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ABSTRACT 
Most research on off-road mobile robot sensing focuses on obstacle negotiation, path planning, and position estimation. 
These issues have conventionally been the foremost factors limiting the performance and speeds of mobile robots. Very 
little attention has been paid to date to the issue of terrain trafficability, that is, the terrain’s ability to support vehicular 
traffic. Yet, trafficability is of great importance if mobile robots are to reach speeds that human-driven vehicles can 
reach on rugged terrain. For example, it is obvious that the maximal allowable speed for a turn is lower when driving 
over sand or wet grass than when driving on packed dirt or asphalt.  

This paper presents our work on automated real-time characterization of terrain with regard to trafficability for small 
mobile robots. The two proposed methods can be implemented on skid-steer mobile robots and possibly also on tracked 
mobile robots. The paper also presents experimental results for each of the two implemented methods. 
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1. INTRODUCTION 
Terrain characterization has been the subject of several studies. Perhaps the best known and widely cited work is that of 
Bekker [1956; 1960; 1969] and Wong [1967]. From the point of view of terramechanics, soil can be characterized by 
determining the terrain parameters.  Many approaches to terrain characterization require offline analysis and/or dedicated 
equipment [Nohse, et al., 1991; Shmulevich, et al., 1996]. Terrain characterization without dedicated equipment was 
proposed by [Matijevic. et al., 1997] for the Sojourner rover and its 1997 Mars mission. Based on this method, Sojourner 
used one of its wheels to characterize terrain. 

A real-time approach based on the measurement of wheel sinkage in soft soil using a video camera was proposed by 
[Iagnemma, et.al., 2004]. Other researchers approached the terrain classification problem based on the terrain’s visual or 
topographic appearance. These methods are collectively called vision-based techniques and generally use video cameras 
or range sensors [Manduchi, et al., 2004; Vandapel, et al., 2004]. 

In this paper we propose two fully self-contained terrain characterization methods for skid-steer mobile robots. With 
“self-contained” we mean that our system does not require any special-purpose instruments to be attached to the robot. 
Rather, the proposed methods monitor typical onboard sensors, such as gyros and motor current sensors. The unique 
advantage of this approach is that our method can be applied during real-time and during an actual robot mission.  

In order to develop the classification method, we instrumented a Pioneer 2-AT (P2AT) with three gyros, 
accelerometers, and motor current sensors. In extensive tests we collected data on a variety of different terrains, such as 
gravel, sand, asphalt, grass, and dirt. Sensor data was collected while the robot performed carefully prescribed 
maneuvers. We then analyzed the data with two different methods, each of which yields a curve that is characteristic for 
a particular terrain. We describe these methods in Sections 2 and 3. Section 4 provides experimental results. 
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2. MOTOR CURRENT VS. RATE-BASED (MCR) TERRAIN ANALYSIS 
In the science of terramechanics, terrain properties are often 
expressed by stress-strain relationships. Data for stress-strain 
analysis is generally obtained through the use of an instrument 
called “bevameter.” Figure 1 shows the main functional component 
of a bevameter: an annular plate with radial grousers that engage 
the terrain. Not shown is an electric motor that rotates the plate.  

Among other parameters of interest, a bevameter can be used to 
evaluate the horizontal stress-strain relationship of a given terrain. 
The shear-stress vs. shear-displacement relationship is obtained 
based on measurements of torque and angular displacement of the 
annular plate as a function of the normal stress. For many surfaces 
it can be described by an exponential function [Janosi and 
Hanamoto, 1961]: 
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where 

j  – Shear displacement 
K  – Shear deformation modulus 
σ – Normal stress  
ϕ – internal friction angle of the soil 
c  – cohesion of the soil 

According to the Coulomb-Mohr soil failure criterion, total 
displacement occurs when the shear stress applied to a given 
terrain exceeds the maximum shear stress that the terrain can 
bear, τmax (see Figure 2): 

 ϕτ tanσc maxmax +=  (2) 

where 

σmax – maximal normal component of the stress region at the 
wheel-terrain interface 

The parameters c and ϕ cannot be obtained from a single 
shear-stress vs. shear-displacement curve. Rather, these 
parameters are estimated using the so-called Mohr circles based 
on the Coulomb’s criterion of soil failure. This criterion is 
established based on the strain-stress relationship τ(j) under 
different normal loads σ (see detailed discussion in 
[TERZAGHI, 1994]). 

