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1 Introduction

The mathematical motivation for studying vector bundles comes from the example of the
tangent bundle TM of a manifold M . Recall that the tangent bundle is the union of all
the tangent spaces TmM for every m in M . As such it is a collection of vector spaces, one
for every point of M .

The physical motivation comes from the realisation that the fields in physics may not
just be maps φ : M → CN say, but may take values in different vector spaces at each
point. Tensors do this for example. The argument for this is partly quantum mechanics
because, if φ is a wave function on a space-time M say, then what we can know about are
expectation values, that is things like:

∫

M

〈φ(x), φ(x)〉dx

and to define these all we need to know is that φ(x) takes its values in a one-dimensional
complex vector space with Hermitian inner product. There is no reason for this to be
the same one-dimensional Hermitian vector space here as on Alpha Centauri. Functions
like φ, which are generalisations of complex valued functions, are called sections of vector
bundles.

We will consider first the simplest theory of vector bundles where the vector space is
a one-dimensional complex vector space - line bundles.

1.1 Definition of a line bundle and examples

The simplest example of a line bundle over a manifold M is the trivial bundle C ×M .
Here the vector space at each point m is C× {m} which we regard as a copy of C. The
general definition uses this as a local model.

Definition 1.1. A complex line bundle over a manifold M is a manifold L and a smooth
surjection π : L→M such that:

1. Each fibre π−1(m) = Lm is a a complex one-dimensional vector space.

2. Every m ∈ M has an open neighbourhood U ∈ M for which there is a diffeome-
orphism ϕ : π−1(U) → U × C such that ϕ(Lm) ⊂ {m} × C for every m and that
moreover the map ϕ|Lm

: Lm → {m} × C is a linear isomorphism.

Note 1.1. The second condition is called local triviality because it says that locally the
line bundle looks like C×M . We leave it as an exercise to show that local triviality makes
the map π a submersion (that is it has onto derivative) and the scalar multiplication and
vector addition maps smooth. In the quantum mechanical example local triviality means
that at least in some local region like the laboratory we can identify the Hermitian vector
space where the wave function takes its values with C.

Example 1.1. C×M the trivial bundle
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Example 1.2. Recall that if u ∈ S2 then the tangent space at u to S2 is identified with the
set TuS

2 = {v ∈ R3 | 〈v, u〉 = 0}. We make this two dimensional real vector space a one
dimensional complex vector space by defining (α + iβ)v = α.v + β.u× v. We leave it as
an exercise for the reader to show that this does indeed make TuS

2 into a complex vector
space. What needs to be checked is that [(α + iβ) (δ + iγ)]v = (α + iβ) [(δ + iγ)]v and
because TuS

2 is already a real vector space this follows if i(iv) = −v. Geometrically this
follows from the fact that we have defined multiplication by i to mean rotation through
π/2. We will prove local triviality in a moment.

Example 1.3. If Σ is any surface in R3 we can use the same construction as in (2). If
x ∈ Σ and n̂x is the unit normal then TxΣ = n̂⊥x . We make this a complex space by
defining (α+ iβ)v = αv + βn̂x × v.

Example 1.4 (Hopf bundle). Define CP1 to be the set of all lines (through the origin)
in C2. Denote the line through the vector z = (z0, z1) by [z] = [z0, z1]. Note that
[λz0, λz1] = [z0, z1] for any non-zero complex number λ. Define two open sets Ui by

Ui = {[z0, z1] | zi = 0}

and co-ordinates by ψi : Ui → C by ψ0([z]) = z1/z0 and ψ1([z]) = z0/z1. As a manifold
CP1 is diffeomorphic to S2. An explicit diffeomorphism S2 → CP1 is given by (x, y, z) 7→
[x + iy, 1− z].

We define a line bundle H over CP1 by H ⊂ C2 × CP1 where

H = {(w, [z]) | w = λz for some λ ∈ C×}.

We define a projection π : H → CP1 by π((w, [z])) = [z]. The fibre H[z] = π−1([z]) is the
set

{(λz, [z]) | λ ∈ C
×}

which is naturally identified with the line through [z]. It thereby inherits a vector space
structure given by

α(w, [z]) + β(w′, [z]) = (αw + βw′, [z]).

We shall prove later that this is locally trivial.

