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In classical thermodynamics the molecular heat (an constant volume) is

c = (3/2)k. (1)

If, however, we are to apply Nernst’s heat theorem to a gas we must consider
(1) merely as an approximation for high temperatures since c must vanish in
the limit as T = 0. We are therefore forced to assume that the motion of a
molecule in an ideal gas is quantized; this quantization manifests itself for low
temperatures by certain degeneracy phenomena so that the specific heat and
the equation of state depart from their classical counterparts.

The aim of the present paper is to present a method of quantization of
an ideal gas which, according to our opinion, is as independent of arbitrary
assumptions about the statistical of the gas molecules as is possible.

In recent times, numerous attempts have been made to determine the equation
of state of a perfect gas. The equations of state of the various authors and ours
differ from each other and from the classical equation of state

PV = NkT

by the terms, which become appreciable only at very low temperatures and high
pressures; unfortunately, real gases depart most strongly from ideal gases under
these conditions so that the significant degeneracy phenomena have not been
observable up until now. In any case, it may well be that a deeper knowledge
of the equation of state may enable us to separate the degeneracy from the
remaining deviations from the equation PV = NkT so that it may be possible
to decide experimentally which of the degeneracy theories is correct.
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To apply the quantum rules to the motions of the molecules, we can proceed
in various ways; the result, however, is always the same. For example, we
may picture the molecules as being enclosed in a parallelopiped container with
elastically reflecting walls; then the motion of the molecules flying back and forth
between the walls is conditionally periodic and can therefore be quantized; more
generally, we may picture the molecules as moving in an external force field,
such that their motion is conditionally periodic; the assumption that the gas
is ideal permits us to neglect the interactions of the molecules, so that their
mechanical motions occur only under the influence of the external field. It is
clear, however, that the quantization of the molecular motion made under the
assumption of the complete independence of the molecules from one another is
not sufficient to account for the expected degeneracy. We can see this best in
the example of molecules in a container if we note that as liner dimensions of
the container increase, the energy levels of the quantum states of each molecule
become denser and denser, so that for vessels of macroscopic dimensions all
influences of the discontinuity of the energy values practically disappear. This
influence, moreover, depends on the volume of the container, even if the number
of molecules in it are so chosen that the density remains constant.

By analyzing this state of affairs quantitatively, we can convince ourselves
that we only then obtain a degeneracy of the expected magnitude when we
choose the vessel so small that it contains, on the average, just one molecule.

We therefore surmise that the quantization of ideal gases requires an addition
to the Sommerfeld quantum condition.

Now recently Pauli, following upon an investigation by E.C. Stoner, proposed
the rule that if an electron inside an atom has quantum numbers (including
the magnetic quantum number) with definite values, then no other electron
can exist in the atom in an orbit which is characterized by the same quantum
numbers. In other words, a quantum state (in an external magnetic field) is
already completely filled by a single electron.

Since this Pauli rule has proved extremely fruitful in the interpretation of
spectroscopic phenomena, we want to see whether it may not also be useful in
the problem of the quantization of ideal gases.

We shall show that this is, indeed, the case, and that the application of Pauli’s
rule allows us to present a completely consistent theory of the degeneracy of an
ideal gas.

We therefore assume in the following that, at most, one molecule with given
quantum numbers can exist in our gas: as quantum numbers we must take into
account not only those that determine the internal motions of the molecule but
also the numbers that determine its translational motion.

We must first place our molecules in a suitable external force field so that
their motion is conditionally periodic. This can be done in an infinitude of ways;
since, however, the result does not depend on the choice of the force field, we
shall impose on the molecules a central elastic force directed toward a fixed point
O (the coordinate origin) so that each molecule becomes a harmonic oscillator.
This central force will keep our gas mass in the neighborhood of O; the gas
density will decrease with increasing distance from O and vanish at infinity. If
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ν is proper frequency of the oscillators, then the force exerted on the molecules
is

4π2ν2mr

where m is the mass of the molecule and r its distance from O. The potential
energy of the attractive force is then

u = 2π2ν2mr2

Let s1, s2, s3 be the quantum numbers of a molecule oscillator. These quantum
numbers are essentially not sufficient to characterize the molecule, for we must
add to these the quantum numbers of the internal motions. We limit ourselves,
however, to monatomic molecules and assume, in addition, that all the molecules
in our gas are in the ground state and that this state is single (does not split in a
magnetic field). We need not worry about the internal motion then, and we may
then consider our molecules simply as mass points. The Pauli rule, therefore,
states in our case that in the entire mass of gas at most only one molecule can
have the given quantum numbers s1, s2, s3.

