

EnerDel Technical Presentation

Agenda

- Introduction EnerDel path to commercialization
- □ Company structure and organization
- □ Current strategic alliances / collaborations
 - □ Argonne National Laboratory
 - □ USABC
 - □ Itochu
- □ EnerDel Business Opportunities
 - **□** USABC programs
 - □ Th!nk project
 - **□** Government contracts (DOD)
- □ EnerDel strategy and technology
 - □ System Integration Solutions
 - □ Technology for HEV
 - □ Technology for PHEV and EV
 - □ Competitive advantages
 - Manufacturing
- □ Intellectual Property

EnerDel - path to commercialization

- Covering all market opportunities in automotive electrification of the drivetrain:
 Hybrid Electric Vehicle (HEV)
 USABC Phase 2 program
 - □ Sampling of cells to potential customers
 - □ Unveiling of functional prototype packs
 - □ Plug-in Hybrid Electric Vehicle (PHEV)
 - □ USABC program for development of PHEV technology
 - □ Electric Vehicle (EV)
 - □ Th!nk Development and Supply Agreement
- □ Pursuing other market opportunities
 - Other automotive Heavy duty, scooters, electronic braking, etc.
 - Government contracts military

Target Applications - HEV, PHEV, EV-

□ Power & Energy Balance

	HEV	P-HEV	EV
Power (Assist)	High	Medium	Lower
Energy (Distance)	Lower	Medium	High

HEV - PHEV - EV

Examples of HEV models:

Lexus RX 400h

Lexus GS 450h

Honda Civic

Examples of PHEV model:

Chevrolet Volt - GM E-Flex

Examples of EV models:

Tesla EV Roadster ↑

EnerDel Background

EnerDel Operation

- Established
 - □ October, 2004 EnerDel
 - □ Ener1 Lithium Group: 1990
 - □ Delphi Lithium Group : 1998
- □ Location
 - □ Indianapolis, IN
- □ Employee
 - □ 55 Employees + EnerDel Japan
- Main Product
 - □ Lithium Ion Cell and Pack for Automotive Applications
- □ Existing Space
 - □ General purpose plant area: ~ 68,000 ft²
 - □ Dry room facility: ~ 5,000 ft²
 - □ Office area: ~ 24,000 ft²
 - □ Total area: ~ 92,000 ft²

EnerDel's Business

2007 Main Business Milestones

□ HEV Phase 1 – completed. Testing ongoing. □ HEV Phase 2 – approved and purchase order received □ PHEV Phase1- approved and purchase order process Cell sampling to customers □ Shipment of samples to potential customers taking place □ Schedule: August/September 2007 □ Three (3) prototype packs □ Functional sample capable of being tested in a real vehicle □ Schedule: Mid-September 07 Demonstration vehicle □ Vehicle powered by EnerDel HEV battery □ Schedule: December 2007 Development contract **Development contract from automotive company** □ Schedule: Q4 2007

USABC Contract

- U.S. Advanced Battery Consortium (USABC),
 A part of the United States Council for Automotive Research (USCAR), an organization founded by *DaimlerChrysler*, *Ford and General Motors* that works with the Department of Energy (DOE) to strengthen America's auto industry through cooperative development of advanced technologies.
- □ Current USABC contracted developers

Contract Developer	Focus Chemistry	Main Factory Location	
EnerDel	LMO/LTO	<u>USA</u>	
Johnson Control / Saft	LNO/Graphite	(France)	
A123	FePO4/Graphite	China-OEM	
Compact Power (LG)	LMO /Graphite	Korea	

Th!nk project

- □ Revenue opportunity of \$70 million potentially largest liion contract for automotive to date.
- □ Supply Agreement with development phase
- Development phase
 - March 2008 delivery of prototype packs
 - □ July 2008 delivery of pre-production units

□ Meeting the performance criteria and deliverables leads to

commercial deliveries

- □ Production revenues starting from end 2008/early 2009
 - depends on qualification testing
- □ Revenues for 2009 and 2010

EnerDel Battery Systems

EV / HEV Battery Systems Integration Experience

□ 1996 GM Electric S-10 Production program (PbA, NiMH)

1996 GM / Allison Electric and Hybrid Bus programs – Luxembourg, New York City (PbA)

□ 1997 Li-ion solutions for: automotive (SLI), electric "Warrior" bicycle, stand-by power (BESS)

□ 1996 Delphi 108V (PbA) Neighborhood Electric Vehicle

□ 1999 Dual Voltage FAS Parallel Hybrid Truck (PbA, GM Truck)

□ 1999 Delphi 14/42-V Li-ion, Electrical Architecture (Renault Scenic)

■ 2001 Next Generation Wheel Chair - 65V fully integrated Lithium Power System

 2003 Personal Mobility – 80V fully integrated Lithium Power System (production ready)

2004 EnerDel Inc. - JV LAUNCH

■ 2005 Lithium Power System Development:

- 12 Volt, 4 Ahr Module

- 24V, 7 Ahr Module

- Automotive Suspension – 350V fully integrated pack

- Hybrid Bus Program - 700V (200 kW) fully integrated pack

EnerDel Lithium Ion Battery System for HEVs

- □ Lithium Ion Cell
 - Outstanding safety
 - □ No Thermal Runaway
 - □ Excellent longevity
 - □ 10+ year cycle life
 - □ High power performance
 - □ 3-5 times bigger power density than existing HEV battery (Ni-MH).
 - □ Excellent low temp. Performance
 - Cold Cranking
- □ Battery System Integration
 - □ Automobile class electrical battery management system.
 - Automobile grade mechanical design
 - □ Thermal management design