1.2 Isomorphism of line bundles

It is useful to say that two line bundles L → M,J → M are isomorphic if there is a
diffeomorphism map ϕ : L → J such that ϕ(Lm) ⊂ Jm for every m ∈ M and such that
the induced map ϕ|Lm

: Lm → Jm is a linear isomorphism.
We define a line bundle L to be trivial if it is isomorphic to M ×C the trivial bundle.

Any such isomorphism we call a trivialisation of L.

1.3 Sections of line bundles

A section of a line bundle L is like a vector field. That is it is a map ϕ : M → L such
that ϕ(m) ∈ Lm for all m or more succinctly π ◦ ϕ = idm.
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Figure 1: A line bundle.

Example 1.5 (The trivial bundle.). L = C×M. Every section ϕ looks like ϕ(x) = (f(x), x)
for some function f .

Example 1.6 (The tangent bundle to S2.). TS2. Sections are vector fields. Alternatively
because each TxS2 ⊂ R

3 we can think of a section s as a map s : S2 → R
3 such that

〈s(x), x〉 = 0 for all x ∈ S2.

Example 1.7 (The Hopf bundle). By definition a section s : CP1 → H is a map

s : CP1 → H ⊂ C
2 × CP1

which must have the form [z] 7→ ([z], w). For convenience we will write it as s([z]) =
([z], s(z)) where, for any [z] s : CP1 → C2 satisfies s([z]) = λz for some λ ∈ C×.

The set of all sections, denoted by Γ(M,L), is a vector space under pointwise addition
and scalar multiplication. I like to think of a line bundle as looking like Figure 1.

Here O is the set of all zero vectors or the image of the zero section. The curve s is
the image of a section and thus generalises the graph of a function.

We have the following result:

Proposition 1.1. A line bundle L is trivial if and only if it has a nowhere vanishing
section.

Proof. Let ϕ : L → M × C be the trivialisation then ϕ−1(m, 1) is a nowhere vanishing
section.

Conversely if s is a nowhere vanishing section then define a trivialisation M ×C → L
by (m, λ) 7→ λs(m). This is an isomorphism.

Note 1.2. . The condition of local triviality in the definition of a line bundle could be
replaced by the existence of local nowhere vanishing sections. This shows that TS2 is
locally trivial as it clearly has local nowhere-vanishing vector fields. Recall however the
so called ‘hairy-ball theorem’ from topology which tells us that S2 has no global nowhere
vanishing vector fields. Hence TS2 is not trivial. We shall prove this result a number of
times.
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1.4 Transition functions and the clutching construction

Local triviality means that every property of a line bundle can be understood locally.
This is like choosing co-ordinates for a manifold. Given L → M we cover M with open
sets Uα on which there are nowhere vanishing sections sα. If ξ is a global section of L
then it satisfies ξ|Uα

= ξαsα for some smooth ξα : Uα → C. The converse is also true. If
we can find ξα such that ξαsα = ξβsβ for all α, β then they fit together to define a global
section ξ with ξ|Uα

= ξαsα.
It is therefore useful to define gαβ : Uα ∩ Uβ → C× by sα = gαβsβ. Then a collection

of functions ξα define a global section if on any intersection Uα ∩ Uβ we have ξβ = gαβξα.
The functions gαβ are called the transition functions of L. We shall see in a moment that
they determine L completely. It is easy to show, from their definition, that the transition
functions satisfy three conditions:

(1) gαα = 1

(2) gαβ = gβα

(3) gαβ gβγ gγα = 1 on Uα ∩ Uβ ∩ Uγ

The last condition (3) is called the cocycle condition.

Proposition 1.2. Given an open cover {Uα} of M and functions gαβ : Uα ∩ Uβ → C×

satisfying (1) (2) and (3) above we can find a line bundle L→M with transition functions
the gαβ.

Proof. Consider the disjoint union M̃ of all the C × Uα. We stick these together using
the gαβ. More precisely let I be the indexing set and define M̃ as the subset of I ×M of
pairs (α,m) such that m ∈ Uα. Now consider C× M̃ whose elements are triples (λ,m, α)
and define (λ,m, α) ∼ (µ, n, β) if m = n and gαβ(m)λ = µ. We leave it as an exercise to
show that ∼ is an equivalence relation. Indeed ((1) (2) (3) give reflexivity, symmetry and
transitivity respectively.)

