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It is known that Maxwell’s electrodynamicsas usually understood at the
present time-when applied to moving bodies, leads to asymmetries which do
not appear to be inherent in the phenomena. Take, for example, the recip-
rocal electrodynamic action of a magnet and a conductor. The observable
phenomenon here depends only on the relative motion of the conductor and
the magnet, whereas the customary view draws a sharp distinction between
the two cases in which either the one or the other of these bodies is in mo-
tion. For if the magnet is in motion and the conductor at rest, there arises
in the neighbourhood of the magnet an electric field with a certain definite
energy, producing a current at the places where parts of the conductor are
situated. But if the magnet is stationary and the conductor in motion, no
electric field arises in the neighbourhood of the magnet. In the conductor,
however, we find an electromotive force, to which in itself there is no cor-
responding energy, but which gives riseassuming equality of relative-motion
in the two cases discussedto electric currents of the same path and intensity
as those produced by the electric forces in the former case.

Examples of this sort, together with the unsuccessful attempts to dis-
cover any motion of the earth relatively to the “light medium,” suggest that
the phenomena of electrodynamics as well as of mechanics possess no prop-
erties corresponding to the idea of absolute rest. They suggest rather that,
as has already been shown to the first order of small quantities, the same
laws of electrodynamics and optics will be valid for all frames of reference for
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which the equations of mechanics hold good. 1 We will raise this conjecture
(the purport of which will hereafter be called the (“Principle of Relativity”)
to the status of a postulate, and also introduce another postulate, which is
only apparently irreconcilable with the former, namely, that light is always
propagated in empty space with a definite velocity c which is independent
of the state of motion of the emitting body. These two postulates suffice
for the attainment of a simple and consistent theory of the electrodynamics
of moving bodies based on Maxwell’s theory for stationary bodies. The in-
troduction of a “luminiferous ether” will prove to be superfluous inasmuch
as the view here to be developed will not require an “absolutely stationary
space” provided with special properties, nor assign a velocity-vector to a
point of the empty space in which electromagnetic processes take place.

The theory to be developed is based-like all electrodynamics on the
kinematics of the rigid body, since the assertions of any such theory have
to do with the relationships between rigid bodies (systems of co-ordinates),
clocks, and electromagnetic processes. Insufficient consideration of this cir-
cumstance lies at the root of the difficulties which the electrodynamics of
moving bodies at present encounters.

I. KINEMATICAL PART

§1. Definition of Simultaneity

Let us take a system of co-ordinates in which the equations of Newtonian
mechanics hold good. 2 In order to render our presentation more precise
and to distinguish this system of co-ordinates verbally from others which
will be introduced hereafter, we call it the “stationary system.”

If a material point is at rest relatively to this system of co-ordinates,
its position can be defined relatively thereto by the employment of rigid
standards of measurement and the methods of Euclidean geometry, and can
be expressed in Cartesian co-ordinates.

If we wish to describe the motion of a material point, we give the values
of its co-ordinates as functions of the time. Now we must bear carefully in
mind that a mathematical description of this kind has no physical meaning
unless we are quite clear as to what we understand by “time” We have to
take into account that all our judgments in which time plays a part are

1The preceding memoir by Lorentz was not at this time known to the author.
2i.e. to the first approximation.
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always judgments of simultaneous events. If, for instance, I say, “That train
arrives here at 7 o’clock,” I mean something like this: “The pointing of the
small hand of my watch to 7 and the arrival of the train are simultaneous
events.” 3

It might appear possible to overcome all the difficulties attending the
definition of “time” by substituting “the position of the small hand of my
watch” for “time.” And in fact such a definition is satisfactory when we are
concerned with defining a time exclusively for the place where the watch is
located; but it is no longer satisfactory when we have to connect in time
series of events occurring at different places, orwhat comes to the same
thingto evaluate the times of events occurring at places remote from the
watch.

We might, of course, content ourselves with time values determined by an
observer stationed together with the watch at the origin of the co-ordinates,
and co-ordinating the corresponding positions of the hands with light signals,
given out by every event to be timed, and reaching him through empty space.
But this co-ordination has the disadvantage that it is not independent of
the standpoint of the observer with the watch or clock, as we know from
experience. We arrive at a much more practical determination along the
following line of thought.

If at the point A of space there is a clock, an observer at A can determine
the time values of events in the immediate proximity of A by finding the
positions of the hands which are simultaneous with these events. If there is
at the point B of space another clock in all respects resembling the one at
A, it is possible for an observer at B to determine the time values of events
in the immediate neighbourhood of B. But it is not possible without further
assumption to compare, in respect of time, an event at A with an event at
B. We have so far defined only an “A time” and a “B time.” We have not
defined a common “time” for A and B, for the latter cannot be defined at all
unless we establish by definition that the “time’ required by light to travel
from A to B equals the “time” it requires to travel from B to A. Let a ray
of light start at the “A time” tA from A towards B, let it at the “B time”
to be reflected at B in the direction of A, and arrive again at A at the “A
time” t′B

In accordance with definition the two clocks synchronize if

tB − tA = t′A − tB .

3We shall not here discuss the inexactitude which lurks in the concept of simultaneity of
two events at approximately the same place, which can only be removed by an abstraction.
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We assume that this definition of synchronism is free from contradictions,
and possible for any number of points; and that the following relations are
universally valid: -

1. If the clock at B synchronizes with the clock at A, the clock at A
synchronizes with the clock at B.

2. If the clock at A synchronizes with the clock at B and also with the
clock at C, the clocks at B and C also synchronize with each other.

Thus with the help of certain imaginary physical experiments we have
settled what is to be understood by synchronous stationary clocks located at
different places, and have evidently obtained a definition of “simultaneous,”
or “synchronous,” and of “time.” The “time” of an event is that which is
given simultaneously with the event by a stationary clock located at the
place of the event, this clock being synchronous, and indeed synchronous for
all time determinations, with a specified stationary clock.