System Design Features

- □ Safety
 - □ System control redundancy
 - □ Ultra low voltage assembly (non-lethal)
- □ Packaging Efficiency
 - □ Stacking efficiency of prismatic cells
 - □ Elimination of discrete wires for voltage / temperature sensing
- Architectural Flexibility
 - Modular design offers multiple arrangement configurations
- Mechanical Robustness
 - □ Designed for ease of assembly / error proofing features
- □ Thermal management
 - Design allows for air or liquid cooling

EnerDel 5Ah cell / Battery Pack

□ EnerDel is developing HEV battery packs with battery management systems for lithium-ion cells.

HEV Battery Pack

HEV Battery Pack Base and Modules

Cell & Heat-Sink Assembly

Individual Cell

Heat-Sink Assembly

Assembly View of Cell Positioned on Heat-Sink

First Prototype Packs

EnerDel Cell Technology for HEV

Chemistry Design - HEV

Cathode Group	Group A (Nickel Base)	Group B (Iron base)	Group C (Mn Base)	Group C-1 (Mn Base) - PHEV / EV	Group C-2 (Mn Base) - HEV
Cathode	LiNi _x Co _x O	LiFePO ₄	LiMn ₂ O ₄	LiMn ₂ O ₄	LiMn ₂ O ₄
Anode	Graphite	Graphite	Graphite	Hard Carbon	<u>LTO</u>
Advantage	Capacity	Safety Cost	Cost Power	High Power Longevity Low Temp. Safety	High Power (+) Longevity (+) Low Temp (+) Safety (+)
Disadvantage	Safety Price	High Temp. Voltage	High Temp. Longevity	Energy Efficiency	Slightly Lower Energy
Company				<u>EnerDel</u>	<u>EnerDel</u>

^{*} Information on other systems is based on available market information and might not be fully accurate.

EnerDel's Chemistry for HEV Application

- □ Positive Active Material: LiMn₂O₄- spinel (LMO)
 - \Box LiMn₂O₄ \leftrightarrow Li_{1-x}Mn₂O₄ + xLi⁺ + xe⁻
- Negative Active Material: Li₄Ti₅O₁₂ (LTO)
 - $\Box \operatorname{Li_4Ti_5O_{12}} + \operatorname{xLi^+} + \operatorname{xe^-} \leftrightarrow \operatorname{Li_{4+x}Ti_5O_{12}}$

Cell Design

- □ Prismatic
 - □ Case Neutral
 - Good heat dissipation
 - □ Flexible form-factor

	CD Size	A5 Size	
Nominal Capacity	1.8 Ah	5 Ah	
Nominal Voltage	2.5V	2.5 V	
Dimensions (connections included)	145mm W, 130mm L, 5mm T	200mm W, 111mm L, 5.8mm T	
Packaging	Metal or Laminate	Metal or Laminate	

Rate Capability of 1.8 Ah Cells

High discharge efficiency for rates up to 50C.

Low Temperature Performance

1C Discharge

High power and full discharge capability at low temperatures.

Thermal Tests at 50°C

10C continuous charge / 20C continuous discharge

The temperature of the cell does not exceed 60°C during continuous charge and discharge at ambient temperatures of 50°C.

Excellent High Rate & Thermal Performance

Competitors

No hotspots

30A Continuous Discharge Competitors 2.3Ah Cell

85 A Continuous Discharge EnerDel 1.7Ah Cell

EnerDel Li-Ion vs NiMH HEV pack

Cycle life test under high temperature

■ No capacity loss under severe cycling conditions.

Abuse Testing

- Overcharge and Nail Penetration Test
 - > 4C rate for 90 seconds from 100% charged state.
 - Corresponds to 10% overcharge.
 - > Then nail penetrates.

18650 Commercial Cell Overcharge and Side Nail Penetration

26650 Commercial Cell Overcharge and Side Nail Penetration

□ Cover of cell popped off from case.

EnerDel Gen1 Cell Overcharge and Nail Penetration

- We attempted to short the cell with a nail penetration from the side and top.
- □ We did 5 trials and none of them caused the cell to short.
- This is a typical result for our cell.

EnerDel Gen1 Cell Overcharge and Nail Penetration

- □ In order to obtain a short, the cell was manually shorted.
- ☐ The nail was inserted into the cell multiple times and moved around to ensure that a short occurred.

EnerDel Battery Advantages

- ☐ High Power
- □ Safety
- □ Longevity
- □ Temperature Performance
- □ Compact design

http://enerdel.com/

High Energy Density Solution for PHEV and EV

EnerDel testing of cycle life

LiNiCoMnO2 / HC cells cyclelife

EnerDel cycle life testing of 7Ah cell with chemistry for high energy density – demonstrates good cycle life. Good base line and other EnerDel and industry test data demonstrates further improvements capable.

EnerDel testing of rate capability

Rate Test

Good rate capability from 1C to 5C for electric vehicle application.

Intellectual Property

Manufacturing

Process Flow

Scale-up timeline