Denote equivalence classes by square brackets and define L to be the set of equivalence
classes. Define addition by [(λ,m, α)]+ [(µ,m, α)] = [(λ+µ,m, α)] and scalar multiplica-
tion by z[(λ,m, α)] = [(zλ,m, α)]. The projection map is π([(λ,m, α)]) = m. We leave it
as an exercise to show that these are all well-defined. Finally define sα(m) = [(1, m, α)].
Then sα (m) = [(1, m, α)] = [(gαβ (m), m, β)] = gαβ (m)sβ (m) as required.

Finally we need to show that L can be made into a differentiable manifold in such a way
that it is a line bundle and the sα are smooth. Denote by Wα the preimage of Uα under the
projection map. There is a bijection ψα : Wα → C× Uα defined by ψα([α, x, z]) = (z, x).
This is a local trivialisation. If (V, φ) is a co-ordinate chart on Uα ×C then we can define
a chart on L by (φ−1

α (V ), φα ◦ ψα). We leave it as an exercise to check that these charts
define an atlas. This depends on the fact that gαβ : Uα ∩ Uβ → C× is smooth.

The construction we have used here is called the clutching construction. It follows
from this proposition that the transition functions capture all the information contained
in L. However they are by no means unique. Even if we leave the cover fixed we could
replace each sα by hαsα where hα : Uα → C× and then gαβ becomes hαgαβh

−1
β . If we

continued to try and understand this ambiguity and the dependence on the cover we
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Figure 2: Vector fields on the two sphere.

s0

s1

g01 =π π
2

0 3π
2

π π
2

0 3π
2

π

Figure 3: The sections s0 and s1 restricted to the equator.

would be forced to invent Cêch cohomology and show that that the isomorphism classes
of complex line bundles on M are in bijective correspondence with the Cêch cohomology
group H1(M,C×). We refer the interested reader to [11, 8].

Example 1.8. The tangent bundle to the two-sphere. Cover the two sphere by open sets U0

and U1 corresponding to the upper and lower hemispheres but slightly overlapping on the
equator. The intersection of U0 and U1 looks like an annulus. We can find non-vanishing
vector fields s0 and s1 as in Figure 2.

If we undo the equator to a straightline and restrict s0 and s1 to that we obtain
Figure 3.

If we solve the equation s0 = g01s1 then we are finding out how much we have to rotate
s1 to get s0 and hence defining the map g01 : U0 ∩U1 → C× with values in the unit circle.
Inspection of Figure 3 shows that as we go around the equator once s0 rotates forwards
once and s1 rotates backwards once so that thought of as a point on the unit circle in C×

g01 rotates around twice. In other words g01 : U0 ∩U1 → C× has winding number 2. This
two will be important latter.
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Example 1.9 (Hopf bundle.). We can define sections si : Uα → H by

s0[z] =((1,
z1

z0
), [z]) (1.1)

s1[z] =((
z0

z1
, 1), [z]). (1.2)

The transition functions are

g01([z]) =
z1

z0
.

2 Connections, holonomy and curvature

The physical motivation for connections is that you can’t do physics if you can’t differen-
tiate the fields! So a connection is a rule for differentiating sections of a line bundle. The
important thing to remember is that there is no a priori way of doing this - a connection
is a choice of how to differentiate. Making that choice is something extra, additional
structure above and beyond the line bundle itself. The reason for this is that if L → M
is a line bundle and γ : (−ε, ε) → M a path through γ(0) = m say and s a section of L
then the conventional definition of the rate of change of s in the direction tangent to γ,
that is:

lim
t→0

=
s(γ(t))− s(γ(0))

t

makes no sense as s(γ(t)) is in the vector space Lγ(t) and s(γ(0)) is in the different vector
space Lγ(0) so that we cannot perform the required subtraction.

So being pure mathematicians we make a definition by abstracting the notion of deriva-
tive:

Definition 2.1. A connection ∇ is a linear map

∇ : Γ(M,L) → Γ(M,T ∗M ⊗ L)

such that for all s in Γ(M,L) and f ∈ C∞(M,L) we have the Liebniz rule:

∇(fs) = df ⊗ s+ f∇s

If X ∈ TxM we often use the notation ∇Xs = (∇s)(X).