In agreement with experience we further assume the quantity

2AB

t′A − tA
= c

to be a universal constantthe velocity of light in empty space.
It is essential to have time defined by means of stationary clocks in

the stationary system, and the time now defined being appropriate to the
stationary system we call it “the time of the stationary system.”

§ 2. On the Relativity of Lengths and Times

The following reflexions are based on the principle of relativity and on the
principle of the constancy of the velocity of light. These two principles we
define as follows: -

1. The laws by which the states of physical systems undergo change are
not affected, whether these changes of state be referred to the one or the
other of two systems of coordinates in uniform translatory motion.

2. Any ray of light moves in the “stationary” system of co-ordinates
with the determined velocity c, whether the ray be emitted by a stationary
or by a moving body. Hence

velocity =
light path

time interval

where time interval is to be taken in the sense of the definition in §1.
Let there be given a stationary rigid rod; and let its length be l as

measured by a measuring-rod which is also stationary. We now imagine
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the axis of the rod lying along the axis of x of the stationary system of
co-ordinates, and that a uniform motion of parallel translation with velocity
v along the axis of x in the direction of increasing x is then imparted to the
rod. We now inquire as to the length of the moving rod, and imagine its
length to be ascertained by the following two operations : -

(a) The observer moves together with the given measuring-rod and the
rod to be measured, and measures the length of the rod directly by su-
perposing the measuring-rod, in just the same way as if all three were at
rest.

(b) By means of stationary clocks set up in the stationary system and
synchronizing in accordance with §1, the observer ascertains at what points
of the stationary system the two ends of the rod to be measured are located
at a definite time. The distance between these two points, measured by
the measuring-rod already employed, which in this case is at rest, is also a
length which may be designated “the length of the rod.”

In accordance with the principle of relativity the length to be discovered
by the operation (a) - we will call it “the length of the rod in the moving
system” - must be equal to the length l of the stationary rod.

The length to be discovered by the operation (b) we will call “the length
of the (moving) rod in the stationary system.” This we shall determine on
the basis of our two principles, and we shall find that it differs from l.

Current kinematics tacitly assumes that the lengths determined by these
two operations are precisely equal, or in other words, that a moving rigid
body at the epoch t may in geometrical respects be perfectly represented by
the same body at rest in a definite position.

We imagine further that at the two ends A and B of the rod, clocks are
placed which synchronize with the clocks of the stationary system, that is
to say that their indications correspond at any instant to the “time of the
stationary system” at the places where they happen to be. These clocks are
therefore “synchronous in the stationary system.”

We imagine further that with each clock there is a moving observer, and
that these observers apply to both clocks the criterion established in §1 for
the synchronization of two clocks. Let a ray of light depart from A at the
time 4 tA let it be reflected at B at the time tB and reach A again at the time
t′A. Taking into consideration the principle of the constancy of the velocity
of light we find that

tB − tA =
τAB
c− v and t′A − tB =

τAB
c+ v

4‘Time” here denotes “time of the stationary system” and also “position of hands of
the moving clock situated at the place under discussion.”
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where τAB denotes the length of the moving rodmeasured in the stationary
system. Observers moving with the moving rod would thus find that the
two clocks were not synchronous, while observers in the stationary system
would declare the clocks to be synchronous.

So we see that we cannot attach any absolute signification to the concept
of simultaneity, but that two events which, viewed from a system of co-
ordinates, are simultaneous, can no longer be looked upon as simultaneous
events when envisaged from a system which is in motion relatively to that
system.

§ 3. Theory of the Transformation of Co-ordinates
and Times from a Stationary System to another
System in Uniform Motion of Translation Relatively
to the Former

Let us in “stationary” space take two systems of co-ordinates, i.e. two
systems, each of three rigid material lines, perpendicular to one another,
and issuing from a point. Let the axes of X of the two systems coincide,
and their axes of Y and Z respectively be parallel. Let each system be
provided with a rigid measuring-rod and a number of clocks, and let the
two measuring-rods, and likewise all the clocks of the two systems, be in all
respects alike.

Now to the origin of one of the two systems (k) let a constant velocity
v be imparted in the direction of the increasing x of the other stationary
system (K), and let this velocity be communicated to the axes of the co-
ordinates, the relevant measuring-rod, and the clocks. To any time of the
stationary system K there then will correspond a definite position of the
axes of the moving system, and from reasons of symmetry we are entitled
to assume that the motion of k may be such that the axes of the moving
system are at the time t (this “t” always denotes a time of the stationary
system) parallel to the axes of the stationary system.

We now imagine space to be measured from the stationary system K by
means of the stationary measuring-rod, and also from the moving system k

by means of the measuring-rod moving with it; and that we thus obtain the
co-ordinates x, y, z, and ξ, η, ζ respectively. Further, let the time t of the
stationary system be determined for all points thereof at which there are
clocks by means of light signals in the manner indicated in § 1; similarly
let the time τ of the moving system be determined for all points of the
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moving system at which there are clocks at rest relatively to that system
by applying the method, given in §1, of light signals between the points at
which the latter clocks are located.

To any system of values x, y, z, t, which completely defines the place and
time of an event in the stationary system, there belongs a system of values
ξ, η, ζ, τ, determining that event relatively to the system k, and our task is
now to find the system of equations connecting these quantities.

In the first place it is clear that the equations must be linear on account
of the properties of homogeneity which we attribute to space and time.

If we place x′ = x − vt, it is clear that a point at rest in the system k

must have a system of values x′, y, z, independent of time. We first define
τ as a function of x′, y, z, and t. To do this we have to express in equations
that τ is nothing else than the summary of the data of clocks at rest in
system k, which have been synchronized according to the rule given in §1.