The total energy of this molecule is given by

w = hν (s1 + s2 + s3) = hνs. (2)

The total energy can thus be an arbitrary integral multiple of hν; the value
shν, however, can be realized in many ways. Each realization implies a solution
of the equation

s = s1 + s2 + s3 (3)

where s1, s2, s3 can assume the values 1,2,3 . . . We know that (3) has

Qs =
(s+ 1)(s+ 2)

2
(4)

solutions. The energy 0 can thus be realized in one way, the energy hν in three
ways, the energy 2hν in six ways, and so on. We shall simply call a molecule
with energy shν an ((s)) – molecule.

According to our assumption, there can be in our entire gas mass only Qs((s))
– molecules; thus, at most, one molecule with energy zero, at most, three with
energy hν at most, six with energy 2hν, and so on.

To see early the results of this state of affairs, we consider the extreme case
in which the absolute temperature of our gas is zero. Let N be the number of
molecules. At absolute zero our gas must be in its lowest energy state. If there
were no restrictions on the number of molecules of a given energy, then every
molecule would be in a state of zero energy (s1 = s2 = s3 = 0). According to
the foregoing, however, at most, only one molecule can have zero energy; hence,
if N were 1, then this single molecule would have energy zero; if N were 4, one
molecule would have energy zero and the three other would occupy the three
available places with energy hν; if N were 10 one molecule would be in the zero
energy position, three others in the three places with energy hν, and the six
remaining ones in the six places with energy 2hν and so on.

3



At the absolute zero point, our gas molecules arrange themselves in a kind
of shell–like structure which has a certain analogy to the shall–like arrangement
of electrons in an atom with many electrons.

We now want to investigate how a certain amount of energy

W = Ehν (5)

(E = integer) is distributed among our molecules.
Let Ns be the number of molecules in a state with energy shν. According to

our assumption
Ns ≤ Qs (6)

We have, further, the equations∑
Ns = N (7)∑
sNs = E (8)

which state that the total number and total energy of the molecules are N and
Ehν, respectively.

We now want to calculate the number P of arrangements of our N molecules
for which N0 are at places with energy 0, N1 at places with energy hν,N2

at places with energy 2hν, etc. Two such arrangements are to be considered
identical if the places occupied by the molecules are the same; thus two arrangements
which differ only in a permutation among the molecules in their places are to be
considered as one. If we considered two such arrangements as different, we would
have to multiply P by the constant N !; we can easily see, however, that this
can have no influence on what follows. In the above–defined sense, the number
of arrangements of Ns molecules among the Qs places of energy, shν is given by(

Qs

Ns

)
.

We therefore find for P the expression

P =

(
Qs

N0

)(
Q1

N1

)(
Q2

N2

)
. . . = Π

(
Qs

Ns

)
. (9)

We obtain the most probable values of the N8 by seeking the maximum of P
under the constraints (7) and (8). By applying Stirling’s theorem we may write
sufficient approximation for our case

logP =
∑

log

(
Qs

Ns

)
= −

∑ (
Ns log

Ns

Qs −Ns +Qs log
Qs −Ns
Qs

)
(10)

We thus seek the values of Ns that satisfy (7) and (8) and for which log P
becomes a maximum. We find

αe−βs =
Ns

Qs −Ns
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where α and β are constants. This equation gives us

Ns = Qs · αe−βs

1 + αe−βs
(11)