Example 2.1 (The trivial bundle.). L = C×M. Then identifying sections with functions
we see that (ordinary) differentiation d of functions defines a connection. If ∇ is a general
connection then we will see in a moment that ∇s− ds is a 1-form. So all the connections
on L are of the form ∇ = d+ A for A a 1-form on M (any 1-form).

Example 2.2 (The tangent bundle to the sphere.). TS2. If s is a section then s : S2 → R3

such that s(u) ∈ TuS
2 that is 〈s(u), u〉 = 0. As s(u) ∈ R3 we can differentiate it in R3

but then ds may not take values in TuS
2 necessarily. We remedy this by defining

∇(s) = π(ds)

where π is orthogonal projection from R3 onto the tangent space to x. That is π(v) =
v − 〈x, v〉x.
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Example 2.3 (The tangent bundle to a surface.). A surface Σ in R3. We can do the same
orthogonal projection trick as with the previous example.

Example 2.4 (The Hopf bundle.). Because we have H ⊂ C2×CP1 we can apply the same
technique as in the previous sections. A section s of H can be identified with a function
s : CP1 → C2 such that s[z] = λz for some λ ∈ C. Hence we can differentiate it as a map
into C2. We can then project the result orthogonally using the Hermitian connection on
C2.

The name connection comes from the name infinitesimal connection which was meant
to convey the idea that the connection gives an identification of the fibre at a point and
the fibre at a nearby ‘infinitesimally close’ point. Infinitesimally close points are not
something we like very much but we shall see in the next section that we can make sense
of the ‘integrated’ version of this idea in as much as a connection, by parallel transport,
defines an identification between fibres at endpoints of a path. However this identification
is generally path dependent. Before discussing parallel transport we need to consider two
technical points.

The first is the question of existence of connections. We have

Proposition 2.1. Every line bundle has a connection.

Proof. Let L → M be the line bundle. Choose an open covering of M by open sets Uα

over which there exist nowhere vanishing sections sα. If ξ is a section of L write it locally
as ξ|Uα

= ξαsα. Choose a partition of unity ρα for subordinate to the cover and note that
ραsα extends to a smooth function on all of M . Then define

∇(ξ) =
∑

dξαραsα.

We leave it as an exercise to check that this defines a connection.

The second point is that we need to be able to restrict a connection to a open set so
that we can work with local trivialisations. We have

Proposition 2.2. If ∇ is a connection on a line bundle L→M and U ⊂M is an open
set then there is a unique connection ∇U on L|U → U satisfying

∇(s)IU = ∇U(s|U).

Proof. We first need to show that if s is a section which is zero in a neighbourhood of a
point x then ∇(s)(x) = 0. To show this notice that if s is zero on a neighbourhood U of
x then we can find a function ρ on M which is 1 outside U and zero in a neighbourhood
of x such that ρs = s. Then we have

∇(s)(x) = ∇(ρs)(x) = dρ(x)s(x) + ρ(x)∇(s)(x) = 0.

It follows from linearity that if s and t are equal in a neighbourhood of x then
∇(s)(x) = ∇(t)(x). If s is a section of L over U and x ∈ U then we can multiply it
by a bump function which is 1 in a neighbourhood of x so that it extends to a section
ŝ of L over all of M . Then define ∇U(s)(x) = ∇(ŝ)(x). If we choose a different bump
function to extend s to a different section s̃ then s̃ and ŝ agree in a neighbourhood of x
so that the definition of ∇U(s)(x) does not change.
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From now on I will drop the notation ∇|U and just denote it by ∇.
Let L → M be a line bundle and sα : Uα → L be local nowhere vanishing sections.

Define a one-form Aα on Uα by ∇sα = Aα ⊗ sα. If ξ ∈ Γ(M,L) then ξ|Uα = ξαsα where
ξα : Uα → C and

∇ξ|Uα
= dξαsα + ξα∇sα

= (dξα + Aαξα)sα. (2.1)

Recall that sα = gαβsβ so ∇sα = dgαβsβ + gαβ∇sβ and hence Aαsα = g−1
αβdgαβgαβsα +

sαAβ. Hence
Aα = Aβ + g−1

αβdgαβ (2.2)

The converse is also true. If {Aα} is a collection of 1-forms satisfying the equation (2.2)
on Uα ∩Uβ then there is a connection ∇ such that ∇sα = Aαsα. The proof is an exercise
using equation (2.1) to define the connection.