From the origin of system k let a ray be emitted at the time τ0 along the
X–axis to x′, and at the time τ1 be reflected thence to the origin of the co-
ordinates, arriving there at the time τ2; we then must have 1/2 (τ0+τ2) = τ1,

or, by inserting the arguments of the function τ and applying the principle
of the constancy of the velocity of light in the stationary system : -

1

2

[
τ (0, 0, 0, t) + τ

(
0, 0, 0, t+

x′

c− v +
x′

c+ v

)]
= τ

(
x′, 0, 0, t+

x′

c− v
)
.

Hence, if x′ be chosen infinitesimally small,

1

2

(
1

c− v +
1

c+ v

)
∂τ

∂t
=

∂τ

∂x′
+

1

c− v
∂τ

∂t
,

or
∂τ

∂x′
+

v

c2 − v2

∂τ

∂t
= 0.

It is to be noted that instead of the origin of the co-ordinates we might
have chosen any other point for the point of origin of the ray, and the
equation just obtained is therefore valid for all values of x, y, z.

An analogous considerationapplied to the axes of Y and Z - it being
borne in mind that light is always propagated along these axes, when viewed
from the stationary system, with the velocity

√
(c2 − v2), gives us

∂τ

∂y
= 0,

∂τ

∂z
= 0.

Since τ is a linear function, it follows from these equations that

τ = a

(
t− v

c2 − v2
x′
)
,
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where a is a function φ(v) at present unknown, and where for brevity it is
assumed that at the origin of k, τ = 0, when t = 0.

With the help of this result we easily determine the quantities ξ, η, ζ by
expressing in equations that light (as required by the principle of the con-
stancy of the velocity of light, in combination with the principle of relativity)
is also propagated with velocity c when measured in the moving system. For
a ray of light emitted at the time τ = 0 in the direction of the increasing ξ

ξ = cτ, or ξ = ac

(
t− v

c2 − v2
x′
)

But the ray moves relatively to the initial point of k, when measured in the
stationary system, with the velocity c− v, so that

x′

c− v = t.

If we insert this value of t in the equation for ξ, we obtain

ξ = a
c2

c2 − v2
x′.

In an analogous manner we find, by considering rays moving along the two
other axes, that

η = cτ = ac

(
t− v

c2 − v2
x′
)
,

when
y√

c2 − v2
= t, x′ = 0;

Thus
η = a

c√
c2 − v2

y and ξ = a
c√

c2 − v2
z.

Substituting for x′ its value, we obtain

τ = φ(v)β
(
t− vx/c2

)
,

ξ = φ(v)β (x− vt) ,
η = φ(v) y,

ξ = φ(v) z,

where

β =
1√

1− (v/c)2
,
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and φ is an as yet unknown function of v. If no assumption whatever be
made as to the initial position of the moving system and as to the zero
point of τ, an additive constant is to be placed on the right side of each of
these equations.

We now have to prove that any ray of light, measured in the moving
system, is propagated with the velocity c, if, as we have assumed, this is the
case in the stationary system; for we have not as yet furnished the proof
that the principle of the constancy of the velocity of light is compatible with
the principle of relativity.

At the time t = τ = 0, when the origin of the co-ordinates is common to
the two systems, let a spherical wave be emitted therefrom, and be propa-
gated with the velocity c in system K. If (x, y, z) be a point just attained
by this wave, then

x2 + y2 + z2 = c2t2.

Transforming this equation with the aid of our equations of transforma-
tion we obtain after a simple calculation

ξ2 + η2 + ζ2 = c2τ2.

The wave under consideration is therefore no less a spherical wave with
velocity of propagation c when viewed in the moving system. This shows
that our two fundamental principles are compatible. 5

In the equations of transformation which have been developed there en-
ters an unknown function φ of v, which we will now determine.

For this purpose we introduce a third system of co-ordinates K ′, which
relatively to the system K is in a state of parallel translatory motion parallel
to the axis of X, such that the origin of co-ordinates of system k moves with
velocity – v on the axis of X. At the time t = 0 let all three origins coincide,
and when t = x = y = z = 0 the time t′ of the system K ′ be zero. We
call the co-ordinates, measured in the system K ′, x′, y′, z′, and by a twofold
application of our equations of transformation we obtain

t′ = φ (−v)β (−v) (τ + vξ/c2) = φ(v)φ(−v)t,

x′ = φ(−v)β(−v)(ξ + vτ) = φ(v)φ(−v)x,

y′ = φ(−v)η = φ(v)φ(−v)y,

5The equations of the Lorentz transformation may be more simply deduced directly
from the condition that in virtue of those equations the relation x2 + y2 + z2 = c2t2 shall
have as its consequence the second relation ξ2 + η2 + ζ2 = c2τ2.
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z′ = φ(−v)ζ = φ(v)φ(−v)z.

Since the relations between x′, y′, z′, and x, y, z do not contain the time t,
the systems K and K ′ are at rest with respect to one another, and it is clear
that the transformation from K to K ′ must be the identical transformation.
Thus

φ(v)φ(−v) = 1.

We now inquire into the signification of φ(v). We give our attention to
that part of the axis of Y of system k which lies between ξ = 0, η =
0, ζ = 0 and ξ = 0, η = l, ζ = 0. This part of the axis of Y is a rod
moving perpendicularly to its axis with velocity v relatively to system K.

Its ends possess in K the co-ordinates

x1 = vt, y1 =
l

φ(v)
, z1 = 0

and
x2 = vt, y2 = 0, z2 = 0.

