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Abstract

§ 1. The selection rules for β-transformations are stated on the
basis of the neutrino theory outlined by Fermi. If it is assumed that the
spins of the heavy particles have a direct effect on the disintegration
these rules are modified. § 2. It is shown that whereas the original
selection rules of Fermi lead to difficulties if one tries to assign spins
to the members of the thorium family the modified selection rules are
in agreement with the available experimental evidence.

§ 1
According to the theory of β-disintegration given by Fermi1 no change

of the total nuclear spin should occur in the most probable transformations,
i.e., in transformations located on the first Sargent curve2. The transforma-
tions corresponding to the second Sargent curve approximately 100 times
less probable should correspond to changes ± 1 or 0 of the angular momen-
tum of the nucleus. One may expect the existence of still lower curves for
higher changes in the nuclear spin. This selection principle is based on the
assumption that the spin of the heavy particles does not enter in the part
of the Hamiltonian which is responsible for the β-disintegration. The same
assumption was made in the modified theory of Konopinski and Uhlenbeck3

who introduced the derivative of the neutrino wave function in the Hamilto-
nian in order to get a better fit with the experimental curves of the energy
distribution in β-spectra. We should like to note here that this selection rule
will be changed if the spins of the heavy particles are introduced into the
Hamiltonian, a possibility proposed in many discussions about this subject.

1Fermi, Zeits. f. Physik 88, 161 (1934).
2Sargent, Proc. Roy. Soc.A139, 659 (1933).
3Konopinski and Uhlenbeck, Phys. Rev. 48, 7 (1935).
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We shall first give the derivation of Fermi’s selection rule in a somewhat
generalized form. The probability of β-disintegration is proportional to the
square of the matrix element.

M1 =
∑

l

∫
(ΩN,P

l ψi)ψ
∗
fδql{0(ψ∗νψ

∗
ε )}. (1)

Here ψi and ψf are the proper functions of the heavy particles, protons
and neutrons, for the initial and final state, respectively. These functions
depend on the positions of the heavy particles, on their spins, and on a third
variable4 which corresponds to the charge of the heavy particles and which
is capable of two values, in a manner similar to the spin variable, the value
1 corresponding to a proton and the value 0 to a neutron. The operator
ΩN,P
l acts on this last variable converting the lth particle in ψi into a proton

if it was a neutron and giving ΩN,P
l ψi = 0 if the lth particles is already a

proton. The integration in (1) includes summation over the spin and charge
coordinates of the heavy particles. ψν and ψε are the proper functions of
the neutrino and the electron. O is an operator acting on these functions
but not involving the heavy particles and the delta function δql substitutes
the position coordinate ql of the lth heavy particle for the coordinates of the
electron and neutrino.

In Fermi’s paper the operator O was simply a summation over certain
products of the four Dirac components of the electron wave function and
components of the neutrino wave function. The Konopinski and Uhlenbeck
operator involved in addition the first derivative of the neutrino wave func-
tion. In both cases, however δql{O(ψ∗νψ

∗
ε )} is a scalar function of ql. This

is necessary since in (ΩN,P
l ψi)ψ

∗
f the summation over the spins of the heavy

particles gives also a scalar and the integral in (1) must be a scalar.
Supposing at first that ψν and ψε are plane waves, the same will be

true for δql{O(ψ∗νψ
∗
ε )}. If we expand this wave in spherical harmonics, and

suppose that the nuclear radius r0 is small compared to the wave-length
λ then the amplitudes of the zeroth, first, second . . . spherical harmonics
within the nucleus will have the ratio 1 : (r0/λ) : (r0/λ)2 . . .. Neglecting all
but the zero-order spherical harmonic M1 will be different from zero only
if the angular momentum i of the nucleus does not change during the β-
transformation and if the nuclear proper function is even with regard to
reflection on the mass center before and after the disintegration or if it is
odd before and after. These transitions will correspond to the first Sargent
curve.

4Introduced by Heisenberg, Zeits. f. Physik 77, 1 (1932).
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Taking into account the first-order spherical harmonic in the develop-
ment of δql{O(ψ∗νψ

∗
ε )} further transitions become possible. The selection

rules for these additional transitions are those valid for a polar vector: The
change in angular momentum ∆i is ±1 or 0 (but not i = 0→ i = 0) and one
of the two combining states is even, the other odd. For all these cases, how-
ever, the matrix element M1 will be smaller by r0/λ than for the zero-order
spherical harmonic and consequently the transitions will be less probable by
(r0/λ)2. Now for most β-disintegrations r0/λ is about 10−2 and the trans-
formations arising from the first-order harmonic are ten thousand times less
probable than those arising from the zero-order harmonic.

