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Abstract

Experimental evidence pointing to a universal form of interaction
for all nuclear particles is summarized. The form given by Eq. (1) is
discussed. It is found to be satisfactory for H3, He3, He4 considered
together with proton and neutron scattering. In order that heavy nu-
clei should not be too stable it is necessary to require the inequality
(7.2) and in order that there be no very heavy and electrically neutral
nuclei the inequality (7) has to be satisfied. The form of the interac-
tion energy restricted by these conditions is as satisfactory as nuclear
theories postulating different forms for like and unlike particles. The
simplest form, satisfying all present requirements is obtained from Eq.
(1) by letting g1 = g2 = 0.

The interaction between protons and protons which acts in addition
to the Coulombian repulsion is generally supposed to be the same as that
between neutrons and neutrons. The evidence for this lies in the fact2 that
the mass defect of He3 is smaller than that of H3 by approximately the
amount required by the Coulombian repulsion between the protons in He3.
Further strong support for regarding the specific like-particle interaction as
the same for protons and neutrons is found in the close agreement3 of the
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3G. Breit, E. U. Condon and R. D. Present, Phys. Rev. this issue; Fermi and Amaldi,
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values obtained for its magnitude from experiments on the scattering of
protons in hydrogen4 with that derived from the mass defect of H3.

The accuracy of the determination of the like-particle interaction from
the proton-proton scattering experiments is great. Numerical comparison of
its magnitude with that which follows from experiments on the scattering
and recombination of slow neutrons in hydrogen shows that in 1S states the
specific interaction between all nuclear particles are the same to within the
accuracy of present experiments. The equality of the interactions is obtained
independently of what range is used for the spacial extension of the force
within wide limits and is, therefore, probably real rather than accidental.
It thus becomes reasonable to attempt to regard the specific nuclear forces
as the same between all nuclear particles independently of whether they are
neutrons or protons. In the present note the qualitative consequences of this
view are discussed.

In the early development of nuclear theory it was supposed that the
principal interactions within the nucleus take place between neutrons and
protons because by doing so the approximate equality of the number of
neutrons with the number of protons automatically received a simple expla-
nation. According to present evidence, mentioned above, this explanation
does not apply and a new one must be made. This is offered by the exclu-
sion principle which favors the addition of unlike particles analogously to
the way in which the building up of electronic shells in an atom proceeds by
adding electrons with opposite spin directions. In addition it is favorable for
stability to have proton-neutron pairs in symmetrical (S,D,G, . . .) triplet
states because the attraction is then greater than in symmetrical singlet
states. For like particles the exclusion principle rules out the symmetrical
triplet state. This circumstance is important in the building up of the first
shell up to He4.

The universal interaction energy between any pair of heavy elementary
particles will be assumed to be of the form

Vij =
{

(1− g − g1 − g2)PMij + gPHij + g1 · 1 + g2P
S
ij

}
J(rij), (1)

where g, g1, g2 are constants and PM , PH are the Majorana and Heisenberg
exchange operators while PS = PMPH is the operator proposed by Bartlett
which exchanges the spins without affecting the coordinates5. For this in-
teraction

4M. A. Tuve, N. P. Heydenburg and L. R. Hafstad, Phys. Rev. this issue.
5Another formulation of the symmetrical Hamiltonian using a fifth “character” variable

is given by Condon and Cassen in this issue.
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Table I. Two-particle systems.

Even L Odd L

triplets singlets triplets singlets
1S, 3D, . . . 1S, 1D, . . . 3P, 3F, . . . 1P, 1F, . . .

J(r) (1− 2g − 2g2)J(r) (1 + 2g1 + 2g2)J(r) (−1 + 2g + 2g1)J(r)
Absent for equiva- Absent for equiva-
lent like particles lent like particles

the potential energies in different states are as in Table I where L is the
orbital angular momentum in units of ~. Two isolated like particles moving
in each other’s field cannot have different principal quantum numbers and
are in equivalent states if L is evert and the spins are parallel or when L is
odd and the spins are antiparallel. Triplets of even L and singlets of odd L

are thus ruled out by the exclusion principle. In proton-proton scattering
experiments only states with L = 0 matter and, therefore, the effective
interaction energy is that corresponding to 1S namely (1−2g−2g2)J(r). In
the scattering of slow neutrons by hydrogen a similar 1S state is responsible
for the large collision cross section according to Wigner’s hypothesis. Both
sets of scattering experiments thus have to do with (1− 2g− 2g2)J(r) while
J(r) determines the binding energy of the deuteron.

