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ABSTRACT

Hybrid inference systems are an important way to address
the fact that intelligent systems have muiltifaceted rep-
resentational and reasoning competence. KRYPTON is
an experimental prototype that competently handles both
terminological and assertional knowledge; these two kinds
of information are tightly linked by having sentences in an
assertional component be formed using structured com-
plex predicates denned in a complementary terminological
component. KRYPTON is unique in that it combines in
a completely integrated fashion a frame-based description
language and a first-order resolution theorem-prover. We
give here both a formal Knowledge Level view of the user
interface to KRYPTON and the technical Symbol Level
details of the integration of the two disparate components,
thus providing an essential picture of the abstract function
that KRYPTON computes and the implementation tech-
nology needed to make it work. We also illustrate the kind
of complex question the system can answer.

[ Introduction

Many of today's knowledge representation (KR) systems offer
their users a choice of more than one language for expression of
domain knowledge. While the idea has been important to the
field for many years (e.g., see [Brown and Burton, 1975] [Moses,
1971] [Sloman, 1971]), "multiple representations" seems to have
recently become a popular catch phrase. Many of the modern
expert system development environments wave the polyglot ban-
ner, and except perhaps for some stalwart first-order logicians,
most everyone would probably agree that one uniform language
will not serve all representational needs.

It is sometimes difficult to discern the true value of multiple
languages; some of the commercial development tools seem sim-
ply to appeal to "the more the merrier," without any clear idea of
how merrier is better. However, on the research front, there have
fortunately been some coherent views expressed on the merits of
bringing disparate dialects together. The arguments have mainly
to do with the naturalness of expressing certain kinds of facts in
certain forms (see, e.g., [Rich, 1982]), or with the efficiency of
computing some inferences once some datum is massaged into a
certain representational form [Genesereth, 1981].2

The arguments in favor of naturalness and computational su-
periority are important ones. However, as we have argued else-
where [Brachman and Levesque, 1982], there may be a simpler,
more basic reason to diversify: an intelligent system has more
than one kind of representational need. For example, it is in-
teresting to observe that so far, most KR systems only allow
the expression of what we would call assertional knowledge—
statements of facts or beliefs. If the system uses logic or pro-
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duction rules, the sentential nature of its content is self-evident
(e.g., "if the infection is primary bacteremia and ..., then there
is suggestive evidence that the organism is bacteroides"). Even
if the system uses frames or semantic nets, it is most likely en-
coding sentences of the form, "elephants are gray", or "Clyde is
an armadillo" (see [Brachman, 1985] for more on this).

But what accounts for the meanings of the terms used in these
sentences? In addition to representing the beliefs (or, popularly,
"knowledge'") of a cognitive system, we need to account at least
for the complex terms (like bacteremia and armadillo, above)
used in forming those beliefs. In other words, unless we intend
to give up the lexical ghost and take all terms as inscrutable
atomic primitives, some substantive representational explanation
must be given for the noun phrases out of which the sentences
expressing beliefs are constructed.

We have designed and implemented a complete hybrid reason-
ing system, called KRYPTON, that is significantly different from
other "multiple representation” systems3 in that it tries to pro-
vide exactly such an explanation. Instead of concentrating on
multiple ways to perform the same inference, KRYPTON tries
to span two fundamentally different types of representation and
reasoning. Not only does it provide a language for composing sen-
tences expressing beliefs (using sentential operators of the usual
sort, for conjunction, quantification, negation, etc.), it supports
the definition of complex predicates to be used in those sentences
(with a set of special term-forming operators, for conceptual con-
junction, role composition, role value restriction, etc.). Further,
KRYPTON supports an appropriate set of inferences over sen-
tences and over complex terms. Thus, KRYPTON is at least
minimally competent in both the assertional and terminological
domains.

In this paper, we will describe KRYPTON in some detail mainly
by addressing two questions (both of which are crucial for design-
ers of any representation system to answer):

1. Exactly what service is being provided to the user? The
user should know, at some level not dependent on implementa-
tion details, what questions the system is capable of answering,
and what operations are permitted that allow new information
to be provided to it. He needs to know how questions put to
a knowledge base will be answered strictly as a function of the
information it contains, and not dependent on how the informa-
tion is represented. In other words, the user requires what Newell
[Newell, 1981] calls a Knowledge Level account (see also [Brach-
man and Levesque, 1984b] [Brachman, et al., 1983b] [Levesque,
1984c]).

2. How does the implementation realize the service promised?
In other words, how, at the Symbol Level, is the Knowledge Level
account realised? In the case of a hybrid system, the interface
between the disparate parts of the hybrid is particularly impor-
tant.

'Except for KL-TWO [Vilain, 1985), whose history is significantly inter-
twined with that of KRYPTON.



This paper provides detailed Knowledge and Symbol Level ac-
counts of KRYPTON (previous accounts [Brachman, et a/., 1983a]
[Brachman, et al., 1983b] gave only sketchy and informal details
of what a real KRYPTON might be like). We first provide a for-
mal semantics that brings together meanings of terms and the
subsumption relation with meanings of sentences and ftruth valu-
ations. This leads to a Knowledge Level account of KRYPTON in
terms of a set of operations on knowledge bases. Subsequently, we
explain how, at the Symbol Level, our implementation achieves
this functionality in terms of an alteration to the meaning of
unification in a resolution theorem-prover. In this section, we
concentrate on the assertional component and how term defini-
tions affect it, since details of our terminological component have
been provided elsewhere [Brachman, et al., 1983a]. We conclude
the paper with some sample inferences drawn by KRYPTON, to
illustrate how the two components are indeed tightly integrated,
and that the system provides the kind of hybrid reasoning service
promised by our Knowledge Level description.