The length of the rod measured in K is therefore l/φ(v); and this gives
us the meaning of the function φ(v). From reasons of symmetry it is now
evident that the length of a given rod moving perpendicularly to its axis,
measured in the stationary system, must depend only on the velocity and
not on the direction and the sense of the motion. The length of the moving
rod measured in the stationary system does not change, therefore, if v and
– v are interchanged. Hence follows that l/φ(v) = l/φ(−v),, or

φ(v) = φ(−v).

It follows from this relation and the one previously found that φ(v) = 1, so
that the transformation equations which have been found become

τ = β
(
t− vx/c2

)
,

ξ = β (x− vt) ,
η = y, ζ = z,

where
β = 1/

√
1− (v/c)2.
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§ 4. Physical Meaning of the Equations Obtained
in Respect to Moving Rigid Bodies and Moving
Clocks

We envisage a rigid sphere 6 of radius R, at rest relatively to the moving
system k, and with its centre at the origin of co-ordinates of k. The equation
of the surface of this sphere moving relatively to the system K with velocity
v is

ξ2 + η2 + ζ2 = R2.

The equation of this surface expressed in x, y, z at the time t = 0 is

x2

(
√

1− (v/c)2)2
+ y2 + z2 = R2.

A rigid body which, measured in a state of rest, has the form of a sphere,
therefore has in a state of motionviewed from the stationary systemthe form
of an ellipsoid of revolution with the axes

R
√

(1− v2/c2), R, R.

Thus, whereas the Y and Z dimensions of the sphere (and therefore of
every rigid body of no matter what form) do not appear modified by the
motion, the X dimension appears shortened in the ratio 1 :

√
1− v2/c2),

i.e. the greater the value of v, the greater the shortening. For v = c all
moving objects-viewed from the “stationary” system-shrivel up into plain
figures. For velocities greater than that of light our deliberations become
meaningless; we shall, however, find in what follows, that the velocity of
light in our theory plays the part, physically, of an infinitely great velocity.

It is clear that the same results hold good of bodies at rest in the sta-
tionary” system, viewed from a system in uniform motion.

Further, we imagine one of the clocks which are qualified to mark the
time t when at rest relatively to the stationary system, and the time τ when
at rest relatively to the moving system, to be located at the origin of the
co-ordinates of k, and so adjusted that it marks the time τ . What is the
rate of this clock, when viewed from the stationary system?

Between the quantities x, t, and τ , which refer to the position of the
clock, we have, evidently, x = vt and

τ =
1√

1− (v/c)2

(
t− vx/c2

)
6That is, a body possessing spherical form when examined at rest.
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Therefore,

τ = t
√

1− (v/c)2 = t−
(

1−
√

1− (v/c)2

)
t,

whence it follows that the time marked by the clock (viewed in the station-
ary system) is slow by 1 −√(1− v2/c2) seconds per. second, orneglecting
magnitudes of fourth and higher order–by 1/2 v

2/c2.
From this there ensues the following peculiar consequence. If at the

points A and B of K there are stationary clocks which, viewed in the sta-
tionary system, are synchronous ; and if the clock at A is moved with the
velocity v along the line AB to B, then on its arrival at B the two clocks
no longer synchronize, but the clock moved from A to B lags behind the
other which has remained at B by 1/2tv2/c2 (up to magnitudes of fourth
and higher order), t being the time occupied in the journey from A to B.

It is at once apparent that this result still holds good if the clock moves
from A to B in any polygonal line, and also when the points A and B

coincide.
If we assume that the result proved for a polygonal line is also valid for a

continuously curved line, we arrive at this result: If one of two synchronous
clocks at A is moved in a closed curve with constant velocity until it returns
to A, the journey lasting t seconds, then by the clock which has remained
at rest the travelled clock on its arrival at A will be 1/2tv2/c2 second slow.
Thence we conclude that a balance-clock 7 at the equator must go more
slowly, by a very small amount, than a precisely similar clock situated at
one of the poles under otherwise identical conditions.

§ 5. The Composition of Velocities

In the system k moving along the axis of X of the system K with velocity
v, let a point move in accordance with the equations

ξ = wξτ, η = wητ, ζ = 0,

where wξ and wη, denote constants.
Required: the motion of the point relatively to the system K. If with

the help of the equations of transformation developed in §3 we introduce the
quantities x, y, z, t into the equations of motion of the point, we obtain

x =
wξ + v

1 + vwξ/c2
t,

7Not a pendulum-clock, which is physically a system to which the Earth belongs. This
case had to he excluded.
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y =

√
1− (v/c)2

1 + vwξ/c2
wη t,

z = 0.

Thus the law of the parallelogram of velocities is valid according to our
theory only to a first approximation. We set

V 2 =

(
dx

dt

)2

+

(
dy

dt

)2

,

w2 = w2
ξ + w2

η,

α = tan−1wy/wx,

α is then to be looked upon as the angle between the velocities v and w.

After a simple calculation we obtain

V =

√
[(v2 + w2 + 2vw cosα)− (vw sinα/c2)2]

1 + vw cosα/c2
.

It is worthy of remark that v and w enter into the expression for the
resultant velocity in a symmetrical manner. If w also has the direction of
the axis of X, we get

V =
v + w

1 + vw/c2.

It follows from this equation that from a composition of two velocities
which are less than c, there always results a velocity less than c. For if we
set v = c− κ, w = c− λ, κ and λ being positive and less than c, then

V = c
2c− κ− λ

2c− κ− λ+ κλ/c
< V.

It follows, further, that the velocity of light c cannot be altered by com-
position with a velocity less than that of light. For this case we obtain

V =
c+ w

1 + w/c
= c.

We might also have obtained the formula for V, for the case when v and w

have the same direction, by compounding two transformations in accordance
with §3. If in addition to the systems K and k figuring in §3 we introduce
still another system of co-ordinates k′ moving parallel to k, its initial point
moving on the axis of X with the velocity w, we obtain equations between
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the quantities x, y, z, t and the corresponding quantities of k′, which differ
from the equations found in §3 only in that the place of “v” is taken by the
quantity

v + w

1 + cw/c2
;

from which we see that such parallel transformationsnecessarilyform a group.
We have now deduced the requisite laws of the theory of kinematics cor-

responding to our two principles, and we proceed to show their application
to electrodynamics.