1 Light Nuclei

In H3, He3, He4 like particles are in nearly spacially symmetric states
with respect to each other and the effective interaction potential is thus
again (1 − 2g − 2g2)J(r). This is consistent with the agreement between
the values of the like particle interaction energy as obtained from the mass
defects of the isotopes of hydrogen and helium with that derived from the
scattering of protons in hydrogen. Unlike particles are partly in triplet and
partly in singlet states with respect to each other. However, the space wave
function is nearly symmetric and thus the effective interaction potential
between protons and neutrons is [1 − 1

2(g + g2)]J(r) which is the weighted
mean of the potentials in singlets and triplets with statistical weights 1

4 and
3
4 . In these questions the sum of g + g2 occurs as a whole and one cannot
distinguish between g and g2 separately. The calculations on mass defects
that have been made without using g1, g2 thus apply directly to (1) and are
consistent with it. The way in which this comes about may be seen for H3

as follows. The wave equation is

(T + Σi>jVij)ψ = Eψ,
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where T is the operator representing the sum of kinetic energies of the three
particles. Since ψ is antisymmetric in the neutrons it is of the form

ψ = u((12+), 3)S0((12−), 3) + v((12−), 3)S′((12+), 3),

where the two neutrons are denoted by 1, 2 and a plus suffix indicates that
the function is symmetric in the particles while a minus suffix similarly
indicates antisymmetry. The functions u, v contain only the Cartesian co-
ordinates while the functions S0, S′ contain only the spin coordinates. Con-
sidering the state with total spin angular momentum 1

2 in the z direction
one may use

S0 = 2−
1
2 [(+−+)− (−+ +)],

S′ = 6−
1
2 [(+−+) + (−+ +)− 2(+ +−)],

where the + and − signs correspond to positive and negative orientations
of the spin axis in an arbitrary fixed direction. Each () stands for a product
of spin functions referring to the particles in the order 1, 2, 3. One obtains

(H0 +H ′ − E)

(
u

v

)
= 0, (2)

where

H0 = T +

(
1− 2g − 2g2, 0

0,−1 + 2g1 + 2g2

)
J12 +

(
1− 1

2(g + g2), 0

0, 1− (3/2)(g + g2)

)
(J13 +J23),

(2.1)

H ′ =
(
X,Y

Y,Z

)
, (2.2)

X = (1− 1

2
g − g1 − g2)[J23(PM23 − 1) + J13(PM13 − 1)], (2.3)

Y = 3
1
2 2−1[(gPM13 + g2)J13 − (gPM23 + g2)J23], (2.4)

Z = (1− (3/2)g − g1 − g2)[J23(PM23 − 1) + J13(PM13 − 1)]. (2.5)

Neglecting H ′ one obtains an approximation to ψ,

ψ0 =

(
u

0

)
, (3)

with u defined by

{T + (1− 2g − 2g2)J12 + (1− 1

2
g − 1

2
g2)(J13 + J23)− E}u = 0 (3.1)
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In the approximation of using ψ0 the energy can be calculated without
exchange operators by using (1− 2g − 2g2)J, (1− 1

2g − 1
2g2)J, respectively,

for the potential energies between like and unlike particles. The function
u is symmetric in the neutrons but has, in general, no symmetry property
for interchange of a proton and a neutron. If, however, g + g2 is small
then u becomes symmetric in all three particles. In this case the first-order
perturbation due to H ′ vanishes as is obvious from (2.3). The second-order
perturbation may be estimated as −(ψ0|H ′2|ψ0)/Em where Em is an average
energy of perturbing levels above that of the normal state. According to (2.2)
and (3)

(ψ0|H ′2|ψ0) = (u|X2 + Y 2|u).

The calculation of this matrix element is readily made using (2.3) and (2.4)
and gives for a completely symmetric u

(ψ0|H ′2|ψ0) = (3/2)(g + g2)2

∫
u2(J2

13 − J13J23)dτ1dτ2. (3.2)

Thus the estimate of the second-order perturbation energy depends only
on g + g2 and one may expect the energy to depend on g − g2, g1 only in
a secondary way. Since g + g2 is the only combination of the g’s which
matters for the mass defect of the deuteron and the present proton-proton
and proton-neutron scattering experiments the inclusion of g1 and g2 makes
little practical difference in the comparison of the mass defect of H3, H2,
He3 with the scattering experiments.