Before we begin, it should be noted that KRYPTON's answers
to the two questions posed above are more complicated and also
more interesting than they would be for less ambitious systems.
In the case of a "non-essential" hybrid that uses multiple repre-
sentations of the same facts, Question 1 can be finessed with a
simple explication of the semantics of the language into which
all of the multiple representations can be translated (hopefully
a standard one, as with first-order logic in MRS [Genesereth,
1981]), and an account of the translation rules used among the
languages. In such systems, the multiple representations are usu-
ally not integrated in any important way, so Question 2 has an
easy answer.

However, for an essential hybrid like KRYPTON, which at-
tempts to integrate two fundamentally different kinds of repre-
sentation and reasoning facilities, the picture is more complex.
At the Knowledge Level, KRYPTON provides extra functional-
ity over systems based on standard first-order logic; thus, we
cannot ask the user to rely on intuitive knowledge of standard
formal semantics, but rather must provide a detailed explanation
of how the meanings of sentences in the assertional component
can be affected by the structure of descriptions in the termino-
logical component. At the Symbol Level, the user needs to know
that, in the implementation he is using, complex term defini-
tions really will have the impact on the meaning of the believed
sentences advertised in the Knowledge Level account. It is not
enough to say that KRYPTON has a frame-style description lan-
guage for forming terms and a first-order predicate language for
forming sentences—we must explain how the interpretations of
the sentences by the theorem-prover depend on the definitions of
the terms. As the reader will soon see, both the Knowledge Level
and Symbol Level accounts must take seriously KRYPTON's hy-
brid structure.

Il Representational Roots

As hinted above, KRYPTON is a hybrid system with two main
components, one that specialises in assertional reasoning (the
A Box), the other in terminological reasoning (the TBox). Each
component has its own language, and its own inference mecha-
nism.

KRYPTON developed mainly out of work on KL-ONE, a fairly
complex representation system based on both semantic networks
and frames [Brachman and Schmolse, 1985]. As KL-ONE evolved,
it became evident that its strength lay in its ability to form com-
plex descriptions. To the extent that you could say anything at
all with KL-ONE, it was with clearly impoverished assertional fa-
cilities. In fact, ifframe-based systems in general have any advan-
tage, it comes from their ability to form descriptions, rather than
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sentences. As pointed out in [Brachman and Levesque, 1982] and
[Brachman, et al., 1983b], logical languages like that of first-order
predicate calculus are far superior at meeting the needs for belief
representations, since they can provide for a kind of noncommit-
tal expression not possible with frame languages.

Given the strength of KL-ONE's terminological facilities and
the weakness of its assertional ones, it seemed best to aban-
don the latter completely, and adopt a language better suited
to sentence representation. While we would no doubt have used
a more computationally tractable inference framework than full
first-order logic if an appropriate one were available,4 we chose to
build our initial KRYPTON ABox on Stickel's connection graph
theorem-prover [Stickel, 1982]. While the full first-order res-
olution mechanism is, in a sense, too powerful for our needs
[Levesque, 1984a] [Levesque, 1984b], as a first ABox it turned
out to be a remarkably good fit (as will be detailed in Section
V).

The heart of KRYPTON is the connection between the two
components: predicates used in the ABox are actually defined in
the TBox.6 Thus, all of the analytic inferences computed by the
frame-based TBox must be available for consumption in the logic-
based ABox. This paper illustrates at both the Knowledge and
Symbol Levels how the ABox benefits from the special-purpose
definitional facilities available in the TBox.

Finally, as the reader of earlier papers on KRYPTON will note,
there are potentially several versions of the TBox language that
could be discussed here. While our implemented TBox includes
virtually all of the operators mentioned in [Brachman, et a/.,
1983b],6 not all of those operators are tightly integrated with the
ABox. Therefore, we have limited our discussion in this paper
to those parts of the TBox that currently can affect the meaning
of sentences in the ABox. For example, while subsumption for
concepts with number restrictions works in the TBox, it is not
treated here, since it awaits full integration with the theorem-
prover.7

Il Knowledge Level Operations

Although our basic ABox is a standard first-order predicate
logic, its proper integration in KRYPTON demands that complex
terms defined in the TBox be available for use as predicates in
assertions. Thus, if the resulting assertional capability is consid-
ered as a predicate logic, then it is a non-standard one, in that
it has both the normal sentential operators and special operators
used for constructing complex predicates. In this section we will
demonstrate the hybrid semantics necessary to explain the inte-
gration. First we present the syntax of KRYPTON's languages
and their semantics; we then rigorously specify the interface that
a Krypton system presents to an outside user. In particular, we

4 We are currently working on a relevance-style (Anderson and Belnap, 1975]
limited inference mechanism [Patel-Sehneider, 1086]; see also [Levesque,
1984b] for properties appropriate to a belief representation.

5The mapping between symbols and their definitions is maintained by a
symbol table, shared by the TBox and ABox. Please consult [Brachman, et
al., 1983b] and (Brachman, et al., 1983a] for more on the structure of the
system.

