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This wave consists entirely of magnetic disturbances, the direction of magnetization
Dbeing in the plane of the wave. No magnetic disturbance whose direction of magneti-
sation is not in the plane of the wave can be propagated as a plane wave at all.

Hence magnetic disturbances propagated through the electromagnetic field agree with
light in this, that the disturbance at any point is transverse to the direction of propaga-
tion, and such waves may have all the properties of polarized light.

(96) The only medium in which experiments have been made to determine the value
of % is air, in which p=1, and therefore, by equation (46),
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By the electromagnetic experiments of MM. WEeBER and KOHLRAUSCH ¥,

»=2310,740,000 metres_j_)er second

is the number of electrostatic units in one electromagnetic unit of electricity, and this,
according to our result, should be equal to the velocity of light in air or vacuum.
The velocity of light in air, by M. FizEAUs T experiments, 1s

V=2314,858,000:
according to the more accurate experiments of M. Foucavit I,
Vv =298,000,000.

The velocity of light in the space surrounding the earth, deduced from the coefficient
of aberration and the received value of the radius of the earth’s orbit, is

Vv =308,000,000.

(97) Hence the velocity of light deduced from experiment agrees sufficiently well
with the value of v deduced from the only set of experiments we as yet possess. The
value of v was determined by measuring the electromotive force with which a condenser
of known capacity was charged, and then discharging the condenser through a galvano-
meter, so as to measure the quantity of electricity in it in electromagnetic measure.
The only use made of light in the experiment was to see the instruments. The value
of V found by M. FoUucAULT was obtained by determining the angle through which a
» mirror turned, while the light reflected from it went and returned along a

o
measured course. No use whatever was made of electricity or magnetism.

revolvin

The agreement of the results seems to show that light and magnetism are affections
of the same substance, and that light is an electromagnetic disturbance propagated
through the field according to electromagnetic laws.

(98) Let us now go back upén the equations in (94), in which the quantities J and
¥ oceur, to see whether any other kind of disturbance can be propagated through
the medium depending on these quantities which disappeared from the final equations.

# Yeipzig Transactions, vol. v. (1857), p- 260, or Pocerxporry’s < Annalen,” Aug. 1856, p. 10.
+ Comptes Rendus, vol. xxix, (1849), p. 90. + Tbid. vol. Ir. (1862}, pp. 501, 792.
MDCCCLXY. 3Y



500 PROFESSOR CLERK MAXWELL ON THE ELECTROMAGXETIC FIELD.

If we determine % from the equation

da dse- . ’_' i
Viy= dx4+@7~‘+dzg = T e eew e s e (B
and F', G', H from the equations. ‘
dx |— G — X Tt G :
T F-—--— Gl=G T H=H~=. . . « .. (14);
then o ot
a dG -
& I R IR R e 7 ]

and the equations in (94) become of the form

FVF = 4m(a,tg+dm (v+% ) el o 78)
Differentiating the three equations with respect.to z, y,.and .z, and adding, we find tﬁat
RS T P N R . . P
sind Hhat AP =4 OF | |
Wﬂéf:-%#f;_‘f; P i R i 1
BV H =4mp O |

Hence the disturbances indicated by F’, G/, H' are propagated with the velocity

V_f\/_ through the field; and since

dT’ a8’
dz + dz =

the resultant of these disturbances is in the plane of the wave. : :
(99) The remaining part.of the total disturbances F, G, H being the part. dependlmT :
on ¥, is subject to no condition except that expressed in the equation

d‘l d%y

df: :0

If we perform the operation V* on this equation, it becomes
ar . |
ke=Z—EVo(z, 9, 2). . . . . . . . . . (79)
Since the medium is a perfect insulator, e, the free electricity, is immoveable, and
dl . : e
therefore — is a function of 2, y, 2, and the value of J is either constant or zeyo, or

uniformly increasing or diminishing with the time; so that no disturbance depending
on J can be propagated as a warve.

(100) The equations of the electromagnetic field, deduced from purely experimental
evidence, show that transversal vibrations only can.be propagated. If we were to go
beyond our experimental knowledge and to assign a definite density to a substance which
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%We should call the electric fluid, and select either-vitreous or resinous electricity as the
representative of that fluid, then we might have normal vibrations propagated with a
velocity depending on this density. We have, however, no evidence as to the density of
electricity, as we do not even know whether to consider vitreous electricity as a sub-
stance or as the absence of a substance.

Hence electromagnetic science leads to exactly the same conclusions as optical science
with respect to the direction of the disturbances which can be propagated through the
field; both affirm the propagation of transverse vibrations, and both give the same velocity
of propagation' On the other hand, both sciences are at a loss when called on to affirm
‘or deny the existence of normal vibrations.

i
1

Relation. between the Index of Refraction.and the Electromagnetic Character of the
ssubstance.