Actually the proper function of the electron is not a plane wave because
of the Coulomb interaction between the nucleus and the electron. Fermi has
shown that for the heavy elements, where this interaction is the greatest, the
result will be to increase the probability of emitting an electron with unit
angular momentum, this event being only about 100 times less probable
than the emission of the light particles with zero angular momentum, thus
giving the second Sargent curve. The situation will be similar if we accept
the Hamilton term introduced by Konopinski and Uhlenbeck or any other
expression of the type given in the matrix element M1.

We have therefore from a generalized treatment of Fermi’s theory the
following selection rules,

First Sargent curve: (1) ∆i = 0; (2) proper functions, even-even, or odd-odd.

Second Sargent curve: (1) ∆i = 0 or ±1; (2) proper functions, even-odd.

If we now assume that the spin of the proton and neutron enters into the
Hamilton term which is responsible for the transformation we may substitute
M1 by the more complicated expression

M2 =
∑

ξ

∑

l

(ΩN,P
l α

ξ
lψi)ψ

∗
fδql{O

ξ(ψ∗νψ
∗
ε )}. (2)

Hereby αξl operates on the spin of the lth heavy particle and signifies the
three Pauli matrices :5

αx =

∣
∣
∣
∣
∣

0 1
1 0

∣
∣
∣
∣
∣
; αy =

∣
∣
∣
∣
∣

0 i

−i 0

∣
∣
∣
∣
∣
; αz =

∣
∣
∣
∣
∣

1 0
0 1

∣
∣
∣
∣
∣
. (3)

5A similar expression was introduced by Fermi (in order to insure relativistic invariance)
as an additional term. In his expression, however, the α’s stood for the Dirac matrices
which give only a small contribution as long as the velocity of the heavy particles are small
compared to c. It should also be noted that Dirac’s α’s are the components of a polar
vector whereas Pauli’s α’s form an axial vector.
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The summation over ξ is meant to include the three values x, y, z. The three
operators Oξ are the three components of a vector. This means that by a
coordinate transformation the three operators are transformed in the same
way as the x, y and z components of a vector. It is then seen that the matrix
element M2 will again be scalar quantity.

Expanding the expressions δqi{Oξ(ψ∗νψ
∗
ε )} into spherical harmonics and

retaining only the zero-order functions integration over the coordinates of
the heavy particles shows that transitions are possible if (1) ∆i = 0 or ±1
(but not i = 0→ i = 0), and if (2) The transition is of an odd-odd or even-
even type. These are the same selection rules as those valid for an axial
vector. The corresponding transitions would be located on the first Sargent
curve.

From the first-order spherical harmonics we obtain transitions with (1)
∆i = 0; ±1 or ±2, (2) the transitions are of the odd-even type.

Either the matrix element M1 or the matrix element M2 or finally a linear
combination of M1 and M2 will have to be used to calculate the probabilities
of the (β-disintegrations. If the third possibility is the correct one, and the
two coefficients in the linear combination have the same order of magnitude,
then all transitions which would lie on the first Sargent curve according to
any one of the two sets of selection rules mentioned above would now lie on
the first curve. This would mean that the selection rules are the same as for
an axial vector with the addition that also the i = 0 → i = 0 even → even
or odd → odd transitions are allowed.

We shall show now that if exchange forces of the Majorana type6 are act-
ing between protons and neutrons and if these forces have to be explained
by a (β-disintegration of the neutron and a following capture of the elec-
tron and neutrino by the proton then the actual matrix element to be used
is the sum of the matrix elements M1 and M2. Indeed if we should have
only M1 then the charges would be exchanged with the spins remaining
unaffected, i.e., we should obtain Heisenberg forces. If on the other hand
M2 were the correct expression then considering a system of one neutron
and one proton represented by ψN (q1 ↑)ψP (q2 ↑)7 and applying first to
ψN (q1 ↑) the operator corresponding to M2 and then the inverse operator
to ψP (q2 ↑), the expression ψP (q1 ↑)ψN (q2 ↑) would be obtained. By a
similar procedure ψN (q1 ↑)ψP (q2 ↑) is transformed into 2ψP (q1 ↓)ψN (q2 ↑
) − ψP (q1 ↑)ψN (q2 ↓). Now ψN (q1 ↑)ψP (q2 ↑) is according to both Majo-
rana and Heisenberg in exchange interaction with ψP (q1 ↑)ψN (q2 ↑) whereas

6Majorana, Zeits. f. Physik 82, 137 (1933).
7The arrows in ψN (q1 ↑) and ψP (q2 ↑) represent the spins of the neutron and proton.

4



Figure 1: Schematic representation of the radioactive α-and β-
disintegrations from Tn B to Th D, indicating various β-transformations
leading to excited states of product-nuclei.