*More precisely, we have implemented the language exactly as described In
[Brachman, et al., 1983b), except for the VRDiff operator, which was am-
mitted for computational reasons as discussed in |Brachxuan and Levesque,
1984a], and the DecompRole operator.

7Also, a note about KL-TWO seems in order here. The terminological lan-

guage in that system is much more extensive than the one discussed here (it
is almost a superset of our TBox). Given that, its computational properties
are lets understood, and the completeness of its subsumption mechanism is
somewhat in doubt (it is not clear exactly what is currently implemented
and working). On the other hand, KL-TWO uses a much more tractable
(propositional) ABox. Also, as reported in [Vilain, 1985), the method of
integrating terminology and assertion is quite different in KL-TWO.
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will precisely define operations which allow questions to be an-
swered about the world or about the conceptual vocabulary being
used, as well as operations which allow new information about
the world to be accepted and new terms to be defined.

A. Syntax and Semantics

The language currently implemented in the TBox has two main
categories: concepts and roles, roughly comparable to frames and
slots. These are inter-defined by the following simple BNF gram-
mar:

{comcept} ::= {1-predicate-symbol}

| (ConGenerte {concept); ... (concept),), n 20
{ (VREGeneric {concept} {role} {concept)}

{role) ::= {2-predicate-symbol)
| (RoleChala {role); ... {role}s), # > 1.

This language has much in common with many typical frame
languages. (1 predicate-symbol) and  {2-predicate-symbol)  are
primitive (undefined) concepts and roles. ConGeneric allows
the conjunction of concepts. VRGeneric allows the specifica-
tion of a type restriction on the filler of a role (e.g., (VRGeneric
Paper Author Scientist) would represent the concept of a paper
all of whose authors were scientists). Role Chain supports the
composition of two-place relations.

For the ABox, the language we will use is that of a pure (that
is, function-free) predicate calculus.® The grammar, then, is the
following:

{wff} = ({k-predicate-symbol) {var}y...{var}y), k>0

| (NOT {wff))
[ {OR (wff} {uff))
| (EXISTS {var) {wff}).

It is assumed that the other usual logical connectives (conjunc-
tion, universal quantification, etc.) can be defined syntactically
in terms of the ones provided here (we will use standard logi-
cal typography for these when convenient). Note that one- and
two-place predicate symbols are both terms of the TBox language
and components of the ABox language. To make this intersection
explicit, we also define the following categories:
{ TBoz-symbol) ::= {1-predicate-symboi}
| {&-predicate-aymbol}
{gsymbol) ::= {k-predicate-symbol}), &k > 0
{gterm} ::x= {goymbol} | {concept} | {role}
So gterms, as they will be understood here, are either predicate
symbols or composite TBox expressions and each gterm has an
associated arity (1 for concepts, 2 for roles, and it for each k-place
predicate symbol).

The semantics of the TBox and ABox languages is defined in
terms of mappings from gsymbols to relations of the same arity
over some domain. Given a domain of individuals and such a
mapping, it will be possible to specify the extension of every
gterm and the truth value of every sentence.” For the TBox
language, this is defined as follows:

Deflnltion 1 Let D be any set. Let £ be any function from gaym-
bols to relations over D such that £ (s} has the same arity as a.
Then for any glerm ¢, we define the EXTENSION of e wrt £ by

1. The extension of any gaymibol s is £ (s).

2. The extension of {CanGenerlc ¢; ..., } is the intersection
of the extensions of the ¢;, and D ifk ia 0.
*The actual implementation described below uses function symbols of ev-

ery arity including constants (O-ary ones). We are omitting these here for
simplicity.

* By a sentence, we mean a doted wff of the ABox language.

8. The extension of (VR Generic ¢; r &3] i those elernenta z
of the estenaion of ey such that {z,y} is in the extension of
r only when y is in the exiension of €3,

4. The estension of {RoleChaln r, ...1y) 1a the relational
composition of the extennons of vy .. 74,

For example, the extension of {VRGenerlc Person Chiid Doc-
tor) would be the elements z of the extension of Person such that
any y such that {z,y} is in the sxtengion of Chsd ia also in the
extension of Doctor; that is, the complex term stands for those
persons whose children are all doctors.!! Similarly, the extension
of (RoleChain Child Child) is the set of all pairs (z, 2) such that
for some y, {z,y} Is in the extension of Chkild and {3, 2z} is also
in the extenmion of Child; that is, the expression stands for ihe
Grandchud relation.

To define the semantics of the ABox language, we need ihe
notion of an enviroament, which is a funciion from variables to
elementis of some domain. Given an environment V, a variahle
%, and an ohject o, we also define V[z/0] to be the environment
that is exactly like V except that z is mapped to 0. The truth of
a wil is defined in terma of & mapping ¢ and an environment ¥
as follows:

Definition 3 Let D be any set. Let £ be any funchon fram gaym-
bols to relations over D such that £ (2) has the same arity as .
Let V be any environment over 0. Then for ony wff a, we define
the TRUTH of o wri to £ and V by

Lofpz...3i) wtrue iff {V(x),..., V(=)} se in the relation
£{p)-

2. [NOT a} is true iff a 1a not true.

3. [OR a 8) us true iff cither o o7 B s truc.

4. {EXISTS z o) is truc iff for some d wn D, a s truc wrt
to £ and Vjx/d].

One thing io notice about this definitior is that the truth of
sentences does not depend on an environment at all and so, as
with gterms, the meaning of sentences in strictly a function of
the set D and the mapping ¢.