Similarly in He4

H0 = T +

(
1− 2g − 2g2, 0

0,−1 + 2g1 + 2g2

)
(J12 + J34)+

+

(
1− 1

2g − 1
2g2, 0

0, 1− (3/2)g − (3/2)g2

)
(J13 + J23 + J14 + J24), (4.0)

H ′ =
(
X,Y

Y,Z

)
(4.1)

X = [J13(PM13 −1)+J14(PM14 −1)+J23(PM23 −1)+J24(PM24 −1)](1−1

2
g−g1−g2),

Y = 3
1
2 2−1[J23(gPM23 +g2)+J14(gPM14 +g2)−J13(gPM13 +g2)−J24(gPM24 +g2)],

(4.2)

Z = (1− (3/2)g − g1 − g2)X/(1− 1

2
g − g1 − g2).
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These equations differ from Eqs. (2.1) to (2.5) essentially only through the
presence of more terms in sums over like and unlike particles. The wave Eq.
(2) is the same in form but now.

S0 = 1
2[(+−+−) + (−+−+)− (+−−+)− (−+ +−),

S′ = 12−
1
2 [2(+ +−−) + 2(−−++)− (+−+−)− (−+−+)−

−(−+ +−)− (+−−+)].

Particles 1 and 2 are alike and so are 3 and 4. With a completely symmetric
u

(ψ0|H ′2|ψ0) = 3(g + g2)2(u|J2
13 + J13J24 − 2J13J23|u). (4.3)

Thus here also only g + g2 enters in the calculation of the normal state.
With wave functions u = exp{−(ν/2)(r2

12 + r2
13 + r2

23)} for H3 and
exp{−(ν/2)(r2

12 + r2
13 + r2

14 + r2
23 + r2

24 + r2
34)} for He4 and with

J(r) = Ae−αr
2

(4.4)

one obtains for H3

(ψ0|H ′2|ψ0) =
3

2
(g + g2)2A2

[(
3ν

3ν + 4α

) 3
2 −

(
ν

ν + α

) 3
3
(

3ν

3ν + α

) 3
2

]
(4.5)

and for He4

(ψ0|H ′2|ψ0) = 3(g + g2)2A2

{(
ν

ν + α

) 3
2

+

(
2ν

2ν + α

)3

− 128ν3

[3(ν + α)2 + 10ν(ν + α) + 3ν2]
3
2

}
. (4.6)

The contributions to (3.2) and (4.3) in the present approximation are due
entirely to Y 2 and thus, according to (2.4) and (4.2) originate in interactions
between unlike particles. They are thus present even if the form of the
interaction is not made to be the same for like and unlike particles. Formulas
(4.5) and (4.6) are then correct provided for A the value corresponding to
the neutron-proton potential in the 3S state is used. The magnitude of the
perturbation can be estimated using the approximation

∆E = −(ψ0|H ′2|ψ − 0)/Em, (4)

where Em is a properly taken mean of the perturbing energy levels. For lack
of better knowledge of the relative importance of different levels one may use
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the binding energy for Em and thus obtain most probably an overestimate
of the absolute value of ∆E. Using the units ~(mM)

1
2 c−1 for length and

mc2 for energy and letting α = 16 the values of ν which minimize (0|H0|0)
are ν ∼ 10 for both H3 and He4. Eq. (5) gives then ∆E ∼ −mc2 for H3 and
−0.4mc2 for He4. It should be noted that these estimates refer only to the
effect of Y and do not represent the total effect of terms in (g + g2)2 in an
expansion of the energy starting from a value corresponding to a symmetric
wave function. Thus if the Hamiltonians

T + (1− g − g2)(J12 + J13 + J23),
T + (1− g − g2)(J12 + J13 + J23 + J24 + J34),

are used respectively for H3 and He4 in order to define unperturbed energy
values and wave functions then the values of (ψ0|H ′2|ψ − 0) given by Eqs.
(4.5) and (4.6) should be multiplied by 2.

