SOLAR 2007

8th Annual Emerging Transportation Plenary

Moderator
Steve Heckeroth
Chair Renewable Fuels and Transportation Division

steve@renewables.com

Renewable Fuels and Sustainable Transportation Division Mission

- Support the widespread development and use of clean renewable fuels.
- Lobby for improved fuel efficiency and emissions standards.
- Support the rapid transition to zero emission renewable technologies.
- Promote sustainable community planning to reduce fossil fuel dependence.

Fuel Efficiency and Climate Change

	Vehicle Type	\$ Gas 25 Mi. /Day	kWh 25 Mi. /Day	\$/year 25 Mi. /Day	Gal/yr 25 Mi. /Day	Tons of CO2/Yr Tailpip e	*+ <u>Tons</u> of Upstream CO2/Year
3	10 MPG Gas	8.75	100	\$3200	915	10.5	13.7
	20 MPG Gas	4.37	50	\$1600	460	5.3	6.8
	30 MPG Gas	2.93	34	\$1050	305	3.5	4.5
	40 MPG HEV	2.20	25	\$800	230	2.6	3.4
	50 MPG HEV	1.75	20	\$640	180	2.1	2.8
	Plug-in HEV 25 Mile range	0	8	\$140	0	0	1.2
	Battery EV	0	5	\$100	0	0	.7
	Ultra light EV	0	1	\$20	0	0	.14

Assumptions: \$3.50/gal, \$.05/kWh nighttime rate, 40kWh/gal, 23#sCO2/gal

To join the RFST Division go to www.ases.org

RFST Chair: Steve Heckeroth, <u>steve@renewables.com</u>

Mobility without Pollution

- 1. Consolidate Trips
- 2. Walk or Bike
- 3. Pedal Electric
- 4. Electric Rail
- 5. Ultra-light EV
- 6. Compact EV
- 7. Plug-In Hybrid
- 8. Biofuels

97% of US Vehicles are Fueled by Oil

orever

terawatt hours/YEAR

Direct Solar	Radiation
---------------------	-----------

350,000,000

Wind **Ocean Thermal** 200,000 100,000

Biofuel

50,000

Hydroelectric

30,000

Geothermal

10,000

Tidal/Wave

5,000

Energy Stored in the Earth

terawatt hours TOTAL

Coal

Natural Gas (US Peak 2004)

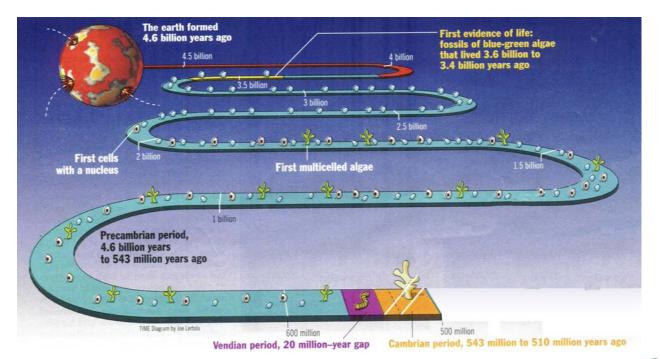
Uranium 235 (US Peak 2008)

Oil (US Peak 1970, World Peak 2010)

(Use it once and it's gone)

Tar Sands

6,000,000 1,500,000


1,500,000

1,000,000

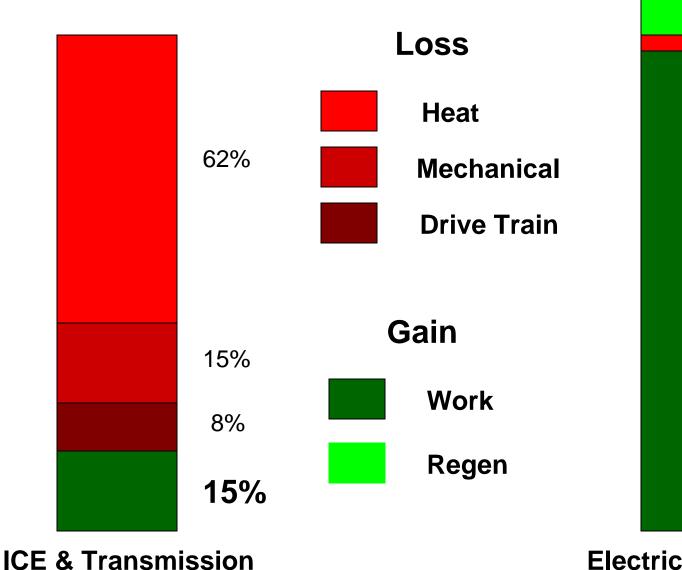
800,000

World stored energy consumption = 70,000 terawatt hours/year

Sun to Wheel Efficiency

It took 3.5
billion years
and rare
geologic
events to
sequester
hydro carbons
and build up
O₂ in the
atmosphere

3.5x10⁹ Years X 3.5x10⁸ TWh/year Solar Energy = 1x10⁶ TWh Oil Total 1.2x10¹² TWh Solar Energy = 1 TWh Oil Energy


Using direct solar energy is 1,200,000,000,000 X more efficient than using oil

Biofuels?