2.1 Parallel transport and holonomy

If γ : [0, 1] → M is a path and ∇ a connection we can consider the notion of moving
a vector in Lγ(0) to Lγ(1) without changing it, that is parallel transporting a vector from
Lγ(0), Lγ(1). Here change is measured relative to ∇ so if ξ(t) ∈ Lγ(t) is moving without
changing it must satisfy the differential equation:

∇γ̇ξ = 0 (2.3)

where γ̇ is the tangent vector field to the curve γ. Assume for the moment that the image
of γ is inside an open set Uα over which L has a nowhere vanishing section sα. Then using
(2.3) and letting ξ(t) = ξα(t)sα(γ(t)) we deduce that

dξα
dt

= −Aα(γ)ξα

or

ξα(t) = exp
(

−

∫ t

0

Aα(γ(t)
)

ξα(0) (2.4)

This is an ordinary differential equation so standard existence and uniqueness theorems
tell us that parallel transport defines an isomorphism Lγ(0)

∼= Lγ(t). Moreover if we choose
a curve not inside a special open set like Uα we can still cover it by such open sets and
deduce that the parallel transport

Pγ : Lγ(0) → Lγ(1)

is an isomorphism. In general Pγ is dependent on γ and ∇. The most notable example
is to take γ a loop that is γ(0) = γ(1). Then we define hol(γ,∇), the holonomy of the
connection ∇ along the curve γ by taking any s ∈ Lγ(0) and defining

Pγ(s) = hol (γ,∇).s

Example 2.5. A little thought shows that ∇ on the two sphere preserves lengths and
angles, it corresponds to moving a vector so that the rate of change is normal. If we
consider the ‘loop’ in Figure 4 then we have drawn parallel transport of a vector and the
holonomy is exp(iθ).
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Figure 4: Parallel transport on the two sphere.

2.2 Curvature

If we have a loop γ whose image is in Uα then we can apply (2.4) to obtain

hol (∇, γ) = exp (−

∫

γ

Aα).

If γ is the boundary of a disk D then by Stokes’ theorem we have

hol (∇, γ) = exp−

∫

D

dAα. (2.5)

Consider the two-forms dAα. From (2.2) we have

dAα = dAβ + d
(

g−1
αβdgαβ

)

= dAβ − g−1
αβdgαβg

−1
αβ ∧ dgαβ + g−1

αβddgαβ

= dAβ.

So the two-forms dAα agree on the intersections of the open sets in the cover and hence
define a global two form that we denote by F and call the curvature of ∇. Then we have

Proposition 2.3. If L → M is a line bundle with connection ∇ and Σ is a compact
submanifold of M with boundary a loop γ then

hol (∇, γ) = exp −

∫

D

F

Proof. Notice that (2.5) gives the required result if Σ is a disk which is inside one of the
Uα. Now consider a general Σ. By compactness we can triangulate Σ in such a way that
each of the triangles is in some Uα. Now we can apply (2.5) to each triangle and note
that the holonomy up and down the interior edges cancels to give the required result.
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Example 2.6. We calculate the holonomy of the standard connection on the tangent bundle
of S2. Let us use polar co-ordinates: The co-ordinate tangent vectors are:

∂

∂θ
= (− sin(θ) sin(φ), cos(θ) sin(φ), 0)

∂

∂φ
= (cos(θ) cos(φ), sin(θ) cos(φ),− sin(φ))

Taking the cross product of these and normalising gives the unit normal

n̂ = (cos(θ) sin(φ), sin(θ) sin(φ), cos(φ))

= sin(φ)
∂

∂φ
×
∂

∂θ

To calculate the connection we need a non-vanishing section s we take

s = (− sin(θ), cos(θ), 0)

and then
ds = (− cos(θ),− sin(θ), 0)dθ

so that

∇s = π(ds)

= ds− < ds, n̂ > n̂

= (− cos(θ),− sin(θ), 0)dθ

+ sin(φ) (cos(θ) sin(φ), sin(θ) sin(φ), cos(φ))dθ

= (− cos(θ) cos2(φ),− sin(θ) cos2(φ), cos(φ) sin(φ))dθ

= cos(φ)n̂× s

= i cos(φ)s

Hence A = i cos(φ)dθ and F = i sin(φ)dθ ∧ dφ. To understand what this two form is note
that the volume form on the two-sphere is vol = − sin(φ)dθ ∧ dφ and hence F = ivol The
region bounded by the path in Figure 4 has area θ. If we call that region D we conclude
that

exp
(

−

∫

D

F
)

= exp iθ.