Calculations have already been made for Hamiltonians having different
symmetries6. According to these the difference in energy values of H3 cor-
responding to

H = T + J∗23 + J∗13

and H = T + 2
3(J∗13 + J∗13 + J∗23)

is about 2mc2. The quantity 2
3J
∗
12 − 1

3J
∗
23 − 1

3J
∗
13 = H ′′ may be consid-

ered as a perturbation which when applied to the symmetric form gives the
unsymmetric form. For a symmetric initial wave function

(0|H ′′2|0) =
2

3
(0|J∗213 − J∗13J

∗
23|0).

Equating 2mc2 and (0|H ′′2|0)/E′m it is found that E′m ∼ 100mc2. The en-
ergy levels which matter in this connection are those corresponding to pure
singlet states in neutrons while the effect of Y is concerned with perturba-
tions by states in which the neutrons are in a triplet condition. Nevertheless
it is probable that there is a qualitative similarity between Em and E′m Using
Em = E′m the estimate of perturbations due to triplet neutron states in H3

drops to 0.14mc2. It is thus seen that the second-order perturbations which
depend essentially only on (g+ g2)2 are themselves likely to be small. Ordi-
narily the effect of these perturbations is neglected and the calculations are
made using (1− 1

2g)Aπνe−αr2 for the average neutron-proton interaction and

Aννe
−αr2

for the interaction between like particles. The value obtained for

6E. Feenberg and S. S. Share, Phys. Rev. 50, 253 (1936); E. Feenberg, Phys. Rev.
49, 273 (1936).
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Aνν agrees with that from proton-proton scattering experiments and is equal
to (1 − 2g)Aπν . The mass defects of the isotopes of hydrogen and helium
are thus in agreement with the interaction energy (1), but give at present
practically no information about g, g1, g2 except for determining g + g2.

2 Heavy Nuclei

Calculations of any exactness are difficult for heavy nuclei. It is, however,
possible to establish some inequalities which are necessary for stability of
existing nuclei by means of the statistical model. The density matrices for
protons and neutrons will be written ρπ(x, x′) and ρν(x, x′). These functions
are supposed to involve only the space coordinates. For simplicity it will be
supposed that each space state is filled by two like particles having opposite
spin directions. The density matrix contains therefore two identical terms
for each occupied space state. For diagonal elements the abbreviations

ρπ(x) = ρπ(x, x), ρν(x) = ρν(x, x)

will be used.
For the estimates made below the wave function is approximated by a

product of two determinants, one for the neutrons and the other for the
protons. Substitution of such a wave function into the variational integral
gives an upper limit to the energy. The expression thus obtained is

E = T +W ν +W π +W πν (5)

where T is the average value of the kinetic energy operator (a sum of the
kinetic energies of the individual particles). The quantities W represent the
contributions due to (1). The interactions between neutrons give W ν , those
between protons give W π, and those between neutrons and protons give
W πν . It is found that

W ν = (1− 1

2
g− (3/2)g1 − 2g2)Eνex + (1− 1

2
− 1

2
g + (3/2)g1 + g2)Eν , (6.1)

W π = (1− 1

2
g − (3/2)g1 − 2g2)Eπex + (−1

2
− 1

2
g + (3/2)g1 + g2)Eπ, (6.2)

W πν = (2− g − 2g1 − 2g2)Eπνex + (2g1 + g2)Eπν , (6.3)

where

Eαβ =
1

2

∫
ρα(x)J(x− x′)ρβ(x′)dxdx′;
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Eαβex =
1

2

∫
ρα(xx′)J(x− x′)ρβ(x′x)dxdx′, (6.4)

Eαα = Eα; Eααex = Eαex; α, β = µ or ν.

If the density of particles is so high that a large number of them are on
the average within the range of J then the quantities Eex show saturation
while the quantities E are proportional to the square of the number of
particles. This circumstance may lead to instability. Thus consider W ν . If
the coefficient of Eν in it is positive, the nuclear energy can be lowered by
increasing the number of neutrons N . In particular it would be possible
to have nuclei consisting entirely of large numbers of neutrons. For such
nuclei the kinetic energy would be proportional to N5/3r−2

0 where r0 is the
nuclear radius while the potential energy would vary as N2 and would be
independent of r0, if r0 is sufficiently smaller than the range of force. Keeping
r0 constant the kinetic energy varies more slowly with N for high N than the
potential energy and therefore a negative potential energy will lead to infinite
stability for very high N . A positive coefficient of Eν in Eq. (6.1) would
require, therefore, the existence of infinitely heavy nuclei of high stability.
This is contrary to experience and hence7