II. ELECTRODYNAMICAL PART

§6. Transformation of the Maxwell-Hertz Equa-
tions for Empty Space. On the Nature of the Elec-
tromotive Forces Occurring in a Magnetic Field Dur-
ing Motion

Let the Maxwell-Hertz equations for empty space hold good for the station-
ary system K, so that we have

1

c

∂X

∂t
=
∂N

∂y
− ∂M

∂z
,

1

c

∂L

∂t
=
∂Y

∂z
− ∂Z

∂y
,

1

c

∂Y

∂t
=
∂L

∂z
− ∂N

∂x
,

1

c

∂M

∂t
=
∂Z

∂x
− ∂X

∂z
,

1

c

∂Z

∂t
=
∂M

∂x
− ∂L

∂y
,

1

c

∂N

∂t
=
∂X

∂y
− ∂Y

∂x
.

where (X,Y, Z) denotes the vector of the electric force, and (L,M,N) that
of the magnetic force.

If we apply to these equations the transformation developed in §3, by
referring the electromagnetic processes to the system of co-ordinates there
introduced, moving with the velocity v, we obtain the equations

1

c

∂X

∂τ
=

∂

∂η

{
β

(
N − v

c
Y

)}
− ∂

∂ζ

{
β

(
M +

v

c

)
Y

}
,

1

c

∂

∂τ

{
β

(
Y − v

c
N

)}
=
∂L

∂ξ
− ∂

∂ζ

{
β

(
N − v

c
Z

)}
.
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1

c

∂

∂τ

{
β

(
Z − v

c
M

)}
=

∂

∂ξ

{
β

(
M − v

c
Z

)}
− ∂L

∂η
,

1

c

∂L

∂τ
=

∂

∂ζ

{
β

(
Y − v

c
N

)}
− ∂

∂η

{
β

(
Z +

v

c
M

)}
,

1

c

∂

∂τ

{
β

(
M +

v

c
Z

)}
=

∂

∂ξ

{
β

(
Z +

v

c
M

)}
− ∂X

∂ζ
,

1

c

∂

∂τ

{
β

(
N − v

c
Y

)}
=
∂X

∂η
− ∂

∂ξ

{
β

(
Y − v

c
N

)}
,

where
β = 1/

√
(1− v2/c2).

Now the principle of relativity requires that if the Maxwell-Hertz equa-
tions for empty space hold good in system K, they also hold good in system
k; that is to say that the vectors of the electric and the magnetic force –
(X ′, Y ′, Z ′) and (L′,M ′, N ′) - of the moving system k, which are defined
by their ponderomotive effects on electric or magnetic masses respectively,
satisfy the following equations: -

1

c

∂X ′

∂τ
=
∂N ′

∂η
− ∂M ′

∂ζ
,

1

c

∂L′

∂τ
=
∂Y ′

∂ζ
− ∂Z ′

∂η
,

1

c

∂Y ′

∂τ
=
∂L′

∂ζ
− ∂N ′

∂ξ
,

1

c

∂M ′

∂τ
=
∂Z ′

∂ξ
− ∂X ′

∂ζ
,

1

c

∂Z ′

∂τ
=
∂M ′

∂ξ
− ∂L′

∂η
,

1

c

∂N ′

∂τ
=
∂X ′

∂η
− ∂Y ′

∂ξ
.

Evidently the two systems of equations found for system must express
exactly the same thing, since both systems of equations are equivalent to
the Maxwell-Hertz equations for system K. Since, further, the equations of
the two systems agree, with the exception of the symbols for the vectors,
it follows that the functions occurring in the systems of equations at corre-
sponding places must agree, with the exception of a factor ψ(v), which is
common for all functions of the the system of equations, and is independent
of ξ, η, ζ and τ it depends upon v. Thus we have the relations

X ′ = ψ(v) X, L′ = ψ(v) L,
Y ′ = ψ(v)β

(
Y − v

c N
)
, M ′ = ψ(v)β

(
M + v

c Z
)
,

Z ′ = ψ(v)β
(
Z + v

c M
)
, N ′ = ψ(v)β

(
N − v

c Y
)
.

If we now form the reciprocal of this system of equations, mostly by
solving the equations just obtained, and secondly applying the equations
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to the inverse transformation (from to K), which is characterized by the
velocity – v, it follows, when we consider that the two systems of equations
thus obtained must be identical, that ψ(v)ψ(−v) = 1. Further, from reasons
of symmetry 8 ψ(v) = ψ(−v), and therefore

ψ(v) = 1,

and our equations assume the form

X ′ = X, L′ = L,

Y ′ = β
(
Y − v

cN
)
, M ′ = β

(
M + v

cZ
)
,

Z ′ = β
(
Z + v

cM
)
, N ′ = β

(
N − v

cY
)
.

As to the interpretation of these equations we make the following remarks:
Let a point charge of electricity have the magnitude “one” when measured
in the stationary system K, i.e. let it when at rest in the stationary system
exert a force of one dyne upon an equal quantity of electricity at a distance
of one cm. By the principle of relativity this electric charge is also of the
magnitude “one” when measured in the moving system. If this quantity of
electricity is at rest relatively to the stationary system, then by definition
the vector (X,Y, Z) is equal to the force acting upon it. If the quantity of
electricity is at rest relatively to the moving system (at least at the relevant
instant), then the force acting upon it, measured in the moving system, is
equal to the vector (X ′, Y ′, Z ′). Consequently the first three equations above
allow themselves to be clothed in words in the two following ways: -

1. If a unit electric point charge is in motion in an electromagnetic field,
there acts upon it, in addition to the electric force, an “electromotive force”
which, if we neglect the terms multiplied by the second and higher powers
of v/c, is equal to the vector-product of the velocity of the charge and the
magnetic force, divided by the velocity of light. (Old manner of expression.)