Note that this agrees with the previous calculation for the holonomy around this path.

2.3 Curvature as infinitesimal holonomy

The equation hol(−∇, ∂D) = exp (−
∫

D
F ) has an infinitesimal counterpart. If X and Y

are two tangent vectors and we let Dt be a parallelogram with sides tX and tY then the
holonomy around Dt can be expanded in powers of t as

hol (∇, Dt) = 1 + t2 F (X, Y ) + 0(t3).
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3 Chern classes

In this section we define the Chern class which is a (topological) invariant of a line bundle.
Before doing this we collect some facts about the curvature.

Proposition 3.1. The curvature F of a connection ∇ satisfies:

(i) dF = 0

(ii) If ∇,∇′ are two connections then ∇ = ∇′ + η for η a 1-form and F∇ = F∇′ + dη.

(iii) If Σ is a closed surface then 1
2πi

∫

Σ
F∇ is an integer independent of ∇.

Proof. (i) dF |Uα = d(dAα) = 0.
(ii) Locally A′α = Aα+ηα as ηα = A′α−Aα. But Aβ = Aα−g

−1
αβdgαβ and A′β = A′α−g

−1
αβdgαβ

so that ηβ = ηα. Hence η is a global 1-form and F∇ = dAα so F ′
∇ = F∇ + dη.

(iii) If Σ is a closed surface then ∂Σ = ∅ so by Stokes’ theorem
∫

Σ
F∇ =

∫

Σ
F ′
∇. Now

choose a family of disks Dt in Σ whose limit as t→ 0 is a point. For any t the holonomy of
the connection around the boundary of Dt can be calculated by integrating the curvature
over Dt or over the complement of Dt in Σ and using Proposition 2.1. Taking into account
orientation this gives us

exp(

∫

Σ−Dt

F ) = exp(−

∫

Dt

F )

and taking the limit as t→ 0 gives

exp(

∫

Σ

F ) = 1

which gives the required result.

The Chern class, c(L), of a line bundle L → Σ where Σ is a surface is defined to be
the integer 1

2πi

∫

Σ
F∇ for any connection ∇.

Example 3.1. For the case of the two sphere previous results showed that F = −ivolS2.
Hence

c(TS2) =
−i

2πi

∫

S2

vol =
−i

2πi
4π = −2.

Some further insight into the Chern class can be obtained by considering a covering
of S2 by two open sets U0, U1 as in Figure 2. Let L → S2 be given by a transition for
g01 : U0∩U1 → C×. Then a connection is a pair of 1-forms A0, A1, on U0, U1 respectively,
such that

A1 = A0 + dg10g
−1
10 on U0 ∩ U1.

Take A0 = 0 and A1 to be any extension of dg10g
−1
10 to U1. Such an extension can be made

by shrinking U0 and U1 a little and using a cut-off function. Then F = dA0 = 0 on U0

and F = dA1 on U1. To find c(L) we note that by Stokes theorem:

∫

S2

F =

∫

U1

F =

∫

∂U1

A1 =

∫

∂U1

dg10g
−1
10 .
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g holes

Figure 5: A surface of genus g.

But this is just 2πi the winding number of g10. Hence the Chern class of L is the wind-
ing number of g10. Note that we have already seen that for TS2 the winding number and
Chern class are both −2. It is not difficult to go further now and prove that isomorphism
classes of line bundles on S2 are in one to one correspondence with the integers via the
Chern class but will not do this here.

Example 3.2. Another example is a surface Σg of genus g as in Figure 5. We cover it
with g open sets U1, . . . , Ug as indicated. Each of these open sets is diffeomorphic to
either a torus with a disk removed or a torus with two disks removed. A torus has a
non-vanishing vector field on it. If we imagine a rotating bicycle wheel then the inner
tube of the tyre (ignoring the valve!) is a torus and the tangent vector field generated by
the rotation defines a non-vanishing vector field. Hence the same is true of the open sets
in Figure 5. There are corresponding transition functions g12, g23, . . . , gg−1g and we can
define a connection in a manner analogous to the two-sphere case and we find that

c(TΣg) =

g−1
∑

i=1

winding number(gi,i+1).