- Using waste oil or biomass is great while it lasts but a fast food restaurant can only supply 2-3 vehicles and there are already many examples of food crop land being used to fill the tanks of SUVs. The cost of tortillas has quadrupled in Mexico in the last year because of the demand for corn to make ethanol. It takes 1000 gallons of water and more than a gallon equivalent of fossil fuel to produce one gallon of corn ethanol.
- Burning hundreds of square miles of virgin rain forest in Indonesia and Brazil to plant GMO mono-crops for biofuel production is destroying biodiversity.
- The overall efficiency of biofuels from Sun to Wheel is about 0.01–0.05 %.
- The overall efficiency of PVs charging EVs from Sun to Wheel is 3–20 %
- Solar-charged EVs are from 60 to 2,000 times more efficient than internal combustion vehicles burning biofuels - when efficiency is measured from Sun to Wheel.

Heckeroth, 5-20-07

Drive Train Efficiency

Electric Wheel Motor

20%

95%

5%

The Cost of Combustion

Vehicle Type

PHEV/25/grid

EV/1kW PV *

Liquid fuel used 25 mi/day / 25 yrs

11,500 gals

ZERO

ZERO

Energy used 25 yrs

460 MWh

70 MWh

45 MWh

Fuel cost now / 25 yrs \$3.50/gal, \$0.07/kWh

\$40,000

\$5,000

\$5,000

Fuel cost over 25 yrs \$10.00/gal, \$0.20/kWh

<u>\$115,000</u>

\$14,000

\$5,000

Fuel cost/ month

\$385

\$45

\$15

Annual cost

\$4,600

\$420

\$180

CO₂/ 25 years

320 tons

17 tons

trace

Assumptions average next 25yrs : 40kWh/gal, \$10.00/gal, \$0.20/kWh, 28#s CO₂/gal, .5#s CO₂/kWh *Current installed cost and performance in CA for PV

25 million cars in California 25 miles a day for 25 years

Oil-combustion

At \$115,000/car X 25 M cars

- = \$2,875 billion for fuel
- + CA share of oil wars
- \$10 B/yr = \$250 billion
 - Cars not included
- **= \$3,125 billion total**
- + 8 billion tons of CO₂

Solar-electric

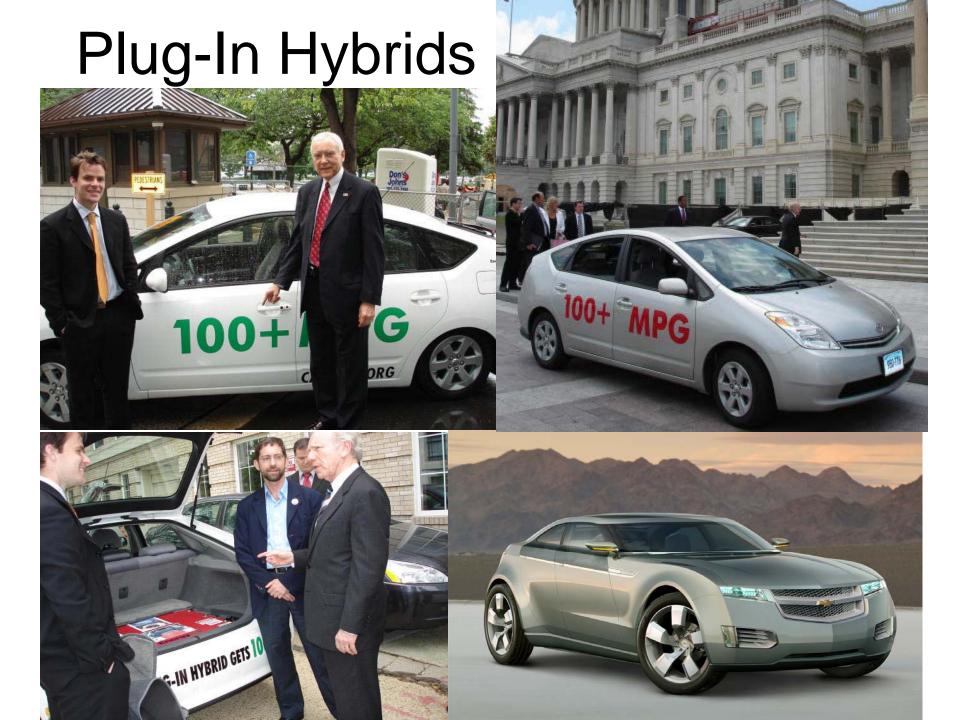
At \$5,000/car X 25 M cars

- = \$125 billion total
- + \$100,000 for everyone in California to spend on electric cars or whatever
- = \$3,125 billion total

+ NO co₂

Assumptions average next 25yrs: 40kWh/gal, \$10.00/gal, \$0.20/kWh, 28#s CO2/gal, .5#s CO2/kWh

*Current installed cost and performance in CA for PV


Heckeroth, 5-20-07

PLENARY SPEAKERS

- Paul Scott, Plug-in America, Star in 'Who Killed the Electric Car'
- 2. Sherry Boschert, President, San Francisco Chapter of the Electric Auto Association, Author 'Plug-in Hybrids'
- 3. Danilo J. Santini, Senior Economist, Section Leader, Technology Analysis, Center for Transportation Research, Argonne National Laboratory
- 4. Travis Bradford, President, Prometheus Institute, Author 'Solar Revolution'
- **5.** Ron Swenson, Cofounder SolarQuest and publisher of www.OilCrisis.com

Plug-in Hybrids