The values of α and β can be found from equation (7) and (8) or, conversely,
we may consider α and β as given; then (7) and (8) determine the total number
and total energy of our configuration. We find, namely,

N =

∞∑
0

Qs
αe−βs

1 + αe−βs
(12)

W

hν
= E =

∞∑
0

s ·Qs αe−βs

1 + αe−βs

The absolute temperature T of the gas is a function of N and E or also of α
and β. This function can be determined by two methods, which, however, lead
to the same result. We could, for example, according to the Boltzmann entropy
principle set

S = k logP

and then calculate the temperature from the formula

T =
dW

dS

This method, however, has the disadvantage common to all methods based
on the Boltzmann principle, that for its application we must make a more
or less arbitrary assumption about the probability of a state. Therefore, we
proceed as follows: we note that the density of our gas is a function of the
distance which vanishes for infinite distances. For infinitely large r, therefore,
the degeneracy phenomena also vanish and the statistics of our gas go over
to classical statistics. In particular, for r = ∞ the mean kinetic energy of a
molecule must become (2/3)kT and the velocity distribution must go over to
the Maxwellian. We can thus obtain the temperature from the distribution of
velocities in the region of infinitesimal densities; and since the entire gas is at the
same constant temperature, we then at the same time obtain the temperature
of the high density region also. For this determination we use, so to speak, a gas
thermometer with an infinitely attenuated ideal gas.

To begin with, we calculate the density of molecules with kinetic energy
between L and L + dL at the distance r. The total energy of these molecules
lies, according to (1), between

L+ 2π2ν2mr2 and L+ 2π2ν2mr2 + dL.

Now the total energy of a molecule is shν. For our molecules s must therefore
lie between s and s+ ds, where

s =
L

hν
+

2π2νmr2

h
ds =

dL

hν
(13)
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We now consider a molecule whose motion is characteristic by the quantum
numbers s1, s2, s3. Its coordinates x, y, z are given by

x =
√
Hs1 cos(2πνt− α1), y =

√
Hs2 cos(2πνt− α2) (14)

z =
√
Hs3 cos(2πνt− α3)

as functions of the time. Here

H =
h

2π2νm
; (15)

α1, α2, α3 are phase constants which may take on all sets of values with equal
probability. From this and from equation (14) it follows that

| x |≤
√
Hs1, | y |≤

√
Hs2, | z |≤

√
Hs3,

and that the probability that x, y, z lie between the limits x and x+ dx, y and
y + dy, z and z + dz, has the value

dxdydz

π3
√

(Hs1 − x2)(Hs2 − y2)(Hs3 − z2)

If we do not know the individual values of s1, s2, s3 but only their sum, then
our probability is given by

1

Qs
· dxdydz

π3
·
∑ 1√

(Hs1 − x2)(Hs2 − y2)(Hs3 − z2)
(16)

The sum is to be extended over all integer solutions of equation (3) which satisfy
the inequalities

Hs1 ≥ x2, Hs2 ≥ y2, Hs3 ≥ z2

If we multiply the probability (16) with the number Ns of ((s)) – molecules, we
obtain the number of ((s)) – molecules in the volume element dxdydz. Taking
account of (11) we thus find that the density of ((s)) – molecules at the position
x, y, z is given by

Ns =
αe−βs

1 + αe−βs
· 1

π3
·
∑ 1√

(Hs1 − x2)(Hs2 − y2)(Hs3 − z2)

For sufficiently large s we can replace the sum by a double integral; after carrying
out the integration we find

Ns =
2

π2H2
· αe−βs

1 + αe−βs
·
√
Hs− r2.