As a modification of the conventional method for determining the horizontal strain-stress relationship, we propose a 
method that uses a skid-steer mobile robot instead of a bevameter. In the work presented here we used a Pioneer 2-AT 
(P2AT) to determine the horizontal strain-stress relationship. When a skid-steer vehicle turns, the wheels are forced to 
slip. This motion is similar to that of the annular plate of a bevameter. The torque needed to overcome the friction 
between the wheels and the ground can be estimated by measuring motor currents, and an onboard gyroscope can be 
used to determine the angular displacement. The Motor Currents versus Rate-of-turn (abbreviated “MCR” in the 
remainder of this paper) relationship can be used analogously to the shear-stress vs. shear-displacement. One limitation 
of our method is that since the weight of the robot is constant, the normal load will not change, and we can only generate 

 
Figure 1: An annular shear plate is used in bevameters 
to determine shear stress vs. shear displacement. The 
plate is pressed into the terrain surface and rotated by a 
motor. Shear stress is measured by monitoring the 
torque required to rotate the shear plate. 

 
Figure 2: Typical shear-stress vs. shear-displacement curve. 
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one single characteristic MCR curve. Therefore, the Mohr 
circles can not be constructed. Nonetheless, we believe that one 
single characteristic MCR curve contains enough information 
to classify the terrain.  

In a proof-of-concept experiment, performed on pavement, 
we commanded the P2AT to move at a constant linear speed of 
200 mm/sec, while the rate of turn was increased every 5 
seconds. Figure 3 shows the MCR curve characteristic obtained 
for this surface. In this plot, the x-axis represents the angular 
rate of the robot as measured by the gyroscope and the y-axis is 
the average motor current. Each of the ~15 data points 
corresponds to an average of 5 seconds of data.  Therefore, 
each individual curve can be created in an experiment that lasts 
about 75 seconds. The obvious shortcoming of this approach is 
that the robot has to perform many turns while collecting data. 
In addition, this kind of experiment needs a relatively large 
physical space to be performed. The method, as described, is 
therefore not particularly suitable for terrain characterization in 
real-time, during an actual robot mission. Two other methods, 
discussed in detail in Section 3, overcome this limitation and 
are thus suitable for real-time implementations. 

Discussion: 
Most of the analyzed terrains exhibit the characteristic shown 
in Figure 3. The current initially increases with the increase of 
rate, and then approaches a constant value. An exponential 
function of the form: 
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can be fitted to the data points. 

Effects of changes in surface conditions 
The MCR relationship can be affected considerably by many 
factors, such as moisture content, surface structure, or 
stratification (formation of layers) of soil. In order to 
demonstrate this point we collected data on pavement, before 
and after rainfall. The resulting MCR curves are clearly 
different, as shown in Figure 4. This can be a problem if the 
goal is terrain classification. However from the trafficability 
point of view, the two surface conditions are indeed different, 
even though they were measured on the same terrain.  

Effects of changes in linear speed 
Figure 5 shows that changes in the robot’s linear speed also 
have a significant effect on the MCR curves. In the 
experiment of Figure 5 we ran the robot at three different 
speeds: 10 cm/sec, 20 cm/sec, and 40 cm/sec. The differences 
in the resulting MCR curves exist because at lower speeds the 
torque necessary for turning a skid-steer robot is higher than 
at higher speeds. 

 
Figure 3: Curve characteristic for pavement. The blue dots 
are actual data points (each representing the average motor 
current over 5 seconds of turning). The black line is an 
exponential curve fitted to the data points. 