All the transition functions have winding number −2 so that

c(TΣg) = 2− 2g.

This is a form of the Gauss-Bonnet theorem. It would be a good exercise for the reader
familiar with the classical Riemannian geometry of surfaces in R3 to relate this result
to the Gauss-Bonnet theorem. In the classical Gauss-Bonnet theorem we integrate the
Gaussian curvature which is the trace of the curvature of the Levi-Civita connection.

So far we have only defined the Chern class for a surface. To define it for manifolds
of higher dimension we need to recall the definition of de Rham cohomology [4]. If M is
a manifold we have the de Rham complex

0 → Ω0(M) → Ω1(M) → ...→ Ωm(M) → 0.

where Ωp(M) is the space of all p forms on M , the horizontal maps are d the exterior
derivative and m = dim(M). Then d2 = 0 and it makes sense to define:

Hp(M) =
kernel d : Ωp (M) → Ωp+1 (M)

image d : Ωp−1 (M) → Ωp (M)

13



This is the pth de Rham cohomology group of M - a finite dimensional vector space if M
is compact or otherwise well behaved.

The general definition of c(L) is to take the cohomology class in H2(M) containing
1

2πi
F∇ for some connection.
It is a standard result [4] that ifM is oriented, compact, connected and two dimensional

integrating representatives of degree two cohomology classes defines an isomorphism

H2(M) → R

[ω] 7→

∫

M

ω

where [ω] is a cohomology class with representative form ω. Hence we recover the defini-
tion for surfaces.

4 Vector bundles and gauge theories

Line bundles occur in physics in electromagnetism. The electro-magnetic tensor can be
interpreted as the curvature form of a line bundle. A very nice account of this and related
material is given by Bott in [3]. More interesting however are so-called non-abelian gauge
theories which involve vector bundles.

To generalize the previous sections to a vector bundles E one needs to work through
replacing C by Cn and C× by GL(n,C). Now non-vanishing sections and local trivialisa-
tions are not the same thing. A local trivialisation corresponds to a local frame, that is n
local sections s1, ..., sn such that s1(m), ..., sn(m) are a basis for Em all m. The transition
function is then matrix valued

gαβ : Uα ∩ Uβ → GL(n,C).

The clutching construction still works.
A connection is defined the same way but locally corresponds to matrix valued one-

forms Aα. That is
∇|Uα(Σiξ

isi) = Σi(dξi+ ΣjA
i
αjξ

j)si

and the relationship between Aβ and Aα is

Aβ = g−1
αβ Aα gαβ + g−1

αβ dgαβ.

The correct definition of curvature is

Fα = dAα + Aα ∧ Aα

where the wedge product involves matrix multiplication as well as wedging of one forms.
We find that

Fβ = g−1
αβ Fα gαβ

and that F is properly thought of as a two-form with values in the linear operators on E.
That is if X and Y are vectors in the tangent space to M at m then F (X, Y ) is a linear
map from Em to itself.

14



We have no time here to even begin to explore the rich geometrical theory that has
been built out of gauge theories and instead refer the reader to some references [1, 2, 6, 7].

We conclude with some remarks about the relationship of the theory we have developed
here and classical Riemannian differential geometry. This is of course where all this theory
began not where it ends! There is no reason in the above discussion to work with complex
vector spaces, real vector spaces would do just as well. In that case we can consider the
classical example of tangent bundle TM of a Riemannian manifold. For that situation
there is a special connection, the Levi-Civita connection. If (x1, . . . , xn) are local co-
ordinates on the manifold then the Levi-Civita connection is often written in terms of the
Christoffel symbols as

∇
∂

∂xi

(
∂

∂xj
) =

∑

k

Γk
ij

∂

∂xk
.

The connection one-forms are supposed to be matrix valued and they are

∑

i

Γk
ijdx

i.

The curvature F is the Riemann curvature tensor R. As a two-form with values in
matrices it is

∑

ij

Rk
ijkdx

i ∧ dxj.
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