So far, the only relation between the semantics of the TDax
and the ABox languages is that both depend on the assignment
& of relations to gsymbols. However, the coupling is closer than
this since THax symbols can be defined, that is, nssociated with
other gterms which become their definitione. The net effect is
to constrain the mapping £ so that the extension of the defined
symbal is the same as the extension of the gterm. To make this
precise, we introduce the notion of a symbol table as followe: n
symbol table § in a function from 1-place predicates to concepts
and 2-place predicates to toles; for any TBox symbol g, S(g) is
the gterm which ia the definition of g under §. Strictly speaking,
we sbould be careful to avoid circular definitions!! in a symbol
table, but will not do so here. Lo fact, we will use the convention
that a gaymbol is undefined whenever S(p) equals p itsell. In
other worda, for any ;nymbol g, we say that g is primitive wrt §
when g equals $(g)."

A key notion given a symbol table § is that of & mapping ¢
being an eztension function:

" As & matter of terminolagy, we will say that the Aliers of the Child role are
comstrained to he in the axtension of Dactor.

Y An axample of a clrcular definltlon might be one whare $(p) b (Con-
Genarle ¢ ) and §{¢) is (ConGenaric p 1.

135 particular, we nssume that all k-place pradicates for k greater than 1 are
primitive,



Definition 3 Let 5 be o symbol table. £ w an EXTENSION
FUNCTION wrt § off for cvery geymbol g, £ {g) 1a the same ae
the estension of Sfg) wrt €.

In other words, an extension function is a mapping that oheys
the definitions specified by §. For example, if p is defined by $ to
be the gterm (ConGenerle ¢ r}, then £(p), to be an extension
function, would have to be the intersection of £ {¢) and £ {r}.

B. Outcomes and Knowledge Bases

Using the notion of an extension function defined above, we can
define what it means to be a iruth valuation and a subsumption
relationshsp, whick together will tell us what the world is like
and how the gterme relate to each other. We define the first as
follows:

Definition 4 Let § be o symbol table. Let w be a mapping from
sentences to {iruc,falsc}. w s a PRUTH VALUATION wrt to
S iff there 12 a aet D and an extension funchion £ wrt § over D
such that wia) = true 1ff o oo true wret £

So a truth valuation is a mapping from sentences to truth valves
that follows the definition of truth given earlier and respects the
definitions given by 5. For example, if p is defined by § to be
g, then any truth valuation that aays that {EXISTS z (p z}) ia
true, must also say that [EXISTS z {g z)) i» also true.

For terms, we define the subsumption relationship as follows:

Definition 5 Let § be a symbol table. Let ¢y and ey be gterms.
ey SUBSUMES c3 wrt § off for any sel D and any £ that w an
extenmon function wri §, the extension of ey 18 a superset of that

of e;.

S0, for example, the gierm p always subsomens (ConGenerlc
pr), and if ¢ is defined by § tc be (ConGeneric p ¢}, then p
subsumen ¢ with reapeci to $ (for any p, ¢, and r).

The nation of an outcome is that of a complete epecification
of what the world is like and how the gterms are interrelated. It
is defined by the following:

Definition 8 An OUTCOME is a pasr (=,w) where, for some
symbol table §,

1. = is the subsumphion relationship wrt § [10 = € gierm X

gterm)
2. wis a truth valuation wrt § {50 w is a Junction from sen-
tences to truth values).

Note that an ontcome does not determine & unigue symbol table.
Ax & very mimple example, if the relation = says that the gterms
p and (ConGenerlc g r) subsume each othez, it could have been
the case that p was defined as (ConGeneric ¢ r) or as (Con-
Cenerle r g) or even as some other expreasion that subsumes
and is snbsumed by (ConGeneric r g). The actual syntactic
form of the definition of p is not considered to be relevant; what
counts is the relationship between p and all other gterms.

While an outcome is a complete apecification of what the world
and vocsbulary are like, a knowledge base is copridered a partial
specification of the same. Formally, we define a knowledge base to
be any set of outcomes. (This is the usual convention of treating
a partial x as the set of all complete x's that are ‘consistent’
with it.) So the outcomes that are members of 3 KB are those
that are consistent with the information available 1o the KB; the
outcomes that are not members of the XB are those that can be
ruled out bassd on the information available to the KB. 8o for
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example, if a KB knows only that o is true and that p is defined
to be (ConGeneric ¢ r), the outcomes it will contain are all
those where p subsumes {ConGeneric ¢ r) and vice-versa, and
where o is true. This is not to say that the KB does not know
about other trutha or subsumption relationships. For example,
in all the outcomes in the KB, p alio subsumes (Con(zenerlc
rag), and (OR a B) is also true. Moreover, for any KB at all, all
of its ontcomes have the property that p subsumes (ConGenerle
P ¢), and every valid sentence of logic comes out troe.

C. The Operations on Knowledge Bases

We are now in & position to define what operations are avail-
able on these abstract knowledge bases, These are the operationn
that actually define KRYPTON and the only ones that an imple-
mentation has to provide to a aser.

First, we have a simple operation to get atarled. NEWKB
createn a new knowledge base that includes no definitions or con-
tingent facts. NEWKD in defined this way:

NEWKD{ | = {{=,w) | (=, w) ia an outcome}.