 
Figure 4: Rate of turn of the robot vs. average current on wet 
pavement and dry pavement. 

 
Figure 5: Motor Current vs. Rate of Turn curves at different 
linear speeds. 
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3. REAL TIME IMPLEMENTATIONS 
A drawback of the above described proof-of-concept method is that it requires a significant amount of time and ample 
physical space. In this section we present two methods that overcome these limitations. 

3.1  The Fast Spiral Path (FSP) Method  

The FSP method is the real-time implementation of the 
basic proof-of-concept experiment discussed in 
Section 2. The only difference is that the robot stays at 
each rate of turn for shorter periods of time. We found 
that the MCR relationship is not affected significantly 
when using shorter periods for each commanded rate of 
turn (see Figure 6).  Indeed, the rate of turn could 
change continuously, without affecting the results. 
However, the P2AT imposes some technical limitations 
on changes of the rate of turn: the maximum update 
rate of the internal microcontroller of the P2AT is 
10 commands/sec, and the robot can only be 
commanded to increase rates of turn in increments of 
1 deg/sec. In addition to reducing the time necessary 
for collecting the data, the FSP method also reduces the 
size of the terrain area necessary to collect the data, as 
shown in Figure 7. 

A trade-off exists between the amount of 
measurement noise and the length of periods, at which 
each rate of turn is held constant, especially on noisy 
terrain such as grass or gravel. Longer constant-rate periods allow some averaging of the motor current and rate of turn 
data pairs, thereby significantly reducing the effect of noise. With very short constant-rate periods, on the other hand, the 
MCR curve is noisy since the FSP method relies on fewer samples per rate of turn. Such noisy data can result in similar 
terrains producing different results. 
Even though noise is a potential problem for the FLP method, the statistic variance of the signal is characteristic for each 
type of terrain. This means that it can be used to help characterize the terrain, as will be demonstrated in Section 4.1 . 

3.2  The Variable Frequency Rate of 
Turn (VFR) Method 

For the Variable Frequency Rate–of-turn (VFR) 
approach the robot is subject to varying-frequency 
sinusoidal rates of turn commands. Specifically, the 
P2AT was commanded to move straight at constant 
speed with a sinusoidal rate of turn command overlaid 
over the straight motion command. The commanded 
and actual rates of turn, for an experiment on 
pavement, are shown in Figure 8. The frequency of the 
sinusoidal rate (see Figure 9) changed according to  
 

tkTT ∆−= 0   (4) 
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Figure 6:  Motor current vs. rate of turn curves at different lengths of 
periods, at which each rate of turn is held constant. 

 
Figure 7: Path described by the robot during the Fast Spiral Path 
experiments, at different lengths of periods, at which each rate of 
turn is held constant.  
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 where 
T0   – Initial period 
∆t   – Period step 
k   – Sampling interval index 

As is evident from Figure 8, the P2AT is only able to 
follow the commanded rates of turn up to about 1.5 Hz. At 
higher frequencies the robot fails to react at all. Thus the 
experiments should be restricted to the range of very low 
frequencies, which is where most of the information is 
located, anyway.  

When the robot is completely at rest, the motor currents 
have to increase significantly before the robot starts turning. 
This is because it has to develop enough torque to overcome 
friction, which is particularly large in a skid/steer robot 
starting from standstill. Once the robot moves, only small 
current increments are necessary to produce large rate 
variations. Furthermore, when the robot reduces its rate of 
turn, the interaction between the wheels and the terrain is 
quite different from the interaction while increasing the rate 
of turn. Thus, the plots of rate-versus-current look different 
in both cases. Since our procedure should be analogous to 
the one used in terramechanics with bevameters, we 
concluded that we should consider only the part of the 
sinusoidal cycle, during which the robot increases its angular 
rate. 