2. If a unit electric point charge is in motion in an electromagnetic field,
the force acting upon it is equal to the electric force which is present at the
locality of the charge, and which we ascertain by transformation of the field
to a system of co-ordinates at rest relatively to the electrical charge. (New
manner of expression.)

The analogy holds with “magnetomotive forces.” We see that electro-
motive force plays in the developed theory merely the part of an auxiliary
concept, which owes its introduction to the circumstance that electric and

8If, for example, X = Y = Z = L = M = 0,, and N 6= 0, then from ons of symmetry it
is clear that when v changes sign without changing numerical value, Y ′ must also change
sign without changing its numerical???
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magnetic forces do not exist independently of the state of motion of the
system of co-ordinates.

Furthermore it is clear that the asymmetry mentioned in the introduction
as arising when we consider the currents produced by the relative motion of
a magnet and a conductor, now disappears. Moreover, questions as to the
“seat” of electrodynamic electromotive forces (unipolar machines) now have
no point.

§7. Theory of Doppler’s Principle and of Aberra-
tion

In the system K, very far from the origin of co-ordinates, let there be a source
of electrodynamic waves, which in a part of space containing the origin of
co-ordinates may be represented to a sufficient degree of approximation by
the equations

X = X0 sin Φ, L = L0 sin Φ,

Y = Y0 sin Φ, M = M0 sin Φ,

Z = Z0 sin Φ, N = N0 sin Φ,

where

Φ = ω

{
t− 1

c
(lx+my + nz)

}
.

Here (X0, Y0, Z0) and (L0,M0, N0) are the vectors defining the amplitude
of the wave-train, and l,m, n the direction-cosines of the wave-normals. We
wish to know the constitution of these waves, when they are examined by
an observer at rest in the moving system k.

Applying the equations of transformation found in §6 for electric and
magnetic forces, and those found in §3 for the co-ordinates and the time, we
obtain directly

X ′ = X0 sin Φ′, L′ = L0 sin Φ′,
Y ′ = β (Y0 − vN0/c) sin Φ′, M ′ = β (M0 + vZ0/c) sin Φ′,
Z ′ = β (Z0 + vM0/c) sin Φ′, N ′ = β (N0 − vY0/c) sin Φ′,

Φ′ = ω′
{
τ − 1

c
(l′ξ +m′η + n′ζ)

}
where

ω′ = ωβ(1− lv/c),
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l′ =
l − v/c
1− lv/c ,

m′ =
m

β(1− lv/c) ,

n′ =
n

β(1− lv/c) .

From the equation for ω′ it follows that if an observer is moving with
velocity v relatively to an infinitely distant source of light of frequency ν,
in such a way that the connecting line “sourceobserver” makes the angle
(φ) with the velocity of the observer referred to a system of co-ordinates
which is at rest relatively to the source of light, the frequency ν ′ of the light
perceived by the observer is given by the equation

ν ′ = ν
1− cosφ · v/c√

(1− v2/c2)

This is Doppler’s principle for any velocities whatever. When φ = 0 the
equation assumes the perspicuous form

ν ′ = ν

√
1− v/c
1 + v/c

.

We see that, in contrast with the customary view, when v = −c, ν ′ =∞.
If we call the angle between the wave-normal (direction of the ray) in the

moving system and the connecting line “sourceobserver” φ′, the equation for
l′ assumes the form

cosφ′ =
cosφ− v/c

1− cosφ · v/c .

This equation expresses the law of aberration in its most general form. If
φ = 1/2π, the equation becomes simply

cosφ′ = −v.̧

We still have to find the amplitude of the waves, as it appears in the
moving system. If we call the amplitude of the electric or magnetic force A
or A′ respectively, accordingly as it is measured in the stationary system or
in the moving system, we obtain

A′2 = A2 (1− cosφ · v/c)2

1− v2/c2

18



which equation, if φ = 0, simplifies into

A′2 = A2 1− v/c
1 + v/c

.

It follows from these results that to an observer approaching a source of
light with the velocity c, this source of light must appear of infinite intensity.

§8. Transformation of the Energy of Light Rays.
Theory of the Pressure of Radiation Exerted on
Perfect Reflectors

Since A2/8π equals the energy of light per unit of volume, we have to regard
A′2/8π, by the principle of relativity, as the energy of light in the moving
system. Thus A′2/A2 would be the ratio of the “measured in motion” to the
“measured at rest” energy of a given light complex, if the volume of a light
complex were the same, whether measured in K or in k. But this is not the
case. If l,m, n are the direction-cosines of the wave-normals of the light in
the stationary system, no energy passes through the surface elements of a
spherical surface moving with the velocity of light: –

(x− lct)2 + (y −mct)2 + (z − nct)2 = R2.

We may therefore say that this surface permanently encloses the same light
complex. We inquire as to the quantity of energy enclosed by this surface,
viewed in system k, that is, as to the energy of the light complex relatively
to the system k.

The spherical surfaceviewed in the moving systemis an ellipsoidal surface,
the equation for which, at the time τ = 0, is

(βξ − lβξv/c)2 + (η −mβξv/c)2 + (ζ − nβξv/c)2 = R2.

If S is the volume of the sphere, and S′ that of this ellipsoid, then by a
simple calculation

S′

S
=

√
1− v2/c2

1− cosφ · v/c .