In other words, the result of NEWKB is the set of all outcomes.
Note that this KB does have some nontrivial properties, such as
those mentioned at the end of the last section.

There are two ABox operations provided by KRYPTON. The
first, called ASK, is used to determine what the world is like
according to what is known. Informally, ASK takes n sentence
and a KB and returns ‘yes’ or ‘no’. The necond, called TELL,
in umed to inform the KB of what the warld in like. It takes a
sentence and & KB and returns a new KB that knows that the
sentence is true. More formally,

ASK{o,KB} =
yes, if for each (=, w) in KB, w{a) = true,
no, ctherwise.

TELL[aKB| = {{=,w) in KB | w(a) = true}.

So TELL rules out the pomsibility that ita argument is false by
retaining only those cuicomes where it comes out true. Similarly,
ASK snswers ‘yen’ precisely when the possibility that o is false
has been ruled out.

The TBox equivalent to TELL is called DEFINE. It takes a
TBHox symbol, a TBox expression and a KB and tells the XB that
the symbol ia defined by the expression. The equivalent to ASK
in called SUBSUMES. 1t takes two TDox terms and returns ‘yes’
or ‘no’ according to whether the firat subsumes the wecond based
on what is known abous the terms, These are defined as follown:

DEFINE[g,¢,KB] = {(=,w)in KB | g = ¢ and e = g}.
SUBSUMES|e; 25, KB} =

yes, if for each (=, w) in KB £3 = ¢,

no, otherwise.

The TBox also has operations that have no {current} analogue
in the ABox. These operationa are questions that return sets
of geymbols, instead of "yes’' or ‘no’.'® The intent is that we
should be able to find ont what symbols have heen defined and
to reconstruct, for each such symbal, a definition for it. It may
not be the actual definition that was used, but ita effact overall
would be the same. The three operations are VOCAB, which
returns the gaymbols that have been defined; PRIMS, which given
a THox term returns the ultimate primitives’! that make up the
expression; and, ROLEPAIRS, which given a concept, returns &

M 8tickel's th proves id

p to wowme waserilonal “wh-ques-
tions” but the gquestion of an approp

set for KR purposes s still an

open cme.
1“Racall thet & primitive i & symbol that has no defpitden. Thus whai
ranstitutas a primitive may vary se dofloliions are sequired
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list of pairs (c,p) where p is a primitive concept and c is a list
of primitive roles, and where the gterm constrains the fillers of
the chain of ¢ to be in the extension of p. These operations are
defined in the following way:

VOCAB[KB] = {p, a gsymbol | there is a
different gsymbol ¢ such that SUBSUMES|q, p,KB] = yes}.
PRIMS[e,KB] =
if £ is & concept then
{p, & 1-predicate-symbal | p is not in VOCAB|KB} and
SUBSUMES|p, ¢,KB| = yes}
if ¢ is & role then [¢; ... qu) where
no ¢ is in VOCAB[KB] and
SUBSUMES[(RoleChalin ¢; --. ¢i),c,KB| = yea.
ROLEPAIRS[e,XB] = {{(q1,...,0)p) |
neither p nor any ¢; is in VOCAB[KB] and
SUBSUMES|(VRGeneric ¢« (RoleChaln ¢, ... i} p),
¢,KB| = yes}.

Note that a gsymbol is a primitive exactly when it is not defined,
that is, when it is not in VOCAB.

Given the details of this Knowledge Level account, there are a
number of important properties of KRYPTON that we can prove.
For example, it is easy to show that ASK and TELL have the
right relationship, i.e., that ASKja, TELL(a, KB)] = true, for any
KB, as well as any subsequent KB (TELL works monotonically—
anything that is believed continues to be believed as new facts
or new definitions are added). Similarly, it can be shown that
DEFINE and SUBSUMES have a proper relationship, i.e.,

SUBSUMES[*, e, DEFINE(s, s, KB)] = yes
and
SUBSUMES]Je, s, DEFINE(s, e, KB)] = yes (for any KB).

We can show that all of the logical truths hold in an empty
KB, e.g., ASK[p V -p, KBy] = yes, where KB, is the value of
NEWKB[]. We can show that all of the appropriate subsumption
relationships [Brachman and Levesque, 1984a] hold in the TBox,
asin, e.g.,

SUBSUMES [p+, (ConGenerlc p, p,), KB] (for any KB).

It can also be shown that the expanded form of a definition into
only primitives (using the results of PRIMS and ROLEPAIRS) is
equivalent to the original definition. Finally, and most cogent to
the focus of this paper, it can be shown that the ABox and the
TBox have the desired relationship. For example, universal as-
sertions that should follow directly from definitions can be shown
to do so:

ASK[¥z Man(z) D Pereon(z),
DEFINE[Man, [VRGeneric Person Sex Male), KB||
= yes {for any KB).

In genera], because we can prove such things about KRYPTON,
this kind of Knowledge Level account plays a vital part in pro-
viding a predictable, reliable interface for consumers of the KR
service.

IV The KRYPTON Implementation

Having defined the existing KRYPTON interface, we now turn
our attention to the way the service is implemented. In general, it
is possible to build a hybrid KR system wherein term definitions
are expressed in a special language, and then simply translated
into sentences in another. This loose kind of integration at least
allows a system to take some of the implications of definitions into
account. However, integration of this type has two potentially se-
rious problems: first, contingent assertional sentences (even uni-
versally quantified biconditional!) simply do not have the same

import as definitions and loose integration forces their conflation
(contrast "every animal is either not in my field or is a cow"
with "every triangle is a three-sided polygon"); second, adding
more sentences to a belief-reasoner (i.e., a theorem-prover) will
invariably slow it down (see [Stickel, 1985]).