ψN (q1 ↑)ψP (q2 ↓) exchanges with ψP (q1 ↑)ψN (q2 ↓) according to Heisenberg
and with ψP (q1 ↓)ψN (q2 ↑) according to Majorana. The matrix element M2

will correspond therefore to a superposition of the Majorana and the Heisen-
berg forces in the ratio 2 to −1. If we want to obtain pure Majorana forces
we must add M1 and M2 with equal coefficients.

§ 2
We can now show that the new selection rules help us to remove the

difficulties which appeared in the discussion of nuclear spins of radioactive
elements8 by using the original selection rule of Fermi.

We shall discuss the sequence of transformations in the thorium family
leading from Th B to Th D (thorium lead) which is represented schemat-
ically in Fig. 1. First of all we can conclude with a rather high degree of
certainty that the normal states of Th B, Th C′ and Th D nuclei, possessing
even atomic numbers and even mass numbers, have the spin i = 0.9 The

8Gamow, Proc. Roy. Soc. A146, 217 (1934); Physik. Zeits. 35, 533 (1934).
9For four elements of this type (2He4; 6C12; 8O16; 16S32) the absence of spin is directly

shown by the band spectra; other 13 investigated elements of this type (48Cd110; 48Cd112;

48Cd114; 56Ba136; 56Ba138; 80Hg200; 80Hg202; 80Hg204; 82Pb204; 82Pb206; 82Pb208 = Th D)
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transformation Th B→ Th C gives rise to a continuous β-spectrum with the
observed upper limit Eβ = 0.362 MV and is accompanied by a very strong
γ-line hν = 0.238 MV along with several much weaker lines. The number
of secondary electrons (due to internal conversion of the γ-line 0.238 MV
in the K level) is according to Ellis and Mott10 about Nβ = 0.25 per dis-
integration from which these authors conclude that it must correspond to
a quadripole radiation. In fact the internal conversion coefficients for this
frequency are, according to calculations of Mott and Taylor,11 αd = 0.026
and α − q = 0.205 for dipole and quadripole radiation, respectively. Thus
for the total number of γ-quanta radiated by nuclei Nγ = Nβ/α we should
have according to these two possibilities 9.6 or 1.2. Since this number should
not be larger than unity we must exclude the possibility of dipole radiation
and consider the γ-line in question as due to quadripole transition with the
intensity almost one quantum per disintegration. The fact that the observed
value is 20 percent larger than unity must be due to errors in the measure-
ments of Nβ or the calculation of α. Accordingly we admit with Ellis and
Mott that in this case we have 100 percent excitation of the quantum level
0.238 MV of the Th C nucleus. The total energy of the transformation is
0.362 + 0.238 = 0.600 MV and the observed upper limit of the β-energies
corresponds to the transformation Th Bnorm → Th Cexe.

The β-transformation from Th C to Th C′ corresponds to the upper limit
of the β-spectrum Eβ = 2.25 MV and is accompanied with only very weak
γ-radiation. Thus we conclude that in this case the main transformation,
80 percent, takes place between normal states Th Cnorm → Th C′norm.

Finally in the β-transformation between Th C′′ and Th D the level 3.202
MV of Th D nucleus is (according to Ellis and Mott) excited to almost 100
percent, the transition to the normal state occurring by emission of two
γ-lines 0.582 MV and 2.620 MV both with the absolute intensities of the
order unity. Thus the observed upper limit of the β-spectrum Eβ = 1.79
MV corresponds to the transformation Th C′′norm → Th Dexe. The total
energy of transformation being 1.79 + 3.202 = 4.99 MV.

In Fig. 2 the logarithms of the partial decay constants of different sub-
groups of β-spectra are plotted against the logarithms of the corresponding
upper energy limits.12

do not show any hyperfine structure which makes it very probable that their spin is also
zero.

10Ellis and Mott, Proc. Roy. Soc. A139, 369 (1933).
11Mott and Taylor, Proc. Roy. Soc. A138, 665 (1932).
12Upper energy limits of different β-subgroups are obtained by subtracting the

excitation-energies from the total energy of transformation; partial decay constants are
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The curves I and II correspond to Sargent’s permitted and nonpermit-
ted transformations as estimated from different members of three radioactive
families. We see that the main transformation Th Bnorm → Th Cexe cor-
responds to the curve I whereas the main transformation Th Cnorm →
Th C′norm corresponds to the curve II. From the original Fermi selec-
tion rule: Curve I: ∆i = 0; Curve II: ∆i = 0 or ±1. We conclude that
i(Th Cexe) = i(Th Bnorm) = 0.. Since the γ-line represents a quadripole
transition we have further i(Th Cnorm) = 2. In this case the transformation
Th Cnorm → Th C′norm should correspond to ∆i = 2, i.e., must belong
to the third Sargent curve, which is in contradiction with experimental evi-
dence, this transformation belonging to the curve II.