As explained above, data collected with the VFR method 
must be segmented, so that only data associated with 
increasing rates of turn is considered. Thus, in each complete 
sinusoidal cycle there are two segments of data that we are 
interested in:  
1. the increase of the rate of turn from zero deg/sec to the 

greatest positive rate, and 
2. the “increase” of the rate of turn from zero deg/sec to the 

greatest negative rate. 
In order to identify these segments within our raw data, 

we applied some heuristic rules that find the appropriate 
segments automatically. Figure 10 shows the result of 
applying this approach on pavement.  

The VFR approach takes advantage of the best features 
of the slow proof-of concept experiment and the faster 
implementation of that approach, the FSP method. 
Specifically, the VFR method allows collecting redundant 
data through multiple sinusoidal cycles, while still being of 
short duration, since the rate of turn is varied rapidly and 
continually. Another advantage is that it doesn’t impose 
large changes in the trajectory. Rather, it is realistically 
feasible to apply this method while the robot moves toward a 
goal. The sinusoidal path perturbations imposed by the VFR 
method cause only small deviations from the desired straight 
line path during a mission, as shown in Figure 11. Although 
this procedure can be performed at a fixed frequency, we 
found that by varying the frequency we can obtain additional 

 
Figure 8: Commanded (blue) and actual (red) rate of turn.

 
Figure 9: Sinusoidal rate frequency vs. time 

 
Figure 10: Plot of the MCR curve characteristic on pavement 
using the VFR method. 
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information about the terrain, as will be shown in Section 4. 
  
Table I provides a qualitative comparison of the methods used for generating the MCR curves. The VFR is method is 

clearly the one that is best suited for real-time, in-mission applications. This is because it is fast, requires only a small 
area, and doesn’t impose significant deviations from a nominal straight-line path. 

4. EXPERIMENTAL RESULTS 

In this section we present and analyze experimental data collected on five different terrains: gravel, grass, dirt, loose 
sand, and pavement. In all cases the VFR approached was used since any analysis applicable to the slow or fast versions 
of the Spiral Path method is applicable to the VFR method, whereas the opposite is not true. Figure 12 shows the Pioneer 
2-AT skid-steer mobile robot that was used in all experiments described in this paper. 

The resulting MCR curves for each terrain are shown in Figure 13. Data for this experiment was collected with the 
robot moving at a linear speed of 100 mm/sec, the amplitude of the sinusoidal rate commands was 45 deg/sec, and the 
frequency varied according to Eq. 5. For each surface type we collected several data sets, each from a different area of 
the same surface type, at least two meters away 
from any area used for any other data set. 

In a deviation from the theoretical approach 
outlined in Section 2, we found that the exponential 
function approximation (Eq. 3) does not always fit 
very well the raw experimental data. For this reason 
we fitted a third order polynomial function of the 
form: 

1
1

1
2

1
3

1 kkkkI pol +++= ωωω  (6) 

Although the polynomial curves provide a 
better-looking representation of the data, there are 
two disadvantages to representing the data by the 
polynomials exclusively: 
1. the noise level of the signal is not present (yet, 

noise contains useful information, as shown 
below), and 

2. when the data is very noise, polynomials may 
not make for a good fit for the raw data.  

Table I: Comparison of methods for MCR data collection  

Spiral Path   
(Slow) proof-of-

concept 
experiment 

Fast Spiral Path 
method (FSP) 

Variable 
Frequency 

Rate of Turn 
(VFR) 

Duration of experiment Longest procedure 
(> 70 sec) 

Fastest procedure
 (< 8 sec) 

Short time  
(~10 sec) 

Physical area required 
(forward × lateral 
direction) 

Most area:   
(>6 x 6 m) 

Less area  
(<1.5 x 1.5 m) 

Least area  
(2 x 0.5 m) 

Deviation from 
straight-line trajectory. 

Large Less  Least 

Provides redundant 
information 

Yes No  Yes 

Information for 
Variance analysis  

Available Very limited  Available 

Slippage/skid analysis 
at different frequencies 

No No Yes Figure 11: Path of the robot during a VFR 
experiment. 