In KRYPTON, we have embodied a tightly integrated hybrid
architecture. We have extended the basic inference rule of the as-
sertional reasoning mechanism to take directly into account the
structure of definitions by altering the meaning of unification.
Thus, definitions of terms have a direct, complete, and correct
effect on the reasoning process without slowing it down. Further,
the term definition language is kept completely distinct from the
assertion-making language, and is a more natural one for form-
ing structured definitions and for drawing definitional (analytic)
inferences (e.g., subsumption). As implied above, definitions are
first-class citiiens in KRYPTON, and are distinct from simple
contingent sentences even of similar logical form.

In this section, we describe our alteration to unification in
the context of our ABox—Stickel's nonclausal connection graph
resolution theorem-prover [Stickel, 1982] [Stickel, 1983] [Stickel,
1985]. This should give the reader a solid idea of how KRYP-
TON has been made to work, but owing to the brevity of the
presentation, it is not intended to be a complete account of the
ABox-TBox interface.

A. Connection Graph Theorem-Proving

A connection graph (Kowalski, 1975] is a set of wffs and a
set of links between the literals'® of the wffs. For every literal
that occurs in a clause input by the user or as the resolvent in a
resolution step, there is a corresponding node in the graph. At
the time a clause is entered each of its literals is examined and a
link is created between each literal and any other literal for which
there exists a unifier that causes them to be complementary. Note
that there is a crucial distinction between forming a link and
resolving upon a link. A link should be thought of as a marker
for identifying two wffs that can be used in a resolution step. The
link makes it easier to find the wffs at resolution time, but does
not actually perform the resolution. It appears that in general the
pre-computation of possible resolution steps allows connection-
graph theorem-proving to proceed faster than ordinary resolution
[Kowalski, 1975] [Stickel, 1982].

B. Residues

An important piece of information that is stored on a link is
the residue between the two literals. A residue can be viewed
as a statement that the literals connected by a link are contra-
dictory, provided that some additional information, specifically
the negation of the residue, is known. When a resolution step
is performed, the residue is added as a disjunct to the resolvent
in the place of the resolved-away literals. In a conventional uni-
fication step, the residue is "false”, indicating that the literals
are directly contradictory; thus a conventional step adds no ad-
ditional information to the resolvent. However, in KRYPTON we
make extensive use of complex non-empty residues for the TBox
links.

For example, if we define in the TBox the concept of a Per-
son as something that is both a Mammal and a Thinker, and we
know that Rover is not a Person and that he is a Mammal, then
by definition Rover must not be a Thinker. Therefore, the liter-
als - Person (Rover) and MammalfRover) will be linked together
with a residue of -Thinker(Rover). This link can be pictured as
below, where the literals being linked occur on either side of the
horisontal line, and the residue is attached below them:

"A literal it an atomic sentence or the negation of one.



~Person(Rover) —l—MammnI (Rover}
~Thinker{Rover)

The residue wffis attached only as information associated with
the link, but is not actually added to the graph until the link
has been resolved upon in a resolution step. So, in this case,
none of the links that would connect -Thinker (Rover) to other
literals are computed until the parent link is resolved upon. The
most important consequence of this is that the residue will not
be visible for use by the set of support strategy that the ABox
employs to direct the progress of a proof (Bee below).

C. Proof Procedure and Resolution Strategy

The proof procedure used with a connection graph is quite
simple. The kernel of the procedure is as follows:

1. Stop if the graph contains the empty clause.
2. Select any link from the graph.
3. Generate the resolvent.
4. Construct the new graph:
(a) Delete the link resolved upon.
(b) Add links for the resolvent.
5. Return to 1.

Once a given pair of literals in a pair of wffs has been resolved
upon, literals that are derived in later resolution steps from the
resolved-on literals cannot themselves be resolved upon. This
follows from the fact that the original link is deleted before links
are added between literals in the resolvent and other literals in
the graph. As a result of this, connection graph resolution does
not allow all the resolution steps that other methods might.

An important point to notice about the proof procedure is that
it is nondeterministic. That is, the procedure places no restric-
tions on how the next link to be resolved upon is chosen. A given
implementation must be very careful to embody a strategy that
guarantees to preserve completeness of the procedure. One ob-
vious constraint on a suitable strategy should be that the choice
of link tend to simplify the resultant graph. Another is that only
links that are relevant to the query should be resolved upon.

In Stickers theorem prover, these goals are achieved by the use
of a complex evaluation function for determining the next link to
schedule and by having the evaluation function use set of support
as the basic resolution strategy.16 The evaluation function also
takes into account such things as how deep the search in a given
direction has been and how complicated the residue on the link
will be. The hope is that it will choose to ignore links that will
result in a more complicated graph and that it will abandon paths
that seem to be fruitless. While the evaluation function depends
on heuristics and is not guaranteed to find the fastest proof in
all cases, our experience shows it to work very well.