The difficulty will be still not removed if we take the possibility into
account that γ-line 0.238 MV corresponds to a magnetic dipole radia-
tion. For this case the coefficients for internal conversion have been
calculated by Fisk and Taylor13 and are considerably larger than the
corresponding coefficients for electric radiation. Accepting this possi-
bility we obtain for the number of γ-quanta hv = 0.238 mv a value
small compared with unity (weak excitation) and should be forced to ac-
cept that the observed upper limit of β-spectrum corresponds to trans-
formation Th Bnorm → Th Cnorm. This will lead again to contra-
diction with Fermi’s original selection rule first because the transfor-
mation Th Bnorm → Th Cnorm and Th Cnorm → Th C′norm correspond-
ing to the same spin-change (because i(Th Bnorm) = i(Th C′norm) = 0)
would belong to different Sargent curves and secondly because in this
case both transformations Th Cnorm → Th Cnorm and Th Bnorm →
Th Cexe being of the first Sargent’s class would lead to the conclu-
sion i(Th Cnorm) = i(Th Cexe = i(Th Bnorm) = 0 which would exclude
the possibility of any γ-transition. Applying our modified selection rule,
curve I ∆i = 0 or ±1 curve II ∆i = 0, ±1 or ±2 we have the following
possibilities

nucleus :
spin :

∣
∣
∣
∣
∣

Th Bnorm
0

∣
∣
∣
∣
∣

Th Cexe
0 or ± 1

∣
∣
∣
∣
∣

Th Cnorm
0,±1 or ± 2

∣
∣
∣
∣
∣

Th C′norm
0

∣
∣
∣
∣
∣

(4)
The possibility i(Th Cnorm) = 0 or±1 must, however, be excluded as in this
case the transformation Th Bnorm → Th Cnorm would correspond to the
curve I and consequently, because of larger energy, be more probable than
Th Bnorm → Th Cexe. There remains only the possibility i(Th Cnorm) = 2

estimated from the total decay constant and relative excitation of different nuclear levels.
13Fisk and Taylor, Proc. Roy. Soc. A146. 178 (1934).
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Figure 2: Logarithmic plot of the relation between partial decay constants
and corresponding upper energy limits for various components of complex
β-ray spectra.

which is in good agreement with the quadripole-character of the γ-transition.
The transformation Th Bnorm → Th Cnorm corresponding to ∆i = 2
cannot belong now to the first Sargent curve, i.e., it must be at least 100
times weaker than the main transition, as can be seen from Fig. 2. This
accounts for the fact that the corresponding “long range” component of the
continuous β-spectra of Th B has never been observed. Thus vie see that
the new selection principle removes the difficulty originated in the case of
the older rule.

It must be pointed out, however, that according to the above consid-
erations it is not possible to assign even proper functions to all nuclei
with even atomic number and even mass number. Because if the proper
function of Th Bnorm is even, the same is true for Th Cexe (since the
transition Th Bnorm → Th Cexe lies on the first curve) and also for Th
Cnorm (since Th Cexe → Th Cnorm is a quadripole transition). But
Th Cnorm → Th C′norm lies on the second curve and therefore the proper
function of Th C′norm is odd. This is unsatisfactory since it would be nice
to substitute the rule that nuclei with even atomic number and even mass
number have i = 0 by the rule that the proper functions of these nuclei
remain unchanged during any symmetry operation.
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Turning our attention to the β-transformation leading from Th C′′” to
Th D we see that the main transformation Th C′′norm → Th Dexe corre-
sponds to the first Sargent curve from which we conclude that i(ThC′′norm)−
i(ThDexe = 0 or ±1. It can also be seen from Fig. 2 that the transforma-
tion Th C′′norm → Th Dnorm belongs at least to third, or still higher order,
curve which excludes the possibilities of i(ThC′′norm) being 0, or ±1. The
excited level 3.202 mv of Th D nucleus is connected with the normal level by
two γ-transitions, 0.582 mv and 2.620 mv, from which the second is surely
quadripole. This indicates that its spin will not be larger than 4, because
by each γ-transition ∆i ≤ 2. This gives for i(ThC′′norm) the upper limit
≤ 5. Thus for the spin of normal state of Th C′′ nucleus we have the choice
between 2, 3, 4 and 5; it seems however, to be necessary to accept the largest
possible value i(ThC′′norm) = 5 in order to have a sufficiently large spin dif-
ference between Th Cnorm(i = 2) and Th C′′norm to explain the presence
of strong fine structure of α-rays in the Th C → Th C′′ transformation14

14Gamow and Rosenblum, Comptes rendus 197, 1620 (1933).
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