  
Figure 12: The Pioneer 2-AT skid-steer mobile robot used in all of our 
experiments. 
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Nonetheless, we think that the polynomials are useful as 
long as we present them together with the data that was used 
to generate them, as is the case in Figure 13. 

4.1  Distinguishing Gravel 

Among the MCR curves of Figure 13, the curves for 
pavement and grass can be distinguished easily. However, the 
curves for soil, gravel, and sand are very similar and overlap. 
Therefore, additional information is needed to classify these 
surfaces. 

We found that a good method for determining whether a 
certain MCR curve represents gravel is by looking at the 
variance of its data. This is so because the amount of noise on 
gravel is considerably larger than that of noise on sand and 
dirt. Figure 14 shows the MCR curves for several 
experiments collected on dirt, gravel, and sand. We found 
that in all experiments the standard deviation of the signal on 
gravel was up to twice as large as that of sand or soil. 

Figure 15 shows the variance of the MCR curve for the 
three different terrains. We computed the variance as the 
standard deviation of the difference between the raw data and 
a third order polynomial fit (Eq. 6): 

( )IIstd pol −=δ  (7)  

On average, dirt produces the lowest noise level. 
However, in some cases sand also produces low noise levels. 
Therefore noise is not a sufficient criterion for distinguishing 
between dirt and sand.  

To overcome this problem, we looked for an additional 
criterion to distinguish between dirt and sand, and we found 
one in the form of wheel encoder information. In the 
following section we discuss how this approach works. 

 
Figure 13:  MCR curve characteristic for different terrains (dotted 
lines), collected with the VFR method. Solid curves are polynomials 
fitted to the data for each terrain. 

 
(a) 

 
(b) 

 
(c) 

 Figure 14:  MCR curves for: a) dirt, b) gravel, and c) sand. In 
each graph we show four independent runs on the specified 
terrain. 
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4.2  Distinguishing between sand and dirt 
In order to distinguish between sand and dirt, we 
define: 

odogdiff ωωω −=  (8)  

where 
ωodo  - rate of turn computed from encoder data  
ωg  - rate of turn measured by the Z-axis gyroscope,  
ωdiff   - discrepancy between the above two rates of 

turn 
A value of ωdiff = 0 represents no slippage or skid. 

In practice, there is always a difference due to the 
noise in the signals and due to the discrete resolution 
of the sensors. ωdiff > 0 means that the encoders did not 
register part of the rotation of the robot. This situation 
is more likely to be found at high rates of turn where 
some skid may occur or the wheels may deform due to 
the high torques applied by the ground. A value of 
ωdiff < 0 is generally associated with slippage, which is 
more likely to occur when the robot is subject to 
sudden rotations, as in the case of high frequency rates 
of turn.  

Figure 16 shows a plot of the rate difference for all 
surfaces as a function of the rate of turn frequency. 
The rate difference was obtained at the points where 
the rate of turn reached the maximum value (positive 
or negative). We can see that for most surfaces some 
skid occurs at the low frequencies (ωdiff > 0) and that 
the robot is more likely to slip at higher rates 
(ωdiff < 0). However, on loose sand the robot slips at 
low and high frequencies – a unique feature that can 
be used to determine when the robot is driving on 
sand. 

5. CONCLUSIONS 
This paper examined different methods for characterizing terrains with regard to trafficability for small mobile robots. 
On skid-steer mobile robots, the proposed methods can be used in real-time, during an actual mission. 

Terrains are characterized by what we call Motor Current vs. Rate of turn (MCR) curves, which are similar to the 
strain-stress curves used in terramechanics. Among the two proposed methods for generating MCR curves we found that 
the Variable Frequency Rate of turn (VFR) method was significantly more suitable for real-time application than the 
alternative Fast Spiral Path (FSP) method. We believe that the VFR data collection method contains sufficient 
information for classifying the five test surfaces, although we did not address classification in this paper. 
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Figure 15: Signal noise level for different surfaces. 

 
Figure 16: Rate of turn difference on different surfaces vs. rate of 
turn frequency. 
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