D. Terminological Link Types

The ABox is made to understand the TBox by the addition
of links to the connection graph that are derived from the ter-
minological definitions in the TBox. Just as in the case of nor-
mal connection graph theorem-proving, deduction time is saved
by pre-computation of possible unification steps. Further, since
our definitions are structured and include a subsumption hierar-
chy, links constructed from them allow multiple deduction steps

16 Set of support is a general strategy designed to ensure that only links that
point into a "support set" are eligible for selection for the next resolution
step. At the beginning of a proof the support set contains only the links
between the negation of the query and other wffs. When a link is resohred
upon, the old link is removed from the set, and all of the links of the
resolvent are added.
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(e.g., multiple applications of modus ponena) to be accomplished
at once. Although we cannot provide evidence of it in the small
space we have here (but see [Stickel, 1985]), directly changing
the connection graph turns out to be potentially far superior to
the mere addition of "meaning postulates" in a loosely integrated
system.

Our modification involves the addition of four new connection
graph link types. The first three are for concept definitions, and
the fourth for role definitions. To a first approximation, the links
for a concept correspond to (1) links to concepts that subsume
the concept, (2) links to concepts that occur (either explicitly or
implicitly) as value restrictions in VRGenerics for the concept,
and (3) links to roles that occur in VRGenerics for the concept.
Links for the definition of a role are for subchains of that defi-
nition that are themselves defined roles. At the very least, this
will involve the primitive roles included in the definition.

There are two cases for each of the four basic link types, aris-
ing from the necessity and sufficiency of our TBox definitions.17
These are the cases corresponding to positive and negative oc-
currences of a term. For example, if we know that Fred is a Per-
son, then we know that his not being a Thinker is immediately
contradictory, so given the appropriate facts, this link would be
necessary:

Peraon(Frcd) T-\Thinkcr{ﬁ'nd)

false

The Rover link of section IV.B shows a link required by the
addition of a negative occurrence of a term.

In the next two sections, we will cover in some detail two of
the necessary link types arising from concept definitions. The
first of these is between a concept and all concepts that subsume
it. The second is between a concept and roles that occur in a
VRGenerlc in the concept's definition.

In what follows, we shall use these definitions:

* Grandchild: (Role Chain Child Child), that is, the Child of
a Child.

*  Woman-Student: (ConGeneric Woman Student), that is,
somebody that is both a Woman and a Student.

Successful-Grandma: (VRGeneric Woman  Grandchild
Doctor), that is, a Woman all of whose Grandchildren are
Doctors.

1. Concept-SuperConcept Linking

A concept P must be linked to concepts that subsume it. For
this concept linking, the TBox must supply the names of all con-
cepts that subsume P and also all concepts that it subsumes
(information that can be gotten from the TBox using the Knowl-
edge Level operations defined above). The reason for the latter
is that we have no way of controlling the order of entry of terms.
Finding a concept Q that P subsumes will allow Q to be appro-
priately linked up when P is encountered.

Positive links: Each positive instance of a concept must be
linked to all negative instances of concepts that subsume it when
the arguments unify in the conventional fashion. No residue is
associated with these links. The Fred link of the last section is
an example of this link type.

171t should be emphasised that while these link connections may appear com-
plicated, they are not calculated repeatedly. The appropriate links are
computed exactly once for each definition, at the time the definition is en-
tered. Therefore the apparent complexity here does not adversely affect the
process of deduction.
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Negative links: Each negative instance of a concept, P, must be
linked to all positive instances of concepts, Q, that are subsumed
by primitive concepts occurring as conjuncts in the definition of
P when the arguments unify in the conventional fashion. The
residue is formed by taking the definition of P, removing those
pieces of it that are shared with the definition of Q, and then
negating the result. For example, consider

-W oman-Student(Suc) T Successful-Grandma{Sue)
~Studeni(Sue)

If Sue is not a Woman-Student, but she is a Successful- Grandma,
then some part of the definition of Woman-Student that does not
apply to Successful-Grandma must not be true for Sue. The only
piece of Woman-Student not included in the other definition is
Student, so Sue must not be a Student.

3. Concept-RoleChaln Linking

A concept P must be linked to each RoleChaln that occurs
in a VRGenerk for it. In order to do this linkage correctly,
the TBox must provide the A Box, for each concept, the names
of all defined RoleChalns that occur in that concept, and for
each defined RoleChaln, the names of all concepts in which it
occurs.

Positive links: For every role, R, whose definition occurs as a
RoleChaln or a subchain ofa RoleChaln in some VRGenerk
in the definition of P, link P with the rest of the VRGenerk in
which R occurs. So, for example, since Grandchild is defined as
(RoleChaln Child Child), Child is a defined subchain of Grand-
child. Therefore, if Marge is a Successful-Grandma and has a
Child, then if that Child in turn has any Children, they must all
be Doctors.

Successful-Grandma( Marge) TCMM[MM;:, Hape)
¥(2)Child{Hope, x) > Doctor(z)

Negative links: For every role, R, whose definition occurs as a
subchain of a RoleChaln in some VRGenerk in the definition
of P, link -*P(a) and -R(SkFn(a),SkFm(a)) (where SkFn and
SkFm are both Skolem functions associated with the definition
of P). This link has as its residue the negation of the rest of
the definition of P, after removing the VRGenerk in which R
appears.

~Successful- Grandma({Charlie) T -Child(Charlie, z)
~Woman[Charlic)

If Charlie has no children, then the VRGenerk for Successful-
Grandma holds vacuously, so for Charlie to not be a Successful-
Grandma, he must fail in the only other requirement, and not be
a Woman.