1 + g ≥ 3g1 + 2g2. (6)

For a nucleus in which the number of neutrons N is equal to the number
of protons Z the density matrices ρν , ρπ may be taken to be equal. Then

W = W πν+2W νν = 4(1− 1

2
g−(5/4)g1−(3/2)g2Eex+(−1−g+5g1 +3g2)E,

(7.1)
where the superscripts π, ν on the E’s are dropped. The trial wave func-
tion can be made to correspond to an r0 smaller than the range of J . By
increasing N and Z simultaneously, the governing term in W becomes that
due to E which varies as N2. The only other term which varies as rapidly
is that due to the Coulomb energy. Since in the present case N = Z the
whole energy expression can be considered as a function of N . In order that
it be impossible to have stable nuclei of this type with very high N and Z

it is necessary to require that the coefficient of N2 in the energy expression
be positive. This condition is

1 + g +
6e2

5r0|J(0)| ≥ 5g1 + 3g2. (7.2)

7Condition (7) is equivalent to requiring that for like particles the interaction be of the
form (a + bPM )J where b ≥ 2a as is clear from the fact that Eq. (1) is equivalent to an
interaction energy (1 − g − g1 − 2g1)PMJ + (g1 − g)J for like particles.’
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The nuclear radius ro must be chosen smaller than the range of nuclear
forces which is of the order e2/mc2. If r0 is made equal to e2mc2 the last
term on the left side of (7.2) is 1/58 for |J(0)| = 70mc2. Since r0 must be
made still somewhat smaller in order to bring about the full activity of J(0)
this term should be considered as somewhat greater than 1/58, say 1/20. It
is nevertheless numerically insignificant. The conditions (7.1) and (7.2) may
be summarized, using the empirical value of g + g2 = 0.2, as

1.2 = 1 + g + g2 ≥ 3(g1 + g2);

1.2 = 1 + g + g2 ≥ 5g1 + 4g2. (7.3)

On these grounds therefore the interaction in triplet states of odd L can
be expected to lie between −0.2J and −J for g + g2 = 0.20 and between
0.1J and −J for g + g2 = 0.25 (provided that g1 + g2 is not negative). It is
these states that matter in the photoelectric disintegration of the deuteron
by high energy γ-rays. For high particle densities with N > Z the value of
the variational integral is

E = t−N(1− 1

2
g−(3/2)g1−2g2)|J(0)|−Z(3−(3/2)g−(7/2)g1−4g2)|J(0)|

+
1

4
(N2 +Z2)(1+g−3g1−2g2)|J(0)|−NZ(g1 +

1

2
g2)|J(0)|+ 3

5

Z2e2

r0
. (7.4)

In order that it be impossible to obtain in this expression contributions
varying quadratically with N and Z for a given ratio N/Z it is necessary to
require that

1 + g ≥ 3g1 + 2g2 +
2NZ

N2 + Z2
(2g1 + g2)− 12

5

Z2

Z2 +N2

e2

r0|J(0)| . (7.5)

For Z = 0 this gives (7) and for Z = N it gives (7.2). Neglecting the
relatively insignificant Coulomb energy all conditions implied by (7.4) are
contained in (7.3). These conditions are obtained above by considering a
higher particle density than that which exists in actual nuclei. This circum-
stance does not normally spoil the argument because the energy is lower
than the value of the variational integral. The above discussion does not
say much about the reaction rate or the values of N and Z at which trans-
formations would occur. It does not make much difference, however, if the
possibility of very heavy neutral nuclei is allowed but instead it is required
that there should be no neutral nuclei of mass 200 having a greater stability
than a collection of equal numbers of protons and neutrons in the form of
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alpha-particles. The kinetic energy is statistically 11.3mc2N5/3(e2/mc2r0)2.
The requirement is then

1+g−3g1−2g2 ≤ − 45e4N−1/2

|J(0)|r2
0mc

2
+

4

N
(1−1

2
g−(3/2)g1−2g2)− 54mc2

N |J(0)| . (7.6)