Using (13) and (15) we now find that the density of molecules with kinetic
energy between L and L + dL at the position x, y, z is given by the following
expression

N(L)dL = Nsds =
2π(2m)3/2

h3
·
√
L dL · αe

−2π2νmβr2

h e
−βL
hν

1 + αe
−2π2νmβr2

h e
−βL
hν

(17)
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This formula must be compared with the classical expression for the Maxwellian
distribution:

N∗(L)dL = K
√
L dLe−L/kt (17′)

We see then that in the limit for ν =∞ (17) goes over into (17′) if we just set

β =
hν

kT
(18)

Now (17) can be written as follows:

N(L)dL =
(2π)(2m)3/2

h3
·
√
L dL · Ae−L/kT

1 +Ae−L/kT
(19)

where

A = αe
−2π2ν2mr2

kT (20)

The total density of molecules at the distance r now becomes

N =

∞∫
0

N(L) dL =
(2πmkT )3/2

h3
F (A), (21)

where we have placed

F (A) =
2√
π
·
∞∫

0

A
√
xe−xdx

1 +Ae−x
(22)

The mean kinetic energy of the molecules at the distance r is

L =
1

N

∞∫
0

LN(L)dL = (3/2) · kT · G(A)

F (A)
(23)

where

G(A) =
4

3
√
π

∞∫
0

Ax3/2e−xdx
1 +Ae−x

. (24)

Through (21) we can determine A as a function of density and temperature;
when we put this into (19) and (20) we obtain the velocity distribution and the
mean kinetic energy as a function of density and temperature.

To obtain the equation of state we use the virial theorem. According ti this
pressure is given by

p =
2

3
·NL = NkT · G(A)

F (A)
; (25)

again A is to be found from (12) as a function of density and temperature.
Before we go further we give some of the mathematical properties of F (A)

and G(A).
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For A ≤ 1 we can express both functions by convergent series
F (A) = A− A2

23/2 + A3

33/2 − . . .
G(A) = A− A2

23/2 + A3

33/2 − . . .
(26)

For large A we have the asymptotic expressions
F (A) = 4

3
√
π

(logA)3/2

[
1 + π2

8(logA)2 + . . .

]
,

G(A) = 8
15
√
π

(logA)5/2

[
1 + 5π2

8(logA)2 + . . .

]
.

(27)

Further, the relationship
dG(A)

F (A)
= d logA (28)

holds.
We must still introduce another function P (Θ) defined by

P (Θ) = Θ · G(A)

F (A)
, F (A) =

1

Θ3/2
(29)

For very large and very small θ respectively, P (θ) can be calculated from the
approximations

P (Θ) = Θ
{

1 + 1
25/2Θ3/2 + . . .

}
P (Θ) = 33/2π1/3

5 · 21/3
32/3π1/3

5 · 21/3

{
1 + 5 · 22/3π4/3

37/3 Θ2 + . . .

} (30)

Using (29), (28), (27), we see further that

Θ∫
0

dP (Θ)

Θ
=5 /3 · G(A)

F (A)
−2 /3 logA. (31)

We can now eliminate A from the equation of state (25) and (23) and we
obtain the pressure and the mean kinetic energy as explicit functions of density
and temperature:

p =
h2N5/3

2πm
· P ·

(
2πmkT

h2N2/3

)
(32)

L =3 /2 · h
2N2/3

2πm
· P ·

(
2πmkT

h2N2/3

)
(33)

In the limit of weak degeneracy (T large and N small) the equation of state
has the following from:

p = NkT

{
1 + (1/16) · h3N

(πmkT )3/2
+ . . .

}
. (34)
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The pressure is thus large than the classical pressure P = (NkT ). For an ideal
gas with the atomic weight of helium at T = 5◦ and a pressure of 10 atm, the
difference is about 15%.

In the limit of large degeneracy, (32) and (33) become

p = (1/20) ·
(

6
π

)2/3

· h2N5/3

m + 24/3

35/2π
8/3 · mN1/3k2T 2

h2 + . . .

L = (3/40) ·
(

6
π

)2/3

· h2N2/3

m + 21/3π8/3

32/3 · mk2T 3

h2N2/3 + . . .
(35)

From this we see that the degeneracy leads to a zero point pressure and a zero
point energy.

From (35) we can also obtain the specific heat at low temperatures.
We find

Cv =
dL

dT
=

24/3π8/3

32/3

mk2T

h2N2/3
+ . . . (36)

The specific heat vanishes at absolute zero and is proportional to the absolute
temperature at low temperatures . . .
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