3. Other links

In the preceding sections we have outlined two of the major link
types in our extension of unification. There are several choices
for other links to use to complete the extension. Currently we
have implemented one set that, while complete,13 is probably not
the best choice, as it yields some unintuitive links to assure that
completeness. We have been exploring other link choices that do
not of themselves ensure completeness but can be shown to be
sufficient when coupled with the set of support strategy. Another

18Because of space limitation*, we are not saying here what it means to be
complete and consistent with respect to our Knowledge Level specification.

approach that is being considered is to not restrict ourseives to bi-
nary links, that is links betwaen two literals, but to instead make
use of Stickel's more general theory resolution capabilities and use
n-ary links [Stickel, 1083] [Sticke], 1085]. For exampie, instead of
the link mentioned in the last section concerning Charlse which
necessitated the addition of a residue, we might have waited
until we had all three literals -Successful-Grandma{Charlie),
-~Child(Charlie,z), and Woman(Charlic), and made a single
ternary link containing no residue.

V Example Proof

In this final section, we will present a sample use of KRYPTON.
‘We will supply some TBox definitions and a aet of ABox facts and
then show how KRYPTON goes about answering a query based
on that information.

¢ TBox definitions:

Primitive Roles: Child
Primitive Concepts: Mammal, Thinker, Woman
Defined Concepts:
Person (ConGenerlc Mammal Thmker)
NoSon (VRGenerle Peraon Child Woman)
s ABox facts:
Child[Fred, Pat)
Child(Mary, Sandy)
NoSon{Fred) v NoSon{Mary)
With the facts above, we should be able to show that there is
somebody in the world who is a Person and has a Child that
is o Weman, even though we do not know who that somebody
is. This query is formulated as Iz3y[Person(z) A Child(z,y) A
Woman(y)]. The intuition behind the proof is that if Fred and
Pat both have children and al least one of them iz a NoSen,
then whichever of them it is i himsell & Person and has a Child
that is a Woman (given the definition of NoSon). That either
Fred or Mary is a NoSon is insufficient information for this proof,
since the definition of NoSon does not require that such a person
bave a Child, merely that if ahe has o Chuld, then that Child ia
s Woman. Note that any proof of this is going to have to use
terminological information to know, for example, that the Child
of whichever of them s & NoSon is also 8 Woman.

The prool proceeds by trying to derive a contradiction from
the known facts and the negation of the query, Lines 1-3 are the
known ABox facts that will be used in the proof. Line 4 is the
negation of the query. = and y are used as universal variables.

1. Child(Fred, Pat)

2. Child(Mary, Sandy)

3. NoSon{Fred) v NoSon(Mary)

4. 2 Peraon{z) v ~Child(z,y} v -Woman(y)

5. ~Person(Fred) v -Woman|Pat)
Narmal resolution on 1 and ~Child(x,y) in 4.

6. ~Peraon(Fred) v NoSon[Mary) v ~Child(Fred, Pat)
By 3, Fred is possibly a NoSon, which means that all his Chil-
dren are Women (from the terminclogy). Stating that Pat is not
a Woman in § has the consequence that Pat cannot be Fred’s
Chsld. In other words, NoSon(Fred) in 3 and ~W oman(Pat) in
G resolve awey ard leave s residue of ~Child(Fred, Pat).

7. < Person{Fred) v NoSon{Mary}
Normal resolution on 1 and ~Child(Fred, Pat) in 8.

8. NoSon(Mary)
By the definition of NoSon, if Fred is one then he must also be
& Person, so ~Person(Fred) in 7 and NoSon(Fred) in 3 are
directly contradictory.

9. =Child{Mary,y} v ~Woman(y)
This time, if Mary is a NoSon, she must be & Person, 0o 8 and



-Person(x) in 4 are directly contradictory, with Mary being sub-
stituted for z in the resolvent.

10. -Child(Mary,y)
If Mary is a NoSon (as stated in 8), any Children she might have
must be Women. Therefore, if there are no Women at all (as
stated in 9), then Mary must have no Children. In this case, the
residue, -Child(Mary,y), was already part of the resolvent of 8
and 9, so it does not need to be added again.

11. false
Normal resolution on 10 and 2.

Vi Conclusions

As we have shown, KRYPTON is a tightly integrated hybrid
reasoning system that provides both terminological and asser-
tional facilities. At the Knowledge Level, it can be seen that
assertional reasoning takes into account the definitions of terms
expressed in a special-purpose frame-based description language.
At the Symbol Level, it can be seen that this interface is imple-
mented by augmenting a theorem-prover's notion of unification to
accommodate definitional relationships between predicates. Our
KRYPTON implementation currently runs on a Symbolics 3600.

In some respects, this resembles what Stickel has called "theory
resolution" [Stickel, 1983] [Stickel, 1985], wherein non-equational
theories can be built directly into the theorem-prover. One
could—at the Symbol Level—accurately call KRYPTON an im-
plementation of partial theory resolution, in that we have used
the TBox to implement specialized reasoning procedures for cer-
tain tasks. However, as discussed in Section Ill, we have a full
formal semantics at the Knowledge Level that supports the first-
class citisenship of descriptive terms in KRYPTON. Theory res-
olution allows us a convenient implementation of this idea, but
does not itself provide us with the suitable semantics.

KRYPTON is different, in fact, from most other hybrid ap-
proaches in that it directly, and soundly, integrates two funda-
mentally different kinds of representation and reasoning.
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