Thus, if we call the light energy enclosed by this surface E when it is mea-
sured in the stationary system, and E′ when measured in the moving system,
we obtain

E′

E
=
A′2S′

A2S
=

1− cosφ · v/c√
(1− v2/c2)

,
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and this formula, when φ = 0, simplifies into

E′

E
=

√
1− v/c
1 + v/c

.

It is remarkable that the energy and the frequency of a light complex
vary with the state of motion of the observer in accordance with the same
law.

Now let the co-ordinate plane ξ = 0 be a perfectly reflecting surface,
at which the plane waves considered in §7 are reflected. We seek for the
pressure of light exerted on the reflecting surface, and for the direction,
frequency, and intensity of the light after reflexion.

Let the incidental light be defined by the quantities A, cosφ, ν (referred
to system K). Viewed from k the corresponding quantities are

A′ = A
1− cosφ · v/c√

(1− v2/c2)
,

cosφ′ =
cosφ− v/c

1− cosφ · v/c ,

ν ′ = ν
1− cosφ · v/c√

1− v2/c2)
.

For the reflected light, referring the process to system k, we obtain

A′′ = A′

cosφ′′ = − cosφ′

ν ′′ = ν ′

Finally, by transforming back to the stationary system K, we obtain for the
reflected light

A′′′ = A′′
1 + cosφ′′ · v/c√

(1− v2/c2)
= A

1− 2 cosφ · v/c+ v2/c2

1− v2/c2
,

cosφ′′′ =
cosφ′′ + v/c

1 + cosφ′′ · v/c = −(1 + v2/c2) cosφ− 2v/c

1− 2 cosφ · v/c+ v2/c2

ν ′′′ = ν ′′
1 + cosφ′′v/c√

(1− v2/c2)
= ν

1− 2 cosφ · v/c+ v2/c2

1− v2/c2
.

The energy (measured in the stationary system) which is incident upon unit
area of the mirror in unit time is evidently A2(c cosφ− v)/8π. The energy
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leaving the unit of surface of the mirror in the unit of time is A′′′2(−c cosφ′′′+
v)/8π. The difference of these two expressions is, by the principle of energy,
the work done by the pressure of light in the unit of time. If we set down
this work as equal to the product Pv, where P is the pressure of light, we
obtain

P = 2 · A
2

8π

(cosφ− v/c)2

1− v2/c2
.

In agreement with experiment and with other theories, we obtain to a first
approximation

P = 2 · A
2

8π
cos2 φ.

All problems in the optics of moving bodies can be solved by the method
here employed. What is essential is, that the electric and magnetic force of
the light which is influenced by a moving body, be transformed into a system
of co-ordinates at rest relatively to the body. By this means all problems in
the optics of moving bodies will be reduced to a series of problems in the
optics of stationary bodies.

§9. Transformation of the Maxwell-Hertz Equa-
tions when Convection–Currents are Taken into Ac-
count

We start from the equations

1

c

{
uxρ+

∂X

∂t

}
=
∂N

∂y
− ∂M

∂z
,

1

c

∂L

∂t
=
∂Y

∂z
− ∂Z

∂y
,

1

c

{
uyρ+

∂Y

∂t

}
=
∂L

∂z
− ∂M

∂x
,

1

c

∂M

∂t
=
∂Z

∂x
− ∂X

∂z
,

1

c

{
uzρ+

∂Z

∂t

}
=
∂M

∂x
− ∂L

∂y
,

1

c

∂N

∂t
=
∂X

∂y
− ∂Y

∂x
,

where

ρ =
∂X

∂x
+
∂Y

∂y
+
∂Z

∂z

denotes 4π times the density of electricity, and (ux, uy, uz) the velocity-
vector of the charge. If we imagine the electric charges to be invariably
coupled to small rigid bodies (ions, electrons), these equations are the elec-
tromagnetic basis of the Lorentzian electrodynamics and optics of moving
bodies.
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Let these equations be valid in the system K, and transform them, with
the assistance of the equations of transformation given in §§3 and 6, to the
system k. We then obtain the equations

1

c

{
uξρ
′ +

∂X ′

∂τ

}
=
∂N ′

∂η
− ∂M

∂ξ
,

1

c

∂L′

∂τ
=
∂Y ′

∂ζ
− ∂Z ′

∂η
,

1

c

{
uηρ
′ +

∂Y ′

∂τ

}
=
∂L

∂ζ
− ∂N ′

∂ξ
,

1

c

∂M ′

∂τ
=
∂Z ′

∂ξ
− ∂X ′

∂ζ
,

1

c

{
uξρ
′ +

∂Z ′

∂τ

}
=
∂M ′

∂ξ
− ∂L′

∂η
,

1

c

∂N ′

∂τ
=
∂X ′

∂η
− ∂Y ′

∂ξ
,

where

uξ =
ux − v

1− uxv/c2

uη =
uy

β(1− uxv/c2)

uζ =
uz

β(1− uxv/c2)
,

and

ρ′ =
∂X ′

∂ξ
+
∂Y ′

∂η
+
∂Z ′

∂ζ
= β (1− uxv/c2) ρ.

Sinceas follows from the theorem of addition of velocities (§5)the vector
(uξ, uη, uζ) is nothing else than the velocity of the electric charge, measured
in the system k, we have the proof that, on the basis of our kinematical
principles, the electrodynamic foundation of Lorentz’s theory of the electro-
dynamics of moving bodies is in agreement with the principle of relativity.

In addition I may briefly remark that the following important law may
easily be deduced from the developed equations: If an electrically charged
body is in motion anywhere in space without altering its charge when re-
garded from a system of co-ordinates moving with the body, its charge also
remainswhen regarded from the “stationary” system K – constant.

