A-B-C-D-E-F-G-H-I-J-K-L-M-N-O-P-Q-R-S-T-U-V-W-X-Y-Z


Search beginning of word full word and in description

New Definitions


NICKEL STEEL-Harveyized steel-iron-nickel alloys-structural nickel steel
NICKEL STEEL. Steel containing nickel as the predominant alloying element. The first nickel steel produced in the United States was made in 1890 by adding 3% nickel in a Bessemer converter. The first nickel-steel armor plate, with 3.5% nickel, was known as Harveyized steel. Small amounts of nickel steel, however, had been used since ancient times, coming from meteoric iron. The nickel iron of meteorites, known in mineralogy as taenite, contains about 26% nickel.
Nickel added to carbon steel increases the strength, elastic limit, hardness, and toughness. It narrows the hardening range but lowers the critical range of steel, reducing danger of warpage and cracking, and balances the intensive deep-hardening effect of chromium. The nickel steels are also of finer structure than ordinary steels, and the nickel retards grain growth. When the percentage of nickel is high, the steel is very resistant to corrosion. At high nickel contents, the metals are referred to as iron-nickel alloys or nickel-iron alloys. The steel is nonmagnetic above 29% nickel, and the maximum permeability is at about 78% nickel. The lowest thermal expansion is at 36% nickel. The percentage of nickel in nickel steels usually varies from 1.5 to 5%, with up to 0.80 manganese. The bulk of nickel steels contain 2 and 3.5% nickel. They are used for armor plate, structural shapes, rails, heavy-duty machine parts, gears, automobile parts, and ordnance.
The standard ASTM structural nickel steel used for building construction contains 3.25% nickel, 0.45 carbon, and 0.70 manganese. This steel has tensile strength from 85,000 to 100,000 lb/in2 (586 to 690 MPa) and a minimum elongation of 18%. An automobile steel contains 0.10 to 0.20% carbon, 3.25 to 3.75 nickel, 0.30 to 0.60 manganese, and 0.15 to 0.30 silicon. When heat-treated, it has a tensile strength up to 80,000 lb/in2 (552 MPa) and an elongation 25 to 35%. Forgings for locomotive crankpins, containing 2.5% nickel, 0.27 carbon, and 0.88 manganese, have a tensile strength of 83,000 lb/in2 (572 MPa), elongation 30%, and reduction of area 62%. A nickel-vanadium steel, used for high-strength cast parts, contains 1.5% nickel, 1 manganese, 0.28 carbon, and 0.10 vanadium. The tensile strength is 90,000 lb/in2 (621 MPa) and elongation 25%. Univan steel for high-strength locomotive castings is a nickel-vanadium steel of this type. Unionaloy steel is an abrasion-resistant steel.
The federal specifications for 3.5% nickel carbon steel call for 3.25 to 3.75% nickel and 0.25 to 0.30 carbon. This steel has a tensile strength of 85,000 lb/in2 (586 MPa) and elongation 18%. When oil-quenched, a hot-rolled, 3.5% nickel, medium-carbon steel, Steel 2330, develops a tensile strength up to 220,000 lb/in2 (1,516 MPa)
and Brinell hardness of 223 to 424, depending upon the drawing temperature. Standard 3.5 and 5% nickel steels are regular products of the steel mills, though they are often sold under trade names. Steels with more than 3.5% nickel are too expensive for ordinary structural use. Steels with more than 5% nickel are difficult to forge, but the very high-nickel steels are used when corrosion-resistant properties are required. Nicloy, used in fork tubing to resist the corrosive action of paper-mill liquors and oil-well brines, contains 9% nickel, 0.10 chromium, 0.05 molybdenum, 0.35 copper, 0.45 manganese, 0.20 silicon, and 0.09 maximum carbon. The heat-treated steel has a tensile strength of 110,000 lb/in2 (758 MPa), with elongation 35%. The cryogenic steels, or low-temperature steels, for such uses as liquid-oxygen vessels, are usually high-nickel steels. ASTM steel A-353, for liquid-oxygen tanks at temperatures to
— 320°F (—196°C), contains 9% nickel, 0.85 manganese, 0.25 silicon, and 0.13 carbon. It has a tensile strength of 95,000 lb/in2 (655 MPa) with elongation of 20%. A 9% nickel steel, for temperatures down to
— 320°F, contains 9% nickel, 0.80 manganese, 0.30 silicon, and not over 0.13 carbon. It has a minimum tensile strength of 90,000 lb/in2 (621 MPa) and elongation of 22%.

Additional comments :




Back