instruction – allows a single instruction to specify two 
floating-point operations.  This is one of two commonly used 
techniques to effectively double the theoretical peak speed of a 
processor without increasing the maximum number of instructions 
that can be started in a single cycle. 

Moore’s Law The observation that the number of transistors on a chip was roughly 
doubling every 12–24 months.  This was taken to infer that the 
performance of the chips was increasing at a similar rate.  
Unfortunately, it became clear that it was desirable to use this 
transistor budget in other ways.  Originally, this meant moving units 
such as the floating-point unit, memory management unit (especially 
the TLB), and the L2 cache on chip.  More recently, system 
designers have opted to put multiple processors on a single chip 
(in some cases at a lower clock rate). 

MPI Message passing interface – the most commonly used message 
passing library. 

NWCHEM A computational chemistry program originally developed at the 
Department of Energy’s Pacific Northwest Laboratories. 

NVIDIA The name of one of the two main companies that manufacture 
GPUs. 

PCI/PCI-X/PCI-
Express 

An evolving set of standards for connecting peripheral components 
to the CPU and main memory. 

Printf function A C function that implements formatted output in a manner similar 
to that of the Print statement in Fortran. 

PGAS Partitioned global address space – an emerging programming model 
for writing parallel programs. 

RGBA Red green blue alpha – texture data for the GPU. 

SCALAPACK The name of a popular parallelized mathematics library for 
manipulating dense matrices. 
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Sh One of several languages designed to facilitate programming GPUs. 

SIMD Single instruction, multiple data – a programming model in which 
multiple functional units execute the identical instruction/group of 
instructions on a set of data elements. 

SQL Standard query language 

UPC Unified parallel C – an example of a language which conforms to 
the PGAS programming model. 

Z-Buffers A buffer used to accumulate the color information for each pixel on 
the screen.  What makes this buffer special is that in addition to 
color information, it also includes the depth of the frontmost item 
visible in each pixel.  Then, as the image is assembled and data is 
written into the buffer, the depth of each item is compared to what is 
already in the Z-Buffer to determine which item is frontmost and, 
therefore, visible.  Only the visible items will be kept. 
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