(101) The velocity of light in a medium, according to the Undulatory Theory, is

1
Tx%:

k|

where 7 is the index of refraction and V,:is the .velocity in vacuum. The velocity,
cigucordmw to the Electromagnetic Theory, is -

JE

: / 41#’

where, by equations (49) and (71), —-k;%&o, cand k=47 V2.

{ence D=:—L, b e e e oy S0

§;1‘ the Specific Inductive Capacity is equal :to-the square «df the index of refraction
éﬁlivided by the coefficient of magnetic induction.

g

; Propagation of Electromagnetic Disturbances in a Crystallized Medium.

| (102) Let us now caleulate the conditions of propagation of a plane wave in a
medium for which the values of % and w are different in different directions. As we
do not propose to give a complete investigation of the question in the present imperfect
?stnte‘of the theory as extended to disturbances of short period, we shall assume that the
axes of magnetic induction coincide in-direction with those of electric elasticity.

(103) Let the values of the magnetic coefficient for.the three axes be 2, w, », then
the equations of magnetic force (B) become

0Y2

_d4H_dG
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The equations of electric currents (C) remain as before. '
The equations of electric elasticity (E) will be ,

P =4dra’f,
Qudadly, o . . . . . . . Ly L (B9)
R=4dx=c?h,

where 47a® 475° and 4xc® are the values of % for the axes of , 2
Combining these equations with (A) and (D), we get equations of the form

d*F &*F . d°F 1 4 ds , df d*F = d2¥
( e dy* +ydzg) v d.r( da:+#' dy_r dz) (d—ﬁ_i—ﬁa’_t) -+ .(83)

(104) If 7, m, n are the direction-cosines of the wave, and V its velocity, and if
le+my4+nz—Vi=w, . . . . . . . . . (84)

then F, G, H, and ¥ will be functions of w; and if we put F, G/, H', ¥ for the second
differentials of these quantities with respect to w, the equations will be

2 nf o 2n. =
(e ()P Sy oy

(V=—bﬂ(’§+z—:))c;f+92;”—"H'+511Ff_mvv—0 e

(V _¢ (F-+7\))H+,P- F4+ 22 G V=0,
If we now put

=¥ ,\M{ "WV +c) +miu(c+ath) +n(ah+ D )}

ABE (P (28
S ( =+72 72 —5— )(Z“?\-}-m"’p—[—n"’v):U,
we shall find &
FVU—-I¥v'vVU=0, A omowmiw s sy a a BT
with two similar equations for G' and H'. Hence either ]
Al S LE e R R S U (88)
Pl 0l e v a e v e e e e (89)
or '
VF=I¥', VG'=mV¥' and VH'=n¥". e o 090

The third supposition indicates that the resultant of F, G, H' is in the direction
normal to the plane of the wave; but the equations do not indicate that such a disturb-
ance, if possible, could be propagated, as we have no other relation between ¥ and
G, H.

The solution V=0 refers to a case in which there is no propagation.

The solution U=0 gives two values for V* corresponding to values of ¥/, G/, H', which
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are given by the equations

Lp oy RG4 SH=0; . A e e e )
2 22 22 )
a*F!riL(bgF‘—02")+—gxﬁ(czv—a’}\)—{—%(agn—bgp)zo, i v e 82

(105) The velocities along the axes are as follows :—

w

Direction of propagation . . . - - \ \ & ‘ y \

]
<R
%

=
2
»|%

(
l
Direction of the electric displacements x

cﬁ
' A
Now we know that in each principal' plane of a crystal the ray polarized in that

plane obeys the ordinary law of refraction, and therefore its velocity is the same in

whatever direction in that plane it is propagated.
If polarized light consists of electrom_a.gnetic disturbances in which the electric dis-

placemeht is in the plane of polarization, then

Ty R R (93)

If, on the contrary, the electric displacements are perpendicular to the plaﬁe of pola-
rization,

Pt o = E W E sl T (94)

We know, from the magnetic experiments of FARADAY, PrifckER, &c., that in many
crystals A, s, v are unequal. s

The experiments of KxoBLAUCH* on electric induction through crystals seem to show
that @, b and ¢, may be different.

The inequality, however, of A, p, v is so small that great magnetic forces are required
to indicate their difference, and the differences do not seem of sufficient magnitude to
account for the double refraction of the crystals. '

On the other hand, experiments on electric induction are liable to error on account
of minute flaws, or portions of conducting matter in the crystal.

Further experiments on the magnetic and dielectric properties of crystals are required
before we can decide whether the relation of these bodies to magnetic and electric
forces is the same, when these forces are permanent as when they are alternating with
the rapidity of the vibrations of light. 7

* Philosophical Magazine, 1852.
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Relation between Electric Resistance and Transparency.