By using |J(0)| = 70mc2 and r0 = e2/mc2 the right side is −0.09. This
condition differs very little from (7). If instead of requiring a smaller stability
than that corresponding to groups of alpha-particles one requires a smaller
stability than that corresponding to 17mc2 mass defect per particle the
right-hand side of the last inequality is changed only by −0.001. Similarly
if instead of (7.2) it is required that a nucleus with N = Z should not have
a greater stability than that corresponding to a mass defect of 17mc2 per
particle, which corresponds to the stablest nuclei, one obtains

1 + g − 5g1 − 3g2 ≥ − 45e4N−1/2

|J(0)|r2
0mc

2
+

8

N

(
1− 1

2
g − 5

4
g1 − 3

2
g2

)

− 6e2

5r0|J(0)| −
68mc2

N |J(0)| . (7.7)

For nuclei with Z = N = 100 this condition is only slightly weaker than (7.2)
since the right side of the last inequality is −0.09 using the same constants
as previously. The inequality (7.2) is thus also nearly the condition for not
having too much stability in nuclei with ordinary numbers of particles.

Actual heavy nuclei are far from being in a state of high particle den-
sity such as was just used. For Hg200Eν/Eνex can be estimated to be ap-
proximately 4 using the statistical model and r0 = 0.8 × 10−12 cm with
α−1/2 = 2.2 × 10−13 cm. For a very high particle density this ratio would
be N/2 = 60. Eq. (7.4) is thus not a guide for the actual energy depen-
dence. A too large numerical value of a negative coefficient of E in (7.1)
would be harmful to stability but it is impossible to tell without further
calculation whether higher approximations reduce the energy sufficiently to
allow appreciable positive values of 1 + g − 5g1 − 3g2. If g1 = g2 = 0 and if
E/Eex = 4 the potential energy occurring in (7.1) is −6gEex and is positive.
Nevertheless this does not exclude the possibility of a simple theory with
g1 = g2 = 0 because (1) the energy corresponding to an assumed interaction
is lower than the value of the variational integral with an approximate wave
function; (2) Eπ/Eπex is < 4; (3) exact values of E/Eex are hard to obtain
since the uncertain nuclear radius is involved.

In all of the above discussion it was supposed that J(r) has the same
sign throughout and complications arising from a reversal of sign near r = 0
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were not taken up. In proton-proton scattering experiments the kinetic
energy is of the order of 1 Mev while in the nucleus the kinetic energy of
individual particles is of the order of 30 Mev. The kinetic energy inside
the “potential well” representing the interaction of two particles is changed,
however, only from ∼ 20 Mev to ∼ 35 Mev or perhaps ∼ 50 Mev in the
comparison of scattering experiments with conditions inside the nucleus.
This corresponds to a decrease of the wave-length inside the deep part of
the “well” by a factor of about 1.3 which existing that existing heavy roughly
the same features of J(r) come into consideration in existing existing heavy
nuclei as in proton-proton scattering experiments. In the deduction of the
inequalities (7.3), however, the size of the nucleus was taken to be smaller
than that of an actual nucleus and, therefore, the kinetic energy per particle
was increased to a maximum of about (8×10−13/2.8×10−13)2 30 Mev ∼ 200
Mev for N = 100. Since some of the nuclear particles collide while traveling
in opposite directions the relative kinetic energy is changed by a factor of
about 10 in the deep part of the “well” which corresponds to a factor 3 in
the wave-length. A reversal of sign of J within about 1/3 of e2/mc2 will
thus begin to affect the conditions (7.6) and (7.7) without seriously affecting
the scattering experiments and the mass defect calculations of light nuclei.
The conditions (7.3) for infinite N and Z are changed to their opposites for
such a reversal.

Although it appears from the above that there is nothing against consid-
ering the main part of the interaction of nuclear particles as being the same
in form for all particles it is not likely that the interaction law is identical
in all approximations. Spin-orbit interactions and spin-spin interactions in-
volve the magnetic moments which are different for protons and neutrons. In
such, essentially relativistic approximations it appears necessary to consider
the interactions to be different between different kinds of nuclear particles.
It is also unlikely that the Coulombian interaction which already destroys
the symmetry has no more intimate connection with the specific forces than
that given by an additive term in the Hamiltonian.

For the sake of simplicity the same form of J(r) was used in Eq. (1) for
PM , PH , 1, PS . It is obviously possible to use different space functions as
multipliers of these operators. There appears to be at present no call for
such a generalization.

We are very grateful to Professor E. Wigner for discussions of nuclear
stability questions related to the conditions (7).
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