§ 10. Dynamics of the Slowly Accelerated Electron

Let there be in motion in an electromagnetic field an electrically charged
particle (in the sequel called an “electron”), for the law of motion of which
we assume as follows:-

22



If the electron is at rest at a given epoch, the motion of the electron
ensues in the next instant of time according to the equations

m
d2x

dt2
= εX

m
d2y

dt2
= εY

m
d2z

dt2
= εZ

where x, y, z denote the co-ordinates of the electron, and m the mass of the
electron, as long as its motion is slow.

Now, secondly, let the velocity of the electron at a given epoch be v. We
seek the law of motion of the electron in the immediately ensuing instants
of time.

Without affecting the general character of our considerations, we may
and will assume that the electron, at the moment when we give it our atten-
tion, is at the origin of the co-ordinates, and moves with the velocity v along
the axis of X of the system K. It is then clear that at the given moment
(t = 0) the electron is at rest relatively to a system of co-ordinates which is
in parallel motion with velocity v along the axis of X.

From the above assumption, in combination with the principle of rela-
tivity, it is clear that in the immediately ensuing time (for small values of
t) the electron, viewed from the system k, moves in accordance with the
equations

m
d2ξ

dτ2
= εX ′,

m
d2η

dτ2
= εY ′,

m
d2ζ

dτ2
= εZ ′,

in which the symbols ξ, η, τ,X ′, Y ′, Z ′ refer to the system k. If, further, we
decide that when t = x = y = z = 0 then τ = ξ = η = ζ = 0, the
transformation equations of §§3 and 6 hold good, so that we have

ξ = β (x− vt), η = y, ζ = z, τ = β (t− vx/c2)

X ′ = X,Y ′ = β (Y − vN/c) , Z ′ = β (Z + vM/c) .
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With the help of these equations we transform the above equations of
motion from system k to system K, and obtain

d2x
dt2

= ε
mβ3 X,

d2y
dt2

= ε
mβ

(
Y − v

c N
)
,

d2z
dt2

= ε
mβ

(
Z + v

c M
)
.


(A)

Taking the ordinary point of view we now inquire as to the “longitudinal”
and the “transverse” mass of the moving electron. We write the equations
(A) in the form

m β3 d2x

dt2
= εX = εX ′,

m β2 d2y

dt2
= εβ

(
Y − v

c
N

)
= εY ′,

m β2 d2z

dt2
= εβ

(
Z +

v

c
M

)
= εZ ′.

and remark firstly that εX ′, εY ′, εZ ′ are the components of the ponderomo-
tive force acting upon the electron, and are so indeed as viewed in a system
moving at the moment with the electron, with the same velocity as the elec-
tron. (This force might be measured, for example, by a spring balance at
rest in the last-mentioned system.) Now if we call this force simply “the
force acting upon the electron,” 9 and maintain the equation - mass × ac-
celeration = force - and if we also decide that the accelerations are to be
measured in the stationary system K, we derive from the above equations

Longitudinal mass =
m

(
√

1− v2/c2)3
.

Transverse mass =
m

1− v2/c2
.

With a different definition of force and acceleration we should naturally
obtain other values for the masses. This shows us that in comparing different
theories of the motion of the electron we must proceed very cautiously.

We remark that these results as to the mass are also valid for ponderable
material points, because a ponderable material point can be made into an

9The definition of force here given is not advantageous, as was first shown by M. Planck.
It is more to the point to define force in such a way that the laws of momentum and energy
assume the simplest form.
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electron (in our sense of the word) by the addition of an electric charge, no
matter how small.

We will now determine the kinetic energy of the electron. If an electron
moves from rest at the origin of co-ordinates of the system K along the axis
of X under the action of an electrostatic force X, it is clear that the energy
withdrawn from the electrostatic field has the value

∫
εXdx.. As the electron

is to be slowly accelerated, and consequently may not give off any energy in
the form of radiation, the energy withdrawn from the electrostatic field must
be put down as equal to the energy of motion W of the electron. Bearing
in mind that during the whole process of motion which we are considering,
the first of the equations (A) applies, we therefore obtain

W =

∫
εX dx =

∫ v

0
β3µv dv = mc2

{
1√

1− (v2/c2)
− 1

}
.

Thus, when v = c, W becomes infinite. Velocities greater than that of
light haveas in our previous results no possibility of existence.

This expression for the kinetic energy must also, by virtue of the argu-
ment stated above, apply to ponderable masses as well.

We will now enumerate the properties of the motion of the electron which
result from the system of equations (A), and are accessible to experiment.

1. From the second equation of the system (A) it follows that an electric
force Y and a magnetic force N have an equally strong deflective action on
an electron moving with the velocity v, when Y = Nv/c. Thus we see that
it is possible by our theory to determine the velocity of the electron from
the ratio of the magnetic power of deflexion Am to the electric power of
deflexion Ae, for any velocity, by applying the law

Am

Ae
=
v

c
.

This relationship may be tested experimentally, since the velocity of
the electron can be directly measured, e.g. by means of rapidly oscillating
electric and magnetic fields.

2. From the deduction for the kinetic energy of the electron it follows
that between the potential difference, P, traversed and the acquired velocity
v of the electron there must be the relationship

P =

∫
Xdx =

m

ε
c2

{
1√

1− (v2/c2)
− 1

}
.
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3. We calculate the radius of curvature of the path of the electron when
a magnetic force N is present (as the only deflective force), acting perpen-
dicularly to the velocity of the electron. From the second of the equations
(A) we obtain

−d
2y

dt2
=
v2

R
=

ε

m

v

c
N

√
1− v2

c2
,

or

R =
mc2

ε
· v/c√

1− (v2/c2)
· 1

N
.

These three relationships are a complete expression for the laws accord-
ing to which, by the theory here advanced, the electron must move.

In conclusion I wish to say that in working at the problem here dealt
with I have had the loyal assistance of my friend and colleague M. Besso,
and that I am indebted to him for several valuable suggestions.
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