(106) If the medium, instead of being a perfect insulator, is a conductor whose resist-
ance per unit of volume is g, then there will be not only electric displacements, but true
currents of conduction in which electrical energy is transformed into heat, and the undu-
lation is thereby weakened. To determine the coefficient of absorption, let us investi-
gate the propagation along the axis of # of the transverse disturbance G.

By the former equations

22G ,
= =—47u(q)
d ‘
= —-4w(3{+9) by (A),
G 1d%G 1dG :
W:+47"’F"(Zd—ﬁ_§ E) by (B)and (F). . . . . . . (95)
If G.is. of the form -
CG=e™eo(gFtaL), . + « = « o w = % @ w . . . (96)
we find that
=25 & __2ay V : g 9
-P‘,g e = ST R R R - (97)

‘where V is the velocity of light in air, and 7 is the index of refraction. The proportion

of incident light transmitted through the thickness i is
[ ‘ e P I SR

Let R be the resistance in electromagnetic measure of a plate 6f the substance whose
thickness is ;, breadth 2, and length Z, then
-

le
T ¥ A
QJJ&_‘QWFJTHE. . . . 7 i 5 s 5 . X, . (99)

(107) Most transparent solid bodies are good insulators, whereas all good. conductors
are very opaque.
- Electrolytes allow a current to pass easily and yet are often very transparent. We

‘may suppose, however, that in the:rapidly alternating vibrations of light, the electro-
‘motive forces act for so short a time that they are unable to effect a complete separation

between the particles in combination, so that when the force is reversed the particles
oscillate into their former position without loss of energy.

Gold, silver, and platinum are good conductors, and yet when reduced to sufficiently
thin plates they allow light to pass through them. If the resistance of gold is the:same

+ for electromotive forces of short period as for those with which we make experiments,
- the amount of light which passes through a piece of gold-leaf, of which the resistance

was determined by Mr. C. Hoexin, would be ouly 107 of the incident light, a totally
imperceptible quantity. T find that between 500 and gy of green light gets through
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such gold-leaf. Mouch of this is transmitted through holes and cracks; there is enough,
however, transmitted through the gold itself to give a strong green hue to the
transmitted light. This result cannot be reconciled with the electromagnetic theory
of light, unless we suppose that there is less loss of energy when the electromotive forces

are reversed with the rapidity of the vibrations of light than when they act for sensible

times, as in our experiments.

Absolute Values of the Electromotive and Magnetic Forces called into play in the
Propagation of Light..

(108) If the equation of propagation of light is

F=Acos Q—:(z—Vt),
the electromotive force will be . .
P=—A""Vsin(s—Vi);

and the energy per unit of volume will be-
: pe
Bap Ve’
where P represents the greatest value of the electromotive force. Half of this consists
~ of magnetic and half of electric energy.
The energy passing through a unit of area is
= P2
W =
| P, =/ VW,
where V is the velocity of light, and W is the energy communicated to unit of area by
the light in a second.
According to PouiLLET's data, as calculated by Professor W. THoMsOX *, the mecha-
nical value of direct sunlight at the Earth is
. 834 foot-pounds per second per square foot.

so that

This gives the maximum value of P in direct sunlight at the Earth's distance from the Sun,
P=160,000,000,

or about 600 DAxIELL'S cells per metre.

At the Sun’s surface the value of P would be about

13,000 DaxNIELL'S cells per metre.

At the Earth the maximum magnetic force would be 193 1.

At the Sun it would be 4-13.

These electromotive and magnetic forces must be conceived to be reversed tiice in
every vibration of light; that is, more thana thousand million million times in a second.

# Transactions of the Royal Society of Edinburgh, 1854 (* Mechanical Encrgies of the Solar System®).

+ The horizontal magnetic foree at Kew is about 1*70 in metrical units.
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PART VIL—CALCULATION OF THE COEFFICIENTS OF ELECTROMAGNETIC INDUCTION.

General Methods.
(109) The electromagnetic relations between two conducting circuits, A and B,
depend upon a function M of their form and relative position, as has been already .

shown. '
M may be calculated in several different ways, which must of course all Iead to the -

same result. i
First Method. M is the electromagnetic momentum of the circuit B when A carries
a unit current, or a5 P d :
y b2
M:ﬁ?@+GE+HE¢m

where F, G, H are the components of electromagnetic momentnm due to a unit current ;

in A, and ds' is an element of length of B, and the Integration is performed round the

circuit of B. :
To find ¥, G, H, we observe that by (B) and (C)

d?F  d°F  d¢F
& T gEt = —dmup),

with corresponding equations for G and H, 2, ¢, and # being the components of the
current in A.
Now if we consider only a single element ds of A, we shall have

dz dy dz
p’:ﬁ s QI:E@dSr ?-’:E,; ds,

and the solution of the equation gives = .
Y _edy ks
F__g 7 45, G_e 7 s, H_g = ds,

where ¢ is the distance of any point from ds. Hence

—((rfdzde dydy d-dz
LI_—JJAE(EE d_s'+d_s E—[—E’; 7 dsds
= {Tg cos 8dsds',

where 4 is the angle between the directions of the two elements ds, ds', and ¢ is the
distance between them, and the integration is performed round both circuits,

In this method we confine our attention during Integration to the two linear circuits
alone.

(110) Second Method. M is the number of lines of magnetic force which pass
through the circuit B when A carries a unit current, or

‘ M=3(uel+uBm -+ wyn)ds',
where pe, uf3, py ave the components of magnetic induction due to unit current in A,
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g is a surface bounded by the current B, and [, m, n are the direction-cosines of the
normal to the surface, the integration being extended over the surface.
We may express this in the form

M:pr*glq sin 4 sin ¢ sin pdS'ds,

where dS' is an clement of the surface bounded by B, ds is an element of the circuit A,
¢ is the distance between them, d and ¢ are the angles between ¢ and ds and between
e and the normal to dS' respectively, and ¢ is the angle between the planes in which
¢ and ¢ ave measured. The integration is performed round the circuit A and over the
surface bounded by B.

This method is most convenient in the case of circuits lying in one plane, in which
case sin 4=1, and sin p=1. ' _

111. Third Method. M is that part of the intrinsic magnetic energy of the whole
field which depends on the product of the currents in the two circuits, each current
being unity.

Let «, 3, v be the components of magnetic intensity at any point due to the first
circuit, o, ', ' the same for the second circuit; then the intrinsic energy of the
clement of volume @V of the field is

£ ((@+a)+(B+BY+(r+7))aV-
The part which depends on the product of the currents is
' E (a8 + 77 )V
Hence if we know the magnetic intensities I and T' due to unit current in each circuit,
we may obtain M by integrating
%r Spl T cosddV

over all space, where @ is the angle between the directions of T and T.

Application to a Coil.

(112) To find the coefficient (M) of mutual induction between two circular linear
conductors in parallel planes, the distance between the curves being everywhere the same,
and small compared with the radius of either.

If r be the distance between the curves, and ¢ the radius of either, then when 7 is
very small compared with @, we find by the second method, 2s a first approximation,

M=4ra (1og,.8§—2).

To approximate more closely to the value of M, let @ and @, be the radii of the circles,
and b the distance between their planes; then
r=(a—a,)+0"
MDCCCLXYV. 3z
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‘We obtain M by considering the following conditions:—
Ist. M must fulfil the differential equation
d®M  d*M f1dM
7 @ ta =0
This equation being true for any magnetic field symmetrical with respect to the common
axis of the circles, cannot of itself lead to the determination of M as a function of a, a,,
and ). "We therefore make use of other conditions.
2ndly. The value of M must remain the same when ¢ and a, are exchanged.
3rdly. The first two terms of M must be the same as those given ahove.

M may thus be expanded in the following series :—

M=4xalog 8;{1 -{-% B=dy 1500 -ap 1 (BF+ _a';i}g)(a =)y &c.}

a 16 a? 32
. le—a, , 1 B—3(a—a? 1 (6&2—(a—a-)9)(a——a])
47ra{2+§ « T1g a® 48 = S

(113) We may apply this result to find the coefficient of self-induction (L) of a circular
coil of wire whose section is small compared with the radius of the circle. !

Let the section of the coil be a rectangle, the breadth in the plane of the circle being -
¢, and the depth perpendicular to the plane of the circle being . & _

Let the mean radius of the coil be @, and the number of windings 7 ; then we find,

L=z || {Mtay 2)0 ay d ay,

where M(zy 2'y') means the value of M for the two windings whose coordinates are xy
and 2y’ respectively; and the integration is performed first with respect to z and Yy over —
the rectangular section, and then with respect to 2’ and y' over the same space.

by integrating,

8 1 4 il .
L=47z_'?2-2a‘{100E-§+-1—2—§ (a—z) cot Zé—gcos 2¢—zcot?dlog cos B—étanzﬂ log sin 9}
wntr? sin®d 1 costf

8 . e L o T
Thoics {1og—rf(2 SIN*04-1) 4345427475 cos?d— 3-2 (E_a) i log cos 0

in%
-{—1—3? :—:;—:log sin 4 +&ec.
Here a= mean radius of the coil.
» 7= diagonal of the rectangular section =/ 7+ ¢
» d= angle between r and the plane of the circle.
» 7= number of windings.
The logarithms ave Napierian, and the angles are in circular measure.

In the experim%nts made by the Committee of the British Association for deter-
mining a standard of Electrical Resistance, a double coil was used, consisting of two
nearly equal coils of rectangular section, placed parallel to each other, with & small
interval between them.




